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Some fact about the Dengue fever

• Dengue is a tropical vector-borne disease (4 different serotypes)
• Infect >100M, kills 20k annually
• No efficient vaccine

(up to Dengvaxia : dangerous for seronegative)
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Propagation of the Aedes Aegypti and Aedes Albopictus

The mosquitoes Aedes Aegypti and Aedes Albopictus are the main
vectors of dengue fever (also of Chikugunya and Zika).

[Kamal et al, PLOS One, 2018]
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Main vector : Aedes mosquitoes in Europa in 2019
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Main vector : Aedes Albopictus in France
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Main vector : Aedes mosquitoes

• More than 100 species. Major arbovirus vectors :
→ Aedes aegypti (tropical region)
→ Aedes alpopictus (more resistants to low temperature)

• Its life cycle is divided into two phases :
→ Aquatic phases (egg, larva,pupa)
→ Aerial phases (adult)

• Female during her life (≈ 1 month) : Several ovipositions of 40-80 eggs
→ Hatching : after fews days or several months

• Only females suck bloods
→ Preferentially from humans
→ Used to maturate their eggs

• Adults can fly with a dispersion of less than 1 km during its lifetime.
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Fight against arboviruses

In absence of vaccine or curative treatment, acting on the population
of mosquitoes Aedes is essentially the only feasible control method :

• Mechanical remove of breeding sites.
→ Difficult to implement to have good efficiency

• Application of insecticides.
→ Increase of moquito resistance
→ Negative impact on the environment

• Sterile insect techniques
→ Releases of sterilized (or incompatible) males

• Population replacement strategies
→Wolbachia bacterium

The two latter techniques have been studied by the HCB
(High Council for Biotechnology) in June 2017.
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SIT : Sterile Insect Technique

Some mathematical references
Bliman-Cardona-Salgado-Dumont-Vasilieva ’19 (feedback)

Dumont-Bossin-Strugarek ’19 (constant controls)
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Releases
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Continuous strategy for SIT : objectives

Model of the mosquitoes population : which complexity?

How to model the optimal control problem?

Can we extract mathematical properties of the optimizers?

Can we deduce an efficient numerical scheme?
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Continuous strategy for SIT : General model


E′ = βEF

(
1− E

K

)
−
(
νE + δE

)
E,

M ′ = (1− ν)νEE − δMM,

F ′ = ννEE − δFF.
where

• E : eggs, larvae, pupa density
→ eggs : few days to several months
→ larvae : 3 days to several weeks
→ pupa : 1-3 days

• M,F : density of adult males/females
→ males : ≈ 10 days
→ females : ≈ 15-45 days

[Almeida-D.-Privat-Vauchelet,

submitted]
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Continuous strategy for SIT : model

Model 

E′ = βEF

(
1− E

K

)
−
(
νE + δE

)
E,

M ′ = (1− ν)νEE − δMM,

F ′ = ννEE
M

M + γsMs
− δFF,

M ′
s = u− δsMs

where

• Ms : density of sterile males.

• M
M+γMs

: probability that a female mates with a fertile male

• u : release function of non-sterile male mosquitoes.
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Continuous strategy for SIT : equilibria

Proposition [Almeida-Duprez-Privat-Vauchelet, submitted]

Assume that u = 0, δs > δM and 1
2βEβF > δF (τE + δE).

Then there are two equilibria for system :

• (0, 0, 0, 0) is unstable
• (Ē, M̄ , F̄ , 0) is linearly asymptotically stable with

Ē = K

(
1−

δF
(
νE + δE

)
βEννE

)
, M̄ = (1− ν)νE

δM
Ē, F̄ = ννE

δF
Ē.

Moreover,
E0 ∈ [0, Ē],
M0 ∈ [0, M̄ ],
F0 ∈ [0, F̄ ],
Ms0 > 0

⇒


E(t) ∈ [0, Ē],
M(t) ∈ [0, M̄ ],
F (t) ∈ [0, F̄ ],
Ms(t) > 0

for each t ∈ [0, T ].
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Continuous strategy for SIT : Reduction of the model

Assumptions
the time dynamics of the aquatic and males compartments are fast

Hence {
F ′ = f(F,Ms),
M ′s = u− δsMs,

where f : R2 → R denotes the nonlinear function

f(F,Ms)

= ν(1− ν)β2
Eν

2
EF

2(βEF
K + νE + δE

)(
(1− ν)νEβEF + δMγsMs(βEFK + νE + δE)

)−δFF,
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Continuous strategy for SIT : equilibria

Proposition [Almeida-Duprez-Privat-Vauchelet, submitted]

Assume that u = 0, δs > δM and 1
2βEβF > δF (τE + δE).

Then there are two equilibria for system :

• (0, 0) is unstable
• (F̄ , 0) is linearly asymptotically stable with

Ē = K

(
1−

δF
(
νE + δE

)
βEννE

)
, M̄ = (1− ν)νE

δM
Ē, F̄ = ννE

δF
Ē.

Moreover,{
F0 ∈ [0, F̄ ],
Ms0 > 0 ⇒

{
F (t) ∈ [0, F̄ ],
Ms(t) > 0 for each t ∈ [0, T ].
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Continuous strategy for SIT : Comparison of the models
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Continuous strategy for SIT : optimization problem

Goals
- Optimize the total number of released sterile mosquitoes over the
experiment duration

- Obtain a small density of females at the end of the experiment

Optimization model

inf
u∈U

T,U,ε

∫ T

0
u(t)dt,

where

UT,Ū ,ε :=
{
u ∈ L∞(0, T ) : 0 ≤ u ≤ U a.e. in (0, T ), F (T ) 6 ε

}
.

Remark
U is a bound to the instantaneous rate of mosquito release
(number of mosquitoes per unit of time)
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Continuous strategy for SIT : main results

Optimization model on the reduced system

inf
u∈U

T,U,ε

∫ T

0
u(t)dt, (P)

where

UT,Ū ,ε :=
{
u ∈ L∞(0, T ) : 0 ≤ u ≤ U, F (T ) 6 ε

}
.

Proposition [Almeida-Duprez-Privat-Vauchelet, submitted]

Under some assumption on the coefficients, for T and U large
enough, then there exists t0, t1 ∈ [0, T ] such that the solutions u∗ to
problem P satisfy

• u∗ = 0 on (0, t0)
• u∗ is solution of an explicite ODE on (t0, t1)
• u∗ = 0 on (t1, T ) and t1 6= T

Remark
The infinite dim. problem is reduced to a finite dim. one.
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Continuous strategy for SIT : sketch of proof
Dual system : − d

dt

(
Q
R

)
=
(

∂f
∂F

(F,Ms) 0
∂f
∂Ms

(F,Ms) −δs

)(
Q
R

)
,

Q(T ) = 1, R(T ) = 0.

Lemma (Pontryagin’s maximum principle)

Let Ū > U∗ and T > T̄ (Ū). Consider u∗ a solution to the optimal control reduced
problem. Then there exists λ > 0 such that a.e. on {u∗ = 0}, one has 1 + λR(t) > 0,

a.e. on {0 < u∗ < U}, one has 1 + λR(t) = 0,
a.e. on {u∗ = U}, one has 1 + λR(t) 6 0.

Main idea : We have Q, ∂2
Ms
f > 0 and

−R′′ = ( ∂
2f

∂M2
s
u+ G(F,Ms, Q))Q− δsR′

Under some conditions on G, R has no local extremum on {u = U}.
Hence {u∗ = U} = [0, s2] ∪ [s3, T ]
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Continuous strategy for SIT : sketch of proof

Dual system  − d

dt

(
Q
R

)
=
(

∂f
∂F

(F,Ms) 0
∂f
∂Ms

(F,Ms) −δs

)(
Q
R

)
,

Q(T ) = 1, R(T ) = 0.

Explicite ODE
Hence, {R = −1/λ} = {0 < u < U} = (t0, t1). The equation of R gives(

∂2f

∂Ms∂F
f + ∂2f

∂M2
s

(u− δsMs)
)
Q = ∂f

∂Ms

∂f

∂F
Q.

We deduce that

u =
(
∂2f

∂M2
s

)−1(
∂f

∂Ms

∂f

∂F
+ ∂2f

∂M2
s
δsMs −

∂2f

∂Ms∂F
f

)
,

on (t0, t1).
�
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Continuous strategy for SIT : numerical algorithms
d

dt

(
F τ1

Mτ1
s

)
=
(
f(F τ1 ,Mτ1

s )
uτ1 − δsMs

)
in [0,+∞), F τ1 (0) = F̄ , Mτ1

s (0) = 0

with uτ1 =
∂f

∂Ms
(F,Ms) ∂f

∂F
(F,Ms)+ ∂2f

∂M2
s

(F,Ms)δsMs− ∂2f
∂Ms∂F

(F,Ms)f(F,Ms)

∂2f

∂M2
s

(F,Ms)
1(0,τ1),

Assumptions

Let Ū , T large enough and ε small enough. Then

• ∀ τ1 ∈ [0, T ), ∃!τ2(τ1) > τ1 s.t. F τ1 is first strictly decreasing on (0, τ2(τ1)),
and then strictly increasing on (τ2(τ1),+∞).

• the following value function is decreasing

ψ : τ1 ∈ [0, T ) 7→ min
t∈[0,∞]

F τ1 (t) = F τ1 (τ2(τ1))

• the optimal control u∗ solving the initial reduced Problem satisfies

u∗(t) =
{

0 if t ∈ (0, T − τ2(τ1)),
uτ1 (t− T + τ2(τ1)) otherwise

(1)

on (0, T ), where τ1 is the unique solution on [0, T ) to ψ(τ1) = ε.
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Continuous strategy for SIT : numerical algorithms

Three algorithms :
Optimisation on the full system

E′ = βEF

(
1− E

K

)
−
(
νE + δE

)
E,

M ′ = (1− ν)νEE − δMM,

F ′ = ννEE
M

M + γsMs
− δFF,

M ′
s = u− δsMs

Optimisation on the reduced system{
F ′ = f(F,Ms),
M ′s = u− δsMs,

Dichotomy on the 1D equation ψ(τ1) = ε.
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Continuous strategy for SIT : numerical simulation
Parameter Name Value interval Chosen value

δE Mosquitoes in Aquatic phase death rate 0.023 - 0.046 0.03
δF Female death rate 0.033 - 0.046 0.04
γ Preference for the sterile male (0,1) 1
b Birth rate 7.46 - 14.85 10
δs Sterile male death rate 0.12 0.12
τE Emergence rate 0.001 - 0.25 0.05
K Environment capacity 5172

Values of [Strugarek-Bossin-Dumont, AMM, 2019]
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Continuous strategy for SIT : computation time

Computing Time (CT) in sec. (νE = 0.05, ε = F̄ /4, F̄ = 11037)

Time discr. 100 200 400 800 1600 3200
CT for full problem 8.11 2.56e1 1.86e2 3.83e4 X X

CT for reduced problem 6.00 2.94e1 1.13e2 7.37e2 3.53e4 X
CT for 1D problem 6.74e-1 1.44 2.73 5.45 11.7 2.24e1

(Optimization library : Gekko with python)

Remark : The theoretical results lead to a fast numerical scheme.

Michel Duprez Control strategies on mosquito population 22



Continuous strategy for SIT : numerical simulation

J(u) =
∫ T

0
u(t)dt,{

0 6 u 6 U,
F (T ) 6 ε,

J(u) =
∫ T

0
u2(t)dt,{

0 6 u 6 U,
F (T ) 6 ε,
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Remark : The functional has strong influence on the optimal strategy
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Impulsive strategy for SIT : model

Biological questions :

What is the best time in the year to begin the releases?

What is the influence of the mechanical control?

What is the influence of the residual fertility?
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Impulsive strategy for SIT : model

Model :



A′ = φ(T )F − (γ(T ) + µ1,A(T ) + µA,2(T,Rain)A)A,
M ′ = (1− r(T ))γ(T )A− µM (T )M,

F ′ = r(T )γ(T )M + εβMS

M + βMS
A− µF (T )F,

M ′s = u(t)− µs(T )Ms

where

T (t) : temperature at time t

Rain(t)) : rainfall at time t

Parameters : Aedes albopictus population in La Réunion island
[Dumont-Duprez in prep.]
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Impulsive strategy for SIT : control

Dynamic of the system :
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Impulsive strategy for SIT : control

Large/small impulsive control :

u(t) = τΛlarge

N∑
i=0

δt0+iτ (t) + τΛsmall

∞∑
i=N+1

δt0+iτ (t),

where

t0 is the starting time of the massive releases : control
τ the periodicity of the releases (here, τ = 7),

N the number of weakly massive releases.

For a given t0 there exists a t0 +N1(t0)τ such that, after this time,
(A,M,F ) remains “small”.

Gaol : minimize the number of large releases N
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Impulsive strategy for SIT : control

Optimal number of releases for a beginning between 2010 and 2020
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Impulsive strategy for SIT : control
Constant coefficients : RF : residual fertility, MC : mechanical control

RF=0.6 6000 Ind/ha 12000 Ind/ha
0% of MC 74 63
20% of MC 69 61
40% of MC 64 58

RF=1.2 6000 Ind/ha 12000 Ind/ha
0% of MC 170 156
20% of MC 163 152
40% of MC 156 148

Non-constant coefficients :
RF=0.6 6000 Ind/ha 12000 Ind/ha

0% of MC 70 61
20% of MC 65 58
40% of MC 60 55

RF=1.2 6000 Ind/ha 12000 Ind/ha
0% of MC 164 152
20% of MC 157 148
40% of MC 150 143
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Population replacement : The bacterium Wolbachia

The bacterium Wolbachia
• Common in arthropods, not in Aedes

• Vector competence suppression for key pathogens
→ dengue, zika, chikungunya viruses...

• Typically reduces fecundity and life-span (fitness cost)

• Cytoplasmic incompatibility (CI)
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Population replacement : Strategy

Some mathematical references
Strugarek-Vauchelet 16’, Nadin-Strugarek-Vauchelet 17’,
Strugarek-Vauchelet-Zubelli 18’, Almaida-Privat-Strugarek-Vauchelet 19’
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Population replacement : direct model

Space-time model
d

dt
Fu −∆Fu = βuFu

(
1− sh

Fi

Fu + Fi

)(
1− Fu + Fi

K

)
− δuFu in Ω× (0, T ),

d

dt
Fi −∆Fi = βiFi

(
1− Fu + Fi

K

)
− δiFi + u on Ω× (0, T ),

∂νFi = ∂νFu = 0 on ∂Ω× (0, T )

where

• Fi : females infected by Wolbachia

• Fu : females uninfected

• Fi
Fu+Fi

: probability for a female to mate with an infected male is equal to the
proportion of infected males

• sh : fraction of uninfected females eggs fertilized by infected males which will
not hatch.

−→ cytoplasmic incompatibility
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Population replacement : Steady states

The steady states for the associated ODE model :

Proposition

If Sh > 1− δuβi/(δiβu), then there are four distinct nonnegative
equilibria :

• Wolbachia invasion (F ∗i1, F ∗u1) := (K − δi/βi, 0) is stable

• Wolbachia extinction (F ∗i2, F ∗u2) := (0,K − δu/βu) is stable

• Co-existence state (F ∗i3, F ∗u3) is unstable with F ∗i3 = (K − δi
βi

)1−δuβi/(δiβu)
sh

,

F ∗u3 = (K − δi
βi

) sh−1+δuβi/(δiβu)
sh

• Extinction (0, 0) is unstable
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Population replacement : Phase portrait
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Population replacement : direct model

Assumption
The birth rate is high : βu = β0

u
ε

and βi = β0
i

ε

Simplified model
d

dt
Fu,ε −∆Fu,ε = β0

u

ε
Fu,ε

(
1− sh

Fi,ε
Fu,ε + Fi,ε

)(
1− Fu,ε + Fi,ε

K

)
− δuFu,ε,

d

dt
Fi,ε −∆Fi,ε = β0

i

ε
Fi,ε

(
1− Fu,ε + Fi,ε

K

)
− δiFi,ε + u,

If u = 0, then Fε = K
ε
− Fi,ε − Fu,ε and pε = Fi,ε

Fu,ε+Fi,ε
are solution to

{
∂tpε −∆pε + 2ε ∇Fε

K−εFε
.∇pε = pε(1− pε)(Gi(Fε, pε)−Gu(Fε, pε))

∂tFε −∆Fε = −
(
K
ε
− Fε

)
[(1− pε)Gu(Fε, pε) + pεGi(Fε, pε)]

where Gu(F, p) = β0
u(1− shp) FK − δu and Gi(F, p) = β0

i
F
K
− δi,
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Population replacement : Reduction

Proposition [Duprez-Helie-Privat-Vauchelet, COCV 2021]

When ε goes to zero, the proportion of infected female p := p0 = Fi,0
Fu,0+Fi,0

is
solution to {

∂tp−∆p = f(p) + u g(p) in Ω× (0, T ),
∂νp = 0 on ∂Ω× (0, T ),
p(0) = 0 in Ω,

where

f(p) = p(1−p) δuβ
0
i − δiβ0

u(1− shp)
β0
u(1− p)(1− shp) + β0

i p
et g(p) = 1

K

β0
u(1− p)(1− shp)

β0
u(1− p)(1− shp) + β0

i p
.

Property

The function f is bistable.
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Population replacement : optimization problem and main
result

Optimization problem

inf
v∈U

T,C,U

1
2

∫
Ω

(1− p(T, x))2dx (P)

where

UT,C,U =
{

u(t,x) = δ0(t)u0(x)
∣∣∣∣ 0 ≤ u0 ≤ U and

∫
Ω
u0(x)dx ≤ C

}

Theorem [Duprez-Helie-Privat-Vauchelet, COCV 2021]

It holds

• Problem (P) admits (at least) a solution.

• If U ≤ C/|Ω|, then u∗ = M satisfy the optimality conditions of first and
second order.

• If U > C/|Ω| and C/|Ω| ≤ θ ≤ z with z the solution to f ′′(z) = 0, then
u∗ = C/|Ω| satisfy the optimality conditions of first and second order.
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Population replacement : Simulations

Parameters
Ω = (0, 30), T = 20, D = 1, u ∈ [0, U ],

∫
u ∈ [0, C]

Local mimimums U ≤ C/|Ω|

Space

p

Space

p

U = 0.02, C=1.2 : J(u)=12.387, extinction U = 0.03, C=1.2 : J(u)=0.857, invasion
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Population replacement : Simulations
Parameters

Ω = (0, 30), T = 20, D = 1, u ∈ [0, U ],
∫
u ∈ [0, C]

Local mimimums U > C/|Ω| (left : gradient method, right : interior point)

p

Space Space

p

U = 0.2, C=0.2 : J(u)=14.582, extinction U = 0.2, C=0.2 : J(u)=14.424, extinction

Space

p p

Space

U = 0.2, C=0.5 : J(u)=13.120, extinction U = 0.2, C=0.5 : J(u)=8.813, invasion
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Outline

1 Introduction

2 Sterile Insect Techniques (SIT) : optimal continuous strategy

3 Sterile Insect Techniques (SIT) : optimal impulsive strategy

4 Replacement strategy : Wolbachia bacterium

5 Conclusions and perspectives



Conclusion

Conclusions for TIS with a continuous optimal strategy
- Mathematical description of the optimizer
- Reduction to a finite dim. problem→ Fast numerical scheme

Conclusions for TIS with impulsive controls
- Time dependence of the temperature and the rainfall : key role
- The residual fertility has an important impact
- Combining Mechanical control with SIT is recommended
- Beginning of the release : July to November

Conclusions for Wolbachia
The constant in space are good candidates

Perspectives
Take into account the spacial aspect for TIS
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Thank you for your attention
and the organization of this workshop !


