Spacetime finite element methods for control problems subject to the wave equation

Erik Burman University College London

Based on a joint work with Lauri Oksanen (University of Helsinki), Ali Feizmohammadi (Fields Institute) and Arnaud Münch (Clermont Auvergne)

Control problem

Let T > 0 and let $\Omega \subset \mathbb{R}^n$ be connected, bounded, open, with smooth $\partial \Omega$. Let χ to be a cutoff function (that will be made more precise later).

Problem. For a fixed initial state (u_0, u_1) , find such a control function ϕ that the solution u of

$$\begin{cases} \partial_t^2 u - \Delta u = \chi \phi, & \text{in } (0, T) \times \Omega, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \end{cases}$$

satisfies $u|_{t=T} = 0$ and $\partial_t u|_{t=T} = 0$.

The problem has a solution under the geometric control condition (GCC) [BARDOS-LEBEAU-RAUCH'92].

Geometric control condition

A cylinder $(a, b) \times \omega \subset (0, T) \times \Omega$ satisfies GCC if every (generalized) light ray intersects it.

GCC implies the observability estimate $\|\phi_0\|_{L^2(\Omega)} + \|\phi_1\|_{H^{-1}(\Omega)} \lesssim \|\phi\|_{L^2((a,b)\times\omega)}$ for the solution ϕ of $\begin{cases}
\partial_t^2 \phi - \Delta \phi = 0, & \text{in } (0, T) \times \Omega, \\
\phi|_{x \in \partial \Omega} = 0, & \\
\phi|_{t=0} = \phi_0, & \partial_t \phi|_{t=0} = \phi_1.
\end{cases}$

Control problem (precise formulation)

Let T > 0 and let $\Omega \subset \mathbb{R}^n$ be connected, bounded, open, with smooth $\partial\Omega$. Consider a cutoff function $\chi(t, x) = \chi_0(t)\chi_1^2(x)$ satisfying: χ_j smooth, $0 \le \chi_j \le 1$, $\chi_0 = 0$ near t = 0, T, and (A) $\chi = 1$ on open $(a, b) \times \omega \subset (0, T) \times \Omega$ satisfying GCC.

Problem. For a fixed initial state $(u_0, u_1) \in C_0^{\infty}(\Omega)^2$, find such a control function ϕ that the solution u of

$$\begin{cases} \partial_t^2 u - \Delta u = \chi \phi, & \text{in } (0, T) \times \Omega \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \end{cases}$$

satisfies $u|_{t=T} = 0$ and $\partial_t u|_{t=T} = 0$.

Numerical analysis of the control problem

Problem. For $(u_0, u_1) \in C_0^{\infty}(\Omega)^2$, find ϕ such that the solution u of

$$\begin{cases} \partial_t^2 u - \Delta u = \chi \phi, & \text{in } (0, T) \times \Omega \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \end{cases}$$

satisfies $u|_{t=T} = 0$ and $\partial_t u|_{t=T} = 0$.

GCC implies existence of a solution $\phi \in C^{\infty}((0, T) \times \Omega)$.

The solution is not unique, but for a certain (minimal) solution ϕ , we show how to compute a finite element approximation ϕ_h satisfying

$$\|\chi(\phi_h - \phi)\|_{L^2((0,T) imes \Omega)} \lesssim h^p$$

with h > 0 the mesh size and p the polynomial order of the basis functions [E.B-FEIZMOHAMMADI-MÜNCH-OKSANEN].

Finite element bases in 1d

When the unit interval [0,1] is discretized by $0 = x_0 < x_1 < \cdots < x_N = 1$, the mesh size is $h = \max_{i=1,\dots,N} |x_i - x_{i-1}|$.

The basis functions of order p whose support intersects (x_{i-1}, x_i) . Left. p = 1. Right. p = 2.

Finite element approximation

For $u \in C_0^{\infty}(0,1)$ there is a finite element approximation u_h satisfying $||u - u_h||_{L^2(0,1)} \leq h^{p+1}$. Our proven convergence rate h^p can be suboptimal of at most one degree.

Finite element approximation with polynomial order p = 1.

On previous literature

Naive discretizations of the control problem fail to converge due to spurious high frequency modes, see e.g. [GLOWINSKI-LIONS'95].

There are two traditional approaches:

- 1. Control theory on discrete level, with filtering of high frequencies
 - ▶ Numerical schemes on uniform meshes [INFANTE-ZUAZUA'99], ...
 - Continuum theory implies discrete theory with inexplicit control time [ERVEDOZA'09, MILLER'12]
- 2. Discretize an iterative method formulated in the continuum
 - Based on Russell's stabilization implies control principle [CÎNDEA-MICU-TUCSNAK'11]
 - ▶ Based on the Hilbert Uniqueness Method [ERVEDOZA-ZUAZUA'13]

Approach 1 is not aligned with the geometric control condition, while stopping criteria for the iteration in approach 2 are hard to design.

On previous literature: direct methods

Discretization of a direct (i.e. non-iterative) method in the continuum $[C\hat{I}NDEA-M\ddot{U}NCH'15]$

- Convergence of numerical experiments
- Convergence analysis conditional to uniform boundedness of certain discrete inf-sup constants
- Spacetime finite element method (FEM)

We discretize and stabilize (i.e. regularize) a direct method

- Proven convergence
- Spacetime FEM
- ► Earlier work [E.B.-FEIZMOHAMMADI-OKSANEN'20] uses piecewise affine finite elements in space and finite differences in time

Duality between inverse and control problems

Consider the map $A(\phi_0,\phi_1)=\phi|_{(0,\mathcal{T}) imes\omega}$ where ϕ is the solution of

$$\begin{cases} \partial_t^2 \phi - \Delta \phi = 0, & \text{in } (0, T) \times \Omega, \\ \phi|_{x \in \partial \Omega} = 0, \\ \phi|_{t=0} = \phi_0, \ \partial_t \phi|_{t=0} = \phi_1. \end{cases}$$

The transpose is $A^*f = (u|_{t=0}, \partial_t u|_{t=0})$ where u is the solution of

$$\begin{cases} \partial_t^2 u - \Delta u = f, & \text{in } (0, T) \times \Omega, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=T} = 0, \ \partial_t u|_{t=T} = 0 \end{cases}$$

and f is supported on $(0, T) \times \omega$. The observability estimate

$$\|\phi_0\|_{L^2(\Omega)} + \|\phi_1\|_{H^{-1}(\Omega)} \lesssim \|\phi\|_{L^2((0,T)\times\omega)}$$

implies that A^* is surjective from $L^2((0, T) \times \omega)$ to $H^1_0(\Omega) \times L^2(\Omega)$.

Stabilized FEMs for unique continuation

Problem. Find (ϕ_0, ϕ_1) given $\phi|_{(0,T)\times\omega}$ for the solution ϕ of

$$\begin{cases} \partial_t^2 \phi - \Delta \phi = 0, & \text{in } (0, \mathcal{T}) \times \Omega, \\ \phi|_{x \in \partial \Omega} = 0, \\ \phi|_{t=0} = \phi_0, \ \partial_t \phi|_{t=0} = \phi_1. \end{cases}$$

We can view the above inverse initial source problem as a unique continuation problem: given ϕ in $(0, T) \times \omega$ find ϕ in $(0, T) \times \Omega$. Stabilized FEMs have been designed e.g. for

- elliptic Cauchy problem [E.B.'14]
- stable and unstable unique continuation for the heat equation [E.B.-Ish-HOROWICZ-OKSANEN'18]
- ► stable unique continuation for the wave equation [E.B.-Feizmohammadi-Münch-Oksanen]

Smoothness of minimal control

Theorem [ERVEDOZA–ZUAZUA'10]. Suppose GCC and $(u_0, u_1) \in C_0^{\infty}(\Omega)^2$. Then there is a solution $\phi \in C^{\infty}((0, T) \times \Omega)$ to the control problem s.t.

$$\begin{cases} \partial_t^2 \phi - \Delta \phi = 0, & \text{in } (0, T) \times \Omega \\ \phi|_{x \in \partial \Omega} = 0, \\ \phi|_{t=T} = \phi_0, \ \partial_t u|_{t=T} = \phi_1, \end{cases}$$

where (ϕ_0, ϕ_1) is the unique minimizer over $L^2(\Omega) imes H^{-1}(\Omega)$ of

$$J(\phi_0, \phi_1) = \frac{1}{2} \int_0^T \int_{\Omega} \chi(t, x) |\phi(t, x)|^2 dx dt + \langle u_0, \partial_t \phi |_{t=0} \rangle_{H_0^1(\Omega) \times H^{-1}(\Omega)} - (u_1, \phi |_{t=0})_{L^2(\Omega)}$$

Direct formulation of the control problem

By [ERVEDOZA–ZUAZUA'10] there is $(u, \phi) \in C^{\infty}((0, T) \times \Omega)^2$ solving¹

$$\begin{cases} \Box u = \chi \phi, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \\ u|_{t=T} = 0, \ \partial_t u|_{t=0} = 0, \end{cases} \qquad \begin{cases} \Box \phi = 0, \\ \phi|_{x \in \partial \Omega} = 0. \end{cases}$$

Lemma. The solution to the above system is unique.

Proof. Let $(u_{(j)}, \phi_{(j)})$, j = 1, 2, be solutions and write $u = u_{(1)} - u_{(2)}$ and $\phi = \phi_{(1)} - \phi_{(2)}$. Then (u, ϕ) satisfies the system with $u_0 = u_1 = 0$, and

$$(\chi\phi,\phi)_{L^2((0,\mathcal{T})\times\Omega)}=(\Box u,\phi)_{L^2((0,\mathcal{T})\times\Omega)}=(u,\Box\phi)_{L^2((0,\mathcal{T})\times\Omega)}=0.$$

The observability estimate implies $\phi = 0$, and u = 0 follows.

¹Here $\Box = \partial_t^2 - \Delta$

Weak formulation of the control problem

Let g be the Minkowski metric on \mathbb{R}^{1+n} and write $M = (0, T) \times \Omega$. Set

$$\begin{aligned} \mathsf{a}(u,v) &= \int_{M} \mathsf{g}(du,dv) dx - (u,\partial_{\nu}v)_{L^{2}(\partial M)} - (\partial_{\nu}u,v)_{L^{2}((0,T)\times\partial\Omega)}, \\ \mathsf{L}(v) &= (u_{1},v|_{t=0})_{L^{2}(\Omega)} - (u_{0},\partial_{t}v|_{t=0})_{L^{2}(\Omega)}, \end{aligned}$$

and $c(\phi, v) = (\chi \phi, v)_{L^2((0,T) \times \Omega)}$. If smooth (u, ϕ) solves

$$\begin{cases} \Box u = \chi \phi, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \\ u|_{t=T} = 0, \ \partial_t u|_{t=0} = 0, \end{cases} \qquad \begin{cases} \Box \phi = 0, \\ \phi|_{x \in \partial \Omega} = 0. \end{cases}$$

then for all smooth enough ψ, \mathbf{v}

$$a(u,\psi) = c(\phi,\psi) + L(\psi), \quad a(v,\phi) = 0$$

Stabilized FEM for the contol problem

Let \mathcal{T}_h , h > 0, be a quasi-uniform family of triangulations of² $(0, T) \times \Omega$, parametrized by the mesh size h > 0. Let $\mathbb{P}_p(K)$ be the space of polynomials of degree $\leq p$ on a set $K \subset \mathbb{R}^{1+n}$ and define

$$V_h^{p} = \{ u \in C(M) : u |_{\mathcal{K}} \in \mathbb{P}_p(\mathcal{K}) \text{ for all } \mathcal{K} \in \mathcal{T}_h \}.$$

We write $U_0 = (u_0, u_1)$ for the data and define the "energy"

$$E(U_0) = h^{-1} \|u_0\|_{L^2(\Omega)}^2 + h \|u_1\|_{L^2(\Omega)}^2.$$

Our finite element method has the form: find the critical point of the Lagrangian $\mathcal{L}(u,\phi): V_h^p \times V_h^q \to \mathbb{R}$,

$$\mathcal{L}(u,\phi) = \frac{1}{2}c(\phi,\phi) - \frac{1}{2}E(U|_{t=0} - U_0) - \frac{1}{2}Q(u,\phi) - a(u,\phi) + L(\phi),$$

where $U = (u, \partial_t u)$ and Q is a quadratic form giving the stabilization.

²Triangles adjacent to $(0, T) \times \partial \Omega$ have curved faces so that $\bigcup_{K \in \mathcal{T}_h} K = (0, T) \times \Omega$.

Stabilization

We write \mathcal{F}_h for the set of internal faces of the triangulation \mathcal{T}_h , and $\llbracket \cdot \rrbracket$ for the jump over $F \in \mathcal{F}_h$. The stabilization is given by

$$Q(u,\phi) = \sum_{K \in \mathcal{T}_{h}} h^{2} \|\Box u - \chi \phi\|_{L^{2}(K)}^{2} - \sum_{K \in \mathcal{T}_{h}} h^{2} \|\Box \phi\|_{L^{2}(K)}^{2}$$

+ $s(u,u) - s(\phi,\phi) + E(U|_{t=T}),$
 $s(u,u) = \sum_{F \in \mathcal{F}_{h}} h \|[\![\partial_{\nu}u]\!]\|_{L^{2}(F)}^{2} + h^{-1} \|u\|_{L^{2}((0,T) \times \partial\Omega)}^{2}.$

Observe that $Q(u, \phi) = 0$ for a smooth solution (u, ϕ) to

$$\begin{cases} \Box u = \chi \phi, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \\ u|_{t=T} = 0, \ \partial_t u|_{t=0} = 0, \end{cases} \qquad \begin{cases} \Box \phi = 0, \\ \phi|_{x \in \partial \Omega} = 0. \end{cases}$$

Numerical analysis results

Solutions with limited regularity (partial result): Assume that $u_0 = 0$ and $u_1 \in L^2(\Omega)$ then

$$(u_h, \phi_h) \rightharpoonup (u, \phi)$$
 in $[L^2(M)]^2$.

Smooth solutions:

Error estimates reflecting the continuum stability, the smoothness of the solution and the approximation properties of the finite element space.

Error estimate

Theorem [E.B.-FEIZMOHAMMADI-MÜNCH-OKSANEN]. Suppose that the GCC holds. Let $p, q \ge 1$ and let $(u, \phi) \in H^{p+1}(M) \times H^{q+1}(M)$ be the unique solution to

$$\begin{cases} \Box u = \chi \phi, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \\ u|_{t=T} = 0, \ \partial_t u|_{t=0} = 0, \end{cases} \qquad \begin{cases} \Box \phi = 0, \\ \phi|_{x \in \partial \Omega} = 0. \end{cases}$$

Then the Lagrangian \mathcal{L} has a unique critical point $(u_h, \phi_h) \in V_h^p \times V_h^q$ and

$$\left\|\chi(\phi-\phi_h)
ight\|_{L^2(M)}\lesssim h^{p}\left\|u
ight\|_{H^{p+1}(M)}+h^{q}\left\|\phi
ight\|_{H^{q+1}(M)}.$$

The critical point can be computed by a solving a finite dimensional linear system.

Computational experiments on the inverse source problem

Convergence rate in a 1 + 1d test case is roughly the optimal one h^{p+1} for p = 2 (orange) and p = 3 (light blue).

Brief history of stabilized finite element methods

 Unless very fine meshes are used, typical finite element methods can be unstable for convection dominated convection-diffusion equations,

$$\underbrace{\epsilon \Delta u}_{\text{diffusion}} + \underbrace{b \cdot \nabla u}_{\text{convection}} = 0.$$

► To remedy this, [DOUGLAS-DUPONT'76] introduced regularization using the jumps of the normal derivatives

$$\sum_{F\in\mathcal{F}_h} \|\llbracket \partial_\nu u \rrbracket \|_{L^2(F)}^2.$$
 (J)

- Galerkin-least squares methods was introduced and analysed by [HUGHES-BROOKS'79] and [JOHNSON-NÄVERT-PITKÄRANTA'84].
- ► Space-time FEM for wave equations in [Hughes-Hulbert'88].
- ▶ [BURMAN-HANSBO'04] analyzed (J), leading to the present work.

Linear system for the critical points of the Lagrangian

Take p = q = 1 for simplicity, and consider the simplified Lagrangian

$$\mathcal{L}(u,\phi) = \frac{1}{2}c(\phi,\phi) - a(u,\phi) + L(\phi) \\ - \frac{1}{2}E(U|_{t=0} - U_0) - \frac{1}{2}(s(u,u) - s(\phi,\phi) + E(U|_{t=T}))$$

The equation $d\mathcal{L}(u,\phi) = 0$ for the critical points of \mathcal{L} on $V_h^1 \times V_h^1$ reads

$$egin{aligned} \mathsf{a}(\mathsf{v},\phi)+\mathsf{s}(u,\mathsf{v})+\sum_{ au=0,T}\mathsf{e}(U|_{t= au},V|_{t= au})&=\mathsf{e}(U_0,V|_{t=0})&\forall \mathsf{v}\in V_h^1,\ &\mathbf{a}(u,\psi)-\mathsf{s}(\phi,\psi)-\mathsf{c}(\phi,\psi)=\mathsf{L}(\psi)&\forall \psi\in V_h^1, \end{aligned}$$

where $V = (v, \partial_t v)$ and e is the bilinear form associated to the quadratic form E, that is, e(U, U) = E(U).

Linear system for the critical points of the Lagrangian

Take p = q = 1 for simplicity, and consider the simplified Lagrangian

$$\mathcal{L}(u,\phi) = \frac{1}{2}c(\phi,\phi) - a(u,\phi) + L(\phi) - \frac{1}{2}E(U|_{t=0} - U_0) - \frac{1}{2}(s(u,u) - s(\phi,\phi) + E(U|_{t=T}))$$

The equation $d\mathcal{L}(u, \phi) = 0$ can also be written equivalently as

$$A[(u,\phi),(v,\psi)] = L(\psi) + e(U_0,V|_{t=0}) \quad \text{for all } (v,\psi) \in V_h^1 \times V_h^1,$$

where the bilinear form A is given by

$$\begin{aligned} \mathsf{A}[(u,\phi),(v,\psi)] &= -\mathsf{s}(\phi,\psi) - \mathsf{c}(\phi,\psi) + \mathsf{s}(u,v) + \sum_{\tau=0,T} \mathsf{e}(U|_{t=\tau},V|_{t=\tau}) \\ &+ \mathsf{a}(v,\phi) + \mathsf{a}(u,\psi). \end{aligned}$$

Existence of a unique critical point

$$A[(u,\phi),(v,\psi)] = L(\psi) + e(U_0,V|_{t=0})$$
 for all $(v,\psi) \in V_h^1 imes V_h^1$, (1)

defines a square system of linear equations. Hence existence is equivalent to uniqueness. Suppose that $(u, \phi) \in V_h^1 \times V_h^1$ solves (1) with $U_0 = 0$. (In this case also L = 0). It remains to show that $(u, \phi) = 0$. Recall

$$\begin{aligned} A[(u,\phi),(v,\psi)] &= s(u,v) - s(\phi,\psi) - c(\phi,\psi) + \sum_{\tau=0,T} e(U|_{t=\tau},V|_{t=\tau}) \\ &+ a(v,\phi) + a(u,\psi). \end{aligned}$$

Now $A[(u, \phi), (u, -\phi)] = 0$ implies

$$\|\|(u,\phi)\|\|^2 := s(u,u) + s(\phi,\phi) + c(\phi,\phi) + \sum_{\tau=0,T} E(U|_{t=\tau}) = 0.$$

From $c(\phi, \phi) = s(\phi, \phi) = 0$ we get $\phi = 0$ for $x \in \omega \cup \partial \Omega$ and $[\![\partial_{\nu}\phi]\!] = 0$ for all $F \in \mathcal{F}_h$. Hence $\phi = 0$. Also u = 0 from $E(U|_{t=0}) = s(u, u) = 0$.

Briefly on convergence

Let (u_h, ϕ_h) be the solution to

 $A[(u_h,\phi_h),(v,\psi)] = e(U_0,V|_{t=0}) + L(\psi) \quad \text{for all } (v,\psi) \in V_h^1 \times V_h^1,$

and let smooth (u,ϕ) solve the weak formulation of the control problem

 $a(u,\psi) = c(\phi,\psi) + L(\psi), \quad a(v,\phi) = 0$ for all smooth enough (v,ψ) .

Our error estimate will follow immediately from

$$\|\|(u-u_h,\phi-\phi_h)\|\| \lesssim h\left(\|u\|_{H^2(M)} + \|\phi\|_{H^2(M)}\right).$$

Sketch of proof. As the stabilization vanishes when applied to (u, ϕ) ,

$$A[(u,\phi),(v,\psi)] = e(U_0,V|_{t=0}) + L(\psi) \quad \text{for all } (v,\psi) \in V_h^1 \times V_h^1.$$

That is, the FEM is consistent. This implies the Galerkin orthogonality

$$A[(u-u_h,\phi-\phi_h),(v,\psi)]=0 \quad \text{for all } (v,\psi)\in V_h^1\times V_h^1.$$

Sketch of proof continues

Let $\pi_h : H^2((0, T) \times \Omega) \to V_h^1$ be h^2 -accurate interpolant preserving vanishing boundary value (e.g. the Scott–Zhang interpolant). We write

$$e = u - u_h$$
, $e_h = \pi_h u - u_h$, $\eta = \phi - \phi_h$, $\eta_h = \pi_h \phi - \phi_h$.

The relation between A and $\||\cdot|||$, and the Galerkin orthogonality, imply

$$|||(e,\eta)||^{2} = A[(e,\eta), (e,-\eta)] = A[(e,\eta), (e-e_{h},\eta_{h}-\eta)].$$

We write $e_{\pi} = u - \pi_h u = e - e_h$ and $\eta_{\pi} = \phi - \pi_h \phi = \eta - \eta_h$, and use:

(1) Continuity for a certain³ norm $\left\|\cdot\right\|_*$

$$A[X,Y] \lesssim \left\| \left\| X \right\| \left\| Y \right\|_{*}$$

(2) Smallness of the interpolation error

$$\|(e_{\pi},-\eta_{\pi})\|_* \lesssim h\left(\|u\|_{H^2(\mathcal{M})}+\|\phi\|_{H^2(\mathcal{M})}
ight).$$

³Specifically $||(u,\phi)||_{*} = ||(u,\phi)|| + ||u||_{**} + ||q||_{**}$ where $||u||_{**}^{2} = h^{-2} ||u||_{L^{2}(M)}^{2} + h^{-1} ||u||_{L^{2}(\partial M)}^{2} + h ||\partial_{\nu}u||_{L^{2}(\partial M)}^{2} + h^{-1} \sum_{F \in \mathcal{F}_{h}} ||u||_{L^{2}(F)}^{2}.$

Conclusion

Theorem [E.B.-FEIZMOHAMMADI-MÜNCH-OKSANEN]. Suppose that the GCC holds. Let $(u, \phi) \in H^2(M) \times H^2(M)$ be the unique solution to

$$\begin{cases} \Box u = \chi \phi, \\ u|_{x \in \partial \Omega} = 0, \\ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1, \\ u|_{t=T} = 0, \ \partial_t u|_{t=0} = 0, \end{cases} \qquad \begin{cases} \Box \phi = 0, \\ \phi|_{x \in \partial \Omega} = 0. \end{cases}$$

Then the Lagrangian \mathcal{L} has a unique critical point $(u_h, \phi_h) \in V_h^1 \times V_h^1$ and

$$\|\chi(\phi - \phi_h)\|_{L^2(\mathcal{M})} \lesssim h\left(\|u\|_{H^2(\mathcal{M})} + h\|\phi\|_{H^2(\mathcal{M})}\right).$$

Reference:

For details on the low regularity case and boundary control see: Erik Burman, Ali Feizmohammadi, Arnaud Munch, Lauri Oksanen, Spacetime finite element methods for control problems subject to the wave equation, arXiv:2109.07890, 2021.