On the reachable set of perturbed heat equations

Sylvain Ervedoza

Joint work with Kévin Le Balc'h and Marius Tucsnak

Institut de Mathématiques de Bordeaux

Conf Clermont 2021 - 06/10/2021

< 🗇 🕨

· < 프 > < 프 >

Outline

- 2 Small Time Null-Controllable Linear Systems
- 3 Applications to the heat equation

★ E > < E >

Outline

- 2 Small Time Null-Controllable Linear Systems
- 3 Applications to the heat equation
- 4 Further comments

On the reachable set of pertubed heat equations

・ 回 ト ・ ヨ ト ・ ヨ ト

Very (very) brief introduction to control theory: Dynamical system y' = f(y, u).

- y is the state;
- f describes the dynamics;
- *u* is the control.

Control theory

Describe the possible actions of the control on the state.

Examples:

- Park a car;
- Swim;

• ...,

Tout est dans le contrôle. - M. Platini.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Control of linear systems:

y' = Ay + Bu, $t \ge 0$, $y(0) = y_0$.

- A is a linear operator, generating a C^0 semi-group $(e^{tA})_{t\geq 0}$ on an Hilbert space H.
- $y \in C^0([0, T]; H)$ is the state.
- *B* is the control operator, $\in \mathcal{L}(U; H)$.
- $u \in L^2(0, T; U)$ is the control.

Objective

Describe the reachable set $\mathscr{R}(T, y_0)$ defined by

 $\mathscr{R}(T, y_0) = \{ y(T), u \in L^2(0, T; U) \}.$

ヘロン 人間 とくほ とくほ とう

Theorem (Finite dimension)

[Kalman Ho Larendra '63]

Let $n \in \mathbb{N}$, $A \in \mathbb{R}^{n \times n}$, $H = \mathbb{R}^n$. Then for all T > 0,

 $\mathscr{R}(T, y_0) = e^{TA}y_0 + \operatorname{Ran}(B|AB|A^2B|\cdots A^{n-1}B).$

In particular, denoting $\mathscr{R} = \operatorname{Ran}(B|AB|A^2B|\cdots A^{n-1}B)$:

- If *R* = ℝⁿ, the system y' = Ãy + B̃v is controllable for any operators (Ã, B̃) close enough to (A, B).
- If $\mathscr{R} \neq \mathbb{R}^n$, then
 - $A_{\mathscr{R}} = A|_{\mathscr{R}} \in \mathcal{L}(\mathscr{R}), B \in \mathcal{L}(U, \mathscr{R});$
 - the system $z' = A_{\mathscr{R}}z + Bv$ is exactly controllable on \mathscr{R} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Much more delicate in infinite dimensional settings:

- There are vector spaces which are not closed;
- Cayley Hamilton's theorem does not apply.

Question

What happens for infinite dimensional systems ?

~ A typical example: the heat equation

$$\begin{cases} \partial_t y - \partial_{xx} y = 0, & \text{in } (0, T) \times (-L, L), \\ y(t, -L) = u_-(t), & \text{on } (0, T), \\ y(t, L) = u_+(t), & \text{on } (0, T), \\ y(0, x) = y_0(x), & \text{in } (-L, L). \end{cases}$$

★ E > < E >

Outline

2 Small Time Null-Controllable Linear Systems

3 Applications to the heat equation

4 Further comments

→ E > < E >

Setting

Control of linear systems:

$$y' = Ay + Bu$$
, $t \ge 0$, $y(0) = y_0$.

- A is a linear operator, generating a C⁰ semi-group (e^{tA})_{t≥0} on an Hilbert space H.
- $y \in C^0([0, T]; H)$ is the state.
- *B* is the control operator, $\in \mathcal{L}(U; H)$.

(or admissible)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• $u \in L^2(0, T; U)$ is the control.

Standing assumptions:

System y' = Ay + Bu is null-controllable in any time T > 0: $\forall y_0 \in H, \exists u \in L^2(0, T; U)$ such that y(T) = 0.

 \rightsquigarrow Satisfied for heat type equations.

[Fursikov-Imanuvilov '96, Lebeau Robbiano '95].

The reachable set

Definition

The reachable set $\mathscr{R}(T, y_0)$ is defined by

$$\mathscr{R}(T, y_0) = \{ y(T), u \in L^2(0, T; U) \}.$$

Theorem

The reachable set $\mathscr{R}(T, y_0)$ is independent of T > 0 and $y_0 \in H$, now simply denoted \mathscr{R} .

- Null-controllable $\Rightarrow \mathscr{R}(T, y_0) = \mathscr{R}(T, 0).$
- For $T_1 < T_2$, $\mathscr{R}(T_1, 0) \subset \mathscr{R}(T_2, 0)$.
- Null-controllable \Rightarrow Exactly controllable to trajectories. \Rightarrow For $T_1 < T_2$, we also have $\mathscr{R}(T_1, 0) \supset \mathscr{R}(T_2, 0)$.

ヘロト 人間 ト ヘヨト ヘヨト

Proposition

 \mathscr{R} is a Hilbert space when endowed with the norm

$$||z||_{\mathscr{R}(T)} = \inf \{ ||u||_{L^{2}(0,T;U)}, \\ \text{s.t. } z = y(T), \text{ with } y' = Ay + Bu, y(0) = 0. \}$$

• For $T_1 < T_2$, $\forall z \in \mathscr{R}$, $||z||_{\mathscr{R}(T_2)} \leq ||z||_{\mathscr{R}(T_1)}$ • For $T_1 < T_2$, $\exists C = C(T_1, T_2)$, $||z||_{\mathscr{R}(T_1)} \leq C ||z||_{\mathscr{R}(T_2)}$. \rightarrow All these norms are equivalent.

ヘロン 人間 とくほ とくほ とう

3

Main result

Theorem

[S.E., K. Le Balc'h, M. Tucsnak 2021]

For $\tau > 0$, we set

$$\mathbb{T}_t = \boldsymbol{e}^{tA}|_{\mathscr{R}(\tau)}, \qquad (t \ge 0).$$

Then the family $\mathbb{T} = (\mathbb{T}_t|_{\mathscr{R}(\tau)})_{t \ge 0}$

- does not depend on the choice of \(\tau > 0\),
- forms a C^0 semigroup on $\mathscr{R}(\tau)$,
- has generator \tilde{A} defined by $\mathscr{D}(\tilde{A}) = \mathscr{D}(A) \cap \mathscr{R}(\tau)$ and $\tilde{A}z = Az$ for $z \in \mathscr{D}(\tilde{A})$.

Finally, the system $z' = \tilde{A}z + Bu$ is exactly controllable in $\mathscr{R}(\tau)$ in any time T > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Intro STNCLS Applications Further comments

Main ingredient of the proof

Lemma

 $\exists c_{\tau} > 0 \text{ s.t. } \forall t \in [0, \tau], z \in \mathscr{R}(\tau),$

 $\|\mathbb{T}_t z\|_{\mathscr{R}(\tau)} \leq c_{\tau} \|z\|_{\mathscr{R}(\tau)}.$

Proof. For $t \in [0, \tau]$, $z \in \mathscr{R}(\tau)$

 $\|\mathbb{T}_t z\|_{\mathscr{R}(\tau)} \leqslant C_{\tau} \|\mathbb{T}_t z\|_{\mathscr{R}(2\tau)} \leqslant C_{\tau} \|z\|_{\mathscr{R}(2\tau-t)} \leqslant C_{\tau} \|z\|_{\mathscr{R}(\tau)}.$

Sylvain Ervedoza

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Abstract Applications

 \rightsquigarrow By standard perturbation arguments for the exactly controllable system $z' = \tilde{A}z + Bu$ (on $\Re(\tau)$).

Theorem

[S.E., K. Le Balc'h, M. Tucsnak 2021]

For all $\tau > 0$, there exists $\varepsilon_{\tau} > 0$ such that if $P \in \mathcal{L}(H) \cap \mathcal{L}(\mathscr{R}(\tau))$ with

 $\|\boldsymbol{P}\|_{\mathcal{L}(\mathscr{R}(\tau))} \leqslant \varepsilon_{\tau},$

then the reachable set $\mathscr{R}^{P}(\tau)$ of the system

 $y' = Ay + Py + Bu, \quad t \ge 0, \qquad y(0) = 0,$

coincides with $\mathscr{R}(\tau)$.

ヘロト ヘアト ヘビト ヘビト

Abstract Applications (2)

Proposition

[S.E., K. Le Balc'h, M. Tucsnak 2021]

For T > 0, $\exists C > 0$ and \exists a continuous linear map

$$\mathcal{L}:\mathscr{R}(\tau)\times L^1([0,T];\mathscr{R}(\tau))\to L^2([0,T];U)$$

such that $\forall \eta \in \mathscr{R}(\tau)$ and $f \in L^1([0, T]; \mathscr{R}(\tau))$ the solution of

$$z'(t) = \tilde{A}z(t) + Bu(t) + \frac{f(t)}{f(t)}, \quad (t \in [0, T]), \qquad z(0) = 0,$$

associated to the control $u = \mathcal{L}(\eta, f)$, satisfies $z \in C^0([0, T]; \mathscr{R}(\tau))$, together with $z(T) = \eta$, and

 $\|z\|_{C^{0}([0,T];\mathscr{R}(\tau))} + \|u\|_{L^{2}([0,T];U)} \leq C\left(\|\eta\|_{\mathscr{R}(\tau)} + \|f\|_{L^{1}([0,T];\mathscr{R}(\tau))}\right).$

ヘロト ヘアト ヘビト ヘビト

Abtsract Applications (3)

Corollary

[S.E., K. Le Balc'h, M. Tucsnak 2021]

Suppose that $f : C^0([0, T]; \mathscr{R}(\tau)) \to L^1([0, T]; \mathscr{R}(\tau))$ satisfies f(0) = 0 and, for all $z_1, z_2 \in C^0([0, T]; \mathscr{R}(\tau))$ we have

$$\begin{aligned} \|f(z_1)-f(z_2)\|_{L^1([0,T];\mathscr{R}(\tau))} \\ \leqslant C\|(z_1,z_2)\|_{(C^0([0,T];\mathscr{R}(\tau))^2}\|z_1-z_2\|_{C^0([0,T];\mathscr{R}(\tau))}. \end{aligned}$$

Then $\exists \delta > 0$, $\forall \eta \in \mathscr{R}(\tau)$ satisfying $\|\eta\|_{\mathscr{R}(\tau)} \leq \delta$, \exists a control function $u \in L^2([0, T]; U)$ and a controlled trajectory $z \in C^0([0, T]; \mathscr{R}(\tau))$ satisfying

$$z'(t) = Az(t) + Bu(t) + f(z)(t), \quad (t \in [0, T]), \qquad z(0) = 0,$$

and $z(T) = \eta.$

Outline

- 2 Small Time Null-Controllable Linear Systems
- 3 Applications to the heat equation

4 Further comments

(< ∃) < ∃)</p>

The 1-d heat equation

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) = 0 & (t \ge 0, \ x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), \ \frac{\partial z}{\partial x}(t,\pi) = u_{\pi}(t) & (t \ge 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

$$A = \frac{\partial^2}{\partial x^2} \text{ on } H = L^2(0,\pi),$$

$$\mathscr{D}(A) = \left\{ z \in H^2(0,\pi), \frac{\partial z}{\partial x}(0) = \frac{\partial z}{\partial x}(\pi) = 0 \right\}.$$

$$B \begin{pmatrix} u_0 \\ u_\pi \end{pmatrix} = -u_0 \delta_0 + u_\pi \delta_\pi.$$

Null-controllable in any time T > 0.

[Fattorini Russell 1971]

Known result

Theorem

[Hartmann-Orsoni 2021]

イロン 不得 とくほど 不良 とうほう

The reachable space of the above 1d heat equation is independent of the time horizon $\tau > 0$ and, for all $\tau > 0$,

 $\mathscr{R}(\tau) = A^{1,2}(S),$

where

$$S = \{s = x + iy \in \mathbb{C} \mid |y| < x \text{ and } |y| < \pi - x\}.$$

and $A^{1,2}(S) = \{ f \in Hol(S) \cap W^{1,2}(S) \}.$

Exact characterization, following several attempts: [Fattorini Russell '71], [Martin Rosier Rouchon '16], [Dardé Ervedoza '18], [Hartmann Kellay Tucsnak '20], [Kellay Normand Tucsnak '19], [Orsoni '19],

First consequence

Theorem

The heat equation

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) = 0 & (t \ge 0, \ x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = \frac{\partial z}{\partial x}(t,\pi) = 0 & (t \ge 0), \\ z(0,x) = z_0 & (x \in (0,\pi)), \end{cases}$$

is well-posed in $A^{1,2}(S)$.

• Difficult to prove by hand !!

ヘロア 人間 アメヨア 人口 ア

ъ

Application 1: Small potentials

Theorem

[S.E., K. Le Balc'h, M. Tucsnak 2021]

There exists $\varepsilon > 0$, such that if $p \in Hol(S) \cap W^{1,\infty}(S)$ with $\|p\|_{W^{1,\infty}(S)} \leq \varepsilon$, the reachable set for the equation

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) + p(x)z(t,x) = 0 & (t \ge 0, x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), \quad \frac{\partial z}{\partial x}(t,\pi) = u_{\pi}(t) & (t \ge 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

is independent of the time horizon and coincides with $A^{1,2}(S)$.

Proof. For $z \in A^{1,2}(S)$, $\|pz\|_{A^{1,2}(S)} \leqslant C \|p\|_{W^{1,\infty}(S)} \|z\|_{A^{1,2}(S)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Intro STNCLS Applications Further comments

Application 2: Non-local quadratic terms potentials

For
$$z \in C^0([0, T]; L^2[0, \pi])$$
, we define
$$f(z)(t, x) = \left(\int_0^{\pi} z(t, y) \,\mathrm{d}y\right) z(t, x),$$

Theorem

[S.E., K. Le Balc'h, M. Tucsnak 2021]

Let T > 0 Then $\exists \delta > 0$ such that $\forall \eta \in A^{1,2}(S)$ satisfying $\|\eta\|_{W^{1,2}(S)} \leq \delta$, there exist control functions $u_0, u_{\pi} \in L^2[0, \tau]$ such that the solution z of

$$\begin{cases} \frac{\partial z}{\partial t}(t,x) - \frac{\partial^2 z}{\partial x^2}(t,x) = f(z)(t,x) & (t \ge 0, x \in (0,\pi)), \\ \frac{\partial z}{\partial x}(t,0) = u_0(t), \quad \frac{\partial z}{\partial x}(t,\pi) = u_{\pi}(t) & (t \ge 0), \\ z(0,x) = 0 & (x \in (0,\pi)), \end{cases}$$

satisfies the terminal condition $z(T, \cdot) = \eta$.

Sylvain Ervedoza

Application 3: Semi-linear equations

$$f(z)(t,x) = \sum_{k=2}^{\infty} a_k(t,x)(z(t,x))^k, \quad (t \in [0,T], x \in [0,\pi]).$$

Difficulty: $A^{1,2}(S)$ is not an algebra.

Theorem

[Kellay, Normand, Tucsnak 2020]

For $\tau > 0$, let $H_L^1(0, \tau)$ be the set of all functions $v \in H^1(0, \tau)$ satisfying v(0) = 0. Then, for every $\tau > 0$ the set $\mathscr{R}_1(\tau)$ of states which can be reached with controls in $H_L^1((0, \tau); \mathbb{C}^2)$ is

$$\mathcal{A}^{3,2}(\mathcal{S}) = \operatorname{Hol}(\mathcal{S}) \cap \mathcal{W}^{3,2}(\mathcal{S}).$$

Rk: $A^{3,2}(S)$ is an algebra.

$$f(z)(t,x) = \sum_{k=2}^{\infty} a_k(t,x)(z(t,x))^k, \quad (t \in [0,T], x \in [0,\pi]).$$

Theorem

[S.E., K. Le Balc'h, M. Tucsnak 2021]

Let
$$T > 0$$
, f as above s.t. $f_k(t, x) \in L^1([0, T]; A^{3,2}(S))$ and
 $\exists \rho > 0$, $\sum_{k=2}^{\infty} k ||f_k||_{L^1([0,T]; A^{3,2}(S))} \rho^k < \infty$.
Then $\exists \delta > 0$ such that $\forall \eta \in A^{3,2}(S)$, satisfying $||\eta||_{A^{3,2}(S)} \leq \delta$,
 \exists control functions u_0 , $u_\pi \in L^2[0, \tau]$ such that the solution z of
 $\begin{cases} \frac{\partial z}{\partial t}(t, x) - \frac{\partial^2 z}{\partial x^2}(t, x) = f(t, x, z) & (t \ge 0, x \in (0, \pi)), \\ \frac{\partial z}{\partial x}(t, 0) = u_0(t), & \frac{\partial z}{\partial x}(t, \pi) = u_\pi(t) & (t \ge 0), \\ z(0, x) = 0 & (x \in (0, \pi)), \end{cases}$

satisfies $z(T, \cdot) = \eta$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

₹ 990

To be compared with [Laurent Rosier 2021]:

- Allows first order terms without any smallness condition;
- Handles analytic functions in z and ∂_xz, but no dependence in time;
- Requires stronger analyticity conditions on the coefficients in z;
- Shows that the states which are holomorphic on a ball $B_{\mathbb{C}}(\pi/2, R)$ for some $R > \widehat{R} = (2\pi)e^{(2e)^{-1}}$ are reachable.

Outline

Introduction

- 2 Small Time Null-Controllable Linear Systems
- 3 Applications to the heat equation

・ 同 ト ・ ヨ ト ・ ヨ ト

Further comments and open problems

- One can also develop perturbative arguments based on compactness results
 - Requires unique continuation properties.
 - Well-adapted to deal with non-local in space operators.
 Allows to recover [Fernandez-Cara-Lu-Zuazua-2016].
- An interesting question is the following one:

If $(e^{tA})_{t\geq 0}$ is an analytic semigroup on H which is null-controllable in any positive time, is its restriction to its reachable space an analytic semigroup?

• Our approach is a strong motivation to better describe reachable sets for parabolic models.

[Strohmaier Waters 2021, Hartmann-Orsoni 2021]

ヘロト ヘ戸ト ヘヨト ヘヨト

Thanks for your attention!

Based on the work: Reachability results for perturbed heat equations, S.E., Kévin Le Balc'h, and Marius Tucsnak, in preparation