Space-time method for controllability problems (toward a space-time DDM ???)

ARNAUD MÜNCH

Lab. de mathématiques Blaise Pascal - Clermont-Ferrand - France

CIRM - September 2022

We address the approximation of null controls for a semi-linear wave equation

$$y_{tt} - \Delta y + f(y) = v \mathbf{1}_{\omega}, \qquad \Omega \times (0, T)$$
 (1)

Part 1: Find a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a control-state pair for (1)?

Typically, (y_k, v_k) solves a linear controllability problem for

$$z_{tt} - \Delta z + Az = u \mathbf{1}_{\omega} + B, \qquad \Omega \times (0, T)$$
 (2)

Part 2: for each k, find a convergent numerical approximation $(y_{kh}, v_{kh})_{h>0}$ of (y_k, v_k) for (2)?

Rk.
$$||v - v_{k,h}|| \le ||v - v_k|| + ||v_k - v_{k,h}||$$

We address the approximation of null controls for a semi-linear wave equation

$$y_{tt} - \Delta y + f(y) = v \mathbf{1}_{\omega}, \qquad \Omega \times (0, T)$$
 (1)

Part 1: Find a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a control-state pair for (1)?

Typically, (y_k, v_k) solves a linear controllability problem for

$$z_{tt} - \Delta z + Az = u1_{\omega} + B, \qquad \Omega \times (0, T)$$
 (2)

Part 2: for each k, find a convergent numerical approximation $(y_{kh}, v_{kh})_{h>0}$ of (y_k, v_k) for (2)?

Rk.
$$||v - v_{k,h}|| \le ||v - v_k|| + ||v_k - v_{k,h}||$$

We address the approximation of null controls for a semi-linear wave equation

$$y_{tt} - \Delta y + f(y) = v \mathbf{1}_{\omega}, \qquad \Omega \times (0, T)$$
 (1)

Part 1: Find a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a control-state pair for (1)?

Typically, (y_k, v_k) solves a linear controllability problem for

$$z_{tt} - \Delta z + Az = u1_{\omega} + B, \qquad \Omega \times (0, T)$$
 (2)

Part 2: for each k, find a convergent numerical approximation $(y_{kh}, v_{kh})_{h>0}$ of (y_k, v_k) for (2)?

Rk.
$$||v - v_{k,h}|| \le ||v - v_k|| + ||v_k - v_{k,h}||$$

Semilinear wave equation

• Let $\Omega \subset \mathbb{R}^d$, $\omega \subset \Omega$, T > 0. $Q_T := \Omega \times (0, T)$, $q_T := \omega \times (0, T)$.

$$\begin{cases} \partial_{tt} y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_{T}, \\ y = 0 & \text{on } \Sigma_{T}, \\ (y(\cdot, 0), \partial_{t} y(\cdot, 0)) = (u_{0}, u_{1}) & \text{in } \Omega, \end{cases}$$
(3)

- $(u_0, u_1) \in \mathbf{V} := H_0^1(\Omega) \times L^2(\Omega), v \in L^2(q_T). f \in C^1(\mathbb{R}; \mathbb{R}).$
- $|f(r)| \leq C(1+|r|) \ln^2(2+|r|) \forall r \in \mathbb{R}$ $y \in \mathcal{C}^0([0,T];H^1_0(\Omega)) \cap \mathcal{C}^1([0,T];L^2(\Omega))$ is unique.

Definition

(3) is null controllable in time T IFF for any $(u_0, u_1) \in V$, \exists a control function $v \in L^2(q_T)$ such that $(y(\cdot, T), \partial_t y(\cdot, T)) = (0, 0)$.

Semilinear wave equation

• Let $\Omega \subset \mathbb{R}^d$, $\omega \subset \Omega$, T > 0. $Q_T := \Omega \times (0,T)$, $q_T := \omega \times (0,T)$.

$$\begin{cases} \partial_{tt}y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_{T}, \\ y = 0 & \text{on } \Sigma_{T}, \\ (y(\cdot, 0), \partial_{t}y(\cdot, 0)) = (u_{0}, u_{1}) & \text{in } \Omega, \end{cases}$$
(3)

- $(u_0, u_1) \in \mathbf{V} := H_0^1(\Omega) \times L^2(\Omega), v \in L^2(q_T). f \in C^1(\mathbb{R}; \mathbb{R}).$
- $|f(r)| \le C(1+|r|) \ln^2(2+|r|) \forall r \in \mathbb{R}$ $y \in C^0([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega))$ is unique.

Definition

(3) is null controllable in time T IFF for any $(u_0, u_1) \in V$, \exists a control function $v \in L^2(q_T)$ such that $(v(\cdot, T), \partial_t v(\cdot, T)) = (0, 0)$.

Theorem (Zuazua'93, Zhang '00,)

If T and ω are large enough and if f does not grow too fast at infinity

(H₁)
$$\limsup_{|r| \to \infty} \frac{|f(r)|}{|r| \ln^{1/2} |r|} < \beta$$

(for some $\beta > 0$ small enough) then (3) is exactly controllable in time T.

Part 1: Construction of a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a solution of the semilinear pb.

- Bottois, Lemoine, M. Constructive exact controls for semi-linear wave equations, arxiv.
- Trélat, M. Constructive exact control of semilinear 1D wave equations by a least-squares approach, SICON 2022
- Bhandari, Lemoine, M. Exact boundary controllability of 1D semilinear wave equations through a constructive approach, AIMS EECT 2022
- Lemoine, M, Sue. Exact boundary controllability of semilinear wave equations through a constructive approach, arxiv.

Semilinear wave equation: Non constructive argument

The controllability proof given in Zuazua'93, Zhang'00 is based on a Leray Schauder fixed point argument.

Let $\Lambda: L^{\infty}(0,T;L^d(\Omega)) \to L^{\infty}(0,T;L^d(\Omega))$, where $y:=\Lambda(\xi)$ is a controlled solution with the control v_{ξ} of the linear problem (assuming f(0)=0)

$$\begin{cases} \partial_{tt}y - \Delta y + y \, \frac{f(\xi)}{\xi} = v_{\xi} \mathbf{1}_{\omega} & \text{in } Q_{T}, \\ y = 0 & \text{on } \Sigma_{T}, \\ (y(\cdot, 0), \partial_{t}y(\cdot, 0)) = (u_{0}, u_{1}) & \text{in } \Omega, \\ (y(\cdot, T), \partial_{t}y(\cdot, T)) = (0, 0) & \text{in } \Omega. \end{cases}$$

$$(4)$$

Then, A has a fixed point.

Useless in practice, since Λ is not contracting: the Picard sequence $y_{k+1} = \Lambda(y_k)$ is bounded but not convergent.

A first constructive method - Least-squares approach

We consider the Hilbert space

$$\begin{split} \mathcal{H} := \left\{ (y,v) \in L^2(Q_T) \times L^2(q_T) \ | \ \partial_{tt} y - \Delta y \in L^2(Q_T), \ y = 0 \text{ on } \Sigma_T, \\ (y(\cdot,0), \partial_t y(\cdot,0)) \in \textbf{\textit{V}} \right\} \end{split}$$

and the subspace

$$\mathcal{A}:=\left\{(y,v)\in\mathcal{H}\ \mid\ (y(\cdot,0),\partial_ty(\cdot,0))=(u_0,u_1),\ (y(\cdot,T),\partial_ty(\cdot,T))=(0,0)\ \mathrm{in}\ \Omega\right\}$$

We define the least-squares functional $E: A \to \mathbb{R}$ by

$$E(y,v) := \frac{1}{2} \|\partial_{tt}y - \Delta y + f(y) - v \mathbf{1}_{\omega}\|_{L^{2}(Q_{T})}^{2}$$

and consider the nonconvex minimization problem

$$\left[\inf_{(y,v)\in\mathcal{A}}E(y,v)\right] \tag{5}$$

First property of the least-squares functional E

Proposition

$$\forall (y, v) \in \mathcal{A}$$
,

$$\sqrt{E(y,v)} \le Ce^{C\sqrt{\|f'(y)\|_{\infty}}} \|E'(y,v)\|_{\mathcal{A}_0'}.$$

$$(6)$$

Consequence:

Any *critical* point $(y, v) \in \mathcal{A}$ of E (i.e., E'(y, v) = 0) is a zero of E, and thus is a pair solution of the controllability problem. Moreover:

given any sequence
$$(y_k, v_k)_{k \in \mathbb{N}}$$
 in \mathcal{A} such that $||E'(y_k, v_k)||_{\mathcal{A}'_0} \underset{k \to +\infty}{\longrightarrow} 0$ and such that $||f'(y_k)||_{\infty}$ is uniformly bounded, we have $E(y_k, v_k) \underset{k \to +\infty}{\longrightarrow} 0$.

Thanks to this instrumental property, a minimizing sequence for E cannot be stuck in a local minimum, even though E fails to be convex (it has multiple zeros).

Strong convergence of the LS method

$$(y_{k+1}, v_{k+1}) = (y_k, v_k) - \lambda_k(Y_k, V_k)$$
 where (Y_k, V_k) solves

$$\begin{bmatrix}
\partial_{tt}Y_k - \Delta Y_k + f'(y_k)Y_k = V_k \mathbf{1}_{\omega} + (\partial_{tt}y_k - \Delta y_k + f(y_k) - v_k \mathbf{1}_{\omega}) & \text{in } Q_T, \\
Y_k = 0 & \text{on } \Sigma_T, \\
(Y_k(\cdot, 0), \partial_t Y_k(\cdot, 0)) = (0, 0), \quad (Y_k(\cdot, T), \partial_t Y_k(\cdot, T)) = (0, 0) & \text{in } \Omega,
\end{bmatrix}$$
(7)

and $\lambda_k \in (0,1)$ the optimal (damped Newton) parameter. Here, V_k is the control of minimal $L^2(q_T)$ -norm.

Assume that $T,\omega\subset\Omega\subset\mathbb{R}^d$ large enough and f Loc Lip satisfies

$$|f'(r)| \le \alpha + \beta \ln^2(1+|r|) \quad \forall r \in \mathbb{R}.$$
 (8)

For any $(y_0,v_0)\in\mathcal{A}$, the minimizing sequence $(y_k,v_k)_{k\in\mathbb{N}}$ for E converges strongly to a state-control (y,v) for the nonlinear wave eq. The convergence is sur-linear after a finite number of iterations.

Strong convergence of the LS method

$$(y_{k+1}, v_{k+1}) = (y_k, v_k) - \lambda_k(Y_k, V_k)$$
 where (Y_k, V_k) solves

$$\begin{cases}
\partial_{tt} Y_k - \Delta Y_k + f'(y_k) Y_k = V_k \mathbf{1}_{\omega} + (\partial_{tt} y_k - \Delta y_k + f(y_k) - v_k \mathbf{1}_{\omega}) & \text{in } Q_T, \\
Y_k = 0 & \text{on } \Sigma_T, \\
(Y_k(\cdot, 0), \partial_t Y_k(\cdot, 0)) = (0, 0), \quad (Y_k(\cdot, T), \partial_t Y_k(\cdot, T)) = (0, 0) & \text{in } \Omega,
\end{cases} (7)$$

and $\lambda_k \in (0,1)$ the optimal (damped Newton) parameter. Here, V_k is the control of minimal $L^2(q_T)$ -norm.

Theorem (M-Trélat 2021 (d = 1), Bottois-Lemoine-M 22 (d > 1))

Assume that $T, \omega \subset \Omega \subset \mathbb{R}^d$ large enough and f Loc Lip satisfies

$$|f'(r)| \le \alpha + \beta \ln^2(1+|r|) \quad \forall r \in \mathbb{R}.$$
 (8)

For any $(y_0, v_0) \in \mathcal{A}$, the minimizing sequence $(y_k, v_k)_{k \in \mathbb{N}}$ for E converges strongly to a state-control (y, v) for the nonlinear wave eq. The convergence is sur-linear after a finite number of iterations.

a second constructive method : simpler Linearization leading to contracting prop.

We introduce the operator $\Lambda_s: L^\infty(Q_T) \mapsto L^\infty(Q_T), \qquad \Lambda_s(\widehat{y}) = y$ where y solves

$$\begin{cases} y_{tt} - \Delta y = -f(\widehat{y}) & \text{in } Q_T, \\ y = 0, \ y = v \, \mathbf{1}_{\Gamma_0} & \text{in } \partial\Omega \times (0, T), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \\ (y(\cdot, T), y_t(\cdot, T)) = (0, 0) & \text{in } \Omega, \end{cases} \tag{9}$$

and (y, v) corresponds to the minimizer of a functional J_s

$$J_s(y,v) := s \int_{Q_T} \rho^2(s) y^2 + \int_{\Gamma_0} \int_0^T \eta^{-2} \rho_1^2(s) v^2$$
 (10)

 $\rho(s), \rho_1(s) \approx e^{s\phi(x,t)}$ are Carleman weights; s > 0 is a Carleman parameter;

Let $\Omega \subset \mathbb{R}^d$; assume T , $\mathsf{\Gamma}_0$ are large enough, and f Loc Lip satisfies

$$|f'(r)| \le \alpha + \beta \ln^{3/2} (1+|r|) \qquad \forall r \in \mathbb{R}. \tag{11}$$

If s>0 is large enough, then Λ_s is contracting.

For any y_0 , The picard iterate $y_{k+1} = \Lambda_s(y_k)$ converges to a controlled solution for the

a second constructive method : simpler Linearization leading to contracting prop.

We introduce the operator $\Lambda_s: L^{\infty}(Q_T) \mapsto L^{\infty}(Q_T), \qquad \Lambda_s(\widehat{y}) = y$ where y solves

$$\begin{cases} y_{tt} - \Delta y = -f(\widehat{y}) & \text{in } Q_T, \\ y = 0, \ y = v \, 1_{\Gamma_0} & \text{in } \partial\Omega \times (0, T), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \\ (y(\cdot, T), y_t(\cdot, T)) = (0, 0) & \text{in } \Omega, \end{cases} \tag{9}$$

and (y, v) corresponds to the minimizer of a functional J_s

$$J_s(y,v) := s \int_{Q_T} \rho^2(s) y^2 + \int_{\Gamma_0} \int_0^T \eta^{-2} \rho_1^2(s) v^2$$
 (10)

 $\rho(s), \rho_1(s) \approx e^{s\phi(x,t)}$ are Carleman weights; s > 0 is a Carleman parameter;

Theorem (Bhandari, Lemoine, M' (d = 1), Lemoine Sue M' (d > 1))

Let $\Omega \subset \mathbb{R}^d$; assume T, Γ_0 are large enough, and f Loc Lip satisfies

$$|f'(r)| \le \alpha + \beta \ln^{3/2} (1+|r|) \qquad \forall r \in \mathbb{R}. \tag{11}$$

If s > 0 is large enough, then Λ_s is contracting.

For any y_0 , The picard iterate $y_{k+1} = \Lambda_s(y_k)$ converges to a controlled solution for the

Part 2: (Space-time Numerical) approximation of null controls for linear wave equation

$$\partial_{tt}y - \Delta y + Ay = v1_{\omega} + B \quad \text{in } Q_T, \tag{12}$$

- control of minimal $L^2(q_T)$ norm

inf
$$J(y, v) = \int_{q_T} v^2$$
, (y, v) solves (12)

- state-control pair with weighted cost :

inf
$$J(y, v) = \int_{Q_T} \rho^2 y^2 + \int_{q_T} \rho_1^2 v^2$$
, (y, v) solves (12)

Part 2: (space-time Numerical) approximation of null controls for linear wave equation

- Burman, Feizmohammadi, M, Oksanen. Space-time stabilized finite element methods for a unique continuation problem subject to the wave equation, M2AN 2021
- Montaner, M. Approximation of controls for the linear wave equation: a first order mixed formulation, AIMS MCRF 2019
- \bullet Cindea, M. A mixed formulation for the direct approximation of the control of minimal L^2 -norm for linear type wave equations, Calcolo 2015
- Cindea, Fernandez-Cara, M, . Numerical controllability of the wave equation through primal methods and Carleman estimates, ESAIM COCV 2013
- M, . A uniformly controllable and implicit scheme for the 1-D wave equation, ESAIM M2AN 2005

Boundary control of minimal L^2 norm

$$\begin{cases} & \text{Minimize } J(y, v) = \frac{1}{2} \int_0^T \int_{\Gamma_0} |v|^2 dt \\ & \text{Subject to } (y, v) \in \mathcal{C}(y_0, y_1; T) \end{cases}$$
 (13)

where $C(y_0, y_1; T)$ denotes the non-empty linear manifold

$$\mathcal{C}(y_0,y_1;T) = \{\, (y,v) : v \in L^2(\Gamma_0 \times (0,T)), \ y \text{ solves (12)} \,\}.$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$\inf_{(y,v)\in\mathcal{C}(y_0,y_1;T)}J(y,v)=-\min_{(\varphi_0,\varphi_1)\in V}J^{\star}(\varphi_0,\varphi_1)$$

$$\begin{cases} \text{ Minimize } J^{\star}(\varphi_{0},\varphi_{1}) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma \, dt + <(\varphi_{0},\varphi_{1}), (y_{0},y_{1}) > \\ \text{ Subject to } (\varphi_{0},\varphi_{1}) \in \textit{\textbf{V}} := \textit{\textbf{H}}_{0}^{1}(\Omega) \times \textit{\textbf{L}}^{2}(\Omega) \quad \text{where} \quad \textit{\textbf{L}}\varphi := \varphi_{tt} - \Delta \phi = 0 \\ (14) \end{cases}$$

Boundary control of minimal L^2 norm

$$\begin{cases} & \text{Minimize } J(y,v) = \frac{1}{2} \int_0^T \int_{\Gamma_0} |v|^2 dt \\ & \text{Subject to } (y,v) \in \mathcal{C}(y_0,y_1;T) \end{cases}$$
 (13)

where $C(y_0, y_1; T)$ denotes the non-empty linear manifold

$$\mathcal{C}(y_0,y_1;T) = \{\, (y,v) : v \in L^2(\Gamma_0 \times (0,T)), \ y \text{ solves (12)} \,\}.$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$\inf_{(y,v)\in\mathcal{C}(y_0,y_1;T)}J(y,v)=-\min_{(\varphi_0,\varphi_1)\in\textbf{\textit{V}}}J^*(\varphi_0,\varphi_1)$$

$$\begin{cases} \text{ Minimize } J^{\star}(\varphi_{0},\varphi_{1}) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma \, dt + <(\varphi_{0},\varphi_{1}), (y_{0},y_{1}) > \\ \text{ Subject to } (\varphi_{0},\varphi_{1}) \in \textit{\textbf{V}} := \textit{\textbf{H}}_{0}^{1}(\Omega) \times \textit{\textbf{L}}^{2}(\Omega) \quad \text{where} \quad \textit{\textbf{L}}\varphi := \varphi_{tt} - \Delta \phi = 0 \\ (14) \end{cases}$$

Boundary control of minimal L^2 norm

$$\begin{cases} \text{ Minimize } J(y,v) = \frac{1}{2} \int_0^T \int_{\Gamma_0} |v|^2 dt \\ \text{ Subject to } (y,v) \in \mathcal{C}(y_0,y_1;T) \end{cases}$$
 (13)

where $C(y_0, y_1; T)$ denotes the non-empty linear manifold

$$\mathcal{C}(y_0,y_1;T) = \{\, (y,v) : v \in L^2(\Gamma_0 \times (0,T)), \ y \text{ solves (12)} \,\}.$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$\inf_{(y,v)\in\mathcal{C}(y_0,y_1;T)}J(y,v)=-\min_{(\varphi_0,\varphi_1)\in\boldsymbol{V}}J^*(\varphi_0,\varphi_1)$$

$$\begin{cases} \text{ Minimize } J^{\star}(\varphi_0,\varphi_1) = \frac{1}{2} \int_0^T \!\! \int_{\Gamma_0} \left| \frac{\partial \varphi}{\partial \nu} \right|^2 d\sigma \ dt + <(\varphi_0,\varphi_1), (y_0,y_1) > \\ \text{ Subject to } (\varphi_0,\varphi_1) \in \textbf{\textit{V}} := H_0^1(\Omega) \times L^2(\Omega) \quad \text{where} \quad L\varphi := \varphi_{tt} - \Delta \phi = 0 \\ \text{ (14)} \end{cases}$$

Negative Commutation diagram

The stable/consistant centered finite difference scheme with $\Delta t < h$:

$$(\overline{\mathcal{S}}_{h,\Delta t}) \left\{ \begin{array}{l} \Delta_{\Delta t} y_{h,\Delta t} - \Delta_h y_{h,\Delta t} = 0, \\ + \text{Initial conditions and Boundary terms} \end{array} \right. \tag{15}$$

produces a non discrete uniformly bounded and converging control under the condition $\Delta t < h$.

Figure: Non commuting diagram associated to the scheme $(\overline{S}_{h,\Delta t})$ for $\Delta t < h$.

$$\begin{cases} y_{tt} - y_{xx} = 0 & \text{in } Q_T, \\ y(0, t) = 0, y(1, t) = v(t) & \text{on } (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (4x1_{(0, 1/2)}(x), 0) & \text{in } \Omega, \end{cases}$$
(16)

The control of minimal $L^2(0, T)$ norm is $v(t) = 2(1 - t)1_{(1/2, 3/2)}(t)$.

The corresponding controlled solution is

$$y(x,t) = \begin{cases} 4x & 0 \le x + t < \frac{1}{2}, \\ 2(x-t) & -\frac{1}{2} < t - x < \frac{1}{2}, & x + t \ge \frac{1}{2}, \\ 0 & \text{elsewhere,} \end{cases}$$
 (17)

The initial condition of the adjoint solution is $(\phi_0, \phi_1) = (0, -2x \, \mathbf{1}_{(0,1/2)}(x)) \in H^1(\Omega) \times H^0(\Omega)$, which gives:

$$\phi(x,t) = \begin{cases} -2xt & 0 \le x + t < \frac{1}{2}, & x \ge 0, t \ge 0, \\ \frac{(x-t)^2}{2} - \frac{1}{8} & \frac{1}{2} \le x + t < \frac{3}{2}, & -\frac{1}{2} < x - t < \frac{1}{2}, \\ 2(x-1)(1-t) & \frac{3}{2} \le x + t, & -\frac{1}{2} < x - t, \\ -\frac{(x+t-2)^2}{2} + \frac{1}{8} & \frac{3}{2} < x + t < \frac{5}{2}, & -\frac{3}{2} < x - t \le -\frac{1}{2}, \\ 2x(2-t) & x - t \le -\frac{3}{2}. \end{cases}$$
(18)

Figure: Control $P(\mathbf{v}_h)(t)$ vs. $t \in [0, T]$, $\Delta t = 0.98h$, T = 2.4 and h = 1/10, h = 1/20, h = 1/30, h = 1/40.

Minimization of J^* w.r.t. φ

We now replace the problem

$$\begin{cases} &\text{Min } J^{\star}(\varphi_{0},\varphi_{1}) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma \, dt + \langle y_{0}, \varphi_{1} \rangle_{L^{2}} - \langle y_{1}, \varphi_{0} \rangle_{H^{-1}, H_{0}^{1}} \\ &\text{Subject to } (\varphi_{0}, \varphi_{1}) \in \mathbf{V} = H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text{where} \quad L\varphi = 0 \end{cases}$$

by the equivalent problem

$$\begin{cases} \min J^{\star}(\varphi) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma dt + \langle y_{0}, \varphi_{t}(\cdot, 0) \rangle_{L^{2}} - \langle y_{1}, \varphi(\cdot, 0) \rangle_{H^{-1}, H_{0}^{1}} \\ \text{Subject to } \varphi \in \mathbf{W} := \left\{ \varphi : \varphi \in C^{0}(0, T; H_{0}^{1}(\Omega)) \cap C^{1}(0, T; L^{2}(\Omega)), L\varphi = 0 \in L^{2}(Q_{T}) \right\} \end{cases}$$

$$(20)$$

Remark- If $\varphi \in W$ then $\frac{\partial \varphi}{\partial \nu} \in L^2(\Gamma_T)$

Remark- W endowed with the norm $\|\varphi\|_W:=\|\frac{\partial \varphi}{\partial \nu}\|_{L^2(\Gamma_T)}$ is an Hilbert space.

Minimization of J^* w.r.t. φ

We now replace the problem

$$\begin{cases} &\text{Min } J^{\star}(\varphi_{0},\varphi_{1}) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma \, dt + \langle y_{0}, \varphi_{1} \rangle_{L^{2}} - \langle y_{1}, \varphi_{0} \rangle_{H^{-1}, H_{0}^{1}} \\ &\text{Subject to } (\varphi_{0}, \varphi_{1}) \in \mathbf{V} = H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text{where} \quad L\varphi = 0 \end{cases}$$

by the equivalent problem

$$\begin{cases} \min J^{\star}(\varphi) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma dt + \langle y_{0}, \varphi_{t}(\cdot, 0) \rangle_{L^{2}} - \langle y_{1}, \varphi(\cdot, 0) \rangle_{H^{-1}, H_{0}^{1}} \\ \text{Subject to } \varphi \in \mathbf{W} := \left\{ \varphi : \varphi \in C^{0}(0, T; H_{0}^{1}(\Omega)) \cap C^{1}(0, T; L^{2}(\Omega)), \, L\varphi = 0 \in L^{2}(Q_{T}) \right\} \end{cases}$$

$$(20)$$

Remark- If $\varphi \in \mathbf{W}$ then $\frac{\partial \varphi}{\partial \nu} \in L^2(\Gamma_T)$

Remark- W endowed with the norm $\|\varphi\|_{W}:=\|\frac{\partial \varphi}{\partial \nu}\|_{L^{2}(\Gamma_{T})}$ is an Hilbert space.

Minimization of J^* w.r.t. φ

We assume T and Γ_0 large enough. We now replace the problem

$$\begin{cases} &\text{Min } J^{\star}(\varphi_{0},\varphi_{1}) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma \, dt + \langle y_{0}, \varphi_{1} \rangle_{L^{2}} - \langle y_{1}, \varphi_{0} \rangle_{H^{-1}, H_{0}^{1}} \\ &\text{Subject to } (\varphi_{0}, \varphi_{1}) \in \mathbf{V} = H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text{where} \quad L\varphi = 0 \end{cases}$$

by the equivalent problem

$$\begin{cases} \min J_{r}^{\star}(\varphi) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma dt + \frac{r}{2} \|L\varphi\|_{L^{2}(Q_{T})}^{2} + \langle y_{0}, \varphi_{t}(\cdot, 0) \rangle_{L^{2}} - \langle y_{1}, \varphi(\cdot, 0) \rangle_{H^{-1}, H_{0}^{1}} \\ \text{Subject to } \varphi \in \mathbf{W} := \left\{ \varphi : \varphi \in C^{0}(0, T; H_{0}^{1}(\Omega)) \cap C^{1}(0, T; L^{2}(\Omega)), L\varphi = 0 \in L^{2}(Q_{T}) \right\} \end{cases}$$

$$(22)$$

for all $r \geq 0$.

Remark- If
$$\varphi \in \mathbf{W}$$
 then $\frac{\partial \varphi}{\partial \nu} \in L^2(\Gamma_T)$

Remark- \pmb{W} endowed with the norm $\|\varphi\|_{\pmb{W}}:=\|\frac{\partial \varphi}{\partial \nu}\|_{L^2(\Gamma_T)}$ is an Hilbert space.

Relaxation of $L\varphi = 0$

In order to address the $L^2(Q_T)$ constraint $L\varphi=0$, we introduce a Lagrange multiplier $\lambda\in L^2(Q_T)$; we consider the saddle point problem :

$$\begin{cases}
\sup_{\lambda \in L^{2}(Q_{T})} \inf_{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda), \\
\mathcal{L}_{r}(\varphi, \lambda) := J_{r}(\varphi) + \langle L\varphi, \lambda \rangle_{L^{2}(Q_{T})} \\
\Phi := \left\{ \varphi : \varphi \in C^{0}(0, T; H_{0}^{1}(\Omega)) \cap C^{1}(0, T; L^{2}(\Omega)), L\varphi \in L^{2}(Q_{T}) \right\} \supset \mathbf{W}
\end{cases} \tag{23}$$

Remark- Φ is endowed with the inner product,

$$<\varphi,\overline{\varphi}>_{\Phi}:=<\frac{\partial\varphi}{\partial\nu},\frac{\partial\overline{\varphi}}{\partial\nu}>_{L^{2}(\Gamma_{\overline{I}})}+_{L^{2}(Q_{\overline{I}})},\quad\forall\varphi,\overline{\varphi}\in\Phi.$$

 $\|\varphi\|_{\Phi} := \sqrt{\langle \varphi, \varphi \rangle_{\Phi}}$ is a norm and $(\Phi, \|\cdot\|_{\Phi})$ is an Hilbert space.

Relaxation of $L\varphi = 0$

In order to address the $L^2(Q_T)$ constraint $L\varphi=0$, we introduce a Lagrange multiplier $\lambda\in L^2(Q_T)$; we consider the saddle point problem :

$$\begin{cases}
\sup_{\lambda \in L^{2}(Q_{T})} \inf_{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda), \\
\mathcal{L}_{r}(\varphi, \lambda) := J_{r}(\varphi) + \langle L\varphi, \lambda \rangle_{L^{2}(Q_{T})} \\
\Phi := \left\{ \varphi : \varphi \in C^{0}(0, T; H_{0}^{1}(\Omega)) \cap C^{1}(0, T; L^{2}(\Omega)), L\varphi \in L^{2}(Q_{T}) \right\} \supset \mathbf{W}
\end{cases}$$
(23)

Remark- Φ is endowed with the inner product,

$$<\varphi,\overline{\varphi}>_{\pmb{\Phi}}:=<\frac{\partial\varphi}{\partial\nu},\frac{\partial\overline{\varphi}}{\partial\nu}>_{L^2(\Gamma_{\mathcal{T}})}+< L\varphi,L\overline{\varphi}>_{L^2(Q_{\mathcal{T}})},\quad\forall\varphi,\overline{\varphi}\in\pmb{\Phi}.$$

 $\|\varphi\|_{\Phi} := \sqrt{\langle \varphi, \varphi \rangle_{\Phi}}$ is a norm and $(\Phi, \|\cdot\|_{\Phi})$ is an Hilbert space.

Mixed formulation

Find $(\varphi, \lambda) \in \Phi \times L^2(Q_T)$ solution of

$$\begin{cases}
a_{r}(\varphi,\overline{\varphi}) + b(\overline{\varphi},\lambda) &= l(\overline{\varphi}), & \forall \overline{\varphi} \in \mathbf{\Phi} \\
b(\varphi,\overline{\lambda}) &= 0, & \forall \overline{\lambda} \in L^{2}(Q_{T}),
\end{cases} (24)$$

where

$$a_{\mathbf{r}}: \mathbf{\Phi} \times \mathbf{\Phi} \to \mathbb{R}, \quad a_{\mathbf{r}}(\varphi, \overline{\varphi}) = \langle \frac{\partial \varphi}{\partial \nu}, \frac{\partial \overline{\varphi}}{\partial \nu} \rangle_{L^{2}(\Gamma_{\mathcal{T}})} + \mathbf{r} \langle L\varphi, L\overline{\varphi} \rangle_{L^{2}(Q_{\mathcal{T}})}$$
 (25)

$$b: \Phi \times L^{2}(Q_{T}) \to \mathbb{R}, \quad b(\varphi, \lambda) = \langle L\varphi, \lambda \rangle_{L^{2}(Q_{T})}$$
(26)

$$I: \mathbf{\Phi} \to \mathbb{R}, \quad I(\varphi) = - \langle y_0, \varphi_t(\cdot, 0) \rangle_{L^2} + \langle y_1, \varphi(\cdot, 0) \rangle_{H^{-1}, H_0^1}$$
 (27)

Rk. The continuity of the linear form / derives from generalized observability ineq.

$$\|\varphi(\cdot,0),\varphi_{t}(\cdot,0)\|_{\mathbf{V}}^{2} \leq C_{obs}\left(\left\|\frac{\partial\varphi}{\partial\nu}\right\|_{L^{2}(\Gamma_{\tau})}^{2} + \|L\varphi\|_{L^{2}(Q_{T})}^{2}\right), \qquad \forall \varphi \in \mathbf{\Phi}$$
 (28)

Conformal Approximation

Let then Φ_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi$$
, $\Lambda_h \subset L^2(Q_T)$, $\forall h > 0$.

Then, we can introduce the following approximated problems : find $(\varphi_h, \lambda_h) \in \Phi_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(\varphi_h, \overline{\varphi}_h) + b(\overline{\varphi}_h, \lambda_h) &= l(\overline{\varphi}_h), & \forall \overline{\varphi}_h \in \Phi_h \\
 b(\varphi_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases} (29)$$

For any h>0, the well-posedness is again a consequence of two properties

the coercivity of the bilinear form a_r on

 $\mathcal{N}_h(b)=\{arphi_h\in\Phi_h;b(arphi_h,\lambda_h)=0\quad orall \lambda_h\in\Lambda_h\}.$ From the relation

$$a_{\mathbf{f}}(\varphi,\varphi) \geq \frac{r}{\eta} \|\varphi\|_{\Phi}^{2}, \quad \forall \varphi \in \Phi$$

the form a_r is coercive on the full space Φ , and so a fortiori on $\mathcal{N}_h(b) \subset \Phi_h \subset \Phi$. The second property is a discrete inf-sup condition: there exists $\delta > 0$ such that

$$h_h := \inf_{\lambda_h \in \Lambda_h, \alpha_h \in \mathcal{A}_h} \sup_{\alpha_h \in \Lambda_h, \alpha_h \in \mathcal{A}_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{\Lambda_h}} \ge \delta.$$
 (30)

Conformal Approximation

Let then Φ_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi$$
, $\Lambda_h \subset L^2(Q_T)$, $\forall h > 0$.

Then, we can introduce the following approximated problems : find $(\varphi_h, \lambda_h) \in \Phi_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(\varphi_h, \overline{\varphi}_h) + b(\overline{\varphi}_h, \lambda_h) &= I(\overline{\varphi}_h), & \forall \overline{\varphi}_h \in \Phi_h \\
 b(\varphi_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases}$$
(29)

For any h > 0, the well-posedness is again a consequence of two properties

the coercivity of the bilinear form a_r on the subset

$$\mathcal{N}_h(b) = \{ \varphi_h \in \Phi_h; b(\varphi_h, \lambda_h) = 0 \quad \forall \lambda_h \in \Lambda_h \}.$$
 From the relation

$$a_r(\varphi,\varphi) \geq \frac{r}{\eta} \|\varphi\|_{\mathbf{\Phi}}^2, \quad \forall \varphi \in \mathbf{\Phi}$$

the form a_r is coercive on the full space Φ , and so a fortiori on $\mathcal{N}_h(b) \subset \Phi_h \subset \Phi$.

The second property is a discrete inf-sup condition : there exists $\delta > 0$ such that

$$\delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{\varphi_h \in \Phi_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{\Lambda_h}} \ge \delta. \tag{30}$$

A necessary condition is: $\dim(\Phi_h) > \dim(\Lambda_h)$

Conformal Approximation

Let then Φ_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi$$
, $\Lambda_h \subset L^2(Q_T)$, $\forall h > 0$.

Then, we can introduce the following approximated problems : find $(\varphi_h, \lambda_h) \in \Phi_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(\varphi_h, \overline{\varphi}_h) + b(\overline{\varphi}_h, \lambda_h) &= l(\overline{\varphi}_h), & \forall \overline{\varphi}_h \in \Phi_h \\
 b(\varphi_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases} (29)$$

For any h > 0, the well-posedness is again a consequence of two properties

the coercivity of the bilinear form a_r on the subset

$$\mathcal{N}_h(b) = \{ \varphi_h \in \Phi_h; b(\varphi_h, \lambda_h) = 0 \quad \forall \lambda_h \in \Lambda_h \}.$$
 From the relation

$$a_r(\varphi,\varphi) \geq \frac{r}{\eta} \|\varphi\|_{\mathbf{\Phi}}^2, \quad \forall \varphi \in \mathbf{\Phi}$$

the form a_r is coercive on the full space Φ , and so a fortiori on $\mathcal{N}_h(b) \subset \Phi_h \subset \Phi$. The second property is a discrete inf-sup condition: there exists $\delta > 0$ such that

$$\delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{\varphi_h \in \Phi_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{\Lambda_h}} \ge \delta. \tag{30}$$

A necessary condition is: $\dim(\Phi_h) > \dim(\Lambda_h)$

The discrete inf-sup test - Evaluation of δ_h

Figure: BFS finite element - Evolution of $\sqrt{r}\delta_{h,r}$ with respect to h for r=1 (\square), $r=10^{-2}$ (\circ), r=h (\star) and $r=h^2$ (<).

$$\delta_h \approx C_r \frac{h}{\sqrt{r}} \quad \text{as} \quad h \to 0^+$$
 (31)

 $\alpha > 0$

$$\begin{cases}
\sup_{\lambda \in \Lambda} \inf_{\varphi \in \Phi} \mathcal{L}_{r,\alpha}(\varphi,\lambda), \\
\mathcal{L}_{r,\alpha}(\varphi,\lambda) := \mathcal{L}_{r}(\varphi,\lambda) - \frac{\alpha}{2} \|L\lambda\|_{L^{2}(H^{-1}(\Omega))}^{2} - \frac{\alpha}{2} \|\lambda - \partial_{\nu}\varphi\|_{L^{2}(\Gamma_{T})}^{2}.
\end{cases} (32)$$

$$\Lambda := \left\{ \lambda : \lambda \in \mathcal{C}([0,T];L^2(\Omega)) \cap \mathcal{C}^1([0,T];H^{-1}(\Omega)), \right.$$

$$L\lambda \in L^2([0,T];H^{-1}(\Omega)), \lambda(\cdot,0) = \lambda_t(\cdot,0) = 0, \lambda_{|\Gamma_T} \in L^2(\Gamma_T)$$

Λ is a Hilbert space endowed with the following inner product

$$\langle \lambda, \ \overline{\lambda} \rangle_{\Lambda} := \int_{0}^{T} \langle L\lambda(t), L\overline{\lambda}(t) \rangle_{H^{-1}(\Omega)} dt + \iint_{\Gamma_{T}} \lambda \overline{\lambda} d\sigma dt, \qquad \forall \ \lambda, \ \overline{\lambda} \in \Lambda$$

using notably that

$$\|\lambda\|_{L^2(Q_T)} \le C_{\Omega,T} \sqrt{\langle \lambda, \lambda \rangle_{\Lambda}}, \quad \forall \lambda \in \Lambda$$
 (33)

for some positive constant $C_{\Omega,T}$. We denote $\|\lambda\|_{\Lambda} := \sqrt{\langle \lambda, \lambda \rangle_{\Lambda}}$.

¹H. Barbosa, T. Hugues: The finite element method with Lagrange multipliers on the boundary: circumventing the BabusĀ¿ka-Brezzi condition, 1991

 $\alpha > 0$

$$\begin{cases}
\sup_{\lambda \in \Lambda} \inf_{\varphi \in \Phi} \mathcal{L}_{r,\alpha}(\varphi,\lambda), \\
\mathcal{L}_{r,\alpha}(\varphi,\lambda) := \mathcal{L}_{r}(\varphi,\lambda) - \frac{\alpha}{2} \|L\lambda\|_{L^{2}(H^{-1}(\Omega))}^{2} - \frac{\alpha}{2} \|\lambda - \partial_{\nu}\varphi\|_{L^{2}(\Gamma_{T})}^{2}.
\end{cases} (32)$$

$$\Lambda := \left\{ \lambda : \lambda \in C([0,T];L^2(\Omega)) \cap C^1([0,T];H^{-1}(\Omega)), \right.$$

$$L\lambda \in L^2([0,T];H^{-1}(\Omega)), \lambda(\cdot,0) = \lambda_t(\cdot,0) = 0, \lambda_{|\Gamma_T} \in L^2(\Gamma_T) \bigg\}.$$

Λ is a Hilbert space endowed with the following inner product

$$\langle \lambda, \ \overline{\lambda} \rangle_{\Lambda} := \int_{0}^{T} \langle L\lambda(t), L\overline{\lambda}(t) \rangle_{H^{-1}(\Omega)} dt + \iint_{\Gamma_{T}} \lambda \overline{\lambda} d\sigma dt, \qquad \forall \ \lambda, \ \overline{\lambda} \in \Lambda$$

using notably that

$$\|\lambda\|_{L^2(Q_T)} \le C_{\Omega,T} \sqrt{\langle \lambda, \lambda \rangle_{\Lambda}}, \quad \forall \lambda \in \Lambda$$
 (33)

for some positive constant $C_{\Omega,T}$. We denote $\|\lambda\|_{\Lambda} := \sqrt{\langle \lambda, \lambda \rangle_{\Lambda}}$.

¹ H. Barbosa, T. Hugues: The finite element method with Lagrange multipliers on the boundary: circumventing the BabusĀ¿ka-Brezzi condition, 1991

Illustration for non smooth initial condition - Boundary control - d = 1

$$\begin{cases} y_{tt} - y_{xx} = 0 & \text{in } Q_T, \\ y(0, t) = 0, y(1, t) = v(t) & \text{on } (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (4x1_{(0, 1/2)}(x), 0) & \text{in } \Omega, \end{cases}$$
(34)

The control of minimal $L^2(0, T)$ norm is $v(t) = 2(1 - t)1_{(1/2, 3/2)}(t)$.

Figure: The dual variable $\varphi_h(\text{Left})$ and primal variable λ_h (Right) in Q_T ; $h = 2.46 \times 10^{-2}$; $r = 10^{-2}$.

Mesh adaptivity

Figure: Iterative refinement of the triangular mesh over Q_T with respect to the variable λ_h : 110, 2 880 and 8 636 triangles.

Example 1 - N = 1 - Numerical experiments

$$\begin{cases} y_{tt} - y_{xx} = 0 & \text{in } Q_T, \\ y(0, t) = 0, y(1, t) = v(t) & \text{on } (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (4x1_{(0, 1/2)}(x), 0) & \text{in } \Omega, \end{cases}$$
(35)

Figure: The variable φ_h and λ_h in Q_T corresponding to the finer mesh; $r = 2 \times 10^{-3}$.

Mesh adaptivity

Figure: Control of minimal L^2 -norm v (dashed blue line) and its approximation $\lambda_h(1,\cdot)$ (red line) on (0,T). Third adapted mesh, $r=10^{-6}$.

The approach leads to a simple and short Freefem++ code!!

```
1 real L = 1; // Size of the spatial domain
 2 int N = 10; // Fineness of the mesh
 3real T = 2; // Final time
4 \text{ mesh } Th = square(N, 2*N, [L*x, T*y]); //Uniform space-time mesh
 5 fespace Wh(Th,P2); //P2 Finite Element Space for the Dual variables
 6 fespace Mh (Th. P1); //P1 Finite Element Space for the Primal variables
 7Wh w1, q1;//Declaration of the Dual variables (solution functions)
8 Wh w2, q2; //Declaration of the Dual variables (test functions)
9Mh lambdal.mul://Declaration of the Primal variables (solution functions)
10Mh lambda2.mu2; //Declaration of the Primal variables (test functions)
11 func u0 = 4 \times x \times (x \ge 0 \& x < 0.5); //Initial data to be controlled
12 real r = 10e-2; // Augmentation parameter 'r'
13 real alpha = 10e-2; // Stabilization parameter 'alpha'
14
15//Definition of the stabilized mixed variational formulation
16 problem ControlWave ([w1, g1, lambda1, mu1], [w2, g2, lambda2, mu2]) =
17
18
         int1d(Th, 2) (q1*q2) - int1d(Th, 1) (u0*w2)
19
20
21
         +int2d(Th)((dy(w2)-dx(g2))*lambda1+(dy(g2)-dx(w2))*mu1
22
                    + (dy (w1) - dx (q1)) *lambda2 + (dy (q1) - dx (w1)) *mu2)
23
24
25
          +int2d (Th) (r*((dy(w1)-dx(q1))*(dy(w2)-dx(q2))+(dy(q1)-dx(w1))*(dy(q2)-dx(w2)))
26
27
28
          -intld(Th, 2) (alpha*q1*q2+alpha*(q2*lambda1+q1*lambda2))
29
          -intld(Th, 2, 4) (alpha*lambda1*lambda2)
30
          -int2d (Th) (alpha* ( (dy (lambda1) -dx (mu1) ) * (dy (lambda2) -dx (mu2) )
31
                            + (dy (mu1) - dx (lambda1)) * (dy (mu2) - dx (lambda2))
32
```

4 D > 4 P > 4 E > 4 E >

Non conformal approximation

Stabilization technics may also be employed in the context of non-conformal approximations. Let

$$V_h^q = \{p_h \in C(\overline{Q_T}); (p_h)_{|K} \in \mathbb{P}_q(K), \forall K \in \mathcal{T}_h\}$$

and consider the discrete Lagrangian $\mathcal{L}_h: V_h^p imes V_h^q o \mathbb{R}$, given by

$$\begin{split} \mathcal{L}_{h}(\phi_{h},\lambda_{h}) &:= J^{\star}(\phi_{h}) + \frac{h^{2}}{2} \|L\phi_{h}\|_{L^{2}(Q_{T})}^{2} + \frac{h}{2} \sum_{K \in \mathcal{T}_{h}} \int_{\partial K} [[\partial_{\nu}\phi_{h}]]^{2} + h^{-1} \int_{\Sigma_{T}} \phi_{h}^{2} \\ &+ \int_{Q_{T}} (-\partial_{t}\phi_{h}\partial_{t}\lambda_{h} + \nabla\phi_{h}\nabla\lambda_{h}) - \frac{h}{2} \sum_{K \in \mathcal{T}_{h}} \int_{\partial K} [[\partial_{\nu}\lambda_{h}]]^{2} - \frac{h^{2}}{2} \|L\lambda_{h}\|_{L^{2}(Q_{T})}^{2} \\ &- h^{-1} \int_{\Sigma_{T}} \lambda_{h}^{2} - \frac{h^{2}}{2} \|\lambda_{h} - \chi\partial_{\nu}\phi_{h}\|_{L^{2}(Q_{T})}^{2} \end{split}$$

 $[[\partial_{\nu}\phi_{\hbar}]]$ denotes the jump of the normal derivative of ϕ_{\hbar} across the internal edges of the triangulation.

The terms $h^2 \|L\phi_h\|_{L^2(Q_T)}$ and $-h^2 \|L\lambda_h\|_{L^2(Q_T)}^2$ play a symmetric role. Both vanish at the continuous level. The jump terms somehow aim to control the regularity of the approximation.

Non conformal approximation: a result of convergence

2

Moreover, if the saddle-point (λ,ϕ) of \mathcal{L}_r is smooth enough, then the following approximation result holds true

Theorem (Burman, Feizmohammadi, M, Oksanen 2022)

Assume the geometric control condition. Let $p,q\geq 1$ and h>0. Let $(\lambda_h,\phi_h)\in V_h^p\times V_h^q$ be the saddle point of \mathcal{L}_h and assume that the saddle point (λ,ϕ) of \mathcal{L}_r belongs to $H^{p+1}(Q_T)\times H^{q+1}(Q_T)$. Then, there exists a positive constant C independent of h such that

$$\|\chi(\partial_{\nu}\phi - \partial_{\nu}\phi_{h})\|_{L^{2}(\Sigma_{T})} \leq C(h^{p+\frac{1}{2}}\|u\|_{H^{p+1}(Q_{T})} + h^{q-\frac{1}{2}}\|\phi\|_{H^{q+1}(Q_{T})}),$$
(36)

where χ is a cut-off function $\chi(x,t)=\chi_0(x)\chi_1(t)$, with $\chi_0\in C_0^\infty(\omega)$, $\chi_1\in C_0^\infty(0,T)$.

If $(u_0, u_1) \in H^{k+1}(\Omega) \times H^k(\Omega)$ satisfies the compatibility conditions of order k at $\partial \Omega \times \{0\}$. then the solution (u, ϕ) satisfies

$$(u,\phi)\in H^{k+1}(Q_T)\times H^{k+2}(Q_T).$$

Illustration for non smooth initial condition - Boundary control - d = 1

$$\begin{cases} y_{tt} - y_{xx} = 0 & \text{in } Q_T, \\ y(0, t) = 0, y(1, t) = v(t) & \text{on } (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (4x1_{(0, 1/2)}(x), 0) & \text{in } \Omega, \end{cases}$$

h.

Figure: Relative error on the approximation of the boundary control $\frac{\|\partial_{\nu}\phi_{h}(1,\cdot)-\nu\|_{L^{2}(0,T)}}{\|\nu\|_{L^{2}(0,T)}} \text{ with respect to } h \text{ for different approximations.}$

10⁻¹

(37)

(p,q) = (1,2) (p,q) = (2,3)(p,q) = (2,2)

10⁻¹

Non conformal approximation

Figure: Locally refine spacetime meshes with respect to ϕ_h (Left) and λ_h (Right).

Theorem

$$\sup_{\lambda \in L^2} \inf_{\varphi \in \Phi} \mathcal{L}_r(\varphi, \lambda) = -\inf_{\lambda \in L^2} J_r^{\star \star}(\lambda) + \mathcal{L}_r(\varphi_0, 0)$$

where $\varphi_0 \in \Phi$ solves $a_r(\varphi_0, \overline{\varphi}) = I(\overline{\varphi}), \forall \overline{\varphi} \in \Phi$ and $J_r^{\star\star} : L^2 \to \mathbb{R}$ defined by

$$J_r^{\star\star}(\lambda) := \frac{1}{2} < \mathcal{P}_r \lambda, \lambda >_{L^2(Q_T)} -b(\varphi_0, \lambda)$$

Lemma

Let \mathcal{P}_r be the linear operator from L^2 into L^2 defined by

$$\mathcal{P}_r\lambda := L\varphi, \quad \forall \lambda \in L^2 \quad where \quad \varphi \in \Phi \quad solves \quad a_r(\varphi, \overline{\varphi}) = b(\overline{\varphi}, \lambda), \quad \forall \overline{\varphi} \in \Phi.$$

For any r > 0, the operator \mathcal{P}_r is a strongly elliptic, symmetric isomorphism from L^2 into L^2 .

Rk. The control problem is reduced to the minimization of an unconstrained functional with respect to the control state within a space-time framework!!!

Theorem

$$\sup_{\lambda \in L^2} \inf_{\varphi \in \Phi} \mathcal{L}_r(\varphi, \lambda) = -\inf_{\lambda \in L^2} J_r^{\star \star}(\lambda) + \mathcal{L}_r(\varphi_0, 0)$$

where $\varphi_0 \in \Phi$ solves $a_r(\varphi_0, \overline{\varphi}) = I(\overline{\varphi}), \forall \overline{\varphi} \in \Phi$ and $J_r^{\star\star} : L^2 \to \mathbb{R}$ defined by

$$J_r^{\star\star}(\lambda) := \frac{1}{2} < \mathcal{P}_r \lambda, \lambda >_{L^2(Q_T)} - b(\varphi_0, \lambda)$$

Lemma

Let \mathcal{P}_r be the linear operator from L^2 into L^2 defined by

$$\mathcal{P}_r\lambda:=L\varphi, \quad \forall \lambda\in L^2 \quad \text{where} \quad \varphi\in \Phi \quad \text{solves} \quad a_r(\varphi,\overline{\varphi})=b(\overline{\varphi},\lambda), \quad \forall \overline{\varphi}\in \Phi.$$

For any r > 0, the operator \mathcal{P}_r is a strongly elliptic, symmetric isomorphism from L^2 into L^2 .

Rk. The control problem is reduced to the minimization of an unconstrained functional with respect to the control state within a space-time framework!!!

The situation is much simpler with cost involving both *y* and *v*

Minimize
$$J(y, v) = \frac{1}{2} \iint_{Q_T} |y|^2 dx dt + \frac{1}{2} \int_0^T \int_{\Gamma_0} |v|^2 d\sigma dt$$

Subject to $(y, v) \in \mathcal{C}(y_0, y_1; T)$ (38)

$$v = \frac{\partial \varphi}{\partial \nu}$$
 in $(0, T) \times \Gamma_0$ and $y = L^* \varphi$ in Q_T .

$$\begin{cases}
\text{Minimize } J^{*}(\varphi) = \frac{1}{2} \iint_{Q_{T}} |L\varphi|^{2} dx dt + \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma dt \\
+ \langle (\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)), (y_{0}, y_{1}) \rangle
\end{cases}$$
(39)
Subject to $\varphi \in \mathbf{\Phi}$

$$\begin{split} & \Phi := \left\{ \varphi : \varphi \in C^0(0,T;H^1_0(\Omega)) \cap C^1(0,T;L^2(\Omega)), L\varphi \in L^2(Q_T) \right\} \text{ is endowed with the} \\ & \text{inner product}, <\varphi, \overline{\varphi}>_{\Phi} := <\frac{\partial \varphi}{\partial \nu}, \frac{\partial \overline{\varphi}}{\partial \nu}>_{L^2(\Gamma_T)} + _{L^2(Q_T)}, \quad \forall \varphi, \overline{\varphi} \in \Phi. \end{split}$$

Numerical illustration : Part 1 + Part 2: $y_{k+1} = \Lambda_s(y_k)$

$$\begin{cases} \partial_{tt}y - \Delta y - 3y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } (0,1) \times (0,2.5), \\ y(0,t) = 0, y(1,t) = v(t) & \text{on } (0,2.5), \\ (y(\cdot,0), \partial_{t}y(\cdot,0)) = (10\sin(\pi x), 0) & \text{in } (0,1), \end{cases}$$

$$J(y,v) = s \int_{0}^{T} \rho_{1}(s,t)^{2}v^{2}(t)dt + s \int_{Q_{T}} \rho_{s}^{2}(x,t)y^{2}(t)dt$$

$$(40)$$

Controlled solution in $(0,1) \times (0,T)$

Similarly arguments apply for the heat equation

Part 1

- Lemoine, Ervedoza, M. Exact controllability of semilinear heat equations through a constructive approach, AIMS EECT, 2023
- Lemoine, M. Constructive exact control of semilinear 1D heat equations, AIMS MCRF, 2022
- Gayte-Marin Lemoine, M. Approximation of null controls for semilinear heat equations using a least-squares appproach, ESAIM COCV 2021
- Bhandari, Lemoine, M. Constructive exact control of semilinear 1D heat equations, arxiv

Part 2

- De Souza, Fernandez-Cara, Lemoine, M. On the numerical controllability of the two-dimensional heat, Stokes and Navier-Stokes equations,, J. Scientific computing, 2017
- De Souza, M. A mixed formulation for the direct approximation of the control of minimal L²-weighted norm for the linear heat equation,, Advances in Computational Mathematics, 2016
- Fernandez-Cara, M. Numerical null controllability of the 1D heat equation: Duality and Carleman weights,, JOTA 2013
- Fernandez-Cara, M. Strong convergent approximations of null controls for the heat equation, SEMA 2013

Numerical illustration for the heat eq. : Part 1 + Part 2: $y_{k+1} = \Lambda_s(y_k)$

$$\begin{cases} \partial_{t}y - \Delta y - 5y(1 + \ln^{3/2}(2 + |y|)) = v \, \mathbf{1}_{(0.2,0.8)} & \text{in } (0,1) \times (0,0.5), \\ y = 0 & \text{on } \{0,1\} \times (0,0.5), \\ y(\cdot,0) = 10 \sin(\pi x) & \text{in } \Omega, \end{cases}$$

$$J(y,v) = s \int_{0}^{T} \rho_{1}(s,t)^{2} v^{2}(t) dt + s \int_{Q_{T}} \rho_{s}^{2}(x,t) y^{2}(t) dt$$

$$(41)$$

Figure: The control v (Left) and controlled state y (right) in Q_T .

$$\begin{cases} \text{Minimize } J^{\star}(\varphi) = \frac{1}{2} \iint_{Q_{T}} |L\varphi|^{2} dx dt + \frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \left| \frac{\partial \varphi}{\partial \nu} \right|^{2} d\sigma dt \\ + \langle (\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)), (y_{0}, y_{1}) \rangle \end{cases}$$

$$\text{Subject to } \varphi \in \mathbf{\Phi}$$

$$(42)$$

The corresponding VF is: find $\varphi \in \Phi$ such that

????

$$\int_{Q_{\mathcal{T}}} L\varphi L\overline{\varphi} + \int_{0^{\mathcal{T}}} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} \frac{\partial \overline{\varphi}}{\partial \nu} = <(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)), (y_{0}, y_{1})>, \quad \forall \overline{\varphi} \in \mathbf{\Phi}$$

The corresponding boundary value problem is $(L := \partial_{tt} - \partial_{xx}, \Omega = (0, 1))$

$$\begin{cases} L(L\varphi) = 0, & Q_{T}, \\ \varphi(0,t) = 0, L\varphi(0,t) = 0, & (0,T) \\ \varphi(1,t) = 0, L\varphi(1,t) + \varphi_{X}(1,t) = 0, & (0,T) \\ L\varphi(X,0) = y_{0}, (L\varphi(X,0))_{t} = y_{1} & (0,1) \\ L\varphi(X,T) = 0, (L\varphi(X,T))_{t} = 0 & (0,1) \end{cases}$$

$$(43)$$

The corresponding boundary value problem is $(L := \partial_{tt} - \partial_{xx})$

$$\begin{cases} L(L\varphi) = 0, & Q_T, \\ \varphi(0,t) = 0, L\varphi(0,t) = 0, & (0,T) \\ \varphi(1,t) = 0, L\varphi(1,t) + \varphi_X(1,t) = 0, & (0,T) \\ L\varphi(X,0) = y_0, (L\varphi(X,0))_t = y_1 & (0,1) \\ L\varphi(X,T) = 0, (L\varphi(X,T))_t = 0 & (0,1) \end{cases}$$
(44)

or (equivalently)

$$\begin{cases} Ly = 0, & L\varphi = y, & Q_T, \\ \varphi(0,t) = 0, y(0,t) = 0, & (0,T) \\ \varphi(1,t) = 0, y(1,t) - \varphi_X(1,t) = 0, & (0,T) \\ y(x,0) = y_0, y_t(x,0) = y_1 & (0,1) \\ y(x,T) = 0, y_t(x,T) = 0 & (0,1) \end{cases}$$
(45)

Thank you for your attention !!!

The corresponding boundary value problem is $(L := \partial_{tt} - \partial_{xx})$

$$\begin{cases} L(L\varphi) = 0, & Q_T, \\ \varphi(0,t) = 0, L\varphi(0,t) = 0, & (0,T) \\ \varphi(1,t) = 0, L\varphi(1,t) + \varphi_X(1,t) = 0, & (0,T) \\ L\varphi(X,0) = y_0, (L\varphi(X,0))_t = y_1 & (0,1) \\ L\varphi(X,T) = 0, (L\varphi(X,T))_t = 0 & (0,1) \end{cases}$$
(44)

or (equivalently)

$$\begin{cases} Ly = 0, & L\varphi = y, & Q_T, \\ \varphi(0,t) = 0, y(0,t) = 0, & (0,T) \\ \varphi(1,t) = 0, y(1,t) - \varphi_X(1,t) = 0, & (0,T) \\ y(x,0) = y_0, y_t(x,0) = y_1 & (0,1) \\ y(x,T) = 0, y_t(x,T) = 0 & (0,1) \end{cases}$$

$$(45)$$

Thank you for your attention !!!