Uniform observability for the 1D wave equation

Application to the optimization of the control's support

Journées Contréle & Applications

Arthur Bottois  Nicolae Cindea  Arnaud Miinch

Labo. de Math. Blaise Pascal Université Clermont Auvergne

4th October 2021



Uniform observability for the 1D wave equation
Introduction
Control problem

State system

Let Q = (0,1), T > 0 and consider

Oy — Ozzy = uly in@Q:=Qx(0,7),
y=20 on X =090 x (0,T),
(¥,0e9)(-,0) = (4°,9") in Q.

Let V := H}(Q) x L2(Q) and W = L*(Q) x H 1(Q).

Null controllability

For ¢ C @ open, the state system is said to be null
controllable iff

vy’ eV, Jue L2(q), (y,0uy) (-, T} yo,u) = (0,0).
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Uniform observability for the 1D wave equation
Introduction

Control problem

State system

Let @ = (0,1), T > 0 and consider
Oy — Ozzy = uly in@:=Qx(0,7),
y=20 on X =090 x (0,7T), r
(y,2)(-,0) = (¥, y") in Q.
t]4q
Adjoint system
For <p0 € W, consider 0
0 r 1
Ottp — Oxap =0 in Q,
p=0 on 3,

(,0:0)(-,0) = (¥°, ") in Q.
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Uniform observability for the 1D wave equation

Introduction
Observability

atty - axzy = 'Lﬂlq in Q attﬁp - 8309690 =0 in Q
(Sta)sy =0 on ¥ (Adj){p =0 on ¥
(v,0)(-,0) = (v, y") InQ (0, 060) (-, 0) = (¥", ") in Q

Observability

For ¢ C @Q open, the adjoint system is said to be observable if there exists Cops(q) > 0
such that

1°W < Cobs(a) llellz2(), Ve € W= L*(Q) x H (). (Obsw)

Controllability <= Observability

The state system is null controllable iff the adjoint system is observable.

An equivalent inequality

Inequality (Obsw ) is equivalent to the following inequality,

1%l < Cons() [BuplBae) Vo® € V = HA(@Q) x LX@).  (Obsv)
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Uniform observability for the 1D wave equation
Introduction
Observability

Characteristic lines

For 2o € Q, the characteristic lines starting from z are

cE = {(m,t) ER%: z= \m(xo:lzt)\},

T
where m(z) ==z — 2k for z € (2k — 1,2k + 1], k € Z. o
z0
C+
Geometric Control Condition (GCC) t o
An open set g C Q satisfies (GCC) if for all zo € Q, the
characteristic lines Cxio meet q.
0 0 T To q

Observability < (GCC)

e n-D cylindrical case : [Bardos et al. (92)]
e 1D non-cylindrical case : [Castro et al. (14)]
e n-D non-cylindrical case : [Le Rousseau et al. (17)]
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Uniform observability for the 1D wave equation

Introduction
Uniform observability

815%,0*81130:0 in Q
(Adj){ ¢ =0 on ¥
(0, 000)(-,0) = (¢°, ") in Q

Uniform (w.r.t. g) observability inequality

Let Q.q C {q C Q; (GCCQ) holds for q}. We want to find an observability constant
that is uniform on Qagq, i.e. find Cops > 0 such that for all ¢ € Q.q,

6”1V < Cobs 106072y, Ve € V.

In the sequel,
e first, we recall a result for the cylindrical case;

e then, we present a new result for the non-cylindrical case.
v
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Uniform observability for the 1D wave equation
Cylindrical support

T
Cylindrical support
> J Oy PP . .
0
0 T 1
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Uniform observability for the 1D wave equation
Cylindrical support

Admissible supports
Let § > 0 and consider

Q= {q:w x (0,T); wCQ, |w| :5}.

For T > 2, (GCC) holds for all ¢ € Q2.

Uniform observability [Periago (09)]

_ —il
Let 6 > 0. For T' > 2, we set Cops = (LT/2J5(1 — sinc(w§))) ,
where sinc(z) = w if £ # 0 and sinc(0) = 1. Then, for all g € Q°,

”‘POH%/ < 6obs ||8tS0||iZ(q), VQOO cV.
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Uniform observability for the 1D wave equation
Cylindrical support

Let6>0,T22andq€Q‘s

For ¢° € V, we expand ¢°( Zap sin(prz) and o' ( Zb sin(prx).
p>1 p>1
It follows that ¢(z,t) = Z (ap cos(prt) + 3 sin(pTrt)) sin(prx). Then,
pm
p>1

- LT/2JZ((p7r) asl? + [by? / sin? (pra) d

p>1 w

For any w C Q with |w| =, 11;f1/ sin®(prz) dz
r=tJw

I\D\Qﬂ

(1 — sinc(md)).

. 1 .
Using that [|@°[|3 = 3 Z ((p7r)2|ap|2 + |bp|2), we find

p>1
10eplZ2(q) > [T/2]6(1 = sinc(w6))[|¢" -
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Uniform observability for the 1D wave equation
Non-cylindrical support

© Non-cylindrical support
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Uniform observability for the 1D wave equation

Non-cylindrical support

Admissible supports

Let € > 0 and consider
Qia = {q C Q; (GCC) holds for qf},

where ¢° is the e-interior of gq.

For all ¢ € QF, and for any characteristic line C’fo,
the intersection g N Cfo has at least length ¢.

Pathological case

We want to avoid the case where ¢ N C;to has arbitrarily small
length, causing Cobs(q) to be arbitrarily large.




Uniform observability for the 1D wave equation

Non-cylindrical support

Admissible supports

Let € > 0 and consider
Qi ={ac @ (6CC) holds for ¢°},

where ¢° is the e-interior of g.

For all ¢ € Q%4 and for any characteristic line C’z
the intersection ¢ N Cfo has at least length e.

Uniform observability [B. et al. (21)]

Let £ > 0. There exists Cops > 0 such that for all ¢ € Q%,,

I€°% < Cons Bul32(0) V" € V.
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Uniform observability for the 1D wave equation

Non-cylindrical support

Uniform observability [B. et al. (21)]

Let € > 0. There exists Cops > 0 such that for all ¢ € Q%,,

I€°1% < Cobs 10e0l32(), Ve° € V.

Reformulation

For ¢ € Q%,, we define the positive symmetric bilinear form

§(°,@°) = //8t<p8t¢, V', @’ e V.
q

Then, the uniform observability property is equivalent to the following problem.

Find € > 0 such that for all ¢ € O,

3(°, 9% > €@’} Vo' e V.
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Uniform observability for the 1D wave equation

Non-cylindrical support

Problem
5(°,%°) = //6ts08t¢, Vo' @' eV
q

Find € > 0 such that for all ¢ € Q2, F(@% %) > Cll°l}, VeleV.

Sketch of the proof

o Let ¢ € QF, and § the associated form.

e Using a discretization of 2, we define a new form §x such that
3%, ") > Fn (e’ "), Ve’ eV.

e We build an orthonormal basis of V' that is orthogonal for § after a certain rank.

o It reduces the problem to find € > 0 independent of ¢ such that
v, ") > €I, Ve’ € Vi,

where Vi is a finite-dimensional subspace of V.
e We conclude using that (GCC) holds for ¢°.

12/29



Uniform observability for the 1D wave equation
Non-cylindrical support

We want to define a new form §n such that § > §n.

Discretization of €2

Let N € N such that 2V > 1/e. We set h = 1/2" and Sy = (zx)o<p<on the regular
subdivision of Q in 2V intervals, i.e. z = kh. We also set

Th_1,T if k>0,
I = § o1l _ Vk € Z*.
[k, zp1] if k<O,
0 1
_____ I Vb o s ) [
1 | 1 1 1 | 1
Tr_1 T T2 T3 5
Xo ToN
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Uniform observability for the 1D wave equation
Non-cylindrical support

Decomposition of @

For i,7 € Z*, we define the elementary square C; ; of indices (7, ) by
Chg = {(a:,t) IS RQ; v+tel;, v—te Ij}.

We also set Cny = {Ci;; i,j € Z*} the set of elementary squares adapted to Sx.

T
— C7,—3
t Cra
— Ci1
0 0 x 1
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Uniform observability for the 1D wave equation
Non-cylindrical support

T
Decomposition of ¢
We set Cn(q) := {Ci,; € Cn; Ci; C q} and qz
o
—_—
gN ‘= U Ciyj. t
C; j€CN(q) 4dnN,
q
Lemma (require 2V > 1/¢)
We have ¢° C gy C g, so (GCC) holds for g . 0
0 r 1
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Uniform observability for the 1D wave equation

Non-cylindrical support

5(#°,%°) ::/ 87, Vo', @ eV
q
We define the positive symmetric bilinear form
Sn(e 3 70 / 08, Yo', @’ e V.

Since gn C g, we have

3%, ") > Bn (e’ "), Ve’ eV.
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Uniform observability for the 1D wave equation
Non-cylindrical support
We want to build an ONB of V' that is orthogonal for Fn after a certain rank.

Haar wavelet basis [Haar (1910)]

Let the mother function 1 = 1}g,1/2) — 1[1/2,1] and the scaling function ¢ = 19 1;.
We set o, x(z) = 2"2p(2"z —k +1) forn e Nand 1 < k < 2"
Then, B := {10, ¥nk, n €N, 1 <k < 2"} is an ONB of L*(Q).

32 F T T T ] 32 E T T T 7]
[ — . | MR EREE P12 _
1/2 ¥o.1 - 1/2 | i

0 0 H
e | | el PP
-1f : 1k : : .
—-3/2 | A A | = —-3/2 | | i ]
0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1

T T
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Uniform observability for the 1D wave equation
Non-cylindrical support

An orthonormal basis of V'

We set 9 (z) := 0, ¥3(x) := 1o(z) and
V@) =5 [ e WEN@) = Fvns(@) neN 1<k<2n
0

Then, B = {4, ¥, n €N, 1 <k <2"} isan ONB of V.

n,k?

32 F T T T ]

1/2 | IR E .

—1/2 | -
: 0

F 2,2

—3/2 | ;— | | . Pad A!‘t‘AA

0 1/4 1/2 3/4 1 0 T 1

Orp for ¢ sol. of (Adj) asso. with 'zp;’;.
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Uniform observability for the 1D wave equation
Non-cylindrical support

Lemma (based on d'Alembert formula)

Forn> N, 1<k <2" and s € {+, —}, we have

Snr5, ) =0, Vo’ eB, ¥° £

Finite-dimensional subspace Viy of V

We set By = {1!18, '(bi’o n<N, 1<k< 2"} and Vi = Vect(By).

n,k?

New problem in finite dimension

For ° € V=Vy® V, we decompose ¢° = % + #° and we have

Fn (e, %) = Fn (N ox) + Fn(@°, 3°).

We easily find € > 0 independent of ¢ (and @°) such that Fn(@°,#°) > € ||@°]|} .
So we now need to find € > 0 independent of g such that

Sn(e’,¢%) > €Iy, Ve’ e V.
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Uniform observability for the 1D wave equation

Non-cylindrical support

Lemma (based on d’'Alembert formula)

For ¢° € Viy, we expand (¢°)'(z) = Zap]lf (z) and @' ( Zﬂplfp

2

SN(SOOAOO):% > (Vii—viﬁf)z-

C;,;€CnN (@)

Conclusion

Since ¢ € Q54 and ¢° C g, (GCC) holds for gn-.

If ° € Vv is such that §n (%, ¢°) =0, usmg that gy N C, 7é oz,
we show that 'yp =0 for all p and we deduce ¢° = 0. Hence SN is positive definite
and there exists €, > 0 such that

Sn (9%, 9%) > Ty 0%, Ve’ € V.

Since the set of possible g is finite, we conclude by setting € := ming, €,y > 0.
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Uniform observability for the 1D wave equation
Optimization of the support

@ Optimization of the support
@ Optimization problem
@ Simulations
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Uniform observability for the 1D wave equation
Optimization of the support

Optimization problem

T
Let § > 0 and M > 0. We consider supports of the form Gy
o ={@Veq lr—10®)I<s}, VyEGu, | ¢
where Gaa = {y € WH(0,T); ||7' |l < M}. 07
For all v € Gaa, we have ¢, € Q74 for e = ﬁ. 00 - !

Increased control regularity [Ervedoza et al. (10)]

To gain a more regular control, in the state system, we substitute

Lo, (2,t) = Lsa)(z =) by  xy(a,8) = x(z —(2)),

where x € C*(R) and Supp(x) = [—9, d].

22/29



Uniform observability for the 1D wave equation
Optimization of the support

Optimization problem

Oty — Ozl = UX~ in Q
(Sta)<y=0 on X

(y,0:y)(-,0) = (yo,yl) in Q

Optimization problem

For y° € V fixed, consider

g 0 o 2 _ 2
min J(), with J() = [ullfa ) = // X,

~

and where u = —¢ |, is the control of minimal L?-norm associated with y° and ¢,.
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Uniform observability for the 1D wave equation
Optimization of the support
Optimization problem

Continuity of the support w.r.t.
Let (Yn)n>0 C Gaa and v € Gaa. If y — v in L*°(0,T), then x5, — X~ in L=(Q).

Continuity of J (use the uniform observability on Qf )

The functional J is continuous on Gaq for the L°(0,7T") norm.

Existence of a minimum point for J

The functional J admit a minimum point on G,4.

Note that this minimum point is a priori not unique.

Directional derivative of J

The directional derivative of J at y in the direction 7 can be written

L) = / 7 /ﬂ Wiy, with X, (@, 8) = X (& — (1)).
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Uniform observability for the 1D wave equation

Optimization of the support
Simulations

“Numerical” optimization problem

Let » > 0. For y° € V fixed, consider

. . ,_ Ny 2
ﬂ/g%l}lm Iy (7)), with Jy(y) = J(v) + 5“7 HL2(0,T)'

The role of 7 is similar to the one of M in G.4.

The problem is solved with a fixed-step gradient-descent algorithm.

7Y e Wh(0,T) given,

n+1

For p > 0 fixed, { n o
Y =" —pim, Yn2>0.

Descent direction

We set j,(t) = [, ¢*(z,t)x,(x,t) dz. A descent direction for J, is found by solving

(G2, L2 + 0 A e = Gy, Nz + 0y, 7 )2, V3 € H'(0,T).
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Uniform observability for the 1D wave equation

Optimization of the support
Simulations

T =2,0=0.15, 0 = sin(27z), y'(z) =0

=
t 14 . . - 0
0.5 1 . . - s

T T -1

0 0.5 1
T

Uncontrolled solution y of (Sta).
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Uniform observability for the 1D wave equation
Optimization of the support
Simulations

T =2 6=0.15, 4 sin(27z), yi(:

2 i 2 i 21 i
151 i 151 i 15 i
t 11 -t 14 -t 14 -
0.5 1 i 0.5 1 i 0.5 1 i
0 i 0 i 01 i
0 0.5 1 0 0.5 1 0 0.5 1
a x a

Supports associated with 3 initial curves 'y?.
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Uniform observability for the 1D wave equation
Optimization of the support
Simulations

T=2,6=0.15, O (4 sin(27z), y(:

Supports associated with the optimal curves 7.
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Uniform observability for the 1D wave equation

Optimization of the support

Simulations

T=26=015  y°@)=(10z — 4)>(10z — 6)*L[g 4,0.6/ (). ¥' () = (4°)'(2)

T T T 1 T T T

0 0.5 1 0 0.5 1

T
Uncontrolled solution y of (Sta). B

Convergence towards the optimal support.
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Uniform observability for the 1D wave equation
Optimization of the support
Simulations

T=2,6=0.15, O (4

2 1 - 21 r
1.5 1 1T 1.5 1 B
i 14 F 0 L 14 F
0.5 1 B 05 0.5 r
01 B 017 B
T T T -1 T T T
0 0.5 1 0 0.5 1
xr a
Uncontrolled solution y of (Sta). Support associated with the optimal curve v*.
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Uniform observability for the 1D wave equation
Conclusion

Merci pour votre attention

A. Bottois, N. Cindea, A. Miinch

Optimization of non-cylindrical domains for the exact null controllability
of the 1D wave equation

ESAIM COCV 27 (2021) 13
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