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Coupled wave equations

Problem:

8<:
ytt = yxx +M((ay)t + (by)x), in QT := (0, T)� (0, 1),
y(t, 0) = Bu(t), y(t, 1) = 0, in (0, T),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

where y = (y1, y2) is a vector function and

M =

�
m11 m12
m21 m22

�
2 L

�
R2
�

, B =
�

b1
b2

�
2 R2, a, b 2 C1(QT; R),

and u a is scalar control function acting at x = 0.

Issue: Exact controllability of this system.
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Known results in any dimensions

Single wave equation: By now classical results of
Bardos-Lebeau-Rauch (microlocal analysis), Fursikov-Imanuvilov
(Carleman estimates, without lower order terms), Zhang
(Carleman estimates, with lower order terms in time and space)
give a complete solution to the exact controllability issue.
Systems of wave equations in any space dimension:

I The number of controls equals the number of equations:
Lasiecka-Triggiani (900).

I The number of controls lower than the number of equations: A
number of authors (Alabau, Alabau-Léautaud, Dehman-Le
Rousseau-Léautaud) gave answers when two wave equations are
coupled with zero-order terms not depending on time. Common point:
coupling coeficients independent of time and with a constant sign.
Cui-Laurent-Wang have more general results for a Riemannian
manifold without boundary and an arbitrary number of equations
with zero order coupling terms.
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Known results in one dimension

D. Russell: a reference paper on the controllability of
one-dimensional symmetric hyperbolic systems.
More recently: Avdonin-De Teresa (constant case), Duprez-Olive
(cascade systems), Hu-Olive (minimal time of controllability),
FAK-Bennour-Teniou (first order coupling independent of time)...
...
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The adjoint problem

It is: 8><>:
ϕtt = ϕxx �M�(aϕt + bϕx), in (0, T)� (0, 1),
ϕjx=0,1 = 0, in (0, T),
(ϕ, ϕt)jt=T = (ϕ0, ϕ1) , in (0, 1).

Well posed in H := H1
0 (0, 1)2 � L2 (0, 1)2 and

k(ϕ, ϕt)kC([0,T],H) +



ϕxjx=0,1





L2(0,T)2

� C


(ϕ0, ϕ1)




H .
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The adjoint problem

As is well-known:

Exact observability (and thus, exact controllability) amounts to the
observability inequality:



(ϕ0, ϕ1)


2

H � C
Z T

0
jB�ϕx (t, 0)j2 dt.

Approximate controllability amounts to:

(B�ϕx (t, 0) = 0, t 2 (0, T))) ϕ � 0 in QT.

for any solution ϕ of the adjoint problem.
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Definition
Definition
The adjoint problem is said weakly exactly obervable (WEO) if there
exists a compact operator K : H ! L2 (0, T) such that:



(ϕ0, ϕ1)


2

H � C
Z T

0
jB�ϕx (t, 0)j2 dt+



K (ϕ0, ϕ1)


2

L2(0,T) , 8 (ϕ0, ϕ1) 2 H.

(This is a Peetre inequality).

If this inequality is satisfied, then the observability inequality



(ϕ0, ϕ1)


2

H � C
Z T

0
jB�ϕx (t, 0)j2 dt

is satisfied up to the (finite dimensional) kernel of the linear
operator L : H ! L2 (0, T) defined by L (ϕ0, ϕ1) = B�ϕx (t, 0) .
Thus: (WEO/WEC) + (AO/AC)) EO/EC.
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Notations

To formulate the main results, some notations are necessary: introduce

η1 =
a� b

2
(T� t, x) , η2 =

a+ b
2

(T� t, x) ,

and the associated function: for t > 0

φ (t) =
Z max(0,t�1)

max(0,t�2)
η1 (τ, τ � (t� 2)) dτ +

Z t

max(0,t�1)
η2 (τ, t� τ) dτ.

If t � 2, it writes:

φ (t) =
Z t�1

t�2
η1 (τ, τ � (t� 2)) dτ +

Z t

t�1
η2 (τ, t� τ) dτ
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Geometric interpretation

t

x

1

t­2 t­1 t
0

η 1 η
2

η1 =
a�b

2 , η2 =
a+b

2
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First result: non observability

Theorem
If T < 4, the system is not controllable (neither exactly, nor approximately).

Remark: Indeed, the operator L (ϕ0, ϕ1) = B�ϕx (t, 0) has an infinite
dimensional kernel.
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Controllability: main result
We assume here that σ (M) � R and will indicate later the changes if
σ (M) � CnR.

Theorem
Let n � 2 and 2n � T < 2n+ 2 and assume the approximate controllability.
Exact controllability is equivalent to:

1 rank [B j MB] = 2
2 For any x 2 [0, 1] , there exist 1 � k, ` � n such that 2k+ 2� x � T,

x+ 2` � T and:

φ (2k+ 2� x) 6= 0 and φ (x+ 2`) 6= 0

Remark: If σ (M) � CnR, the second condition must be replaced by:

φ (2k+ 2� x) , φ (x+ 2`) /2 π

Im σ (M)
Z.
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Geometric interpretation
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Illustration for T = 4.5
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The controllability results says:

1 The two characteristics lines issued from any point
(x, 0) 2 (0, 1)� (0, T) must touch at least two times the
observability boundary before arriving to t = T,

2 Along these characteristics lines, the integral φ must be non zero
somewhere (if σ (M) � R).

For T < 4, the first condition is not satisfied for some (α, b) � (0, 1) .
The noncontrollability result is then proved by choosing initial data
whose support is close to the characteristics line which does not verify
this condition.
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Comments and remarks

The autonomous case: If a and b do not depend on t, then

φ (t) =
Z 1

0
a (x) dx

and thus b does not play any role in the previous result. More
generally, if b does not depend on t, it does not play any role for
the weak observability to hold.

The conditions of the theorem may be satisfied if a � 0 and b
depends on t : the function φ will be expressed in function of b.
The weak observability result can be widely generalized: the
number of equations may be increased with a number of control
functions less than the number of equations.
The approximate controllability is much more tricky: we do not
know general conditions to insure it.
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Sketch of the proof
First step

The introdution of the Riemann invariants p = yt � yx and q = yy + yx
makes the adjoint system of wave equations equivalent to the
hyperbolic system:8>><>>:

pt + px +M� (η1p+ η2q) = 0, in QT
qt � qx +M� (η1p+ η2q) = 0, in QT
(p+ q)jx=0,1 = 0 in (0, T)
(p, q)jt=0 = (p0, q0) in (0, 1)

in the space

H =

�
(f , g) 2 L2 (0, 1)2 � L2 (0, 1)2 :

Z 1

0
(f � g) = 0

�
.
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Sketch of the proof
Second step

We then extract the diagonal system:8>><>>:
pt + px +M�η1p = 0, in QT
qt � qx +M�η2q = 0, in QT
(p+ q)jx=0,1 = 0 in (0, T)
(p, q)jt=0 = (p0, q0) in (0, 1)

which is much more easy to deal with. This diagonal system is not
equivalent to a wave equations system.
First key point: The difference between the two evolution families is
compact. This is an observation of Neves-Ribeiro-Lopes (1980’)
extended to this case by FAK-Bader (2000’).
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Sketch of the proof
Third step

Second key point: The difference between the observation operators are also
compact. This was already observed by D. Russell (1977?) but without
proof.
Third key point: The observation operator operator associated with
the diagonal system is identified to a matrix multiplicative operator
from L2 (0, 1)4 in L2 (0, 1)m with continuous entries depending on φ.
Here m depends on T. The study of this matrix multiplicative operator
leads to the necessary and sufficient conditions of the main result.
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Approximate controllability

The constant coefficients case can be completely treated by
applying the Fattorini-Hautus criteria.
The cascade system has already been treated in the autonomous
case with b � 0 by Bennour and al. (2017).
In our setting, we have considered two special nonautonomous
cases:

η1 (t, x) = α (t� x) , η2 (t, x) = β (t+ x) ;

and
η1 (t, x) = α (t+ x) , η2 (t, x) = β (t� x) ;

In the two cases, more conditions on φ are needed.
The approximate controllability issue remains an open problem in
the general case.
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Generalizations

8<:
ytt = yxx + (M1y)t + (M2y)x , in QT := (0, T)� (0, 1),
y(t, 0) = Bu(t), y(t, 1) = 0, in (0, T),
y(0, x) = y0(x), yt(0, x) = y1(x), in (0, 1),

where

Mi (t, x) 2 C (QT,L (Rn)) , i = 1, 2
B 2 L (Rm, Rn) (m < n)

with the same way of proof.
The conditions for weak observability should be given by way of the
resolvent of the differential systems

θ0 = Mi (γ (t, x)) θ, (i = 1, 2) .
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