Spacetime finite element methods for control problems subject to the wave equation

Erik Burman
University College London

Based on a joint work with
Lauri Oksanen (University of Helsinki), Ali Feizmohammadi (Fields Institute) and Arnaud Münch (Clermont Auvergne)

Control problem

Let $T>0$ and let $\Omega \subset \mathbb{R}^{n}$ be connected, bounded, open, with smooth $\partial \Omega$. Let χ to be a cutoff function (that will be made more precise later).

Problem. For a fixed initial state $\left(u_{0}, u_{1}\right)$, find such a control function ϕ that the solution u of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u=\chi \phi, \quad \text { in }(0, T) \times \Omega, \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=0}=u_{0},\left.\partial_{t} u\right|_{t=0}=u_{1},
\end{array}\right.
$$

satisfies $\left.u\right|_{t=T}=0$ and $\left.\partial_{t} u\right|_{t=T}=0$.

The problem has a solution under the geometric control condition (GCC) [Bardos-Lebeau-Rauch'92].

Geometric control condition

A cylinder $(a, b) \times \omega \subset(0, T) \times \Omega$ satisfies GCC if every (generalized) light ray intersects it.

GCC implies the observability estimate

$$
\left\|\phi_{0}\right\|_{L^{2}(\Omega)}+\left\|\phi_{1}\right\|_{H^{-1}(\Omega)} \lesssim\|\phi\|_{L^{2}((a, b) \times \omega)}
$$

for the solution ϕ of

$$
\begin{cases}\partial_{t}^{2} \phi-\Delta \phi=0, & \text { in }(0, T) \times \Omega, \\ \left.\phi\right|_{x \in \partial \Omega}=0, & \\ \left.\phi\right|_{t=0}=\phi_{0},\left.\partial_{t} \phi\right|_{t=0}=\phi_{1} . & \end{cases}
$$

Control problem (precise formulation)

Let $T>0$ and let $\Omega \subset \mathbb{R}^{n}$ be connected, bounded, open, with smooth $\partial \Omega$.
Consider a cutoff function $\chi(t, x)=\chi_{0}(t) \chi_{1}^{2}(x)$ satisfying:
χ_{j} smooth, $0 \leq \chi_{j} \leq 1, \chi_{0}=0$ near $t=0, T$, and
(A) $\chi=1$ on open $(a, b) \times \omega \subset(0, T) \times \Omega$ satisfying GCC.

Problem. For a fixed initial state $\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}(\Omega)^{2}$, find such a control function ϕ that the solution u of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u=\chi \phi, \quad \text { in }(0, T) \times \Omega \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=0}=u_{0},\left.\partial_{t} u\right|_{t=0}=u_{1},
\end{array}\right.
$$

satisfies $\left.u\right|_{t=T}=0$ and $\left.\partial_{t} u\right|_{t=T}=0$.

Numerical analysis of the control problem

Problem. For $\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}(\Omega)^{2}$, find ϕ such that the solution u of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u=\chi \phi, \quad \text { in }(0, T) \times \Omega \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=0}=u_{0},\left.\partial_{t} u\right|_{t=0}=u_{1},
\end{array}\right.
$$

satisfies $\left.u\right|_{t=T}=0$ and $\left.\partial_{t} u\right|_{t=T}=0$.
GCC implies existence of a solution $\phi \in C^{\infty}((0, T) \times \Omega)$.
The solution is not unique, but for a certain (minimal) solution ϕ, we show how to compute a finite element approximation ϕ_{h} satisfying

$$
\left\|\chi\left(\phi_{h}-\phi\right)\right\|_{L^{2}((0, T) \times \Omega)} \lesssim h^{p}
$$

with $h>0$ the mesh size and p the polynomial order of the basis functions [E.B-Feizmohammadi-Münch-Oksanen].

Finite element bases in 1d

When the unit interval $[0,1]$ is discretized by $0=x_{0}<x_{1}<\cdots<x_{N}=1$, the mesh size is $h=\max _{i=1, \ldots, N}\left|x_{i}-x_{i-1}\right|$.

The basis functions of order p whose support intersects $\left(x_{i-1}, x_{i}\right)$. Left. $p=1$. Right. $p=2$.

Finite element approximation

For $u \in C_{0}^{\infty}(0,1)$ there is a finite element approximation u_{h} satisfying $\left\|u-u_{h}\right\|_{L^{2}(0,1)} \lesssim h^{p+1}$. Our proven convergence rate h^{p} can be suboptimal of at most one degree.

Finite element approximation with polynomial order $p=1$.

On previous literature

Naive discretizations of the control problem fail to converge due to spurious high frequency modes, see e.g. [Glowinski-Lions'95].

There are two traditional approaches:

1. Control theory on discrete level, with filtering of high frequencies

- Numerical schemes on uniform meshes [Infante-Zuazua'99], ...
- Continuum theory implies discrete theory with inexplicit control time [Ervedoza'09, Miller'12]

2. Discretize an iterative method formulated in the continuum

- Based on Russell's stabilization implies control principle [Cîndea-Micu-Tucsnak'11]
- Based on the Hilbert Uniqueness Method [Ervedoza-Zuazua'13]

Approach 1 is not aligned with the geometric control condition, while stopping criteria for the iteration in approach 2 are hard to design.

On previous literature: direct methods

Discretization of a direct (i.e. non-iterative) method in the continuum [Cîndea-Münch'15]

- Convergence of numerical experiments
- Convergence analysis conditional to uniform boundedness of certain discrete inf-sup constants
- Spacetime finite element method (FEM)

We discretize and stabilize (i.e. regularize) a direct method

- Proven convergence
- Spacetime FEM
- Earlier work [E.B.-Feizmohammadi-Oksanen'20] uses piecewise affine finite elements in space and finite differences in time

Duality between inverse and control problems

Consider the map $A\left(\phi_{0}, \phi_{1}\right)=\left.\phi\right|_{(0, T) \times \omega}$ where ϕ is the solution of

$$
\begin{cases}\partial_{t}^{2} \phi-\Delta \phi=0, & \text { in }(0, T) \times \Omega, \\ \left.\phi\right|_{x \in \partial \Omega}=0, \\ \left.\phi\right|_{t=0}=\phi_{0},\left.\partial_{t} \phi\right|_{t=0}=\phi_{1} .\end{cases}
$$

The transpose is $A^{*} f=\left(\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}\right)$ where u is the solution of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta u=f, \quad \text { in }(0, T) \times \Omega, \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=T}=0,\left.\partial_{t} u\right|_{t=T}=0
\end{array}\right.
$$

and f is supported on $(0, T) \times \omega$. The observability estimate

$$
\left\|\phi_{0}\right\|_{L^{2}(\Omega)}+\left\|\phi_{1}\right\|_{H^{-1}(\Omega)} \lesssim\|\phi\|_{L^{2}((0, T) \times \omega)}
$$

implies that A^{*} is surjective from $L^{2}((0, T) \times \omega)$ to $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Stabilized FEMs for unique continuation

Problem. Find $\left(\phi_{0}, \phi_{1}\right)$ given $\left.\phi\right|_{(0, T) \times \omega}$ for the solution ϕ of

$$
\begin{cases}\partial_{t}^{2} \phi-\Delta \phi=0, & \text { in }(0, T) \times \Omega, \\ \left.\phi\right|_{x \in \partial \Omega}=0, & \\ \left.\phi\right|_{t=0}=\phi_{0},\left.\partial_{t} \phi\right|_{t=0}=\phi_{1} . & \end{cases}
$$

We can view the above inverse initial source problem as a unique continuation problem: given ϕ in $(0, T) \times \omega$ find ϕ in $(0, T) \times \Omega$. Stabilized FEMs have been designed e.g. for

- elliptic Cauchy problem [E.B.'14]
- stable and unstable unique continuation for the heat equation [E.B.--Ish-Horowicz-Oksanen'18]
- stable unique continuation for the wave equation [E.B.-Feizmohammadi-Münch-Oksanen]

Smoothness of minimal control

Theorem [Ervedoza-Zuazua'10]. Suppose GCC and $\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}(\Omega)^{2}$. Then there is a solution $\phi \in C^{\infty}((0, T) \times \Omega)$ to the control problem s.t.

$$
\begin{cases}\partial_{t}^{2} \phi-\Delta \phi=0, & \text { in }(0, T) \times \Omega \\ \left.\phi\right|_{x \in \partial \Omega}=0, \\ \left.\phi\right|_{t=T}=\phi_{0},\left.\partial_{t} u\right|_{t=T}=\phi_{1} & \end{cases}
$$

where $\left(\phi_{0}, \phi_{1}\right)$ is the unique minimizer over $L^{2}(\Omega) \times H^{-1}(\Omega)$ of

$$
\begin{aligned}
J\left(\phi_{0}, \phi_{1}\right)=\frac{1}{2} & \int_{0}^{T} \int_{\Omega} \chi(t, x)|\phi(t, x)|^{2} d x d t \\
& +\left\langle u_{0},\left.\partial_{t} \phi\right|_{t=0}\right\rangle_{H_{0}^{1}(\Omega) \times H^{-1}(\Omega)}-\left(u_{1},\left.\phi\right|_{t=0}\right)_{L^{2}(\Omega)}
\end{aligned}
$$

Direct formulation of the control problem

By [Ervedoza-Zuazua' 10] there is $(u, \phi) \in C^{\infty}((0, T) \times \Omega)^{2}$ solving 1

$$
\left\{\begin{array} { l }
{ \square u = \chi \phi , } \\
{ u | _ { x \in \partial \Omega } = 0 , } \\
{ u | _ { t = 0 } = u _ { 0 } , \partial _ { t } u | _ { t = 0 } = u _ { 1 } , } \\
{ u | _ { t = T } = 0 , \partial _ { t } u | _ { t = 0 } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\square \phi=0, \\
\left.\phi\right|_{x \in \partial \Omega}=0
\end{array}\right.\right.
$$

Lemma. The solution to the above system is unique.
Proof. Let $\left(u_{(j)}, \phi_{(j)}\right), j=1,2$, be solutions and write $u=u_{(1)}-u_{(2)}$ and $\phi=\phi_{(1)}-\phi_{(2)}$. Then (u, ϕ) satisfies the system with $u_{0}=u_{1}=0$, and

$$
(\chi \phi, \phi)_{L^{2}((0, T) \times \Omega)}=(\square u, \phi)_{L^{2}((0, T) \times \Omega)}=(u, \square \phi)_{L^{2}((0, T) \times \Omega)}=0 .
$$

The observability estimate implies $\phi=0$, and $u=0$ follows.

$$
{ }^{1} \text { Here } \square=\partial_{t}^{2}-\Delta
$$

Weak formulation of the control problem

Let g be the Minkowski metric on \mathbb{R}^{1+n} and write $M=(0, T) \times \Omega$. Set

$$
\begin{aligned}
a(u, v) & =\int_{M} g(d u, d v) d x-\left(u, \partial_{\nu} v\right)_{L^{2}(\partial M)}-\left(\partial_{\nu} u, v\right)_{L^{2}((0, T) \times \partial \Omega)}, \\
L(v) & =\left(u_{1},\left.v\right|_{t=0}\right)_{L^{2}(\Omega)}-\left(u_{0},\left.\partial_{t} v\right|_{t=0}\right)_{L^{2}(\Omega)}
\end{aligned}
$$

and $c(\phi, v)=(\chi \phi, v)_{L^{2}((0, T) \times \Omega)}$. If smooth (u, ϕ) solves

$$
\left\{\begin{array}{l}
\square u=\chi \phi, \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=0}=u_{0},\left.\quad \partial_{t} u\right|_{t=0}=u_{1}, \\
\left.u\right|_{t=T}=0,\left.\quad \partial_{t} u\right|_{t=0}=0,
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\square \phi=0, \\
\left.\phi\right|_{x \in \partial \Omega}=0
\end{array}\right.
$$

then for all smooth enough ψ, v

$$
a(u, \psi)=c(\phi, \psi)+L(\psi), \quad a(v, \phi)=0 .
$$

Stabilized FEM for the contol problem

Let $\mathcal{T}_{h}, h>0$, be a quasi-uniform family of triangulations of ${ }^{2}(0, T) \times \Omega$, parametrized by the mesh size $h>0$. Let $\mathbb{P}_{p}(K)$ be the space of polynomials of degree $\leq p$ on a set $K \subset \mathbb{R}^{1+n}$ and define

$$
V_{h}^{p}=\left\{u \in C(M):\left.u\right|_{K} \in \mathbb{P}_{p}(K) \text { for all } K \in \mathcal{T}_{h}\right\} .
$$

We write $U_{0}=\left(u_{0}, u_{1}\right)$ for the data and define the "energy"

$$
E\left(U_{0}\right)=h^{-1}\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+h\left\|u_{1}\right\|_{L^{2}(\Omega)}^{2}
$$

Our finite element method has the form: find the critical point of the Lagrangian $\mathcal{L}(u, \phi): V_{h}^{p} \times V_{h}^{q} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(u, \phi)=\frac{1}{2} c(\phi, \phi)-\frac{1}{2} E\left(\left.U\right|_{t=0}-U_{0}\right)-\frac{1}{2} Q(u, \phi)-a(u, \phi)+L(\phi),
$$

where $U=\left(u, \partial_{t} u\right)$ and Q is a quadratic form giving the stabilization.
${ }^{2}$ Triangles adjacent to $(0, T) \times \partial \Omega$ have curved faces so that $\bigcup_{K \in \mathcal{T}_{h}} K=(0, T) \times \Omega$.

Stabilization

We write \mathcal{F}_{h} for the set of internal faces of the triangulation \mathcal{T}_{h}, and $\llbracket \cdot \rrbracket$ for the jump over $F \in \mathcal{F}_{h}$. The stabilization is given by

$$
\begin{aligned}
Q(u, \phi)= & \sum_{K \in \mathcal{T}_{h}} h^{2}\|\square u-\chi \phi\|_{L^{2}(K)}^{2}-\sum_{K \in \mathcal{T}_{h}} h^{2}\|\square \phi\|_{L^{2}(K)}^{2} \\
& +s(u, u)-s(\phi, \phi)+E\left(\left.U\right|_{t=T}\right), \\
s(u, u)= & \sum_{F \in \mathcal{F}_{h}} h\left\|\llbracket \partial_{\nu} u \rrbracket\right\|_{L^{2}(F)}^{2}+h^{-1}\|u\|_{L^{2}((0, T) \times \partial \Omega)}^{2} .
\end{aligned}
$$

Observe that $Q(u, \phi)=0$ for a smooth solution (u, ϕ) to

$$
\left\{\begin{array} { l }
{ \square u = \chi \phi , } \\
{ u | _ { x \in \partial \Omega } = 0 , } \\
{ u | _ { t = 0 } = u _ { 0 } , \partial _ { t } u | _ { t = 0 } = u _ { 1 } , } \\
{ u | _ { t = T } = 0 , \partial _ { t } u | _ { t = 0 } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\square \phi=0, \\
\left.\phi\right|_{x \in \partial \Omega}=0
\end{array}\right.\right.
$$

Numerical analysis results

- Solutions with limited regularity (partial result):

Assume that $u_{0}=0$ and $u_{1} \in L^{2}(\Omega)$ then

$$
\left(u_{h}, \phi_{h}\right) \rightharpoonup(u, \phi) \text { in }\left[L^{2}(M)\right]^{2} .
$$

- Smooth solutions:

Error estimates reflecting the continuum stability, the smoothness of the solution and the approximation properties of the finite element space.

Error estimate

Theorem [E.B.-Feizmohammadi-Münch-Oksanen]. Suppose that the GCC holds. Let $p, q \geq 1$ and let $(u, \phi) \in H^{p+1}(M) \times H^{q+1}(M)$ be the unique solution to

$$
\left\{\begin{array} { l }
{ \square u = \chi \phi , } \\
{ u | _ { x \in \partial \Omega } = 0 , } \\
{ u | _ { t = 0 } = u _ { 0 } , \partial _ { t } u | _ { t = 0 } = u _ { 1 } , } \\
{ u | _ { t = T } = 0 , \partial _ { t } u | _ { t = 0 } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\square \phi=0, \\
\left.\phi\right|_{x \in \partial \Omega}=0 .
\end{array}\right.\right.
$$

Then the Lagrangian \mathcal{L} has a unique critical point $\left(u_{h}, \phi_{h}\right) \in V_{h}^{p} \times V_{h}^{q}$ and

$$
\left\|\chi\left(\phi-\phi_{h}\right)\right\|_{L^{2}(M)} \lesssim h^{p}\|u\|_{H^{p+1}(M)}+h^{q}\|\phi\|_{H^{q+1}(M)}
$$

The critical point can be computed by a solving a finite dimensional linear system.

Computational experiments on the inverse source problem

Convergence rate in a $1+1 \mathrm{~d}$ test case is roughly the optimal one h^{p+1} for $p=2$ (orange) and $p=3$ (light blue).

Brief history of stabilized finite element methods

- Unless very fine meshes are used, typical finite element methods can be unstable for convection dominated convection-diffusion equations,

$$
\underbrace{\epsilon \Delta u}_{\text {diffusion }}+\underbrace{b \cdot \nabla u}_{\text {convection }}=0 .
$$

- To remedy this, [Douglas-Dupont'76] introduced regularization using the jumps of the normal derivatives

$$
\begin{equation*}
\sum_{F \in \mathcal{F}_{h}}\left\|\llbracket \partial_{\nu} u \rrbracket\right\|_{L^{2}(F)}^{2} . \tag{J}
\end{equation*}
$$

- Galerkin-least squares methods was introduced and analysed by [Hughes-Brooks'79] and [Johnson-Nävert-Pitkäranta'84].
- Space-time FEM for wave equations in [Hughes-Hulbert'88].
- [Burman-Hansbo'04] analyzed (J), leading to the present work.

Linear system for the critical points of the Lagrangian

Take $p=q=1$ for simplicity, and consider the simplified Lagrangian

$$
\begin{aligned}
\mathcal{L}(u, \phi)= & \frac{1}{2} c(\phi, \phi)-a(u, \phi)+L(\phi) \\
& -\frac{1}{2} E\left(\left.U\right|_{t=0}-U_{0}\right)-\frac{1}{2}\left(s(u, u)-s(\phi, \phi)+E\left(\left.U\right|_{t=T}\right)\right)
\end{aligned}
$$

The equation $d \mathcal{L}(u, \phi)=0$ for the critical points of \mathcal{L} on $V_{h}^{1} \times V_{h}^{1}$ reads

$$
\begin{array}{rlrl}
a(v, \phi)+s(u, v)+\sum_{\tau=0, T} e\left(\left.U\right|_{t=\tau},\left.V\right|_{t=\tau}\right) & =e\left(U_{0},\left.V\right|_{t=0}\right) & & \forall v \in V_{h}^{1} \\
a(u, \psi)-s(\phi, \psi)-c(\phi, \psi) & =L(\psi) & \forall \psi \in V_{h}^{1}
\end{array}
$$

where $V=\left(v, \partial_{t} v\right)$ and e is the bilinear form associated to the quadratic form E, that is, $e(U, U)=E(U)$.

Linear system for the critical points of the Lagrangian

Take $p=q=1$ for simplicity, and consider the simplified Lagrangian

$$
\begin{aligned}
\mathcal{L}(u, \phi)= & \frac{1}{2} c(\phi, \phi)-a(u, \phi)+L(\phi) \\
& -\frac{1}{2} E\left(\left.U\right|_{t=0}-U_{0}\right)-\frac{1}{2}\left(s(u, u)-s(\phi, \phi)+E\left(\left.U\right|_{t=T}\right)\right)
\end{aligned}
$$

The equation $d \mathcal{L}(u, \phi)=0$ can also be written equivalently as

$$
A[(u, \phi),(v, \psi)]=L(\psi)+e\left(U_{0},\left.V\right|_{t=0}\right) \quad \text { for all }(v, \psi) \in V_{h}^{1} \times V_{h}^{1}
$$

where the bilinear form A is given by

$$
\begin{aligned}
A[(u, \phi),(v, \psi)]=- & s(\phi, \psi)-c(\phi, \psi)+s(u, v)+\sum_{\tau=0, T} e\left(\left.U\right|_{t=\tau},\left.V\right|_{t=\tau}\right) \\
& +a(v, \phi)+a(u, \psi)
\end{aligned}
$$

Existence of a unique critical point

$$
\begin{equation*}
A[(u, \phi),(v, \psi)]=L(\psi)+e\left(U_{0},\left.V\right|_{t=0}\right) \quad \text { for all }(v, \psi) \in V_{h}^{1} \times V_{h}^{1} \tag{1}
\end{equation*}
$$

defines a square system of linear equations. Hence existence is equivalent to uniqueness. Suppose that $(u, \phi) \in V_{h}^{1} \times V_{h}^{1}$ solves (1) with $U_{0}=0$. (In this case also $L=0$). It remains to show that $(u, \phi)=0$. Recall

$$
\begin{aligned}
& A[(u, \phi),(v, \psi)]=s(u, v)-s(\phi, \psi)-c(\phi, \psi)+\sum_{\tau=0, T} e\left(\left.U\right|_{t=\tau},\left.V\right|_{t=\tau}\right) \\
&+a(v, \phi)+a(u, \psi)
\end{aligned}
$$

Now $A[(u, \phi),(u,-\phi)]=0$ implies

$$
\|(u, \phi)\| \|^{2}:=s(u, u)+s(\phi, \phi)+c(\phi, \phi)+\sum_{\tau=0, T} E\left(\left.U\right|_{t=\tau}\right)=0 .
$$

From $c(\phi, \phi)=s(\phi, \phi)=0$ we get $\phi=0$ for $x \in \omega \cup \partial \Omega$ and $\llbracket \partial_{\nu} \phi \rrbracket=0$ for all $F \in \mathcal{F}_{h}$. Hence $\phi=0$. Also $u=0$ from $E\left(\left.U\right|_{t=0}\right)=s(u, u)=0$.

Briefly on convergence

Let $\left(u_{h}, \phi_{h}\right)$ be the solution to

$$
A\left[\left(u_{h}, \phi_{h}\right),(v, \psi)\right]=e\left(U_{0},\left.V\right|_{t=0}\right)+L(\psi) \quad \text { for all }(v, \psi) \in V_{h}^{1} \times V_{h}^{1}
$$

and let smooth (u, ϕ) solve the weak formulation of the control problem

$$
a(u, \psi)=c(\phi, \psi)+L(\psi), \quad a(v, \phi)=0 \quad \text { for all smooth enough }(v, \psi) .
$$

Our error estimate will follow immediately from

$$
\left\|\left(u-u_{h}, \phi-\phi_{h}\right)\right\| \lesssim \lesssim\left(\|u\|_{H^{2}(M)}+\|\phi\|_{H^{2}(M)}\right) .
$$

Sketch of proof. As the stabilization vanishes when applied to (u, ϕ),

$$
A[(u, \phi),(v, \psi)]=e\left(U_{0},\left.V\right|_{t=0}\right)+L(\psi) \quad \text { for all }(v, \psi) \in V_{h}^{1} \times V_{h}^{1}
$$

That is, the FEM is consistent. This implies the Galerkin orthogonality

$$
A\left[\left(u-u_{h}, \phi-\phi_{h}\right),(v, \psi)\right]=0 \quad \text { for all }(v, \psi) \in V_{h}^{1} \times V_{h}^{1}
$$

Sketch of proof continues

Let $\pi_{h}: H^{2}((0, T) \times \Omega) \rightarrow V_{h}^{1}$ be h^{2}-accurate interpolant preserving vanishing boundary value (e.g. the Scott-Zhang interpolant). We write

$$
e=u-u_{h}, \quad e_{h}=\pi_{h} u-u_{h}, \quad \eta=\phi-\phi_{h}, \quad \eta_{h}=\pi_{h} \phi-\phi_{h} .
$$

The relation between A and $|\|\cdot \mid\|$, and the Galerkin orthogonality, imply

$$
\left\|\|(e, \eta)\|^{2}=A[(e, \eta),(e,-\eta)]=A\left[(e, \eta),\left(e-e_{h}, \eta_{h}-\eta\right)\right] .\right.
$$

We write $e_{\pi}=u-\pi_{h} u=e-e_{h}$ and $\eta_{\pi}=\phi-\pi_{h} \phi=\eta-\eta_{h}$, and use:
(1) Continuity for a certain ${ }^{3}$ norm $\|\cdot\|_{*}$

$$
A[X, Y] \lesssim\|\|X\|\| Y \|_{*} .
$$

(2) Smallness of the interpolation error

$$
\left\|\left(e_{\pi},-\eta_{\pi}\right)\right\|_{*} \lesssim h\left(\|u\|_{H^{2}(M)}+\|\phi\|_{H^{2}(M)}\right) .
$$

$$
\begin{aligned}
& { }^{3} \text { Specifically }\|(u, \phi)\|_{*}=\|(u, \phi)\| \\
& \|u\|_{*_{*}}^{2}=h^{-2}\|u\|_{L^{2}(M)}^{2}+h^{-1}\|u\|_{L^{2}(\partial M)}^{2}+h\| \|_{* *}+\|u\|_{L^{2}(\partial M)}+h^{-1} \sum_{F \in \mathcal{F}_{h}}\|u\|_{L^{2}(F)}^{2} .
\end{aligned}
$$

Conclusion

Theorem [E.B.-Feizmohammadi-Münch-Oksanen]. Suppose that the GCC holds. Let $(u, \phi) \in H^{2}(M) \times H^{2}(M)$ be the unique solution to

$$
\left\{\begin{array}{l}
\square u=\chi \phi, \\
\left.u\right|_{x \in \partial \Omega}=0, \\
\left.u\right|_{t=0}=u_{0},\left.\quad \partial_{t} u\right|_{t=0}=u_{1}, \\
\left.u\right|_{t=T}=0,\left.\quad \partial_{t} u\right|_{t=0}=0,
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\square \phi=0 \\
\left.\phi\right|_{x \in \partial \Omega}=0
\end{array}\right.
$$

Then the Lagrangian \mathcal{L} has a unique critical point $\left(u_{h}, \phi_{h}\right) \in V_{h}^{1} \times V_{h}^{1}$ and

$$
\left\|\chi\left(\phi-\phi_{h}\right)\right\|_{L^{2}(M)} \lesssim h\left(\|u\|_{H^{2}(M)}+h\|\phi\|_{H^{2}(M)}\right) .
$$

Reference:

- For details on the low regularity case and boundary control see:

Erik Burman, Ali Feizmohammadi, Arnaud Munch, Lauri Oksanen, Spacetime finite element methods for control problems subject to the wave equation, arXiv:2109.07890, 2021.

