Uniform observability for the 1D wave equation
 Application to the optimization of the control's support
 Journées Contrôle \& Applications

Arthur Bottois Nicolae Cîndea Arnaud Münch

Labo. de Math. Blaise Pascal Université Clermont Auvergne
$4^{\text {th }}$ October 2021

4 ロ 4 鸟
E \quad QQ

State system

Let $\Omega=(0,1), T>0$ and consider

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y=u \mathbb{1}_{q} & \text { in } Q:=\Omega \times(0, T) \\ y=0 & \text { on } \Sigma:=\partial \Omega \times(0, T) \\ \left(y, \partial_{t} y\right)(\cdot, 0)=\left(y^{0}, y^{1}\right) & \text { in } \Omega\end{cases}
$$

Let $\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $\boldsymbol{W}:=L^{2}(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be null
 controllable iff

$$
\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad\left(y, \partial_{t} y\right)\left(\cdot, T ; \boldsymbol{y}^{0}, u\right)=(0,0)
$$

State system

Let $\Omega=(0,1), T>0$ and consider

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y=u \mathbb{1}_{q} & \text { in } Q:=\Omega \times(0, T) \\ y=0 & \text { on } \Sigma:=\partial \Omega \times(0, T) \\ \left(y, \partial_{t} y\right)(\cdot, 0)=\left(y^{0}, y^{1}\right) & \text { in } \Omega\end{cases}
$$

Let $\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $\boldsymbol{W}:=L^{2}(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be null
 controllable iff

$$
\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad\left(y, \partial_{t} y\right)\left(\cdot, T ; \boldsymbol{y}^{0}, u\right)=(0,0)
$$

State system

Let $\Omega=(0,1), T>0$ and consider

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y=u \mathbb{1}_{q} & \text { in } Q:=\Omega \times(0, T) \\ y=0 & \text { on } \Sigma:=\partial \Omega \times(0, T) \\ \left(y, \partial_{t} y\right)(\cdot, 0)=\left(y^{0}, y^{1}\right) & \text { in } \Omega\end{cases}
$$

Let $\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $\boldsymbol{W}:=L^{2}(\Omega) \times H^{-1}(\Omega)$.

Null controllability

For $q \subset Q$ open, the state system is said to be null
 controllable iff

$$
\forall \boldsymbol{y}^{0} \in \boldsymbol{V}, \quad \exists u \in L^{2}(q), \quad\left(y, \partial_{t} y\right)\left(\cdot, T ; \boldsymbol{y}^{0}, u\right)=(0,0)
$$

State system

Let $\Omega=(0,1), T>0$ and consider

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y=u \mathbb{1}_{q} & \text { in } Q:=\Omega \times(0, T) \\ y=0 & \text { on } \Sigma:=\partial \Omega \times(0, T) \\ \left(y, \partial_{t} y\right)(\cdot, 0)=\left(y^{0}, y^{1}\right) & \text { in } \Omega\end{cases}
$$

Let $\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $\boldsymbol{W}:=L^{2}(\Omega) \times H^{-1}(\Omega)$.

Adjoint system

For $\varphi^{0} \in \boldsymbol{W}$, consider

$$
\begin{cases}\partial_{t t} \varphi-\partial_{x x} \varphi=0 & \text { in } Q \\ \varphi=0 & \text { on } \Sigma \\ \left(\varphi, \partial_{t} \varphi\right)(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right) & \text { in } \Omega\end{cases}
$$

$$
\text { (Sta) }\left\{\begin{array} { l l }
{ \partial _ { t t } y - \partial _ { x x } y = u \mathbb { 1 } _ { q } } & { \text { in } Q } \\
{ y = 0 } & { \text { on } \Sigma } \\
{ (y , \partial _ { t } y) (\cdot , 0) = (y ^ { 0 } , y ^ { 1 }) } & { \text { in } \Omega }
\end{array} \quad (\mathrm { Adj }) \quad \left\{\begin{array}{ll}
\partial_{t t} \varphi-\partial_{x x} \varphi=0 & \text { in } Q \\
\varphi=0 & \text { on } \Sigma \\
\left(\varphi, \partial_{t} \varphi\right)(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right) & \text { in } \Omega
\end{array}\right.\right.
$$

Observability

For $q \subset Q$ open, the adjoint system is said to be observable if there exists $C_{\text {obs }}(q)>0$ such that

$$
\begin{equation*}
\left\|\boldsymbol{\varphi}^{0}\right\|_{\boldsymbol{W}}^{2} \leq C_{\mathrm{obs}}(q)\|\varphi\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{W}:=L^{2}(\Omega) \times H^{-1}(\Omega) \tag{W}
\end{equation*}
$$

Controllability \Longleftrightarrow Observability

The state system is null controllable iff the adjoint system is observable.

An equivalent inequality

Inequality $\left(\mathrm{Obs}_{W}\right)$ is equivalent to the following inequality,

$$
\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2} \leq C_{\mathrm{obs}}(q)\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)
$$

Characteristic lines

For $x_{0} \in \bar{\Omega}$, the characteristic lines starting from x_{0} are

$$
C_{x_{0}}^{ \pm}:=\left\{(x, t) \in \mathbb{R}^{2} ; \quad x=\left|\mathfrak{m}\left(x_{0} \pm t\right)\right|\right\}
$$

where $\mathfrak{m}(x):=x-2 k$ for $x \in(2 k-1,2 k+1], k \in \mathbb{Z}$.

Geometric Control Condition (GCC)

An open set $q \subset Q$ satisfies (GCC) if for all $x_{0} \in \bar{\Omega}$, the characteristic lines $C_{x_{0}}^{ \pm}$meet q.

Observability \Longleftrightarrow (GCC)

- n-D cylindrical case : [Bardos et al. (92)]
- 1D non-cylindrical case : [Castro et al. (14)]
- n-D non-cylindrical case : [Le Rousseau et al. (17)]

Characteristic lines

For $x_{0} \in \bar{\Omega}$, the characteristic lines starting from x_{0} are

$$
C_{x_{0}}^{ \pm}:=\left\{(x, t) \in \mathbb{R}^{2} ; \quad x=\left|\mathfrak{m}\left(x_{0} \pm t\right)\right|\right\}
$$

where $\mathfrak{m}(x):=x-2 k$ for $x \in(2 k-1,2 k+1], k \in \mathbb{Z}$.

Geometric Control Condition (GCC)

An open set $q \subset Q$ satisfies (GCC) if for all $x_{0} \in \bar{\Omega}$, the characteristic lines $C_{x_{0}}^{ \pm}$meet q.

Observability \Longleftrightarrow (GCC)

- n-D cylindrical case : [Bardos et al. (92)]
- 1D non-cylindrical case : [Castro et al. (14)]
- n-D non-cylindrical case : [Le Rousseau et al. (17)]

$$
(\operatorname{Adj}) \begin{cases}\partial_{t t} \varphi-\partial_{x x} \varphi=0 & \text { in } Q \\ \varphi=0 & \text { on } \Sigma \\ \left(\varphi, \partial_{t} \varphi\right)(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right) & \text { in } \Omega\end{cases}
$$

Uniform (w.r.t. q) observability inequality

Let $\mathcal{Q}_{\text {ad }} \subset\{q \subset Q ;(\mathrm{GCC})$ holds for $q\}$. We want to find an observability constant that is uniform on $\mathcal{Q}_{\mathrm{ad}}$, i.e. find $\bar{C}_{\text {obs }}>0$ such that for all $q \in \mathcal{Q}_{\mathrm{ad}}$,

$$
\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2} \leq \bar{C}_{\text {obs }}\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V} .
$$

In the sequel,

- first, we recall a result for the cylindrical case;
- then, we present a new result for the non-cylindrical case.
(1) Introduction
- Control problem
- Observability
- Uniform observability
(2) Cylindrical support
(3) Non-cylindrical support

4) Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\delta>0$ and consider

$$
\mathcal{Q}_{\mathrm{ad}}^{\delta}:=\{q=\omega \times(0, T) ; \quad \omega \subset \Omega,|\omega|=\delta\} .
$$

For $T \geq 2$, (GCC) holds for all $q \in \mathcal{Q}_{\mathrm{ad}}^{\delta}$.

Uniform observability [Periago (09)]

Let $\delta>0$. For $T \geq 2$, we set $\bar{C}_{\text {obs }}=(\lfloor T / 2\rfloor \delta(1-\operatorname{sinc}(\pi \delta)))^{-1}$, where $\operatorname{sinc}(x)=\frac{\sin (x)}{x}$ if $x \neq 0$ and $\operatorname{sinc}(0)=1$. Then, for all $q \in \mathcal{Q}_{\text {ad }}^{\delta}$,

$$
\left\|\varphi^{0}\right\|_{V}^{2} \leq \bar{C}_{\text {obs }}\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}
$$

Let $\delta>0, T \geq 2$ and $q \in \mathcal{Q}_{\mathrm{ad}}^{\delta}$.
For $\varphi^{0} \in \boldsymbol{V}$, we expand $\varphi^{0}(x)=\sum_{p \geq 1} a_{p} \sin (p \pi x)$ and $\varphi^{1}(x)=\sum_{p \geq 1} b_{p} \sin (p \pi x)$.
It follows that $\varphi(x, t)=\sum_{p \geq 1}\left(a_{p} \cos (p \pi t)+\frac{b_{p}}{p \pi} \sin (p \pi t)\right) \sin (p \pi x)$. Then,

$$
\begin{aligned}
\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}=\int_{0}^{T} \int_{\omega}\left|\partial_{t} \varphi\right|^{2} & \geq \int_{0}^{2\left\lfloor\frac{T}{2}\right\rfloor} \int_{\omega}\left|\partial_{t} \varphi\right|^{2}=\lfloor T / 2\rfloor \int_{0}^{2} \int_{\omega}\left|\partial_{t} \varphi\right|^{2} \\
& =\lfloor T / 2\rfloor \sum_{p \geq 1}\left((p \pi)^{2}\left|a_{p}\right|^{2}+\left|b_{p}\right|^{2}\right) \int_{\omega} \sin ^{2}(p \pi x) \mathrm{d} x
\end{aligned}
$$

Lemma

For any $\omega \subset \Omega$ with $|\omega|=\delta, \quad \inf _{p \geq 1} \int_{\omega} \sin ^{2}(p \pi x) \mathrm{d} x \geq \frac{\delta}{2}(1-\operatorname{sinc}(\pi \delta))$.
Using that $\left\|\boldsymbol{\varphi}^{0}\right\|_{\boldsymbol{V}}^{2}=\frac{1}{2} \sum_{p \geq 1}\left((p \pi)^{2}\left|a_{p}\right|^{2}+\left|b_{p}\right|^{2}\right)$, we find

$$
\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2} \geq\lfloor T / 2\rfloor \delta(1-\operatorname{sinc}(\pi \delta))\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2}
$$

(1) Introduction

- Control problem
- Observability
- Uniform observability
(2) Cylindrical support
(3) Non-cylindrical support

4) Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\varepsilon>0$ and consider

$$
\mathcal{Q}_{\mathrm{ad}}^{\varepsilon}:=\left\{q \subset Q ; \quad(\mathrm{GCC}) \text { holds for } q^{\varepsilon}\right\}
$$

where q^{ε} is the ε-interior of q.
For all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$ and for any characteristic line $C_{x_{0}}^{ \pm}$, the intersection $q \cap C_{x_{0}}^{ \pm}$has at least length ε.

Pathological case

We want to avoid the case where $q \cap C_{x_{0}}^{ \pm}$has arbitrarily small length, causing $C_{\text {obs }}(q)$ to be arbitrarily large.

Admissible supports

Let $\varepsilon>0$ and consider

$$
\mathcal{Q}_{\mathrm{ad}}^{\varepsilon}:=\left\{q \subset Q ; \quad(\mathrm{GCC}) \text { holds for } q^{\varepsilon}\right\}
$$

where q^{ε} is the ε-interior of q.
For all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$ and for any characteristic line $C_{x_{0}}^{ \pm}$, the intersection $q \cap C_{x_{0}}^{ \pm}$has at least length ε.

Uniform observability [B. et al. (21)]

Let $\varepsilon>0$. There exists $\bar{C}_{\text {obs }}>0$ such that for all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$,

$$
\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2} \leq \bar{C}_{\text {obs }}\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}
$$

Uniform observability [B. et al. (21)]

Let $\varepsilon>0$. There exists $\bar{C}_{\text {obs }}>0$ such that for all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$,

$$
\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2} \leq \bar{C}_{\text {obs }}\left\|\partial_{t} \varphi\right\|_{L^{2}(q)}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}
$$

Reformulation

For $q \in \mathcal{Q}_{\mathrm{ad}}^{\varepsilon}$, we define the positive symmetric bilinear form

$$
\mathfrak{F}\left(\varphi^{0}, \bar{\varphi}^{0}\right):=\iint_{q} \partial_{t} \varphi \partial_{t} \bar{\varphi}, \quad \forall \varphi^{0}, \bar{\varphi}^{0} \in \boldsymbol{V}
$$

Then, the uniform observability property is equivalent to the following problem.
Find $\overline{\mathfrak{C}}>0$ such that for all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$,

$$
\mathfrak{F}\left(\varphi^{0}, \varphi^{0}\right) \geq \overline{\mathfrak{C}}\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{V}
$$

Problem

$$
\mathfrak{F}\left(\varphi^{0}, \bar{\varphi}^{0}\right):=\iint_{q} \partial_{t} \varphi \partial_{t} \bar{\varphi}, \quad \forall \varphi^{0}, \bar{\varphi}^{0} \in \boldsymbol{V}
$$

Find $\overline{\mathfrak{C}}>0$ such that for all $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}, \quad \mathfrak{F}\left(\boldsymbol{\varphi}^{0}, \boldsymbol{\varphi}^{0}\right) \geq \overline{\mathfrak{C}}\left\|\boldsymbol{\varphi}^{0}\right\|_{\boldsymbol{V}}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{V}$.

Sketch of the proof

- Let $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$ and \mathfrak{F} the associated form.
- Using a discretization of Ω, we define a new form \mathfrak{F}_{N} such that

$$
\mathfrak{F}\left(\varphi^{0}, \varphi^{0}\right) \geq \mathfrak{F}_{N}\left(\varphi^{0}, \varphi^{0}\right), \quad \forall \varphi^{0} \in \boldsymbol{V}
$$

- We build an orthonormal basis of \boldsymbol{V} that is orthogonal for \mathfrak{F}_{N} after a certain rank.
- It reduces the problem to find $\overline{\mathfrak{C}}>0$ independent of q such that

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \boldsymbol{\varphi}^{0}\right) \geq \overline{\mathfrak{C}}\left\|\boldsymbol{\varphi}^{0}\right\|_{\boldsymbol{V}}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}_{N}
$$

where \boldsymbol{V}_{N} is a finite-dimensional subspace of \boldsymbol{V}.

- We conclude using that (GCC) holds for q^{ε}.

Goal

We want to define a new form \mathfrak{F}_{N} such that $\mathfrak{F} \geq \mathfrak{F}_{N}$.

Discretization of Ω

Let $N \in \mathbb{N}$ such that $2^{N}>1 / \varepsilon$. We set $h=1 / 2^{N}$ and $S_{N}=\left(x_{k}\right)_{0 \leq k \leq 2^{N}}$ the regular subdivision of $\bar{\Omega}$ in 2^{N} intervals, i.e. $x_{k}=k h$. We also set

$$
I_{k}:=\left\{\begin{array}{ll}
{\left[x_{k-1}, x_{k}\right]} & \text { if } k>0, \\
{\left[x_{k}, x_{k+1}\right]} & \text { if } k<0,
\end{array} \quad \forall k \in \mathbb{Z}^{*}\right.
$$

Decomposition of Q

For $i, j \in \mathbb{Z}^{*}$, we define the elementary square $C_{i, j}$ of indices (i, j) by

$$
C_{i, j}:=\left\{(x, t) \in \mathbb{R}^{2} ; \quad x+t \in I_{i}, x-t \in I_{j}\right\} .
$$

We also set $\mathcal{C}_{N}=\left\{C_{i, j} ; i, j \in \mathbb{Z}^{*}\right\}$ the set of elementary squares adapted to S_{N}.

Decomposition of q

We set $\mathcal{C}_{N}(q):=\left\{C_{i, j} \in \mathcal{C}_{N} ; \stackrel{\circ}{C}_{i, j} \subset q\right\}$ and

$$
q_{N}:=\overbrace{\bigcup_{C_{i, j} \in \mathcal{C}_{N}(q)} C_{i, j}}^{0} .
$$

Lemma (require $2^{N}>1 / \varepsilon$)
We have $q^{\varepsilon} \subset q_{N} \subset q$, so (GCC) holds for q_{N}.

New form

$$
\mathfrak{F}\left(\varphi^{0}, \bar{\varphi}^{0}\right):=\iint_{q} \partial_{t} \varphi \partial_{t} \bar{\varphi}, \quad \forall \varphi^{0}, \bar{\varphi}^{0} \in \boldsymbol{V}
$$

We define the positive symmetric bilinear form

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \bar{\varphi}^{0}\right):=\iint_{q_{N}} \partial_{t} \varphi \partial_{t} \bar{\varphi}, \quad \forall \varphi^{0}, \bar{\varphi}^{0} \in \boldsymbol{V}
$$

Since $q_{N} \subset q$, we have

$$
\mathfrak{F}\left(\varphi^{0}, \varphi^{0}\right) \geq \mathfrak{F}_{N}\left(\varphi^{0}, \varphi^{0}\right), \quad \forall \varphi^{0} \in \boldsymbol{V}
$$

Goal

We want to build an ONB of \boldsymbol{V} that is orthogonal for \mathfrak{F}_{N} after a certain rank.

Haar wavelet basis [Haar (1910)]

Let the mother function $\psi=\mathbb{1}_{[0,1 / 2]}-\mathbb{1}_{[1 / 2,1]}$ and the scaling function $\psi_{0}=\mathbb{1}_{[0,1]}$. We set $\psi_{n, k}(x)=2^{n / 2} \psi\left(2^{n} x-k+1\right)$ for $n \in \mathbb{N}$ and $1 \leq k \leq 2^{n}$.
Then, $\mathcal{B}:=\left\{\psi_{0}, \psi_{n, k}, n \in \mathbb{N}, 1 \leq k \leq 2^{n}\right\}$ is an ONB of $L^{2}(\Omega)$.

An orthonormal basis of V

We set $\psi_{0}^{0}(x):=0, \psi_{0}^{1}(x):=\psi_{0}(x)$ and

$$
\psi_{n, k}^{ \pm, 0}(x):=\frac{1}{\sqrt{2}} \int_{0}^{x} \psi_{n, k}, \quad \psi_{n, k}^{ \pm, 1}(x):=\mp \frac{1}{\sqrt{2}} \psi_{n, k}(x), \quad n \in \mathbb{N}, 1 \leq k \leq 2^{n}
$$

Then, $\mathcal{B}:=\left\{\boldsymbol{\psi}_{0}^{0}, \boldsymbol{\psi}_{n, k}^{ \pm, 0}, n \in \mathbb{N}, 1 \leq k \leq 2^{n}\right\}$ is an ONB of \boldsymbol{V}.

$\partial_{t} \varphi$ for φ sol. of (Adj) asso. with $\boldsymbol{\psi}_{2,2}^{+, 0}$.

Lemma (based on d'Alembert formula)

For $n \geq N, 1 \leq k \leq 2^{n}$ and $s \in\{+,-\}$, we have

$$
\mathfrak{F}_{N}\left(\boldsymbol{\psi}_{n, k}^{s, 0}, \boldsymbol{\psi}^{0}\right)=0, \quad \forall \boldsymbol{\psi}^{0} \in \mathcal{B}, \boldsymbol{\psi}^{0} \neq \boldsymbol{\psi}_{n, k}^{s, 0} .
$$

Finite-dimensional subspace V_{N} of V

We set $\boldsymbol{\mathcal { B }}_{N}:=\left\{\boldsymbol{\psi}_{0}^{0}, \boldsymbol{\psi}_{n, k}^{ \pm, 0}, n<N, 1 \leq k \leq 2^{n}\right\}$ and $\boldsymbol{V}_{N}:=\operatorname{Vect}\left(\boldsymbol{\mathcal { B }}_{N}\right)$.

New problem in finite dimension

For $\varphi^{0} \in \boldsymbol{V}=\boldsymbol{V}_{N} \oplus \tilde{\boldsymbol{V}}$, we decompose $\varphi^{0}=\varphi_{N}^{0}+\widetilde{\varphi}^{0}$ and we have

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \boldsymbol{\varphi}^{0}\right)=\mathfrak{F}_{N}\left(\varphi_{N}^{0}, \varphi_{N}^{0}\right)+\mathfrak{F}_{N}\left(\widetilde{\boldsymbol{\varphi}}^{0}, \widetilde{\boldsymbol{\varphi}}^{0}\right)
$$

We easily find $\overline{\mathfrak{C}}>0$ independent of q (and $\widetilde{\boldsymbol{\varphi}}^{0}$) such that $\mathfrak{F}_{N}\left(\widetilde{\boldsymbol{\varphi}}^{0}, \widetilde{\boldsymbol{\varphi}}^{0}\right) \geq \overline{\mathfrak{C}}\left\|\widetilde{\boldsymbol{\varphi}}^{0}\right\|_{\boldsymbol{V}}^{2}$. So we now need to find $\overline{\mathfrak{C}}>0$ independent of q such that

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \varphi^{0}\right) \geq \overline{\mathfrak{C}}\left\|\varphi^{0}\right\|_{\boldsymbol{V}}^{2}, \quad \forall \varphi^{0} \in \boldsymbol{V}_{N} .
$$

Lemma (based on d'Alembert formula)

For $\boldsymbol{\varphi}^{0} \in \boldsymbol{V}_{N}$, we expand $\left(\varphi^{0}\right)^{\prime}(x)=\sum_{p=1}^{2^{N}} \alpha_{p} \mathbb{1}_{I_{p}}(x)$ and $\varphi^{1}(x)=\sum_{p=1}^{2^{N}} \beta_{p} \mathbb{1}_{I_{p}}(x)$.
For $1 \leq p \leq 2^{N}$, we set $\gamma_{p}^{ \pm}=\alpha_{p} \pm \beta_{p}$. We then show that

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \varphi^{0}\right)=\frac{h^{2}}{8} \sum_{C_{i, j} \in \mathcal{C}_{N}(q)}\left(\gamma_{\mathfrak{p}_{i}}^{\mathfrak{s}_{i}}-\gamma_{\mathfrak{p}_{j}}^{\mathfrak{s}_{j}}\right)^{2}
$$

Conclusion

Since $q \in \mathcal{Q}_{\text {ad }}^{\varepsilon}$ and $q^{\varepsilon} \subset q_{N}$, (GCC) holds for q_{N}.
If $\varphi^{0} \in \boldsymbol{V}_{N}$ is such that $\mathfrak{F}_{N}\left(\boldsymbol{\varphi}^{0}, \varphi^{0}\right)=0$, using that $q_{N} \cap C_{x_{k}}^{ \pm} \neq \varnothing$, we show that $\gamma_{p}^{ \pm}=0$ for all p and we deduce $\varphi^{0}=0$. Hence, \mathfrak{F}_{N} is positive definite and there exists $\overline{\mathfrak{C}}_{q_{N}}>0$ such that

$$
\mathfrak{F}_{N}\left(\varphi^{0}, \boldsymbol{\varphi}^{0}\right) \geq \overline{\mathfrak{C}}_{q_{N}}\left\|\boldsymbol{\varphi}^{0}\right\|_{\boldsymbol{V}}^{2}, \quad \forall \boldsymbol{\varphi}^{0} \in \boldsymbol{V}_{N}
$$

Since the set of possible q_{N} is finite, we conclude by setting $\overline{\mathfrak{C}}:=\min _{q_{N}} \overline{\mathfrak{C}}_{q_{N}}>0$.

1 Introduction

- Control problem
- Observability
- Uniform observability

(2) Cylindrical support

(3) Non-cylindrical support
4) Optimization of the support

- Optimization problem
- Simulations

Admissible supports

Let $\delta>0$ and $M>0$. We consider supports of the form

$$
q_{\gamma}:=\{(x, t) \in Q ; \quad|x-\gamma(t)|<\delta\}, \quad \forall \gamma \in \mathcal{G}_{\mathrm{ad}}
$$

where $\mathcal{G}_{\text {ad }}:=\left\{\gamma \in W^{1, \infty}(0, T) ;\left\|\gamma^{\prime}\right\|_{L^{\infty}} \leq M\right\}$.
For all $\gamma \in \mathcal{G}_{\mathrm{ad}}$, we have $q_{\gamma} \in \mathcal{Q}_{\mathrm{ad}}^{\varepsilon}$ for $\varepsilon=\frac{\delta}{4 \sqrt{M^{2}+1}}$.

Increased control regularity [Ervedoza et al. (10)]

To gain a more regular control, in the state system, we substitute

$$
\mathbb{1}_{q_{\gamma}}(x, t)=\mathbb{1}_{(-\delta, \delta)}(x-\gamma(t)) \quad \text { by } \quad \chi_{\gamma}(x, t)=\chi(x-\gamma(t))
$$

where $\chi \in C^{2}(\mathbb{R})$ and $\operatorname{Supp}(\chi)=[-\delta, \delta]$.

$$
\text { (Sta) } \begin{cases}\partial_{t t} y-\partial_{x x} y=u \chi_{\gamma} & \text { in } Q \\ y=0 & \text { on } \Sigma \\ \left(y, \partial_{t} y\right)(\cdot, 0)=\left(y^{0}, y^{1}\right) & \text { in } \Omega\end{cases}
$$

Optimization problem

For $\boldsymbol{y}^{0} \in \boldsymbol{V}$ fixed, consider

$$
\min _{\gamma \in \mathcal{G}_{\mathrm{ad}}} J(\gamma), \quad \text { with } \quad J(\gamma):=\|u\|_{L_{\chi}^{2}\left(q_{\gamma}\right)}^{2}=\iint_{q_{\gamma}} \varphi^{2} \chi_{\gamma},
$$

and where $u=-\varphi_{\mid q_{\gamma}}$ is the control of minimal L^{2}-norm associated with \boldsymbol{y}^{0} and q_{γ}.

Continuity of the support w.r.t. γ

Let $\left(\gamma_{n}\right)_{n \geq 0} \subset \mathcal{G}_{\text {ad }}$ and $\gamma \in \mathcal{G}_{\text {ad }}$. If $\gamma_{n} \rightarrow \gamma$ in $L^{\infty}(0, T)$, then $\chi_{\gamma_{n}} \rightarrow \chi_{\gamma}$ in $L^{\infty}(Q)$.

Continuity of J (use the uniform observability on $\mathcal{Q}_{\text {ad }}^{\varepsilon}$)

The functional J is continuous on $\mathcal{G}_{\text {ad }}$ for the $L^{\infty}(0, T)$ norm.

Existence of a minimum point for J

The functional J admit a minimum point on $\mathcal{G}_{\text {ad }}$.
Note that this minimum point is a priori not unique.

Directional derivative of J

The directional derivative of J at γ in the direction $\bar{\gamma}$ can be written

$$
\mathrm{d} J(\gamma ; \bar{\gamma})=\int_{0}^{T} \bar{\gamma} \int_{\Omega} \varphi^{2} \chi_{\gamma}^{\prime}, \quad \text { with } \chi_{\gamma}^{\prime}(x, t)=\chi^{\prime}(x-\gamma(t))
$$

"Numerical" optimization problem

Let $\eta>0$. For $\boldsymbol{y}^{0} \in \boldsymbol{V}$ fixed, consider

$$
\min _{\gamma \in W^{1, \infty}} J_{\eta}(\gamma), \quad \text { with } J_{\eta}(\gamma):=J(\gamma)+\frac{\eta}{2}\left\|\gamma^{\prime}\right\|_{L^{2}(0, T)}^{2}
$$

The role of η is similar to the one of M in $\mathcal{G}_{\text {ad }}$.
The problem is solved with a fixed-step gradient-descent algorithm.

$$
\text { For } \rho>0 \text { fixed, } \quad\left\{\begin{array}{l}
\gamma^{0} \in W^{1, \infty}(0, T) \text { given, } \\
\gamma^{n+1}=\gamma^{n}-\rho j_{\gamma^{n}}^{\eta}, \quad \forall n \geq 0
\end{array}\right.
$$

Descent direction

We set $j_{\gamma}(t)=\int_{\Omega} \varphi^{2}(x, t) \chi_{\gamma}^{\prime}(x, t) \mathrm{d} x$. A descent direction for J_{η} is found by solving

$$
\left\langle j_{\gamma}^{\eta}, \widetilde{\gamma}\right\rangle_{L^{2}}+\eta\left\langle j_{\gamma}^{\eta^{\prime}}, \widetilde{\gamma}^{\prime}\right\rangle_{L^{2}}=\left\langle j_{\gamma}, \widetilde{\gamma}\right\rangle_{L^{2}}+\eta\left\langle\gamma^{\prime}, \widetilde{\gamma}^{\prime}\right\rangle_{L^{2}}, \quad \forall \widetilde{\gamma} \in H^{1}(0, T)
$$

Uniform observability for the 1D wave equation

Optimization of the support
Simulations

$$
T=2, \delta=0.15, \quad y^{0}(x)=\sin (2 \pi x), y^{1}(x)=0
$$

Uncontrolled solution y of (Sta).

Uniform observability for the 1D wave equation

Optimization of the support
Simulations

$$
T=2, \delta=0.15, \quad y^{0}(x)=\sin (2 \pi x), y^{1}(x)=0
$$

Supports associated with 3 initial curves γ_{i}^{0}.

Uniform observability for the 1D wave equation

Optimization of the support
Simulations

$$
T=2, \delta=0.15, \quad y^{0}(x)=\sin (2 \pi x), y^{1}(x)=0
$$

Supports associated with the optimal curves γ_{i}^{\star}.

Uniform observability for the 1D wave equation

Optimization of the support
Simulations

$$
T=2, \delta=0.15, \quad y^{0}(x)=(10 x-4)^{2}(10 x-6)^{2} \mathbb{1}_{[0.4,0.6]}(x), y^{1}(x)=\left(y^{0}\right)^{\prime}(x)
$$

Uncontrolled solution y of (Sta).

Convergence towards the optimal support.

Uniform observability for the 1D wave equation

Optimization of the support
Simulations

$$
T=2, \delta=0.15, \quad y^{0}(x)=(10 x-4)^{2}(10 x-6)^{2} \mathbb{1}_{[0.4,0.6]}(x), y^{1}(x)=\left(y^{0}\right)^{\prime}(x)
$$

Uncontrolled solution y of (Sta).

Support associated with the optimal curve γ^{\star}.

Merci pour votre attention

A. Bottois, N. Cîndea, A. Münch

Optimization of non-cylindrical domains for the exact null controllability of the $1 D$ wave equation

ESAIM COCV 27 (2021) 13

