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§ 1. Motivation

• Ramanujan’s function τ(n)
For =mz > 0, define

∆(z) := e2πiz
∞Y

n=1

(1− e2πinz)24 =:
∞X

n=1

τ(n)e2πinz.

• Ramanujan’s conjecture

|τ(n)| 6 d(n)n11/2 (n > 1)

where d(n) is the divisor function. This conjecture has been proved by
Deligne (1974).
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• Lehmer’s conjecture

τ(n) 6= 0 (n > 1)

This is open !

• Two partial results on Lehmer’s conjecture
Lehmer (1959) : τ(n) 6= 0 for n 6 1015.

Serre (1981) : |{n 6 x : τ(n) 6= 0}| ∼ αx (x→∞, α > 0).

• Questions
(i) α = 1 ? (Nonvanishing of τ(n))

(ii) lim
x→∞

1
x

X

n6x, τ(n)≷ 0

1 =
1
2

? (Signs of τ(n))
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§ 2. Modular forms

• Notation

k := integer > 2,

N := squarefree integer,

logr := the r-fold iterated logarithm,

χ0 := trivial Dirichlet character (mod N),

χ := Dirichlet character (mod N) such that χ(−1) = (−1)k.

• Cusp forms

Denote by Sk(N,χ) the set of all cusp forms of weight k and of level
N with nebentypus χ.
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• Decomposition of Sk(N,χ)
Sk(N,χ) equipped with the Petersson inner product h·, ·i is a finite

dimensional Hilbert space and we have

Sk(N,χ) = S[
k(N,χ)⊕ S]

k(N,χ),

where S[
k(N,χ) is the linear subspace of Sk(N,χ) spanned by all forms of

type f(dz), where d | N and f ∈ Sk(N 0, χ0) with N 0 < N and dN 0 | N .
Here χ0 (modN 0) is the character which induces χ. S]

k(N,χ) is the linear
subspace of Sk(N,χ) orthogonal to S[

k(N,χ) with respect to h·, ·i.
• Newforms

Denote by S∗k(N,χ) the set of all newforms in S]
k(N,χ). It consti-

tutes a base of S]
k(N,χ).

We can prove ∆(z) ∈ S12(1) := S12(1, χ0).
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• Fourier development of f ∈ S∗k(N,χ) at ∞

f(z) =
∞X

n=1

λf (n)n(k−1)/2e2πinz (=mz > 0),

where λf (n) has the following properties:

(i) λf (1) = 1,

(ii) Tnf = λf (n)n(k−1)/2f for any n > 1,

(iii) for all integers m > 1 and n > 1,

λf (m)λf (n) =
X

d|(m,n)

χ(d)λf

µ
mn

d2

∂
,

where Tn is the nth Hecke’s operator.

(iv) Further if f ∈ S∗k(N,χ0), then λf (n) ∈ R for n > 1.
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• Deligne’s inequality

Deligne (1974): If f ∈ S∗k(N,χ), then ∀ p, ∃ αf (p), βf (p) such that
(
|αf (p)| = ±p−1/2, βf (p) = 0 if p | N

|αf (p)| = 1, αf (p)βf (p) = χ(p) if p - N

and

λf (pν) = αf (p)ν + αf (p)ν−1βf (p) + · · · + βf (p)ν (∀ ν > 0).

In particular
|λf (pν)| 6 ν + 1 (∀ p and ∀ ν > 0).

More generally
|λf (n)| 6 d(n) (n > 1)

where d(n) is divisor function.
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§ 3. Nonvanishing of λf (n)

• Notation

f ∈ Sk(N,χ) : Pf := {p : λf (p) = 0}.

• Forms of CM type
Ribet (1977): If f ∈ Scm

k (N,χ) (the subspace of Sk(N,χ) spanned
by all CM forms), then

ØØPf ∩ [1, x]
ØØ =

x

2 log x
+ O

µ
x

(log x)2

∂
.

By using Landau’s method, we can prove ∃ α > 0 such that for x→∞,
X

n6x, λf (n)6=0

1 ∼ αx√
log x

,
X

n6x, λf (n)=0

1 ∼ x.
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• Lang-Trotter’s conjecture

If f ∈ S∗k(N,χ)rScm
k (N,χ), then

ØØPf ∩ [1, x]
ØØ øf






√
x/ log x if k = 2,

log2 x if k = 3,
1 if k > 4.

• Forms of non-CM type

Serre (1981): If f ∈ S∗k(N,χ)rScm
k (N,χ), then ∀ δ < 1

2 ,

(1)
ØØPf ∩ [1, x]

ØØ øf,δ
x

(log x)1+δ
.

From this, we deduce that there are constants C > c > 0 such that

(2) cx 6
X

n6x, λf (n)6=0

1 6 Cx

for x > x0(f).
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• Serre’s function if (n)
For f ∈ Sk(N,χ)rScm

k (N,χ), we define

if (n) := max{i : λf (n + j) = 0 (0 < j 6 i)}.

The inequalities (2) imply that

(3) if (n) øf n (n > 1),

since
0 =

X

n<m6n+if (n)
λf (m)6=0

1 > c
°
n + if (n)

¢
− Cn = cif (n)− (C − c)n.

• Serre’s question (1981)
Find constant θ < 1 such that

(4) if (n) øf,θ nθ (∀n > 1).
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Remark 1. Balog & Ono (2001) remarked that Serre’s question
has been resolved before proposing it ! There is two methods !

• Rankin-Selberg convolution (The first method)

Rankin (1939) and Selberg (1940): For f ∈ S∗k(N,χ), we have
X

n6x

|λf (n)|2 = Afx + Of (x3/5) (Af > 0).

This implies trivially (4) with θ = 3
5 , since

0 =
X

n<m6n+if (n)

λf (m)2 =
X

m6n+if (n)

λf (m)2 −
X

m6n

λf (m)2

= Af

°
n + if (n)

¢
−Afn + O

°
(n + if (n))3/5 + n3/5

¢

= Af if (n) + O(n3/5) (via (3)).
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• Erdős’ B-free numbers (The second method)

Let
B = {bk ∈ N : 1 < b1 < · · · < bk < · · · }

such that

(5)
∞X

i=1

1
bi

<∞ and (bi, bj) = 1 (i 6= j).

An integer n > 1 is called B-free if b - n for any b ∈ B. The set of all
B-free numbers is denoted by A = A(B).

Taking B = {p2 : p prime} =: P2, then A(P2) is the set of all
squarefree integers.
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Erdős (1966): ∃ θ < 1 such that for x > x0(B, θ),

(6)
ØØ©x < n 6 x + xθ : n is B−free

™ØØ ¿B,θ xθ.

The records on θ:
θ = 1

2 = 0.5 + ε (Szemerédi, 1973),

θ = 9
20 = 0.45 + ε (Bantle & Grupp, 1986),

θ = 5
12 = 0.4166 + ε (Wu, 1990),

θ = 17
41 = 0.4146 + ε (Wu, 1993),

θ = 33
80 = 0.4125 + ε (Wu, 1994) and (Zhai, 2000),

θ = 40
97 = 0.4123 + ε (Sargos & Wu, 2000),

θ = ε (Conjecture),

where ε is an arbitrarily small positive number.
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• Application of B-free numbers

Take
Pf := {p : λf (p) = 0},

Bf := Pf ∪ {p2 : p /∈ Pf}.
The multiplicativity of λf (m) implies

m is Bf−free ⇒ λf (m) 6= 0

In fact, if m is Bf -free, we have

(i) if p | m, then λf (p) 6= 0,

(ii) m = p1 · · · pj with λf (pi) 6= 0 for 1 6 i 6 j and p1 < · · · < pj ,

(iii) λf (m) = λf (p1) · · ·λf (pj) 6= 0.
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In view of Serre’s (1), Bf satisfies (5). Thus Erdős’ (6) implies :
∃ θ < 1 such that for x > x0(f, θ)

X

x<m6x+xθ

λf (m)6=0

1 >
X

x<m6x+xθ

m is Bf−free

1 ¿f,θ xθ,

from which we deduce (taking x = n)

if (n) < nθ

for n > x0(f, θ). Thus

if (n) øf,θ nθ (n > 1).

In particular, the value θ = 40
97 + ε is admissible.
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Theorem 1 (Kowalski, Robert & Wu, 2007). Suppose that

(7)
ØØPf ∩ [1, x]

ØØ øf xρ/(log x)Θρ (x > 2)

for any f ∈ S∗k(N,χ)rScm
k (N,χ), where ρ ∈ [0, 1] and Θρ ∈ R such that

Θ1 > 1. Then for any f ∈ Sk(N,χ)rScm
k (N,χ) we have

if (n) øf,ε nθ(ρ)+ε,

where

θ(ρ) =






1/4 if 0 6 ρ 6 1/3,
10ρ/(19ρ + 7) if 1/3 < ρ 6 9/17,
3ρ/(4ρ + 3) if 9/17 < ρ 6 15/28,
5/16 if 15/28 < ρ 6 5/8,
(22ρ/(24ρ + 29) if 5/8 < ρ 6 9/10,
7ρ/(9ρ + 8) if 9/10 < ρ 6 1.
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Corollary 2 (KRW, 2007). For any form f ∈ Sk(N,χ)rScm
k (N,χ),

we have if (n) øf,ε n7/17+ε for all n > 1.

[(1)⇒ (7) with ρ = 1 and Θ1 = 1 + δ]
θ(1) = 7

17 ≈ 0.411 improves very slightly Balog & Ono’s 40
97 ≈ 0.412.

Corollary 3 (KRW, 2007). For any f ∈ Sk(N,χ)rScm
k (N,χ), Lang-

Trotter’s conjecture implies if (n) øf,ε n10/33+ε for all n > 1.

[Lang-Trotter’s conjecture implies (7) with ρ = 1
2 and Θ1/2 = 1]

θ(1
2 ) = 10

33 ≈ 0.303 improves considerably Alkan’s 1
3 ≈ 0.333.

Corollary 4 (KRW, 2007). Let E/Q be an elliptic curve without CM

and f the associated newform. Then if (n) øE,ε n33/94+ε for all n > 1.

[For elliptic curve, Elkies proved (7) with ρ = 3
4 and Θ3/4 = 0]

θ(3
4 ) = 33

94 ≈ 0.351 improves considerably Alkan’s 69
169 ≈ 0.408.



– 19 –

§ 4. Further improvements

• Expected result
θ(0) = 0 in Theorem 1

• Defect of the constraint “squarefree”

θ(0) = 1
4 6= 0 in Theorem 1

• Squarefree integers in short intervals
Filaseta & Trifonov (1992) : ∃ c > 0 such that

ØØ©x < n 6 x + cx1/5 log x : n is squarefree
™ØØ ¿ x1/5 log x.

Remark 2. With the multiplicative constraint “squarefree”, we
have few chance for obtaining θ(0) = 0.
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• Treatment without the constraint “squarefree”

Lemma 1 (KRW, 2007). Let f ∈ S∗k(N,χ). Then ∃ νf such that for

any p - N : either λf (pν) 6= 0 (ν > 0) or ∃ ν 6 νf such that λf (pν) = 0.

Lemma 2 (KRW, 2007). For f ∈ S∗k(N,χ)rScm
k (N,χ), we define

Pf,ν :=
©
p : λf (pν) = 0 and λf (pj) 6= 0 (0 6 j < ν)

™
,

B∗
f := Pf,1 ∪Pf,2 ∪ · · · ∪Pf,νf

.

Then for any δ < 1
2 , we have

ØØB∗
f ∩ [1, x]

ØØ øf,δ
x

(log x)1+δ
.

Remark 3. This contains Serre’s (1) and leads us to propose a
generalized Lang-Trotter’s conjecture.
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• Generalized Lang-Trotter’s conjecture

Conjecture 1. If f ∈ S∗k(N,χ)rScm
k (N,χ), then

ØØB∗
f ∩ [1, x]

ØØ øf






√
x/ log x if k = 2,

log2 x if k = 3,
1 if k > 4.

Lemma 3 (KRW, 2007). If f ∈ S∗k(N) such that λf (n) ∈ Z for any

n > 1 (for example for elliptic curves), then Conjecture 1 is equivalent

to Lang-Trotter’s conjecture.

• Relation between B∗
f -free and λf (n) 6= 0

n is B∗
f -free ⇔ λf (n) 6= 0
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Theorem 5 (KRW, 2007). Suppose that

ØØB∗
f ∩ [1, x]

ØØ øf
xρ

(log x)Θρ
(x > 2)

for any f ∈ S∗k(N,χ)rScm
k (N,χ), where ρ ∈ [0, 1] and Θρ ∈ R such that

Θ1 > 1. Then for any f ∈ Sk(N,χ)rScm
k (N,χ) and ε > 0, we have

if (n) øf,ε nθ(ρ)+ε (n > 1),

where θ(ρ) = ρ/(1 + ρ). In particular θ(0) = 0.

Corollary 6 (KRW, 2007). Let k > 3. Suppose that Conjecture 1

holds for all f ∈ S∗k(N,χ)rScm
k (N,χ). Then for any ε > 0 and all

f ∈ Sk(N,χ)rScm
k (N,χ), we have

if (n) øf,ε nε (n > 1).
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§ 5. Katz’ conjecture and nonvanishing problem

• Question

Is there a cusp form f such that λf (n) 6= 0 for any n > 1 ?

• Katz’ conjecture (1972)

Let S(1, 1; p) be the sum of Kloosterman. Then

L(s,Kl) :=
Y

p

°
1− S(1, 1; p)p−s + p1−2s

¢−1 =:
X

n>1

λKl(n)n−s

is L-function of a “non-holomorphic” cusp form of weight 2 over SL2(Z).

Theorem 7 (KRW, 2007). We have λKl(n) 6= 0 for any n > 1.

Remark 4. This gives an affirmative answer conditionally. But
very probably Katz’ conjecture should not hold.
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§ 6. Sign changes of Hecke’s eigenvalues

• Sato-Tate’s conjecture

For any −2 6 α 6 β 6 2 and any f ∈ S∗k(N) := S∗k(N,χ0), we have

|{p 6 x : α 6 λf (p) 6 β}| ∼ x

log x

Z β

α

√
4− t2

2π
dt (x→∞).

Here
√

4− t2/(2π) dt is called Sate-Tate’s measure.

• Hecke’s eigenvalues of same signs

For f ∈ S∗k(N), define

N±
f (x) :=

X

n6x, (n,N)=1
λf (n)≷ 0

1.
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It is natural to conjecture

lim
x→∞

N±
f (x)
x

=
1
2
.

Kohnen, Lau & Shparlinski (2007):

N±
f (x) ¿f

x

(log x)17
(x > x0(f)).

Wu (2008): The exponent 17 can be reduced to 1− 1/
√

3 ≈ 0.4226
and 2− 16/(3π) ≈ 0.3023 if we assume Sato-Tate’s conjecture.

Theorem 8 (Lau & Wu, 2008). For any f ∈ S∗k(N), we have

N±
f (x) ¿f x

for all x > x0(f).
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• Sign changes of Hecke’s eigenvalues

Kohnen, Lau & Shparlinski (2007): there are absolute constants
η < 1 and A > 0 such that for any f ∈ S∗k(N) we have

N±
f (x + xη)−N±

f (x) > 0 (x > (kN)A).

Theorem 9 (Lau & Wu, 2008). Let f ∈ S∗k(N). There is an absolute

constant c > 0 such that for any ε > 0 and x > cN1+εx0(k), we have

N±
f (x + cN1/2+εx1/2)−N±

f (x) ¿ε x1/4−ε,

where x0(k) is a suitably large constant depending on k and the implied

constant in ¿ε depends only on ε.

Remark 5. λf (n) has a sign-change in interval
£
x, x+cN1/2+εx1/2

§

for all sufficiently large x.
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§ 7. Ideas of the proof of Theorem 1

Recall
Bf := Pf ∪ {p2 : p /∈ Pf}.

The existence of Bf -free numbers in short intervals is a problem of sieve.
(a) System of weights for detecting Bf -free numbers;
(b) Exponential sum for controlling the error terms in the sieve.

• Alkan’s condition on θ

δ1(θ) + θ + θ/ρ > 1,
where δ1(θ) is increasing and given by exponential sums of type II.

• Our condition on θ

δ2(θ) + 2θ/ρ > 1.
where δ2(θ) is increasing and given by exponential sums of type I.
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• Two improvements

(i) By exploiting {p2 : p /∈ Pf}, we improve θ + θ/ρ into 2θ/ρ.

(ii) Our system of weights allows us to bring back to estimate bilin-
ear forms of type I :

X

M6m<2M

X

N6n<2N

ψnrmn(x, xθ),

instead of type II (as in the work of Alkan)
X

M6m<2M

X

N6n<2N

φmψnrmn(x, xθ),

where |φm| 6 1, |ψn| 6 1 and

rd(x, y) := |{x < n 6 x + y : d | n}| − y/d.

Thus we have δ2(θ) > δ1(θ).
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• Multiple exponential sums :

By the Fourier analyse, the estimate of bilinear forms can be trans-
formed into estimate of multiple exponential sums

X

H6h<2H

X

M6m<2M

X

N6n<2N

φhψne

µ
X

hαmβnγ

HαMβNγ

∂
,

where e(t) := e2πit, |φh| 6 1, |ψn| 6 1, α, β, γ ∈ R.

According the size of ρ, we use the methods of Fouvry–Iwaniec (with
Robert–Sargos’ refinement) and of Heath-Brown to estimate this sum.


