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General framework and objective

GIVEN some semilinear heat/wave equation

Oy — Ay + fly)=vl,, inQr:=Qx(0,7)
y=0in9Q x (0, T) + initial conditions

or

Oytyy — Ay +1f(y) =0, in Qr :=Q2 x (0, T),
y=virindQ x (0, T) + initial conditions

ASSUME that there exist control v and T > 0 such that (y(t), y:(t)) = (0, 0) forall
t>T.

Litterature Lasiecka-Triggiani’'91, Zuazua’'93, Fernandez-Cara’00, Barbu’00,
Li-Zhang'01, Coron-Trelat'06, Dehman-Lebeau’09, Joly-Laurent'14, Fu-Lu-Zhang’19,
Friedman’19, .....

FIND a non trivial sequence (yk, Vk)ken such that (yk, vk) — (¥, V) as k — oo, with
(y, v) a controlled pair for (1) or (2)?

A Non trivial question since in many situations, proofs of controllability are based on
non constructive fixed point arguments.




One numerical illustration of controlled solution for the 1d wave equation

Controlled solution (from the boundary)

Vit — Vs — 3y(1 +1n%/2(2+ |y|)) =0 in (0,1) x (0,2.5),
y(0,-)=0, y(1,-)=v in (0,2.5), (3)
(v(,0), y¢(-,0)) = (10sin(rx), 0) in (0,1).

How do we get such control v ??7?




Closed connection between control and inverse problems

There are strong connections between
o Exact Controllability problem: find v € L2 such that

Oy — Ay +f(y) =0, inQ x (0, T),
y=virindQ x (0, T) (4)
(v(+,0), (-, 0)) = (uo, 1) in Q

such that (y(-, T), y1(-, T)) = (20, 21) in Q.

o Inverse problem: given a "good" observation y,, ops € L2(I" x (0, T)), reconstruct y
solution of

Oy — Ay +f(y) =0, inQ x (0, T),
y=0indQ x (0, T) 5)
(y(,0)7Yt(70)) = (U(), U1) in Q

suchthatduy ;= y, ops ONT x (0, T).
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The wave and heat semilinear equations : known results and claim

For the semilinear wave/heat equations

{8«1)}’— Ay+1f(y)=0

+ initial conditions and boundary conditions

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true
under the following asymptotic condition on f € C'(R)

: (1)
38 > 0 such that IlmriJopo Tp(r) <8, pe€(0,2)

obtained from non constructive Schauder fixed point arguments [Zuazua’93,
Zuazua-Fernandez-Cara’00, Barbu’00, Zhang'07, ....]




The wave and heat semilinear equations : known results and claim

For the semilinear wave/heat equations

{8«1)}’— Ay+1f(y)=0

+ initial conditions and boundary conditions

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true
under the following asymptotic condition on f € C'(R)

: (1)
38 > 0 such that IlmriJopo Tp(r) <8, pe€(0,2)

obtained from non constructive Schauder fixed point arguments [Zuazua’93,
Zuazua-Fernandez-Cara’00, Barbu’00, Zhang'07, ....]

CLAIM Under the following assumption,

f/
35 > 0 such that lim sup 1)

S ey =P PE(0?)

one can construct non trivial sequences (yk, Vk)ken converging strongly to a
state-control pair for the semilinear equation




Rk: Lack of contraction of the Zuazua’s operator

Exact controllability in Zuazua'93 ' based on a Leray Schauder fixed point argument:
Let A: L>°(Q7) — L°°(Q7) and y := A(€) is a controlled solution with the control
function vg (of minimal L2-norm)

Oy — Oy +y1(€) = —F(0) + Vel inQr, =10 )y

y=0 onXr, f(r) = { r

(¥(-,0), 0y (-, 0)) = (uo, ur) in Q, (0) if r=0
@)

satisfying (y(-, ), 0ty (-, T)) = (20, 21)-

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré
Anal. Non Linéaire




Rk: Lack of contraction of the Zuazua’s operator

Exact controllability in Zuazua'93 ' based on a Leray Schauder fixed point argument:
Let A: L>°(Q7) — L°°(Q7) and y := A(€) is a controlled solution with the control
function vg (of minimal L2-norm)

Oy — Oy +y1(€) = —F(0) + Vel inQr, =10 )y

y=0 onXr, f(r) —{ r

(¥(0), &1y, 0)) = (to, ) in Q, 7 ifr=0
@)

satisfying (y(-, ), 0ty (-, T)) = (20, 21)-

Assume w = (,b), T > 2max(¢1,1 — £»), f € C' and that lim SUP|r| o0 |512)“f| <B
for some 3 small enough.

Then, A has a fixed point. In particular,

1A oo < C(lluo, wrllv + 1£0)12) (1 + Elloo) *OVE, g € L=(Qr).
| S —

7@l
. Lee(@r)

but A is not contracting in general. The sequence {yx.1}« given by yx1 = A(¥k) is
bounded but not convergent.

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré
Anal. Non Linéaire




Same method for the wave and heat equation

Assuming 0
r

InP(r)

38 > 0 such that rim sup <8, pe€(0,2)
we design convergent sequences (yk, V) from two different approaches :
Method 1 : Least-squares approaches (Newton type linearization)

Yiat,1t) — DYkt + F(Vk)Yra1 = Vor1 1w — F Vi)Yt + F(0k), k>0

where (yk+1, Vk+1) is the optimal state-control pair for the cost

Iy v) = VI,

ar)
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38 > 0 such that rim sup <8, pe€(0,2)

we design convergent sequences (yk, V) from two different approaches :
Method 1 : Least-squares approaches (Newton type linearization)

Yiat,1t) — DYkt + F(Vk)Yra1 = Vor1 1w — F Vi)Yt + F(0k), k>0

where (yk+1, Vk+1) is the optimal state-control pair for the cost

— 2
J(y7 V) - HV||L2(qT)

Method 2: Zero order linearization and Carleman weights

Yis1,4(t) — BDYk+1 = Vkr1lw — f(¥k), k >0

where (Y11, Vk+1) is the optimal null state-control pair for the cost

J(yv V) = Hp(s)vHiZ(qr) + SHPO(S)y”iZ(qT)

involving Carleman weights p(x, t, s), po(x, t, s) and parameter s > 0




Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

. T 2
(y,lvr;fEA E(ya V)7 E(y7 V) T EHdtly - Ay + f(y) - V1“"||L2(OT) (8)

A={,v) e | (1(,0),0¥(-,0) = (o, ur), (¥( T), (-, T)) = (0,0)in 21,
Ho={(y,v) € 2(Qr) x L3(qr) | duy — Ay € [2(Qr), y =0on Er,

(y(7 0)9 81‘}/(', 0)) € V}
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Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

_ _ 2
v, 'Vr;f E(ya V)7 E(y7 . ||8tly Ay + f(y) Vi ||L2(QT) (8)

A= {v) € H | (100,00, 0)) = (o, ), (Y(-- T). Oy(-, ) = (0,0) in 2},

Ho= {(y, v) € 12(Qr) x L2(qr) | 8y — Ay € [2(Qr), y = Oon X7,

(y(7 0)9 81‘}/(', 0)) € V}

Proposition

|

vyv) €A VEG ) < CeX @By, vy

Consequence:
Any critical point (y, v) € A of E is a zero of E, and thus is a pair solution of the

controllability problem. Moreover:
given any sequence (Y, Vk)ken in A such that | E’ (yk, Vk)HAgJ . j} 0 and such that
—+00
(1" Vi)l Lo (L9 Is uniformly bounded, we have E(yj, vi) S —> 0.

AA minimizing sequence for E cannot be stuck in a local minimum, even though E

Approximation of exact controls



A minimizing sequence for E

Let the sequence (yk, Vk)ken in A defined by

(Yo,v0) € A

Wt V1) = Wio Vi) — (Y, Vk) - VkeEN ©)

Ak = argmin E ((yk, i) — MYk, Vk))
A€[0,1]

where (Y, Vi) € Ap is the solution of minimal control norm of

OnYik — AV + (Vi) Yk = Viklw + (Buyx — Ayk + f(yk) — k1w)  in Qr,
Y =0 on X7, | (10)
(Y (-,0), 8¢ Yk(-,0)) = (0,0) in Q.

Lemma Vk > 0, E"(yk, vk) - (Yk, V&) = 2E(¥k, vk)




A minimizing sequence for E

Let the sequence (yk, Vk)ken in A defined by

(Yo:v0) € A
Vier1s Vier1) = Vhs Vie) — A(Yie, Vi) VK EN ©)
Ak = argmin E((yk, vik) — MYk, Vi)
xe[0,1]
where (Y, Vi) € Ap is the solution of minimal control norm of
oYk — DAYk + F (k) Yk = Vil + (Ouyk — Ayk + f(yk) — 1)  inQr,
Y, =0 on¥r, | (10)
(Yk(+,0),0:Yk(-,0)) = (0,0) in Q.

Lemma Vk > 0, E"(yk, vk) - (Yk, V&) = 2E(¥k, vk)

Theorem (Miinch-Trélat 2022, Bottois-Lemoine-Miinch 2023)

Assume that f" € L (R) and that lim sup,_, o, ‘,g,,((’r))' is small enough.

for any (yo, o) € ‘A, (Y, Vk) — (¥, v) a controlled pair for the nonlinear wave eq.
The convergence of these sequences is at least linear, and is at least of order 2 after a
finite number of iterations.




Rk. Link with a Damped Newton method

The sequence (¥, Vk)k>o coincides with the one associated to a damped Newton
method to find a zero of the map F : A — L?(Qr) defined by
F(y,v) = (0ny — Ay +f(y) — viw)

(Yo,v0) € A
DF (Y, vic) - (Vks15 Vk1) — Vo Vi) = =2 F (V> Vi), k > 0

A = argfnif]l I ((¥ies vi) = ADF " (Yies Vi) F (ks vie)) 2 ar)
A€o, 1

(1)

For A\x = 1, the least-squares algorithm coincides with the Newton algorithm applied to
F (explaining the quadratic convergence property).

Optimizing the parameter A\ ensures the global convergence of the algorithm

10
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Numerical experiments in the 2d case

We consider a two-dimensional case for which @ = (0,1)2and T = 3.

Oy — Ay —10yIn'"22 + |y|) = vi in Qr :=Q x (0, T),
y=0 onX7:=90x(0,7), (12)
(¥(-,0),0ty(-,0)) = (1005sin(mxy) sin(wxz), 0) in Q,
1
0.75
w2 05
0.25
0 025 05 0.7 1

a1

Control domain w C Q = (0, 1)? (black part).




Numerical experiments in the 2d case

. 1Yk —Yk—1 ||L2(OT) vk —Vik—1 ”L2 (ar)
titerate k 2E (¥, vk) W 1T2ar) T H%(jﬂ Iyklliziary | MVilliz ary | Ak
0 7.44 x 102 - - 38.116 732.22 1
1 1.63 x 102 1.79 x 100 9.30 x 10! 58.691 667.602 1
2 1.62 x 10° 8.42 x 102 1.41 x 1071 60.781 642.643 1
3 1.97 x 103 1.21 x 103 4.66 x 103 60.745 643.784 1
4 511 x 1010 6.43 x 10~7 2.63 x 10~° 60.745 643.785 -
75 750
50 500
25 250
0 0
0.5 1 1 2 2.5 3 0 0.5 1 1.5 2 2.5 3

(=) 1lya(, Dl 2(q) + (=)
¥0( Dl 20y 3 (==) 1Y (- 1: 0)ll 2(q)-

(=) IIva(-, t)”Li(“’) ; (=)
HVO('J)”Lg((W)-
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Method 2 (Boundary controllability case)

{}’n—Ay—i-f(y)—O in Qr, (13)

y= V1r0i” o x(0,T), (¥(-0),(-0)) = (to, 1) in €,

Theorem (Bhandari-Lemoine-Miinch 2022, Claret-Lemoine-Miinch, 2023)

Assume T > 0 and Ty C OS2 large enough. Assume that there exists 3* > 0 such that
if f € C'(R) satisfies

(Hy) 3a >0, st |f(r) <a+p*Inf |r], VreR, 0<p<3/2

then, for any initial state (ug, uy) in H :== L2(Q) « H_1(Q), the controlled sequence
(Y, Vi )ken~ solution of

OttYki1 — AYkr1 = —F(¥k) in Qr,
Y1 = Vi1 1rg indQ x (0, T), (14)
(}/k+1('70)78tyk+1('70)) = (Uo,U1) in €,

minimizer of a functional Js(y, v) := s [ p2(s)y? + j'OT Ir, n=2p3(s)v?

converges strongly to a controlled pair (y, v) in

(co([o, TJ; L23(Q)) nC'([o, T]; H=1())) x HL(0, T) for the semilinear eq.

The convergence holds with a linear rate for the norm ||p(s) - [l 2(q,) + 11P1(S) - ll 20, 1)
and s > max(Sp, Cln ||ug, u1||H)-

4
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Contraction of the operator within a suitable class

e For any s > sy, we introduce the class C(s), defined as the closed convex subset of
L3(Qr)

c(s)i={y e L2, T L2Q) ¢ I¥llize) < S oYl o, rizgay < 0} (1)
and assume that that the nonlinear function f € C%(R) in (33) satisfies the logarithmic

assumption for some 3* positive precisely chosen later.
e We introduce the operator

Ns:C(s) = C(s),  As(¥) =y (16)
where y solves

Yo — Ay =—1(y) in Qr,

y=vir, onx, (17)

(y('ro)vyt('ro)): (U07U1) inQ,

satisfies (y(-, T), yt(, T)) = (20, 21) in 2, and (y, v) corresponds to the minimizer of a
functional Js

T—6
Js(z, u) ::s/,;2\z\2dxdt+/ / 72w p2|uf? dxdt (18)
JQ Jé JoQ

over the set
{(z, u) € L2(Qr) x L2(0, T) solution of (17) with z(-, T) = z(-, T) = 0in Q}.

Approximation of exact controls



Fundamental tool : Carleman inequality with appropriate parametrized weights

p(x, t) = e 30D wix 1) e Q. (19)

Remark that e~ < p < =S in Q with ¢ := ||¢||.<(q) and p, p~! € C=(Q).
Letthen P := {w € CO([0, T]; H} (Q)) n ([0, T]; L3(Q)), Lw € L2(Q)}

Proposition (Baudouin, De Buhan, Ervedoza, 2013)

Assume T > 0 and >~ C 0 x (0, T) large enough. There exists sy > 0, A > 0 and
C > 0, such that for any s > sy and every w € P

S/ p’2(|W1|2+|VWI2)dxdt+33/ o2 |w|? dxdt
Q Q

+s /Q p=2(0)(|wa(-,0)[2 + [Vw(:, 0)?) dx + §° /Q p=2(0)|w(-, 0)[2 dx

< c(/ P2 | wy —Aw|2dxdt+s/ n2(r)W(x)p*2|a,w|2dxdt). (20)
Q >
v

2Lucie Baudouin, Maya De Buhan, and Sylvain Ervedoza, Global Carleman
estimates for waves and applications. Comm. Partial Differential Equations, 2013.

Approximation of exact controls



A small piece of the proof

Assume there exists 0 < p < 3/2 such that |f'(r)| < a.+ B8Inf_|r| with 3 > 0 small
enough. Take s > max(so, In(||uo, u1[|))- Letd(y, z) == [lp(s)(¥ — 2)ll;2(q)- Then,

d(As(¥2), As(¥1)) < C(s™Pa+ B*cP)d(¥2, 1), VY1, Y2 € C(8) (21)

e Fors> sy, re0,1],r#1/2and (up, u1) € H, there exists a constant C; > 0
independent of s such that

v + 572yl oo 0, Ta2()) + S 2NVt os (0,711 (52))

12(x)

<Cr (Sris/zHl’f( ez, mH-r2)) + 5_1/2“P(O)U0“L2(Q) +52)1p(0)tn HH*1(Q)) .
(22)

HPY”LZ +s71/2

nw1/2

e Lety;, ¥ € C(S). From (22),forall 0 < r < 1/2,
d(Ns(V2), As(¥1)) < Crs"=%/2||p(F(¥2) = F(F1))li2(0,7.1r(0))-
Letr =3/2 — p > 0. There exists 1 < g < 2 such that L9(Q2) < H~"(2). We then

have
d(As(¥2), As(1)) < Crs™Pllp(F(V2) — F(71))l 20, ;19(0))-

Approximation of exact controls



A small piece of the proof

d(As(¥2): As(y1)) < Crs™Pllp(f(¥2) — F(Y1)ll2(0,7:9(0))-
But, for all (my, my) € R? there exists ¢ such that
f(my) = f(mp)| < |my — mp||f'(2)] < [my — mp|(a + 57 Inf. [€])
< Imy — ma|(ac+ B* Inf(|my| + |ma]))
and therefore, using that 0 < Inﬁ p < cPsP and that p = 3/2 — r, we get
d(As(¥2), As(¥1)) <Cs™Pll(a + B Inf (71| + [321))p(V2 — ¥4 Mz, 7:9(2))

<CsP| (e + B* I (1¥1] + [V2D) | oo (0, 7:12(02)) A (V2s 1)

<Cs™P(a+ B*cPsP + B[ Inf (p(1¥1] + 1¥21)))llLo 0, 7:La()) ) A (V2 1)
(23)
with a such that 1/qg = 1/2 + 1/a. Now, using that, fore = inf{%, g}

108 (p(171] + [¥21)) o= 0, T2a(y) < C(I1(0¥1)° oo (0, iea(e)) + 11(0¥2)% o= (0, TiLa()))
S (||Py1 ”LOO(O,T;LZ(Q)) + ”p?ZHioo(o’T;LZ(Q))) < CsP

we infer that

d(As(¥2), As(11)) < C(s™Pa + B*c?)d(¥2, 11)- (24)




Numerical illustration - 1d case - boundary control

Vit — Yax — 5y(1 +1n%/2(2+y])) =0 in (0,1) x (0,2.5),
y(0,))=0, y(1,))=v in (0,2.5),
(y(,O),yt(,O)) = (2OSin(7I'X),0) inQ,

102

0 10 20 30 40 50
k
2(8)yicr1 =Skl 2,
o)kl 2(qr)

Relative error ) w.r.t. iterations k.

(25)




Numerical illustration - 1d case - boundary con

y(@,1)

y(z,t)




A word about the discretization

Let P:= {w € C°([0, T]; H}(Q)) N C'([0, T]; L3(R)), Lw € L2(Q)} and

The optimal pair (y, v) for Js(z, u) = s [ p?|2|? dxdt + fSP%Q n2W =12 |u)? dxdt
and solution of

oy — Ay = —1(§) in Qr,
y=vir, in 8Q x (0, T), (26)
(¥(-,0),0:y(:,0)) = (to, ) inQ,

is givenby y := p~2Lw and v := sn?Wp 29, w where w € P is the unique solution of
the variational formulation

/p*ZLWdede—s/nz(t)\l»'(x)p’z(‘?,,w&,,zdxdt:
Q b

<1, 2(,0) >4-1(0) 11 (@) —/Quo z(-,0)dx @7

+ <02 >0, rm- @) 20, TR @) YZEP

(recall that Lw := wy — Aw)
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A word about the (space-time) discretization

Let Py, C P afinite conformal approximation of P.
Then, y, == p—2Lwy, and v, := sn°Vp 20, w, where wy, € Pp, is the unique solution of
the variational formulation

/p‘zLWhdexdt+s/nz(t)\ll(x)p_za,,whauzdxdt:
Q b

< w1, 20:0) > vy o) —/Quoz,(-,O)dx (28)

+< f(},\/)zz >L2(0,T;H*1(Q)),LQ(O,T;HA(Q))f Vz € Py

is a convergent approximation of (y, v): [|p($)(¥ — ¥n)ll;2(q,) — O and
le($)(v = vi)ll2(ap) — O-

Rk. This implies an approximation of the strong limit (y,, vi) of the sequence (yx, vk):

15 = vionll < lyse = yiell + Ik = Yinll




References for the wave equation

Least-squares approaches (Newton type linearization)
e Minch-Trélat. Constructive exact control of semilinear 1D wave equations by a
least-squares approach, SICON 2022

e Bottois-Lemoine-Minch. Constructive proof of the exact controllability for semi-linear
multi-dimensional wave equations, AMSA 2023

Zero order linearization and Carleman weights
e Bhandari-Lemoine-Miinch. Exact boundary controllability of semilinear 1D wave
equations through a constructive approach, MCSS 2023

o Claret-Lemoine-Munch. - Exact boundary controllability of semilinear wave
equations through a constructive approach, arxiv, 2023




References for the heat equation

Least-squares approaches (Newton type linearization)
e Lemoine, Marin-Gayte, Minch, Approximation of null controls for semilinear heat
equations using a least-squares approach, COCV, 2021

e Lemoine-Minch. Constructive exact control of semilinear 1D heat equations, MCRF
2023

Zero order linearization and Carleman weights
e Ervedoza-Lemoine-Mlnch. Exact controllability of semilinear heat equations through
a constructive approach, EECT 2023

e Bhandari-Lemoine-Munch. - Global boundary null controllability of one dimensional
semi-linear heat equation, DCDS, 2023




Heat eq. and least-squares approach

oy — Ay +1f(y)=vile in Qr,
y=0onX7, y(-,0)=upinQ,

Theorem (Lemoine, Miinch, 22)

Let T > 0 be given. Letd = 1. Assume that f € C'(R) satisfies f(0) = 0 and
(H)) 3a>0, st |f(r)] < (a+pB*Ing|r])¥2, VreR

for some B* > 0 small enough and

= f'(a) — f'(b
(Hp) 3p € [0, 1] such that sup 1(a) = F(B)| < 400

a,beR la— blP

a#b
Then, for any uy € H(} (£2), one can construct a sequence (y, Vk)ken converging
strongly to a controlled pair for (30) satisfying y(T) = 0. Moreover, after a finite
number of iterations, the convergence is of order at least 1 + p.

3

3Lem0ine, Minch, Constructive exact control of semilinear 1D heat equations. MCRF2022
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Heat eq. and zero order linearization/Carleman setting

{azy—Ay—|—f(y)v1Lu in Qr, (30)

y=0onXr, y(,0)=upin,

Theorem (Ervedoza-Lemoine-Miinch 2022, Bandhari-Lemoine-Miinch, 2023)

Let T > 0 be given and d < 5. Assume that there exists 5* > 0 such that if f € C'(R)
satisfies f(0) = 0 and

(Hy)) 3a >0, st |f/(r)] <a+p8In°"2|r, VreR
Then, for any initial state uy € L°>°(2), the controlled sequence (yy, Vk)ken+ Solution of

OtYk+1 — DYkt = Vi1 1w — F(¥k) in Qr,
Y41 =0 inoQ x (0, T), (31)
Yi+1(5,0) = tg in,

optimal for the cost Js(y. v) := s [q p2(s)y? + fOTfW, p3(s)v? converges strongly to a
controlled pair (y, v) in L2(Q7) x L2(qgt) for the system (33).

The convergence holds with a linear rate for the norm ||p(s) - Il .2(q,) + 1P1(S) - Il 20, 1)
and s is chosen sufficiently large depending on ||Up|| Lo (q)-

v




Numerical illustration for the 1d heat equation and distributed control

¥t — yax — 5y(1+1n®2(2 4 |y])) = 1(0.2,0.8)(X) v in (0,1) x (0,0.5),

y(0,-)=y(1,)=0 in (0,0.5), (32)
y(-,0) = 10sin(x) in (0,1),

109

102

104

10

0 10 20 30 40 50

k
o () Vi1 =il 2(apy

Relative error
TPo(8)il 2,y

w.r.t. k for s € {1,2,8,4}.




Numerical illustration for the 1d heat equation and distributed control
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nd boundary control

Controlled solutions from the boundary with v € {0.3,0.5}.
Ye— vy —25y(1+ 022+ |y))) =0  inQr,
y(0,-)=0, y(1,-)=v in (0, T), (33)
y(-,0) = 97100()(70.7)2 inQ,




Main conclusion

For the semilinear wave/heat equations

{8[(,)y—Ay+f(y)_O (34)

+ initial conditions and boundary conditions

assuming mainly f € C'(R) and the growth assumption

!
36 > O such that_im ()]

im gy =5 PE©2)

one can now construct non trivial sequences (y, Vk)ken converging strongly to a
state-control pair for the semilinear equation.
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Extension to Inverse problems !?

Inverse problem: given an observation y, ops € L2(T x (0, T)), reconstruct y solution of

Oy — Ay +f(y) =0, inQ x (0, T),
Y =0indQ x (0, T) (35)
(y(,0), y1(-,0)) = (o, uy) in Q2

suchthat 9y y 1=y, obs ON O x (0, T).

Linearization + Least-squares approach : for any
ze Y= {ye C(0,T;Hj(Q)) N C' ([0, T], (), p(s) (v — Ay) € L2(Q)},
e define As : z — y where (y, ¢) solves the (well-posed) mixed formulation

1
su inf ( =1p(8)(y. — )|, 4 < b, p(8)(Bry — Ay + f(2)) > )
¢€szor)yey(2np( )Uats — 002+ < 6. 9(8)(On — By +1(2)) > 120

(for some p(s) > 0in Qr well chosen)
e prove that if f does not grow too fast at infinity and s large enough then As is a
contraction .....
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THANK YOU VERY MUCH FOR YOUR ATTENTION
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