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1 Introduction

In 1985 Casson constructed a new integer valued invariant for homology
3–spheres (see [AM90, GM92]). His construction is based on properties of
SU(2)–representation spaces. A surprising and important corollary is that
a knot k ⊂ S3 has Property P if ∆′′k(1) 6= 0 where ∆k(t) is the normalized
Alexander polynomial of k (∆k(t−1) = ∆k(t) and ∆k(1) = 1). Here a non
trivial knot in the 3–sphere has Property P if no non trivial Dehn surgery
on the knot yields a homotopy sphere.

The aim of this paper is to study the SU(2)–representation spaces of
knot groups. For a given knot k ⊂ S3 we denote by R̂(k) the space of
equivalence classes of irreducible representations of the knot group G :=
π1(S3 r k) in SU(2). We denote by Reg(k) ⊂ R̂(k) the space of regular
representations. Here an irreducible representation ρ : G→ SU(2) is called
regular if H1

ρ (G) ∼= R where H∗ρ (G) := H∗(G,Ad ◦ρ) denotes the twisted
cohomology group of G with coefficients in su(2). It follows from [HKl97,
Proposition 1] that Reg(k) ⊂ R̂(k) is a real one dimensional manifold. The
main result of this paper is to prove that Reg(k) also carries an orientation:

Theorem 1.1 Let k ⊂ S3 be a knot. Then the space Reg(k) ⊂ R̂(k)
is a canonically oriented one dimensional manifold. Moreover, we have
Reg(k∗) = −Reg(k).

Here k∗ denotes the mirror image of k and −Reg(k) denotes Reg(k) with
the opposite orientation. The construction which enables us to orient the
space Reg(k) is motivated by the definition of Casson’s invariant (see Sec-
tion 3).

Even if ∆′′k(1) = 0 the knot k ⊂ S3 might still have Property P and in
this case the SU(2)–representations might still be useful for proving Prop-
erty P (see [Bur90, FL92]). A first step in the program of generalizing
Burde’s proof of Property P for 2–bridge knots (see [Bur90]) is to find
knots with a non-trivial SU(2)–representation space. As a corollary of the
discussion in Section 5 we obtain:
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Corollary 1.2 Let k ⊂ S3 be a knot and let σk(ω), ω ∈ C, be its equiv-
ariant signature. If there is an α ∈ [0, π] such that ∆k(e2iα), σk(e2iα) 6= 0
then there exists an irreducible SU(2) representation ρ : G → SU(2) and
dim(R̂(k)) ≥ 1 in a neighborhood of ρ.

It is now possible to show that a large class of knots have at least a one di-
mensional representation space R̂(k) by using Corollary 1.2 and the results
proved in [FL92, HKl97, HKr98]. This also gives some evidence to support
the conjecture that every three dimensional manifold with non-trivial fun-
damental group admits a non-trivial representation into SU(2) (see [Kir93,
Probleme 3.105 (A)]).

As a further application we are able to explain a generalization of a result
of X.-S. Lin: let G be a knot group and let m ∈ G be a meridian. A repre-
sentation ρ : G → SU(2) is called trace-free if tr ρ(m) = 0. In [Lin92] Lin
defined an intersection number for the representation space corresponding
to a braid representative of the knot. This number turns out to be a knot
invariant denoted by h(k). Roughly speaking, h(k) is the number of con-
jugacy classes of non-abelian trace-free representations G→ SU(2) counted
with sign. Moreover, Lin established the relation 2h(k) = σ(k) where σ(k)
denotes the signature of k . It was suggested by D. Ruberman that the con-
struction could be generalized to representations of knot groups with the
trace of the meridians fixed. In [HKr98] we carried out this generalization.
More precisely, for a given α ∈ (0, π), there is an integer invariant h(α)(k).
This invariant counts the conjugacy classes of non-abelian representations
G → SU(2), such that tr ρ(m) = 2 cosα (note that h(k) = h(π/2)(k)).
Moreover the relation 2h(α)(k) = σk(e2iα) holds (see [HKr98, Theorem 1.2]),
σk : S1 → Z denotes the signature function (note that σk(−1) = σ(k) and
see [HKr98, 2.1] for the details).

At first sight it seems mysterious that these two quantities h(α)(k) and
σk(e2iα) with apparently different algebraic–geometric contents turn out
to be the same. We shall explain this connection in Section 5 using the
orientation on the representation space.

This paper is organized as follows. In Section 2 the basic notation and
facts are presented. In Section 3 we will describe the main construction and
the results. Section 4 contains the proof of Theorem 1.1 and in Section 5
we explain the connection to Lin’s result.

Acknowledgments: The author wishes to express his gratitude to
Hans Boden, Chris Herald, Uwe Kaiser, Paul Kirk, Eric Klassen, Chuck
Livingston and Klaus Mohnke for helpful discussions related to this paper.

2 Notation and facts

Throughout this paper it will often prove convenient to work with quater-
nions (we denote this field by H). Therefore, we identify SU(2) with the
unit quaternions Sp(1) ⊂ H . These two groups are isomorphic via the map
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given by (
a b

−b a

)
7→ a+ bj.

The Lie algebra of Sp(1) is the set E of pure quaternions and Sp(1) acts
via Ad on E i.e. AdqX = qXq−1 for q ∈ Sp(1) and X ∈ E . We denote
by δ : SU(2) → SO(E) = SO(3) the 2-fold covering given by δ(q) = Adq .
We consider the argument function arg : SU(2)→ [0, π] given by arg(A) =
arccos(tr(A)/2). For α ∈ (0, π) we have Σα := arg−1(α) is a 2-sphere and
Σπ/2 = E∩Sp(1) is the set of pure unit quaternions. From now on we denote
by I the open interval (0, π).

Given two elements X,Y ∈ E there is a product formula: X · Y =
−〈X,Y 〉 + X × Y where 〈X,Y 〉 denotes the scalar product of X and Y
and X × Y their vector product in E . Note that Adq preserves the scalar
product. For a given element X ∈ E we denote by X⊥ the orthogonal
complement of X in E .

For each quaternion q ∈ Sp(1) there is an angle α , 0 ≤ α ≤ π , and
Q ∈ Σπ/2 such that q = cosα+sinαQ . The pair (α,Q) is unique if and only
if q 6= ±1 . Note that δ(α,Q) is a rotation of angle 2α with fix axis Q . Let
G be a group and fix a representation ρ : G→ SU(2). Then for each g ∈ G
such that ρ(g) 6= ±1 there is an unique α(g) := α(g, ρ), 0 < α(g) < π , and
Pg := Pg(ρ) ∈ Σπ/2 such that ρ(g) = cosα(g) + sinα(g)Pg .

2.1 Representation spaces

Let G be a finitely generated group. The space of all representations of
G in SU(2) is denoted by R(G) := Hom(G, SU(2)). Note that R(G) is a
topological space via the compact open topology where G carries the discrete
and SU(2) the usual topology. A representation ρ ∈ R(G) is called abelian
(resp. central), (resp. trivial) if and only if its image is an abelian (resp.
central), (resp. trivial) subgroup of SU(2). Note that ρ ∈ R(G) is abelian if
and only if it is reducible. The set of abelian representations is denoted by
S(G) and the set of central representations by C(G). Two representations
ρ, ρ′ ∈ R(G) are said to be conjugate (ρ ∼ ρ′ ) if and only if they differ by an
inner automorphism of SU(2). The group SO(3) = SU(2)/{±1} acts free
on the right on R(G) via conjugation. Two representations are in the same
SO(3)–orbit if and only if they are equivalent. Let R̃(G) := R(G)rS(G) be
the set of non-abelian representations. The space of (non-abelian) conjugacy
classes of representations from G into SU(2) is denoted by <(G) (R̂(G))
i.e.

<(G) := R(G)/SO(3) and R̂(G) := R̃(G)/SO(3).

We can think of the map R̃(G) → R̂(G) as a principal SO(3)–bundle
(see [GM92, 3.A] for details).

We present some facts about the algebraic structure of representation
spaces which will be used in the sequel: the space R(G) has the structure
of a real affine algebraic set i.e. the space R(G) is a subset of Rn which is
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defined by polynomial equations (see [AM90]). We can also think of <(G) as
a subspace of Rm (see [Kla91]). The map t : R(G)→ <(G) is a polynomial
map. It follows from the Tarski–Seidenberg principle that the image of an
algebraic set under a polynomial map is a semi-algebraic set. Here a subset
of Rn is called semi-algebraic if it is a finite union of finite intersections of
sets defined by a polynomial equation or inequality (see [BCR87] for details).
Hence the spaces R̂(G) and <(G) are semi-algebraic sets.

Given a representation ρ : G → SU(2) the Lie algebra su(2) can be
viewed as a G–module via Ad ◦ρ i.e. g ◦ X := Adρ(g)(X). We denote
by Z1

ρ(G) (resp. B1
ρ(G)), (resp. H1

ρ (G)) the cocycles (resp. coboundaries),
(resp. first cohomology group) of G with coefficients in su(2).

Following A. Weil (see [Wei64]) there is an inclusion of the Zariski
tangent space Tρ(R(G)) into Z1

ρ(G) (for details see [Por97]). A cocycle
u ∈ Z1

ρ(G) is called integrable if and only if there exists an analytic path
ρt : G→ SU(2) such that ρ0 = ρ and

u(g) =
dρt(g)
dt

∣∣
t=0
·(ρ(g))−1 for all g ∈ G .

In general it is not true that every element of Z1
ρ(G) is integrable. However,

if the dimension of R(G) at ρ is equal to the dimension of Z1
ρ(G) then every

cocycle is integrable.
The following lemma will be used in the sequel:

Lemma 2.1 Let G be a group and let g ∈ G. Moreover, let ρ ∈ R(G)
be a representation such that ρ(g) 6= ±1. If g and g′ ∈ G are conju-
gate then 〈u(g), Pg(ρ)〉 = 〈u(g′), Pg′(ρ)〉 for each u ∈ Z1

ρ(G). Especially
〈b(g), Pg(ρ)〉 = 0 if b ∈ B1

ρ(G).

Proof. There is a h ∈ G such that g′ = hgh−1 . We obtain:

u(g′) = (1− hgh−1) ◦ u(h) + h ◦ u(g) and Pg′ = h ◦ Pg

where Pg := Pg(ρ) and Pg′ := Pg′(ρ). Therefore:

〈u(g′), Pg′〉 = 〈h ◦ u(g), h ◦ Pg〉+ 〈(1− hgh−1) ◦ u(h), h ◦ Pg〉.

We obtain: 〈hgh−1 ◦ u(h), h ◦ Pg〉 = 〈h−1 ◦ u(h), Pg〉 from which the first
conclusion follows.

If b ∈ B1
ρ(G) then there is a X0 ∈ su(2) such that b(g) = (1 − g) ◦X0

for all g ∈ G . It follows that 〈b(g), Pg〉 = 〈X0, Pg〉 − 〈g ◦X0, Pg〉 = 0. 2

3 The construction

Let M be an oriented homology 3–sphere. The construction of the Casson
invariant is based on the fact that a Heegaard splitting M = H1 ∪F H2 of
M gives rise to embeddings R̂(Hi) ↪→ R̂(F ) and R̂(M) ↪→ R̂(Hi). Here
Hi is a handlebody and F = H1 ∩H2 is a surface of genus g and R̂(Y ) :=
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R̂(π1(Y )) for any pathwise connected topological space Y . In particular
R̂(M) = R̂(H1) ∩ R̂(H2). The crucial point is that the spaces R̂(Hi) and
R̂(F ) carry a canonical orientation. The Casson invariant λ(M) is roughly
the “algebraic intersection number” of R̂(H1) and R̂(H2) in R̂(F ). The two
technical difficulties are to make sense of the algebraic intersection number
of these proper open submanifolds and to show that it is independent of the
Heegaard splitting of M (for this and other details see [AM90, GM92]).

In our construction the Heegaard splitting will be replaced by a plat
decomposition of the knot exterior. The main point is to use not only the
representation spaces of groups but to consider pairs (G,S) where G is a
finitely generated group and S is a fixed finite set of generators.

Let k ⊂ S3 be a knot and denote by X(k) := S3 r U(k) its exterior
where U(k) denotes an open regular neighborhood of k . The space X(k)
is a three dimensional oriented manifold with torus boundary. We denote
by G := G(k) := π1(X(k)) the knot group.

Each unoriented knot k ⊂ S3 can be represented as a 2n–plat β̂ . Here
β̂ is obtained from a 2n–braid β ∈ B2n by closing it with 2n simple arcs
(see Figure 1). A 2n–plat representation β̂ of k gives rise to a splitting

X(k) = B1 ∪S(2n) B2

of X(k) where Bi , i = 1, 2, is a handlebody of genus n and S(2n) = B1∩B2

is a planar surface with 2n boundary components (see Figure 1). We call
such a splitting a 2n–plat decomposition of X(k).

The inclusions S(2n) ↪→ Bi and Bi ↪→ X(k), i = 1, 2, give rise to a
commutative diagram of epimorphisms

π1(B1)
κ1

↗
p1
↘

π1(S(2n)) π1(X(k))
κ2

↘
p2
↗

π1(B2)

. (1)

Let Ti := {t(i)1 , . . . , t
(i)
n } , i = 1, 2, be the special system of generators

for π1(Bi) (see Figure 1). Moreover, choose a system S := {s1, . . . , s2n}
of generators for π1(S(2n)) as in Figure 1. The choice of the generators
depends in fact from the orientation of S3 (see Section 4.2 for the details).
Each of the generators chosen above is a meridian of β̂ and there is a relation
s1 · · · s2n = 1 in π1(S(2n)).

Let G be a group and let S = {s1, . . . , sn} be a finite system of genera-
tors for G . We define the subspace RS(G) ⊂ R(G) by

RS(G) := {ρ ∈ R(G) | tr ρ(si) = tr ρ(sj), 1 ≤ i < j ≤ n}r C(G).

For a given α ∈ I := (0, π) we define

RSα(G) := {ρ ∈ R(G)S | tr ρ(si) = 2 cosα, 1 ≤ i ≤ n}.
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Figure 1: plat representation

These spaces depend on the choice of a system of generators. However, they
are preserved under the SO(3) action and we are able to define the quotients

R̂S(G) := (RS(G)rS(G))/SO(3) and R̂Sα(G) := (RS(G)rS(G))/SO(3).

Let G := G(k) be a knot group and let S = {s1, . . . , sn} be a finite
system of generators such that each si is a meridian of k . The elements of
S are pairwise conjugate in G and therefore we have RS(G) = R(G)rC(G).

Let φ : G→ H be a homomorphism and let S (resp. T ) be a finite sys-
tem of generators of G (resp. H ). The homomorphism φ is called compatible
with S and T if and only if φ(si) is conjugate to an element of T ∪ T −1

for all si ∈ S . It is easy to see that φ : G → H induces a transformation
ϕ̂ : R̂T (H)→ R̂S(G) if it is compatible with S and T .

It is easy to see that all the epimorphisms in Diagram (1) are compat-
ible with the systems of generators chosen above. For this reason we are
interested in the representation spaces RTi(Bi) and RS(S(2n)). From (1)
we obtain the following diagram of embeddings :

R̂T1(B1)bκ1

↙
bp1
↖

R̂S(S(2n)) R̂(k)bκ2

↖
bp2
↙

R̂T2(B2)

(2)

we have: R̂(k) = Q̂1 ∩ Q̂2 , where Q̂i := κ̂i(R̂Ti(Bi)). Diagram (2) is the
main tool in the process of defining an orientation on R̂(k) (in a generic
situation).
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The next step is to prove that the space R̂S(S(2n)) is a (4n−5) dimen-
sional manifold. Let Fn be a free group of rank n and let S = {s1, . . . , sn}
be a basis of Fn . We identify the representation space R(Fn) with SU(2)n

R(Fn)
∼=−→ SU(2)n, ρ 7→ (ρ(s1), . . . , ρ(si)).

It is easy to see that RS(Fn) ⊂ R(Fn) can be identified with I × Σn
π/2 .

The inclusion Φn : I × Σn
π/2 → SU(2)n is given by Φn : (α, P1, . . . , Pn) 7→

(cosα+sinαPi)ni=1 . Here and in the sequel (xi)ni=1 is short for (x1, . . . , xn).
The identification R(Fn) ∼= SU(2)n gives us an isomorphism Tρ(R(Fn)) ∼=
su(2)n . The latter is induced by the canonical identification TA(SU(2)) ∼=
su(2) given by (A,X) 7→ XA−1 . Every cocycle u ∈ Z1

ρ(Fn) is integrable,
since Z1

ρ(Fn) ∼= su(2)n .
Let G be a group and let S = {s1, . . . , sn} be a finite system of genera-

tors for G . Moreover, let ρ ∈ RSα(G) be given and let Pi := Psi(ρ) ∈ Σπ/2 ,
i.e. ρ(si) = cosα+ sinαPi . We obtain inclusions

Tρ(R̂S(G)) ⊂ Z1
ρ,S(G) := {u ∈ Z1

ρ(G) | 〈u(si), Pi〉 = 〈u(sj), Pj〉, 1 ≤ i, j ≤ n}

and

Tρ(R̂Sα(G)) ⊂ Z1
ρ,S(G)0 := {u ∈ Z1

ρ(G) | 〈u(si), Pi〉 = 0, 1 ≤ i ≤ n}.

We have B1
ρ(G) ⊂ Z1

ρ,S(G)0 ⊂ Z1
ρ,S(G) by Lemma 2.1 and the homology

groups H1
ρ,S(G)0 := Z1

ρ,S(G)0/B
1
ρ(G) and H1

ρ,S(G) := Z1
ρ,S(G)/B1

ρ(G) are
defined.

For a free group Fn with basis S we get: RSα(Fn), RS(Fn) ⊂ R(Fn) and

Tρ(RS(Fn)) ∼= Z1
ρ,S(Fn) ∼= R⊕ P⊥1 ⊕ · · · ⊕ P⊥n (3)

and

Tρ(RSα(Fn)) ∼= Z1
ρ,S(Fn) ∼= P⊥1 ⊕ · · · ⊕ P⊥n . (4)

Let fn : I × Σn
π/2 → SU(2) be the composition wn ◦ Φn where

wn : SU(2)n → SU(2) is given by wn : (A1, . . . , An) 7→ A1 · · ·An . The map
fαn : {α} × Σn

π/2 → SU(2) is by definition the restriction fαn := fn |{α}×Σn
π/2

and
Sn := {(α,P) ∈ I × Σn

π/2 | Pi × Pj = 0, 1 ≤ i, j ≤ n}.

Lemma 3.1 Let n ≥ 2 be an integer. Then the set f−1
2n (1) r S2n is a

non empty smooth manifold of dimension 4n− 2 and (fα2n)−1(1) rS2n is a
smooth non empty manifold of dimension 4n− 3.

Proof. Since (A,A−1,1, . . . ,1, B,B−1,1, . . . ,1) ∈ w−1
2n (1) for all A,B ∈

SU(2) we have (fα2n)−1(1) r S2n 6= ∅ .
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Let (α,P) ∈ I × Σn
π/2 r Sn be given. We shall show that D(α,P)fn

resp. D(α,P)f
α
n is surjective. Given a A ∈ SU(2)n there is the following

commutative diagram

TA(SU(2)n)
∼=−−−−→ su(2)nyDAwn

y∂Aw
Twn(A)(SU(2)n)

∼=−−−−→ su(2)

where

∂Aw : (X1, . . . Xn) 7→ X1 +A1X2A
−1
1 + · · ·+A1 · · ·An−1XnA

−1
n−1 · · ·A

−1
1

(see [LM85, 3.7] ). Now, D(α,P)fn resp. D(α,P)f
α
n is surjective if and only

if ∂Aw |V resp. ∂Aw|V0 is surjective where V := {(X1, . . . , Xn) ∈ su(2)n |
〈Xi, Pi〉 = 〈Xj , Pj〉, 1 ≤ i, j ≤ n} and V0 := {(X1, . . . , Xn) ∈ su(2)n |
〈Xi, Pi〉 = 0, i = 1, . . . , n} (see Equations (3) and (4)). In order to prove
the lemma it is sufficient to show that ∂Aw(V0) = su(2) where Ai = (α, Pi).

We choose i0 , 2 ≤ i0 ≤ n , minimal such that Pi0 6= ±P1 . Let M be the
following four dimensional vector space

M := {(X1, 0, . . . , 0, Xi0 , 0, . . . , 0) | X1 ∈ P⊥1 and Xi0 ∈ P⊥i0 } ⊂ su(2)n.

It is obvious that M ⊂ V0 . The matrix A := A1 · · ·Ai0−1 commutes
with P1 . Therefore, AdA is a rotation with fix axis P1 . It is clear that
AdA(Pi0) 6= ±P1 and hence we have AdA(P⊥i0 ) 6= P⊥1 . We obtain

∂Aw(M) = P⊥1 + AdA(P⊥i0 ) = su(2)

which proves the lemma. 2

Corollary 3.2 Let S(2n) be a planar surface with 2n boundary com-
ponents and let S = {s1, . . . , s2n} be a canonical system of genera-
tors for π1(S(2n)) i.e. π1(S(2n)) = 〈s1, . . . , s2n | s1 · · · s2n = 1〉.
Then the space R̂S(S(2n)) is a (4n − 5) dimensional manifold. and
for each α ∈ I the subset R̂Sα(S(2n)) ⊂ R̂S(S(2n)) is a submani-
fold of codimension one with trivial normal bundle. Moreover, for ev-
ery ρ ∈ R̂Sα(S(2n)) we have Tρ(R̂S(S(2n))) ∼= H1

ρ,S(π1(S(2n))) and
Tρ(R̂Sα(S(2n))) ∼= H1

ρ,S(π1(S(2n)))0 .

Proof. The corollary follows directly from Lemma 3.1. 2

For a given ρ ∈ R(X(k)) we denote by ρi : π1(Bi)→ SU(2) the compo-
sition ρ ◦ pi , i = 1, 2, and ρ̂ := ρ ◦ pi ◦ κi : π1(S(2n))→ SU(2).

Proposition 3.3 Let ρ ∈ R̂(k) be given. With the notation of diagram (2)
we have: the representation ρ is regular if and only if Q̂1 tbρ Q̂2 .
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Proof. Let G := G(k) be the knot group. The set pi(Ti) is a system of
generators of G (each pi(t

(i)
l ) is a meridian) and p∗i (H

1
ρ (G)) ⊂ H1

ρi,Ti(π1(Bi))
by Lemma 2.1. From the Mayer-Vietoris sequence we obtain:

κ∗1(H1
ρ1(B1)) ∩ κ∗2(H1

ρ2(B2)) = (pi ◦ κi)∗(H1
ρ (X(k)))

and hence

κ∗1(H1
ρ1,T1(π1(B1))) ∩ κ∗2(H1

ρ2,T2(π1(B2))) = (pi ◦ κi)∗(H1
ρ (G)). (5)

For the canonical isomorphism Λ: Tbρ(R̂S(S(2n))) ∼= H1bρ,S(π1(S(2n))) we

have: Λ(Tbρ(Q̂i)) = κ∗i (H
1
ρi,Ti(π1(Bi))) because π1(Bi) is a free group with

basis Ti . We obtain from (5):

Λ(Tbρ(Q̂1) ∩ Tbρ(Q̂2)) = (pi ◦ κi)∗(H1
ρ (G))

Since (κ1 ◦ p1)∗ is injective we have: dimH1
ρ (G) = dim(Tbρ(Q̂1) ∩ Tbρ(Q̂2))

which proves the proposition. 2

As a consequence we get:

Corollary 3.4 Let ρ ∈ Reg(k). Then there is a neighborhood U = U(ρ) ⊂
R̂(k) which is diffeomorphic to an open interval. Moreover, Reg(k) is a
smooth one dimensional manifold.

From the orientation convention in Section 4.1 it follows that the mani-
folds Q̂i ⊂ R̂S(S(2n)) are oriented. The manifold R̂S(S(2n)) is oriented too
(see Section 4.1). Now, Q̂1∩Q̂2 inherits an orientation in a neighborhood of
an regular representation ρ ∈ Reg(k). As a consequence we see that a plat
decomposition of X(k) with plat β̂ gives rise to an orientation of Reg(β̂).

Definition 3.5 Let β ∈ B2n be given such that β̂ ⊂ S3 is a knot. We
define an orientation for Reg(β̂) by the rule

Reg(β̂) := (−1)nQ̂1 ∩ Q̂2.

It will be proved in Section 4 that the orientation does not depend on the
braid β . Therefore each unoriented knot k ⊂ S3 gives rise to an orientation
of Reg(k) ⊂ R̂(k). Moreover, Reg(k∗) = −Reg(k) holds (see Lemma 4.7).

Remark 3.6 A construction yielding an orientation for the SU(2)–
representation space of a 2-bridge knot was given by the author in [Heu94,
Section 5]. But it turns out that this approach does not work in general.
However, it is possible to do the explicit calculations for 2–bridge knots and
torus knots, i.e. we can orient their SU(2) representation space directly. We
shall present the details in a forthcoming paper.
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4 Invariance

In this section we shall prove that the orientation of Reg(k) is independent
of the plat decomposition i.e.

Theorem 4.1 Let k ⊂ S3 be a knot and let βi ∈ B2ni be given, i = 1, 2,
such that β̂i ∼= k . Moreover let ψi : Reg(β̂i)→ Reg(k) be the identification
associated with the plat decomposition of X(k) with respect to βi ∈ B2ni .

Then the two orientations of Reg(k) induced from the identifications ψi
are the same.

In order to describe the relation between different braids which represent
the same plat we need some definitions.

We denote by R3
+ the upper half space. Let A ⊂ R3

+ be a trivial system
of n arcs properly embedded into R3

+ . Here the system A ⊂ R3
+ is called

trivial if there are disjoint disks Di ⊂ R3
+ , i = 1, . . . , n , and disjoint arcs

α′i ⊂ R2 such that ∂Di = αi ∪ α′i .

PSfrag replacements

α1

α′1

D1

α2

α′2

D2

α3

α′3

D3

R2

R3
+

We identify the free group F2n with the fundamental group π1(R2 r
∂A) where (R2, ∂A) := ∂(R3

+, A). For each braid β ∈ B2n there is a
diffeomorphism ϕβ : (R2, ∂A)→ (R2, ∂A) which induces the automorphism
φβ , i.e. φβ = (ϕβ)∗ ∈ Aut(F2n).

The braid β ∈ B2n is called a trivial half braid if and only if ϕβ extends
to a diffeomorphism ϕ̄β : (R3

+, A)→ (R3
+, A). We denote by K2n ⊂ B2n the

subgroup of trivial half braids.

Lemma 4.2 (Hilton [Hil75]) The subgroup K2n ⊂ B2n is generated by

{σ1, σ2σ
2
1σ2, σ2jσ2j−1σ2j+1σ2j | 1 ≤ j ≤ n− 1},

where {σj | 1 ≤ j ≤ 2n− 1} ⊂ B2n is the set of elementary braids.

Let ζ ∈ B2n and let η1, η2 ∈ K2n be given. Then it is clear that
ζ̂ and η̂2ζη1 are equivalent plats in S3 . This means that two braids in
B2n represent the same plat if they are in the same double cosset of B2n

modulo the subgroup K2n . Moreover, it is evident that for a given ζ ∈ B2n

the plats ζ̂ and ζ̂σ2n where ζσ2n ∈ B2n+2 are equivalent plats in S3 .
The transformation ζ → ζσ2n is called an elementary stabilization (see
Figure 4). Two braids are called stably equivalent if they represent (after a
finite number of elementary stabilizations) the same double cosset modulo
the subgroup of trivial half braids. Two braids which represent the same
closed braid are stable equivalent. More precisely, we have:
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PSfrag replacements

· · ·
σ1

σ2σ2
1σ2

σ2jσ2j−1σ2j+1σ2j

Figure 2: The braids σ1 , σ2σ
2
1σ2 and σ2jσ2j−1σ2j+1σ2j .

Theorem 4.3 (Birman, Reidemeister) Let ki ⊂ S3 , i = 1, 2, be unori-
ented knots and let βi ∈ B2ni be given such that β̂i ∼= ki . Then k1

∼= k2 if
and only if there exist an integer t ≥ max(n1, n2) such that for each n ≥ t
the braids β′i = βiσ2niσ2ni+2 · · ·σ2n ∈ B2n+2 , i = 1, 2, are in the same
double cosset of B2n+2 modulo the subgroup K2n+2 .

Proof. The proof can be found in [Bir76b] (see also [Rei60]). 2

The proof of Theorem 4.1 splits therefore into two parts. First we prove
that the orientation of Reg(β) does not change if we replace the braid β
by another braid in the same double cosset (see Section 4.3). In the second
step we prove that the orientation does not change under an elementary
stabilization (see Section 4.4) .

4.1 Orientations

In this section we introduce the appropriate orientation conventions. In
particular we define an orientation on R̂S(S(2n)). We shall see that certain
automorphisms of π1(S(2n)) induce orientation preserving (resp. reversing)
diffeomorphisms of R̂S(S(2n)) (see Proposition 4.4 and its proof).

Let M be an oriented manifold. The manifold M with the opposite
orientation is denoted by −M . The boundary ∂M inherits an orientation
by the convention the inward pointing normal vector in the last position
(see [Hir76]).

From the very beginning we assume that SU(2) is oriented. We choose
the orientation of SO(3) such that the 2–fold covering δ : SU(2)→ SO(3) is
a local orientation preserving diffeomorphism. The 2-sphere Σα splits SU(2)
into two components. One of these components contains the identity matrix
1 and Σα is oriented as the boundary of this component. Note that the
diffeomorphism Σπ/2 → Σα given by P 7→ (α, P ) is orientation preserving.
In order to orient the interval I = (0, π) we consider the submersion SU(2)r
{±1} → I and we choose an orientation of I such that for each α ∈ I and
each A ∈ Σα the orientations of the short exact sequence

0→ TAΣα → TASU(2)→ Tα(I)→ 0

fit together. Thus I has the usual orientation.
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The manifolds {α} ×Σn
π/2
∼= Σn

α and I ×Σn
π/2 carry the product orien-

tations. By Lemma 3.1 we can pull back the orientation of su(2) in order to
obtain an orientation of the normal bundle f∗2n(su(2)) of f−1

2n (1)rS2n ⊂ I×
Σ2n
π/2 . This enables us to orient the manifold R̃S(S(2n)) ∼= f−1

2n (1)rS2n via
the convention (fibre⊕ base) i.e. we choose the orientation for f−1

2n (1) rS2n

such that

T(α,P)(f
−1
2n (1) r S2n)⊕ f∗2n(su(2)) = T(α,P)(I × Σ2n

π/2)

for all (α,P) ∈ f−1
2n (1) r S2n . The map R̃S(S(2n))→ R̂S(S(2n)) is a prin-

cipal SO(3) bundle and because SO(3) is connected we have an orientable
(4n − 5) dimensional manifold R̂S(S(2n)). We use again the convention
(fibre ⊕ base) in order to orient R̂S(S(2n)) (see [AM90, GM92]).

Let β ∈ Bn be a braid and let S = {s1, . . . , sn} be a basis for the free
group Fn . The braid β induces an automorphism φβ : Fn → Fn , φβ(si) =
gisπ(i)g

−1
i , where gi ∈ Fn and π is a permutation such that

∏n
i=1 φβ(si) =∏n

i=1 si (see [BZ85]). The automorphism φβ is hence compatible with S .
The following fact will be used in the sequel:

Proposition 4.4 Let β ∈ B2n and let φ : F2n → F2n be given by φ : si 7→
s−1

2n−i+1 . Then φ̂β : R̂S(S(2n))→ R̂S(S(2n)) is orientation preserving and
φ̂ : R̂S(S(2n))→ R̂S(S(2n)) is orientation reversing.

4.1.1 Proof of Proposition 4.4

Let Fn := Fn(S) be a free group on a given set S = {s1, . . . , sn} of free
generators and let φ ∈ Aut(Fn) be a automorphism. Assume that there is
a permutation π such that

φ(sj) = gjs
ηj
π(j)g

−1
j , where gj ∈ Fn and ηj ∈ {±1}. (6)

It follows that S and S ′ := φ(S) are compatible and we have RS(Fn) =
RS
′
(Fn). In this case the automorphism φ induces two diffeomorphisms

R(φ) : R(Fn) → R(Fn) and φ# : RS(Fn) → RS(Fn). We set N(φ) :=
#{ηj |ηj = −1} and

s(φ) :=

{
0 if π is even
1 if π is odd.

The basis S of Fn gives us an identification R(Fn) ∼= SU(2)n which carries
the product orientation.

Lemma 4.5 Let φ ∈ Aut(Fn) be given as in Formula 6. We set N := N(φ)
and s := s(φ).

Then the map R(φ) : R(Fn) → R(Fn) is orientation preserving (resp.
orientation reversing) if and only if N + s ≡ 0 mod 2 (resp. N + s ≡
1 mod 2).
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Moreover, the map φ# : RS(Fn) → RS(Fn) is orientation preserving
(resp. orientation reversing) if and only if N ≡ 0 mod 2 (resp. N ≡ 1 mod
2).

Proof. An easy calculation gives the lemma (see also [AM90, Proposi-
tion 3.4]). 2

Let π1(S(2n)) = 〈s1, . . . , s2n | s1 · · · s2n = 1〉 be the fundamental group
of S(2n) and let φ ∈ Aut(F2n) be an automorphism as in Formula 6 which
preserves the normal closure of the element s1 · · · s2n ∈ F2n . The automor-
phism φ induces a diffeomorphism φ̂ : R̂S(S(2n))→ R̂S(S(2n)).

Lemma 4.6 Let φ ∈ Aut(Fn) be an automorphism as in Formula 6. As-
sume that φ(s1 · · · s2n) = g(s1 · · · s2n)εg−1 where g ∈ F2n and ε ∈ {±1}.
Choose the orientation of R̂S(S(2n)) as above.

Then the diffeomorphism φ̂ : R̂S(S(2n)) → R̂S(S(2n)) is orientation
preserving (resp. reversing) if and only if N(φ) + ε−1

2 ≡ 0 mod 2 (resp.
N(φ) + ε−1

2 ≡ 1 mod 2 ).

Proof. An inner automorphism of Fn induces the identity on R̂S(S(2n)).
Therefore we might assume that φ(s1 · · · s2n) = (s1 · · · s2n)ε . We obtain the
following diagram

RS(S(2n)) −−−−→ RS(F2n)
f2n−−−−→ SU(2)yφ#

yφ#

yΨ

RS(S(2n)) −−−−→ RS(F2n)
f2n−−−−→ SU(2)

where Ψ: A 7→ Aε . Now, Ψ is orientation preserving (resp. reversing) if
and only if ε = 1 (resp. ε = −1). This together with Lemma 4.5 proves the
lemma. 2

Proof of Proposition 4.4. Let φ : F2n → F2n be given by φ : si 7→ s2n−i+1 .
We have N(φ) = 2n and ε = −1. Hence φ̂ is orientation reversing by
Lemma 4.6. If β ∈ B2n then N(φβ) = 0 and ε = 1. Lemma 4.6 implies
that φ̂β is orientation preserving. 2

Note that φβ induces an automorphism of π(S(2n)) because
φβ(s1) · · ·φβ(s2n) = s1 · · · s2n .

4.2 Choice of the generators (revised)

Let β ∈ B2n be a braid such that β̂ is a knot. The aim of this section is to
define the special systems of generators corresponding to a plat decomposi-
tion of X(β̂).
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We assume from the very beginning that S3 = R3∪{∞} is oriented. We
choose ε ∈ {±1} such that (e1, e2, e3) represents the induced orientation of
R3 (e1 = (ε, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)). For given n ∈ N we set

pj :=

{
(j, 0) ∈ R2 if ε = 1
(2n− j + 1, 0) ∈ R2 if ε = −1

j = 1, . . . , 2n.

We start with the splitting R3 = H1 ∪ R2 × J ∪H2 where J = [1, 2] is
the closed interval and H1 = {(x, y, z) ∈ R3 | z ≤ 1} and H2 = {(x, y, z) ∈
R3 | z ≥ 2} are closed half spaces.

We obtain a geometric braid in R2 × J which is also denoted by β ⊂
R2×J (see [Bir76a]) and we assume that β∩ (R2×{i}) = p×{i} , i = 1, 2,
where p := (pj)2n

j=1 . Moreover, we assume that β is contained in a small
regular neighborhood of the plane y = 0. The 2n–plat β̂ ⊂ R3 is obtained
from β by closing it with two systems of half circles Ai = {a(i)

l }
n
l=1 ⊂

Hi ∩ (R×{0}×R) where the endpoints of the half circle a(i)
l are the points

p2l × {i} and p2l−1 × {i} ∈ ∂Hi (see Figure 3).

PSfrag replacements
H1

H2

R2 × {1}
R2 × {2}

x0

Q
s
(2)
1

a
(2)
1

t
(2)
2

s
(1)
1

s
(1)
4

t
(1)
2

a
(1)
1

Figure 3: Choice of the generators for ε = +1.

Let Q be the cube Q := [0, 2n + 1] × [−1, 1] × J ⊂ R2 × J and fix
x0 := (n,−1, 1) ∈ ∂Q . We obtain special systems of generators for the
fundamental groups as follows: the generator s(i)

j of π1((R2 r p) × {i}) is
represented by a loop in R2×{i} consisting of a small circle around pj×{i}
and the shortest arc in ∂Q connecting it to x0 . The circle is oriented
according to the following rule: let Lj be the oriented line pj × R (the
orientation points in negative z -direction). We orient the circle such that
lk(s(i)

j , Lj) = 1. With this choice we obtain the presentation π1((R2 r p)×
{i}) = 〈s(i)

1 , . . . , s
(i)
2n | s

(i)
1 · · · s

(i)
2n〉 .
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In order to proceed we choose an orientation for the plat β̂ . We shall
see later (see Lemma 4.7) that the construction does not depend on this
choice. The generators t

(i)
l , 1 ≤ l ≤ n , of π1(Hi r Ai) are represented

by a loop consisting of a small circle around a
(i)
l and a shortest arc in R3

connecting the circle to x0 . The orientation of the circle is given by the
condition lk(β̂, t(i)l ) = 1 (see Figure 3).

Denote by λi : π1((R2 r p) × {i}) → π1(Hi r Ai) the homomorphism
which is induced by the inclusion. From the choice of the generators it follows
that λi : s

(i)
2l−1 7→ (t(i)l )ε

(i)
l and λi : s

(i)
2l 7→ (t(i)l )−ε

(i)
l where ε

(i)
l ∈ {±1} .

Note that the ε
(i)
l depend on the orientation of β̂ and that they change

simultaneously if the orientation of β̂ is changed.
The braid group B2n may be considered as a subgroup of Aut(F2n)

where F2n may be interpreted as the fundamental group π1(Q r β). We
denote the automorphism determined by β ∈ B2n by φβ i.e. φβ : π1(Q r
β)→ π1(Qr β) is given by φβ : s(2)

j 7→ s
(1)
j (see [BZ85]). Note that s(1)

j =

s
(1)
j (s(2)

1 , . . . , s
(2)
2n ) is a word in the generators {s(2)

j }2nj=1 .
The planar surface S(2n) := ((R2 r U(p)) × {1}) ∪ {∞} determines a

plat decomposition
X(β̂) = B1 ∪S(2n) B2

where B1 = (H1rU(A1))∪{∞} and B2 = ((H2∪R2×J)rU(A2∪β))∪{∞} .
It follows that κi : π1(S(2n))→ π1(Bi) is given by

κ1 : s(1)
j 7→ λ1(s(1)

j ), κ2 : s(1)
j 7→ λ2 ◦ φβ(s(2)

j ) = λ2(s(1)
j (s(2)

1 , . . . , s
(2)
2n )).

We obtain an other plat decomposition by choosing S′(2n) := ((R2rU(p))×
{2}) ∪ {∞} , B′1 = ((H1 ∪ R2 × J) r U(A1 ∪ β)) ∪ {∞} and B′2 = (H2 r
U(A2)) ∪ {∞} . The epimorphisms κ′i are than given by

κ′1 : s(2)
j 7→ λ1 ◦ φ−1

β (s(1)
j ) = λ1(s(2)

j (s(1)
1 , . . . , s

(1)
2n )) and κ′2 : s(2)

j 7→ λ2(s(2)
j ).

We have κi = κ′i ◦ φβ and we define Q̂′i := Im(κ̂′i). The orientation of
Reg(β̂) does not depend on the choice of one of these two splittings: the
diffeomorphism φ̂β : R̂S(S(2n)) → R̂S(S′(2n)) induces an orientation pre-
serving map from the regular part of Q̂1∩ Q̂2 to the regular part of Q̂′1∩ Q̂′2
(see Proposition 4.4).

Lemma 4.7 Let β ∈ B2n be a braid such that β̂ is a knot. Then the
orientation constructed on Reg(β̂) is independent of the orientation of β̂ .

A change of the orientation of S3 changes the orientation of Reg(β̂).

Proof. If we change the orientation of β̂ than the ε
(i)
l are changing their

sign simultaneously. Hence the orientation of Q̂1 and Q̂2 are changing
simultaneously.

If we change the orientation of S3 the orientations of Q̂1 and Q̂2 are
changing simultaneously too. But we have also to change the orientation
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of R̂S(S(2n)) because s
(i)
j 7→ (s(i)

2n−j+1)−1 (see Proposition 4.4) and so the
orientation of Q̂1 ∩ Q̂2 at a regular point changes. 2

4.3 Invariance under the change of the double cosset repre-
sentative

Let F2n = F (s1, . . . , s2n) and Fn = F (t1, . . . , tn) be free groups of rank
2n and n respectively. For a given εj ∈ {±1} , j = 1, . . . , n , we define an
epimorphism κ : F2n → Fn by

κ : s2j−1 7→ tεj , and κ : s2j 7→ t−εj .

Let ζ ∈ K2n be given. It is proved in [Bir76b] that a given braid is contained
in K2n if and only if it leaves the normal closure of {s1s2, . . . , s2n−1s2n} in
F2n invariant. Therefore we have an automorphism ζκ : Fn → Fn such that
the following diagram commutes:

F2n
κ−−−−→ Fnyζ yζκ

F2n
κ−−−−→ Fn.

It is easy to see that

σκ1 : t1 7→ t−1
1 , σκ1 : tj 7→ tj for 2 ≤ j ≤ n. (7)

(σ2σ
2
1σ2)κ : t1 7→ tε22 t1t

−ε2
2 , (σ2σ

2
1σ2)κ : tj 7→ tj for 2 ≤ j ≤ n

(8)

and

(σ2kσ2k−1σ2k+1σ2k)κ : tj 7→ tτk(j) for 1 ≤ j ≤ n. (9)

where τk , 1 ≤ k ≤ n− 1 is the transposition which permutes k and k + 1.
Let β ∈ B2n be a braid such that β̂ is a knot. The plat β̂ gives a plat

decomposition of X(k). We denote by κ1 = λ1 : π1(S(2n)) → π1(B1) and
κ2 = λ2 ◦ β : π1(S(2n)) → π1(B2) the induced epimorphisms and Q̂i :=
κ̂i(R̂Ti(Bi)). Moreover, assume that ζi ∈ K2n is given. Then ζ̂2βζ1 is a
knot too. We denote the induced epimorphisms by κ′i : π1(S(2n))→ π1(Bi),
i = 1, 2, and Q̂′i := κ̂′i(R̂

Ti(Bi)), i = 1, 2.

Lemma 4.8 There is an orientation preserving map Λ̂(ζi) : R̂Ti(Bi) →
R̂Ti(Bi) such that κ̂′i = κ̂i ◦ Λ̂(ζi).

Proof. It is sufficient to prove the lemma in the case ζi is one of the gener-
ators of K2n (see Lemma 4.2). Let ζi ∈ {σ1, σ2σ

2
1σ2, σ2jσ2j−1σ2j+1σ2j | 1 ≤

j ≤ n−1} . Note that the epimorphism λ′i differs from λi only if ζi = σ1 . If
ζi = σ1 we get λ′i(s

(i)
1 ) = λi(s

(i)
1 )−1 and by equation (7) we obtain κi = κ′i .

If ζi = σ2σ
2
1σ2 we obtain from equation (8) that ζ̂κi is orientation preserving

and an easy calculation gives κ̂′i = κ̂i ◦ ζ̂κi . The case ξi = σ2jσ2j−1σ2j+1σ2j

is completely analogous. 2
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We summarize the results in the following Proposition:

Proposition 4.9 Let β, β′ ∈ B2n and assume that β and β′ are repre-
senting the same double cosset in K2n\B2n/K2n . Then we have Reg(β) =
Reg(β′) as oriented manifolds.

4.4 Invariance under stabilization

Let β ∈ B2n be given. We are interested in the new braid β′ := βσ2n ∈
B2n+2 (see Figure 4). We obtain: κ1 = λ1 , κ2 = λ2 ◦ β and κ′1 = λ′1 ◦ σ

−1
2n ,

κ′2 = λ′2 ◦ β where λ′i : π1(S′(2n+ 2))→ π1(B′i) is given by

λ′1(s(1)
j ) = λ1(s(1)

j ) if 1 ≤ j ≤ 2n λ′2(s(2)
j ) = λ2(s(2)

j ) if 1 ≤ j ≤ 2n

λ′1(s(1)
2n+1) = (t(1)

n+1)−ε
(1)
n λ′2(s(2)

2n+1) = (t(2)
n+1)−ε

(1)
n

λ′1(s(1)
2n+2) = (t(1)

n+1)ε
(1)
n λ′2(s(2)

2n+2) = (t(2)
n+1)ε

(1)
n

�� ��
· · ·

β

�� ��· · ·

stabilisation←→

�� ��
· · ·

��
β

�� ����
��@
@
@· · · ��

Figure 4: Stabilization

For λ#
i : I × Σn

π/2 → RS(S(2n)), we have:

λ#
i (α, P1, . . . , Pn) = (α, ε(i)1 P1,−ε(i)1 P1, . . . , ε

(i)
n Pn,−ε(i)n Pn)

and hence κ#
1 = λ#

1 and κ#
2 = β# ◦ λ#

i i.e.

κ#
2 (α, P1, . . . , Pn) = β#(α, ε(2)

1 P1,−ε(2)
1 P1, . . . , ε

(2)
n Pn,−ε(2)

n Pn)

=: (α, P β1 , . . . , P
β
2n).

It follows that

(κ′1)#(α, Pj)n+1
j=1 = (σ−1

2n )#(α, ε(1)
1 P1,−ε(1)

1 P1, . . . , ε
(1)
n Pn,−ε(1)

n Pn,−ε(1)
n Pn+1, ε

(1)
n Pn+1)

= (α, ε(1)
1 P1,−ε(1)

1 P1, . . . , ε
(1)
n Pn,−ε(1)

n Pn+1, δ(α, ε(1)
n Pn+1)(−ε(1)

n Pn), ε(1)
n Pn+1)

where δ : SU(2) → SO(3) is the 2–fold covering (see Section 2). Moreover,
we have:

(κ′2)#(α, Pj)n+1
j=1 = (α, P β1 , . . . , P

β
2n,−ε

(1)
n Pn+1, ε

(1)
n Pn+1).
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It is now easy to show that Q′1 ∩ Q′2 = g(Q1 ∩ Q2) where g : I × Σ2n
π/2 →

I × Σ2n+2
π/2 is given by

g : (α, P1, . . . , P2n) 7→ (α, P1, . . . , P2n, P2n,−P2n).

The map g induces an embedding

ĝ : R̂S(S(2n))→ R̂S
′
(S′(2n+ 2))

where S ′ = S ∪ {s2n+1, s2n+2} . Moreover, we have f2n+2 ◦ g = f2n which
implies that

Dg|f∗2n(su(2)) : f∗2n(su(2))→ f∗2n+2(su(2)) (10)

is an isomorphism. Given (α, P1, . . . , P2n) =: (α,P) ∈ RS(S(2n)) we have

Tg(α,P)(R
S′(S′(2n+2))) ∼= Dg(T(α,P)(R

S(S(2n))))⊕TP2n(Σπ/2)⊕T−P2n(Σπ/2)
(11)

as oriented vector spaces by the orientation convention and equation (10).
Assume that (α,P) ∈ Q1 ∩ Q2 . Then there are (α,P(i)) :=

(α, P (i)
1 , . . . , P

(i)
n ) ∈ I × Σn

π/2 such that κ#
i (α,P(i)) = (α,P).

Proposition 4.10 Let β ∈ B2n be given such that β̂ is a knot. Moreover
let β′ := βσ2n ∈ B2n+2 . Then g : RS(S(2n))→ RS

′
(S′(2n+ 2)) restricts to

an orientation preserving diffeomorphism

g : (−1)nQ1 ∩Q2 → (−1)n+1Q′1 ∩Q′2

in a neighborhood of a regular point.

Proof. Let (α,P) ∈ Q1 ∩ Q2 be a regular point. i.e. Q1 t(α,P) Q2 . From
Proposition 3.3 follows that Q′1 tg(α,P) Q

′
2 . We have

Tg(α,P )(Q
′
i) ∼= Dg(T(α,P )(Qi))⊕ Ui

where Ui ∼= T
P

(1)
n

(Σπ/2) as oriented vector spaces. From equation (11) we
obtain:

Tg(α,P)(R(S′(2n+ 2))) ∼= Dg(T(α,P)(R(S(2n))))⊕W

where W ∼= T−εP (1)
n

(Σπ/2)⊕ T
εP

(1)
n

(Σπ/2).
It is clear that U1⊕U2

∼= −W as oriented vector spaces. From this it fol-
lows that the map g : RS(S(2n))→ RS

′
(S′(2n+ 2)) induces an orientation

preserving diffeomorphism

g : (−1)nQ1 ∩Q2 → (−1)n+1Q′1 ∩Q′2

in a neighborhood of the regular point (α,P). 2
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5 Lin’s invariant

The aim of this section is to explain why the two quantities h(α)(k) and
σk(e2iα) with apparently different algebraic–geometric contents are the
same. In order to explain this connection we have to compare Lin’s con-
struction with the construction given in Section 3. Lin considered in his
paper closed n-braids which are very special 2n-plats (see Figure 5).

t
(2)
1

t
(2)
n

t
(1)
n

t
(1)
1

' $
��

σ

& %
��

6 6

S(2n)

B2

B1

···

···

···

Figure 5: Closed n-braids are special 2n-plats.

5.1 Outline of Lin’s construction

For the convenience of the reader we repeat the notations from [Lin92] and
[HKr98].

Let σ ∈ Bn be given and denote by σ∧ the closed n-braid defined by
σ . Let Fn be a free group with basis R = {r1, . . . , rn} . The braid σ
induces a braid automorphism φσ : Fn → Fn . It follows that σ induces a
diffeomorphism of SU(2)n i.e.

φ#
σ (A1, . . . , An) =: (φ#

σ (A1), . . . , φ#
σ (An)).

Note that the equation
∏n
i=1Ai =

∏n
i=1 φ

#
σ (Ai) always holds.

It was observed by Lin that the fixed point set of φ#
σ : SU(2)n → SU(2)n

can be identified with R(σ∧) [Lin92, Lemma 1.2]. Let (A1, . . . , An) ∈
Fix(φ#

σ ) be given. It follows that trAi = trAj if σ∧ is a knot.
For a given α ∈ (0, π) let

Rαn := {(A1, . . . , An) | tr(Ai) = 2 cosα, 1 ≤ i ≤ n} ⊂ SU(2)n.

The space Rαn carries the canonical product orientation because Rαn = Σn
α

(see Section 4.1). Since φ#
σ (Rαn) = Rαn we obtain a diffeomorphism

φ#
σ : Rαn → Rαn . Its fixed point set can be identified with Rα(σ∧) := {ρ ∈
R(σ∧) | tr ρ(m) = 2 cosα} where m is a meridian of σ∧ .
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Let us consider the following subspaces of Rαn ×Rαn :

Hα
n := {(A1, . . . , An, B1, . . . , Bn) ∈ Rαn ×Rαn|A1 · · ·An = B1 · · ·Bn},

Λαn := {(A1, . . . , An, A1, . . . , An) ∈ Rαn ×Rαn},
Γασ := {(A1, . . . , An, φ

#
σ (A1), . . . , φ#

σ (An)) ∈ Rαn ×Rαn},
Sαn := {(A1, . . . , A2n) ∈ Rαn ×Rαn | AiAj = AjAi, 1 ≤ i, j ≤ n}.

Fix a α ∈ I such that ∆σ∧(e2iα) 6= 0. The intersection (ΛαnrSαn )∩(ΓασrSαn )
is compact in Hα

n rSαn (see [HKr98, 3.6]). Moreover, for Θ ∈ {Hα
n ,Γ

α
σ ,Λ

α
n}

the quotient Θ̂ := (Θ rSαn )/ ∼ is an oriented manifold and the intersection
number h(α)(σ) := 〈Λ̂αn, Γ̂ασ〉Hα

n
is defined.

It is proved that for braids σ and τ which are defining equivalent knots
σ∧ ∼= τ∧ ⊂ S3 one gets h(α)(α) = h(α)(β) and therefore a knot invariant
h(α)(k) is established. Moreover, the equation h(α)(k) = 1

2σk(e
2iα) holds

where σk(e2iα) denotes the Levine–Tristram signature of k (see [HKr98] for
details and [Lin92] for the case α = π/2).

5.2 Comparison with Lin’s construction

Let σ∧ be a knot and choose an orientation as in Figure 5. A closed n-braid
is a very special 2n-plat. Consider the homomorphisms λi : π1(S(2n)) →
π1(Bi) given by

λi : sj 7→ t
(i)
j and λi : s2n+1−j 7→ (t(i)j )−1, 1 ≤ j ≤ n.

We obtain the maps κi : π1(S(2n)) → π1(Bi) given by κ2 = λ2 and κ1 =
λ1 ◦ σ . Here σ ∈ B2n has the property that σ(sj) = sj for n+ 1 ≤ j ≤ 2n .

Denote by Qi ⊂ RS(S(2n)) the image of κ#
i . We are interested in

representations with a fixed trace. Therefore we consider the restriction of
κ#
i which gives an embedding RTiα (Bi) ↪→ RSα(S(2n)) (denote its image by
Q

(α)
i ).

Consider the free group F2n with Basis S = {s1, . . . , s2n} and let the
map φαn : Rαn ×Rαn → RSα(F2n) be given by

φαn : (A1, . . . , An, B1, . . . , Bn) 7→ (A1, . . . , An, B
−1
n , . . . , B−1

1 ).

It is clear that φαn is orientation preserving (resp. reversing) if and only if n
is even (resp. odd). Moreover it is obvious that φαn(Hα

n ) = RSα(S(2n)).

Lemma 5.1 We have φαn(Λαn) = Q
(α)
1 and φαn(Γασ) = Q

(α)
2 .

Proof. The lemma is proved by an easy calculation. 2

Let Fαn : Rαn×Rαn → SU(2) be given by Fαn : (A1, . . . , An, B1, . . . , Bn) 7→
A1 · · ·AnB−1

n · · ·B−1
1 . Note that Fαn = µ ◦ (fαn × fαn ) where µ : SU(2) ×

SU(2)→ SU(2) is given by µ : (A,B) 7→ AB−1 .
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The orientation of H̃α
n := Hα

n r Sαn is given by the orientation of
Rαn × Rαn

∼= Σ2n
α and the orientation of the normal bundle (Fαn )∗(su(2)).

Analogously, we have fixed the orientation of R̃Sα(S(2n)) by the orientation
of RSα(F2n) ∼= Σ2n

α and the orientation of the normal bundle (fα2n)∗(su(2))
(see Section 4.1).

Lemma 5.2 The map φ̂αn : Ĥα
n → R̂Sα(S(2n)) is orientation preserving

(resp. reversing) if and only if n is even (resp. odd).

Proof. There is a commutative diagram

Rαn ×Rαn
φαn−−−−→ RSα(F2n)yFαn yfα2n

SU(2) =−−−−→ SU(2).

Therefore, the restriction of the derivative of φαn gives an isomorphism be-
tween the oriented normal bundles of H̃α

n and R̃Sα(S(2n))

Dφαn : (Fαn )∗(su(2))→ (fα2n)∗(su(2)).

Since φαn is orientation preserving (resp. reversing) if and only if n is even
(resp. odd) the conclusion of the lemma follows. 2

In general Q̂1 ∩ Q̂2 is not compact. There might be abelian representa-
tions which are the limit of non-abelian representations. However there is a
criterion which ensures the compactness of the intersection Q̂

(α)
1 ∩ Q̂(α)

2 .

Lemma 5.3 Let k ⊂ S3 be a knot and let α ∈ I be given. If ∆k(ei2t) 6=
0 then Q̂

(α)
1 ∩ Q̂(α)

2 is compact. Moreover, there is an ε > 0 such that
Q̂

(s)
1 ∩ Q̂

(s)
2 ⊂ RSs (S(2n)) is compact for s ∈ (α− ε, α+ ε).

Proof. The lemma is a consequence of [Kla91, Theorem 19]. 2

Since R̂Sα(S(2n)) ⊂ R̂S(S(2n)) is an oriented codimension one manifold
and because dim R̂S(S(2n)) = 4n− 5 we obtain that the dimension of Q̂(α)

i

is half the dimension of R̂Sα(S(2n)). The intersection Q
(α)
1 ∩Q

(α)
2 is compact

by Lemma 5.3; remember that α ∈ I is fixed such that ∆k(ei2α) 6= 0. Hence
we are able to define the intersection number

〈Q̂(α)
1 , Q̂

(α)
2 〉 bRSα(S(2n))

.

Proposition 5.4 Let σ ∈ Bn be a braid such that σ∧ is a knot. Then the
map

φ̂αn : Ĥα
n → (−1)nR̂Sα(S(2n))

is orientation preserving. Moreover we have

h(α)(σ∧) = 〈Λ̂αn, Γ̂ασ〉 bHα
n

= (−1)n〈Q̂(α)
1 , Q̂

(α)
2 〉 bRSα(S(2n))

.
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Proof. The proof follows from Lemma 5.1 and Lemma 5.2. 2

For given α1, α2 ∈ I we denote by F̂ (α1, α2) the following subspace of
R̂S(S(2n))

F̂ (α1, α2) :=
⋃

β∈[α1,α2]

R̂Sβ (S(2n)).

There is an ε > 0 such that

F̂ (α− η, α+ η) ∩ Q̂1 ∩ Q̂2

is compact for all 0 ≤ η < ε .
We fix η > 0 such that F̂η∩Q̂1∩Q̂2 is compact where F̂η := F̂ (α−η, α+

η). In general we have Q̂i t R̂Sα(S(2n)) for all α ∈ I . Choose an isotopy
Q̂

(α)
2  Q̃

(α)
2 with compact support such that Q̂

(α)
1 t Q̃

(α)
2 . Extent this

isotopy to an isotopy Q̂2  Q̃2 with compact support such that Q̂1 t bFη Q̃2

and Q̃2 t RSα(S(2n)) for all α ∈ I . This is possible because the normal
bundle of R̂Sα(S(2n)) ⊂ R̂S(S(2n)) is trivial.

Remember that Q̂1 ∩ Q̃2 is an oriented one dimensional manifold in a
neighborhood of R̂Sα(S(2n)).

Lemma 5.5 Let Q̂1 and Q̃2 be given as above. Then the intersection num-
ber 〈Q̂1∩Q̃2, R̂

S
α(S(2n))〉 bRS(S(2n))

is defined and the following equation holds:

〈Q̂(α)
1 , Q̂

(α)
2 〉 bRSα(S(2n))

= 〈Q̂1 ∩ Q̃2, R̂
S
α(S(2n))〉 bRS(S(2n))

.

Proof. The manifold R̂Sα(S(2n)) ⊂ F̂η is of codimension one. The intersec-
tion Q̂1 ∩ Q̃2 ∩ F̂η is compact oriented and one dimensional. Therefore the
intersection number is defined. The intersection numbers are equal which
follows from the orientation convention (see Section 4.1). 2

It is now possible to explain Lin’s result: let K ⊂ R̂(k) be a compact
component and let K̃ be a smooth oriented one dimensional approximation
for K . It is obvious that

〈K̃, R̂Sα(S(2n))〉 bRS(S(2n))
= 0.

Therefore only a non-compact component of R̂(k) can give a contribution
to the intersection number.

Let N ⊂ R̂(k) ⊂ <(k) be a non-compact component and let N̄ ⊂ <(k)
be its closure. The difference N̄ rN consists of finitely many abelian rep-
resentations which are the limit of non-abelian representations. For that
reason counting 〈∆̂α

n, Γ̂
α
σ〉 bHα

n
of representations with multiplicity is equiva-

lent to counting the zeros of the Alexander polynomial on the unit circle with
multiplicity. On the other hand, the signature σk(e2iα) is also a weighted
sum of zeros of the Alexander polynomial (see [Kau87, Chapter XII]).

A further consequence of the connection is the following:
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Theorem 5.6 Let k ⊂ S3 be a knot and denote by m its meridian and let
α ∈ I be given such that ∆k(e2iα), σk(e2iα) 6= 0.

Then there is a non abelian representation ρ ∈ R̂(k) such that tr ρ(m) =
2 cosα . Moreover, there is an arc ρt ∈ <(k), α ∈ [−ε, ε] through ρ = ρ0

such that ρ±ε are abelian and tr ρ−ε(m) < 2 cosα and tr ρε(m) > 2 cosα .

Proof. Let Q̂1 and Q̃2 as above. Since σk(e2iα) 6= 0 there is an arc in
Q̂1 ∩ Q̃2 ∩ F̂η which connects R̂Sα−η(S(2n)) and R̂Sα+η(S(2n)). We have to
conclude that there is already such an arc in Q̂1 ∩ Q̂2 ∩ F̂η .

Now Q̂1 ∩ Q̂2 ⊂ R̂S(S(2n)) can be identified with R̂(k) which has the
structure of a semi–algebraic set (see Section 2). Therefore we can think of
Q̂1∩Q̂2∩F̂η as an compact semi–algebraic set. Each compact semi–algebraic
set has a triangulation (see [BCR87, Théorème 9.2.1]).

Assume there is no path in Q̂1∩Q̂2∩F̂η connecting R̂Sα−η and R̂Sα+η . We
can choose an open regular neighborhood U of Q̂1∩ Q̂2∩ F̂η in R̂S(S(2n)).
Of course there is no path in U connecting R̂Sα−η and R̂Sα+η . It is possible
to choose an isotopy Q̂2  Q̃2 with support contained in U . Since there is
no path in U connecting R̂Sα−η and R̂Sα+η there can not be such a path in
Q̂1 ∩ Q̃2 ∩ F̂η . By Lemma 5.5, Proposition 5.4 and [HKr98, Theorem 1.2]
we have σk(e2iα) = 0 which contradicts our assumption.

It is easy to see that in addition we may assume that ρ±ε are reducible.
2

Corollary 1.2 is an immediately consequence of theorem above.
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