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Control problem

Let T > 0 and let Ω ⊂ Rn be connected, bounded, open, with smooth ∂Ω.
Let χ to be a cutoff function (that will be made more precise later).

Problem. For a fixed initial state (u0, u1), find such a control function φ
that the solution u of

∂2
t u −∆u = χφ, in (0,T )× Ω,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

satisfies u|t=T = 0 and ∂tu|t=T = 0.

The problem has a solution under the geometric control condition (GCC)
[Bardos-Lebeau-Rauch’92].
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Geometric control condition

A cylinder (a, b)× ω ⊂ (0,T )× Ω satisfies GCC if every (generalized)
light ray intersects it.

GCC implies the observability estimate

‖φ0‖L2(Ω) + ‖φ1‖H−1(Ω) . ‖φ‖L2((a,b)×ω)

for the solution φ of
∂2
t φ−∆φ = 0, in (0,T )× Ω,

φ|x∈∂Ω = 0,

φ|t=0 = φ0, ∂tφ|t=0 = φ1.
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Control problem (precise formulation)

Let T > 0 and let Ω ⊂ Rn be connected, bounded, open, with smooth ∂Ω.

Consider a cutoff function χ(t, x) = χ0(t)χ2
1(x) satisfying:

χj smooth, 0 ≤ χj ≤ 1, χ0 = 0 near t = 0,T , and

(A) χ = 1 on open (a, b)× ω ⊂ (0,T )× Ω satisfying GCC.

Problem. For a fixed initial state (u0, u1) ∈ C∞0 (Ω)2, find such a control
function φ that the solution u of

∂2
t u −∆u = χφ, in (0,T )× Ω

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

satisfies u|t=T = 0 and ∂tu|t=T = 0.
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Numerical analysis of the control problem

Problem. For (u0, u1) ∈ C∞0 (Ω)2, find φ such that the solution u of
∂2
t u −∆u = χφ, in (0,T )× Ω

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

satisfies u|t=T = 0 and ∂tu|t=T = 0.

GCC implies existence of a solution φ ∈ C∞((0,T )× Ω).

The solution is not unique, but for a certain (minimal) solution φ,
we show how to compute a finite element approximation φh satisfying

‖χ(φh − φ)‖L2((0,T )×Ω) . hp

with h > 0 the mesh size and p the polynomial order of the basis functions
[E.B-Feizmohammadi-Münch-Oksanen].
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Finite element bases in 1d

When the unit interval [0, 1] is discretized by 0 = x0 < x1 < · · · < xN = 1,
the mesh size is h = maxi=1,...,N |xi − xi−1|.

The basis functions of order p whose support intersects (xi−1, xi ).
Left. p = 1. Right. p = 2.
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Finite element approximation

For u ∈ C∞0 (0, 1) there is a finite element approximation uh satisfying
‖u − uh‖L2(0,1) . hp+1. Our proven convergence rate hp can be
suboptimal of at most one degree.

Finite element approximation with polynomial order p = 1.
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On previous literature

Naive discretizations of the control problem fail to converge due to
spurious high frequency modes, see e.g. [Glowinski-Lions’95].

There are two traditional approaches:

1. Control theory on discrete level, with filtering of high frequencies
I Numerical schemes on uniform meshes [Infante-Zuazua’99], . . .
I Continuum theory implies discrete theory with inexplicit control time

[Ervedoza’09, Miller’12]

2. Discretize an iterative method formulated in the continuum
I Based on Russell’s stabilization implies control principle

[Ĉındea-Micu-Tucsnak’11]
I Based on the Hilbert Uniqueness Method [Ervedoza-Zuazua’13]

Approach 1 is not aligned with the geometric control condition, while
stopping criteria for the iteration in approach 2 are hard to design.
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On previous literature: direct methods

Discretization of a direct (i.e. non-iterative) method in the continuum
[Ĉındea-Münch’15]

I Convergence of numerical experiments

I Convergence analysis conditional to uniform boundedness of certain
discrete inf-sup constants

I Spacetime finite element method (FEM)

We discretize and stabilize (i.e. regularize) a direct method

I Proven convergence

I Spacetime FEM

I Earlier work [E.B.-Feizmohammadi-Oksanen’20] uses piecewise
affine finite elements in space and finite differences in time
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Duality between inverse and control problems
Consider the map A(φ0, φ1) = φ|(0,T )×ω where φ is the solution of

∂2
t φ−∆φ = 0, in (0,T )× Ω,

φ|x∈∂Ω = 0,

φ|t=0 = φ0, ∂tφ|t=0 = φ1.

The transpose is A∗f = (u|t=0, ∂tu|t=0) where u is the solution of
∂2
t u −∆u = f , in (0,T )× Ω,

u|x∈∂Ω = 0,

u|t=T = 0, ∂tu|t=T = 0

and f is supported on (0,T )× ω. The observability estimate

‖φ0‖L2(Ω) + ‖φ1‖H−1(Ω) . ‖φ‖L2((0,T )×ω)

implies that A∗ is surjective from L2((0,T )× ω) to H1
0 (Ω)× L2(Ω).
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Stabilized FEMs for unique continuation

Problem. Find (φ0, φ1) given φ|(0,T )×ω for the solution φ of
∂2
t φ−∆φ = 0, in (0,T )× Ω,

φ|x∈∂Ω = 0,

φ|t=0 = φ0, ∂tφ|t=0 = φ1.

We can view the above inverse initial source problem as a unique
continuation problem: given φ in (0,T )× ω find φ in (0,T )× Ω.
Stabilized FEMs have been designed e.g. for

I elliptic Cauchy problem [E.B.’14]

I stable and unstable unique continuation for the heat equation
[E.B.–Ish-Horowicz–Oksanen’18]

I stable unique continuation for the wave equation
[E.B.–Feizmohammadi–Münch–Oksanen]
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Smoothness of minimal control

Theorem [Ervedoza–Zuazua’10]. Suppose GCC and (u0, u1) ∈ C∞0 (Ω)2.
Then there is a solution φ ∈ C∞((0,T )× Ω) to the control problem s.t.

∂2
t φ−∆φ = 0, in (0,T )× Ω,

φ|x∈∂Ω = 0,

φ|t=T = φ0, ∂tu|t=T = φ1,

where (φ0, φ1) is the unique minimizer over L2(Ω)× H−1(Ω) of

J(φ0, φ1) =
1

2

∫ T

0

∫
Ω
χ(t, x)|φ(t, x)|2dxdt

+ 〈u0, ∂tφ|t=0〉H1
0 (Ω)×H−1(Ω) − (u1, φ|t=0)L2(Ω).

12



Direct formulation of the control problem

By [Ervedoza–Zuazua’10] there is (u, φ) ∈ C∞((0,T )× Ω)2 solving1
�u = χφ,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

u|t=T = 0, ∂tu|t=0 = 0,

{
�φ = 0,

φ|x∈∂Ω = 0.

Lemma. The solution to the above system is unique.

Proof. Let (u(j), φ(j)), j = 1, 2, be solutions and write u = u(1) − u(2) and
φ = φ(1) − φ(2). Then (u, φ) satisfies the system with u0 = u1 = 0, and

(χφ, φ)L2((0,T )×Ω) = (�u, φ)L2((0,T )×Ω) = (u,�φ)L2((0,T )×Ω) = 0.

The observability estimate implies φ = 0, and u = 0 follows.

1Here � = ∂2
t −∆
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Weak formulation of the control problem

Let g be the Minkowski metric on R1+n and write M = (0,T )× Ω. Set

a(u, v) =

∫
M
g(du, dv)dx − (u, ∂νv)L2(∂M) − (∂νu, v)L2((0,T )×∂Ω),

L(v) = (u1, v |t=0)L2(Ω) − (u0, ∂tv |t=0)L2(Ω),

and c(φ, v) = (χφ, v)L2((0,T )×Ω). If smooth (u, φ) solves
�u = χφ,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

u|t=T = 0, ∂tu|t=0 = 0,

{
�φ = 0,

φ|x∈∂Ω = 0.

then for all smooth enough ψ, v

a(u, ψ) = c(φ, ψ) + L(ψ), a(v , φ) = 0.
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Stabilized FEM for the contol problem

Let Th, h > 0, be a quasi-uniform family of triangulations of2 (0,T )× Ω,
parametrized by the mesh size h > 0. Let Pp(K ) be the space of
polynomials of degree ≤ p on a set K ⊂ R1+n and define

V p
h = {u ∈ C (M) : u|K ∈ Pp(K ) for all K ∈ Th}.

We write U0 = (u0, u1) for the data and define the “energy”

E (U0) = h−1 ‖u0‖2
L2(Ω) + h ‖u1‖2

L2(Ω) .

Our finite element method has the form: find the critical point of the
Lagrangian L(u, φ) : V p

h × V q
h → R,

L(u, φ) =
1

2
c(φ, φ)− 1

2
E (U|t=0 − U0)− 1

2
Q(u, φ)− a(u, φ) + L(φ),

where U = (u, ∂tu) and Q is a quadratic form giving the stabilization.

2Triangles adjacent to (0,T )× ∂Ω have curved faces so that
⋃

K∈Th
K = (0,T )×Ω.
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Stabilization

We write Fh for the set of internal faces of the triangulation Th, and
J·K for the jump over F ∈ Fh. The stabilization is given by

Q(u, φ) =
∑
K∈Th

h2 ‖�u − χφ‖2
L2(K) −

∑
K∈Th

h2 ‖�φ‖2
L2(K)

+ s(u, u)− s(φ, φ) + E (U|t=T ),

s(u, u) =
∑
F∈Fh

h ‖J∂νuK‖2
L2(F ) + h−1 ‖u‖2

L2((0,T )×∂Ω) .

Observe that Q(u, φ) = 0 for a smooth solution (u, φ) to
�u = χφ,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

u|t=T = 0, ∂tu|t=0 = 0,

{
�φ = 0,

φ|x∈∂Ω = 0.
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Numerical analysis results

I Solutions with limited regularity (partial result):

Assume that u0 = 0 and u1 ∈ L2(Ω) then

(uh, φh) ⇀ (u, φ) in [L2(M)]2.

I Smooth solutions:
Error estimates reflecting the continuum stability, the smoothness of
the solution and the approximation properties of the finite element
space.
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Error estimate

Theorem [E.B.-Feizmohammadi-Münch-Oksanen]. Suppose that the
GCC holds. Let p, q ≥ 1 and let (u, φ) ∈ Hp+1(M)× Hq+1(M) be the
unique solution to

�u = χφ,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

u|t=T = 0, ∂tu|t=0 = 0,

{
�φ = 0,

φ|x∈∂Ω = 0.

Then the Lagrangian L has a unique critical point (uh, φh) ∈ V p
h ×V q

h and

‖χ(φ− φh)‖L2(M) . hp ‖u‖Hp+1(M) + hq ‖φ‖Hq+1(M) .

The critical point can be computed by a solving a finite dimensional linear
system.
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Computational experiments on the inverse source problem

Convergence rate in a 1 + 1d test case is roughly the optimal one hp+1

for p = 2 (orange) and p = 3 (light blue).
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Brief history of stabilized finite element methods

I Unless very fine meshes are used, typical finite element methods can
be unstable for convection dominated convection–diffusion equations,

ε∆u︸︷︷︸
diffusion

+ b · ∇u︸ ︷︷ ︸
convection

= 0.

I To remedy this, [Douglas–Dupont’76] introduced regularization
using the jumps of the normal derivatives∑

F∈Fh

‖J∂νuK‖2
L2(F ) . (J)

I Galerkin-least squares methods was introduced and analysed by
[Hughes–Brooks’79] and [Johnson–Nävert–Pitkäranta’84].

I Space-time FEM for wave equations in [Hughes–Hulbert’88].

I [Burman–Hansbo’04] analyzed (J), leading to the present work.

20



Linear system for the critical points of the Lagrangian

Take p = q = 1 for simplicity, and consider the simplified Lagrangian

L(u, φ) =
1

2
c(φ, φ)− a(u, φ) + L(φ)

− 1

2
E (U|t=0 − U0)− 1

2
(s(u, u)− s(φ, φ) + E (U|t=T ))

.

The equation dL(u, φ) = 0 for the critical points of L on V 1
h × V 1

h reads

a(v , φ) + s(u, v) +
∑
τ=0,T

e(U|t=τ ,V |t=τ ) = e(U0,V |t=0) ∀v ∈ V 1
h ,

a(u, ψ)− s(φ, ψ)− c(φ, ψ) = L(ψ) ∀ψ ∈ V 1
h ,

where V = (v , ∂tv) and e is the bilinear form associated to the quadratic
form E , that is, e(U,U) = E (U).
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Linear system for the critical points of the Lagrangian

Take p = q = 1 for simplicity, and consider the simplified Lagrangian

L(u, φ) =
1

2
c(φ, φ)− a(u, φ) + L(φ)

− 1

2
E (U|t=0 − U0)− 1

2
(s(u, u)− s(φ, φ) + E (U|t=T ))

.

The equation dL(u, φ) = 0 can also be written equivalently as

A[(u, φ), (v , ψ)] = L(ψ) + e(U0,V |t=0) for all (v , ψ) ∈ V 1
h × V 1

h ,

where the bilinear form A is given by

A[(u, φ), (v , ψ)] = −s(φ, ψ)− c(φ, ψ) + s(u, v) +
∑
τ=0,T

e(U|t=τ ,V |t=τ )

+ a(v , φ) + a(u, ψ).
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Existence of a unique critical point

A[(u, φ), (v , ψ)] = L(ψ) + e(U0,V |t=0) for all (v , ψ) ∈ V 1
h × V 1

h , (1)

defines a square system of linear equations. Hence existence is equivalent
to uniqueness. Suppose that (u, φ) ∈ V 1

h × V 1
h solves (1) with U0 = 0.

(In this case also L = 0). It remains to show that (u, φ) = 0. Recall

A[(u, φ), (v , ψ)] = s(u, v)− s(φ, ψ)− c(φ, ψ) +
∑
τ=0,T

e(U|t=τ ,V |t=τ )

+ a(v , φ) + a(u, ψ).

Now A[(u, φ), (u,−φ)] = 0 implies

|‖(u, φ)|‖2 := s(u, u) + s(φ, φ) + c(φ, φ) +
∑
τ=0,T

E (U|t=τ ) = 0.

From c(φ, φ) = s(φ, φ) = 0 we get φ = 0 for x ∈ ω ∪ ∂Ω and J∂νφK = 0
for all F ∈ Fh. Hence φ = 0. Also u = 0 from E (U|t=0) = s(u, u) = 0.
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Briefly on convergence

Let (uh, φh) be the solution to

A[(uh, φh), (v , ψ)] = e(U0,V |t=0) + L(ψ) for all (v , ψ) ∈ V 1
h × V 1

h ,

and let smooth (u, φ) solve the weak formulation of the control problem

a(u, ψ) = c(φ, ψ) + L(ψ), a(v , φ) = 0 for all smooth enough (v , ψ).

Our error estimate will follow immediately from

|‖(u − uh, φ− φh)|‖ . h
(
‖u‖H2(M) + ‖φ‖H2(M)

)
.

Sketch of proof. As the stabilization vanishes when applied to (u, φ),

A[(u, φ), (v , ψ)] = e(U0,V |t=0) + L(ψ) for all (v , ψ) ∈ V 1
h × V 1

h .

That is, the FEM is consistent. This implies the Galerkin orthogonality

A[(u − uh, φ− φh), (v , ψ)] = 0 for all (v , ψ) ∈ V 1
h × V 1

h .
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Sketch of proof continues

Let πh : H2((0,T )× Ω)→ V 1
h be h2-accurate interpolant preserving

vanishing boundary value (e.g. the Scott–Zhang interpolant). We write

e = u − uh, eh = πhu − uh, η = φ− φh, ηh = πhφ− φh.

The relation between A and |‖·|‖, and the Galerkin orthogonality, imply

|‖(e, η)|‖2 = A[(e, η), (e,−η)] = A[(e, η), (e − eh, ηh − η)].

We write eπ = u − πhu = e − eh and ηπ = φ− πhφ = η − ηh, and use:

(1) Continuity for a certain3 norm ‖·‖∗
A[X ,Y ] . |‖X |‖ ‖Y ‖∗ .

(2) Smallness of the interpolation error

‖(eπ,−ηπ)‖∗ . h
(
‖u‖H2(M) + ‖φ‖H2(M)

)
.

3Specifically ‖(u, φ)‖∗ = |‖(u, φ)|‖+ ‖u‖∗∗ + ‖q‖∗∗ where
‖u‖2
∗∗ = h−2 ‖u‖2

L2(M) + h−1 ‖u‖2
L2(∂M) + h ‖∂νu‖2

L2(∂M) + h−1 ∑
F∈Fh

‖u‖2
L2(F ).
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Conclusion

Theorem [E.B.-Feizmohammadi-Münch-Oksanen]. Suppose that the
GCC holds. Let (u, φ) ∈ H2(M)× H2(M) be the unique solution to

�u = χφ,

u|x∈∂Ω = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

u|t=T = 0, ∂tu|t=0 = 0,

{
�φ = 0,

φ|x∈∂Ω = 0.

Then the Lagrangian L has a unique critical point (uh, φh) ∈ V 1
h ×V 1

h and

‖χ(φ− φh)‖L2(M) . h
(
‖u‖H2(M) + h ‖φ‖H2(M)

)
.
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