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Control problem

Let T > 0 and let Q C R" be connected, bounded, open, with smooth 0f2.

Let x to be a cutoff function (that will be made more precise later).
Problem. For a fixed initial state (uo, u1), find such a control function ¢
that the solution u of

02u — Au = x9, in (0, T) x Q,
Ulxeaq =0,
Ult=0 = up, Orll¢—0 = u1,

satisfies u|;—7 = 0 and O:u|;—7 = 0.

The problem has a solution under the geometric control condition (GCC)
[BARDOS-LEBEAU-RAUCH’92].
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Geometric control condition

A cylinder (a,b) x w C (0, T) x Q satisfies GCC if every (generalized)
light ray intersects it.

GCC implies the observability estimate

B0l 2y + 191l p-1(0) S 1Dl 2¢(a,6) xw)
for the solution ¢ of
02¢ — Ap = 0, in (0,T) x Q,

¢lxean =0,

}lt=0 = ¢0, Otd|t=0 = ¢1.




Control problem (precise formulation)

Let T > 0 and let Q C R” be connected, bounded, open, with smooth 0f2.

Consider a cutoff function x(t, x) = xo0(t)x3(x) satisfying:
xj smooth, 0 < x; <1, xo=0neart=0,T, and

(A) x =1 on open (a,b) x w C (0, T) x Q satisfying GCC.
Problem. For a fixed initial state (up, u1) € C§°(2)?, find such a control
function ¢ that the solution u of

02u — Au = xo, in (0, T) xQ
ulxean =0,
Ult=0 = Uo, Orl|t—0 = ur,

satisfies u|;—7 = 0 and Ou|;—7 = 0.



Numerical analysis of the control problem

Problem. For (up, u1) € C§°()?, find ¢ such that the solution u of

0?u — Au = xo, in (0, T) xQ
Ulxeaq =0,
ult=0 = up, OrUlt=o = u,

satisfies u|;—7 = 0 and O:u|;—7 = 0.

GCC implies existence of a solution ¢ € C*((0, T) x Q).

The solution is not unique, but for a certain (minimal) solution ¢,
we show how to compute a finite element approximation ¢y, satisfying

IX(¢n — &)l 20, 7yx0) S H°

with h > 0 the mesh size and p the polynomial order of the basis functions
[E.B-FEIZMOHAMMADI-MUNCH-OKSANEN].



Finite element bases in 1d

When the unit interval [0, 1] is discretized by 0 = xp < x3 < -+ < xy =1,
the mesh size is h = max;=1__n |xi — xi—1].

Ti—2 Ti—1 T4 Xit+1 Ti—1 Ti,1 ZT;

The basis functions of order p whose support intersects (xj_1, X;).
Left. p=1. Right. p=2.



Finite element approximation

For u € C5°(0,1) there is a finite element approximation uj, satisfying
lu = unll 2001y S hP+L. Qur proven convergence rate hP can be
suboptimal of at most one degree.

A
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Finite element approximation with polynomial order p = 1.



On previous literature

Naive discretizations of the control problem fail to converge due to
spurious high frequency modes, see e.g. [GLOWINSKI-LIONS’95].

There are two traditional approaches:
1. Control theory on discrete level, with filtering of high frequencies
» Numerical schemes on uniform meshes [INFANTE-ZUAZUA’99], ...
» Continuum theory implies discrete theory with inexplicit control time
[ERVEDOZA’09, MILLER'12]
2. Discretize an iterative method formulated in the continuum

» Based on Russell's stabilization implies control principle
[CINDEA-MICU-TUCSNAK’11]
» Based on the Hilbert Uniqueness Method [ERVEDOZA-ZUAZUA’13]

Approach 1 is not aligned with the geometric control condition, while
stopping criteria for the iteration in approach 2 are hard to design.



On previous literature: direct methods

Discretization of a direct (i.e. non-iterative) method in the continuum
[CINDEA-MUNCH’15]
» Convergence of numerical experiments

» Convergence analysis conditional to uniform boundedness of certain
discrete inf-sup constants

> Spacetime finite element method (FEM)

We discretize and stabilize (i.e. regularize) a direct method
» Proven convergence
» Spacetime FEM

» Earlier work [E.B.-FEIZMOHAMMADI-OKSANEN’20] uses piecewise
affine finite elements in space and finite differences in time



Duality between inverse and control problems
Consider the map A(¢o, ¢1) = ¢|(0,7)xw Where ¢ is the solution of

02¢ — Ap = 0, in (0, T) x Q,
¢lxean = 0,

Ple=0 = b0, Otd|i=0 = ¢1.
The transpose is A*f = (u|t=0, Oru|t=0) where u is the solution of

O?u— Au=f, in (0, T) xQ,
Ulxean = 0,
ulg=1 =0, Orult=7 =0

and f is supported on (0, T) x w. The observability estimate
6ol 2y + 1911l H-1(0) S 1191l 2((0, ) xw)

implies that A* is surjective from L2((0, T) x w) to H3(Q) x L%(Q).



Stabilized FEMs for unique continuation

Problem. Find (¢o, ¢1) given ¢|(, 7)x. for the solution ¢ of

02¢ — Ap = 0, in (0,T) x Q,
d|xean =0,
¢lt=0 = b0, Or¢|t=0 = ¢1.

We can view the above inverse initial source problem as a unique
continuation problem: given ¢ in (0, T) X w find ¢ in (0, T) x €.
Stabilized FEMs have been designed e.g. for

» elliptic Cauchy problem [E.B.’14]

» stable and unstable unique continuation for the heat equation
[E.B.—IsH-HOROWICZ—OKSANEN’18|

» stable unique continuation for the wave equation
[E.B.-FEIZMOHAMMADI-MUNCH-OKSANEN]



Smoothness of minimal control

Theorem [ErvEDOZA-ZUAZUA’10]. Suppose GCC and (ug, u1) € C§°(Q)2.
Then there is a solution ¢ € C>°((0, T) x Q) to the control problem s.t.

02¢ — Ap = 0, in (0,T) x Q,
¢lxean =0,
Gle=T = ¢0, Ortlt=T = ¢1,

where (¢o, #1) is the unique minimizer over L?(Q) x H1(Q) of

1 T
J(¢o, 1) = 2/0 /Qx(t,x)|¢(t,x)|2dxdt

+ <U07at¢‘t:0>H3(Q)><H—1(Q) — (u, ¢’t:0)L2(Q)'



Direct formulation of the control problem

By [ERVEDOZA-ZUAZUA'10] there is (u, ¢) € C((0, T) x Q)? solving?

Ou = xo,
u’XE@Q - 07 ng = 07
Ult=o = up, Orll|t—o = u1, ¢|xean = 0.

U|t:T =0, atU|t:0 =0,

Lemma. The solution to the above system is unique.

Proof. Let (u(j), #(j)), j = 1,2, be solutions and write u = u(1) — u() and
= 9a)— 9 Then (u, @) satisfies the system with ug = u3 = 0, and

(X®: D120, 7)xq) = (Bu, ) r2((0,1yx) = (4, 88) 120, )x) = 0

The observability estimate implies ¢ = 0, and u = 0 follows. O

Here =982 - A



Weak formulation of the control problem
Let g be the Minkowski metric on R*" and write M = (0, T) x Q. Set
a(u,v) = /Mg(du, dv)dx — (u,0,v)2(9m) — (vt V)12((0,T)x0Q):
L(v) = (u1, V|t:0)L2(Q) - (anatV|t:0)L2(Q)v

and c(, v) = (X9, V)2((0,T)x)- |f smooth (u, ¢) solves

Uu = x¢,
u|X€89 = 07 qu = 07
U|t:0 = Uo, at“’t:O = u, ‘b‘xeaﬂ =0.

Ult=7 =0, Otult=0 =0,
then for all smooth enough ¥, v

a(u, ) = c(6,0) + L), a(v, ) =0.



Stabilized FEM for the contol problem

Let 7h, h > 0, be a quasi-uniform family of triangulations of? (0, 7T) xQ,
parametrized by the mesh size h > 0. Let P,(K) be the space of
polynomials of degree < p on a set K C R!*" and define

VP ={ue€ C(M): ulx € Pp(K) for all K € Tp}.
We write Uy = (uo, u1) for the data and define the “energy”
E(Uo) = h™H[luoll 2y + Allurl 7y -

Our finite element method has the form: find the critical point of the
Lagrangian L(u,¢) : VP x V] = R,

£(0.6) = 5¢(6.6) ~ 2 E(Uleco — Up) — > Qu.) — a(u,6) + L(6),

where U = (u,0:u) and Q is a quadratic form giving the stabilization.

*Triangles adjacent to (0, T) x 9Q have curved faces so that Uker, K=1(0,T) x Q.
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Stabilization

We write Fj, for the set of internal faces of the triangulation 7, and

[-] for the jump over F € Fj,. The stabilization is given by

Qu,¢) = Z || Du — X¢Hi2(K) - Z W HDCb”%Q(K)

KeTh KeTh
+ s(u, u) — s(¢, ¢) + E(Ue=71),

s(u,u) = [0, ullT2e) + hH lullZ2 0,7y 00 -
FeF,

Observe that Q(u, ¢) = 0 for a smooth solution (u, ¢) to

Ou = x9,
Ulxeon = 0, O¢ =0,
U|t:0 = Uo, 8tU’t:0 = uy, (b‘XGBQ =0.

u’t:T = 07 atU’t:O = 07



Numerical analysis results

» Solutions with limited regularity (partial result):
Assume that up = 0 and u; € L?(R) then

(un, dn) = (u, @) in [L2(M)]2.

» Smooth solutions:
Error estimates reflecting the continuum stability, the smoothness of
the solution and the approximation properties of the finite element
space.




Error estimate

Theorem [E.B.-FEIZMOHAMMADI-MUNCH-OKSANEN]|. Suppose that the

GCC holds. Let p,g > 1 and let (u,¢) € HPTL(M) x HIt1(M) be the
unique solution to

Ou = xo,
u’XE@Q - 07 D¢ - 07
Ult=0 = up, Orlle=0 = u1, blxean = 0.

u|t:T = 07 at“u|i.“:0 = 07
Then the Lagrangian £ has a unique critical point (up, ¢p) € V,f X V,f and

(& — )l i2qaay S B2 ellpaossuny + % 1l gass -

The critical point can be computed by a solving a finite dimensional linear
system.



Computational experiments on the inverse source problem

10° !
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Convergence rate in a 1 + 1d test case is roughly the optimal one hP*+1
for p =2 (orange) and p = 3 (light blue).



Brief history of stabilized finite element methods

Unless very fine meshes are used, typical finite element methods can
be unstable for convection dominated convection—diffusion equations,

eAu + b-Vu =0.
~ ~——
diffusion  convection

To remedy this, [DouGLAS-DUPONT’76] introduced regularization
using the jumps of the normal derivatives

> 0ullifary - ()

FeFy,
Galerkin-least squares methods was introduced and analysed by
[HuGgHES-BROOKS’79] and [JOHNSON-NAVERT-PITKARANTA’84].
Space-time FEM for wave equations in [HuGHES-HULBERT’88].

[BURMAN-HANSBO’04] analyzed (J), leading to the present work.
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Linear system for the critical points of the Lagrangian
Take p = g = 1 for simplicity, and consider the simplified Lagrangian

£(0,6) = 5(6,0) — o(u,0) + L(0)

~ SE(Uleo ~ Uo) — 5 (s(u,0) — 5(9,6) + E(Uli=1))

The equation dL(u, ¢) = 0 for the critical points of £ on V,} X Vh1 reads

a(v,9) +s(u,v) + Y e(Ule=r, V]t=r) = e(Up, Vl|t=0) Vv € Vj,
7=0,T

a(u,¥) = s(¢,¥) — c(¢,) = L(¢) Vi € VI,

where V = (v, 0:v) and e is the bilinear form associated to the quadratic
form E, that is, e(U, U) = E(U).
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Linear system for the critical points of the Lagrangian

Take p = g = 1 for simplicity, and consider the simplified Lagrangian

£(0,6) = 5(6,0) — o(u,0) + L(0)

1

— SE(Uleo — Uo) = 5 (s(u,0) — 5(6,6) + E(Ule—7))

The equation dL(u, ¢) = 0 can also be written equivalently as
A[(U7¢)7 (V,T/J)] = L(Tr[)) + e(UOa V|t=0) for all (V,@Z)) € Vl} X Vl}a

where the bilinear form A is given by

Al(u, 9), (v, )] = —s(¢,¥) — c(¢,¥) + s(u,v) + > e(Ule=r, V]e=r)

7=0,T

+a(v, ¢) + a(u, ¥).
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Existence of a unique critical point

Al(u, 8), (v, )] = L) + e(Up, V]i—o) forall (v,0) € V} x Vi, (1)

defines a square system of linear equations. Hence existence is equivalent
to uniqueness. Suppose that (u,®) € V} x V} solves (1) with Uy = 0.
(In this case also L = 0). It remains to show that (u, ¢) = 0. Recall

Al(u, 8), (v, )] = s(u,v) — s(¢,¥) — c($,9) + Y e(Ule=r, Vle=r)

7=0,T

+ a(v, ¢) + a(u, ¥).
Now A[(u, ¢), (u, —¢)] = 0 implies
1w, I = s(u, u) + s(¢,0) + c(¢,0) + Y E(Ule=r) =0.
7=0,T

From c(¢, ) = s(¢,¢) =0 we get ¢ =0 for x € wUIQ and [0,¢] =0
for all F € Fp. Hence ¢ = 0. Also u =0 from E(U|t=o) = s(u,u) = 0.

bl



Briefly on convergence

Let (up, ¢p) be the solution to

Al(up, dr), (v, )] = e(Ug, V]i=0) + L(¥) for all (v,9) € V} x VL,

and let smooth (u, ¢) solve the weak formulation of the control problem

a(u,¥) = c(p,v) + L(¢), a(v,¢) =0 for all smooth enough (v, ).
Our error estimate will follow immediately from
I = un &= Sn)I S b (1l quay + 19k ) -
Sketch of proof. As the stabilization vanishes when applied to (u, ¢),

Al(u, 8), (v, )] = e(Up, V]eo) + L(w) for all (v, 1) € Vit x V2.

That is, the FEM is consistent. This implies the Galerkin orthogonality

Al(u — up, & — dn), (v,)] =0 forall (v,9) € Vi x VL.
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Sketch of proof continues

Let 7, : H2((0, T) x Q) — V! be h*-accurate interpolant preserving
vanishing boundary value (e.g. the Scott-Zhang interpolant). We write

e=U—U, e,=Tpu—Un, 1=0O— P, 1n=Th)— Pp.
The relation between A and |||-|||, and the Galerkin orthogonality, imply
e, m)llI* = Al(e.n), (e, —n)] = Al(e,n), (e — e, 11n — n)].
We write e, = u — mhu = e — e, and Ny = ¢ — Tpd = 1 — Ny, and use:
(1) Continuity for a certain® norm ||-|,
AX YT S IIXITY L -

(2) Smallness of the interpolation error

Cex =)l 5 b (1l quny + 18l an) -

Zspecifiga”y (e, &)L = Mli(u; )l + llull,. + Jlall,.. where ,
fulli, =h~ ||“||L2 y T h~ ||“HL2 M) +h ||8Vu||L2(6M) +h” ZFe}‘h H”HLZ(F)-
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Conclusion

Theorem [E.B.-FEIZMOHAMMADI-MUNCH-OKSANEN]. Suppose that the
GCC holds. Let (u, ) € H>(M) x H?(M) be the unique solution to

Ou = xo,
U|X€aQ - 07 ng - 07
Ult—o = g, Or|t—o = u1, ®|xean = 0.

U|t:T =0, a1:U|t:0 =0,
Then the Lagrangian £ has a unique critical point (up, ¢p) € V} x V} and

(6 = o)z S b (1l requay + Bl lan) -
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