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Problem Statement

WE CONSIDER A LINEAR STRING OF LENGTH ONE AND DENSITY ONE, FIXED AT x = 0
AND SUBMITTED TO AN INITIAL EXCITATION (y0, y1) AT TIME t = 0. WE ASSUME THAT
THE STRING IS SUBMITTED TO A UNILATERAL OBSTACLE ψ, TIME DEPENDENT, AT THE
RIGHT EXTREMITY x = 1.

WE WANT TO ACT ON THE LEFT EXTREMITY, I.E. AT x = 0, IN ORDER TO STABILIZE
THE STRING, AFTER A FINITE TIME T LARGE ENOUGH. INTUITIVELY, AT LEAST WHEN
THE OBSTACLE IS TIME INDEPENDENT, THIS SHOULD BE POSSIBLE, BECAUSE THE
OBSTACLE DOES NOT ADD ENERGY TO THE STRING !!!

Arnaud MÜNCH Controllability, Wave and Obstacle



Modelization of the Problem

Let T > 0 and QT = (0,T )× (0, 1). We consider the system8>>>><>>>>:
y ′′ − yxx = 0, (t , x) ∈ QT ,

y(t , 0) = u(t), t ∈ (0,T ),

y(t, 1) ≥ ψ(t), yx (t, 1) ≥ 0, (y(t, 1) − ψ(t))yx (t, 1) = 0, t ∈ (0,T ),

y(0, x) = y0(x), y ′(0, x) = y1(x), x ∈ (0, 1)

(1)

u : Dirichlet control function at x = 0;

ψ : time dependent obstacle function at x = 1 models by the classical Signorini’s
conditions.

Problem

For any T fixed large enough and any (y0, y1) in a given space, assuming that
ψ(T ) ≤ 0, does there exist a Dirichlet control u which drives the corresponding
solution of (1) to rest, i.e.

y(T ) = y ′(T ) = 0, in (0, 1) ?

=⇒ NONLINEAR null control problem !
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Our controllability result

Constructive proof based on a fixed point argument and the characteristic
method

Theorem (Ammar-Khodja/Micu/AM’10)

Let T > 2 and ψ ∈ H1(0,T ) with the property that there exists T̃ ∈ (2,min(3,T )) such
that ψ(t) ≤ 0 for any t ∈ [T̃ ,T ]. For any

`
y0, y1´ ∈ H1(0, 1)× L2(0, 1) with

ψ(0) ≤ y0(1)

there exists a control function u ∈ H1(0,T ) such that (1) admits a unique solution
y ∈ C

`
[0,T ] ,H1(0, 1)

´
∩ C1 `[0,T ] , L2(0, 1)

´
satisfying y(T ) = y ′(T ) = 0 in (0, 1).

F. Ammar-Khodja, S. Micu, A. Münch, Controllability of a string submitted to unilateral
constraint, Ann. I. H. Poincaré - AN 27 (2010) 1097-1119.
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Idea of the (constructive) proof

Step 1 Consider, for any u, f ∈ H1(0,T ), and any (φ0, φ1) ∈ H1(0, 1)× L2(0, 1),
the linear problem8><>:

φ′′ − φxx = 0, (t , x) ∈ QT ,

φ(t , 0) = u(t), φ(t , 1) = f (t), t ∈ (0,T ),

φ(0, x) = φ0(x), φ′(0, x) = φ1(x), x ∈ (0, 1)

(2)

Upon the compatibility condition

u(0) = φ0(0), f (0) = φ0(1),

system (2) is well-posed with φ ∈ C([0,T ],H1(0, 1)) ∩ C1([0,T ], L2(0, 1)) and

‖(φ(t), φ′(t))‖H1(0,1)×L2(0,1) ≤ C
„
‖(φ0, φ1)‖H1(0,1)×L2(0,1) + ‖(u, f )‖H1(0,T )2

«
Step 2 Compute explicitly for any T > 2, the set of controls

U = U(φ0, φ1, f ) = {u; (φ, φ′)(T ) = (0, 0)}

Step 3 Compute, for any u ∈ U the Dirichlet-Neumann map A defined

A(φ0, φ1, u, f ) = φx (·, 1)
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Idea of the constructive proof

Step 4 Observe then that the Signorini’s conditions become equivalent to8<:
f − ψ ≥ 0, t ∈ (0,T )
A(φ0, φ1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)A(φ0, φ1, u, f ) = 0, t ∈ (0,T ).

(3)

Step 5 Find at least one u ∈ U for φ and one f such that φ(·, 1) = f AND f
solution of the inequation (3) posed at x = 1.

In the sequel, we work with T ∈ (2, 3).

Arnaud MÜNCH Controllability, Wave and Obstacle



Idea of the constructive proof

Step 4 Observe then that the Signorini’s conditions become equivalent to8<:
f − ψ ≥ 0, t ∈ (0,T )
A(φ0, φ1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)A(φ0, φ1, u, f ) = 0, t ∈ (0,T ).

(3)

Step 5 Find at least one u ∈ U for φ and one f such that φ(·, 1) = f AND f
solution of the inequation (3) posed at x = 1.

In the sequel, we work with T ∈ (2, 3).

Arnaud MÜNCH Controllability, Wave and Obstacle



Idea of the constructive proof

Step 4 Observe then that the Signorini’s conditions become equivalent to8<:
f − ψ ≥ 0, t ∈ (0,T )
A(φ0, φ1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)A(φ0, φ1, u, f ) = 0, t ∈ (0,T ).

(3)

Step 5 Find at least one u ∈ U for φ and one f such that φ(·, 1) = f AND f
solution of the inequation (3) posed at x = 1.

In the sequel, we work with T ∈ (2, 3).

Arnaud MÜNCH Controllability, Wave and Obstacle



Idea of the constructive proof

Step 4 Observe then that the Signorini’s conditions become equivalent to8<:
f − ψ ≥ 0, t ∈ (0,T )
A(φ0, φ1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)A(φ0, φ1, u, f ) = 0, t ∈ (0,T ).

(3)

Step 5 Find at least one u ∈ U for φ and one f such that φ(·, 1) = f AND f
solution of the inequation (3) posed at x = 1.

In the sequel, we work with T ∈ (2, 3).

Arnaud MÜNCH Controllability, Wave and Obstacle



Direct versus penalty approach

1 The direct approach consists in solving directly the inequation8<:
f − ψ ≥ 0, t ∈ (0,T )
A(φ0, φ1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)A(φ0, φ1, u, f ) = 0, t ∈ (0,T ).

(4)

2 One may also use a penalty method which consists in relaxing the Signorini’s
inequations by the equation

yε,x (1, t) = ε−1[yε(·, 1)− ψ]−, t ∈ (0,T )

where [s]− = −min(0, s) and 0 < ε << 1. Then (4) becomes

A(φ0, φ1, uε, fε) = ε−1[fε − ψ]−, t ∈ (0,T )

and one has to find a couple (uε, fε) uniformly bounded w.r.t. ε.

ε−1 may be interpreted as the stiffness of the obstacle which is no more perfectly
rigid.
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Explicit computation of the admissible control set U

We define the space

H =
n““

φ0, φ1
”
, (u, f )

”
∈ H1(0, 1)× L2(0, 1)× H1(0,T )2, u(0) = φ0(0), f (0) = φ0(1)

o
.

Setting
p = φ′ − φx , q = φ′ + φx , (5)

it follows that the system in φ is equivalent to8>>>><>>>>:
p′ + px = q′ − qx = 0, (t , x) ∈ QT ,

(p + q) ( · , 0) = 2u′, t ∈ (0,T ),

(p + q) ( · , 1) = 2f ′ t ∈ (0,T ),

p0 = φ1 − φ0
x , q0 = φ1 + φ0

x , x ∈ (0, 1).

(6)

If
``

p0, q0´ , (u, f )´ ∈ L2(0, 1)2 × H1(0,T )2 system (6) admits a unique generalized
solution (p, q) ∈ C

`
[0,T ] , L2(0, 1)2´. In view of (5), this solution corresponds to a

solution φ of (2) satisfying

φ ∈ C
“
[0,T ] ,H1(0, 1)

”
∩ C1

“
[0,T ] , L2(0, 1)

”
associated with the data

``
φ0, φ1´ , (u, f )´ ∈ H.
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U via the characteristic method

Proposition

Let T ∈ (2, 3) and assume that
``
φ0, φ1´ , (u, f )´ ∈ H. Then the solution (p, q) of (6)

satisfies (p, q) (T ) = 0 in (0, 1) if and only if
``
φ0, φ1´ , (u, f )´ satisfies

8>>>>>>>>>><>>>>>>>>>>:

u′(t) = f ′(t + 1) +
1
2

q0(t) if T − 2 < t < 1

u′(t) = f ′(t + 1) + f ′(t − 1)−
1
2

p0(2− t) if 1 < t < T − 1

u′(t) = f ′(t − 1)−
1
2

p0(2− t) if T − 1 < t < 2

u′(t) + u′(t − 2) = f ′(t − 1) +
1
2

q0(t − 2) if 2 < t < T .

(7)

Remark

u is "free" on (0,T − 2).

Remark

(p(T ), q(T )) = 0 =⇒ (φx (T ), φ′(T )) = 0. If, in addition, (u(T ), f (T )) = 0, then
φ(T ) = 0.

Arnaud MÜNCH Controllability, Wave and Obstacle



U via the characteristic method

Proposition

Let T ∈ (2, 3) and assume that
``
φ0, φ1´ , (u, f )´ ∈ H. Then the solution (p, q) of (6)

satisfies (p, q) (T ) = 0 in (0, 1) if and only if
``
φ0, φ1´ , (u, f )´ satisfies

8>>>>>>>>>><>>>>>>>>>>:

u′(t) = f ′(t + 1) +
1
2

q0(t) if T − 2 < t < 1

u′(t) = f ′(t + 1) + f ′(t − 1)−
1
2

p0(2− t) if 1 < t < T − 1

u′(t) = f ′(t − 1)−
1
2

p0(2− t) if T − 1 < t < 2

u′(t) + u′(t − 2) = f ′(t − 1) +
1
2

q0(t − 2) if 2 < t < T .

(7)

Remark

u is "free" on (0,T − 2).

Remark

(p(T ), q(T )) = 0 =⇒ (φx (T ), φ′(T )) = 0. If, in addition, (u(T ), f (T )) = 0, then
φ(T ) = 0.

Arnaud MÜNCH Controllability, Wave and Obstacle



U via the characteristic method

Proposition

Let T ∈ (2, 3) and assume that
``
φ0, φ1´ , (u, f )´ ∈ H. Then the solution (p, q) of (6)

satisfies (p, q) (T ) = 0 in (0, 1) if and only if
``
φ0, φ1´ , (u, f )´ satisfies

8>>>>>>>>>><>>>>>>>>>>:

u′(t) = f ′(t + 1) +
1
2

q0(t) if T − 2 < t < 1

u′(t) = f ′(t + 1) + f ′(t − 1)−
1
2

p0(2− t) if 1 < t < T − 1

u′(t) = f ′(t − 1)−
1
2

p0(2− t) if T − 1 < t < 2

u′(t) + u′(t − 2) = f ′(t − 1) +
1
2

q0(t − 2) if 2 < t < T .

(7)

Remark

u is "free" on (0,T − 2).

Remark

(p(T ), q(T )) = 0 =⇒ (φx (T ), φ′(T )) = 0. If, in addition, (u(T ), f (T )) = 0, then
φ(T ) = 0.

Arnaud MÜNCH Controllability, Wave and Obstacle



The Control Dirichlet-to-Neumann map

Hc =
n“
φ0, φ1, u, f

”
∈ H | (7) is verified and u(T ) = f (T ) = 0

o
.

Lemma

Let T ∈ (2, 3) and (φ0, φ1, u, f ) ∈ Hc . The Control Dirichlet-to-Neumann map
Ac : Hc → L2(0,T ) defined by

Ac(φ
0, φ1, u, f ) = φx (·, 1)

„
=

q(t , 1)− p(t , 1)

2

«
is given by

Ac(φ
0, φ1, u, f )(t) =

8<: f ′(t)− p0(1− t) 0 < t < 1
f ′(t)− 2u′(t − 1)− q0(t − 1) 1 < t < T − 1
−f ′(t) T − 1 < t < T

(8)

where p0 = φ1 − φ0
x and q0 = φ1 + φ0

x .

Remark

Note that the expression of Ac(φ0, φ1, u, f ) in (8) involves only the part of u defined on
(0,T − 2), i.e. the "free" part of u.
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Note that the expression of Ac(φ0, φ1, u, f ) in (8) involves only the part of u defined on
(0,T − 2), i.e. the "free" part of u.
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Characterisation of the controls for (y , y ′)

Proposition

Problem (1) is null controllable in time T ∈ (2, 3) if and only if, for any
(y0, y1) ∈ H1(0, 1)× L2(0, 1), ψ ∈ H1(0,T ) with the condtions

ψ(0) ≤ y0(1), ψ(T ) ≤ 0,

there exist a control u ∈ H1(0,T ) and a function f ∈ H1(0,T ) such that
1 (y0, y1, u, f ) ∈ Hc .
2 y is the solution of (2) with nonhomogeneous terms (u, f ) ∈ (H1(0,T ))2 and

initial data (y0, y1).
3 f − ψ ≥ 0, in (0,T ).
4 Ac(y0, y1, u, f ) ≥ 0 in (0,T )

5 (f − ψ) Ac(y0, y1, u, f ) = 0 in (0,T ).
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Resolution of the Signorini’s conditions

The Signorini’s conditions are :8<:
f − ψ ≥ 0, t ∈ (0,T )
Ac(y0, y1, u, f ) ≥ 0, t ∈ (0,T )
(f − ψ)Ac(y0, y1, u, f ) = 0, t ∈ (0,T ).

(9)

On (0,T − 1), problem (9) writes:8>><>>:
f − ψ ≥ 0,
f ′ − v ≥ 0,
(f − ψ) (f ′ − v) = 0
f (0) = y0(1)

, (0,T − 1), (10)

where

v(t) =


p0(1− t) 0 < t < 1
2u′(t − 1)− q0(t − 1) 1 < t < T − 1

,

On (T − 1,T ) : 8>><>>:
f − ψ ≥ 0,
f ′ ≤ 0,
(f − ψ) f ′ = 0,
f (T ) = 0

, (T − 1,T ), (11)
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Resolution of the Signorini’s conditions

Lemma (Benilan-Pierre, 1979)

Let h ∈ H1(0,T ) and θ0 ≥ h(0). Then the function

θ(t) = max

 
θ0, sup

0≤s≤t
h(s)

!
, t ∈ [0,T [

belongs to H1(0,T ) and is the unique solution of the problem8>><>>:
θ ≥ h in (0,T )
θ′ ≥ 0 in (0,T )
θ′ (θ − h) = 0 in (0,T )
θ(0) = θ0.

(12)

Ph. Benilan, M. Pierre, Inéquations différentielles ordinaires avec obstacles irrégulièrs,

Ann. Fac. Sci. Toulouse (1979)-1-8.
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Signorini’s conditions

v(t) =


p0(1− t) 0 < t < 1
2u′(t − 1)− q0(t − 1) 1 < t < T − 1

, (13)

Proposition

Let v ∈ L2 (0,T − 1) defined by (13) and V (t) =
R t

0 v(s)ds. Then the unique solution
of (10) is given by

f (t) = V (t) + max

 
y0(1), sup

0≤s≤t
(ψ(s)− V (s))

!
, t ∈ (0,T − 1) . (14)

The unique solution of (11) is given by

f (t) =

"
sup

t≤s≤T
ψ(s)

#+

, t ∈ (T − 1,T ). [s]+ = max(0, s) (15)
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Conclusion

v(t) =


p0(1− t) 0 < t < 1
2u′(t − 1)− q0(t − 1) 1 < t < T − 1

, Vu(t) =

Z t

0
v(s)ds

Proposition

There exists u such that the function f given by (14) and (15) belongs to H1(0,T ), i.e.

lim
t→(T−1)−

f (t) = lim
t→(T−1)+

f (t).

This amounts to find u ∈ H1(0,T − 2) such that

Vu(T − 1) + max

 
y0(1), sup

0≤s≤T−1
(ψ(s)− Vu(s))

!
=

"
sup

T−1≤s≤T
ψ(s)

#+

.

The answer is positive (u is free in (0,T − 2)). Once u is fixed in (0,T − 2) and f in
(0,T ), we compute u in (T − 2,T ) using that (φ0, φ1, u, f ) ∈ Hc . This shows the
controllability of the problem.
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Penalty approach

For any ε > 0, find yε solution of the penalized problem8>><>>:
y ′′ε − yε,xx = 0 (t , x) ∈ QT ,
yε(t , 0) = uε(t) t ∈ (0,T ),
yε,x (t , 1) = ε−1[yε(t , 1)− ψ(t)]− t ∈ (0,T ),
yε(0, x) = y0(x), y ′ε(0, x) = y1(x) x ∈ (0, 1)

(16)

where [yε(t , 1)− ψ(t)]− = −min{0, yε(t , 1)− ψ(t)}.

Problem

For any T fixed large enough and any (y0, y1) in a given space, assuming that
ψ(T ) ≤ 0, does there exist a Dirichlet control uε, uniformly bounded w.r.t. ε, which
drives the corresponding solution of (16) to rest, i.e.

yε(T ) = y ′ε(T ) = 0, in (0, 1) ?
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Fixed point and non homogeneous system

Let (y0, y1) ∈ H1
0 (0, 1)× L2(0, 1), uε, fε ∈ H1(0,T ), uε(0) = y0(0), fε(0) = y0(1) and

yε solution of 8><>:
y ′′ε − yε,xx = 0 (t , x) ∈ QT ,

yε(t , 0) = uε(t), yε(t , 1) = fε(t) t ∈ (0,T ),

yε(0, x) = y0(x), y ′ε(0, x) = y1(x) x ∈ (0, 1)

(17)

Proposition

System (17) is well-posed and yε ∈ C([0,T ]; H1(0, 1)) ∩ C1([0,T ], L2(0, 1)).
Moreover, for any uε ∈ H1(0, 1), there exists a unique fε ∈ H1(0,T ) such that

fε(0) = y0(1), A(y0, y1, uε, fε) = ε−1[fε − ψ]− (18)

8>>>>><>>>>>:

fε(0) = y0(1)

f ′ε(t) =

8>><>>:
ε−1[fε(t)− ψ(t)]− + p0(1− t) 0 < t < 1

ε−1[fε(t)− ψ(t)]− + 2u′ε(t − 1)− q0(t − 1) 1 < t < 2

ε−1[fε(t)− ψ(t)]− − 2f ′ε(t − 2) + 2u′ε(t − 1) + p0(3− t) 2 < t < T
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Characterization of the control/ Nonlinear control system at x = 1

Proposition

Let T ∈ (2, 3) and ψ ∈ H1(0,T ) with ψ(T ) ≤ 0. Problem (16) is null controllable in
time T if and only if, for any (y0, y1) ∈ H1(0, 1)× L2(0, 1) with y0(1) ≥ ψ(0), there
exist a control uε ∈ H1(0,T ) and a function fε ∈ H1(0,T ) such that

1 (y0, y1, uε, fε) ∈ Hc .
2 yε is the solution of (2) with nonhomogeneous terms (uε, fε) and initial data

(y0, y1).
3 Ac(y0, y1, uε, fε) = ε−1[f − ψ]−.

Given T ∈ (2, 3), find fε ∈ H1(0,T ) and uε ∈ H1(0,T − 2), uε(0) = y0(0) such that

8>>>>>>><>>>>>>>:

fε(0) = y0(1)

f ′ε(t) =

8>><>>:
ε−1[fε(t)− ψ(t)]− + p0(1− t) t ∈ (0, 1)

ε−1[fε(t)− ψ(t)]− + 2u′ε(t − 1)− q0(t − 1) t ∈ (1,T − 1)

−ε−1[fε(t)− ψ(t)]− t ∈ (T − 1,T )

fε(T ) = 0.

(19)
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fε(T ) = 0.

(19)
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Boundeness

Corollary

Let T ∈ (2, 3) and
`
y0, y1´ ∈ H1(0, 1)× L2(0, 1), ψ ∈ H1(0,T ) with ψ(T ) ≤ 0 and

y0(1)− ψ(0) ≥ 0. Then, the previous problem admits a sequence (uε, fε) of solutions
such that

f 2
ε (t) ≤ C, t ∈ [0,T ]

‖fε‖H1(0,T ) ≤ C

‖uε‖H1(0,T ) ≤ CZ T

0

“
[fε(t)− ψ(t)]−

”2
dt ≤ Cε2.

=⇒ This allows to pass to the limit w.r.t. to ε and get a controllability result.
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Numerical experiments : Constant obstacle ψ(t) = L = −1/10

T = 2.2, (y0(x), y1(x)) =

„
x(1−

x
2

),−3x
«
, x ∈ (0, 1)

u(t) = −
t
2

„
2t − 1 +

L
T − 2

«
, t ∈ (0,T − 2)

f (t) =

8>>>>>>><>>>>>>>:

t(−3 + t) +
1
2

0 ≤ t ≤ tL

L tL ≤ t ≤ 1

L(−t + T − 1)

T − 2
1 ≤ t ≤ T − 1

0 T − 1 ≤ t ≤ T

with tL = (3−
√

7 + 4L)/2 ∈ (0, 1). The function f then provides u in (T − 2,T )8>>>>>>>>>>><>>>>>>>>>>>:

u(t) = −
L
2

+
t
2
− t2 T − 2 < t < 1

u(t) =
3
2
−

L
2

+
t2

2
−

5t
2

1 < t < tL + 1

u(t) = −3 +
L
2

+
5t
2
−

t2

2
tL + 1 < t < 2

u(t) = −
1
2

L(t − T )

T − 2
2 < t < T
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Numerical experiments : Constant obstacle ψ(t) = L = −1/10
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Figure: Control u and corresponding displacement y(·, 1) vs. t ∈ [0,T ].

Figure: Controlled solution y in QT .
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Numerical experiments : Non constant obstacle ψ(t) = sin(6πt/T )/5
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Figure: Control u and corresponding displacement y(·, 1) vs. t ∈ [0,T ].

Figure: Controlled solution y in QT .
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Numerical experiments : Non constant obstacle ψ(t) = sin(19πt/T )/5
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Figure: Control u and corresponding displacement y(·, 1) vs. t ∈ [0,T ].

Figure: Controlled solution y in QT .
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Penalization: ψ(t) = sin(2πt/T )/5
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Figure: Penalty method - ε = 1/200 - Control uε (Left) and corresponding
displacement yε(·, 1) (Right) vs t ∈ [0,T ].

ε 1/100 1/200 1/400 1/800
‖uε‖L2(0,T ) 5.58× 10−1 5.53× 10−1 5.50× 10−1 5.49× 10−1

‖ε−1[yε(·, 1)− ψ]−‖L2(0,T ) 1.837 1.844 1.848 1.850
mint∈[0,T ](yε(t , 1)− ψ(t)) −3.09× 10−2 −1.57× 10−2 −7.97× 10−3 −4.01× 10−3

Table: Penalty approach - ψ(t) = sin(2πt/T )/5.
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Concluding remarks

Same technique for (y(T ), y ′(T )) = (z0, z1) with any
(z0, z1) ∈ H1(0, 1)× L2(0, 1) with z0(1) ≥ ψ(T ).

Same technique for a case of a lower and an upper obstacle :

ψl (t) ≤ y(t , 1) ≤ ψu(t), t ∈ (0,T ), ψl , ψu ∈ H1(0,T )

We can consider the nonlinear control problem

8><>:
y ′′ − yxx = 0 (t , x) ∈ (0,T )× (0, 1),

y(t , 0) = u(t), yx (t , 1) = f (t , y) t ∈ (0,T ),

y(0, x) = y0(x), y ′(0, x) = y1(x) x ∈ (0, 1)

f continuous with respect to t and Lipschitz with respect to y .

The controllability for the case T = 2 depends on the initial condition (y0, y1).
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Perspectives

Link between the direct control and penalized control ?

How to obtain the control of minimal H1(0,T ) norm ?

Open problem I: Controllability with an internal obstacle ?

Open problem II: The higher dimension case (In progress with F. Ammar-Khodja)

Extension to the parabolic situation

8>>>><>>>>:
θt − θxx = 0, (t , x) ∈ QT ,

θ(t , 0) = u(t), t ∈ (0,T ),

θ(t, 1) ≥ ψ(t), θx (t, 1) ≥ 0, (θ(t, 1) − ψ(t))θx (t, 1) = 0, t ∈ (0,T ),

θ(0, x) = θ0(x) x ∈ (0, 1)
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The end

More details on

F. Ammar-Khodja, S. Micu, A.Münch,
Exact controllability of a string submitted to a boundary
unilateral constraint,
Annales de l’Institut Henri Poincaré (C). 27(4) (2010)
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