Uniform observability for the 1D wave equation Application to the optimization of the control's support Journées Contrôle & Applications

Arthur Bottois Nicolae Cîndea Arnaud Münch

Labo. de Math. Blaise Pascal Université Clermont Auvergne

4th October 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\Omega = (0, 1)$, T > 0 and consider

$$\begin{cases} \partial_{tt}y - \partial_{xx}y = u\mathbb{1}_q & \text{in } Q \coloneqq \Omega \times (0,T), \\ y = 0 & \text{on } \Sigma \coloneqq \partial\Omega \times (0,T), \\ (y,\partial_t y)(\cdot,0) = (y^0,y^1) & \text{in } \Omega. \end{cases}$$

Let
$$\boldsymbol{V} \coloneqq H_0^1(\Omega) \times L^2(\Omega)$$
 and $\boldsymbol{W} \coloneqq L^2(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be *null* controllable iff

$$\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad (y, \partial_{t}y)(\cdot, T; \boldsymbol{y}^{0}, u) = (0, 0).$$

Let $\Omega = (0, 1)$, T > 0 and consider

$$\begin{cases} \partial_{tt}y - \partial_{xx}y = u\mathbb{1}_q & \text{in } Q \coloneqq \Omega \times (0,T), \\ y = 0 & \text{on } \Sigma \coloneqq \partial\Omega \times (0,T), \\ (y,\partial_t y)(\cdot,0) = (y^0,y^1) & \text{in } \Omega. \end{cases}$$

Let
$$\boldsymbol{V} \coloneqq H_0^1(\Omega) \times L^2(\Omega)$$
 and $\boldsymbol{W} \coloneqq L^2(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be *null* controllable iff

$$\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad (y, \partial_{t}y)(\cdot, T; \boldsymbol{y}^{0}, u) = (0, 0).$$

Let $\Omega = (0, 1)$, T > 0 and consider

$$\begin{cases} \partial_{tt}y - \partial_{xx}y = u\mathbb{1}_q & \text{in } Q \coloneqq \Omega \times (0,T), \\ y = 0 & \text{on } \Sigma \coloneqq \partial\Omega \times (0,T), \\ (y,\partial_t y)(\cdot,0) = (y^0,y^1) & \text{in } \Omega. \end{cases}$$

Let
$$\boldsymbol{V} \coloneqq H_0^1(\Omega) \times L^2(\Omega)$$
 and $\boldsymbol{W} \coloneqq L^2(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be *null* controllable iff

$$\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad (y, \partial_{t}y)(\cdot, T; \boldsymbol{y}^{0}, u) = (0, 0).$$

Let $\Omega = (0, 1)$, T > 0 and consider

$$\begin{cases} \partial_{tt}y - \partial_{xx}y = u\mathbb{1}_q & \text{ in } Q \coloneqq \Omega \times (0,T), \\ y = 0 & \text{ on } \Sigma \coloneqq \partial\Omega \times (0,T), \\ (y, \partial_t y)(\cdot, 0) = (y^0, y^1) & \text{ in } \Omega. \end{cases}$$

Let
$$\boldsymbol{V} \coloneqq H_0^1(\Omega) \times L^2(\Omega)$$
 and $\boldsymbol{W} \coloneqq L^2(\Omega) \times H^{-1}(\Omega)$.

Adjoint system

For $oldsymbol{arphi}^0 \in oldsymbol{W}$, consider

$$\begin{cases} \partial_{tt}\varphi - \partial_{xx}\varphi = 0 & \text{ in } Q, \\ \varphi = 0 & \text{ on } \Sigma, \\ (\varphi, \partial_t \varphi)(\cdot, 0) = (\varphi^0, \varphi^1) & \text{ in } \Omega. \end{cases}$$

$$(Sta) \begin{cases} \partial_{tt}y - \partial_{xx}y = u\mathbb{1}_q & \text{in } Q \\ y = 0 & \text{on } \Sigma \\ (y, \partial_t y)(\cdot, 0) = (y^0, y^1) & \text{in } \Omega \end{cases} \quad (Adj) \begin{cases} \partial_{tt}\varphi - \partial_{xx}\varphi = 0 & \text{in } Q \\ \varphi = 0 & \text{on } \Sigma \\ (\varphi, \partial_t\varphi)(\cdot, 0) = (\varphi^0, \varphi^1) & \text{in } \Omega \end{cases}$$

Observability

For $q\subset Q$ open, the adjoint system is said to be observable if there exists $C_{\rm obs}(q)>0$ such that

$$\|\boldsymbol{\varphi}^{0}\|_{\boldsymbol{W}}^{2} \leq C_{\text{obs}}(q) \|\boldsymbol{\varphi}\|_{L^{2}(q)}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{W} \coloneqq L^{2}(\Omega) \times H^{-1}(\Omega).$$
 (Obs_W)

Controllability \iff Observability

The state system is null controllable iff the adjoint system is observable.

An equivalent inequality

Inequality (Obs_W) is equivalent to the following inequality,

 $\|\boldsymbol{\varphi}^{0}\|_{\boldsymbol{V}}^{2} \leq C_{\text{obs}}(q) \|\partial_{t}\boldsymbol{\varphi}\|_{L^{2}(q)}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{V} \coloneqq H_{0}^{1}(\Omega) \times L^{2}(\Omega).$ (Obs_V)

Characteristic lines

For $x_0 \in \overline{\Omega}$, the characteristic lines starting from x_0 are

$$C_{x_0}^{\pm} \coloneqq \left\{ (x,t) \in \mathbb{R}^2; \quad x = |\mathfrak{m}(x_0 \pm t)| \right\},\$$

where $\mathfrak{m}(x) \coloneqq x - 2k$ for $x \in (2k - 1, 2k + 1]$, $k \in \mathbb{Z}$.

Geometric Control Condition (GCC)

An open set $q \subset Q$ satisfies (GCC) if for all $x_0 \in \overline{\Omega}$, the characteristic lines $C_{x_0}^{\pm}$ meet q.

Observability \iff (GCC)

- *n*-D cylindrical case : [Bardos *et al.* (92)]
- 1D non-cylindrical case : [Castro et al. (14)]
- n-D non-cylindrical case : [Le Rousseau et al. (17)]

Characteristic lines

For $x_0 \in \overline{\Omega}$, the characteristic lines starting from x_0 are

$$C_{x_0}^{\pm} \coloneqq \left\{ (x,t) \in \mathbb{R}^2; \quad x = |\mathfrak{m}(x_0 \pm t)| \right\},\$$

where $\mathfrak{m}(x) \coloneqq x - 2k$ for $x \in (2k - 1, 2k + 1]$, $k \in \mathbb{Z}$.

Geometric Control Condition (GCC)

An open set $q \subset Q$ satisfies (GCC) if for all $x_0 \in \overline{\Omega}$, the characteristic lines $C_{x_0}^{\pm}$ meet q.

Observability \iff (GCC)

- n-D cylindrical case : [Bardos et al. (92)]
- 1D non-cylindrical case : [Castro et al. (14)]
- n-D non-cylindrical case : [Le Rousseau et al. (17)]

Uniform observability for the 1D wave equation Introduction Uniform observability

$$(\mathrm{Adj}) \begin{cases} \partial_{tt}\varphi - \partial_{xx}\varphi = 0 & \text{ in } Q \\ \varphi = 0 & \text{ on } \Sigma \\ (\varphi, \partial_t \varphi)(\cdot, 0) = (\varphi^0, \varphi^1) & \text{ in } \Omega \end{cases}$$

Uniform (w.r.t. q) observability inequality

Let $\mathcal{Q}_{\mathrm{ad}} \subset \{q \subset Q; \text{ (GCC) holds for } q\}$. We want to find an observability constant that is uniform on $\mathcal{Q}_{\mathrm{ad}}$, i.e. find $\overline{C}_{\mathrm{obs}} > 0$ such that for all $q \in \mathcal{Q}_{\mathrm{ad}}$,

$$\|\boldsymbol{\varphi}^0\|_{\boldsymbol{V}}^2 \leq \overline{C}_{\mathrm{obs}} \|\partial_t \varphi\|_{L^2(q)}^2, \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

In the sequel,

- first, we recall a result for the cylindrical case;
- then, we present a new result for the non-cylindrical case.

Introduction

- Control problem
- Observability
- Uniform observability

2 Cylindrical support

3 Non-cylindrical support

Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\delta>0$ and consider

$$\mathcal{Q}_{\mathrm{ad}}^{\delta} \coloneqq \Big\{ q = \omega \times (0, T); \quad \omega \subset \Omega, \ |\omega| = \delta \Big\}.$$

For $T \geq 2$, (GCC) holds for all $q \in \mathcal{Q}_{ad}^{\delta}$.

Uniform observability [Periago (09)]

Let
$$\delta > 0$$
. For $T \ge 2$, we set $\overline{C}_{obs} = \left(\lfloor T/2 \rfloor \delta (1 - \operatorname{sinc}(\pi \delta))\right)^{-1}$,
where $\operatorname{sin}(x) = \frac{\sin(x)}{x}$ if $x \ne 0$ and $\operatorname{sinc}(0) = 1$. Then, for all $q \in \mathcal{Q}_{ad}^{\delta}$,
 $\|\varphi^{0}\|_{\boldsymbol{V}}^{2} \le \overline{C}_{obs} \|\partial_{t}\varphi\|_{L^{2}(q)}^{2}$, $\forall \varphi^{0} \in \boldsymbol{V}$.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (や 7/29

Uniform observability for the 1D wave equation Cylindrical support

Let $\delta > 0, T \ge 2$ and $q \in \mathcal{Q}_{ad}^{\delta}$. For $\varphi^{0} \in \mathbf{V}$, we expand $\varphi^{0}(x) = \sum_{p \ge 1} a_{p} \sin(p\pi x)$ and $\varphi^{1}(x) = \sum_{p \ge 1} b_{p} \sin(p\pi x)$. It follows that $\varphi(x,t) = \sum_{p \ge 1} \left(a_{p} \cos(p\pi t) + \frac{b_{p}}{p\pi} \sin(p\pi t)\right) \sin(p\pi x)$. Then, $\|\partial_{t}\varphi\|_{L^{2}(q)}^{2} = \int_{0}^{T} \int_{\omega} |\partial_{t}\varphi|^{2} \ge \int_{0}^{2\left\lfloor \frac{T}{2} \right\rfloor} \int_{\omega} |\partial_{t}\varphi|^{2} = \lfloor T/2 \rfloor \int_{0}^{2} \int_{\omega} |\partial_{t}\varphi|^{2}$ $= \lfloor T/2 \rfloor \sum_{p \ge 1} \left((p\pi)^{2} |a_{p}|^{2} + |b_{p}|^{2}\right) \int_{\omega} \sin^{2}(p\pi x) \, \mathrm{d}x.$

Lemma

For any
$$\omega \subset \Omega$$
 with $|\omega| = \delta$, $\inf_{p \ge 1} \int_{\omega} \sin^2(p\pi x) \, \mathrm{d}x \ge \frac{\delta}{2} (1 - \operatorname{sinc}(\pi \delta)).$

Using that $\|\boldsymbol{\varphi}^0\|_{\boldsymbol{V}}^2 = \frac{1}{2} \sum_{p \ge 1} \left((p\pi)^2 |a_p|^2 + |b_p|^2 \right)$, we find $\|\partial_t \varphi\|_{L^2(q)}^2 \ge \lfloor T/2 \rfloor \delta \left(1 - \operatorname{sinc}(\pi \delta) \right) \|\boldsymbol{\varphi}^0\|_{\boldsymbol{V}}^2.$

Introduction

- Control problem
- Observability
- Uniform observability

2 Cylindrical support

3 Non-cylindrical support

Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\varepsilon > 0$ and consider

$$\mathcal{Q}_{\mathrm{ad}}^{\varepsilon} \coloneqq \left\{ q \subset Q; \quad (\mathsf{GCC}) \text{ holds for } q^{\varepsilon} \right\}$$

where q^{ε} is the $\varepsilon\text{-interior}$ of q.

For all $q \in \mathcal{Q}_{ad}^{\varepsilon}$ and for any characteristic line $C_{x_0}^{\pm}$, the intersection $q \cap C_{x_0}^{\pm}$ has at least length ε .

Pathological case

We want to avoid the case where $q \cap C_{x_0}^{\pm}$ has arbitrarily small length, causing $C_{obs}(q)$ to be arbitrarily large.

10/29

Admissible supports

Let $\varepsilon>0$ and consider

$$\mathcal{Q}^{arepsilon}_{\mathrm{ad}}\coloneqq\Big\{q\subset Q;\quad (\mathsf{GCC}) ext{ holds for } q^{arepsilon}\Big\},$$

where q^{ε} is the ε -interior of q.

For all $q \in \mathcal{Q}_{ad}^{\varepsilon}$ and for any characteristic line $C_{x_0}^{\pm}$, the intersection $q \cap C_{x_0}^{\pm}$ has at least length ε .

Uniform observability [B. et al. (21)]

Let $\varepsilon > 0$. There exists $\overline{C}_{obs} > 0$ such that for all $q \in \mathcal{Q}_{ad}^{\varepsilon}$,

$$\|\boldsymbol{\varphi}^0\|_{\boldsymbol{V}}^2 \leq \overline{C}_{\mathrm{obs}} \|\partial_t \varphi\|_{L^2(q)}^2, \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

Uniform observability [B. et al. (21)]

Let $\varepsilon > 0$. There exists $\overline{C}_{obs} > 0$ such that for all $q \in \mathcal{Q}_{ad}^{\varepsilon}$,

$$\| \boldsymbol{\varphi}^0 \|_{\boldsymbol{V}}^2 \leq \overline{C}_{\mathrm{obs}} \, \| \partial_t \boldsymbol{\varphi} \|_{L^2(q)}^2, \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

Reformulation

For $q\in\mathcal{Q}^{arepsilon}_{\mathrm{ad}}$, we define the positive symmetric bilinear form

$$\mathfrak{F}(oldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0)\coloneqq \iint_q \partial_t arphi \, \partial_t \overline{arphi}, \quad orall oldsymbol{arphi}^0, \overline{oldsymbol{arphi}}^0 \in oldsymbol{V}.$$

Then, the uniform observability property is equivalent to the following problem. Find $\overline{\mathfrak{C}} > 0$ such that for all $q \in \mathcal{Q}_{ad}^{\varepsilon}$,

$$\mathfrak{F}(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0) \geq \overline{\mathfrak{C}} \, \| \boldsymbol{\varphi}^0 \|_{\boldsymbol{V}}^2, \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

Problem

$$\mathfrak{F}(oldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0)\coloneqq \iint_q \partial_tarphi\,\partial_t\overline{arphi},\quad oralloldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0\inoldsymbol{V}$$

 $\text{Find } \overline{\mathfrak{C}} > 0 \text{ such that for all } q \in \mathcal{Q}^{\varepsilon}_{\mathrm{ad}}, \qquad \mathfrak{F}(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0) \geq \overline{\mathfrak{C}} \, \| \boldsymbol{\varphi}^0 \|_{\boldsymbol{V}}^2, \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$

Sketch of the proof

- Let $q \in \mathcal{Q}_{\mathrm{ad}}^{\varepsilon}$ and \mathfrak{F} the associated form.
- \bullet Using a discretization of $\Omega,$ we define a new form \mathfrak{F}_N such that

$$\mathfrak{F}(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0) \geq \mathfrak{F}_N(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0), \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

- We build an orthonormal basis of V that is orthogonal for \mathfrak{F}_N after a certain rank.
- \bullet It reduces the problem to find $\overline{\mathfrak{C}}>0$ independent of q such that

$$\mathfrak{F}_{N}(\boldsymbol{\varphi}^{0}, \boldsymbol{\varphi}^{0}) \geq \overline{\mathfrak{C}} \| \boldsymbol{\varphi}^{0} \|_{\boldsymbol{V}}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{V}_{N},$$

where V_N is a finite-dimensional subspace of V.

 \bullet We conclude using that (GCC) holds for $q^{\varepsilon}.$

イロン イヨン イヨン イヨン

Goal

We want to define a new form \mathfrak{F}_N such that $\mathfrak{F} \geq \mathfrak{F}_N$.

Discretization of $\boldsymbol{\Omega}$

Let $N \in \mathbb{N}$ such that $2^N > 1/\varepsilon$. We set $h = 1/2^N$ and $S_N = (x_k)_{0 \le k \le 2^N}$ the regular subdivision of $\overline{\Omega}$ in 2^N intervals, i.e. $x_k = kh$. We also set

$$I_k := \begin{cases} [x_{k-1}, x_k] & \text{if } k > 0, \\ [x_k, x_{k+1}] & \text{if } k < 0, \end{cases} \quad \forall k \in \mathbb{Z}^*.$$

Decomposition of Q

For $i,j \in \mathbb{Z}^*$, we define the elementary square $C_{i,j}$ of indices (i,j) by

$$C_{i,j} \coloneqq \Big\{ (x,t) \in \mathbb{R}^2; \quad x+t \in I_i, \ x-t \in I_j \Big\}.$$

We also set $C_N = \{C_{i,j}; i, j \in \mathbb{Z}^*\}$ the set of elementary squares adapted to S_N .

Lemma (require $2^N > 1/\varepsilon$)

We have $q^{\varepsilon} \subset q_N \subset q$, so (GCC) holds for q_N .

New form

$$\mathfrak{F}(oldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0)\coloneqq \iint_q \partial_t arphi \, \partial_t \overline{arphi}, \quad orall oldsymbol{arphi}^0, \overline{oldsymbol{arphi}}^0 \in oldsymbol{V}$$

We define the positive symmetric bilinear form

$$\mathfrak{F}_N(oldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0)\coloneqq \iint_{q_N}\partial_tarphi\,\partial_tarphi\,\partial_t\overline{arphi},\quad oralloldsymbol{arphi}^0,\overline{oldsymbol{arphi}}^0\inoldsymbol{V}.$$

Since $q_N \subset q$, we have

$$\mathfrak{F}(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0) \geq \mathfrak{F}_N(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0), \quad \forall \boldsymbol{\varphi}^0 \in \boldsymbol{V}.$$

Goal

We want to build an ONB of V that is orthogonal for \mathfrak{F}_N after a certain rank.

Haar wavelet basis [Haar (1910)]

Let the mother function $\psi = \mathbb{1}_{[0,1/2]} - \mathbb{1}_{[1/2,1]}$ and the scaling function $\psi_0 = \mathbb{1}_{[0,1]}$. We set $\psi_{n,k}(x) = 2^{n/2}\psi(2^nx - k + 1)$ for $n \in \mathbb{N}$ and $1 \le k \le 2^n$. Then, $\mathcal{B} \coloneqq \{\psi_0, \psi_{n,k}, n \in \mathbb{N}, 1 \le k \le 2^n\}$ is an ONB of $L^2(\Omega)$.

An orthonormal basis of $oldsymbol{V}$

We set $\psi^0_0(x)\coloneqq 0,\,\psi^1_0(x)\coloneqq \psi_0(x)$ and

$$\psi_{n,k}^{\pm,0}(x) \coloneqq \frac{1}{\sqrt{2}} \int_0^x \psi_{n,k}, \quad \psi_{n,k}^{\pm,1}(x) \coloneqq \mp \frac{1}{\sqrt{2}} \psi_{n,k}(x), \quad n \in \mathbb{N}, \ 1 \le k \le 2^n.$$

Then, $\boldsymbol{\mathcal{B}} \coloneqq \left\{ \boldsymbol{\psi}_0^0, \ \boldsymbol{\psi}_{n,k}^{\pm,0}, \ n \in \mathbb{N}, \ 1 \leq k \leq 2^n \right\}$ is an ONB of \boldsymbol{V} .

イロト イヨト イヨト イヨト 二日

18 / 29

Lemma (based on d'Alembert formula)

For $n \ge N$, $1 \le k \le 2^n$ and $s \in \{+, -\}$, we have

$$\mathfrak{F}_N(\boldsymbol{\psi}_{n,k}^{s,0},\boldsymbol{\psi}^0)=0,\quad \forall \boldsymbol{\psi}^0\in \boldsymbol{\mathcal{B}}, \ \boldsymbol{\psi}^0\neq \boldsymbol{\psi}_{n,k}^{s,0}.$$

Finite-dimensional subspace V_N of V

We set
$$\mathcal{B}_N \coloneqq \left\{ \psi_0^0, \ \psi_{n,k}^{\pm,0}, \ n < N, \ 1 \le k \le 2^n \right\}$$
 and $V_N \coloneqq \operatorname{Vect}(\mathcal{B}_N)$.

New problem in finite dimension

For
$$oldsymbol{arphi}^0\inoldsymbol{V}=oldsymbol{V}_N\oplus\widetilde{oldsymbol{V}}$$
 , we decompose $oldsymbol{arphi}^0=oldsymbol{arphi}_N^0+\widetilde{oldsymbol{arphi}}^0$ and we have

$$\mathfrak{F}_N(\boldsymbol{\varphi}^0, \boldsymbol{\varphi}^0) = \mathfrak{F}_N(\boldsymbol{\varphi}^0_N, \boldsymbol{\varphi}^0_N) + \mathfrak{F}_N(\widetilde{\boldsymbol{\varphi}}^0, \widetilde{\boldsymbol{\varphi}}^0).$$

We easily find $\overline{\mathfrak{C}} > 0$ independent of q (and $\widetilde{\varphi}^0$) such that $\mathfrak{F}_N(\widetilde{\varphi}^0, \widetilde{\varphi}^0) \ge \overline{\mathfrak{C}} \|\widetilde{\varphi}^0\|_{\boldsymbol{V}}^2$. So we now need to find $\overline{\mathfrak{C}} > 0$ independent of q such that

$$\mathfrak{F}_N(oldsymbol{arphi}^0,oldsymbol{arphi}^0) \geq \overline{\mathfrak{C}} \, \|oldsymbol{arphi}^0\|_{oldsymbol{V}}^2, \quad orall oldsymbol{arphi}^0 \in oldsymbol{V}_N.$$

19/29

イロン イヨン イヨン イヨン

Lemma (based on d'Alembert formula)

For
$$\varphi^0 \in \mathbf{V}_N$$
, we expand $(\varphi^0)'(x) = \sum_{p=1}^{2^N} \alpha_p \mathbb{1}_{I_p}(x)$ and $\varphi^1(x) = \sum_{p=1}^{2^N} \beta_p \mathbb{1}_{I_p}(x)$.
For $1 \le p \le 2^N$, we set $\gamma_p^{\pm} = \alpha_p \pm \beta_p$. We then show that
 $\mathfrak{F}_N(\varphi^0, \varphi^0) = \frac{h^2}{8} \sum_{C_{i,j} \in \mathcal{C}_N(q)} \left(\gamma_{\mathfrak{p}_i}^{\mathfrak{s}_i} - \gamma_{\mathfrak{p}_j}^{\mathfrak{s}_j}\right)^2$.

Conclusion

Since $q \in \mathcal{Q}_{\text{ad}}^{\varepsilon}$ and $q^{\varepsilon} \subset q_N$, (GCC) holds for q_N . If $\varphi^0 \in \mathbf{V}_N$ is such that $\mathfrak{F}_N(\varphi^0, \varphi^0) = 0$, using that $q_N \cap C_{x_k}^{\pm} \neq \emptyset$, we show that $\gamma_p^{\pm} = 0$ for all p and we deduce $\varphi^0 = 0$. Hence, \mathfrak{F}_N is positive definite and there exists $\overline{\mathfrak{C}}_{q_N} > 0$ such that

$$\mathfrak{F}_N(oldsymbol{arphi}^0,oldsymbol{arphi}^0)\geq \overline{\mathfrak{C}}_{q_N} \, \|oldsymbol{arphi}^0\|_{oldsymbol{V}}^2, \quad orall oldsymbol{arphi}^0\in oldsymbol{V}_N.$$

Since the set of possible q_N is finite, we conclude by setting $\overline{\mathfrak{C}} := \min_{q_N} \overline{\mathfrak{C}}_{q_N} > 0$.

イロン イヨン イヨン

Introduction

- Control problem
- Observability
- Uniform observability

2 Cylindrical support

3 Non-cylindrical support

Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\delta > 0$ and M > 0. We consider supports of the form

$$q_{\gamma} \coloneqq \left\{ (x,t) \in Q; \quad |x - \gamma(t)| < \delta \right\}, \quad \forall \gamma \in \mathcal{G}_{\mathrm{ad}},$$

where
$$\mathcal{G}_{\mathrm{ad}} \coloneqq \left\{ \gamma \in W^{1,\infty}(0,T); \|\gamma'\|_{L^{\infty}} \leq M \right\}.$$

For all $\gamma \in \mathcal{G}_{\mathrm{ad}}$, we have $q_{\gamma} \in \mathcal{Q}_{\mathrm{ad}}^{\varepsilon}$ for $\varepsilon = \frac{\delta}{4\sqrt{M^2+1}}$.

Increased control regularity [Ervedoza et al. (10)]

To gain a more regular control, in the state system, we substitute

$$\mathbbm{1}_{q_{\gamma}}(x,t) = \mathbbm{1}_{(-\delta,\delta)}(x-\gamma(t)) \qquad \text{by} \qquad \chi_{\gamma}(x,t) = \chi(x-\gamma(t)),$$

where $\chi \in C^2(\mathbb{R})$ and $\operatorname{Supp}(\chi) = [-\delta, \delta]$.

Uniform observability for the 1D wave equation Optimization of the support Optimization problem

(Sta)
$$\begin{cases} \partial_{tt}y - \partial_{xx}y = u\chi_{\gamma} & \text{in } Q\\ y = 0 & \text{on } \Sigma\\ (y, \partial_t y)(\cdot, 0) = (y^0, y^1) & \text{in } \Omega \end{cases}$$

Optimization problem

For $\boldsymbol{y}^0 \in \boldsymbol{V}$ fixed, consider

$$\min_{\gamma \in \mathcal{G}_{\mathrm{ad}}} J(\gamma), \quad \text{with} \quad J(\gamma) \coloneqq \|u\|_{L^2_\chi(q_\gamma)}^2 = \iint_{q_\gamma} \varphi^2 \chi_\gamma,$$

and where $u = -\varphi_{|q_{\gamma}}$ is the control of minimal L^2 -norm associated with y^0 and q_{γ} .

Continuity of the support w.r.t. γ

Let $(\gamma_n)_{n\geq 0} \subset \mathcal{G}_{\mathrm{ad}}$ and $\gamma \in \mathcal{G}_{\mathrm{ad}}$. If $\gamma_n \to \gamma$ in $L^{\infty}(0,T)$, then $\chi_{\gamma_n} \to \chi_{\gamma}$ in $L^{\infty}(Q)$.

Continuity of J (use the uniform observability on $\mathcal{Q}_{\mathrm{ad}}^{\varepsilon}$)

The functional J is continuous on \mathcal{G}_{ad} for the $L^{\infty}(0,T)$ norm.

Existence of a minimum point for J

The functional J admit a minimum point on \mathcal{G}_{ad} .

Note that this minimum point is a priori not unique.

Directional derivative of J

The directional derivative of J at γ in the direction $\overline{\gamma}$ can be written

$$\mathrm{d}J(\gamma;\overline{\gamma}) = \int_0^T \overline{\gamma} \int_\Omega \varphi^2 \chi_\gamma', \quad \text{with } \chi_\gamma'(x,t) = \chi'(x-\gamma(t)).$$

24 / 29

イロン イヨン イヨン イヨン

"Numerical" optimization problem

Let $\eta > 0$. For $\boldsymbol{y}^0 \in \boldsymbol{V}$ fixed, consider

$$\min_{\gamma \in W^{1,\infty}} J_{\eta}(\gamma), \quad \text{with } J_{\eta}(\gamma) \coloneqq J(\gamma) + \frac{\eta}{2} \|\gamma'\|_{L^2(0,T)}^2.$$

The role of η is similar to the one of M in $\mathcal{G}_{\mathrm{ad}}.$

The problem is solved with a fixed-step gradient-descent algorithm.

$$\begin{array}{ll} \mbox{For $\rho>0$ fixed,} & \begin{cases} \gamma^0 \in W^{1,\infty}(0,T) \mbox{ given,} \\ \gamma^{n+1} = \gamma^n - \rho \, j_{\gamma^n}^\eta, & \forall n \geq 0. \end{cases} \end{array}$$

Descent direction

We set $j_{\gamma}(t) = \int_{\Omega} \varphi^2(x,t) \chi'_{\gamma}(x,t) \, \mathrm{d}x$. A descent direction for J_{η} is found by solving

 $\langle j_{\gamma}^{\eta}, \widetilde{\gamma} \rangle_{L^{2}} + \eta \langle j_{\gamma}^{\eta'}, \widetilde{\gamma}' \rangle_{L^{2}} = \langle j_{\gamma}, \widetilde{\gamma} \rangle_{L^{2}} + \eta \langle \gamma', \widetilde{\gamma}' \rangle_{L^{2}}, \quad \forall \widetilde{\gamma} \in H^{1}(0, T).$

Optimization of the support

Simulations

 $T = 2, \ \delta = 0.15, \qquad y^0(x) = \sin(2\pi x), \ y^1(x) = 0$

Uncontrolled solution y of (Sta).

Optimization of the support

Simulations

 $T = 2, \ \delta = 0.15, \qquad y^0(x) = \sin(2\pi x), \ y^1(x) = 0$

Supports associated with 3 initial curves γ_i^0 .

Optimization of the support

Simulations

 $T = 2, \ \delta = 0.15, \qquad y^0(x) = \sin(2\pi x), \ y^1(x) = 0$

Supports associated with the optimal curves γ_i^{\star} .

Optimization of the support

Simulations

$$T = 2, \ \delta = 0.15, \qquad y^0(x) = (10x - 4)^2 (10x - 6)^2 \mathbb{1}_{[0.4, 0.6]}(x), \ y^1(x) = (y^0)'(x)$$

Uncontrolled solution y of (Sta).

Convergence towards the optimal support.

< □ > < @ > < ≧ > < ≧ > ≧ のへで 27/29

Uniform observability for the 1D wave equation Optimization of the support

Simulations

$$T = 2, \ \delta = 0.15, \qquad y^0(x) = (10x - 4)^2 (10x - 6)^2 \mathbbm{1}_{[0.4, 0.6]}(x), \ y^1(x) = (y^0)'(x)$$

Uncontrolled solution y of (Sta).

Support associated with the optimal curve γ^{\star} .

Merci pour votre attention

A. Bottois, N. Cîndea, A. Münch

Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation

ESAIM COCV 27 (2021) 13