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Very (very) brief introduction to control theory:
Dynamical system y ′ = f (y ,u).

y is the state;
f describes the dynamics;
u is the control.

Control theory
Describe the possible actions of the control on the state.

Examples:
Park a car;
Swim;
. . . , Tout est dans le contrôle. - M. Platini.
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Control of linear systems:
y ′ = Ay + Bu, t > 0, y(0) = y0.

A is a linear operator, generating a C0 semi-group (etA)t>0
on an Hilbert space H.
y ∈ C0([0,T ];H) is the state.
B is the control operator, ∈ L(U;H).
u ∈ L2(0,T ;U) is the control.

Objective

Describe the reachable set R(T , y0) defined by

R(T , y0) = { y(T ), u ∈ L2(0,T ;U)}.
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Theorem (Finite dimension) [Kalman Ho Larendra ’63]

Let n ∈ N, A ∈ Rn×n, H = Rn. Then for all T > 0,

R(T , y0) = eTAy0 + Ran(B|AB|A2B| · · ·An−1B).

In particular, denoting R = Ran(B|AB|A2B| · · ·An−1B):

If R = Rn, the system y ′ = Ãy + B̃v is controllable for any
operators (Ã, B̃) close enough to (A,B).

If R 6= Rn, then
AR = A|R ∈ L(R), B ∈ L(U,R);
the system z ′ = ARz + Bv is exactly controllable on R.

Sylvain Ervedoza Conf Clermont 2021 On the reachable set of pertubed heat equations



Intro STNCLS Applications Further comments

Much more delicate in infinite dimensional settings:

There are vector spaces which are not closed;

Cayley Hamilton’s theorem does not apply.

Question
What happens for infinite dimensional systems ?

 A typical example: the heat equation
∂ty − ∂xxy = 0, in (0,T )× (−L,L),
y(t ,−L) = u−(t), on (0,T ),
y(t ,L) = u+(t), on (0,T ),
y(0, x) = y0(x), in (−L,L).
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Setting

Control of linear systems:
y ′ = Ay + Bu, t > 0, y(0) = y0.

A is a linear operator, generating a C0 semi-group (etA)t>0
on an Hilbert space H.
y ∈ C0([0,T ];H) is the state.
B is the control operator, ∈ L(U;H). (or admissible)
u ∈ L2(0,T ;U) is the control.

Standing assumptions:

System y ′ = Ay + Bu is null-controllable in any time T > 0:
∀y0 ∈ H, ∃u ∈ L2(0,T ;U) such that y(T ) = 0.

 Satisfied for heat type equations.
[Fursikov-Imanuvilov ’96, Lebeau Robbiano ’95].
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The reachable set

Definition
The reachable set R(T , y0) is defined by

R(T , y0) = { y(T ), u ∈ L2(0,T ;U)}.

Theorem
The reachable set R(T , y0) is independent of T > 0 and
y0 ∈ H, now simply denoted R.

Null-controllable⇒ R(T , y0) = R(T ,0).
For T1 < T2, R(T1,0) ⊂ R(T2,0).
Null-controllable⇒ Exactly controllable to trajectories.
⇒ For T1 < T2, we also have R(T1,0) ⊃ R(T2,0).
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Proposition
R is a Hilbert space when endowed with the norm

‖z‖R(T ) = inf {‖u ‖L2(0,T ;U),

s.t. z = y(T ), with y ′ = Ay + Bu, y(0) = 0.}

For T1 < T2, ∀z ∈ R, ‖z‖R(T2) 6 ‖z‖R(T1)

For T1 < T2, ∃C = C(T1,T2), ‖z‖R(T1) 6 C‖z‖R(T2).
 All these norms are equivalent.
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Main result

Theorem [S.E., K. Le Balc’h, M. Tucsnak 2021]

For τ > 0, we set

Tt = etA|R(τ), (t > 0).

Then the family T =
(
Tt |R(τ)

)
t>0

does not depend on the choice of τ > 0,
forms a C0 semigroup on R(τ),
has generator Ã defined by D(Ã) = D(A) ∩R(τ) and
Ãz = Az for z ∈ D(Ã).

Finally, the system z ′ = Ãz + Bu is exactly controllable in R(τ)
in any time T > 0.
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Main ingredient of the proof

Lemma
∃cτ > 0 s.t. ∀t ∈ [0, τ ], z ∈ R(τ),

‖Ttz‖R(τ) 6 cτ‖z‖R(τ).

Proof. For t ∈ [0, τ ], z ∈ R(τ)

‖Ttz‖R(τ) 6 Cτ‖Ttz‖R(2τ) 6 Cτ‖z‖R(2τ−t) 6 Cτ‖z‖R(τ).
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Abstract Applications

 By standard perturbation arguments for the exactly
controllable system z ′ = Ãz + Bu (on R(τ)).

Theorem [S.E., K. Le Balc’h, M. Tucsnak 2021]

For all τ > 0, there exists ετ > 0 such that if
P ∈ L(H) ∩ L(R(τ)) with

‖P‖L(R(τ)) 6 ετ ,

then the reachable set RP(τ) of the system

y ′ = Ay + Py + Bu, t > 0, y(0) = 0,

coincides with R(τ).
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Abstract Applications (2)

Proposition [S.E., K. Le Balc’h, M. Tucsnak 2021]

For T > 0, ∃C > 0 and ∃ a continuous linear map

L : R(τ)× L1([0,T ];R(τ))→ L2([0,T ];U)

such that ∀η ∈ R(τ) and f ∈ L1([0,T ];R(τ)) the solution of

z ′(t) = Ãz(t) + Bu(t) + f (t), (t ∈ [0,T ]), z(0) = 0,

associated to the control u = L(η, f ), satisfies
z ∈ C0([0,T ];R(τ)), together with z(T ) = η, and

‖z‖C0([0,T ];R(τ)) + ‖u‖L2([0,T ];U) 6 C
(
‖η‖R(τ) + ‖f‖L1([0,T ];R(τ))

)
.
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Abtsract Applications (3)

Corollary [S.E., K. Le Balc’h, M. Tucsnak 2021]

Suppose that f : C0([0,T ];R(τ))→ L1([0,T ];R(τ)) satisfies
f (0) = 0 and, for all z1, z2 ∈ C0([0,T ];R(τ)) we have

‖f (z1)− f (z2)‖L1([0,T ];R(τ))

6 C‖(z1, z2)‖(C0([0,T ];R(τ))2‖z1 − z2‖C0([0,T ];R(τ)).

Then ∃δ > 0, ∀η ∈ R(τ) satisfying ‖η‖R(τ) 6 δ, ∃ a control
function u ∈ L2([0,T ];U) and a controlled trajectory
z ∈ C0([0,T ];R(τ)) satisfying

z ′(t) = Az(t) + Bu(t) + f (z)(t), (t ∈ [0,T ]), z(0) = 0,
and z(T ) = η.
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The 1-d heat equation


∂z
∂t

(t , x)− ∂2z
∂x2 (t , x) = 0 (t > 0, x ∈ (0, π)),

∂z
∂x

(t ,0)= u0(t),
∂z
∂x

(t , π)= uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

A =
∂2

∂x2 on H = L2(0, π),

D(A) =
{

z ∈ H2(0, π),
∂z
∂x

(0) =
∂z
∂x

(π) = 0
}

.

B
(

u0
uπ

)
= −u0δ0 + uπδπ.

Null-controllable in any time T > 0. [Fattorini Russell 1971]
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Known result

Theorem [Hartmann-Orsoni 2021]

The reachable space of the above 1d heat equation is
independent of the time horizon τ > 0 and, for all τ > 0,

R(τ) = A1,2(S),

where

S = {s = x + iy ∈ C | |y | < x and |y | < π − x}.

and A1,2(S) = {f ∈ Hol (S) ∩W 1,2(S)}.

Exact characterization, following several attempts: [Fattorini
Russell ’71], [Martin Rosier Rouchon ’16], [Dardé Ervedoza ’18], [Hartmann
Kellay Tucsnak ’20], [Kellay Normand Tucsnak ’19], [Orsoni ’19],
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First consequence

Theorem
The heat equation

∂z
∂t

(t , x)− ∂2z
∂x2 (t , x) = 0 (t > 0, x ∈ (0, π)),

∂z
∂x

(t ,0) =
∂z
∂x

(t , π) = 0 (t > 0),

z(0, x) = z0 (x ∈ (0, π)),

is well-posed in A1,2(S).

Difficult to prove by hand !!
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Application 1: Small potentials

Theorem [S.E., K. Le Balc’h, M. Tucsnak 2021]

There exists ε > 0, such that if p ∈ Hol (S) ∩W 1,∞(S) with
‖p‖W 1,∞(S) 6 ε, the reachable set for the equation

∂z
∂t

(t , x)− ∂2z
∂x2 (t , x)+p(x)z(t , x) = 0 (t > 0, x ∈ (0, π)),

∂z
∂x

(t ,0) = u0(t),
∂z
∂x

(t , π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

is independent of the time horizon and coincides with A1,2(S).

Proof. For z ∈ A1,2(S), ‖pz‖A1,2(S) 6 C‖p‖W 1,∞(S)‖z‖A1,2(S).
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Application 2: Non-local quadratic terms potentials

For z ∈ C0([0,T ];L2[0, π]), we define

f (z)(t , x) =
(∫ π

0
z(t , y) dy

)
z(t , x),

Theorem [S.E., K. Le Balc’h, M. Tucsnak 2021]

Let T > 0 Then ∃δ > 0 such that ∀η ∈ A1,2(S) satisfying
‖η‖W 1,2(S) 6 δ, there exist control functions u0,uπ ∈ L2[0, τ ]
such that the solution z of

∂z
∂t

(t , x)− ∂2z
∂x2 (t , x) = f (z)(t , x) (t > 0, x ∈ (0, π)),

∂z
∂x

(t ,0) = u0(t),
∂z
∂x

(t , π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

satisfies the terminal condition z(T , ·) = η.
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Application 3: Semi-linear equations

f (z)(t , x) =
∞∑

k=2

ak (t , x)(z(t , x))k , (t ∈ [0,T ], x ∈ [0, π]).

Difficulty: A1,2(S) is not an algebra.

Theorem [Kellay, Normand, Tucsnak 2020]

For τ > 0, let H1
L (0, τ) be the set of all functions v ∈ H1(0, τ)

satisfying v(0) = 0.
Then, for every τ > 0 the set R1(τ) of states which can be
reached with controls in H1

L ((0, τ);C
2) is

A3,2(S) = Hol (S) ∩W 3,2(S).

Rk: A3,2(S) is an algebra.
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f (z)(t , x) =
∞∑

k=2

ak (t , x)(z(t , x))k , (t ∈ [0,T ], x ∈ [0, π]).

Theorem [S.E., K. Le Balc’h, M. Tucsnak 2021]

Let T > 0, f as above s.t. fk (t , x) ∈ L1([0,T ];A3,2(S)) and

∃ρ > 0,
∞∑

k=2

k‖fk‖L1([0,T ];A3,2(S))ρ
k <∞.

Then ∃δ > 0 such that ∀η ∈ A3,2(S), satisfying ‖η‖A3,2(S) 6 δ,
∃control functions u0, uπ ∈ L2[0, τ ] such that the solution z of

∂z
∂t

(t , x)− ∂2z
∂x2 (t , x) = f (t , x , z) (t > 0, x ∈ (0, π)),

∂z
∂x

(t ,0) = u0(t),
∂z
∂x

(t , π) = uπ(t) (t > 0),

z(0, x) = 0 (x ∈ (0, π)),

satisfies z(T , ·) = η.
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To be compared with [Laurent Rosier 2021]:

Allows first order terms without any smallness condition;

Handles analytic functions in z and ∂xz, but no
dependence in time;

Requires stronger analyticity conditions on the coefficients
in z;

Shows that the states which are holomorphic on a ball
BC(π/2,R) for some R > R̂ = (2π)e(2e)−1

are reachable.
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Further comments and open problems

One can also develop perturbative arguments based on
compactness results

Requires unique continuation properties.
Well-adapted to deal with non-local in space operators.
 Allows to recover [Fernandez-Cara-Lu-Zuazua-2016].

An interesting question is the following one:

If (etA)t>0 is an analytic semigroup on H which is
null-controllable in any positive time, is its restriction to its
reachable space an analytic semigroup?

Our approach is a strong motivation to better describe
reachable sets for parabolic models.

[Strohmaier Waters 2021, Hartmann-Orsoni 2021]
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Thanks for your attention!

Based on the work:
Reachability results for perturbed heat equations,
S.E., Kévin Le Balc’h, and Marius Tucsnak, in preparation
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