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We address the approximation of null controls for a semi-linear
wave equation

Yo — Ay +f(y)=vi,,  Q2x(0,7) (1)
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We address the approximation of null controls for a semi-linear
wave equation

Yo — Ay +f(y)=vi,,  Q2x(0,7) (1)

Part 1: Find a sequence (yx, Vk)ken converging strongly to a
control-state pair for (1)?

Typically, (v, vk) solves a linear controllability problem for

Zu—Az+Az=ul,+B, Qx(0,T) 2)
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We address the approximation of null controls for a semi-linear
wave equation

Yo — Ay +f(y)=vi,,  Q2x(0,7) (1)

Part 1: Find a sequence (yx, Vk)ken converging strongly to a
control-state pair for (1)?

Typically, (v, vk) solves a linear controllability problem for

Zu—Az+Az=ul,+B, Qx(0,T) 2)

Part 2: for each k, find a convergent numerical approximation
(Ykn, Vi) n>0 OF (Y, i) for (2)7?

RK. [[v = Vil < v = vkl + [Ivk = Vil
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Semilinear wave equation

eletQCR,wWCQT>0 Qr:=02x(0,7T),qr :=wx(0,T).

8,,yfAy+f(y): vi, in QT,
y=0 onXxr, 3)
(y('vo)vafy('vo)) = (u07 U1) in Q,

o (Up,ur) € V= H}(Q) x L2(Q), v € L2(qr). f € C'(R; R).
o |f(r)] < C(1+|r)IN(2+|r)VreR
ey €CO([0, T]; HY(Q)) nc([0, T]; L3()) is unique.

Definition

(8) is null controllable in time T IFF for any (ug, u1) € V, 3 a control function
v € L3(qgr) such that (y(-, T), &y (-, T)) = (0,0).

e
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Semilinear wave equation

eletQCR,wWCQT>0 Qr:=02x(0,7T),qr :=wx(0,T).

8,,yfAy+f(y): vi, in QT,
y=0 onXxr, 3)
(y('vo)vafy('vo)) = (u07 U1) in Q,

o (Up,ur) € V= H}(Q) x L2(Q), v € L2(qr). f € C'(R; R).
o |f(r)] < C(1+|r)IN(2+|r)VreR
ey €CO([0, T]; HY(Q)) nc([0, T]; L3()) is unique.

Definition

(8) is null controllable in time T IFF for any (ug, u1) € V, 3 a control function
v € L3(qgr) such that (y(-, T), &y (-, T)) = (0,0).

Theorem (Zuazua’93, Zhang 00, ....)

If T and w are large enough and if f does not grow too fast at infinity

(o]
(H1) limsupj o AT <p

(for some B > 0 small enough) then (3) is exactly controllable in time T.

A\

Space-time method for controllability problems (toward a space



Part 1: Construction of a sequence (yk, Vk)ken CONverging
strongly to a solution of the semilinear pb.

e Bottois, Lemoine, M. Constructive exact controls for semi-linear wave equations,
arxiv.

e Trélat, M. Constructive exact control of semilinear 1D wave equations by a
least-squares approach, SICON 2022

e Bhandari, Lemoine, M. Exact boundary controllability of 1D semilinear wave
equations through a constructive approach, AIMS EECT 2022

e Lemoine, M, Sue. Exact boundary controllability of semilinear wave equations
through a constructive approach, arxiv.
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Semilinear wave equation: Non constructive argument

The controllability proof given in Zuazua’93, Zhang'00 is based on a Leray Schauder

fixed point argument.
Let A: L%°(0, T; L9(Q)) — L>(0, T; L9(RQ)), where y := A(€) is a controlled solution
with the control v, of the linear problem (assuming f(0) = 0)

f
3{1}/*A}’+}’% =Vvel, inQr,

y=0 on X7, (4)
(y('vo)vaty('ao)):(U07U1) in Q7
(v(, T),0y(-, T)) = (0,0) in Q.

Then, A has a fixed point.

Useless in practice, since A is not contracting: the Picard sequence yx.1 = A(yk) is
bounded but not convergent.
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A first constructive method - Least-squares approach

We consider the Hilbert space

H = {(}’, v) € L2(Qr) x L3(gr) | Oyy — Ay € L3(Qr), y=0on X7,
(y(70)»81‘y(’0)) € V}
and the subspace
A= {(y7 v)eH | (v(-,0),8y(-,0)) = (ug, u1), (¥(-, T),dy(-, T)) = (0,0) in Q}

We define the least-squares functional E : A — R by

1
E(y7 V) = EHaﬂ‘yf Ay+ f(y) - V‘IWHiZ(QT)

and consider the nonconvex minimization problem

inf  E(y, 5
o (v, v) (5)
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First property of the least-squares functional E

Proposition
Y(y,v) € A,

VE(y,v) < CeVITWll || E'(y, v)]| 4. ®)
Consequence:

Any critical point (y,v) € Aof E (i.e., E’'(y,v) = 0) is a zero of E, and thus is a pair
solution of the controllability problem. Moreover:

given any sequence (Y, Vk)ken in A such that | E' (yk, Vk)HA(, . 7 0 and such that
—+00

[1f'(¥k) |l is uniformly bounded, we have E(yy, vk) Pl 0.
—+oo

Thanks to this instrumental property, a minimizing sequence for E cannot be stuck in a
local minimum, even though E fails to be convex (it has multiple zeros).
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Strong convergence of the LS method

(yk+17 Vk+1) = (yk7 Vk) — >\k(Yk7 Vk) where (ka Vk) solves

O Yk — AVi + /(i) Yk = Vil + Oy — Ay + (k) — vi1w)  in Qr,
Yk =0 on ZT, (7)
(Yk('7o)7atyk('vo)) = (07 0)7 (Yk('7 T)valyk('v T)) = (07 O) in Qv

and Xk € (0, 1) the optimal (damped Newton) parameter.
Here, V4 is the control of minimal L?(qg7)-norm.

Space-time method for controllability problems (toward a space



Strong convergence of the LS method

(yk+17 Vk+1) = (/Vk7 Vk) — >\k(Yk7 Vk) where (ka Vk) solves

O Yk — AVi + /(i) Yk = Vil + Oy — Ay + (k) — vi1w)  in Qr,
Yk =0 on 27'7 (7)
(Yk('7o)7atyk('70)) = (07 0)7 (Yk('7 T)valyk('v T)) = (07 O) in Qv

and Xk € (0, 1) the optimal (damped Newton) parameter.
Here, V4 is the control of minimal L?(qg7)-norm.

Theorem (M-Trélat 2021 (d = 1), Bottois-Lemoine-M 22 (d > 1))

Assume that T, w C Q C R? large enough and f Loc Lip satisfies
f(NI <a+BIn°(1+]r) VreRr ®)

For any (yo, Vo) € ‘A, the minimizing sequence (y, vk )ken for E converges strongly to
a state-control (y, v) for the nonlinear wave eq. The convergence is sur-linear after a
finite number of iterations.
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a second constructive method : simpler Linearization leading to contracting

prop.

We introduce the operator As : L>°(Q7) — L>=(Q7),

As(Y)=y
where y solves
yu — Ay = —£(y) in Qr,
y=0,y=viy in9Q x (0, T), ©)
(y('70)’yf("o)) = (Uo, U1) in,
(y(7 T),yt(-, T)) = (070) inQ,

and (y, v) corresponds to the minimizer of a functional Js

Js(y, v) ::s/ e /Fo/ (10)

p(8), p1(8) = e3¢(:D are Carleman weights; s > 0 is a Carleman parameter;
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a second constructive method : simpler Linearization leading to contracting

prop.

We introduce the operator As : L>°(Q7) +— L>=(Q7), As(Y) =y
where y solves

yi — Ay = —1(y) in Qr,
y=0,y=vlr, in9Q x (0, T), )
(,V(,O),,Vt(’o)) = (U07U1) il’lQ,
(Y(’T),yt(,T)) = (070) il’lQ,

and (y, v) corresponds to the minimizer of a functional Js

Js(y, v) ::s/ e /Fo/ (10)

p(8), p1(8) = e3¢(:D are Carleman weights; s > 0 is a Carleman parameter;

Theorem (Bhandari, Lemoine, M’ (d = 1), Lemoine Sue M’ (d > 1))

LetQ c RY; assume T, [y are large enough, and f Loc Lip satisfies
(N < a+B8In2(1 +|r]) VreR. (11)

If s > 0 is large enough, then s is contracting.

For any yo, The picard iterate y,1 = As(yx) converges to a controlled solution for the

Space-time method for ollability problems (toward a space-ti



Part 2: (Space-time Numerical) approximation of null controls
for linear wave equation

oy — Ay +Ay =vi,+ B in Qr, (12)

- control of minimal L2(g7) norm
inf J(y,v) = / vZ, (y,v) solves (12)
ar
- state-control pair with weighted cost :

nf v = [ B [ A () sotves (12)
Qr ar
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Part 2: (space-time Numerical) approximation of null controls
for linear wave equation

e Burman, Feizmohammadi, M, Oksanen. Space-time stabilized finite element
methods for a unique continuation problem subject to the wave equation, M2AN 2021

e Montaner, M. Approximation of controls for the linear wave equation: a first order
mixed formulation, AIMS MCRF 2019

e Cindea, M. A mixed formulation for the direct approximation of the control of minimal
L2-norm for linear type wave equations, Calcolo 2015

e Cindea, Fernandez-Cara, M, . Numerical controllability of the wave equation through
primal methods and Carleman estimates, ESAIM COCV 2013

e M, . A uniformly controllable and implicit scheme for the 1-D wave equation, ESAIM
M2AN 2005
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Boundary control of minimal L? norm

Minimize J(y, v 2/ [v|? ot
o

Subjectto (y,v) € C(¥o,y1: T)

(13)

where C(yp, y1; T) denotes the non-empty linear manifold

Cyo.y1: T) ={(y,v): v e 3o x (0, T)), ysolves (12) }.
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Boundary control of minimal L? norm

Minimize J(y, v 2/ [v|? ot
o

Subjectto (y,v) € C(¥o,y1: T)

(13)

where C(yp, y1; T) denotes the non-empty linear manifold

Cyo.y1: T) ={(y,v): v e 3o x (0, T)), ysolves (12) }.

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

inf Jy,v)=— min  J*(¢0,
et V) = 7 min (@0 01)
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Boundary control of minimal L? norm

Minimize J(y, v 2/ [v|? ot
o

Subjectto (y,v) € C(¥o,y1: T)

(13)

where C(yp, y1; T) denotes the non-empty linear manifold

Cyo.y1: T) ={(y,v): v e 3o x (0, T)), ysolves (12) }.

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

inf Jy,v)=— min  J*(¢0,
et V) = 7 min (@0 01)

1 071 10p)?
Miimize J*(0.) = 3 [ [ 8—“’\ do dt+ < (90, 01), (ouy) >
0

Subjectto (g, p1) € V= Ha(Q) x [2(Q) where Ly :=py— A¢p =0
(14)

Space-time method for controllability problems (toward a space



Negative Commutation diagram

The stable/consistant centered finite difference scheme with At < h:

_ AatYnat — DrYnat = 0,
(Sh,at) { (15)

+ Initial conditions and Boundary terms

produces a non discrete uniformly bounded and converging control under the condition
At < h.

(Sh.at Ynar) (8.y(x.1))
(h, At) = (0,0)

Discrete exact
controllability

(Vha) X V(1))
(h,At) — (0,0)

Exact controflability

Figure: Non commuting diagram associated to the scheme (S, a;) for At < h.
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lllustration of the lack of convergence of vj a¢

Yt —yxx =0 in Qr,
y(0,8) =0,y(1,8) = v(t) on (0, T), (16)
(y(ao)’aty(ao)) = (4X1 (0,1/2)(X)70) in Q,

The control of minimal L2(0, T) norm is v(t) = 2(1 — D1 /2,3/2) (D)

The corresponding controlled solution is

4x 0<x+1t<3,
yt) =9 2(x—t) —f<t-x<j3, x+t>1, (17)
0 elsewhere,

The initial condition of the adjoint solution is
(¢0, 1) = (0, =2x 1(0,1/2)(X)) € H'(R2) x H(R2), which gives:

—2xt 0<x+t<}, x>0,t>0,
(x=t% 1 1 3 1
5 T3 §SX+t<§, ?<Xft<2,
d(x, ) =4 2(x—1)1—1) S<x+t, —L<x—t (18)
(x+t=22 1 3 5 3 1
s 4l S extt<3, —d<x—t<-],
2x(2 — 1) x—t< -2




Usual scheme - control

Figure: Control P(vp)(t) vs. t € [0, T], At = 0.98h, T = 2.4 and
h=1/10,h=1/20,h = 1/30, h = 1/40.
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Minimization of J* w.r.t. ¢

We now replace the problem

. 107
Min (oo, 00) = 5 | [
0Jr,
Subjectto (wg, 1) € V = H}(Q) x L?(Q) where Lo=0

2

O
% do dt+ < yp, 01 > 2 *<,V1:<P0>H717,.,3

by the equivalent problem

. 1 /7
m/nJ(cp):E/o/r
0

Subjectto p € W := {90 L e CO0, T; Hi(Q)) N C'(0, T; LB(Q)), Lo = 0 € L3(Qr)
(20)

8@2

ED dodt+ < Yo, <pf('70) >2 _<y17§0('70)>H*17H&
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Minimization of J* w.r.t. ¢

We now replace the problem

1170 |0p |2
Min J* (0, =7// —
(w0, 01) = 5 oJr|aw

Subjectto (wg, 1) € V = H}(Q) x L?(Q) where Lo=0

do dt+ < yp, 01 > 2 *<,V1:<P0>H717,.,3 (19)

by the equivalent problem

%2

- 1
minJ*(¢) = = E”

dodt+ < Yo, <pf('70) >2 _<y17§0('70)>H*17H&

Subjectto p € W := {90 L e CO0, T; Hi(Q)) N C'(0, T; LB(Q)), Lo = 0 € L3(Qr)
(20)

Remark- If o € W then 22 ¢ [?(T'7)

Remark- W endowed with the norm ||¢||lw = || B‘P Il 2(r ) is an Hilbert space.
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Minimization of J* w.r.t. ¢

We assume T and Iy large enough. We now replace the problem

- 1 071 g2
Min J*(eo. 1) = 5 [ [ |22
0

Subjectto (o, 1) € V = H}(Q) x L2(Q) where Lp=0

do dt+ < Yo, ¥1 >z —(V1,%0) -1 i (21)

by the equivalent problem

min Jy* ( / /
~2 o

Subjectto p € W := {4,0 1€ CO0, T; HY(Q) N C' (0, T; L3(Q)), Lp =0 € LZ(QT)}
(22)

det+ HLvH ot <Y ei(50) >z =, 0( 0D -1

forall r > 0.

Remark- If o € W then 2 ¢ [?(T'7)

Remark- W endowed with the norm ||¢||lw = || B‘P Il 2(r) is an Hilbert space.
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Relaxation of Ly =0

In order to address the L2(Q7) constraint Ly = 0, we introduce a Lagrange multiplier
X € L2(Qr); we consider the saddle point problem :

sup inf Lr(p,N),
AeL2(Qr) $E®

£r((,0,)\) = Jr((P)JF < L(P,)\ >L2(QT) (23)

= {go 1 e CY0, T; HI(Q) N C' (0, T; LB(Q)), Ly € LZ(OT)} ow
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Relaxation of Ly =0

In order to address the L2(Q7) constraint Ly = 0, we introduce a Lagrange multiplier
X € L2(Qr); we consider the saddle point problem :

sup inf Lr(p,N),
xeL2(qr) PE°®

£r((,0,)\) = Jr((P)JF < L(P,)\ >L2(QT) (23)

= {go 1 e CY0, T; HI(Q) N C' (0, T; LB(Q)), Ly € LZ(OT)} ow

Remark- ® is endowed with the inner product,

p Jp

< =, =
ov' v
lelle :=+/< @, ¢ >¢ isanormand (®, || - ||¢) is an Hilbert space.

<P, P >e= >y + < Lo, Lp >12(Qr)» Vo, p € ®.
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Mixed formulation

Find (¢, A) € ® x L?(Qr) solution of

{ a(e.9) +b@ ) = (%) Vg o 24)
b(p,X) = 0, VX € [2(Qr),
where
. _\__Op 09 _
ar:®x o R, ar(Lp, QO) =< E, 5 >L2(r.r) +r < Lo, Lp >L2(QT) (25)
b:®x [2(Qr) = R, b(p,A) =< Lo, A > 12(ap) (26)
I:® =R, /(30):7 < Yo, Sot('vo) >2 +<y1780(.’0)>H*1,H8 (27)

Rk. The continuity of the linear form / derives from generalized observability ineq.

2

p)
le(-,0), @i(-,0)3 < C"’”(H?f

. Lol ). Vec®  (28)
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Conformal Approximation

Let then &, and Ap, be two finite dimensional spaces parametrized by the variable h
such that
o, C®, A,CL3Qr), VYh>D0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € ®p X Apy
solution of

I(ah)v v@h € &y (29)
0, Y € Ap.

{ ar(n; Pn) + b(@ps An)
b(en, An)

Space-time method for ollability problems (toward a space-ti



Conformal Approximation

Let then &, and Ap, be two finite dimensional spaces parametrized by the variable h
such that
o, C®, A,CL3Qr), VYh>D0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € ®p X Apy
solution of

I(ah)v v@h € &y (29)

{ ar(n, Br) + b(@n, An)
0, Yp € Ap.

b(son, An)

For any h > 0, the well-posedness is again a consequence of two properties
the coercivity of the bilinear form a, on the subset
Nn(b) = {en € ®pn; b(pn, Ap) =0 YA, € Ap}. From the relation
ro2
ar(p, ) > ;H‘P”@v Vo€ ®

the form a; is coercive on the full space ®, and so a fortiori on Njy(b) C &, C ®.
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Conformal Approximation

Let then &, and Ap, be two finite dimensional spaces parametrized by the variable h
such that

b, C®, ApCLl3(Qr), Vh>O0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € ®p X Apy
solution of

I(ah)v v@h € &y

ar(en, @n) + b(Pn, An)
0, Yp € Ap.

- (29)
b(eh, An)

For any h > 0, the well-posedness is again a consequence of two properties

the coercivity of the bilinear form a, on the subset
Nn(b) = {en € ®pn; b(pn, Ap) =0 YA, € Ap}. From the relation

r
ar(p, ) 2 ;H‘P”Eﬂ Vo€ ®

the form a; is coercive on the full space ®, and so a fortiori on Njy(b) C &, C ®.
The second property is a discrete inf-sup condition : there exists 6 > 0 such that

5= inf sup —2EmAn) oo (30)
An€M opedy, [lenlloplIAnlla,

A necessary condition is: dim(®p) > dim(Ap)
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The discrete inf-sup test - Evaluation of iy,

Figure: BFS finite element - Evolution of v/76p, , with respect to h for r = 1 (0),
r=10"2 (), r=h(x)and r = h? (<).

Sh~Cr— a h—0" (31)
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Stabilized mixed formulation "a

la Barbosa-Hughes"

a>0

sup mf Lra(cp,)\)
AENP

(32)
«
Lra(p,A) = Lr(p, A) — HL)‘HL2(H - EHA_aV@”iZ(rT)'

1 H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the BabusA; ka-Brezzi condition, 1991
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Stabilized mixed formulation "a

la Barbosa-Hughes"

a>0

sup mf Lra(cp,)\)
AENP

(32)
«
Lra(p,A) = Lr(p, A) — HL)‘HL2(H - EHA_aV@”iZ(rT)'

A= {)\ :x e C([o, TEL2() n C' ([0, TT; H(Q)),
Lx € L3([0, TI; H7'()), A(-,0) = A(-,0) = 0, \r, € L2(r7)}.
A is a Hilbert space endowed with the following inner product
A, Aa ::/0 (LX), LA(D)) py—1 (0t + /rr A\daat, VXA XEA

using notably that
||>\HL2(QT) <CorV<AMA>A, YAEA (33)

for some positive constant Cq 1. We denote || A[[a := v/< A, A >a.

1 H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the BabusA; ka-Brezzi condition, 1991
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lllustration for non smooth initial condition - Boundary control - d = 1

Yt —yxx =0

in Qr,
y(0,8) =0,y(1,t) = v(t) on (0, T), (34)
(¥(-,0),0ty(-,0)) = (4x1(0,1/2)(X),0) in Q,

The control of minimal L2(0, T) norm is v(t) = 2(1 — D11 2,3/2)()-

phi(x, t)

Figure: The dual variable op(Left) and primal variable A, (Right) in Qr;
h=246 x10"2;r =102,
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Mesh adaptivity

Figure: lterative refinement of the triangular mesh over Qr with respect to the
variable Ap: 110, 2880 and 8 636 triangles.
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Example 1 - N = 1 - Numerical experiments

Yt —Yxx =0 in Qr,
y(0,t) =0,y(1,t) = v(t) on (0, T), (35)
(y(-,O),aty(',O)) = (4X1(0,1/2)(X)70) in Q,
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Mesh adaptivity

1.0 |
0.5
0.0
-0.5 |
-1.0 |
0.0 0:5 lHO 1:5 2.0

Figure: Control of minimal L?-norm v (dashed blue line) and its
approximation Ax(1,-) (red line) on (0, T). Third adapted mesh,
r=10-5.
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The approach leads to a simple and short Freefem++ code !!

real L = 1;

int N = 10;

real T = 2;

mesh Th = square (N, 2%N, [Lxx, Txy]);
fespace Wh(Th,P2);

fespace Mh(Th,P1);

Wh wl, ql;

Wh w2, q2;

Mh lambdal,mul;

Mh lambda2,mu2;

func u0 = 4xx* (x>=0 && x%<0.5);
real r = 10e-2;

13|real alpha = 10e-2;

14
15
16jproblem ControlWave ([wl,ql,lambdal,mul], [w2,q2,lambda2,mu2])=
17
18 int1ld(Th, 2) (gqlxqg2) -intld(Th, 1) (u0*w2)
19
20
21 +int2d (Th) ( (dy (w2) -dx (q2) ) xlambdal+ (dy (q2) -dx (w2) ) »mul
22 +(dy (wl) -dx (ql) ) xlambda2+ (dy (gl) -dx (wl) ) xmu2)
23
24
25 +int2d (Th) (r* ((dy (wl)-dx(ql)) » (dy (w2) -dx (q2) ) + (dy (ql) -dx (wl) ) = (dy (q2) -dx (w2) ) )
26
27
28 —int1ld(Th, 2) (alphaxglxg2+alpha* (q2+lambdal+ql+lambda2))

29 —intld(Th, 2, 4) (alphaxlambdalxlambda2)

30 —int2d (Th) (alphax ( (dy (lambdal)-dx (mul) ) » (dy (lambda2) -dx (mu2) )
31 + (dy (mul) -dx (lambdal) ) » (dy (mu2) -dx (lambda2) ) )
32

O OWON®DOTHWN =

N =
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33 Boundar nditior

34 +on (2,wl=0) ton (4,wl=0) + on(4,lambdal=0);

35

36|/ /11 1 1 )
37[ControlWave;

38|/ /11 f (wl,
39|/ /71 tion for the primal vari re st in (
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Non conformal approximation

Stabilization technics may also be employed in the context of non-conformal
approximations. Let

Vi = {pn € C(Qr); (Pn) |k € Pg(K),VK € T}

and consider the discrete Lagrangian Ly, : Vf,’ X Vﬁ — R, given by

Clm M) = 0" (0n) + - Lnla gy + 2 S [ Juon < / &

KeTh

+ [ Cownoon+ o = 5 3 [ ol - LA TRV S
KET,,

_ 2
—h ! /):T )‘% - E”Ah - X8V¢hHi2(QT)

[0 #nr]] denotes the jump of the normal derivative of ¢, across the internal edges of

the triangulation.
The terms h2||L¢>h||Lg (ay) @nd h2|\L>\h|\L2 o,) Py @ symmetric role. Both vanish at

the continuous level. The jump terms somehow aim to control the regularity of the
approximation.

Space-time method for ollability problems (toward a space-ti



Non conformal approximation: a result of convergence

2

Moreover, if the saddle-point (A, ¢) of £, is smooth enough, then the following
approximation result holds true

Theorem (Burman, Feizmohammadi, M, Oksanen 2022)

Assume the geometric control condition. Letp,q > 1 and h > 0. Let
(An, én) € VP x V! be the saddle point of £, and assume that the saddle point (X, ¢)

of L, belongs to HP+1(Qr) x HIt1(Qr). Then, there exists a positive constant C
independent of h such that

1 _1
Ix(0v¢ — Budn)ll 2,y < C(RPT2 Ul ypst(qpy + M7 2 (18l Has1(apy),  (36)

where x is a cut-off function x(x, t) = xo(x)x1(t), with xo € C5°(w), x1 € C§°(0, T).
y

If (ug, uy) € HET1(Q) x HX(Q) satisfies the compatibility conditions of order k
at 99 x {0}. then the solution (u, ¢) satisfies

(u,¢) € H(Qr) x H*"2(Qr).

zBurman, Feizmohammadi, Munch, Oksanen, Spacetime finite element methods for control problems subject
to the wave equation, Arxiv2021

Space-time method for ollability problems (toward a space-ti



lllustration for non smooth initial condition - Boundary control - d = 1

Yt —Yxx =0 in Qr,

y(0,8) =0,y(1,8) = v(t) on (0, ), 37)
(y(ao)’aty(ao)) = (4X1 (0,1/2)()()70) in Q,

10°

1072 h 107t

Figure: Relative error on the approximation of the boundary control
19w én(1,) Vil 207y . . .
B 7 Pre— with respect to h for different approximations.
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Dual of the dual - Problem w.r.t. A

sup inf Lr(p,\) = — inf JS*(A\)  + Lr(p0,0)
Ael2 PpED AeL2

where ¢ € ® solves ar(¢g,?) = (), V@ € ® and Ji* : L% — R defined by

1
J,**(A) = § < PrA, A >L2(QT) —b(po, )

Rk. The control problem is reduced to the minimization of an unconstrained functional
with respect to the control state within a space-time framework!!!

Space-time method for co ability problems (toward a space-ti



Dual of the dual - Problem w.r.t. A

sup inf Lr(p,\) = — inf JS*(A\)  + Lr(p0,0)
Ael2 pED AeL2

where ¢ € ® solves ar(¢g,?) = (), V@ € ® and Ji* : L% — R defined by

1
J,**(A) = § < PrA, A >L2(QT) —b(po, )

'

Lemma

Let P, be the linear operator from L2 into L2 defined by
Px:=Lp, YAEL®? where @€ ® solves ar(p,@)=b(w, ), Vpeo.

For any r > 0, the operator P is a strongly elliptic, symmetric isomorphism from L2
into L2.

e

Rk. The control problem is reduced to the minimization of an unconstrained functional
with respect to the control state within a space-time framework!!!

Space-time method for ollability problems (toward a space-ti



The situation is much simpler with cost involving both y and v

_
Minimize J(y, v) = %// |y|2dxdt+%// MRooat o
Qr 0 JIy

Subjectto (y,v) € C(¥o,y1: T)

v:g—p in (0,T)xTg and y =L*¢ in Q.
12

1 10T
Minimize J*(¢) = f// |Lgo|2dxdt+—//
2/)Ja, 2 Jo Jry,

+< (@('70)7¢!('70))7(YO7¢V1) >

2

Op
—| dodt
ov 7

Subjectto ¢ € ®

& = {«p tp € GO0, T; HI(Q) N C'(0, T; L3(Q)), Ly € LQ(QT)} is endowed with the

¢ Op

inner product, < ¢, % >e:=< 32, 52 >2(rpy + < Lo, Lp >12(0p) Vo, p € ®.

Space-time method for controllability problems (toward a space



Numerical illustration : Part 1 + Part 2: yx1 = As(yk)

Oy — Ay —3y(1+1n%2(24 |y|)) =0 in (0,1) x (0,2.5),
y(0,t) =0,y(1,1) = v(t) on (0,2.5), (40)
(Y(’O)vaty(vo)) = (1OSiH(TFX),O) in (07 1)a

Jy,v)=s /0 Tp1 (s, 2v3(t)dt +s / p5(x, Hy3(t)dt

Qr

ollability problems (toward a space-ti



Similarly arguments apply for the

Part 1
e Lemoine, Ervedoza, M. Exact controllability of semilinear heat equations through a
constructive approach, AIMS EECT, 2023

e Lemoine, M. Constructive exact control of semilinear 1D heat equations, AIMS
MCRF, 2022

e Gayte-Marin Lemoine, M. Approximation of null controls for semilinear heat
equations using a least-squares appproach, ESAIM COCV 2021

e Bhandari, Lemoine, M. Constructive exact control of semilinear 1D heat equations,
arxiv

Part 2

e De Souza, Fernandez-Cara, Lemoine, M. On the numerical controllability of the
two-dimensional heat, Stokes and Navier-Stokes equations,, J. Scientific computing,
2017

e De Souza, M. A mixed formulation for the direct approximation of the control of
minimal L?-weighted norm for the linear heat equation,, Advances in Computational
Mathematics, 2016

e Fernandez-Cara, M. Numerical null controllability of the 1D heat equation: Duality
and Carleman weights,, JOTA 2013

e Fernandez-Cara, M. Strong convergent approximations of null controls for the heat
equation, SEMA 2013
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Numerical illustration for the heat eq. : Part 1 + Part 2: yi.1 = As(Y«)

Bty — Ay —5y(1+In¥2(2+|y|)) = v1(o2,08 in(0,1)x (0,0.5),

y=0 on {0,1} x (0,0.5),  (41)
y(-,0) = 10sin(7x) in Q,
T
Jy.v)=s [ m(s 02+ s [ gy o
0 Qr
0
10
= -200 - 5 \ N
400 | S0 v
400 \\ .
1 < 0 7 1
05 = 03 04 0.2 o5
a 04 0.2 t 04 T




Question to end : Can we use (space-time) DDM to approximate null controls

2?77

oy |?
—| dodt
ov 7

1 17
Minimize J*(¢) = f// |L¢|2dxdt+—//
2/)Ja, 2 Jo Jry,

+< (@(‘70)7%('70))7(}’07}’1) >

(42)

Subjectto ¢ € ®

The corresponding VF is: find ¢ € ® such that

_ Op 0p
L@ch—"_/ / i =< (90('70)7901‘('70))7(}/07}/1) >, Ve € ®
Qr ol Mo v Ov

The corresponding boundary value problem is (L := 9y — Oxx, 2 = (0, 1))

L(Lp) =0, Qr,
©(0,1) = 0,Lp(0, 1) =0, (0,7
@(1,8) =0,Lp(1, 1) + ¢x(1,1) =0, (0, T) (43)
Lo(x,0) = yo, (Le(x, 0))r = ys ()]
Lo(x, T) = 0,(Le(x, 7))t = 0 0.1

Space-time method for controllability problems (toward a space



Question to end : Can we use (space-time) DDM to approximate controls ???7?

The corresponding boundary value problem is (L := 9 — Oxx)

L(Le) =0, Qr,
©(0,1) =0,Lp(0,t) =0, 0, 7)
©(1,1) =0,Le(1, 1) + x(1,) =0, (0,7) (44)
Lo(x,0) = yo, (Le(x,0))e = y1 (0,1)
Lo(x, T) = 0,(Le(x, T))e =0 (0,1)
or (equivalently)
Ly=0, Le=y, Qr,
©(0,1) =0,y(0,1) =0, (0, 7)
e(1,5)=0,y(1,1) —ex(1,8) =0, (0,7) (45)
¥(x,0) = yo, ¥1(x,0) = y4 (0,1)
y(x,T)=0,y(x, T) =0 (0,1)
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Question to end : Can we use (space-time) DDM to approximate controls ???7?

The corresponding boundary value problem is (L := 9 — Oxx)

L(Le) =0, Qr,
©(0,1) =0,Lp(0,t) =0, 0, 7)
p(1,t) =0,Le(1,8) + ox(1,t) =0, (0, T) (44)
Lo(x,0) = yo, (Le(x,0))e = y1 (0,1)
Lo(x, T) = 0,(Le(x, T))e =0 (0,1)
or (equivalently)
Ly=0, Le=y, Qr,
©(0,1) =0,y(0,1) =0, (0, 7)
e(1,1) =0,y(1,1) —ox(1,8) =0, (0,7) (45)
¥(x,0) = yo, ¥1(x,0) = y4 (0,1)
y(x,T)=0,y(x, T) =0 (0,1)

Thank you for your attention !!!
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