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Uniform observability for the 1D wave equation
Introduction

Control problem

State system

Let Ω = (0, 1), T > 0 and consider
∂tty − ∂xxy = u1q in Q := Ω× (0, T ),

y = 0 on Σ := ∂Ω× (0, T ),

(y, ∂ty)(·, 0) = (y0, y1) in Ω.

Let V := H1
0 (Ω)× L2(Ω) and W := L2(Ω)×H−1(Ω).

Null controllability

For q ⊂ Q open, the state system is said to be null
controllable iff

∀y0 ∈ V , ∃u ∈ L2(q), (y, ∂ty)(·, T ;y0, u) = (0, 0).
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Control problem

State system

Let Ω = (0, 1), T > 0 and consider
∂tty − ∂xxy = u1q in Q := Ω× (0, T ),

y = 0 on Σ := ∂Ω× (0, T ),

(y, ∂ty)(·, 0) = (y0, y1) in Ω.

Let V := H1
0 (Ω)× L2(Ω) and W := L2(Ω)×H−1(Ω).

Adjoint system

For ϕ0 ∈W , consider
∂ttϕ− ∂xxϕ = 0 in Q,

ϕ = 0 on Σ,

(ϕ, ∂tϕ)(·, 0) = (ϕ0, ϕ1) in Ω.
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Uniform observability for the 1D wave equation
Introduction

Observability

(Sta)


∂tty − ∂xxy = u1q in Q

y = 0 on Σ

(y, ∂ty)(·, 0) = (y0, y1) in Ω

(Adj)


∂ttϕ− ∂xxϕ = 0 in Q

ϕ = 0 on Σ

(ϕ, ∂tϕ)(·, 0) = (ϕ0, ϕ1) in Ω

Observability

For q ⊂ Q open, the adjoint system is said to be observable if there exists Cobs(q) > 0
such that

‖ϕ0‖2W ≤ Cobs(q) ‖ϕ‖2L2(q), ∀ϕ0 ∈W := L2(Ω)×H−1(Ω). (ObsW )

Controllability ⇐⇒ Observability

The state system is null controllable iff the adjoint system is observable.

An equivalent inequality

Inequality (ObsW ) is equivalent to the following inequality,

‖ϕ0‖2V ≤ Cobs(q) ‖∂tϕ‖2L2(q), ∀ϕ0 ∈ V := H1
0 (Ω)× L2(Ω). (ObsV )
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Uniform observability for the 1D wave equation
Introduction

Observability

Characteristic lines

For x0 ∈ Ω, the characteristic lines starting from x0 are

C±x0 :=
{

(x, t) ∈ R2; x = |m(x0 ± t)|
}
,

where m(x) := x− 2k for x ∈ (2k − 1, 2k + 1], k ∈ Z.

Geometric Control Condition (GCC)

An open set q ⊂ Q satisfies (GCC) if for all x0 ∈ Ω, the
characteristic lines C±x0 meet q.

Observability ⇐⇒ (GCC)

• n-D cylindrical case : [Bardos et al. (92)]
• 1D non-cylindrical case : [Castro et al. (14)]
• n-D non-cylindrical case : [Le Rousseau et al. (17)]
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Uniform observability for the 1D wave equation
Introduction

Uniform observability

(Adj)


∂ttϕ− ∂xxϕ = 0 in Q

ϕ = 0 on Σ

(ϕ, ∂tϕ)(·, 0) = (ϕ0, ϕ1) in Ω

Uniform (w.r.t. q) observability inequality

Let Qad ⊂
{
q ⊂ Q; (GCC) holds for q

}
. We want to find an observability constant

that is uniform on Qad, i.e. find Cobs > 0 such that for all q ∈ Qad,

‖ϕ0‖2V ≤ Cobs ‖∂tϕ‖2L2(q), ∀ϕ0 ∈ V .

In the sequel,

• first, we recall a result for the cylindrical case ;

• then, we present a new result for the non-cylindrical case.
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Uniform observability for the 1D wave equation
Cylindrical support

1 Introduction
Control problem
Observability
Uniform observability

2 Cylindrical support

3 Non-cylindrical support

4 Optimization of the support
Optimization problem
Simulations
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Uniform observability for the 1D wave equation
Cylindrical support

Admissible supports

Let δ > 0 and consider

Qδad :=
{
q = ω × (0, T ); ω ⊂ Ω, |ω| = δ

}
.

For T ≥ 2, (GCC) holds for all q ∈ Qδad.
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Uniform observability [Periago (09)]

Let δ > 0. For T ≥ 2, we set Cobs =
(
bT/2cδ

(
1− sinc(πδ)

))−1

,

where sinc(x) = sin(x)
x

if x 6= 0 and sinc(0) = 1. Then, for all q ∈ Qδad,

‖ϕ0‖2V ≤ Cobs ‖∂tϕ‖2L2(q), ∀ϕ0 ∈ V .
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Uniform observability for the 1D wave equation
Cylindrical support

Let δ > 0, T ≥ 2 and q ∈ Qδad.

For ϕ0 ∈ V , we expand ϕ0(x) =
∑
p≥1

ap sin(pπx) and ϕ1(x) =
∑
p≥1

bp sin(pπx).

It follows that ϕ(x, t) =
∑
p≥1

(
ap cos(pπt) +

bp
pπ

sin(pπt)
)

sin(pπx). Then,

‖∂tϕ‖2L2(q) =

∫ T

0

∫
ω

|∂tϕ|2 ≥
∫ 2bT2 c

0

∫
ω

|∂tϕ|2 = bT/2c
∫ 2

0

∫
ω

|∂tϕ|2

= bT/2c
∑
p≥1

(
(pπ)2|ap|2 + |bp|2

)∫
ω

sin2(pπx) dx.

Lemma

For any ω ⊂ Ω with |ω| = δ, inf
p≥1

∫
ω

sin2(pπx) dx ≥ δ

2

(
1− sinc(πδ)

)
.

Using that ‖ϕ0‖2V =
1

2

∑
p≥1

(
(pπ)2|ap|2 + |bp|2

)
, we find

‖∂tϕ‖2L2(q) ≥ bT/2cδ
(
1− sinc(πδ)

)
‖ϕ0‖2V .
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Uniform observability for the 1D wave equation
Non-cylindrical support

1 Introduction
Control problem
Observability
Uniform observability

2 Cylindrical support

3 Non-cylindrical support

4 Optimization of the support
Optimization problem
Simulations
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Uniform observability for the 1D wave equation
Non-cylindrical support

Admissible supports

Let ε > 0 and consider

Qεad :=
{
q ⊂ Q; (GCC) holds for qε

}
,

where qε is the ε-interior of q.

For all q ∈ Qεad and for any characteristic line C±x0 ,
the intersection q ∩ C±x0 has at least length ε.

0 1
0

T

x

t

x0

q

qε

Pathological case

We want to avoid the case where q ∩ C±x0 has arbitrarily small
length, causing Cobs(q) to be arbitrarily large.
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Non-cylindrical support
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Uniform observability [B. et al. (21)]

Let ε > 0. There exists Cobs > 0 such that for all q ∈ Qεad,

‖ϕ0‖2V ≤ Cobs ‖∂tϕ‖2L2(q), ∀ϕ0 ∈ V .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Uniform observability [B. et al. (21)]

Let ε > 0. There exists Cobs > 0 such that for all q ∈ Qεad,

‖ϕ0‖2V ≤ Cobs ‖∂tϕ‖2L2(q), ∀ϕ0 ∈ V .

Reformulation

For q ∈ Qεad, we define the positive symmetric bilinear form

F(ϕ0,ϕ0) :=

∫∫
q

∂tϕ∂tϕ, ∀ϕ0,ϕ0 ∈ V .

Then, the uniform observability property is equivalent to the following problem.

Find C > 0 such that for all q ∈ Qεad,

F(ϕ0,ϕ0) ≥ C ‖ϕ0‖2V , ∀ϕ0 ∈ V .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Problem

F(ϕ0,ϕ0) :=

∫∫
q

∂tϕ∂tϕ, ∀ϕ0,ϕ0 ∈ V

Find C > 0 such that for all q ∈ Qεad, F(ϕ0,ϕ0) ≥ C ‖ϕ0‖2V , ∀ϕ0 ∈ V .

Sketch of the proof

• Let q ∈ Qεad and F the associated form.

• Using a discretization of Ω, we define a new form FN such that

F(ϕ0,ϕ0) ≥ FN (ϕ0,ϕ0), ∀ϕ0 ∈ V .

• We build an orthonormal basis of V that is orthogonal for FN after a certain rank.

• It reduces the problem to find C > 0 independent of q such that

FN (ϕ0,ϕ0) ≥ C ‖ϕ0‖2V , ∀ϕ0 ∈ VN ,

where VN is a finite-dimensional subspace of V .

• We conclude using that (GCC) holds for qε.
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Uniform observability for the 1D wave equation
Non-cylindrical support

Goal

We want to define a new form FN such that F ≥ FN .

Discretization of Ω

Let N ∈ N such that 2N > 1/ε. We set h = 1/2N and SN = (xk)0≤k≤2N the regular
subdivision of Ω in 2N intervals, i.e. xk = kh. We also set

Ik :=

{
[xk−1, xk] if k > 0,

[xk, xk+1] if k < 0,
∀k ∈ Z∗.

I1 I2 I3 I4I−1 I5
0

x0

1

x2N
x1 x2 x3x−1 x5
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Uniform observability for the 1D wave equation
Non-cylindrical support

Decomposition of Q

For i, j ∈ Z∗, we define the elementary square Ci,j of indices (i, j) by

Ci,j :=
{

(x, t) ∈ R2; x+ t ∈ Ii, x− t ∈ Ij
}
.

We also set CN =
{
Ci,j ; i, j ∈ Z∗

}
the set of elementary squares adapted to SN .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Decomposition of q

We set CN (q) :=
{
Ci,j ∈ CN ;

◦
Ci,j ⊂ q

}
and

qN :=

◦︷ ︸︸ ︷⋃
Ci,j∈CN (q)

Ci,j .

Lemma (require 2N > 1/ε)

We have qε ⊂ qN ⊂ q, so (GCC) holds for qN .
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Uniform observability for the 1D wave equation
Non-cylindrical support

New form

F(ϕ0,ϕ0) :=

∫∫
q

∂tϕ∂tϕ, ∀ϕ0,ϕ0 ∈ V

We define the positive symmetric bilinear form

FN (ϕ0,ϕ0) :=

∫∫
qN

∂tϕ∂tϕ, ∀ϕ0,ϕ0 ∈ V .

Since qN ⊂ q, we have

F(ϕ0,ϕ0) ≥ FN (ϕ0,ϕ0), ∀ϕ0 ∈ V .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Goal

We want to build an ONB of V that is orthogonal for FN after a certain rank.

Haar wavelet basis [Haar (1910)]

Let the mother function ψ = 1[0,1/2] − 1[1/2,1] and the scaling function ψ0 = 1[0,1].
We set ψn,k(x) = 2n/2ψ(2nx− k + 1) for n ∈ N and 1 ≤ k ≤ 2n.

Then, B :=
{
ψ0, ψn,k, n ∈ N, 1 ≤ k ≤ 2n

}
is an ONB of L2(Ω).

0 1/4 1/2 3/4 1

−3/2

−1

−1/2

0

1/2

1

3/2

ψ0,1

x

0 1/4 1/2 3/4 1

−3/2

−1

−1/2

0

1/2

1

3/2

ψ1,1 ψ1,2

x
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Uniform observability for the 1D wave equation
Non-cylindrical support

An orthonormal basis of V

We set ψ0
0(x) := 0, ψ1

0(x) := ψ0(x) and

ψ±,0n,k (x) := 1√
2

∫ x

0

ψn,k, ψ±,1n,k (x) := ∓ 1√
2
ψn,k(x), n ∈ N, 1 ≤ k ≤ 2n.

Then, B :=
{
ψ0

0, ψ
±,0
n,k , n ∈ N, 1 ≤ k ≤ 2n

}
is an ONB of V .

0 1/4 1/2 3/4 1

−3/2

−1

−1/2

0

1/2

1

3/2

ψ+,0
2,2

ψ+,1
2,2

ψ+,0
2,2

x
0 1

0

T

x

t

∂tϕ for ϕ sol. of (Adj) asso. with ψ+,0
2,2 .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Lemma (based on d’Alembert formula)

For n ≥ N , 1 ≤ k ≤ 2n and s ∈ {+,−}, we have

FN (ψs,0n,k,ψ
0) = 0, ∀ψ0 ∈ B, ψ0 6= ψs,0n,k.

Finite-dimensional subspace VN of V

We set BN :=
{
ψ0

0, ψ
±,0
n,k , n < N, 1 ≤ k ≤ 2n

}
and VN := Vect(BN ).

New problem in finite dimension

For ϕ0 ∈ V = VN ⊕ Ṽ , we decompose ϕ0 = ϕ0
N + ϕ̃0 and we have

FN (ϕ0,ϕ0) = FN (ϕ0
N ,ϕ

0
N ) + FN (ϕ̃0, ϕ̃0).

We easily find C > 0 independent of q (and ϕ̃0) such that FN (ϕ̃0, ϕ̃0) ≥ C ‖ϕ̃0‖2V .

So we now need to find C > 0 independent of q such that

FN (ϕ0,ϕ0) ≥ C ‖ϕ0‖2V , ∀ϕ0 ∈ VN .
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Uniform observability for the 1D wave equation
Non-cylindrical support

Lemma (based on d’Alembert formula)

For ϕ0 ∈ VN , we expand (ϕ0)′(x) =

2N∑
p=1

αp1Ip(x) and ϕ1(x) =
2N∑
p=1

βp1Ip(x).

For 1 ≤ p ≤ 2N , we set γ±p = αp ± βp. We then show that

FN (ϕ0,ϕ0) =
h2

8

∑
Ci,j∈CN (q)

(
γsi
pi − γ

sj
pj

)2

.

Conclusion

Since q ∈ Qεad and qε ⊂ qN , (GCC) holds for qN .
If ϕ0 ∈ VN is such that FN (ϕ0,ϕ0) = 0, using that qN ∩ C±xk 6= ∅,
we show that γ±p = 0 for all p and we deduce ϕ0 = 0. Hence, FN is positive definite
and there exists CqN > 0 such that

FN (ϕ0,ϕ0) ≥ CqN ‖ϕ
0‖2V , ∀ϕ0 ∈ VN .

Since the set of possible qN is finite, we conclude by setting C := minqN CqN > 0.
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Uniform observability for the 1D wave equation
Optimization of the support

Optimization problem

Admissible supports

Let δ > 0 and M > 0. We consider supports of the form

qγ :=
{

(x, t) ∈ Q; |x− γ(t)| < δ
}
, ∀γ ∈ Gad,

where Gad :=
{
γ ∈W 1,∞(0, T ); ‖γ′‖L∞ ≤M

}
.

For all γ ∈ Gad, we have qγ ∈ Qεad for ε = δ

4
√
M2+1

.
0 1

0

T

x

t

qγ

γ

δ

Increased control regularity [Ervedoza et al. (10)]

To gain a more regular control, in the state system, we substitute

1qγ (x, t) = 1(−δ,δ)(x− γ(t)) by χγ(x, t) = χ(x− γ(t)),

where χ ∈ C2(R) and Supp(χ) = [−δ, δ].
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Uniform observability for the 1D wave equation
Optimization of the support

Optimization problem

(Sta)


∂tty − ∂xxy = uχγ in Q

y = 0 on Σ

(y, ∂ty)(·, 0) = (y0, y1) in Ω

Optimization problem

For y0 ∈ V fixed, consider

min
γ∈Gad

J(γ), with J(γ) := ‖u‖2L2
χ(qγ) =

∫∫
qγ

ϕ2χγ ,

and where u = −ϕ |qγ is the control of minimal L2-norm associated with y0 and qγ .
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Uniform observability for the 1D wave equation
Optimization of the support

Optimization problem

Continuity of the support w.r.t. γ

Let (γn)n≥0 ⊂ Gad and γ ∈ Gad. If γn → γ in L∞(0, T ), then χγn → χγ in L∞(Q).

Continuity of J (use the uniform observability on Qεad)

The functional J is continuous on Gad for the L∞(0, T ) norm.

Existence of a minimum point for J

The functional J admit a minimum point on Gad.

Note that this minimum point is a priori not unique.

Directional derivative of J

The directional derivative of J at γ in the direction γ can be written

dJ(γ; γ) =

∫ T

0

γ

∫
Ω

ϕ2χ′γ , with χ′γ(x, t) = χ′(x− γ(t)).

24 / 29



Uniform observability for the 1D wave equation
Optimization of the support

Simulations

“Numerical” optimization problem

Let η > 0. For y0 ∈ V fixed, consider

min
γ∈W1,∞

Jη(γ), with Jη(γ) := J(γ) +
η

2
‖γ′‖2L2(0,T ).

The role of η is similar to the one of M in Gad.

The problem is solved with a fixed-step gradient-descent algorithm.

For ρ > 0 fixed,

{
γ0 ∈W 1,∞(0, T ) given,

γn+1 = γn − ρ jηγn , ∀n ≥ 0.

Descent direction

We set jγ(t) =
∫

Ω
ϕ2(x, t)χ′γ(x, t) dx. A descent direction for Jη is found by solving

〈jηγ , γ̃〉L2 + η〈jη ′γ , γ̃′〉L2 = 〈jγ , γ̃〉L2 + η〈γ′, γ̃′〉L2 , ∀γ̃ ∈ H1(0, T ).
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Uniform observability for the 1D wave equation
Optimization of the support

Simulations

T = 2, δ = 0.15, y0(x) = sin(2πx), y1(x) = 0

Uncontrolled solution y of (Sta).
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Uniform observability for the 1D wave equation
Optimization of the support

Simulations

T = 2, δ = 0.15, y0(x) = sin(2πx), y1(x) = 0

Supports associated with 3 initial curves γ0
i .
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Uniform observability for the 1D wave equation
Optimization of the support

Simulations

T = 2, δ = 0.15, y0(x) = sin(2πx), y1(x) = 0

Supports associated with the optimal curves γ?i .
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Uniform observability for the 1D wave equation
Optimization of the support

Simulations

T = 2, δ = 0.15, y0(x) = (10x− 4)2(10x− 6)21[0.4,0.6](x), y1(x) = (y0)′(x)

Uncontrolled solution y of (Sta).

Convergence towards the optimal support.
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Uniform observability for the 1D wave equation
Optimization of the support

Simulations

T = 2, δ = 0.15, y0(x) = (10x− 4)2(10x− 6)21[0.4,0.6](x), y1(x) = (y0)′(x)

Uncontrolled solution y of (Sta). Support associated with the optimal curve γ?.
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Uniform observability for the 1D wave equation
Conclusion

Merci pour votre attention

A. Bottois, N. Cîndea, A. Münch

Optimization of non-cylindrical domains for the exact null controllability
of the 1D wave equation
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