Some free-boundary problems and their control

Enrique FERNÁNDEZ-CARA
EDAN/IMUS - Univ. de Sevilla

Workshop on Control
Clermont-Ferrand, October 2021

Outline

(9) Introduction. Free-boundary problems
(2) Numerical approximation (experiments with Frefem++)
(3) Conclusions, remarks and future work

Free-boundary problem = differential system with unknown function(s) and domain(s) A part of the boundary? An internal curve or surface? etc.

Many motivations sharing transitions or changes of state:
buying to selling actions in finance, active to inactive transition in biology, phase transition in physics, etc.

The free boundary indicates the points where transition occurs

Figure: Buying to selling change process
The free boundary indicates: change of trade activity (e.g. buy to sell)

Figure: Active to inactive biological change

The free boundary indicates: change of biological role (e.g. active to inactive)

Figure: Phase transition

The free boundary indicates: change of state (e.g. solid to liquid) Interesting question: can we act to control the free boundary evolution?

Usually: ODE's and/or PDE's and complements + additional laws

$$
\left\{\begin{array}{l}
E(y)=0 \text { in } \Omega+\ldots \\
\text { Additional laws }
\end{array}\right.
$$

Many works on the theory: since [Caffarelli 1976, Friedman 1978, Monakhov 1983, Crank 1987, Vázquez 1987, Texeira 2007, ...]

Not so many on the numerics: [Proc. Workshops in Jyvaskyla 1990, Kyoto 1991; Chen 2016, ...]

Example 1: The obstacle problem

Data: $\Omega_{0}, f=f(x), \varphi=\varphi(x)$ and $\psi=\psi(x)$
Unknowns: Ω and u

$$
\left\{\begin{array}{l}
u \geq \varphi \text { in } \Omega_{0} \\
-\Delta u=f(x) \text { in } \Omega:=\left\{x \in \Omega_{0}: u(x)>\varphi(x)\right\} \\
u=\psi \text { on } \partial \Omega_{0}
\end{array}\right.
$$

The solution to the obstacle problem

Figure: The obstacle problem

The solution to the obstacle problem

Figure: An obstacle problem for a nonregular obstacle. Numerical solution

The obstacle problem

Data: $\Omega_{0}, f=f(x), \varphi=\varphi(x)$ and $\psi=\psi(x)$

$$
\left\{\begin{array}{l}
u \geq \varphi \text { in } \Omega_{0} \\
-\Delta u=f(x) \text { in } \Omega:=\left\{x \in \Omega_{0}: u(x)>\varphi(x)\right\} \\
u=\psi \text { on } \partial \Omega_{0}
\end{array}\right.
$$

Unknowns: Ω and u
Many theoretical results: reformulation as a variational inequality

$$
\left\{\begin{array}{l}
\int \nabla u \cdot(\nabla v-\nabla u) d x \geq \int f(v-u) d x \\
\forall v \in K:=\left\{z \in H^{1}\left(\Omega_{0}\right): z \geq \varphi, \quad z=\psi \text { on } \partial \Omega_{0}\right\}, u \in K
\end{array}\right.
$$

Existence, uniqueness, regularity, ... [Friedman 1988, Caffarelli 1998, ...]
Numerical resolution: [Scholz 1984, Cheng et al 2021, ...]

Example 2: Navier-Stokes + free boundaries

Motivation: Rotating fluids [Ciuperca, 1996]
Fluid rotating around a flexible cylindrical structure (a gas container)
Two actions:

- $y_{B}=\omega \times x$ on the fixed external boundary
- p_{F} on the unknown internal boundary

The free boundary is the internal boundary

2D Navier-Stokes and free boundaries

Figure: A fluid rotating around a flexible structure

2D Navier-Stokes and free boundaries

Data: $\Omega_{0} \subset \mathbf{R}^{2}, \partial \Omega_{0}=S_{B} \cup S_{F, 0}$ (the circle of radius 1 and a closed interior curve); \mathbf{k} (Gravity force); y_{B} and p_{F} (boundary data)

Unknowns: $\Omega=\Omega(t) \subset \mathbf{R}^{2}$ for $t \in[0, T], y, p$ with

$$
\left\{\begin{array}{l}
\partial \Omega(t)=S_{B} \cup S_{F}(t) \\
-\nu \Delta y+(y \cdot \nabla) y+\nabla p=\mathbf{k}, \quad x \in \Omega(t), t \in(0, T) \\
\nabla \cdot y=0, \quad x \in \Omega(t), t \in(0, T) \\
y=y_{B}, x \in S_{B}, t \in(0, T) \\
(-\nu D(y)+\text { pld. }) \cdot \mathbf{n}=p_{F} \mathbf{n}, \quad x \in S_{F}(t), t \in(0, T) \\
\Omega(0)=\Omega_{0}
\end{array}\right.
$$

and

$$
V(x, t)=y(x, t), \quad x \in S_{F}(t), t \in(0, T)
$$

The free boundary: $\left\{(x, t): x \in S_{F}(t), t \in(0, T)\right\}$

2D Navier-Stokes and free boundaries

THE DOMAIN AND THE MESH

Figure: Initial state: free boundary and mesh

2D Navier-Stokes and free boundaries

Figure: Initial state: pressure

2D Navier-Stokes and free boundaries

NEW MODIFIED MESH, $\mathrm{t}=0.4$

Figure: State at $t=0.5$: free boundary and mesh

2D Navier-Stokes and free boundaries

Figure: State at $t=0.5$: pressure

2D Navier-Stokes and free boundaries

NEW MODIFIED MESH, $\mathrm{t}=1$

Figure: Final state: free boundary and mesh

2D Navier-Stokes and free boundaries

Figure: Final state: pressure

2D Navier-Stokes and free boundaries A related control question

Question: Is it possible to choose p_{F} to get desired $\Omega(T), y(\cdot, T)$ and $p(\cdot, T)$?

$$
\left\{\begin{array}{l}
\partial \Omega(t)=S_{B} \cup S_{F}(t) \\
-\nu \Delta y+(y \cdot \nabla) y+\nabla p=\mathbf{k}, \quad x \in \Omega(t), t \in(0, T) \\
\nabla \cdot y=0, \quad x \in \Omega(t), t \in(0, T) \\
y=y_{B}, x \in S_{B}, t \in(0, T) \\
(-\nu D(y)+\text { pld. }) \cdot \mathbf{n}=p_{F} \mathbf{n}, \quad x \in S_{F}(t), t \in(0, T) \\
\Omega(0)=\Omega_{0}
\end{array}\right.
$$

and

$$
V(x, t)=y(x, t), \quad x \in S_{F}(t), t \in(0, T)
$$

Example 3: The one-phase Stefan problem

Motivation: melting of ice and similar phenomena
In a simple situation (1D, one-phase):

- Heat equation on the left, $x<\ell(t), t \in(0, T)$
- Initial and boundary conditions at $t=0$, on the left and on the right
- Stefan condition on $x=\ell(t), t \in(0, T)$

The free boundary is $x=\ell(t)$, controlled dynamically by y
Water for $x<\ell(t)$, Ice for $x>\ell(t)$

Motivation of Stefan problems: melting of ice

Figure: Ice and water

Motivation of Stefan problems: melting of ice

Figure: Ice and water

Figure: Jozef Stefan (1835-1893)

Discovered the power law: $j^{*}=\sigma T^{4}$ - Advisor of Boltzmann

The Stefan problem

Motivation: melting of ice and similar phenomena
In a simple situation (1D, one-phase), with data $f, k>0, \ell_{0}>0, y_{0} \geq 0$:
$\left\{\begin{array}{l}y_{t}-y_{x x}=f(x, t), \quad x \in(0, \ell(t)), t \in(0, T) \\ y(0, t)=y(\ell(t), t)=0, \quad t \in(0, T) \\ \ell(0)=\ell_{0}, \quad y(x, 0)=y_{0}(x), \quad x \in\left(0, \ell_{0}\right)\end{array}\right.$

$$
\text { and } y_{x}(\ell(t), t)=-k \ell^{\prime}(t), \quad t \in(0, T)
$$

The free boundary is $x=\ell(t)$, controlled dynamically by y.
Also motivated by other applications:

- Solidification processes, tumor growth models and others [Friedman, ...]
- Gas flow through porous media [Aronson, Fasano, Vazquez, ...]
- Finances [Salsa, ...]

Quasi-linear parabolic PDEs

The solution to the 1D one-phase Stefan problem

Figure: The iso-regions $y=$ Const. and the free boundary $x=\ell(t)$

Quasi-linear parabolic PDEs

The solution to the 1D one-phase Stefan problem

Figure: The iso-regions $y=$ Const. and the free boundary $x=\ell(t)$

Analysis of the Stefan problem

Main questions and results

- Reformulation as a parabolic variational inequality, weak solution:

$$
\text { New (working) variable: } w(x, t)=\int_{0}^{t}\left(1_{\{y>0\}} y\right)(x, s) d s
$$

Formulation (for some f, ψ and Q):

$$
\left\{\begin{array}{l}
\int\left(w_{t}(v-w)+w_{x}\left(v_{x}-w_{x}\right)\right) d x \geq \int f(v-w) d x \\
\forall v \in K:=\left\{z \in H^{1}(Q): z \geq 0, \quad z=\psi \text { on } \partial_{p} Q\right\}, w \in K
\end{array}\right.
$$

- Existence, uniqueness
- Regularity of the free boundary

Contributions by Duvaut, Friedman, Kinderlherer, Caffarelli, ...

Controllability

NC of 1D one-phase Stefan
Find $v \in L^{2}(\omega \times(0, T)), \ell=\ell(t)>0$ and $y=y(x, t)$ with
$(N C)_{1}\left\{\begin{array}{l}y_{t}-y_{x x}=v 1_{\omega}, \quad x \in(0, \ell(t)), t \in(0, T) \\ y(0, t)=y(\ell(t), t)=0, \quad t \in(0, T) \\ \ell(0)=\ell_{0}, \quad y(x, 0)=y_{0}(x), \quad x \in\left(0, \ell_{0}\right)\end{array} \quad y_{x}(\ell(t), t)=-k \ell^{\prime}(t), t \in(0, T)\right.$
and
$(N C)_{2}$

$$
y(x, T)=0, \quad x \in(0, \ell(T))
$$

Here: $\ell_{0}>0, y_{0} \geq 0, \omega=(a, b) \subset\left(0, \ell_{0}\right)$ (small)

Theorem (Local NC, EFC-Limaco-Menezes 2016)

$\exists \varepsilon>0$ such that $\left\|y_{0}\right\|_{H_{0}^{1}} \leq \varepsilon \Rightarrow \exists v, \ell, y$ satisfying $(N C)_{1},(N C)_{2}$
Recall: Heat flux proportional to free boundary speed Note: Also NC with Dirichlet or Neumann boundary controls ...

Formulation as a fixed-point equation
 1D one-phase Stefan

For the proof:
(1) $\left[y_{x}(\ell(t), t) \equiv-k \ell^{\prime}(t), \quad \ell(0)=\ell_{0}\right] \Leftrightarrow \ell(t) \equiv \ell_{0}-\int_{0}^{t} y_{x}(\ell(s), s) d s$
(2) The good formulation: $\ell=\Lambda(\ell), \quad \ell \in \mathcal{M} \subset C^{1}([0, T])$, with

$$
\begin{aligned}
L= & \Lambda(\ell) \Leftrightarrow L(t)=\ell_{0}-k \int_{0}^{t} y_{x}(\ell(s), s) d s \forall t \text { where } \\
& \left\{\begin{array}{l}
y_{t}-y_{x x}=v 1_{\omega}, x \in(0, \ell(t)), t \in(0, T) \\
y(0, t)=y(\ell(t), t)=0, t \in(0, T) \\
y(x, 0)=y_{0}(x), x \in\left(0, \ell_{0}\right)
\end{array}\right.
\end{aligned}
$$

and

$$
y(x, T)=0, \quad x \in(0, \ell(T))
$$

(a NC problem for a fixed boundary)
(3) Schauder's Theorem $\Rightarrow \exists$ fixed-points of Λ

The method: $\ell^{n+1}=\Lambda\left(\ell^{n}\right)$ for $n \geq 0$
For the numerical solution for prescribed ℓ :
Fursikov-Imanuvilov reformulation + finite element approx.

Fursikov-Imanuvilov reformulation and approximation

Task: NC for prescribed ℓ (noncylindrical domain)
With appropriate $\rho=\rho(x, t)\left(\left.\rho\right|_{t=T}=+\infty\right)$ and $\rho_{0}=\rho_{0}(x, t)$

$$
\left\{\begin{array}{l}
\text { Minimize } \iint\left[\rho^{2}|y|^{2}+1_{\omega} \rho_{0}^{2}|v|^{2}\right] \\
\text { Subject to } v \in L^{2}(\omega \times(0, T)), \quad y: \text { asssociated state }
\end{array}\right.
$$

Then:

- Automatically: $y(\cdot, T)=0$
- The solution: $y=\rho^{-2} L^{*} p, v=-\left.\rho_{0}^{-2} p\right|_{\omega \times(0, T)}$ (Lagrange)

$$
\left\{\begin{array}{l}
\iint\left(\rho^{-2} L^{*} p L^{*} q+\rho_{0}^{-2} 1_{\omega} p q\right)=\int_{\Omega} y_{0}(x) q(x, 0) d x \\
\forall q \in P, p \in P
\end{array}\right.
$$

for $L^{*} p:=-p_{t}-p_{x x}$, appropriate $P \ldots$
Essentially, $p \in P \Leftrightarrow \iint\left(\rho^{-2}\left|L^{*} p\right|^{2}+\rho_{0}^{-2} 1 \omega|p|^{2}\right)<+\infty$

Computation of a null control for prescribed ℓ A Lax-Milgram problem

$$
\left\{\begin{array}{l}
\iint\left(\rho^{-2} L^{*} p L^{*} q+\rho_{0}^{-2} 1_{\omega} p q\right)=\int_{\Omega} y_{0}(x) q(x, 0) d x \\
\forall q \in P, p \in P
\end{array}\right.
$$

Numerical approximation (I): finite dimensional $P_{h} \subset P$

$$
\left\{\begin{array}{l}
\iint_{\Omega \times(0, T)}\left(\rho^{-2} L^{*} p_{h} L^{*} q_{h}+\rho_{0}^{-2} 1_{\omega} p_{h}, q_{h}\right)=\int_{\Omega} y_{0}(x) q_{h}(x, 0) d x \\
\forall q_{h} \in P_{h}, \quad p_{h} \in P_{h}
\end{array}\right.
$$

Numerical approximation (II): mixed reformulation in $Z \times \wedge$ (multipliers)

+ finite dimensional approx. ($Z_{h} \subset Z, \Lambda_{h} \subset \wedge$)

$$
\left\{\begin{array}{l}
\iint\left(y_{h} z_{h}+1_{\omega} f_{h}, g_{h}\right)+\left\langle z_{h}-\rho^{-2} L^{*}\left(\rho_{0}^{2} g_{h}\right), \lambda_{h}\right\rangle=\int_{\Omega} \rho_{0}(x, 0) y_{0}(x) g_{h}(x, 0) d x \\
\left\langle\left(y_{h}-\rho^{-2} L^{*}\left(\rho_{0}^{2} f_{h}\right)\right), \mu_{h}\right\rangle=0 \\
\forall(z, g) \in Z, \quad \forall \mu \in \Lambda ; \quad(y, f) \in Z, \quad \lambda \in \Lambda
\end{array}\right.
$$

The strategy:
a) Fix ℓ^{0}
b) For given $n \geq 0$, ℓ^{n} :
b.1) NC with $\ell^{n} \rightarrow v^{n}$ and y^{n} with $y^{n}(x, T) \equiv 0$ (Fursikov-Imanuvilov, $P_{h} \subset P$, etc.)
b.2) $v^{n}, \ell^{n}, y^{n} \rightarrow \ell^{n+1}$

Numerical experiments

All experiments with FreeFem++ (http: //www.freefem.org//ff++) To appear soon, [EFC-Souza]

A first numerical experiment: one-phase Stefan

- $\ell_{0}=5, y_{0}(x) \equiv 2.5 \sin ^{2}\left(\pi x / \ell_{0}\right)$.
- $d_{0}=2.15, \omega=(0,3), k=0.06, T=10$.

Stopping criterion: $\left\|y^{n+1}-y^{n}\right\|_{L^{2}} /\left\|y^{n+1}\right\|_{L^{2}} \leq 10^{-5}$ Starting from $y^{0} \equiv y_{0}$: convergence after 19 iterates

Numerical experiment

1D one-phase Stefan

One-phase Stefan problem

STATE, IT_ EXT $=1$ IT_ INT $=0$
2 .

Figure: Initial mesh and first controlled solution

Numerical experiment

One-phase Stefan problem

One-phase Stefan problem

STATE,IT_EXT $=1$ IT_INT $=0$

Figure: First controlled solution

One-phase Stefan problem

```
Th: NV = 2912 NT = 5582
Iter = 1 Error=0.197536
Iter = 2 Error = 0.00468906
Iter = 3 Error = 0.00400187
Iter = 4 Error = 0.00344997
Iter =5 Error = 0.00299561
Iter = 6 Error = 0.00261805
Iter = 7 Error = 0.00230164
Iter = 8 Error = 0.00203722
Iter = 9 Error = 0.00181725
Iter = 10 Error = 0.0016362
Iter = 11 Error = 0.00149084
Iter = 12 Error = 0.00137592
Iter = 13 Error = 0.00129143
Iter = 14 Error = 0.00123042
Iter = 15 Error = 0.00119376
Iter = 16 Error = 0.00128955
Iter = 17 Error = 0.00134318
Iter =18 Error = 0.00100526
Iter=19 Error = 0.000977661
```

Convergence

Numerical experiment

One-phase Stefan problem

One-phase Stefan problem

Figure: Final computed state y

Numerical experiment

One-phase Stefan problem
One-phase Stefan problem

Iso Value-0.0412093	
	0.0247961
	0.0908016
	0.156807
-9.222812	
- 0.354823	
0.420829	
9.40634	
	0.55284
0.618845	
0.68485	
	5.750856
0.816861	
0.882867	
0.948872	
1.01488	
1.08088	
1.14689	
1.21289	
1.2789	
1.3449	
1.41091	
1.47692	
1.54292	
1.60893	
1.67493	
1.74094	
1.80694	
1.87295	
1.93895	
2.00496	
2.07096	
2. 13697	
2. 20298	
2.26898	
2.33499	
2.40099	
2.467	
	2.533

Figure: Final mesh and solution

Numerical experiment

One-phase Stefan problem

Figure: Final computed control v

Numerical experiment

One-phase Stefan problem

One-phase Stefan problem

Figure: Final computed state y

Controllability and Stefan problems

An improvement: controlling y and ℓ at time T
Find $v \in L^{2}(\omega \times(0, T)), \ell=\ell(t)>0$ and $y=y(x, t)$ with
$(N C)_{1}\left\{\begin{array}{l}y_{t}-y_{x x}=v 1_{\omega}, \quad x \in(0, \ell(t)), t \in(0, T) \\ y(0, t)=y(\ell(t), t)=0, \quad t \in(0, T) \\ \ell(0)=\ell_{0}, \quad y(x, 0)=y_{0}(x), \quad x \in\left(0, \ell_{0}\right)\end{array} \quad y_{x}(\ell(t), t)=-k \ell^{\prime}(t), t \in(0, T)\right.$
and
$(N C)_{3} \quad y(x, T)=0, \quad x \in(0, \ell(T)), \quad \ell(T)=\ell_{T}$
Here: $\ell_{0}>0, y_{0} \geq 0, \omega=(a, b) \subset\left(0, \ell_{0}\right)$ (small)

Theorem (Local NC)

$\exists \varepsilon>0$ such that $\left\|y_{0}\right\|_{H_{0}^{1}}+\left|\ell_{0}-\ell_{T}\right| \leq \varepsilon \Rightarrow \exists v, \ell, y$ satisfying $(N C)_{1},(N C)_{3}$

Controllability and Stefan problems

NC of 1D two-phase Stefan
Same motivation: melting of ice and similar phenomena
1D, two-phase:

- Heat equation for y on the left, $x<\ell(t), t \in(0, T)$
- Heat equation for z on the right, $x>\ell(t), t \in(0, T)$
- Initial and boundary conditions at $t=0$, on the left and the right
- Stefan condition on $x=\ell(t), t \in(0, T)$

The free boundary: $x=\ell(t)$, controlled dynamically by y and z
Nonconstant temperature water for $x<\ell(t)$ and ice for $x>\ell(t)$

Free-boundary problems

Controllability and Stefan problems

NC of 1D two-phase Stefan

Find $v_{l} \in L^{2}\left(\omega_{l} \times(0, T)\right), v_{r} \in L^{2}\left(\omega_{r} \times(0, T)\right), \ell, y$ and z with
$(N C)_{1}$

$$
\left\{\begin{array}{l}
y_{t}-d_{1} y_{x x}=v_{1} 1_{\omega}, x \in(0, \ell(t)), t \in(0, T) \\
z_{t}-d_{r} z_{x x}=v_{r} 1_{\omega}, x \in(\ell(t), L), t \in(0, T) \\
\left.y\right|_{x=0}=\left.y\right|_{x=\ell(t)}=\left.z\right|_{x=\ell(t)}=\left.z\right|_{x=L}=0, t \in(0, T) \\
\ell(0)=\ell_{0} ;\left.y\right|_{t=0}=y_{0}, \quad x \in\left(0, \ell_{0}\right) ;\left.z\right|_{t=0}=z_{0}, \quad x \in\left(\ell_{0}, L\right) \\
\left.\left(d_{1} y_{x}-d_{r} z_{x}\right)\right|_{x=\ell(t)}=-k \ell^{\prime}(t), \quad t \in(0, T)
\end{array}\right.
$$

and
$(N C)_{4}$

$$
\left\{\begin{array}{l}
y(x, T)=0, \quad x \in(0, \ell(T)), \quad z(x, T)=0, \quad x \in(\ell(T), L) \\
\ell(T)=\ell_{T}
\end{array}\right.
$$

Now: $\ell_{0}>0, y_{0} \geq 0, z_{0} \leq 0, \omega_{l}=\left(a_{l}, b_{l}\right) \subset\left(0, \ell_{0}\right), \omega_{r}=\left(a_{r}, b_{r}\right) \subset\left(\ell_{0}, L\right)$ (small)

Theorem (Local NC, Araujo-EFC-Limaco-Souza 2021)

$\exists \varepsilon>0$ such that $\left\|y_{0}\right\|_{H_{0}^{1}}+\left\|z_{0}\right\|_{H_{0}^{1}}+\left|\ell_{0}-\ell_{T}\right| \leq \varepsilon \Rightarrow \exists v_{l}, v_{r}, \ell, y, z$ satisfying $(N C)_{1},(N C)_{4}$

Numerical experiments

A second numerical experiment: two-phase Stefan
To appear soon, [EFC-Souza]

- $\ell_{0}=5, L=15, y_{0}(x) \equiv 3 \sin \left(\pi x / \ell_{0}\right), z_{0}(x) \equiv-2 \sin \left(\pi\left(x-\ell_{0}\right) /\left(L-\ell_{0}\right)\right)$.
- $d_{l}=d_{r}=2.15, \omega_{l}=(0,3), \omega_{r}=(12,15), k=0.06, T=10$.

Stopping criterion: $\left\|y^{n+1}-y^{n}\right\|_{L^{2}} /\left\|y^{n+1}\right\|_{L^{2}} \leq 10^{-5}$
Starting from $y^{0} \equiv y_{0}, z^{0} \equiv z_{0}$: convergence after 13 iterates

Numerical experiment

Two-phase Stefan problem
Two-phase Stefan problem

Figure: Initial mesh and first controlled solution

Numerical experiment

Two-phase Stefan problem
Two-phase Stefan problem

BOTH STATES,IT_EXT $=1$ IT_INT $=0$

Figure: First controlled solution

Two-phase Stefan problem

```
Th1: NV = 1407 NT = 2662-Th2: NV = 3421 NT = 6630
Iter = 1 Error = 0.0934006
Iter =2 Error = 0.015046
Iter = 3 Error = 0.030527
Iter = 4 Error = 0.0292835
Iter = 5 Error = 0.0205314
Iter = 6 Error = 0.0141885
Iter = 7 Error = 0.0110615
Iter = 8 Error = 0.00850354
Iter = 9 Error = 0.00567204
Iter = 10 Error = 0.00692685
Iter=11 Error = 0.00506353
Iter = 12 Error = 0.00125576
Iter =13 Error = 0.000849974
```

Convergence \quad Error $=0.000849974$

Numerical experiment

Two-phase Stefan problem
Two-phase Stefan problem

Figure: Final computed states y and z

Numerical experiment

Two-phase Stefan problem
Two-phase Stefan problem

BOTH STATES, IT_EXT $=13$ IT_INT $=0$

Figure: Final mesh and solution

Numerical experiment

Two-phase Stefan problem
Two-phase Stefan problem

Figure: Computed control v_{l}

Two-phase Stefan problem

Figure: Computed control v_{r}

Two-phase Stefan problem
Two-phase Stefan problem

Figure: Final solution

Other results and related questions

- 1D Stefan + semilinear heat PDEs, Burgers and others: similar results [EFC-Triburtino 2016]
- 2D one-phase Stefan?

Unknown. Star-shaped and Stokes-Stefan, [Demarque-EFC 2017]:

$$
(-\varepsilon \Delta V+V) \cdot n=\frac{\partial y}{\partial n} \text { on } \Gamma
$$

- Controlling 2D Navier-Stokes + free boundary?
- A new AC result for the two-phase problem, Neumann control, [Barbu 2021]:

$$
\forall \text { meas. } \omega^{*} \subset(0, L) \exists u \text { such that }\{|y(x, T)|+|z(x, T)| \leq \varepsilon\} \supset \omega^{*}
$$

- Stabilization, again Neumann control, [Krstic 2020]

Future work (and work in progress)

- Other algorithms? Maybe a least-squares approach (like [Lemoine-Münch]) ... More numerical experiments?
- Exact control to trajectories? (in progress, with JA Barcena and DA Souza)

THANK YOU VERY MUCH . . .

