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General framework and objective

GIVEN some semilinear heat/wave equation{
∂t(t)y −∆y + f (y) = v1ω , in QT := Ω× (0,T )

y = 0 in ∂Ω× (0,T ) + initial conditions
(1)

or {
∂t(t)y −∆y + f (y) = 0, in QT := Ω× (0,T ),

y = v1Γ in ∂Ω× (0,T ) + initial conditions
(2)

ASSUME that there exist control v and T > 0 such that (y(t), yt (t)) = (0, 0) forall
t ≥ T .

Litterature Lasiecka-Triggiani’91, Zuazua’93, Fernandez-Cara’00, Barbu’00,
Li-Zhang’01, Coron-Trelat’06, Dehman-Lebeau’09, Joly-Laurent’14, Fu-Lu-Zhang’19,
Friedman’19, .....

FIND a non trivial sequence (yk , vk )k∈N such that (yk , vk )→ (y , v) as k →∞, with
(y , v) a controlled pair for (1) or (2)?

! Non trivial question since in many situations, proofs of controllability are based on
non constructive fixed point arguments.
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One numerical illustration of controlled solution for the 1d wave equation
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Controlled solution (from the boundary)
ytt − yxx − 3y(1 + ln3/2(2 + |y |)) = 0 in (0, 1)× (0, 2.5),

y(0, ·) = 0, y(1, ·) = v in (0, 2.5),

(y(·, 0), yt (·, 0)) = (10 sin(πx), 0) in (0, 1).

(3)

How do we get such control v ????
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Closed connection between control and inverse problems

There are strong connections between
• Exact Controllability problem: find v ∈ L2 such that

∂tt y −∆y + f (y) = 0, in Ω× (0,T ),

y = v1Γ in ∂Ω× (0,T )

(y(·, 0), yt (·, 0)) = (u0, u1) in Ω

(4)

such that (y(·,T ), yt (·,T )) = (z0, z1) in Ω.

• Inverse problem: given a "good" observation yν,obs ∈ L2(Γ× (0,T )), reconstruct y
solution of 

∂tt y −∆y + f (y) = 0, in Ω× (0,T ),

y = 0 in ∂Ω× (0,T )

(y(·, 0), yt (·, 0)) = (u0, u1) in Ω

(5)

such that ∂νy := yν,obs on Γ× (0,T ).
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The wave and heat semilinear equations : known results and claim

For the semilinear wave/heat equations{
∂t(t)y −∆y + f (y) = 0

+ initial conditions and boundary conditions
(6)

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true
under the following asymptotic condition on f ∈ C1(R)

∃β > 0 such that lim sup
r→∞

|f (r)|
r lnp(r)

≤ β, p ∈ (0, 2)

obtained from non constructive Schauder fixed point arguments [Zuazua’93,
Zuazua-Fernandez-Cara’00, Barbu’00, Zhang’07, ....]

CLAIM Under the following assumption,

∃β > 0 such that lim sup
r→∞

|f ′(r)|
lnp(r)

≤ β, p ∈ (0, 2)

one can construct non trivial sequences (yk , vk )k∈N converging strongly to a
state-control pair for the semilinear equation
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Rk: Lack of contraction of the Zuazua’s operator

Exact controllability in Zuazua’93 1 based on a Leray Schauder fixed point argument:
Let Λ : L∞(QT )→ L∞(QT ) and y := Λ(ξ) is a controlled solution with the control
function vξ (of minimal L2-norm)


∂tt y − ∂xx y + y f̂ (ξ) = −f (0) + vξ1ω in QT ,

y = 0 on ΣT ,

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω,

f̂ (r) :=


f (r)− f (0)

r
if r 6= 0

f ′(0) if r = 0
(7)

satisfying (y(·,T ), ∂t y(·,T )) = (z0, z1).

Assume ω = (l1, l2), T > 2 max(`1, 1− `2), f ∈ C1 and that lim sup|r|→∞
|f (r)|
|r| ln2 |r| < β

for some β small enough.

Then, Λ has a fixed point. In particular,

‖Λ(ξ)‖∞ ≤ C
(
‖u0, u1‖V + ‖f (0)‖2

)
(1 + ‖ξ‖∞)(1+C)

√
β︸ ︷︷ ︸

e

√
‖f̂ (ξ)‖L∞(QT )

, ∀ξ ∈ L∞(QT ).

but Λ is not contracting in general. The sequence {yk+1}k given by yk+1 = Λ(yk ) is
bounded but not convergent.

1
E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré

Anal. Non Linéaire
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Same method for the wave and heat equation

Assuming

∃β > 0 such that lim
r→∞

sup
|f ′(r)|
lnp(r)

≤ β, p ∈ (0, 2)

we design convergent sequences (yk , vk ) from two different approaches :

Method 1 : Least-squares approaches (Newton type linearization)

yk+1,t(t) −∆yk+1 + f ′(yk )yk+1 = vk+11ω − f ′(yk )yk+1 + f (yk ), k ≥ 0

where (yk+1, vk+1) is the optimal state-control pair for the cost

J(y , v) = ‖v‖2
L2(qT )

Method 2: Zero order linearization and Carleman weights

yk+1,t(t) −∆yk+1 = vk+11ω − f (yk ), k ≥ 0

where (yk+1, vk+1) is the optimal null state-control pair for the cost

J(y , v) = ‖ρ(s)v‖2
L2(qT )

+ s‖ρ0(s)y‖2
L2(qT )

involving Carleman weights ρ(x , t , s), ρ0(x , t , s) and parameter s > 0
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Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

inf
(y,v)∈A

E(y , v), E(y , v) :=
1
2

∥∥∂tt y −∆y + f (y)− v1ω
∥∥2

L2(QT )
(8)

A :=
{

(y , v) ∈ H | (y(·, 0), ∂t y(·, 0)) = (u0, u1), (y(·,T ), ∂t y(·,T )) = (0, 0) in Ω
}
,

H :=
{

(y , v) ∈ L2(QT )× L2(qT ) | ∂tt y −∆y ∈ L2(QT ), y = 0 on ΣT ,

(y(·, 0), ∂t y(·, 0)) ∈ V
}

Proposition

∀(y , v) ∈ A,
√

E(y , v) ≤ Ce
C‖f ′(y)‖2

L∞(Ld )‖E ′(y , v)‖A′0 .

Consequence:
Any critical point (y , v) ∈ A of E is a zero of E , and thus is a pair solution of the
controllability problem. Moreover:

given any sequence (yk , vk )k∈N in A such that ‖E ′(yk , vk )‖A′0 −→k→+∞
0 and such that

‖f ′(yk )‖L∞(Ld ) is uniformly bounded, we have E(yk , vk ) −→
k→+∞

0.

! A minimizing sequence for E cannot be stuck in a local minimum, even though E
fails to be convex (it has multiple zeros).
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A minimizing sequence for E

Let the sequence (yk , vk )k∈N in A defined by


(y0, v0) ∈ A
(yk+1, vk+1) = (yk , vk )− λk (Yk ,Vk ) ∀k ∈ N

λk = argmin
λ∈[0,1]

E
(
(yk , vk )− λ(Yk ,Vk )

) (9)

where (Yk ,Vk ) ∈ A0 is the solution of minimal control norm of


∂tt Yk −∆Yk + f ′(yk )Yk = Vk 1ω + (∂tt yk −∆yk + f (yk )− vk 1ω) in QT ,

Yk = 0 on ΣT ,

(Yk (·, 0), ∂t Yk (·, 0)) = (0, 0) in Ω.

(10)

Lemma ∀k ≥ 0,E ′(yk , vk ) · (Yk ,Vk ) = 2E(yk , vk )

Theorem (Münch-Trélat 2022, Bottois-Lemoine-Münch 2023)

Assume that f ′′ ∈ L∞(R) and that lim supr→∞
|f ′(r)|
lnp(r)

is small enough.
for any (y0, v0) ∈ A, (yk , vk )→ (y , v) a controlled pair for the nonlinear wave eq.
The convergence of these sequences is at least linear, and is at least of order 2 after a
finite number of iterations.
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Rk. Link with a Damped Newton method

The sequence (yk , vk )k≥0 coincides with the one associated to a damped Newton
method to find a zero of the map F : A → L2(QT ) defined by
F(y , v) := (∂tt y −∆y + f (y)− v1ω)

(y0, v0) ∈ A
DF(yk , vk ) · ((yk+1, vk+1)− (yk , vk )) = −λkF(yk , vk ), k ≥ 0

λk = argmin
λ∈[0,1]

‖F
(
(yk , vk )− λDF−1(yk , vk )F(yk , vk )

)
‖L2(QT )

(11)

For λk = 1, the least-squares algorithm coincides with the Newton algorithm applied to
F (explaining the quadratic convergence property).

Optimizing the parameter λk ensures the global convergence of the algorithm

Typical evolution of
√

2E(yk , fk ) (•, left axis) and λk (?, right axis) w.r.t k ;Arnaud Münch Approximation of exact controls



Numerical experiments in the 2d case

We consider a two-dimensional case for which Ω = (0, 1)2 and T = 3.


∂tt y −∆y − 10 y ln1/2(2 + |y |) = v1ω in QT := Ω× (0,T ),

y = 0 on ΣT := ∂Ω× (0,T ),

(y(·, 0), ∂t y(·, 0)) = (100 sin(πx1) sin(πx2), 0) in Ω,

(12)

Control domain ω ⊂ Ω = (0, 1)2 (black part).
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Numerical experiments in the 2d case

]iterate k
√

2E(yk , vk )
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖vk−vk−1‖L2
χ(qT )

‖vk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖vk‖L2
χ(qT ) λk

0 7.44× 102 – – 38.116 732.22 1
1 1.63× 102 1.79× 100 9.30× 10−1 58.691 667.602 1
2 1.62× 100 8.42× 10−2 1.41× 10−1 60.781 642.643 1
3 1.97× 10−3 1.21× 10−3 4.66× 10−3 60.745 643.784 1
4 5.11× 10−10 6.43× 10−7 2.63× 10−6 60.745 643.785 –

( ) ‖y4(·, t)‖L2(Ω) ; ( )
‖y0(·, t)‖L2(Ω) ; ( ) ‖y(·, t ; 0)‖L2(Ω).

( ) ‖v4(·, t)‖L2
χ(ω) ; ( )

‖v0(·, t)‖L2
χ(ω).
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Method 2 (Boundary controllability case)

{
ytt −∆y + f (y) = 0 in QT ,

y = v 1Γ0 in ∂Ω× (0,T ), (y(·, 0), yt (·, 0)) = (u0, u1) in Ω,
(13)

Theorem (Bhandari-Lemoine-Münch 2022, Claret-Lemoine-Münch, 2023)

Assume T > 0 and Γ0 ⊂ ∂Ω large enough. Assume that there exists β? > 0 such that
if f ∈ C1(R) satisfies

(H′2) ∃α > 0, s.t. |f ′(r)| ≤ α+ β? lnp
+ |r |, ∀r ∈ R, 0<p<3/2

then, for any initial state (u0, u1) in H := L2(Ω)× H−1(Ω), the controlled sequence
(yk , vk )k∈N∗ solution of


∂tt yk+1 −∆yk+1 = −f (yk ) in QT ,

yk+1 = vk+1 1Γ0 in ∂Ω× (0,T ),

(yk+1(·, 0), ∂t yk+1(·, 0)) = (u0, u1) in Ω,

(14)

minimizer of a functional Js(y , v) := s
∫

QT
ρ2(s)y2 +

∫ T
0

∫
Γ0
η−2ρ2

1(s)v2

converges strongly to a controlled pair (y , v) in(
C0([0,T ]; L2(Ω)) ∩ C1([0,T ]; H−1(Ω))

)
× H1

0 (0,T ) for the semilinear eq.
The convergence holds with a linear rate for the norm ‖ρ(s) · ‖L2(QT ) + ‖ρ1(s) · ‖L2(0,T )

and s ≥ max(s0,C ln ‖u0, u1‖H ).
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Contraction of the operator within a suitable class

• For any s ≥ s0, we introduce the class C(s), defined as the closed convex subset of
L2(QT )

C(s) :=
{

y ∈ L∞(0,T ; L2(Ω)) : ‖ρy‖L2(Q) ≤ s, ‖ρy‖L∞(0,T ;L2(Ω)) ≤ s3
}
. (15)

and assume that that the nonlinear function f ′ ∈ C0(R) in (33) satisfies the logarithmic
assumption for some β? positive precisely chosen later.
•We introduce the operator

Λs : C(s) 7→ C(s), Λs(ŷ) = y (16)

where y solves 
ytt −∆y = −f (ŷ) in QT ,

y = v 1Γ0 on Σ,

(y(·, 0), yt (·, 0)) = (u0, u1) in Ω,

(17)

satisfies (y(·,T ), yt (·,T )) = (z0, z1) in Ω, and (y , v) corresponds to the minimizer of a
functional Js

Js(z, u) := s
∫

Q
ρ2|z|2 dxdt +

∫ T−δ

δ

∫
∂Ω
η−2Ψ−1ρ2|u|2 dxdt (18)

over the set{
(z, u) ∈ L2(QT )× L2(0,T ) solution of (17) with z(·,T ) = zt (·,T ) = 0 in Ω

}
.
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Fundamental tool : Carleman inequality with appropriate parametrized weights

ρ(x , t) := e−sφ(x,t) ∀(x , t) ∈ Q. (19)

Remark that e−cs ≤ ρ ≤ e−s in Q with c := ‖φ‖L∞(Q) and ρ, ρ−1 ∈ C∞(Q).
Let then P := {w ∈ C0([0,T ]; H1

0 (Ω)) ∩ C1([0,T ]; L2(Ω)), Lw ∈ L2(Q)}

Proposition (Baudouin, De Buhan, Ervedoza, 2013)

Assume T > 0 and Σ ⊂ ∂Ω× (0,T ) large enough. There exists s0 > 0, λ > 0 and
C > 0, such that for any s ≥ s0 and every w ∈ P

s
∫

Q
ρ−2(|wt |2 + |∇w |2) dxdt + s3

∫
Q
ρ−2|w |2 dxdt

+ s
∫

Ω
ρ−2(0)(|wt (·, 0)|2 + |∇w(·, 0)|2) dx + s3

∫
Ω
ρ−2(0)|w(·, 0)|2 dx

≤ C
(∫

Q
ρ−2|wtt −∆w |2 dxdt + s

∫
Σ
η2(t)Ψ(x)ρ−2|∂νw |2 dxdt

)
. (20)

2

2Lucie Baudouin, Maya De Buhan, and Sylvain Ervedoza, Global Carleman
estimates for waves and applications. Comm. Partial Differential Equations, 2013.
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A small piece of the proof

Lemma

Assume there exists 0 ≤ p < 3/2 such that |f ′(r)| ≤ α+ β lnp
+ |r | with β > 0 small

enough. Take s ≥ max(s0, ln(‖u0, u1‖H )). Let d(y , z) := ‖ρ(s)(y − z)‖L2(Q). Then,

d(Λs(ŷ2),Λs(ŷ1)) ≤ C(s−pα+ β?cp)d(ŷ2, ŷ1), ∀ŷ1, ŷ2 ∈ C(s) (21)

• For s ≥ s0, r ∈ [0, 1], r 6= 1/2 and (u0, u1) ∈ H, there exists a constant Cr > 0
independent of s such that

‖ρy‖L2(Q) + s−1/2
∥∥∥∥ ρ

ηΨ1/2
v
∥∥∥∥

L2(Σ)

+ s−2‖ρy‖L∞(0,T ;L2(Ω)) + s−2‖(ρy)t‖L∞(0,T ;H−1(Ω))

≤ Cr

(
sr−3/2‖ρf (ŷ)‖L2(0,T ;H−r (Ω)) + s−1/2‖ρ(0)u0‖L2(Ω) + s−1/2‖ρ(0)u1‖H−1(Ω)

)
.

(22)
• Let ŷ1, ŷ2 ∈ C(s). From (22), for all 0 ≤ r < 1/2 ,

d(Λs(ŷ2),Λs(ŷ1)) ≤ Cr sr−3/2‖ρ(f (ŷ2)− f (ŷ1))‖L2(0,T ;H−r (Ω)).

Let r = 3/2− p > 0. There exists 1 ≤ q < 2 such that Lq(Ω) ↪→ H−r (Ω). We then
have

d(Λs(ŷ2),Λs(ŷ1)) ≤ Cr s−p‖ρ(f (ŷ2)− f (ŷ1))‖L2(0,T ;Lq (Ω)).
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A small piece of the proof

d(Λs(ŷ2),Λs(ŷ1)) ≤ Cr s−p‖ρ(f (ŷ2)− f (ŷ1))‖L2(0,T ;Lq (Ω)).

But, for all (m1,m2) ∈ R2 there exists c̄ such that

|f (m1)− f (m2)| ≤ |m1 −m2||f ′(c̄)| ≤ |m1 −m2|(α+ β? lnp
+ |c̄|)

≤ |m1 −m2|(α+ β? lnp
+(|m1|+ |m2|))

and therefore, using that 0 ≤ lnp
+ ρ ≤ cpsp and that p = 3/2− r , we get

d(Λs(ŷ2),Λs(ŷ1)) ≤Cs−p‖(α+ β? lnp
+(|ŷ1|+ |ŷ2|))ρ(ŷ2 − ŷ1)‖L2(0,T ;Lq (Ω))

≤Cs−p‖(α+ β? lnp
+(|ŷ1|+ |ŷ2|))‖L∞(0,T ;La(Ω)) d(ŷ2, ŷ1)

≤Cs−p(α+ β?cpsp + β?‖ lnp
+(ρ(|ŷ1|+ |ŷ2|)))‖L∞(0,T ;La(Ω))

)
d(ŷ2, ŷ1)

(23)
with a such that 1/q = 1/2 + 1/a. Now, using that, for ε = inf{ 2

a ,
p
3 }

‖ lnp
+(ρ(|ŷ1|+ |ŷ2|))‖L∞(0,T ;La(Ω)) ≤ C

(
‖(ρŷ1)ε‖L∞(0,T ;La(Ω)) + ‖(ρŷ2)ε‖L∞(0,T ;La(Ω))

)
≤ C

(
‖ρŷ1‖εL∞(0,T ;L2(Ω))

+ ‖ρŷ2‖εL∞(0,T ;L2(Ω))

)
≤ Csp

we infer that
d(Λs(ŷ2),Λs(ŷ1)) ≤ C(s−pα+ β?cp)d(ŷ2, ŷ1). (24)
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Numerical illustration - 1d case - boundary control


ytt − yxx − 5y(1 + ln3/2(2 + |y |)) = 0 in (0, 1)× (0, 2.5),

y(0, ·) = 0, y(1, ·) = v in (0, 2.5),

(y(·, 0), yt (·, 0)) = (20 sin(πx), 0) in Ω,

(25)
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Relative error
‖ρ(s)yk+1−ρ(s)yk‖L2(QT )

‖ρ(s)yk‖L2(QT )
w.r.t. iterations k .
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Numerical illustration - 1d case - boundary control
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Controlled solution for s ∈ {2, 5, 9}.
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A word about the discretization

Let P := {w ∈ C0([0,T ]; H1
0 (Ω)) ∩ C1([0,T ]; L2(Ω)), Lw ∈ L2(Q)} and

The optimal pair (y , v) for Js(z, u) = s
∫

Q ρ
2|z|2 dxdt +

∫ T−δ
δ

∫
∂Ω η

−2Ψ−1ρ2|u|2 dxdt
and solution of 

∂tt y −∆y = −f (ŷ) in QT ,

y = v 1Γ0 in ∂Ω× (0,T ),

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω,

(26)

is given by y := ρ−2Lw and v := sη2Ψρ−2∂νw where w ∈ P is the unique solution of
the variational formulation∫

Q
ρ−2LwLz dxdt + s

∫
Σ
η2(t)Ψ(x)ρ−2∂νw∂νz dxdt =

< u1, z(·, 0) >H−1(Ω),H1
0 (Ω) −

∫
Ω

u0 zt (·, 0) dx

+ < f (ŷ), z >L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω)), ∀z ∈ P

(27)

(recall that Lw := wtt −∆w)
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A word about the (space-time) discretization

Let Ph ⊂ P a finite conformal approximation of P.
Then, yh := ρ−2Lwh and vh := sη2Ψρ−2∂νwh where wh ∈ Ph is the unique solution of
the variational formulation∫

Q
ρ−2LwhLz dxdt + s

∫
Σ
η2(t)Ψ(x)ρ−2∂νwh∂νz dxdt =

< u1, z(·, 0) >H−1(Ω),H1
0 (Ω) −

∫
Ω

u0 zt (·, 0) dx

+ < f (ŷ), z >L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω)), ∀z ∈ Ph

(28)

is a convergent approximation of (y , v): ‖ρ(s)(y − yh)‖L2(QT ) → 0 and
‖ρ(s)(v − vh)‖L2(QT ) → 0.

Rk. This implies an approximation of the strong limit (y?, v?) of the sequence (yk , vk ):

‖y? − yk,h‖ ≤ ‖y? − yk‖+ ‖yk − yk,h‖
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References for the wave equation

Least-squares approaches (Newton type linearization)
• Münch-Trélat. Constructive exact control of semilinear 1D wave equations by a
least-squares approach, SICON 2022

• Bottois-Lemoine-Münch. Constructive proof of the exact controllability for semi-linear
multi-dimensional wave equations, AMSA 2023

Zero order linearization and Carleman weights
• Bhandari-Lemoine-Münch. Exact boundary controllability of semilinear 1D wave
equations through a constructive approach, MCSS 2023

• Claret-Lemoine-Münch. - Exact boundary controllability of semilinear wave
equations through a constructive approach, arxiv, 2023
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References for the heat equation

Least-squares approaches (Newton type linearization)
• Lemoine, Marin-Gayte, Münch, Approximation of null controls for semilinear heat
equations using a least-squares approach, COCV, 2021

• Lemoine-Münch. Constructive exact control of semilinear 1D heat equations, MCRF
2023

Zero order linearization and Carleman weights
• Ervedoza-Lemoine-Münch. Exact controllability of semilinear heat equations through
a constructive approach, EECT 2023

• Bhandari-Lemoine-Münch. - Global boundary null controllability of one dimensional
semi-linear heat equation, DCDS, 2023
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Heat eq. and least-squares approach

{
∂t y −∆y + f (y) = v1ω in QT ,

y = 0 on ΣT , y(·, 0) = u0 in Ω,
(29)

Theorem (Lemoine, Münch, 22)

Let T > 0 be given. Let d = 1. Assume that f ∈ C1(R) satisfies f (0) = 0 and

(H′1) ∃α > 0, s.t. |f ′(r)| ≤ (α+ β? ln+ |r |)3/2, ∀r ∈ R
for some β? > 0 small enough and

(Hp) ∃p ∈ [0, 1] such that sup
a,b∈R

a 6=b

|f ′(a)− f ′(b)|
|a− b|p

< +∞.

Then, for any u0 ∈ H1
0 (Ω), one can construct a sequence (yk , vk )k∈N converging

strongly to a controlled pair for (30) satisfying y(T ) = 0. Moreover, after a finite
number of iterations, the convergence is of order at least 1 + p.

3

3
Lemoine, Münch, Constructive exact control of semilinear 1D heat equations. MCRF 2022
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Heat eq. and zero order linearization/Carleman setting

{
∂t y −∆y + f (y) = v1ω in QT ,

y = 0 on ΣT , y(·, 0) = u0 in Ω,
(30)

Theorem (Ervedoza-Lemoine-Münch 2022, Bandhari-Lemoine-Münch, 2023)

Let T > 0 be given and d ≤ 5. Assume that there exists β? > 0 such that if f ∈ C1(R)
satisfies f (0) = 0 and

(H′2) ∃α > 0, s.t. |f ′(r)| ≤ α+ β? ln
3/2
+ |r |, ∀r ∈ R

Then, for any initial state u0 ∈ L∞(Ω), the controlled sequence (yk , vk )k∈N∗ solution of
∂t yk+1 −∆yk+1 = vk+11ω − f (yk ) in QT ,

yk+1 = 0 in ∂Ω× (0,T ),

yk+1(·, 0) = u0 in Ω,

(31)

optimal for the cost Js(y , v) := s
∫

QT
ρ2(s)y2 +

∫ T
0

∫
ω ρ

2
0(s)v2 converges strongly to a

controlled pair (y , v) in L2(QT )× L2(qT ) for the system (33).
The convergence holds with a linear rate for the norm ‖ρ(s) · ‖L2(QT ) + ‖ρ1(s) · ‖L2(0,T )

and s is chosen sufficiently large depending on ‖u0‖L∞(Ω).

Arnaud Münch Approximation of exact controls



Numerical illustration for the 1d heat equation and distributed control


yt − yxx − 5y(1 + ln3/2(2 + |y |)) = 1(0.2,0.8)(x) v in (0, 1)× (0, 0.5),

y(0, ·) = y(1, ·) = 0 in (0, 0.5),

y(·, 0) = 10 sin(πx) in (0, 1),

(32)
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Relative error
‖ρ0(s)(yk+1−yk )‖L2(QT )

‖ρ0(s)yk‖L2(QT )
w.r.t. k for s ∈ {1, 2, 3, 4}.
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Numerical illustration for the 1d heat equation and distributed control

The distributed control v in (0, 1)× (0, 0.5) for s ∈ {2, 3, 4}.

The controlled solution in (0, 1)× (0, 0.5) for s ∈ {2, 3, 4}.
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Numerical illustration for the 1d heat equation and boundary control
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Controlled solutions from the boundary with ν ∈ {0.3, 0.5}.
yt − νyxx − 2.5y(1 + ln3/2(2 + |y |)) = 0 in QT ,

y(0, ·) = 0, y(1, ·) = v in (0,T ),

y(·, 0) = e−100(x−0.7)2
in Ω,

(33)
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Main conclusion

For the semilinear wave/heat equations{
∂t(t)y −∆y + f (y) = 0

+ initial conditions and boundary conditions
(34)

assuming mainly f ∈ C1(R) and the growth assumption

∃β > 0 such that lim
r→∞

|f ′(r)|
lnp(r)

≤ β, p ∈ (0, 2)

one can now construct non trivial sequences (yk , vk )k∈N converging strongly to a
state-control pair for the semilinear equation.
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Extension to Inverse problems !?

Inverse problem: given an observation yν,obs ∈ L2(Γ× (0,T )), reconstruct y solution of


∂tt y −∆y + f (y) = 0, in Ω× (0,T ),

y = 0 in ∂Ω× (0,T )

(y(·, 0), yt (·, 0)) = (u0, u1) in Ω

(35)

such that ∂νy := yν,obs on ∂Γ× (0,T ).

Linearization + Least-squares approach : for any
z ∈ Y := {y ∈ C(0,T ; H1

0 (Ω)) ∩ C1([0,T ], L2(Ω)), ρ(s)(ytt −∆y) ∈ L2(Q)},
• define Λs : z → y where (y , φ) solves the (well-posed) mixed formulation

sup
φ∈L2(QT )

inf
y∈Y

(
1
2
‖ρ(s)(yν,obs − ∂νy)‖2

L2(Q)
+ < φ, ρ(s)(∂tt y −∆y + f (z)) >L2(Q)

)

(for some ρ(s) > 0 in QT well chosen)
• prove that if f ′ does not grow too fast at infinity and s large enough then Λs is a
contraction .....

THANK YOU VERY MUCH FOR YOUR ATTENTION
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