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Abstract

Let M be a 3-manifold with torus boundary which is a rational homology circle. We study
deformations of reducible representations of π1(M) into SL2(C) associated to a simple root
of the Alexander polynomial. We also describe the local structure of the representation and
character varieties.

1 Introduction

Let M be a connected, compact, orientable, irreducible, 3-manifold such that ∂M is a torus. We
assume that the first Betti number β1(M) is one, i.e. M is a rational homology circle. A good
class of examples arises from knots in S3 . For a given tame knot in S3 the complement M(k) of
an open tubular neighborhood of k in S3 satisfies all conditions. Since the rank of H1(M,Z) is
one we have a canonical surjection φ : π1(M) → Λ where Λ := H1(M,Z)/tors(H1(M,Z)) is an
infinite cyclic group. Moreover, the Alexander polynomial ∆M (t) ∈ Q[t, t−1] is well defined (see
Section 2.1).

A representation ρ : Γ → SL2(C) of a group Γ is called irreducible if the only subspaces of
C2 which are invariant under ρ(Γ) are {0} and C2 . According to a result of Thurston (see [Thu,
Chapter 5] and [CS83, Proposition 3.2.1]) it is possible to deform an irreducible representation
ρ : π1(M)→ SL2(C) non-trivially if ρ(Im(π1(∂M)→ π1(M))) 6⊂ {±E} where E denotes the unit
matrix.

There is no general theorem which allows the deformation of reducible representations
ρ : π1(M)→ SL2(C). In [FK91] the authors proved that every abelian representation of a classical
knot group which corresponds to a simple root of the Alexander polynomial on the complex unit
circle is a limit point of an arc of irreducible representations ρt : π1(M) → SU(2). This result
is generalized in [Her97] and [HK98] by replacing the condition of the simple root by a condition
on the signature operator. An other generalization of the result of Frohman and Klassen recently
established in [BA98b] (see also [BA98a]).

The first aim of this paper is to prove a deformation result for certain reducible, non abelian
representations (Theorem 1.1). In a second step we shall use this result to study the local structure
of the SL2(C)–representation variety (Theorem 1.2 and Corollary 1.3).

Every representation ρ : π1(M) → SL2(C) which factors through φ : π1(M) → Λ is determi-
nated by the image of a generator t of Λ = 〈t|−〉 . For a given λ ∈ C∗ := Cr{0} we denote by ρλ the
abelian representation which is given by t 7→ diag(λ1, λ−1) ∈ SL2(C). Note that the representation
ρλ depends on the choice of a generator of Λ but its character χρλ

: π1(M)→ C , χρλ
(γ) := tr ρλ(γ),

is well defined. There exists a reducible, non abelian representation ϕλ : π1(M) → SL2(C) such
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that χϕλ
= χρλ

if and only if ∆M (λ2) = 0. This is a well known result of Burde and de Rham if
M is a complement of a knot in S3 , (see [Bur67, dR67] and Section 4.1).

We denote by R(M) := R(M,SL2(C)) = Hom(π1(M),SL2(C)) the SL2(C)–representation
variety of the fundamental group π1(M) of M (see Section 2.2). The set of all representations
ρ ∈ R(M) which factor through φ : π1(M) → Λ is denoted by S(M). Note that S(M) ⊂ R(M)
is an irreducible algebraic component (see Section 2.2). We shall prove of the following theorem:

1.1 Theorem Let λ ∈ C∗ be given such that ρλ ∈ R(M) is not ∂ -central and let ϕλ : π1(M)→
SL2(C) be a reducible, non abelian representation such that χϕλ

= χρλ
.

If λ2 is a simple root of the Alexander polynomial ∆M (t) , then the representation ϕλ is the
limit of irreducible representations. More precisely, ϕλ is a smooth point of the representation
variety R(M) ; it is contained in a unique irreducible four–dimensional component Rλ(M) of the
SL2(C)–representation variety R(M) .

Here a representation ρ : π1(M) → SL2(C) is called ∂ -central iff the image of ρ restricted to
Im(π1(∂M)→ π1(M)) is contained in the center {±E} of SL2(C). Note that ρλ , λ ∈ C∗r{±1} , is
never ∂ -central if φ(Im(π1(∂M)→ π1(M))) = Λ or when λ is not a root of unity (see Lemma 2.3).
Hence ρλ is not ∂ -central if H1(M,Z) has no torsion (i.e. M is the exterior of a knot in an
integer homology sphere) or if M is the exterior of a zero homotop knot in a manifold with finite
fundamental group.

The main ingredients of the proof of Theorem 1.1 are the existence of a set of natural obstruc-
tions which control the deformations of a given representation (see Section 3) and the calculation
of the dimension of the space of cocycles Z1(M, slϕλ

2 ) (Section 4.1).
The variety of characters X(Γ) of a finitely generated group Γ is the quotient in the algebraic

category of the action of SL2(C) by conjugation on the variety of representations R(M) (see [MS84,
II.4.]). We denote the projection by π : R(Γ) → X(Γ). Following Culler and Shalen (see [CS83]),
X(Γ) is a complex affine variety, but it is not necessarily irreducible. For a representation ρ ∈ R(Γ),
its projection onto X(Γ), denoted by χρ , is called the character of ρ . The character χρ may be
interpreted as a map:

χρ : Γ→ C, χρ : γ 7→ tr(ρ(γ)).

Note that two irreducible representations ρ and ρ′ are conjugate if and only if χρ = χρ′ . Let
Rirr (Γ) ⊂ R(Γ) be the subset of irreducible representations and denote X irr (Γ) := π(Rirr (Γ)).
The subsets Rirr (Γ) ⊂ R(Γ) and X irr (Γ) ⊂ X(Γ) are Zariski-open (see [CS83, 1.3.2]). The subset
Rred (Γ) of reducible representation is Zariski-closed and Xred (Γ) := π(Rred (Γ)).

We denote by Y (M) the projection of S(M) to the character variety X(M). It is clear that
Y (M) is an irreducible component of Xred (M). We also use the notation χλ := χϕλ

= χρλ
and

Xλ(M) := π(Rλ(M)).

1.2 Theorem Let ρλ be a representation as in Theorem 1.1. The curves Xλ(M) and Y (M) are
the unique irreducible components of X(M) that contain χλ . In addition χλ is a smooth point of
both curves and

TZar
χλ

(Xλ(M)) ∩ TZar
χλ

(S(M)) = {0}

We obtain:
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1.3 Corollary Let ρλ be a representation as in Theorem 1.1. The varieties Rλ(M) and S(M)
are the unique irreducible components of R(M) that contain ρλ . In addition ρλ is a smooth point
of both varieties and

TZar
ρλ

(Rλ(M)) ∩ TZar
ρλ

(S(M)) = TZar
ρλ

(O(ρλ))

where O(ρλ) is the orbit of ρλ .

Note that the orbit O(ρλ) of ρλ is a non-singular proper component of the intersection of S(M)
and Rλ(M) i.e. dim(S(M) ∩ Rλ(M)) = dimO(ρλ) = 2. It follows from the proof of Theorem 1.2
and Corollary 1.3 that the kernel of the differential mapping of π at ρλ is the tangent space
TZar

ρλ
(Rλ(M)) (see Remark 5.16) i.e.

Ker(dρλ
π : TZar

ρλ
(R(M))→ TZar

χλ
(X(M))) = TZar

ρλ
(Rλ(M)).

A character χ ∈ X(M) is said to be real if it is real valued (i.e. if χ(γ) ∈ R for every γ ∈ Γ).
Since X(M) is defined over Q it makes sense to consider the variety X(M)R , which is the set
of real points of X(M). Points in X(M)R are precisely the real characters, because the function
algebra is generated by evaluation functions.

An irreducible representation ρ : Γ → SL2(C) is conjugate to a real representation (i.e. into
SL2(R) or SU(2)) if and only if its character χρ : Γ → C is a real-valued function (see [HK97,
Lemma 1]). It is clear that the character χλ is real-valued iff λ is real or on the complex unit
circle.

When |λ| = 1, the next corollary is the theorem of Frohman and Klassen.

1.4 Corollary Let λ ∈ C∗ be given as in Theorem 1.1. If χλ is real, then χλ is a smooth point
of the curve of real characters in Xλ(M) . (i.e. a neighborhood of χλ in Xλ(M) ∩ X(M)R is a
smooth arc).

In addition this smooth arc can be parametrized as {χt | t ∈ (−ε, ε)} such that χ0 = χλ , χt is
irreducible for t 6= 0 , and

(i) if λ ∈ R , then χt is the character of a representation into SL2(R) ;

(ii) if |λ| = 1 then χt is the character of a representation into SU(2) for t > 0 and SU(1, 1) for
t < 0 .

The group SU(1, 1) is conjugate to SL2(R). In the statement of the corollary we write both
SL2(R) and SU(1, 1) because, when λ ∈ R then ρλ ∈ SL2(R), and when |λ| = 1 then ρλ ∈
SU(1, 1) ∩ SU(2).

After finishing this paper, we learned from E. P. Klassen that there is an overlap with the 1991
thesis of D. Shors [Sho91]. He obtained similar results in the case of the exterior of a knot in S3 ,
but unfortunately none of these results has been published.

If λ2 is not a simple root of the Alexander polynomial the situation is more complicated even
if we assume that λ2 is no root of the second Alexander polynomial. In Section 6 we shall present
the following examples which arise from knots in S3 .

Let k ⊂ S3 be the knot 820 . We have that ∆k(t) = (t2− t+1)2 and we denote ξ := exp(iπ/6).
The character χρξ

is not a smooth point of the variety of irreducible representations. More precisely,
there are at least two irreducible components of X irr (M(k)) passing through χρξ

.
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Let k ⊂ S3 be the 2–bridge knot b(49, 17). We have ∆k(t) = (2t2− 3t+ 2)2 and we denote by
ζ a complex number on the unit circle such that ∆k(ζ2) = 0. In this case every reducible but non
abelian representation ϕζ such that χϕζ

= χρζ
is a smooth point of the representation variety but

the transversality statements of Theorem 1.2 and Corollary 1.3 are not satisfied. The statement of
Corollary 1.4 is also not valid : there is a real arc χt such that χ0 = χλ and χt is the character of
a representation into SU(2) for all t in a neighborhood of 0.

The paper is organized as follows: In Section 2 the basic notation and facts are presented. In
Section 3 we recall some results about deformation of representations. The proof of Theorem 1.1
is presented in section Section 4. Section 5 includes the proofs of Theorem 1.2 and Corollaries 1.3
and 1.4. The last section is devoted to the examples above.

Acknowledgments: The authors like to thank Steve Boyer for pointing out a gap in the proof
of Proposition 5.3 in an earlier version of this paper. The first author was supported by a TMR
Marie Curie fellowship of the European Commission. The second author was partially supported
by the DGSE (Spain) through grant PB96-1152.

2 Notation and facts

Let Γ := 〈S1, . . . , Sn|R1, . . . , Rm〉 be a finitely presented group i.e. Γ ∼= Fn/R where Fn :=
F (S1, . . . , Sn) is the free group of rank n and R = 〈R1, . . . , Rm〉 is the normal subgroup of Fn gen-
erated by the relations Rj = Rj(S1, . . . , Sn). We denote the canonical projection by ψ : Fn → Γ.

2.1 Lemma Let Λ = 〈t|−〉 be an infinite cyclic group and let Γ = 〈S1, . . . , Sn|R1, . . . , Rm〉 be a
finitely presented group. For every surjective homomorphism ϕ : Γ → Λ there is a presentation
〈S′1, . . . , S′n|R′1, . . . , R′m〉 of Γ such that ϕ(S′i) = t .

Proof. The lemma follows from the Euclidean algorithm (see example 2.2). 2

2.2 Example Let Γ be given by Γ = 〈S1, S2|S2
1 = S3

2〉 and let φ : Γ→ Λ be given by φ(S1) = t3 ,
φ(S2) = t2 . We define S′1 := S1S

−1
2 , S′2 := S2(S1S

−1
2 )−1 and we obtain Γ = 〈S′1, S′2|S′1S′2S′1 =

S′2S
′
1S

′
2〉 .

2.3 Lemma Let λ ∈ C∗ r {±1} be given. Then the representation ρλ is ∂ -central iff and only
if there is a integer n > 1 such that φ(Im(π1(∂M) → π1(M))) ⊂ nZ and λ2 is a root of unity of
order n .

Proof. If φ(Im(π1(∂M)→ π1(M))) = Λ or if λ is not a root of unity then ρλ is never ∂ -central.
On the other hand if φ(Im(π1(∂M) → π1(M))) ⊂ nZ and if λ2 is a root of unity of order n

then ρλ(γ) = ±E for all γ ∈ Im(π1(∂M)→ π1(M)). 2

2.1 The Alexander polynomial of M and Fox calculus

The standard reference for this section is [Mil68] all proofs and details can be found there. Let M be
as in the introduction and denote its fundamental group π1(M) by Γ. We denote by M̃ the infinite
cyclic covering determined by the the epimorphism φ : Γ→ Λ ∼= Z . The vector space H1(M̃,Q) is
a torsion QΛ-module and a generator of its order ideal is called the Alexander polynomial of M ;
denoted by ∆M (note that ∆M depends only on the fundamental group Γ).

4



In order to proceed we choose a generator t of Λ. The group algebra QΛ can be identified with
the ring of Laurent polynomials Q[t, t−1] . Since the choice of a generator of Λ is not canonical
there are in fact two polynomials f(t) and f(t−1) which correspond to the same element of the
group algebra QΛ.

We obtain a presentation matrix A(t) for H1(M̃,Q) over Q[t, t−1] from a presentation of Γ as
follows. Note first that the deficiency of Γ := π1(M) is one. Moreover, every presentation of Γ,
obtained from a cell decomposition of M , has deficiency one ([Jac80, Chapter V]), i.e. we have a
presentation

Γ = 〈S1, . . . , Sn|R1, . . . , Rn−1〉.
By Lemma 2.1 we assume that φ(Si) = t . The matrix A(t) is obtained from the Jacobian
J(t) = (Jji(t)), Jji(t) = φψ(∂Rj/∂Si) ∈ Q[t, t−1] , by omitting one of its columns (see [BZ85,
Chapter 9.C]). It follows from the fundamental formula of the Fox calculus that Rj − 1 =∑n

i=1(∂Rj/∂Si)(Si − 1) and hence
n∑

i=1

Jji(t) =
n∑

i=1

φψ(∂Rj/∂Si) = 0, in Q[t, t−1] . (1)

i.e. the columns of J(t) are linear dependent (see [BZ85, 9.12]).
The Alexander polynomial ∆M (t) ∈ Q[t, t−1] is the determinant of the (n−1)× (n−1) matrix

A(t),
∆M (t) = detA(t).

By the Blanchfield duality theorem (see [Bla57]) the Alexander polynomial is unique up to multi-
plication with elements of the form {αtn|α ∈ Q, n ∈ Z} . Note that ∆M (1) 6= 0.

In the sequel we use the following notations: the partial derivations ∂/∂Si : QFn → QFn are
denoted by ∂i . For a given non zero complex number λ ∈ C∗ and an element f(t) ∈ Q[t, t−1] we
denote by f(λ) ∈ C the valuation of f(t) at t = λ . For every η ∈ QFn we denote by η(t) its
image in Q[t, t−1] i.e. η(t) := φψ(η).

2.4 Example J(λ2) denotes the (n − 1) × n matrix over C with entries Jji(λ2) = ∂iRj(λ2). In
QFn we have ∂l(η1η2) = ∂l(η1)η2(1) + η1∂l(η2).

In the sequel we shall use the following lemma which connects the Fox derivations with the usual
derivative. We denote by d

dt : C[t, t−1]→ C[t, t−1] the usual differential operator i.e. dtn

dt = ntn−1 .
The Fox derivations of higher order are denoted by ∂kl := ∂2

∂Sk∂Sl
.

2.5 Lemma Let Fn := Fn(S1, . . . , Sn) be a free group of rank n and consider the epimorphism
φ : Fn → 〈t|−〉 ∼= Z given by φ(Si) = t . For every element R ∈ Kerφ we have:

d

dt
(t∂lR(t)) +

n∑
k=1

∂lkR(t) ≡ 0.

Proof. Note that the subgroup Kerφ is normally generated by {e2, . . . , en} where ei := S1S
−1
i .

The set S := {γeiγ−1 | γ ∈ Fn} generates therefore Kerφ as a subgroup.
For given l , 1 ≤ l ≤ n we define Dl, Gl : Kerφ→ C[t, t−1] as follows:

Dl(R) := −t d
dt

(∂lR(t)) and Gl(R) :=
n∑

k=1

∂lkR(t) + ∂lR(t).

5



We show that Dl, Gl : Kerφ→ (C[t, t−1],+) are homomorphisms which coincide on S . This proves
the lemma.

Let V,W ∈ Kerφ . We use the formula ∂l(VW ) = ∂lV + V ∂lW and we obtain:

Dl(VW ) = −t d
dt

(∂l(VW )(t))

= −t d
dt

(∂lV + V ∂lW (t))

= −t d
dt

(∂lV (t)) +−t d
dt

(∂lW (t)) because V (t) = 1⇔ V ∈ Kerφ

= Dl(V ) +Dl(W )

(2)

and

Gl(VW ) =
n∑

k=1

∂lk(VW )(t) + ∂l(VW )(t)

=
n∑

k=1

∂l(∂kV + V ∂kW )(t) + ∂lV + V ∂lW (t)

=
n∑

k=1

∂lkV (t) + ∂lV (t) +
n∑

k=1

∂lV (t)∂kW (1) +
n∑

k=1

V ∂lkW (t) + V ∂lW (t)

= Gl(V ) +Gl(W )

(3)

The last equation follows now because V (t) = 1 and
∑n

k=1 ∂kW (1) = 0 if V ∈ Kerφ . Note that
∂kW (1) is the exponent sum of Sk in W .

We have εli := ∂lei(t) ∈ {−1, 0, 1} . A short calculation (details are left to the reader) gives:

Dl(γeiγ−1) = Gl(γeiγ−1) = −tnγnγεli if φ(γ) = tnγ .

We have therefore Dl(R) = Gl(R) for all R ∈ Kerφ . 2

2.2 Representation spaces

Let G be a Lie group and g its Lie algebra. In general we call a representation ρ : Γ→ G abelian
(resp. central) iff its image is contained in an abelian subgroup (resp. in the center) of G . Note
that G = SU(2) the notations reducible and abelian coincide. The space of all representations of
a finitely presented group Γ = 〈S1, . . . , Sn|R1, . . . , Rm〉 to G , denoted by R(Γ, G) and equipped
with the compact open topology, can be identified with the following space:

R(Γ, G) := {(g1, . . . , gn) ∈ Gn | Rj(g1, . . . , gn) = E, j = 1, . . . ,m}

where E is the unity in G . Hence we have a smooth map R : Gn → Gm and R(Γ, G) can be
identified with R−1(E, . . . , E). The element (g1, . . . , gn) is identified with the representation ρ if
and only if ρ(Si) = gi .

Let ρ : Γ→ G be a representation. The Lie algebra g can be viewed as a Γ–module, denoted
by gρ , via Ad ◦ρ , i.e. γ ◦ X = Adρ(γ)(X) for all γ ∈ Γ and X ∈ g . We denote by Cn :=
Cn(Γ, g) := {u : Γn → g} the space of n–cochains and the coboundary operator is denoted by
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δ : Cn → Cn+1 . Let B∗(Γ, gρ) (resp. Z∗(Γ, gρ), resp. H∗(Γ, gρ)) be the coboundaries (resp.
cocycles, resp. cohomology group) of Γ with coefficients in gρ .

Let f : Γ′ → Γ be a homomorphism. We obtain a representation f∗ρ := ρ ◦ f , f∗ρ : Γ′ → G ,
and the Lie algebra g can be viewed as a Γ′–module. The cochain map f∗ : Cn(Γ, g)→ Cn(Γ′, g)
induces a homomorphism f∗ : Hn(Γ, gρ)→ Hn(Γ′, gf∗ρ).

The cohomology class of a cocycle u is denoted by [u] . By composing the cup product with
the Lie bracket we obtain the cup-bracket Cp ⊗ Cq t−→ Cp+q given by

(u t v)(γ1, . . . , γp+q) := [u(γ1, . . . , γp), (γ1 · · · γp) ◦ v(γp+1, . . . , γp+q)]

(see [Bro82] for the details).
It was observed by Weil (see [Wei64, LM85]) that the space of cocycles Z1(Γ, gρ) can be identi-

fied with the kernel of the derivative DgR where g = (g1, . . . , gn) corresponds to the representation
ρ i.e. ρ(Si) = gi . This observation is based on the fact that every element W ∈ Fn gives an evalu-
ation eW : Gn → G and that we have the following commutative diagram

Tg(Gn)
·(g−1

1 ,...,g−1
n )

−−−−−−−−→ gn

Dg(eW )

y yΦ

TeW (g)(G)
·W (g)−1

−−−−−→ g

where Φ(X1, . . . , Xn) =
∑n

i=1 ∂iW ◦ Xi (the action of Fn on g is given by Si ◦ X = Adgi(X)).
Hence we have:

Z1(Γ, gρ) ∼= {(X1, . . . , Xn) ∈ gn |
n∑

i=1

∂iRj ◦Xi = 0, for j = 1, . . . ,m}. (4)

The space R(Γ, G) inherits an algebraic structure if G is an algebraic group. We are mainly
interested in the case G = SL2 := SL2(C) and we shall write R(Γ) := R(Γ,SL2). We choose the
basis {e1, e2, e3} for the Lie algebra sl2 of SL2 where

e1 =
(

0 1
0 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 0
1 0

)
. (5)

It is easy to see that the map R : SLn
2 → SLm

2 is polynomial in the ambient coordinates (SL2 ⊂ C4).
The set R−1(E, . . . , E) ⊂ C4n is therefore an affine algebraic set and the induced algebraic structure
on R(Γ) does not depend from the presentation. The space R(Γ) carries two topologies, the Zariski
and the complex or classical topology (see [Sha77, Ch. II, § 2.3]). If we refer to the Zariski topology
we shall use in the sequel the addition Zariski, e.g. Zariski–open.

It follows that the Zariski tangent space of R(Γ) at ρ , denoted by TZar
ρ (R(Γ)), can be identified

with a subspace of the cocycles Z1(Γ, slρ2) (see [Wei64, LM85, Por97]). For every ρ ∈ R(G) we
have dimρR(Γ) ≤ TZar

ρ (R(Γ)) where dimρR(Γ) denotes the local dimension of R(G) at ρ (see
[Sha77, Ch. II, § 1.4]). Here and in the sequel we shall call a representation ρ ∈ R(Γ) regular if
dimρR(Γ) = dimZ1(Γ, slρ2). This notation is justified by the following lemma:

2.6 Lemma Let ρ ∈ R(Γ) be given. If ρ is regular then ρ is a smooth point of the representation
variety R(Γ) and ρ is contained in a unique component of dimension dimZ1(Γ, slρ2) .
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Proof. For every ρ ∈ R(Γ) we have dimρR(Γ) ≤ TZar
ρ (R(Γ)) ≤ dim KerDgR = dimZ1(Γ, slρ1

2 ).
The representation ρ is therefore a simple point of R(Γ) (see [Sha77, Ch. II, § 1.4]). The conclusion
follows from Theorem 6 of [Sha77, Ch. II, § 2.2]. 2

Let now Γ = π1(M) be the fundamental group of a three dimensional manifold as in the
introduction. We choose a generator t of Λ and a presentation Γ = 〈S1, . . . , Sn|R1, . . . , Rn−1〉
such that φ(Si) = t . For a given λ ∈ C∗ let ρλ : Γ → SL2 be given by ρλ : Si 7→

(
λ 0
0 λ−1

)
.

It follows from Proposition 3.4 of [LM85] that the trivial representation ρ1 is a smooth point of
R(M) := R(π1(M)) and that the unique irreducible component S(M) ⊂ R(M) which contains ρ1

is the union of all representations which factor through φ : Γ→ Λ. This is the special case of the
of the following result which will be need in the sequel:

2.7 Theorem (Klassen [Kla91]) Let λ ∈ C∗ be given. If ∆M (λ2) 6= 0 then there is a neighbor-
hood of ρλ in R(Γ) consisting entirely of points of the component S(M) . Moreover, ρλ ∈ R(Γ) is
a smooth point and S(M) is the unique component through ρλ .

Proof. It is clear that ρλ ∈ S(M) and that dimS(M) = 3. By Lemma 2.6 we have to show that
dimZ1(Γ, slρλ

2 ) = 3.
The action of Γ on sl2 is given by Adρλ(Si) = diag(λ2, 1, λ−2) with respect to the basis {ei} .

Hence we have
Z1(Γ, slρλ

2 ) = Z1(Γ,Cλ2)⊕ Z1(Γ,C)⊕ Z1(Γ,Cλ−2)

where Cα , α ∈ C∗ , denotes the Γ–module C (the action is given by Si ◦ z = αz ). We have the
identification

Z1(Γ,Cλ2) ∼= Ker J(λ2)

where we think of the valuation of the Jacobian J(λ2) : Cn → Cn−1 as a linear mapping.
It follows from the Blanchfield duality theorem that rk J(λ2) = rk J(λ−2). Since the Alexander

polynomial is a principal minor of J(λ±2) and since ∆M (λ±2) 6= 0 we obtain rk J(λ±2) = n − 1.
From which the lemma follows. Note that C = C1 is the trivial Γ–module and that rk J(1) = n−1
since ∆M (1) 6= 0. 2

3 Review on the deformations of representations

In order to construct deformations of a given representation we use the classical approach, i.e.
we first solve the corresponding formal problem and apply then a deep theorem of Artin (see
Proposition 3.6). The formal deformations of a representation ρ : Γ → SL2 := SL2(C) are in
general determined by infinite series of obstructions (see [BA98b, Gol84]). This obstructions where
first studied by Kodaira and Spencer in a different context. The point of view presented here is
motivated by Douady (see [Dou61]).

Let Γ be a finitely presented group and let ρ : Γ → SL2 be a representation. A for-
mal deformation of ρ is a representation ρ∞ : Γ → SL2(C[[t]]) such that p0 ◦ ρ∞ = ρ where
p0 : SL2(C[[t]]) → SL2 is the evaluation homomorphism at t = 0. Here we denote by C[[t]] the
ring of formal power series.

Every formal deformation ρ∞ of ρ can be written in the form

ρ∞(γ) = exp(
∞∑
i=1

tiui(γ))ρ(γ)
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where ui : Γ → sl2 are elements of C1(Γ, slρ2) and an easy calculation gives that u1 ∈ Z1(Γ, slρ2)
is a cocycle (see also Lemma 3.3). We call a cocycle u1 ∈ Z1(Γ, slρ2) integrable if there is a formal
deformation of ρ with leading term u1 .

For every k ∈ Z , k ≥ 0, we define the ring Ak := C[[t]]/(tk+1) and A∞ := C[[t]] . We are
interested in the following Lie group Gk := SL2(Ak) and in its Lie algebra gk := sl2(Ak) (see
[Ser92]). Note that G0 = SL2 , g0 = sl2 and gk = {

∑k
i=0 t

iXi | Xi ∈ sl2} . For every k > l we have
a projection πk,l : Gk → Gl . The projection πk+1,k is denoted by πk and π∞,k is denoted by pk .

Let ρ ∈ R(Γ) and ui : Γ→ sl2 , i = 1, . . . , k , be given. We define a map ρ̃k := ρ̃
(ρ;u1,...,uk)
k : Γ→

G∞ by
ρ̃k(γ) := exp(tu1(γ) + · · ·+ tkuk(γ))ρ(γ). (6)

For all i ≥ 0 we obtain a map ρi : Γ→ Gi given by ρi := ρ
(ρ;u1,...,uk)
i := pi ◦ ρ̃k .

In the sequel we shall denote by δ the coboundary operator of C∗(Γ, slρ2). We shall prove the
following proposition:

3.1 Proposition Let ρ ∈ R(Γ) and ui ∈ C1(Γ, slρ2) , 1 ≤ i ≤ k be given. If ρ
(ρ;u1,...,uk)
k is a

homomorphism then there is an obstruction class ζk+1 := ζ
(u1,...,uk)
k+1 ∈ H2(Γ, slρ2) with the following

properties:

(i) There is a cochain uk+1 : Γ → sl2 such that ρ
(ρ;u1,...,uk+1)
k+1 is a homomorphism if and only if

ζk+1 = 0 .

(ii) The obstruction ζk+1 is natural i.e. if f : Γ′ → Γ is a homomorphism then

f∗ρ
(ρ;u1,...,uk)
k := ρ

(ρ;u1,...,uk)
k ◦ f = ρ

(f∗ρ;f∗u1,...,f∗uk)
k

is also a homomorphism and f∗(ζ(u1,...,uk)
k+1 ) = ζ

(f∗u1,...,f∗uk)
k+1 .

As a consequence we obtain:

3.2 Corollary Let ρ ∈ R(G) be given. An infinite sequence ui ∈ C1(Γ, slρ2) , i ∈ N , defines a
representation ρ∞ : Γ→ SL2(C[[t]]) ,

ρ∞(γ) = exp(
∞∑
i=1

tiui(γ))ρ(γ),

if and only if u1 ∈ Z1(Γ, slρ2) is a cocycle and ζ
(u1,...,uk)
k+1 = 0 for all k ≥ 1 .

Proof. If ρ∞ is a homomorphism then ρk := pk ◦ ρ∞ is a homomorphism for all k . Since ρk =
ρ
(ρ;u1,...,uk)
k and ρk+1 = ρ

(ρ;u1,...,uk+1)
k+1 we have ζ(u1,...,uk)

k+1 = 0 by Proposition 3.1.

If u1 is a cocycle and if ζ(u1,...,uk)
k+1 = 0 for all k ≥ 1 then by Proposition 3.1 ρk := ρ

(ρ;u1,...,uk)
k

is a homomorphism for all k ≥ 1 and hence ρ∞ is a homomorphism. 2

For given ui : Γ→ sl2 , i = 1, . . . , k , we define Ũk−1 := Ũ
(u1,...,uk)
k−1 : Γ→ g∞ as follows:

Ũk−1(γ) = u1(γ) + 2tu2(γ) + . . .+ ktk−1uk(γ) (7)

For all i ≥ 0 we obtain a map Ui : Γ→ gi given by Ui := U
(u1,...,uk)
i := pi ◦ Ũk−1 .

We fix from now on a representation ρ ∈ R(G).

9



3.3 Lemma Let ui : Γ → sl2 , i = 1, . . . , k + 1 be given and define ρ̃k+1 (resp. Ũk ) as in equa-
tion (6) (resp. equation (7)). Assume that ρk := pk ◦ ρ̃k+1 : Γ → Gk is a homomorphism. Then
ρk+1 := pk+1 ◦ ρ̃k+1 : Γ→ Gk+1 is a homomorphism if and only if Uk := pk ◦ Ũk ∈ Z1(Γ, gρk

k ) is a
cocycle.

Proof. The map ρk+1 is a homomorphism if and only if

ρ̃k+1(γ1)ρ̃k+1(γ2) ≡ ρ̃k+1(γ1γ2) mod tk+2.

If we apply the usual differential operator d
dt to this equation we obtain:

Ũk(γ1)ρ̃k+1(γ1)ρ̃k+1(γ2) + ρ̃k+1(γ1)Ũk(γ2)ρ̃k+1(γ2) ≡ Ũk(γ1γ2)ρ̃k+1(γ1γ2) mod tk+1.

Since ρk is a homomorphism this is equivalent to the following equation in gk :

Uk(γ1) + ρk(γ1)Uk(γ2)ρk(γ1)−1 = Uk(γ1γ2)

hence Uk ∈ Z1(Γ, gρk
k ) is a cocycle.

If Uk ∈ Z1(Γ, gρk
k ) is a cocycle then we use the same calculation and we obtain

ρ̃k+1(γ1)ρ̃k+1(γ2)− ρ̃k+1(γ1γ2) ≡ C mod tk+2

where C ∈ M2(C) is a matrix. We obtain C = 0 by evaluating the equation at t = 0. 2

Let ρk := ρ
(ρ;u1,...,uk)
k : Γ→ Gk be a homomorphism. In order to find a cochain uk+1 : Γ→ sl2

such that ρk+1 := ρ
(ρ;u1,...,uk+1)
k+1 is a homomorphism we consider the following exact sequence of

Γ–modules
0→ sl

ρ
2

αk−→ g
ρk
k

πk−1−→ g
ρk−1

k−1 → 0

where αk(X) = tkX and ρk−1 = πk−1 ◦ρk . This sequence gives rise to the following exact sequence
in cohomology (see Proposition 6.1 of [Bro82, Ch. III]):

H1(Γ, gρk
k )

(πk−1)∗−→ H1(Γ, gρk−1

k−1 )
βk−1−→ H2(Γ, slρ2). (8)

3.4 Definition Let ui , i = 1, . . . , k , be given. If ρk := ρ
(ρ;u1,...,uk)
k : Γ → Gk is a homomorphism

then by Lemma 3.3 U
(u1,...,uk)
k−1 ∈ Z1(Γ, gρk−1

k−1 ) where ρk−1 = πk−1 ◦ ρk . We define

ζk+1 = ζ
(u1,...,uk)
k+1 := βk−1([U

(u1,...,uk)
k−1 ]) ∈ H2(Γ, slρ2).

Note that we have the following explicit construction for ζk+1 . Denote by δk the coboundary
operator of C∗(Γ, gρk

k ) and let Ũk−1 := Ũ
(u1,...,uk)
k−1 be given as in equation (7). Then we get

(αk)∗(ζk+1) = [δk(pk ◦ Ũk−1)].

3.5 Example Let ρ : Γ → SL2 be a representation and let u1 ∈ Z1(Γ, slρ2) be given. We have a
homomorphism ρ1 : Γ→ G1 given by

ρ1(γ) = (E + tu1(γ))ρ(γ).

We consider u1 as a map u1 : Γ → g1 and an easy calculation gives δ1(u1) = t(u1 t u1). We
have therefore ζ2 = ζ

(u1)
2 = [u1 t u1] . If 0 = ζ2 ∈ H2(Γ, slρ2) we can choose u2 ∈ C1(Γ, slρ2) such

that 2 δ(u2) + u1 t u1 = 0. The map U
(u1,u2)
1 ∈ Z1(Γ, gρ1

1 ) is a cocycle and ρ
(u1,u2)
2 : Γ → G2 a

homomorphism.
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Proof of Proposition 3.1. Let ρk := ρ
(ρ;u1,...,uk)
k : Γ→ Gk be a homomorphism. By Lemma 3.3 we

have U (u1,...,uk)
k−1 ∈ Z1(Γ, gρk−1

k−1 ) where ρk−1 = πk−1 ◦ ρk .

Form the exactness of the sequence (8) it follows that βk−1([U
(u1,...,uk)
k−1 ]) = 0 if and only if

[U (u1,...,uk)
k−1 ] ∈ Im(πk−1)∗ . This is equivalent to the existence of a cocycle Uk ∈ Z1(Γ, gρk) such that

U
(u1,...,uk)
k−1 = πk−1 ◦Uk . It follows that Uk = U

(u1,...,uk+1)
k for a map uk+1 : Γ→ sl2 and ρ

(u1,...,uk+1)
k+1

is a homomorphism by Lemma 3.3.
The naturality assertion follows from the definition of the connection homomorphism (see Propo-

sition 6.1 of [Bro82, Ch. II]). 2

We denote by C{t} ⊂ C[[t]] the ring of convergent power series. Starting from a formal defor-
mation of ρ we obtain a convergent deformation as follows:

3.6 Proposition Let ρ∞ : Γ → SL2(C[[t]]) be a formal deformation of ρ ∈ R(Γ) . Then for
every N ∈ N there exists a convergent deformation ρ̂∞ : Γ → SL2(C{t}) such that ρ̂∞(γ) ≡
ρ∞(γ) mod tN for all γ ∈ Γ .

Proof. Let Γ = 〈S1, . . . , Sn | R1, . . . , Rm〉 be a finite presentation. We have R(Γ) ⊂ SLn
2 and we

fix (A1, . . . , An) ∈ SLn
2 such that ρ(Si) = Ai . It is easy to see that we can identify the space R(Γ)

with the following subset of C4n :

{(Y1, . . . , Yn) ∈ M2(C) | (E + Yi) ∈ SL2, Rj((E + Y1)A1, . . . , (E + Yn)An) = E}.

Hence there is a system of polynomial equations F(y) = 0 such that

R(Γ) ∼= V (F) := {y ∈ C4n | F(y) = 0}. (9)

Note that the solution F(0) = 0 corresponds to the representation ρ . A formal deformation of ρ
corresponds to a formal solution y(t) ∈ C[[t]] , y(0) = 0 , of the system F(y(t)) = 0 . By a theorem
of Artin (see [Art68]) there is for a given N ∈ N a convergent solution ŷ(t) ∈ C{t} such that
ŷ(t) ≡ y(t) mod tN . 2

The following lemma will be used in the sequel:

3.7 Lemma Let ρ ∈ R(Γ) be regular and let ui ∈ C1(Γ, slρ2) be given such that ρ(ρ;u1,...,uk) : Γ→
Gk is a homomorphism. Then there exists for every v ∈ Z1(Γ, slρ2) a cochain uk+1 ∈ C1(Γ, slρ2)
such that ρ(u1,...,uk,uk+1+v) : Γ→ Gk+1 is a homomorphism.

Proof. Recall that ρ ∈ R(Γ) is regular if and only if dimρR(Γ) = dimZ1(Γ, slρ2). We have
the identification R(Γ) ∼= V := V (F) ⊂ CM where the solution F(0) = 0 corresponds to the
representation ρ (see equation (9)). The representation ρ(u1,...,uk) : Γ → Gk corresponds to a
polynomial vector yk(t) ∈ (C[t])M of degree k such that F(yk(t)) ≡ 0 mod tk+1 . The element
v ∈ Z1(Γ, slρ2) gives us a vector v ∈ T0(V ). It follows from Lemma 2.6 that 0 ∈ V is a smooth
point.

It is now easy to see (using the formal implicit function theorem, see [Mum95]) that we can
extend yk(t) i.e. there is a w ∈ CM such that yk+1(t) := yk(t) + tk(v + w) satisfies

F(yk+1(t)) ≡ 0 mod tk+2.

This gives us the existence of the representation ρ(ρ;u1,...,uk,uk+1+v) : Γ → Gk+1 claimed in the
lemma. 2
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4 The deformation of reducible metabelian representations

Let Γ = π1(M) be the fundamental group of a three dimensional manifold as in the introduction.
We choose a generator t of Λ and a presentation Γ = 〈S1, . . . , Sn|R1, . . . , Rn−1〉 such that φ(Si) =
t .

Let ϕλ : Γ → SL2 be a reducible, non abelian representation such that χϕλ
= χρλ

. Note that
ϕλ is metabelian. The proof of Theorem 1.1 relies on the calculation of the dimension of the
space of cocycles Z1(M, slϕλ

2 ) which will be presented in Section 4.1. It is there where we use the
condition that λ2 is the simple root of the Alexander polynomial. If the dimension of H1(M, slϕλ

2 )
is one we are able to use the the inclusion R(M) ↪→ R(∂M) in order to prove that every element
of Z1(M, slϕλ

2 ) is integrable. Theorem 1.1 follows then from Lemma 2.6.
Let ρ : π1(M)→ SL2 be a representation such that ρ(Im(π1(∂M)→ π1(M))) ⊂ SL2 contains a

non parabolic element. First note that the inclusion ∂M ↪→M induces an injection ι : π1(∂M)→
π1(M). If ι is not an injection then M is homeomorphic to a solid torus and every representation
ρ : π1(M)→ SL2 would be abelian. We denote by Γ0 := ι(π1(∂M)) ⊂ Γ the image of ι .

4.1 Lemma Let ρ : Γ → SL2 be a non abelian representation such that ρ(Γ0) contains a non
parabolic element. If dimZ1(Γ, slρ2) = 4 then we have an injection ι∗ : H1(Γ, slρ2) → H1(Γ0, sl

ρ
2)

and an isomorphism ι∗ : H2(Γ, slρ2)→ H2(Γ0, sl
ρ
2) .

Proof. Since ρ is non abelian we have dimB1(Γ, slρ2) = 3 from which dimH1(Γ, slρ2) = 1 follows
(see [Por97, Prop. 3.12]). We consider the exact sequence in cohomology for the pair (M,∂M):

H1(M,∂M ; slρ2)
i∗1−→ H1(M ; slρ2)

i∗2−→ H1(∂M ; slρ2)
∆−→ H2(M,∂M ; slρ2)

i∗3−→ H2(M ; slρ2)
i∗4−→ H2(∂M ; slρ2)→ 0.

(10)

It follows from Poincaré duality that rk(i∗2) = 1
2 dimH1(∂M ; slρ2). Since ρ(Γ0) contains a non

parabolic element we have dimH1(∂M ; slρ2) = 2 (see [Por97, Prop. 3.18]). This together with
dimH1(Γ, slρ2) = 1 gives that i∗1 is an injection (see [Hod86, HK97]).

It follows again from Poincaré duality that ∆ is a surjection and hence i∗4 is an isomorphism.
The manifold M and the boundary torus ∂M are Eilenberg–Mac Lane spaces and hence the lemma
follows. 2

Let now ϕλ ∈ R(M) be a reducible non abelian representation such that χϕλ
= χρλ

. We can
assume, up to conjugation, that ϕλ(γ) is an upper triangular matrix for all γ ∈ Γ. There are
λi ∈ C∗ and ai ∈ C , i = 1, . . . , n , such that ϕλ(Si) =

( λi ai

0 λ−1
i

)
. From χϕλ

(Si) = λ+λ−1 it follows
by an easy calculation that λi ∈ {λ, λ−1} . Since χϕλ

(SiSj) = χρλ
(SiSj) we obtain that all λi are

equal. By exchanging λ and λ−1 we can assume that

ϕλ(Si) =
(
λ λ−1ai

0 λ−1

)
=
(
λ−1 0
0 λ−1

)
·
(
λ2 ai

0 1

)
.

The ai are not all equal (ϕλ is non abelian), i.e. the vectors a and e are linear independent where

a :=

a1
...
an

 and e :=

1
...
1

 .
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For a given λ ∈ C∗ and for given a ∈ Cn , we denote by ρaλ : Fn → SL2 the representation given
by ρaλ : Si 7→

(
λ λ−1ai

0 λ−1

)
.

4.2 Lemma Let W = W (S1, . . . , Sn) ∈ Fn be given. Then we have

ρaλ(W ) =
(
W (λ) W (λ−1)

∑n
i=1 (∂iW )(λ2)ai

0 W (λ−1)

)
.

Proof. For given V,W ∈ Fn we have: ∂i(VW ) = ∂iV +V ∂iW in CFn . It follows from this equation
that

ρ̃ : W 7→
(
W (λ) W (λ−1)

∑n
i=1 (∂iW )(λ2)ai

0 W (λ−1)

)
.

defines a homomorphism. The lemma follows since ρ̃(Si) = ρaλ(Si). 2

The homomorphism ρaλ : Fn → SL2 factors through Γ if and only if
∑n

i=1 ∂iRj(λ2)ai = 0 for all
j = 1, . . . , n − 1. This system of equations can be written in the form J(λ2)a = 0 where J(t) is
the Jacobian of the presentation of Γ (see Section 2.1).

4.3 Corollary (Burde [Bur67], de Rham [dR67]) There is a reducible, non abelian represen-
tation ϕλ : Γ→ SL2 such that χρλ

= χϕλ
if and only if ∆M (λ2) = 0 .

Proof. Let ϕλ ∈ R(Γ) be a reducible, non abelian representation we have (up to conjugation and
the exchange of λ and λ−1 ) that ϕλ = ρaλ for a vector a ∈ Cn which is not a multiple of e . It
follows that J(λ2)a = J(λ2)e = 0 and hence rk J(λ2) ≤ n− 2 which implies ∆M (λ2) = 0.

If ∆M (λ2) = 0 then we have a vector a ∈ Cn such that J(λ2)a = 0 and a is not a multiple of
e . The representation ρaλ : Fn → SL2 factors through Γ. 2

In order to prove Theorem 1.1 we will show that dimZ1(Γ, slϕλ
2 ) = 4 if λ2 is a simple root of

∆M (t) and that every cocycle is integrable.
Let us assume for the moment the following proposition which will be proved in the next

subsection.

4.4 Proposition Let λ ∈ C∗ be given such that λ2 is a simple root of the Alexander polyno-
mial ∆M (t) . For every reducible, non abelian representation ϕλ such that χϕλ

= χρλ
we have

dimZ1(Γ, slϕλ
2 ) = 4 .

Proof of Theorem 1.1. We shall prove first that every element of Z1(Γ, slϕλ
2 ) is integrable.

We fix the notation ρ := ϕλ . Let u1, . . . , uk : Γ → sl2 be given such that ρ
(ρ;u1,...,uk)
k is a

homomorphism. We shall show first that ζ(ρ;u1,...,uk)
k+1 = 0. The representation

ι∗ρ
(ρ;u1,...,uk)
k = ρ

(ι∗ρ;ι∗u1,...,ι∗uk)
k

can be extended to a representation ι∗ρk+1 : Γ0 → Gk+1 by Lemma 3.7. Note that ι∗ρ(Γ0) contains
a non parabolic element because ρλ is not ∂ -central. Hence ι∗ρ is a non singular point of the
representation variety R(Γ0) (see [Por97, 3.3.2]). It follows from Lemma 3.7 and Proposition 3.1
that ζ(ι∗u1,...,ι∗uk)

k+1 = 0. The injectivity of ι∗ and the naturality of the obstruction give ζ(u1,...,uk)
k+1 = 0.

We obtain a cochain uk+1 : Γ→ g such that ρ(ρ;u1,...,uk+1)
k+1 is a homomorphism by Proposition 3.1.
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This process gives us an infinite sequence (uk)k≥1 , uk : Γ → g , such that ζ(u1,...,uk)
k+1 = 0 for

all k ≥ 1. This shows that we can solve all obstructions and hence by Corollary 3.2 every cocycle
u1 ∈ Z1(Γ, slρ2) is integrable. Hence we have dimρR(G) = dimZ1(Γ, slρ2) by Proposition 3.6 i.e.
ρ = ϕλ is a regular representation. The theorem follows now from Lemma 2.6. 2

4.1 Proof of Proposition 4.4

We assume from now on that λ2 is a simple root of ∆M (t). As before we choose a vector a ∈ Cn

with J(λ2)a = 0 which is not a multiple of e

a :=

a1
...
an

 and e :=

1
...
1

 .

The following result of Frohman and Klassen will be needed in the sequel:

4.5 Lemma (Frohman and Klassen [FK91]) Let λ ∈ C∗ and a be given as above. Then the
linear inhomogeneous system of equations

J(λ2)x = J ′(λ2)a

has no solution.

Proof. Assume that x is a solution of the system J(λ2)x = J ′(λ2)a . Then

J(λ2)(x− x1e) = J ′(λ2)(a− a1e)

and a− a1e 6= 0 . Note that J(t)e = 0 by equation (1) and hence J ′(t)e = 0.
Let A(t) be the matrix obtained from the Jacobian J(t) by omitting the first column and let

x̃ (resp. ã) be obtained from x (resp. a) by omitting the first entry. Hence we have solution of
the system A(λ2)x̃ = A′(λ2)ã where ã 6= 0 satisfies A(λ2)ã = 0 . Such a solution can not exist by
case 2 of Lemma 8.1 of [FK91]. 2

We already saw that every reducible, non abelian representation ϕλ ∈ R(Γ) such that χϕλ
= χρλ

is conjugate to a representation ρaλ±1 . Proposition 4.4 follows from the following:

4.6 Lemma Let a ∈ Cn be given such that ρaλ : Γ → SL2 is non abelian. Then we have:

dimZ1(Γ, slρ
a
λ

2 ) = 4 .

We have ρaλ(Si) =
(

λ λ−1ai

0 λ−1

)
=: Ai . The free group Fn = Fn(S1, . . . , Sn) acts on sl2 via

Ad ◦ρaλ i.e. Si ◦ X = AiXA
−1
i for all X ∈ sl2 . By choosing the basis (5) of sl2 the linear map

AdAi ∈ Aut(sl2) is given by λ2 −2ai −λ−2a2
i

0 1 λ−2ai

0 0 λ−2

 .
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This defines clearly a homomorphism ψ : Fn → Aut(sl2) ∼= SL3(C) which extends the group algebra
ψ : CFn → End(sl2) ∼= SL3(C). An easy calculation (see [Bir76, 3.2] and Lemma 4.2) gives

ψ(η) =

η(λ2) −2
∑n

i=1 ∂iη(λ2)ai ∗
0 η(1) ∗
0 0 η(λ−2)


and hence

ψ(
∂Rj

∂Si
) =

∂iRj(λ2) −2
∑n

l=1 ∂liRj(λ2)al cij
0 ∂iRj(1) dij

0 0 ∂iRj(λ−2)


where ∂liRj := ∂2Rj/∂Sl∂Si denotes the second derivation and the cij , dij are complex numbers.

By writing Xi =
( xi

yi
zi

)
the equation (4) is equivalent to the following system of 3n−3 equations.

n∑
i=1

∂iRj(λ2)xi − 2
n∑

i,l=1

∂liRj(λ2)al yi +
n∑

i=1

cji zi = 0

n∑
i=1

∂iRj(1) yi +
n∑

i=1

dji zi = 0 (11)

n∑
i=1

∂iRj(λ2) zi = 0

where j = 1, . . . , n− 1.
Note that ∂iRj(λ2) = Jji(λ2) are the entries of the Jacobian matrix. Hence the system (11)

can be written as J(λ2) K C
0 J(1) D
0 0 J(λ−2)

x
y
z

 =

0
0
0

 (12)

where K = (Kji) is given by Kji := −2
∑n

l=1 ∂liRj(λ2) al and C,D are (n − 1) × n complex
matrices.

The rank of the coefficient-matrix A := A(λ2,a) in (12) satisfies:

3n− 5 ≤ rkA ≤ 3n− 4.

The upper bound follows from Poincaré duality (see Lemma 4.1) and the lower bound from
rkJ(λ±2) = n− 2 and rk J(1) = n− 1.

Note that a solution
( x

y
z

)
of (12) gives a cocycle v : Γ → sl2 , v(Si) =

( yi xi
zi −yi

)
. The space of

coboundaries is three dimensional and is spanned by the following three elements vi : Γ→ sl2 :

v1(Si) =
(

0 1
0 0

)
, v2(Si) =

(
0 ai

0 0

)
, v3(Si) =

(
ai −a2

i

1− λ2 −ai

)
. (13)

Proof of Lemma 4.6. In order to prove the lemma we will show that rk Ã = 2n− 2 where

Ã := Ã(λ2,a) :=
(
J(λ2) K

0 J(1)

)
.
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Since the coboundaries v1 and v2 from (13) are given by solutions of the system Ã
( x

y

)
=
(

0
0

)
we

have rk Ã ≤ 2n− 2.
If rk Ã < 2n− 2 then there must be a solution x ∈ Cn of the inhomogeneous system

J(λ2)x = −Ke

since the non trivial solutions of J(1)y = 0 are spanned by the vector e .
By a Lemma 4.5 we know that the system

J(λ2)x = J ′(λ2)a

has no solution. In order to connect these two equations we need to look at Ke :

−Ke = 2


∑n

k,l=1 ∂klR1(λ2)ak

...∑n
k,l=1 ∂klRn−1(λ2)ak

 .

By applying Lemma 2.5 to the relations Rj we obtain:

n∑
k=1

( n∑
l=1

∂klRj(λ2) + ∂kRj(λ2)
)
ak = −λ2

n∑
k=1

d

dt

(
∂kRj(t)

)
t=λ2ak.

Note that J(λ2)a = 0 which is equivalent to
∑n

k=1 ∂kRj(λ2)ak = 0 for all j = 1, . . . , n− 1. Using
all this we obtain:

−Ke = 2


∑n

k,l=1 ∂klR1(λ2)ak

...∑n
k,l=1 ∂klRn−1(λ2)ak

 = 2

 −λ
2
∑n

k=1
d
dt

(
∂kR1(t)

)
t=λ2ak

...
−λ2

∑n
k=1

d
dt

(
∂kRn−1(t)

)
t=λ2ak


= −2λ2J ′(λ2)a.

We can hence apply the result of Frohman and Klassen and we obtain rk Ã = 2n − 2 from which
dimZ1(Γ, slρ

a
λ

2 ) = 4 follows. 2

5 The structure of the representation space

This section is divided into five subsections. In the first one we study the set of representations
with character χλ . In the second one we prove Theorem 1.2 about the local geometry of X(M) at
the character χλ . Then we prove Corollary 1.3 about the local geometry of R(M) at the abelian
representation ρλ . In the fourth subsection we prove Corollary 1.4 and in the last subsection we
prove some technical lemmas.

5.1 The set of representations with character χλ

We want to study the set of representations that have character χλ , i.e. the set π−1(χλ), where
π : R(M) → X(M) denotes the natural projection. Besides the abelian representation ρλ , in
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Section 4 we showed two metabelian representations belonging to π−1(χλ), that we describe next.
Choose vectors a,b ∈ Cn with J(λ2)a = J(λ−2)b = 0, which are not multiples of e , where

e :=

1
...
1

 , a :=

a1
...
an

 and b :=

b1...
bn

 .

We use ρaλ and ρbλ−1 to denote the representations defined as:

ρaλ(Si) =
(
λ λ−1ai

0 λ−1

)
and ρbλ−1(Si) =

(
λ−1 λbi
0 λ

)
.

If O denotes the orbit by conjugation then have the inclusion

O(ρλ) ∪ O(ρaλ) ∪ O(ρbλ−1) ⊆ π−1(χλ).

5.1 Proposition We have the equality π−1(χλ) = O(ρλ)∪O(ρaλ)∪O(ρbλ−1) . In addition, O(ρaλ) =
O(ρλ) ∪ O(ρaλ) and O(ρb

λ−1) = O(ρλ) ∪ O(ρbλ−1) are both irreducible non-singular varieties.

Proof. The equality π−1(χλ) = O(ρλ)∪O(ρaλ)∪O(ρbλ−1) follows from the fact that every represen-
tation in π−1(χλ) is abelian or metabelian by Proposition 1.5.5. in [CS83] and from Corollary 4.3.

To show that O(ρλ) ∪ O(ρaλ) is a nonsingular variety we construct the explicit equations. The
ambient space is C4n and we choose the embedding R(M) ⊂ C4n induced by the following gener-
ating system of π1(M):

{S1, S2S
−1
1 , S3S

−1
1 , . . . , SnS

−1
1 }.

In other words,the coordinates of a representation ρ ∈ R(M) are the entries of ρ(S1), ρ(S2S
−1
1 ),

ρ(S3S
−1
1 ), . . . , ρ(SnS

−1
1 ). We assume that a1 = 0, after replacing a by a− a1e , so that

ρaλ(S1) =
(
λ 0
0 λ−1

)
and ρaλ(SiS

−1
1 ) =

(
1 ai

0 1

)
.

We consider the affine subspace E ⊂ C4n of elements of the following form:

ρaλ(S1) =
(
λ 0
0 λ−1

)
+ (λ− λ−1)

(
x1 −x2

x3 −x1

)
and

ρaλ(SiS
−1
1 ) =

(
1 0
0 1

)
+ ai

(
−y1 y2

−y3 y1

)
, with x1, x2, x3, y1, y2, y3 ∈ C.

The affine space E has dimension 6 and we work with the coordinates (x1, x2, x3, y1, y2, y3) ∈
C6 . We remark that ρλ ∈ E has coordinates (0, 0, 0, 0, 0, 0) and that ρaλ ∈ E has coordinates
(0, 0, 0, 0, 1, 0). The choice of the affine space E is explained by the following fact: if ρ is a
representation conjugate to ρaλ , then ρ ∈ E . In addition, if ±

(
a b
c d

)
∈ PSL2()2(C) is the conjugation

matrix, then ρ has coordinates

(x1, x2, x3, y1, y2, y3) = (bc, ab, cd, ac, a2, c2). (14)
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By looking at the identities satisfied by coordinates of the form (14), we consider the variety W ⊂ E
defined by 

x1y1 = x2y3

x1y2 = x2y1

y2
1 = y2y3


x3y2 − y1x1 = y1

y1x3 − y3x1 = y3

x2x3 − x2
1 = x1

(15)

We claim that W = O(ρλ) ∪O(ρaλ). The inclusion O(ρaλ) ⊂W is clear by construction, because a
point in O(ρaλ) has coordinates of the form (14) and therefore satisfies equations (15). The inclusion

O(ρλ) ⊆W ∩ {y1 = y2 = y3 = 0},

also follows easily. We next show the other inclusion W ⊆ O(ρλ) ∪ O(ρaλ). If a point ρ ∈ W
satisfies y3(ρ) 6= 0 then, by setting c =

√
y3 , b = x1/c , d = x3/c and a = y1/c , we deduce that ρ

is conjugate to ρaλ with conjugation matrix ±
(

a b
c d

)
. In a similar way, if ρ ∈W satisfies y2(ρ) 6= 0

then also ρ ∈ O(ρaλ). In the last case, if ρ ∈ W satisfies y2(ρ) = y3(ρ) = 0 then y1(ρ) = 0, which
implies that ρ(Si) = ρ(S1). In addition, equation x2(ρ)x3(ρ)− x1(ρ)2 = x1(ρ) implies that ρ(S1)
belongs to SL2(C) and that tr ρ(S1) = tr ρλ(S1). Therefore ρ ∈ O(ρλ).

To prove that W is non-singular, we first remark that dimO(ρλ) = 2 and dimO(ρaλ) = 3
which implies that dimW = 3. In order to prove that every point in O(ρaλ) (resp. O(ρλ)) is
smooth, it suffices to check it for a single point ρaλ (resp. ρλ ) by homogeneity. This can be done
by using the explicit equations (15), (since the coordinates of ρλ and ρaλ are particularly simple,
this computation is straightforward). 2

5.2 Lemma The germ of O(ρaλ) and the germ of O(ρb
λ−1) are contained in the same irreducible

component of the germ of R(M) at ρλ .

Proof. We fix ε > 0 and we choose Uε ⊂ R(M) a neighborhood of ρλ as follows:

Uε = {ρ ∈ R(M) | ‖ρ(Si)ρλ(S−1
i )− Id ‖ < ε, for i = 1, . . . , n},

where ‖ ‖ denotes the Euclidean norm in M2×2(C) ∼= C4 . We also choose a and b such that
‖a‖ < ε/2 and ‖b‖ < ε/2. In particular ρaλ ∈ Uε/2 .

By Theorem 1.1, ρaλ is a smooth point of R(M), with local dimension 4. In addition, by using
the description of the tangent space, we can find a path [0, δ] → R(M), with δ > 0, that maps
t ∈ [0, δ] to a representation ρ′t that satisfies:

ρ′t(Si) =
(

λ+O(t) λ−1ai +O(t)
λbit+O(t2) λ−1 +O(t)

)
.

We take δ > 0 sufficiently small so that ρ′t ∈ Uε ∀t ∈ [0, δ] . In particular ρ′δ and ρaλ belong to the
same component of Uε .

Next we construct a path of representations conjugated to ρ′δ . For t ∈ [δ, 1] we define ρ′′t to be

the representation conjugated to ρ′δ by ±
(√

t 0
0 1√

t

)
. Thus:

ρ′′t (Si) =

(
λ+O(δ) t

(
λ−1ai +O(δ)

)
λbi

δ
t + O(δ2)

t λ−1 +O(δ)

)
.
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Since ‖a‖ < ε/2 and ‖b‖ < ε/2, we may choose δ sufficiently small so that this path belongs to
Uε . As the action by conjugation is algebraic and invertible, it follows that ρ′′δ stays in the same
component of Uε than ρaλ . Moreover ρ′′δ satisfies:

ρ′′δ (Si) =
(
λ+O(δ) O(δ)
λbi +O(δ) λ−1 +O(δ)

)
.

We consider a sequence δ(n) → 0 converging to zero, and we have that ρ′′δ(n) → ρ′′0 , where ρ′′0 is
defined by

ρ′′0(Si) =
(
λ 0
λbi λ−1

)
.

Thus ρ′′0 is conjugate to ρbλ−1 by ±
(

0 i
i 0

)
. Since O(ρb

λ−1) and O(ρaλ) are both smooth, the lemma
follows easily. 2

5.2 The local geometry of X(M) at the abelian character χρ

In this subsection we prove Theorem 1.2, that asserts that Xλ(M) and Y (M) are the unique
irreducible components of the variety of characters containing χλ , that both are curves smooth at
χλ and that the intersection of tangent spaces is zero.

Proof of Theorem 1.2. The proof is organized as follows. First we prove that the analytic germ
of R(M) at the abelian representation ρλ has only two irreducible components (Proposition 5.3).
Using this proposition and Lemma 5.4, we show that the analytic germ of X(M) at the character
χλ has also two irreducible components (Corollary 5.5). Next we show that χλ is a smooth point of
Y (M) and of Xλ(M) (Propositions 5.6 and 5.9). Finally, in Proposition 5.11 we show the property
about the intersection of Zariski tangent spaces.

5.3 Proposition The analytic germ of R(M) at ρλ has only two irreducible components, which
are precisely the germ of Rλ(M) and the germ of S(M) . In addition, ρλ is a smooth point of
S(M) .

Proof. Let U ⊂ R(M) be a neighborhood of ρλ . The analytic variety U has at least two irreducible
components U0 and U1 , where U0 = S(M) ∩ U(M) and U1 is the component that contains the
germ of π−1(χλ), which exists by Proposition 5.1 and Lemma 5.2. The variety U0 is irreducible
and smooth, because the map

S(M) → SL2(C)
ρ 7→ ρ(S1)

is an isomorphism.
Let Uj be any irreducible component of U , we claim that either Uj = U0 or Uj = U1 . First at

all, if all the representations of Uj are abelian, we shall see that Uj = U0 by using the structure
of the set of abelian representations. One can easily check that the set of abelian representations
is a collection of pairwise disjoint irreducible varieties (each one isomorphic to SL2(C)). The
set of those varieties is in bijection with Hom(tors(H1(M,Z)), S1), where the component S(M)
corresponds to the trivial map. In particular, since the varieties of abelian representations do not
intersect each other, Uj = U0 .

Now we assume that Uj contains non-abelian representations. We claim that Uj contains
a non-abelian representation with character χλ . We consider the restriction of the projection
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π|Uj : Uj → X(M) and we want to study the fibers of π|Uj . If O(ρ) denotes the orbit by
conjugation of ρ , then O(ρ)∩Uj is contained in a fiber of π|Uj . Since O(ρ)∩Uj is an open subset
of O(ρ), it follows that

dim((π|Uj )
−1(χρ)) ≥ dim(O(ρ) ∩ Uj) = dim(O(ρ)).

Therefore the generic dimension of the fibers of π|Uj is at least 3 because being non-abelian is an
open property in the space of representations, and if ρ is non-abelian then dim(O(ρ)) = 3. In
particular, 3 is the lower bound for the dimension of all the fibers of π|Uj , and since dim(O(ρλ)) =
2, Uj must contain a non-abelian representation with character χλ . By Proposition 5.1 and
Lemma 5.2, Uj = U1 . 2

In order to use Proposition 5.3 to study the germ of X(M) at χλ , we need the following lemma:

5.4 Lemma The projection π : R(M)→ X(M) is open at the abelian representation ρλ i.e. if U
is a classical neighborhood of ρλ then π(U) is a classical neighborhood of χλ .

This lemma is rather technical and its proof is postponed to the end of the section. We state
the following corollary of this lemma and Proposition 5.3.

5.5 Corollary The analytic germ of X(M) at χλ has only two irreducible components, which are
the respective analytic germs of Xλ(M) = π(Rλ(M)) and of Y (M) = π(S(M)) . 2

5.6 Proposition The character χλ is a smooth point of Y (M) .

Proof. We recall that the function algebra C[X(M)] is finitely generated by the evaluation functions

Iγ : X(M) → C
χ 7→ χ(γ)

where γ ∈ Γ.

Given our system of generators S1, . . . , Sn , such that φ(Si) = 1 ∈ Z , every χ ∈ Y (M) satisfies
ISi(χ) = ISj (χ). In addition, ∀γ ∈ Γ and ∀χ ∈ Y (M), Iγ(χ) = ISr

1
(χ), where r = φ(γ) ∈ Z . The

function ISr
1

is a polynomial on IS1 , and it follows from this that C[IS1 ] = C[Y (M)] is the ring of
polynomials in one variable. Hence Y (M) is a curve isomorphic to the complex line C . 2

The following is the key lemma for concluding the proof of Theorem 1.2.

5.7 Lemma There exist a disk ∆ ⊂ C centered at 0 , an analytic map f : ∆ → Xλ(M) and a
rational function g ∈ C(X(M)) such that g ◦ f = Id∆ .

This lemma is based in the following one, whose proof is postponed to the end of the section.
Up to conjugation, a metabelian representation is either ρaλ or ρbλ−1 . In the following lemma we
assume that ϕλ = ρaλ , but a similar statement holds true for ρbλ−1 .

5.8 Lemma Let ϕλ = ρaλ be a non-abelian representation as in Theorem 1.1. Let b1, b2, c1, c2 ∈
C[R(M)] be the algebraic functions defined by

ρ(S1) =
(
a1(ρ) b1(ρ)
c1(ρ) d1(ρ)

)
and ρ(S2) =

(
a2(ρ) b2(ρ)
c2(ρ) d2(ρ)

)
∀ρ ∈ R(M).
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We can choose the generators S1, . . . , Sn so that the map

F := (b1, b2, c1, c2) : R(M)→ C4

is locally invertible at ϕλ .

Proof of Lemma 5.7. We construct the map f̃ : ∆→ R(M) by using Lemma 5.8. After conjugation
we may assume that

ϕλ(S1) =
(
λ 0
0 λ−1

)
and ϕλ(S2) =

(
λ 1
0 λ−1

)
.

Since F (ϕλ) = (0, 1, 0, 0), we define f̃(z) := F−1(0, 1, 0, z), for every z in a small disk ∆ ⊂ C
around the origin. In particular, if f̃(z) = ρz , then

ρz(S1) =
(
a1(z) 0

0 d1(z)

)
and ρz(S2) =

(
a2(z) 1
z d2(z)

)
with a1d1 = 1 and a2d2 − z = 1. In order to construct g , we observe that if f̃(z) = ρz , then

(4− tr2(ρz(S1))) z = tr(ρz([S1, S2]))− 2, (16)

where [S1, S2] = S1S2S
−1
1 S−1

2 denotes the commutator. Thus we define

g =
I[S1,S2] − 2

4− I2
S1

,

where Iγ(χρ) = χρ(γ) = tr(ρ(γ)). It is clear from equation (16) that g ◦ f = Id∆ where f := π ◦ f̃ .
2

The following two results conclude the proof of Theorem 1.2:

5.9 Proposition The character χλ is a smooth point of Xλ(M) .

Proof. We already know by Corollary 5.5 that the analytic germ of Xλ(M) at χλ is irreducible. If
this analytic germ was singular, then the composition g ◦f would be a map of degree r > 1, where
f and g are the maps of Lemma 5.7. Therefore this germ is non-singular, because g ◦ f = Id∆ . 2

5.10 Remark It follows from this proof that g defines a local parameter of Xλ(M) at χλ .

5.11 Corollary TZar
χλ

(Xλ(M)) ∩ TZar
χλ

(Y (M)) = {0} .

Proof. The corollary follows from the following properties of the rational function g ∈ C(X(M))
of Lemma 5.7:

(i) g(Y (M)) = {0} , because g = (I[S1,S2] − 2)/(4− I2
S1

) and every character χ of an abelian
representation satisfies I[S1,S2](χ) = 2;

(ii) dχλ
g(TZar

χλ
(Xλ(M))) ∼= C , because g ◦ f = Id∆ .

This finishes the proof of the corollary and also of Theorem 1.2. 2
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5.3 The local geometry of Rλ(M) at the abelian representation ρλ

In this section we prove Corollary 1.3 and then we use it to construct a slice. In order to prove it,
we need the following:

5.12 Lemma If ρλ denotes the abelian representation as in Corollary 1.3, then dimTZar
ρλ

(R(M)) =
5 and there is a vector v ∈ TZar

ρλ
(R(M)) such that dρλ

π(v) generates TZar
χλ

(Y (M)) .

Proof. As in the proof of Theorem 2.7, to compute Z1(Γ, slρλ
2 ) ∼= TZar

ρλ
(R(M)) we use the decom-

position:
Z1(Γ, slρλ

2 ) = Z1(Γ,Cλ2)⊕ Z1(Γ,C)⊕ Z1(Γ,Cλ−2)

where Cα , α ∈ C∗ , denotes the Γ–module C (the action is given by Si◦z = αz ). As in Theorem 2.7,
Z1(Γ,Cλ2) ∼= Ker J(λ2) and dim(Ker J(λ2)) = 2, because λ2 is a simple root of the Alexander
polynomial. In addition

Z1(Γ,C) ∼= Hom(Γ,Z)⊗Z C ∼= Ker J(1) ∼= C,

which completes the computation of the dimension.
Finally, for any non-vanishing v ∈ Z1(Γ,C), we prove that dρλ

π(v) generates TZar
χλ

(Y (M)). Up
to multiplication by a constant, the cocycle v satisfies v(Si) =

(
1 0
0 −1

)
. As a vector, v is tangent

to a path of representations ρs at s = 0, where

ρs(γ) = exp(sv(γ)) ρλ(γ) ∀γ ∈ Γ.

Since ISi(π(ρs)) = tr(ρs(Si)) = λ+ 1
λ +s(λ− 1

λ)+O(s2), it follows that dχλ
ISi(dρλ

π(v)) = λ− 1
λ 6= 0.

Thus dρλ
π(v) is a basis for TZar

χλ
(Y (M)) ∼= C . 2

Proof of Corollary 1.3. By Proposition 5.3 we know that the analytic germ of R(M) at ρλ has
precisely two irreducible components, which are the germ of Rλ(M) and the germ of S(M). In
addition, Proposition 5.3 says that ρλ is a smooth point of S(M).

Let v ∈ TZar
ρλ

(R(M)) be a vector such that dρλ
π(v) generates TZar

χλ
(Y (M)). Since

TZar
χλ

(Xλ(M)) ∩ TZar
χλ

(Y (M)) = {0} , we have that v 6∈ TZar
ρλ

(Rλ(M)). Thus

dim(TZar
ρλ

(Rλ(M))) ≤ dim(TZar
ρλ

(R(M)))− 1 = 4

and, since by Theorem 1.1 dim(Rλ(M)) = 4, it follows that ρλ is a smooth point of Rλ(M).
In addition, since v ∈ TZar

ρλ
(S(M)) and v 6∈ TZar

ρλ
(Rλ(M)), we have:

dim(TZar
ρλ

(Rλ(M)) ∩ TZar
ρλ

(S(M))) ≤ dim(TZar
ρλ

(S(M)))− 1 = 2.

As the orbit O(ρλ) is a two-dimensional subvariety of the intersection Rλ(M) ∩ S(M), it follows
that O(ρλ) is a proper component of Rλ(M) ∩ S(M) and that

TZar
ρλ

(Rλ(M)) ∩ TZar
ρλ

(S(M)) = TZar
ρλ

(O(ρλ)).

This concludes the proof of the corollary 2
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Next we construct a local parametrization of a neighborhood of ρλ in Rλ(M). Let S1 and S2 be
a system of generators as in Lemma 5.8. We consider again the algebraic functions b1, b2, c1, c2 ∈
C[Rλ(M)] defined by

ρ(S1) =
(
a1(ρ) b1(ρ)
c1(ρ) d1(ρ)

)
and ρ(S2) =

(
a2(ρ) b2(ρ)
c2(ρ) d2(ρ)

)
∀ρ ∈ R(M).

5.13 Lemma The map F |Rλ(M) = (b1, b2, c1, c2) : Rλ(M)→ C4 is locally invertible at ρλ .

We postpone the proof of this lemma to the last subsection and we use it to construct a slice.
Following [BA98b], we define:

5.14 Definition The slice Sλ is the following analytic germ at ρλ :

Sλ = {ρ ∈ Rλ(M) | ρ(S1) is diagonal and ρ is in a neighborhood of ρλ}.

Of course ρλ(S1) is diagonal and the definition makes sense.
By using lemma 5.13, F (Sλ) is a neighborhood of the origin in the two dimensional subspace of

C4 defined by b1 = c1 = 0. In particular Sλ is smooth, two dimensional and locally parametrized
by (b2, c2) : Sλ → C2 .

5.15 Lemma Two representations ρ, ρ′ ∈ Sλ are conjugate if and only if

(b2(ρ), c2(ρ)) = (etb2(ρ′), e−tc2(ρ′)) for some t ∈ C.

Proof. When two representations ρ, ρ′ ∈ Sλ are conjugate, the conjugation matrix is of the form(
et/2 0
0 e−t/2

)
, because ρ(S1) and ρ′(S1) are both diagonal and close to ρλ(S1) =

(
λ 0
0 λ−1

)
. Therefore

the lemma follows from the fact that (b2, c2) are local parameters. 2

5.16 Remark (i) It follows from this lemma that the quotient of Sλ by conjugation is not
Hausdorff.

(ii) Let g be the rational function on R(M) defined in Lemma 5.7. A straightforward computation
shows that:

g ◦ π|Sλ
= b2 c2

(iii) It follows from the previous point and from Remark 5.10 that the restriction π|Sλ
of the

projection map π : R(M)→ X(M) is open and surjective in a neighborhood of χλ ∈ Xλ(M).
This is, π(Sλ) is a neighborhood of χλ in Xλ(M).

(iv) However the restriction π|Sλ
is singular at ρλ , i.e. dρλ

π(TZar
ρλ

(Sλ)) = 0. In fact, we have that
dρλ

π(TZar
ρλ

(Rλ(M))) = 0.

(v) Since dρλ
π(TZar

ρλ
(S(M))) 6= 0 (see Lemma 5.12) we obtain that

Ker(dρλ
π : TZar

ρλ
(R(M))→ TZar

χλ
(X(M))) = TZar

ρλ
(Rλ(M)).
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5.4 Real characters

In this subsection we prove Corollary 1.4 about the deformations of real characters. Along all the
subsection we will assume that χλ satisfies the hypothesis of Corollary 1.4.

We recall that a character χ is said to be real if χ(γ) ∈ R for every γ ∈ Γ. We also recall that
the character χλ is real-valued iff λ is real or lies in the complex unit circle.

5.17 Lemma Assume that χλ is real. Let Sλ , b2 and c2 as in previous subsection. For every
ρ ∈ Sλ , χρ is real if and only if g(χρ) = b2(ρ) c2(ρ) ∈ R.

Proof. When χρ is real, then g(χρ) ∈ R , because g = (I[S1,S2] − 2)/(4− I2
S1

).
Assuming that |λ| = 1, we want to prove that if g(χρ) ∈ R then χρ is real. To prove it, we

construct an involution ι : R(M) → R(M) that preserves Sλ and fixes ρλ . We take ι to be the
composition of complex conjugation of coefficients with conjugation with the matrix

(
0 1
−1 0

)
. The

involution ι fixes ρλ and, by taking an invariant neighborhood of ρλ , ι preserves Sλ .
Let χρ be a character such that g(χρ) = b2(ρ) c2(ρ) ∈ R . If g(χρ) = 0 then χρ = χλ is real. If

g(χρ) 6= 0 then there is a α ∈ R∗ such that c2(ρ) = αb2(ρ) and we obtain

(b2(ι(ρ)), c2(ι(ρ))) = (−c2(ρ),−b2(ρ)) = (−α b2(ρ),−
1
α
c2(ρ)).

Therefore ρ and ι(ρ) are conjugate by Lemma 5.15 and χρ = χι(ρ) = χρ .
When λ ∈ R the same argument applies, by taking the involution ι : R(M)→ R(M) which is

just complex conjugation of the coefficients. 2

5.18 Lemma Let ρ ∈ Sλ .

(i) If λ ∈ R and b2(ρ), c2(ρ) ∈ R , then ρ ∈ Hom(Γ,SL2(R)) .

(ii) If |λ| = 1 and b2(ρ) = c2(ρ) , then ρ ∈ Hom(Γ,SU(1, 1)) .

(iii) If |λ| = 1 and b2(ρ) = −c2(ρ) , then ρ ∈ Hom(Γ,SU(2)) .

Proof. We prove only (i), the proof of the other points being similar and easier. We distinguish
several cases. If b2(ρ) = c2(ρ) = 0, then ρ = ρλ and there is nothing to prove. If c2(ρ) = 0 but
b2(ρ) 6= 0, then ρ is metabelian and conjugate to ϕλ . In this case, by Corollary 4.3, the coefficients
of ρ are real. When b2(ρ) = 0 but c2(ρ) 6= 0 the same argument applies.

Finally, we consider the case where b2(ρ) c2(ρ) 6= 0. In this case we observe first that
ρ(S1), ρ(S2) ∈ SL2(R) because χρ(S1), χρ(S2), χρ(S1S2) ∈ R and λ 6= ±1. Given an element
γ ∈ Γ, since the character χρ evaluated at γ , γS1 , γS2 and γS1S2 is real, it follows easily that
ρ(γ) has real coefficients, by using b2(ρ) c2(ρ) 6= 0 and λ 6= ±1. 2

Proof of Corollary 1.4. The fact that the set of real points of Xλ(M) is a smooth real curve in a
neighborhood of χλ follows Remarks 5.16(iii) and 5.10.

To prove the second half of the corollary when λ ∈ R , we consider two paths ρs and ρ′s , with
s ∈ (0, ε), which are paths of representations in the slice such that{

b2(ρs) = c2(ρs) = s

b2(ρ′s) = −c2(ρ′s) = s
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By Lemma 5.18, ρs and ρ′s are paths of representations into SL2(R). Since g(χρs) = s2 and
g(χρ′s) = −s2 , it suffices to take χs2 = χρs and χ−s2 = χρ′s so that χt parametrizes Xλ(M) ∩
X(M)R .

When |λ| = 1, the same construction applies, the only difference is that Lemma 5.18 says that
ρ is a path of representations into SU(1, 1) and ρ′ is a path of representations into SL2(R). 2

5.19 Remark The path of characters χt , with t ∈ (−ε2, ε2), constructed in this proof does not
lift to a smooth path of representations because the projection π : Rλ(M)→ Xλ(M) is singular at
ρλ .

5.5 Proof of Lemmas 5.4, 5.8 and 5.13

Proof of Lemma 5.4. We want to prove that the projection π : R(M) → X(M) is open at the
abelian representation ρλ .

As affine subset of CN , R(M) is equipped with a distance that we denote by d . Since π is
invariant on orbits, Lemma 5.4 will follow for the following limit:

lim
π(ρ)→π(ρλ)

d(O(ρ), ρλ) = 0

that we prove next.
Let S1, . . . , Sn be a system of generators of Γ = π1(M). Given a representation ρ ∈ R(M)

with π(ρ) = χρ close to π(ρλ) = χλ , we have χρ(S1) 6= ±2 and we can conjugate ρ so that

ρ(S1) =
(
x 0
0 1/x

)
.

Since χρ(S1) = x + 1/x and χλ(S1) = λ + 1/λ , we have that x → λ±1 as χρ → χλ . After
conjugating ρ , we may assume that x→ λ .

For any γ ∈ π1(M), ρλ(γ) =
(

λr 0
0 λ−r

)
, where r = φ(γ) ∈ Z . Therefore, if ρ(γ) =

(
a(ρ) b(ρ)
c(ρ) d(ρ)

)
,

then the equations

a+ d = χρ(γ)
xa+ d/x = χρ(γS1) (17)

imply that a → λr and d → λ−r . In particular, if we set ρ(Si) =
(

ai bi
ci di

)
, then ai → λ and

di → λ−1 .
After permuting the elements S2, . . . , Sn , we may assume that

|b2| ≥ max{|b2|, . . . , |bn|, |c2|, . . . , |cn|}

(the following argument works by permuting bi and ci if necessary). We distinguish two cases:
Case 1. There is an entry cj , with j ∈ {2, . . . , n} , such that

|cj | ≥
|b2|
16n

.

In this case, since ρ(S2Sj) =
(

aja2+b2cj ∗
∗ ∗

)
formula (17) above implies that aja2 + b2cj converges

to λ2 . Since both a2 and aj converge to λ , it follows that b2 converges to 0. In particular, all
coefficients bi and ci converge to zero. Therefore ρ(Si)→ ρλ(Si), which means that ρ→ ρλ .
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Case 2. max{|c2|, . . . , |cn|} < |b2|
16n . In this case, we conjugate ρ by

(
1/2 0
0 2

)
, to obtain a

representation ρ1 . By construction, this representation ρ1 is contained in the orbit of ρ . If

ρ1(Si) =
(
a′i b′i
c′i d′i

)
then a′i = ai , b′i = bi/4, c′i = 4ci and d′i = di . Thus

|b′2|+ · · ·+ |b′n|+ |c′2|+ · · ·+ |c′n| =
|b2|+ · · ·+ |bn|

4
+ 4(|c2|+ · · ·+ |cn|)

<
|b2|+ · · ·+ |bn|

4
+
|b2|
4

≤ 1
2
(|b2| + · · ·+ |bn|+ |c2|+ · · ·+ |cn|) (18)

And we distinguish again two cases for ρ1 . In this way, either we obtain a representation in the
orbit of ρ such that Case 1 applies, or we obtain a sequence of representations (ρk)k∈N such that,
for each k , ρk is in Case 2 and ρk+1 is obtained by conjugating ρk by

(
1/2 0
0 2

)
. By inequality (18),

ρk converges to ρλ and therefore d(ρλ,O(ρ)) = 0. 2

Proof of Lemma 5.8. The proof will follow directly from the description of a basis for Z1(Γ, slϕλ
2 ) =

TZar
ϕλ

(R(M)).
Let S1, . . . , Sn denote the usual system of generators of Γ = π1(M) and let J(t) denote the

corresponding Alexander matrix. We recall that ker(J(λ2)) is a two dimensional subspace of Cn

with basis {e,a} , and ker(J(λ−2)) is a two dimensional subspace of Cn with basis {e,b} , where:

e :=

1
...
1

 , a :=

a1
...
an

 and b :=

b1...
bn

 .

We will assume that a1 = b1 = 0.
We claim that we can also assume that a2 = b2 = 1. To prove this claim, we remark that if this

is not possible to achieve by permuting S2, . . . , Sn , then we can always assume that a2 = b3 = 1
and a3 = b2 = 0. If this was the case, then it would be sufficient to replace the generator S2 by
S−1

1 S2S3 to have a2 = b2 = 1.
According to the normalization a1 = 0 and a2 = 1, the metabelian representation satisfies:

ϕλ(S1) =
(
λ 0
0 λ−1

)
and ϕλ(S2) =

(
λ λ−1

0 λ−1

)
.

By the computations of Section 3 and the normalization b1 = 0 and b2 = 1, there is a basis
{v1, v2, v3, v4} for Z1(Γ, slϕλ

2 ) = TZar
ϕλ

(R(M)) such that {v1, v2, v3} is a basis for the coboundary
space and v4 is a cocycle that satisfies:

v4(S1) =
(
∗ ∗
0 ∗

)
and v4(S2) =

(
∗ ∗
1 ∗

)
.
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In addition, an elementary computation (see Equation (13)) shows that the basis for the coboundary
space may be chosen satisfying:

v1(S1) =
(

0 1
0 0

)
, v1(S2) =

(
0 1
0 0

)
;

v2(S1) =
(

0 0
0 0

)
, v2(S2) =

(
0 1
0 0

)
;

v3(S1) =
(

0 0
1 0

)
, v3(S2) =

(
∗ ∗
1 ∗

)
.

The lemma follows straightforward from this description of this basis for the tangent space
Z1(Γ, slϕλ

2 ) = TZar
ϕλ

(R(M)). 2

Proof of Lemma 5.13. By Corollary 1.3 we know that Rλ(M) is smooth at ρλ and it suffices to
show that there is a basis {ν1, ν2, ν3, ν4} for TZar

ρλ
(Rλ(M)) such that

ν1(S1) =
(

0 1
0 0

)
, ν1(S2) =

(
0 1
0 0

)
;

ν2(S1) =
(

0 0
1 0

)
, ν2(S2) =

(
0 0
1 0

)
;

ν3(S1) =
(

0 0
0 0

)
, ν3(S2) =

(
0 1
0 0

)
;

ν4(S1) =
(

0 0
0 0

)
, ν4(S2) =

(
0 0
1 0

)
.

Since TZar
ρλ

(Rλ(M)) ∼= C4 and ν1, ν2, ν3, ν4 are linearly independent, we only need to prove that
ν1, ν2, ν3, ν4 belong to TZar

ρλ
(Rλ(M)). The cocycles ν1 and ν2 belong to TZar

ρλ
(Rλ(M)) because they

are coboundaries, and therefore they are tangent to some conjugation orbit. In addition ν3 and ν4

are tangent to spaces of metabelian representations provided by Corollary 4.3. 2

6 Examples

Let k ⊂ S3 be a tame knot. The exterior of k , i.e. the complement of a open tubular neighborhood
of k , is denoted by M(k). We shall write Γ(k) for the knot group i.e. Γ(k) = π1(M(k)).

The representation spaces for knot groups have been studied by different authors and some
historic remarks can be found in Section 5 of [HLMA95].

6.1 The complement of the knot b(49, 17)

Let k be the 2-bridge knot b(49, 17) (see [BZ85, Kaw96, Sie75, Sch56]). This is an alternating knot
with 12 crossings in a minimal projection. The fundamental group of a 2–bridge knot is generated
by two elements which are conjugated. More precisely, Γ(k) = 〈S1, S2 | LS1S1 = S2LS1〉 where
LS1 := LS1(S1, S2) ∈ F2(S1, S2). We have φ(S1) = φ(S2) = t and LS1 ∈ Ker(φ) (see [BZ85]). The
character variety X(k) is hence algebraic subset of C2 (see [HLMA95, Ril84] for the details). The
Alexander polynomial ∆b(49,17)(t) = (2t2 − 3t + 2)2 has a double zero on the complex unit circle
and we denote by ζ a complex number such that ∆k(ζ2) = 0.
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For ζ and a =
(

0
1

)
we obtain a reducible non abelian representations ρaζ : Γ → SL2 and

computer supported calculations give

A(ζ, a) =

0 0 1− 4ζ 4ζ − 1 7/8 49/8− 6ζ
0 0 1 −1 0 2ζ − 1
0 0 0 0 0 0


where A(ζ, a) is the coefficient-matrix in Equation 12. It is clear that rk(A(ζ, a)) = 2 and
rk(Ã(ζ, a)) = 1 where Ã(ζ, a) is defined as in proof of Lemma 4.6. We obtain therefore

dimZ1(Γ(k), sl
ρa

ζ

2 ) = 4 and hence ρaζ ∈ R(M(k)) is a smooth point, contained in a unique com-
ponent of the representation variety of dimension four. The transversality statement is not valid.
The component Xζ(M) and Y (M) do not have a transversal intersection at χζ .

In figure 1 we can see how the real branch of Xζ(M) and Y (M) intersect each other. The
characters of the abelian representations are parametrized by the line τ = 1 (see [Bur90] for the
details).

PSfrag replacements
X(b(49, 17)) ∩ R2

τ
γ

1
−1

2
−2

← χρζ

← χρζ

Figure 1: The real branch of the representation variety.

6.2 The complement of the knot 820

Let k ⊂ S3 be the knot 820 . The group Γ(k) is has the following presentation: 〈S1, S2, S3 | R1, R2〉
where

R1 := S−1
1 S−1

3 S1S
−1
2 S−1

1 S2S
−1
1 S3S1S3,

R2 := S1S
−1
3 S2S

−1
1 S3S1S

−1
2 S−1

1 S−1
3 S1S

−1
2 S3. (19)

The Alexander module of k is cyclic and the Alexander polynomial is given by ∆k(t) = (t2−t+1)2 .
It follows that rk J(ξ2) = 1 and hence dimZ1(Γ(k), slρξ

2 ) = 5 where ξ := exp(iπ/6).
The following lemma shows that the representation ρξ can not be contained in a five dimensional

component of the representation variety.

6.1 Lemma Let λ ∈ C∗ be given and assume that dimZ1(Γ, slρλ
2 ) = 2n+1 . For every irreducible

component V of the representation variety R(Γ) such that ρλ ∈ V we have dimV ≤ 2n .
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Proof. Since dimZ1(Γ, slρλ
2 ) ≥ dimTZar

ρλ
(V ) ≥ dimV we have dimV ≤ 2n+ 1. If dimV = 2n+ 1

then ρλ is a simple point of R(Γ) and V is the unique component through ρλ (see Lemma 2.6).
This is a contradiction since ρλ ∈ S(M) and dimS(M) = 3. 2

In order to find components of the representation variety which contains ρξ we consider the
following surjection:

ϕ : Γ(k)→ Γ(k′) given by ϕ : S1 7→ S, S2 7→ S, S3 7→ T

where Γ(k′) = 〈S, T | STS = TST 〉 is the group of the trefoil k′ ⊂ S3 . This surjection induces a
proper embedding ϕ∗ : X(k′)→ X(k).

The representation space of the trefoil knot is well known: since ξ is a simple root of ∆k′(t) =
t2−t+1 it follows from Theorem 1.2 that χρξ

is a proper component of the intersection X ′
ξ∩Y (k′).

It is clear that ϕ∗(Y (k′)) = Y (k) and we denote Xξ := ϕ∗(X ′
ξ). It is now clear that χξ ∈ Xξ and

it follows from Lemma 6.1 that Xξ is a one dimensional component of X(k).
Note that the component Xξ has a real branch which corresponds to path of irreducible repre-

sentations ρt : Γ(k) → SU(2). It follows that there must be a second real branch of the character
variety X(k) which contains χξ . For if not it would follow from Section 4 of [Heu98a] and from
the Theorem 1.2 of [HK98] that the absolute value of the signature |σ(k)| = 2 (see also [Heu98b]).
This gives a contradiction since k is a slice knot and σ(k) = 0.

This shows that the character χξ is not a smooth point of X irr (k). More precisely, the analytic
germ of X irr (k) at χξ is not irreducible. Since Xξ is a component with irreducible analytic germ
at χξ it follows that there are at least two irreducible components of X irr (k) passing through χξ .
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