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Free-boundary problems
Motivation and structure

Free-boundary problem = differential system with unknown function(s) and domain(s)
A part of the boundary? An internal curve or surface? etc.

Many motivations sharing transitions or changes of state:
buying to selling actions in finance, active to inactive transition in biology, phase
transition in physics, etc.

The free boundary indicates the points where transition occurs
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Free-boundary problem
Motivation and structure

Dipmeraliri nars

Figure: Buying to selling change process

The free boundary indicates: change of trade activity (e.g. buy to sell)
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Free-boundary problems
Motivation and structure

inactive active

Figure: Active to inactive biological change

The free boundary indicates: change of biological role (e.g. active to inactive)
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Free-boundary problems

Motivation and structure
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Figure: Phase transition

The free boundary indicates: change of state (e.g. solid to liquid)
Interesting question: can we act to control the free boundary evolution?
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Free-boundary problems
Motivation and structure

Usually: ODE’s and/or PDE’s and complements + additional laws

E(y)=01in Q +...
Additional laws

Many works on the theory: since [Caffarelli 1976, Friedman 1978, Monakhov 1983,
Crank 1987, Vazquez 1987, Texeira 2007, ...]

Not so many on the numerics: [Proc. Workshops in Jyvaskyla 1990, Kyoto 1991;
Chen 2016, ...]
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Free-boundary problems
Motivation and structure

Example 1: The obstacle problem

Data: Qq, f = f(x), ¢ = ¢(x) and ¢ = ¢(x)
Unknowns: Q and u

u>e in Qq
—Au=1f(x) in Q:={xe€Q:ulx)>epx)}
u=1 on 99
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Free-boundary problems

Motivation and structure

The solution to the obstacle problem

-

== - free boundary

Figure: The obstacle problem
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Free-boundary problems
Motivation and structure

The solution to the obstacle problem

) ::.--_.?_

o a

Figure: An obstacle problem for a nonregular obstacle. Numerical solution
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Free-boundary problems
Motivation and structure

The obstacle problem
Data: Qq, f = f(x), ¢ = ¢(x) and ¥ = 1(x)

u>e in Qq

—Au=f(x) in Q:={xe€Q:ulx)>epx)}
u=n1 on 90

Unknowns: Q and u

Many theoretical results: reformulation as a variational inequality

JVu-(Vv—=vVu)dx > [f(v—u)dx
WeK:={zeH (Q):2>¢, z=1 on 0Q}, uc K

Existence, uniqueness, regularity, . .. [Friedman 1988, Caffarelli 1998, ...]

Numerical resolution: [Scholz 1984, Cheng et al 2021, ...]
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Free-boundary problems
Motivation and structure

Example 2: Navier-Stokes + free boundaries
Motivation: Rotating fluids [Ciuperca, 1996]
Fluid rotating around a flexible cylindrical structure (a gas container)
Two actions:
e yg = w x x on the fixed external boundary

e pr on the unknown internal boundary

The free boundary is the internal boundary
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Free-boundary problems
Motivation and structure

2D Navier-Stokes and free boundaries

THE ¥ELOCITY (IHITIAL GUESS)

Figure: A fluid rotating around a flexible structure
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Free-boundary problems
Motivation and structure

2D Navier-Stokes and free boundaries

Data: £y C R?, Qg = SgU SF o (the circle of radius 1 and a closed interior curve);
k (Gravity force); yg and pr (boundary data)

Unknowns: Q = Q(t) ¢ R? for t € [0, T], y, p with
OQ(t) = Sg U Sg(t)

—vAy+(y-V)y+Vp=k, xeQ(t), te(0,T)
V-y=0, xeQ(t), te(0,T)

y=ys, X€Spg te(0,T)

(=vD(y) + pld.) -n=pen, x € Sg(t), t€(0,T)

Q(0) = Qo
and
V(x,t)=y(x,t), x € Se(t), te(0,T)

The free boundary: {(x,t): x € Sg(t), t € (0, T)}
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Free-boundary problems
Motivation and structure

2D Navier-Stokes and free boundaries

THE DOMAIN AND THE MESH
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Figure: Initial state: free boundary and mesh
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Free-boundary probl

Motivation and structure

2D Navier-Stokes and free boundaries
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Figure: Initial state: pressure
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Free-boundary problems
Motivation and structure

2D Navier-Stokes and free boundaries

NEW MODIFIED MESH, t=04
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Figure: State at t = 0.5: free boundary and mesh
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Free-boundary probl
Motivation and structure

2D Navier-Stokes and free boundaries

= Wl
Repnelds=2 [t

Figure: State at t = 0.5: pressure
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Figure: Final state: free boundary and mesh
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Free-boundary problem

Motivation and structure

2D Navier-Stokes and free boundaries
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Figure: Final state: pressure
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Free-boundary problems
Motivation and structure

2D Navier-Stokes and free boundaries
A related control question

Question: Is it possible to choose pr to get desired Q(T), y(-, T) and p(-, T)?
O0(t) = Sg U Sg(t)

—vAy+(y-V)y+Vp=k, xeQ(t), te(0,T)
V-y=0, xeQ(t), te(0,T)

y=yp, x€Sg te(0,T)

(—vD(y) + pld.) -n=pen, x € Sg(t), t€(0,T)

Q(0) = Qp

and
V(x,t) = y(x,t), x € Sg(t), te (0, T)
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Free-boundary problems
Motivation and structure

Example 3: The one-phase Stefan problem
Motivation: melting of ice and similar phenomena
In a simple situation (1D, one-phase):
@ Heat equation on the left, x < 4(t), t € (0, T)
@ Initial and boundary conditions at t = 0, on the left and on the right
@ Stefan condition on x = 4(t),t € (0, T)

The free boundary is x = £(t), controlled dynamically by y
Water for x < £(t), Ice for x > £(t)
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The Stefan problem
Motivation: melting of ice

Motivation of Stefan problems: melting of ice

Figure: Ice and water
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The Stefan problem
Motivation: melting of ice

Motivation of Stefan problems: melting of ice

Figure: Ice and water
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Free-boundary problems
Motivation and structure

Figure: Jozef Stefan (1835-1893)

Discovered the power law: j* = ¢ T* — Advisor of Boltzmann
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Free-boundary problems
Motivation and structure

The Stefan problem
Motivation: melting of ice and similar phenomena
In a simple situation (1D, one-phase), with data f, kK > 0, ¢; > 0, yp > 0:

{ yi—yx = f(x,1), x€(0,£(1)), tc(0,T)
y(0,1) = y(¢(t),t) =0, t€ (0, T) and yx(4(t),t) = —k¢'(t), t€ (0, T)
E(O) = 507 y(X7 0) = .yO(X)’ X € (O’ZO)

The free boundary is x = £(t), controlled dynamically by y.

Also motivated by other applications:
@ Solidification processes, tumor growth models and others [Friedman, . ..]
@ Gas flow through porous media [Aronson, Fasano, Vazquez, ...]
@ Finances [Salsa, ...]
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Quasi-linear parabolic PDEs

A numerical method

The solution to the 1D one-phase Stefan problem

TEMFERATURE - ITER =25 503l
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Figure: The iso-regions y = Const. and the free boundary x = ¢(t)
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Quasi-linear parabolic PDEs

A numerical method

The solution to the 1D one-phase Stefan problem

TEMPERATURE - ITER = 25

Figure: The iso-regions y = Const. and the free boundary x = ¢(t)

E. Fernandez-Cara Free-boundaries and their control



Free-boundary problems
Main questions/results

Analysis of the Stefan problem
Main questions and results

@ Reformulation as a parabolic variational inequality, weak solution:
t
New (working) variable: w(x,t) = / (1gy>0))(x,8)ds
0

Formulation (for some f, ¢ and Q):

S (wi(v — w) + wx(vx — wx)) dx > [ f(v — w)dx
{ VWeK:={zecH (Q):2>0, z=1 on 9Q}, weK

@ Existence, uniqueness
@ Regularity of the free boundary

Contributions by Duvaut, Friedman, Kinderlherer, Caffarelli, .. .
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Free-boundary problems
Controllability

Controllability
NC of 1D one-phase Stefan

Find v € L2(w x (0, T)), £ =£(t) > 0and y = y(x, t) with
Yt —Yxx = V1wa X e (O,E(t)), te (O’ T)

(NC); { y(0,1) = y(£(t), 1) =0, te(0,T) yx(€(t), t)=—k'(t), te(0,T)
Z(O) = 4o, y(X7 0) = yO(X)7 X e (0750)

and

(NC), y(x,T)=0, xe(0,4T))

Here: 4o > 0, yp > 0, w = (a,b) C (0, 4y) (small)

Theorem (Local NC, EFC-Limaco-Menezes 2016)

Je > 0 such that ||y0||,_,3 <e = 3v, 4,y satisfying (NC)1, (NC)»

Recall: Heat flux proportional to free boundary speed
Note: Also NC with Dirichlet or Neumann boundary controls . ..
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Numerical approximation of the NC problem

1D one-phase Stefan

Formulation as a fixed-point equation
1D one-phase Stefan
For the proof:

Q [yx(e(t), ) = —ke'(t), £(0)=4ty] < £(t) =4y — fot yx(€(s),s) ds
@ The good formulation: £ = A(€), £ € M c C'([0, T]), with

L=A{) & L(t) =4y — k/[yx(é(s), s)ds Vt where
0

y(0,H) =y((t),t) =0, te(0,T)

{ Yi—Yx = Vle, x €(0,4(t)), t€(0,T)
y(x,0) = yo(x), x € (0,4)

and
y(x,T)=0, x € (0,¢T))

(a NC problem for a fixed boundary)
© Schauder’'s Theorem = 3 fixed-points of A

The method: ¢"+1 = A(¢") forn > 0

For the numerical solution for prescribed ¢:
Fursikov-Imanuvilov reformulation + finite element approx.
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Numerical approximation of the NC problem

1D one-phase Stefan

Fursikov-Imanuvilov reformulation and approximation
Task: NC for prescribed ¢ (noncylindrical domain)
With appropriate p = p(xX, t) (p|i=1 = +00) and pg = po(X, t)

Minimize [[[p?|y|2 + 1. 03|v[?]
Subject to v € L?(w x (0, T)), y : asssociated state

Then:
@ Automatically: y(-,T) =0
@ The solution: y = p=2L*p, v = —p, °plux (0,7 (Lagrange)

I (p*ZL*pL*qupo’zupq) = Jo Yo(x) a(x,0) dx
vqe P, peP

for L*p := —p; — pxx, appropriate P ...
Essentially, p € P < [[ (,)*Q\L*p|2 + p521w\p|2) < +o0
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Numerical approximation of the NC problem

1D one-phase Stefan

Computation of a null control for prescribed ¢
A Lax-Milgram problem

I (2L L7+ p510PG) = fo Yo(x) q(x,0) dx
vge P, pe P
Numerical approximation (l): finite dimensional P, C P
{ fox(O,T) (PizL*ph L*qn + P(;21wph7 Qh> = Jq Yo(x) an(x,0) dx
VQn € Pn, pn € Pp

Numerical approximation (l1): mixed reformulation in Z x A (multipliers)
+ finite dimensional approx. (Z, C Z, Ap C A)

IS (Yhzn+1wfn, gn)+(Zn—p 2L (p2gh), An) = [ po(X,0)yo(X) gn(x,0) dx
((vn— p72L"(AB1R)) s 1am) = O
Y(z,9) € Z, YueN, (y,fleZ, NeA
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Numerical approximation of the NC problem

1D one-phase Stefan

The strategy:

a) Fix ¢0
b) For given n> 0, ¢

b.1) NC with ¢” — v" and y" with y"(x, T) = 0
(Fursikov-Imanuvilov, P, C P, etc.)
b.2) v, ¢", y" — ¢!
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Numerical approximation of the NC problem

1D one-phase Stefan

Numerical experiments

All experiments with FreeFem++ (http://www.freefem.org//£f++)
To appear soon, [EFC-Souza]
A first numerical experiment: one-phase Stefan

@ Uy =5, yo(x) = 2.5 sin’(nx/4p).

@ dy =2.15,w =(0,3), k =0.06, T = 10.

Stopping criterion: ||y — y|[ 2 /||y |2 < 1078
Starting from y° = yq: convergence after 19 iterates
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Numerical experiment

One-phase Stefan problem

One-phase Stefan problem
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Figure: First controlled solution
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Numerical experiment
One-phase Stefan problem
One-phase Stefan problem

Th: NV =2912 NT = 5582

Iter =1 Error = 0.197536

lter = 2 Error = 0.00468906
Iter=3 Error = 0.00400187
lter =4 Error = 0.00344997
lter=5 Error = 0.00299561
Iter =6 Error = 0.00261805
lter=7 Error = 0.00230164
Iter =8 Error = 0.00203722
lter=9 Error = 0.00181725

Iter =10 Error = 0.0016362
Iter = 11 Error = 0.00149084
Iter =12 Error = 0.00137592
Iter =13 Error = 0.00129143
Iter = 14 Error = 0.00123042
Iter =15 Error = 0.00119376
lter = 16 Error = 0.00128955
lter =17 Error = 0.00134318
lter =18 Error = 0.00100526
Iter =19 Error = 0.000977661

Convergence Error = 0.000977661
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Numerical experiment

One-phase Stefan problem

One-phase Stefan problem
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Figure: Final computed state y
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Numerical experiment

One-phase Stefan problem

One-phase Stefan problem

Figure: Final computed control v
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Numerical experiment

One-phase Stefan problem

One-phase Stefan problem

50 alue
~0.0413063

0247961

Wo.osos016

W 6045
0 750056

Figure: Final computed state y
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Free-boundary problems
Controllability

Controllability and Stefan problems
An improvement: controlling y and ¢ at time T

Find v € L2(w x (0, T)), £=£(t) >0and y = y(x, t) with
{ Yt —VYxx = V1w7 X e (Ove(t))v te (07 T)
(NC)4 y(0,t) = y(£(t),t)=0, te (0,T) yx((t),t)=—kt'(t), te(0,T)
£(0) = 4o, y(x,0) = yo(x), x < (0,4)
and
(NC)3 y(x,T)=0, x€(0,4T)), «T)=¢r

Here: 49 > 0, yp > 0, w = (a,b) C (0, 4y) (small)

Theorem (Local NC)

Je > 0 such that || yo|| 1 + [lo — £7] < e = 3v, £,y satisfying (NC)1, (NC)3
0
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Free-boundary problems
Controllability

Controllability and Stefan problems
NC of 1D two-phase Stefan

Same motivation: melting of ice and similar phenomena

1D, two-phase:

@ Heat equation for y on the left, x < ¢(t),t € (0, T)

@ Heat equation for z on the right, x > ¢(t), t € (0, T)

@ Initial and boundary conditions at t = 0, on the left and the right
@ Stefan condition on x = £(t), t € (0, T)

The free boundary: x = £(t), controlled dynamically by y and z

Nonconstant temperature water for x < ¢(t) and ice for x > £(t)
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Free-boundary problems
Controllability

Controllability and Stefan problems
NC of 1D two-phase Stefan

Find v, € L?(w; x (0, T)), vr € L2(wr x (0, T)), £, yand z with

Yt — d/yxx = V/‘IW7 X € (O,K(t)), te (0, T)
Zt — drZxx = Vrlw, X € (U(2),L), t€ (0, T)
(NC); YIx=0 = ¥Ylx=e(ty = Zlx=e(ty = ZIx=L. = 0, t € (0, T)
£(0) = £o; Ylt=0 = Yo, X € (0,40); Z|t=0 = 20, X € ({o,L)
(diyx — drzx) =y = —k€'(t), te(0,T)

and

(NC)4 { y(x,T)=0, x€(0,4T)), z(x,T)=0, x € (4T),L)

oT)=tr

Now: ¢5 > 0, yo >0, Zp < 0, w; = (a5, by) C (0,4p), wr = (ar, br) C (€o, L) (small)

Theorem (Local NC, Araujo-EFC-Limaco-Souza 2021)

Je >0 such that ||y0HHa+||20HH8+|£0—£T| <e = 3vy, v, ¢, y, z satisfying (NC)1, (NC)4
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Numerical approximation of the NC problem

1D two-phase Stefan

Numerical experiments
A second numerical experiment: two-phase Stefan
To appear soon, [EFC-Souza]
o ZO =6 L= 15, yo(X) =3 Sin(Tl’X/Zo), Zo(X) =-2 Sin(7'('(X = Zo)/(L = fo))
@ d =d =215, w; = (0,3), wr = (12,15), k = 0.06, T = 10.

Stopping criterion: ||y — || 2 /||y ||z < 1073
Starting from y? = yg, 20 = z,: convergence after 13 iterates
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Numerical experiment

Two-phase Stefan problem

Two-phase Stefan problem

BOTH STATES, IT_EXT = 1IT_INT =0 )

A A
2L

W0 326047

W 06579

Figure: Initial mesh and first controlled solution
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Numerical experiment

Two-phase Stefan problem

Two-phase Stefan problem

BOTH STATES,IT_EXT=1IT INT =0 50¥alue
= = - 208579
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Figure: First controlled solution
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Numerical experiment
Two-phase Stefan problem

Two-phase Stefan problem

Th1: NV = 1407 NT = 2662 - Th2: NV = 3421 NT = 6630

Iter =1 Error = 0.0934006
lter =2 Error = 0.015046
Iter =3 Error = 0.030527
lter =4 Error = 0.0292835
lter=5 Error = 0.0205314
lter =6 Error = 0.0141885
lter =7 Error =0.0110615
Iter =8 Error = 0.00850354
Iter =9 Error = 0.00567204

Iter =10 Error = 0.00692685
Iter = 11 Error = 0.00506353
lter =12 Error = 0.00125576
Iter =13 Error = 0.000849974

Convergence Error = 0.000849974
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Numerical experiment

Two-phase Stefan problem

Two-phase Stefan problem

Figure: Final computed states y and z
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Numerical experiment
Two-phase Stefan problem
Two-phase Stefan problem
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Figure: Final mesh and solution
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Numerical experiment

Two-phase Stefan problem

Two-phase Stefan problem
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Figure: Computed control v,
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Numerical experiment
Two-phase Stefan problem

Two-phase Stefan problem

Figure: Computed control v,
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Numerical experiment

Two-phase Stefan problem

Two-phase Stefan problem

Figure: Final solution
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Controllability results
Local null controllability, other results and related questions

Other results and related questions

@ 1D Stefan + semilinear heat PDEs, Burgers and others: similar results
[EFC-Triburtino 2016]

@ 2D one-phase Stefan?
Unknown. Star-shaped and Stokes-Stefan, [Demarque-EFC 2017]:

(—eAV + V)~n=% on I

@ Controlling 2D Navier-Stokes + free boundary?
@ A new AC result for the two-phase problem, Neumann control, [Barbu 2021]:

V meas. w* C (0,L) Ju suchthat {|y(x, T)|+ |z(x,T)| <e} Dw*

@ Stabilization, again Neumann control, [Krstic 2020]
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Conclusions, remarks and future work

Future work (and work in progress)

@ Other algorithms? Maybe a least-squares approach (like [Lemoine-Miinch]) ...
More numerical experiments?

@ Exact control to trajectories? (in progress, with JA Barcena and DA Souza)
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THANK YOU VERY MUCH ...
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