On the Hausdorff dimension of graphs of
prevalent continuous functions on compact sets

Fréceric Bayart and Yanick Heurteaux

Abstract Let K be a compact set iR? with positive Hausdorff dimension. Using
a Fractional Brownian Motion, we prove that in a prevalento$eontinuous func-
tions onK, the Hausdorff dimension of the graph is equal to ghiK) + 1. This is
the largest possible value. This result generalizes aquework due to J.M. Fraser
and J.T. Hyde which was exposed in the conferdfragtals and Related Fields.lI
The case ofr-Holderian functions is also discussed.

1 Introduction

Letd > 1 and letk be a compact subsetf'. Denote by# (K ) the set of continuous
functions onK with real values. This is a Banach space when equipped with th
supremum normj f || = Supck | f (X)|. The graph of a functiori € ¥’ (K) is the set

M ={(x, f(x)); xe K} c R,

Itis often difficult to obtain the exact value of the Hausddifmension of the graph
I of a given continuous functio. For example, a famous conjecture says that
the Hausdorff dimension of the graph of the Weierstrasstionc
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where 0< a < 1, satisfies
dimyf (I'f[o’z’ﬂ) =2—aq.

This is the natural expected value, but, to our knowledgs,dbnjecture is not yet
solved.

If we add some randomness, the problem becomes much eadiEluanproved
in [12] that the Hausdorff dimension of the graph of the randifeierstrass function

+oo
f(x) =S 27 cog 2+ 6
(x) k; g )

where (6)k>0 is a sequence of independent uniform random variables isstlm
surely equal to the expected value 2r.

In the same spirit we can hope to have a generic answer toltbwifog question:
“What is the Hausdorff dimension of the graph of a continuauscfion?”

Curiously, the answer to this question depends on the tygermdricity we con-
sider. If genericity is relative to the Baire category trexar Mauldin and Williams
proved at the end of the 80’s the following result:

Theorem 1. ([14]) For quasi-all functions fe ¢ ([0,1]), we have
mmf<d“021

This theorem was recently generalized to the case of a noetnipact sekK. In
that situation, the Hausdorff dimension of the graph of gaisunctionsf € € (K)
is equal to dimy (K) (see [1]).

This statement on the Hausdorff dimension of the graph ig sarprising be-
cause it seems to say that a generic continuous functionitis iggular. Indeed it
is convenient to think that there is a deep correlation betwstrong irregularity
properties of a function and large values of the Hausdonffedision of its graph.

This curious result seems to indicate that genericity ingbiese of the Baire
category theorem is not “the good notion of genericity” foistquestion. In fact,
when genericity is related to the notion of prevalence (ss&ti& 2 for a precise
definition), Fraser and Hyde recently obtained the follaviasult.

Theorem 2.([7]) Letd e N*. The set
{fe%ﬂ&ﬂ%;mmﬁ(ﬂmw>:d+l}

is a prevalent subset &f ([0, 1]9).
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This result says that the Hausdorff dimension of the grapd @éneric continuous
function is as large as possible and is much more in accoedaith the idea that a
generic continuous function is strongly irrregular.

The main tool in the proof of Theorem 2 is the construction ¢dtaCantor set
in the interval[0, 1] and a stochastic process [@1] whose graph has almost surely
Hausdorff dimension 2. This construction is difficult to gealize to a compact set
K # [0, 1]. Nevertheless, there are in the literature stochasticggs®s whose almost
sure Hausdorff dimension of their graph is well-known. Thestfamous example
is the Fractional Brownian Motion. Using such a process, meeable to prove the
following generalisation of Theorem 2.

Theorem 3.Let d > 1 and let K< RY be a compact set such thaim, - (K) > 0.
The set
{f e €(K); dimy (F{) =dimy(K) +1}

is a prevalent subset 6f (K).

In this paper, we have decided to focus to the notion of Hadisdomension of

graphs. Nevertheless, we can mention that there are alsp pagers that deal with
the generic value of the dimension of graphs when the notiatinoension is for

example the lower box dimension (see [6, 10, 13, 17]) or thekipg dimension
(see [11, 15)).

The paper is devoted to the proof of Theorem 3 and is orgamsddllows. In
Section 2 we recall the basic facts on prevalence. In pdatioue explain how to
use a stochastic process in order to prove prevalence itidnat vector spaces. In
Section 3, we prove an auxiliary result on Fractional BrawmnMotion which will
be the key of the main theorem. We finish the proof of Theorem Sédction 4.
Finally, in a last section, we deal with the caseaeHolderian functions.

2 Prevalence

Prevalence is a notion of genericity which generalizesfiaite dimensional vector
spaces the notion of “almost everywhere with respect to §ghe measure”. This
notion has been introduced by J. Christensen in [3] and hes wédely studied

since then. In fractal and multifractal analysis, some prtgs which are true on a
denseGs-set are also prevalent (see for instance [9], [8] or [2])erelas some are
not (see for instance [9] or [16]).

Definition 1. Let E be a complete metric vector space. A BorelAet E is called
Haar-null if there exists a compactly supported probability meagusech that, for
anyx € E, u(x+A) =0. If this property holds, the measyues said to beransverse
to A

A subset ofE is calledHaar-null if it is contained in a Haar-null Borel set. The
complement of a Haar-null set is callegheevalentset.
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The following results enumerate important properties advplence and show
that this notion supplies a natural generalization of "adtnevery” in infinite-
dimensional spaces:

e If Ais Haar-null, therx+ Ais Haar-null for every € E.

e Ifdim(E) < +o, Ais Haar-null if and only if it is negligible with respect togh
Lebesgue measure.

e Prevalent sets are dense.

e The intersection of a countable collection of prevalens geprevalent.

e Ifdim(E) = 4o, compacts subsets Bfare Haar-null.

In the context of a functional vector spaEe a usual way to prove that a s&tC
E is prevalent is to use a stochastic process. More precisgbpose thatV is a
stochastic process defined on a probability sp@e%,P) with values inE and
satisfies.

vieE, f+WeA almostsurely

Replacingf by — f, we get that the lavu of the stochastic proce¥% is such that
vfeE, u(f+A)=1

In general, the measuyeis not compactly supported. Nevertheless, if we suppose
that the vector spade is also a Polish space (that is if we add the hypothesisEhat
is separable), then we can find a compaci@et E such thaiu(Q) > 0. It follows

that the compactly supported probability measure (u(Q))‘H.qQ is transverse to
E\A

3 On the graph of a perturbed Fractional Brownian Motion

In this section, we prove an auxilliary result which will Heetkey of the proof of
Theorem 3. For the definition and the main properties of tleetional Brownian
Motion, we refer to [5, Chapter 16].

Theorem 4.Let K be a compact set iR such thatdim~(K) > 0anda € (0,1).
Define the stochastic processi{

W(X) =W(xq) + - + W (xq) 1)

where W, --- WY are independent Fractional Brownian Motions starting frém
with Hurst parameter equal ta. Then, for any function & ¢ (K)
. . (dim(K) .
dim,, (M) > min (g‘(() ,dim (K)+1— a) almost surely
Let us remark that the conclusion of Theorem 4 is sharp. MaFeigely, suppose
that f = 0 and lete > 0. It is well known that the Fractional Brownian Motion is
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almost-surely uniformlya — €)-Holderian. It follows that the stochastic proc&¥s
is also uniformly(a — €)-Holderian orK. It is then straightforward that the graph
% satisfies

dimy, (RY) <dimy(K)+1—(a—¢) as.

On the other hand, the function
@ xeKr— (x,W(x)) € R4
is almost-surely{a — €)-Holderian. It follows that

) < Gimr(K)

a.s.
w a—¢

dim (

The proof of Theorem 4 is based on the following lemma.

Lemmal.Lets> 0, o € (0,1) and W be the process defined agin There exists
a constant C= C(s) > 0 such that for any\ € R, for any xy € RY,

E 1 ~ [Cllx=y|[* > provided s> 1
(Ix=ylI2+ (A +W(x) —W(y))2)s'2| = | C|x—y[|~®®  provided s< 1.

Proof. Observe thatV(x) —W(y) is a centered gaussian variable with variance
Gzzhia+.'.+h§a
whereh = (hy,--- ,hy) = x—y. Holder’s inequality yields
Ih[** < 0 < d* ¥ |h||**.

Now,

. [ 1 B g 1?/(20%) du
LUIX=YIP+ (A +W(x) —W(y))?)s2]| / (Ih[2+ (A +uw)2)2 gv/2m

Suppose that > 1. We get

E 1 </ du
L(Ix=YI2+ A +W(x) —W(y)2)52] = J (|2 + (A +u)2)¥20v2n

B b dv

‘/khW+mmmawawm

1 dv
< |h 1-s—a /
= H || \/ZT (1+V2)S/2
= Clx—y|* .

In the case when & s< 1, we write
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& { 1 } _ / e¥/2  dy
(Ix=yl[2+ (A +W(x) -W(y)2)¥2] =/ (A+ov)*v/2n

—\V2/2
<l [ &
(v VP Van

wherey = A g~1. On the other hand,

/e"z/zdv_/ —(v-Y) /zdv /1 dv / e (V-¥?/2dy
Jo(y+vs R\[-11] Ve

2
< —+/ e ¥ /2dx
- /—1 Vs R
which is a constan® independent of anda.

We are now able to finish the proof of Theorem 4. We use the fiaté¢heoretic
approach (for more details on the potential theoretic aggrmf the calculus of the
Hausdorff dimension, we can refer to [5, Chapter 4]). Supgiost that dimy, (K) >
o and letd be a real number such that

a < 0 < dimyy(K).

There exists a probability measureon K whosed-energyl s (m), defined by

" oo e

is finite. Conversely, to prove that the Hausdorff dimensibthe grapH'f'iWw is at
least dimy(K)+1—a, it suffices to find, for ang < dim_»(K) +1— a, a measure
m, on I'f*iww with finite s-energy.

Let (Q,.#,P) be the probability space where the Fractional Brownian biuti
WL ... WY are defined. For anw € Q, definem, as the image of the measure
on the graph'f'jww via the natural projection

X € K — (X, f(X) +Wgp(X)).
Sets= 0 + 1— a which is greater than 1. Treenergy ofm, is equal to

= RVE

oo M we

-/ dm(x) dm(y) /
s/2”
X = Y12+ (FO0 +Weo(x) — (1) +Weoy)))?)

Fubini’'s theorem and Lemma 1 ensure that




On the Hausdorff dimension of graphs 7

1

E [Is(Me)] = E 2 | Aoy
./AXK (||X_yH2+ ((f(x) - f(y)) +(W(X) —W(y)))Z) /2

<c [ Iyl odmix dmiy)
= Cls(m)
< Hoo.

We deduce that foP-almost allw € Q, the energys(my,) is finite. Sinces can be
chosen arbitrary close to diga(K) +1— a, we get

dim,z (M, ) > dimy(K)+1—a almost surely

In the case where dig(K) < a, we proceed exactly the same way, except that
we take anyd < dim»(K) and we ses = g which is smaller than 1. We then get

dim,»(K)
a

dim,, (MSw) > almost surely

4 Proof of Theorem 3

We can now prove Theorem 3. Liétbe a compact set iRY satisfying dim, (K) >
0. Remark first that for any functioh € €' (K), the graph™K is included inK x R.
It follows that

dimy, (M) < dimy, (K x R) = dim (K) + 1.

Define

G={f € €(K); dimy (I{) =dimy(K)+1}.
Theorem 4 says that for any such that 0< o < min(1,dim_.(K)), the setG, of
all continuous functiong € ¢ (K) satisfying dimy, (I'fK> >dimy(K)+1—ais
prevalent ing’(K). Finally, we can write

G= ()G,

n>0

where(an)n>0 IS a sequence decreasing to 0 and we obtainGhiat prevalent in
% (K).

Remark 1lt is an easy consequence of Ascoli's theorem that the lalweoptocess
W is compactly supported i’ (K) (remember thatVv is almost surely(a — €)-
Holderian). Then, we don't need to use t&tK) is a Polish space to obtain Theo-
rem 3.
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Remark 2LetK = [0,1] andf € ¥([0,1]). Theorem 3 implies that the s&{"(f +
G) is prevalent. We can then write

. . 0,1 ; 0.1]
f="Ff—"f, with dimy, (I'f[1 ]) =2 and dimy (I'f[2 ]) =2
wheref; and f, are continuous functions.
On the other hand, it was recalled in Theorem 1 that the set

G= {f € £([0,1]) ; dim, (rf[ovl}) - 1}

contains a dens6s-set of ([0, 1]). It follows that any continuous functiofi €
%¢([0,1]) can be written

. . 0,1 . 0,1
f=1f—f, with dimy, (I'f[1 ]) =1 and dimy, (I'f[2 ]) =1
wheref; and f, are continuous functions.
We can then ask the following question: given a real nunfber(1,2) can we
write an arbitrary continuous functiohe %°([0, 1]) in the following way

f=f—f with dimy (rf[loﬂ) =B and dimy (rf[zo,u) —B
wheref; and f, are continuous functions?
We do not know the answer to this question.

5 The case ofn-Holderian functions

Let 0< a < 1 and let#?(K) be the set ofx-Holderian functions irk endowed
with the standard norm

100 — (Yl
flla =sup/f(X)|+ sup ————.
Iflla=supf(l+ sup = e

It is well known that the Hausdorff dimension of the grah of a functionf €
€% (K) satisfies

dim, (F{¢) < min (CW(K)

,dim(;/f(K)‘f‘l—a) (2)
(see for example the remark following the statement of Téweot). It is then natural
to ask if inequality (2) is an equality in a prevalent se#df(K). This is indeed the
case as said in the following result.
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Theorem 5.Letd> 1,0 < a < 1and Kc RY be a compact set with strictly positive
Hausdorff dimension. The set

{f € ¢(K) ; dim, () = min (d'mf(K) ,dimp (K) +1— a> }

is a prevalent subset 6% (K).

This result generalizes to arbitrary compact subsets dfip@slimension inR% a
previous work of Clausel and Nicolay (see [4, Theorem 2]).

Proof. Let a < o’ < 1 and letW be the stochastic process defined in Theorem 4
with Hurst parameteo’ instead ofa. The stochastic proce®yy takes values in
% (K). Moreover, ifa < a” < a’, the injection

fe ¢ (K)— fe?(K)

is compact. It follows that the law of the stochastic prod&fsis compactly sup-
ported ing’? (K) (W is a”-Holderian). Then, Theorem 4 ensures that the set

{tewew; dmye () = min (T dim,y )+ 1) |

is prevalent in6’? (K). Using a sequenc@,)n>o decreasing tar, we get the con-
clusion of Theorem 5.
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