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Abstract

Various tools can be used to calculate or estimate the dimension of measures.
Using a probabilistic interpretation, we propose very simple proofs for the main
inequalities related to this notion. We also discuss the case of quasi-Bernoulli
measures and point out the deep link existing between the calculation of the
dimension of auxiliary measures and the multifractal analysis.
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The notion of dimension is an important tool to classify the subsets in R
d and

in particular to compare the size of small sets. There exist various definitions
of dimension. The Hausdorff and the packing dimensions are probably the most
famous one and can be considered as “extremal” notions of dimension. We refer
to [Fal90] for precise definitions and we denote Hs (resp. P̂s) the Hausdorff (resp.
packing) measures. Finally, dim(E) and Dim(E) are respectively the Hausdorff
and the packing dimension of a set E.

The computation of the dimension of a set E is naturally connected to the
analysis of auxilliary Borel measures. The first elementary result in this direction
is the following.

Proposition 0.1. Let E be a Borel subset in R
d and m be a Borel measure such

that m(E) > 0. Suppose that there exist s > 0 and C > 0 such that

∀x ∈ E, m(B(x, r)) ≤ Crs if r is small enough .

Then, Hs(E) > 0 and dim(E) ≥ s.
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There is a converse to Proposition 0.1 known as Frostman’s Lemma (see for
example [Mat95]).

Proposition 0.2. Suppose that E is a Borel subset in R
d such that Hs(E) > 0.

There exists a Borel measure m such that m(E) > 0 satisfying

∀x ∈ E, ∀r > 0, m(B(x, r)) ≤ Crs .

In particular, the result is true if dim(E) > s.

Similar results, involving the packing dimension of the set E are also true (see
[Fal97], Proposition 2.2, 2.3 and 2.4).

In vue of Propositions 0.1 and 0.2, it is natural to introduce the local dimensions
(also called Hölder exponents) of the measure m which are defined as

dim m(x) = lim inf
r→0

log(m(B(x, r)))

log r

dim m(x) = lim sup
r→0

log(m(B(x, r)))

log r
.

The quantities dim and dim are respectively called the lower and the upper local
dimension of the measure m at point x.

Finally, Propositions 0.1 and 0.2 can be reformulated as

Proposition 0.3. Let E be a Borel subset in R
d.

dim(E) = sup {s, ∃m, m(E) > 0 and dim m(x) ≥ s ∀x ∈ E} .

We can also refer to Tricot ([Tri82]) and Cutler ([Cut95]) who studied the link
between the Hausdorff dimension (or the packing dimension) of a set E and the
local exponents of auxiliary measures.

The deep relation between the value of the local exponent of auxiliary measures
and the dimension of a given set E is very useful in practice. In many situations,
this is the natural way to compute the dimension of the set E.

It is for example the case for self-similar sets. Let S1, · · · , Sk be similarities in
R

d with ratio 0 < ri < 1 and E be the unique nonempty compact set such that

E =
⋃

i

Si(E) (see [Hut81]). For the sake of simplicity, suppose that the compact

sets Si(E) are disjoint. Then E is a Cantor set and the application

i = (i1, · · · , in, · · · ) ∈ {1, · · · , k}N
∗

7−→
⋂

n

Si1 ◦ · · · ◦ Sin
(E) (1)

is an homeomorphism. Let s be the unique positive real number such that
∑k

i=1 rs
i = 1 and m be the unique probability measure such that

m (Si1 ◦ · · · ◦ Sin
(E)) = rs

i1 · · · r
s
in

.

The measure m is nothing else but the image of a multinomial measure on the
symbolic Cantor set {1, · · · , k}N

∗

through the application (1). Computing the
local exponents of m, we find

dim(E) = Dim(E) = s .
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This result remains true if the so called Open Set Condition is satisfied (see [Hut81,
Fal97]). The case of self-affine sets is much more difficult ([McM84, Urb90, Ols98]).

The thermodynamic formalism is an interesting tool to give the value of the
Hausdorff dimension of sets that are obtained in more general dynamical contexts.
This is for example the case for cookie-cutter sets ([Bed86, Bed91]), graph-directed
sets ([MW88]) and Julia sets ([Rue82, Zin97]). We can also refer to [Fal97].

Another famous result, due to Eggleston ([Egg49]) concerns the occurence of
digits in the `-adic decomposition of real numbers. Let ` ≥ 2, p = (p0, · · · , p`−1)
a probability vector and x =

∑+∞
k=1 xk`−k ∈ [0, 1) be the (proper) decomposition

of the real number x in base `. Finally let

f i
n(x) =

1

n
] {k ∈ {1, · · · , n} ; xk = i}

be the frequency of the digit i. If E(p) is the set of real numbers x ∈ (0, 1) such
that for all i ∈ {0, · · · , ` − 1}, lim

n→+∞
f i

n(x) = pi, then

dim(E(p)) = Dim(E(p)) = −

`−1
∑

i=0

pi log` pi . (2)

The proof of this result is based on the analysis of an auxiliary measure m defined
by

m

([

n
∑

i=1

εi`
−i,

n
∑

i=1

εi`
−i + `−n

))

=
n
∏

i=1

pεi
.

The strong law of large numbers easily ensures that the measure m is carried by
the set E(p) and that

dim m(x) = dim m(x) = −
`−1
∑

i=0

pi log` pi if x ∈ E(p) .

Formula (2) follows (see Part 1 of the present paper for a detailed study of the
case ` = 2).

We can also reverse the point of view and try, for a given measure m in R
d,

to compute or to estimate the dimension of sets that are naturally related to the
measure m. In that way, we can in particular think to the negligible sets and the
sets of full measure and define the quantities

dim∗(m) = inf(dim(E) ; m(E) > 0)
dim∗(m) = inf(dim(E) ; m(E) = 1) . (3)

Dimension dim∗(m) first appears in [You82]. These two dimensions are respec-
tively called the lower and the upper dimension of the measure m (see for example
[Fal97]or [Edg98]). They precise how much the measure m is a “singular measure”
or a “regular measure” and they are important quantities for the understanding
of m. Similar definitions involving the packing dimension can also be proposed :

Dim∗(m) = inf(Dim(E) ; m(E) > 0)
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Dim∗(m) = inf(Dim(E) ; m(E) = 1) . (4)

There are numerous works in which estimates of the dimension of a given
measure are obtained.

In particular, a lot of papers deal with the harmonic measure ω in a domain Ω ⊂
R

d. Let us recall some results in this direction. A famous result due to Makarov
([Mak85]) states that the harmonic measure in a simply connected domain of R

2 is
always supported by a set of Hausdorff dimension 1 while every set with dimension
strictly less than 1 is negligible with respect to the harmonic measure. A few years
later, Jones and Wolff ([JW88]) extended this result and proved that in a general
domain in R

2, the harmonic measure is always supported by a set of dimension
one. When Ω is the complementary of a self-similar Cantor set, Carleson proved
that the dimension of the harmonic measure ω satisfies dim∗(ω) = dim∗(ω) <
dim(∂Ω). In that case, the harmonic measure can be seen as a Gibbs measure on a
symbolic Cantor set and the properties of the harmonic measures are consequences
of Ergodic theory (see also [MV86]). Such approach was also used in the more
general situation of “conformal Cantor sets”, generalized snowflakes and Julia sets
of hyperbolic polynomials (see the survey paper [Mak98] on this subject). In a
nondynamical context, Batakis proved in [Bat96] the relation dim∗(ω) < dim(∂Ω)
for a large class of domains Ω for which Ωc is a Cantor set. Let us finally recall
Bourgain’s result in higher dimension : the harmonic measure is always supported
by a set of dimension d−ε where ε only depends on the dimension d (see [Bou87]).

Explicit values of the dimension of measures can also often be obtained in
dynamical contexts. This is for example the case for self-similar measures on
self-similar Cantor sets. Let us briefly explain the calculus. Let S1, · · · , Sk be
similarities in R

d with ratio 0 < ri < 1 and E be the unique nonempty compact

set such that E =
⋃

i

Si(E) (see [Hut81]). Suppose that the compact sets Si(E)

are disjoint. Let p = (p1, · · · , pk) be a probability vector and m be the unique
probability measure such that

m =
k
∑

i=1

pi m ◦ S−1
i . (5)

The measure m is nothing else but the image of a multinomial measure on the
symbolic Cantor set {1, · · · , k}N

∗

through the homeomorphism

i = (i1, · · · , in, · · · ) ∈ {1, · · · , k}N
∗

7−→
⋂

n

Si1 ◦ · · · ◦ Sin
(E)

Let
Ei1 ,··· ,in

= Si1 ◦ · · · ◦ Sin
(E) .

For every x ∈ E there exists a unique sequence i1(x), · · · , in(x), · · · such that
x ∈ Ei1(x),··· ,in(x) for all n. Moreover, if fn

i (x) is the frequency of the digit i in
the sequence i1(x), · · · , in(x), we have

log m(Ei1(x),··· ,in(x))

log diam (Ei1(x),··· ,in(x))
=

∑k
i=1 fn

i (x) log pi
∑k

i=1 fn
i (x) log ri + 1

n log diam (E)
.
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Using the strong law of large numbers we get

lim
n→+∞

log m(Ei1(x),··· ,in(x))

log diam (Ei1(x),··· ,in(x))
=

∑k
i=1 pi log pi

∑k
i=1 pi log ri

dm − almost surely . (6)

If we observe that Ei1(x),··· ,in(x) is in some sense similar to the ball of center x and
radius diam (Ei1(x),··· ,in(x)), we get

dim m(x) = dim m(x) =

∑k
i=1 pi log pi

∑k
i=1 pi log ri

dm − almost surely

and we can conclude that

dim∗(m) = dim∗(m) =

∑k
i=1 pi log pi

∑k
i=1 pi log ri

. (7)

This formula is always true when the Open Set Condition is satisfied (see Part
1 for an elementary example). The calculus is much more complicated (and of-
ten impossible) in “overlapping” situations (see for example [LN98, FL02, Fen03,
Tes04, Tes06a]).

More generally, the thermodynamic formalism and the ergodic theory are in
practice good tools to compute the dimension of measures. Let us for example
mention the nice paper of L. S. Young in which a formula (involving the entropy
and the Lyapunov exponents) is given for the upper dimension of invariant ergodic
measures with respect to a C1+α diffeomorphism of a compact surface ([You82]).

Multifractal analysis is the natural way to obtain a more precise analysis of
the measure m. The object is to compute the spectrum, defined as the following
function :

d(α) = dim
({

x ; dim m(x) = dim m(x) = α
})

.

In many situations, d(α) is nothing else but the Legendre transform τ ∗(α) of
the Lq-spectrum

τ(q) = lim sup
n→+∞

τn(q) with τn(q) =
1

n log `
log

(

∑

I∈Fn

m(I)q

)

(8)

where (Fn)n≥0 are the natural partitions in dyadic (or `-adic) cubes in R
d. When

d(α) = τ∗(α), we say that the multifractal formalism is valid.
A heuristic justification of the multifractal formalism runs as follows : First,

the contribution to τn(q) of the set of points where the local exponents takes a
value α is estimated. If the dimension of this set is d(α), then there are about
`nd(α) cubes in Fn which cover this set and such a cube I satisfies m(I) ≈ `−αn.
Therefore, the order of magnitude of the required contribution is `−(αq−d(α))n.
When n goes to +∞, the maximum contribution is clearly obtained for the value
of α that minimizes the exponent αq − d(α); thus τ(q) = infα(αq − d(α)). If d(α)
is a concave function, then this formula can be inverted and d(α) can be obtained
from τ(q) by an inverse Legendre transform :

d(α) = inf
q

(αq + τ(q)) . (9)
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There are many papers who support formula (9). Frisch and Parisi ([FP85]) were
the first to introduce the Legendre transform in multifractal analysis. Rigorous
approaches are given by Brown, Michon Peyrière ([BMP92]) and Olsen ([Ols95]).
They enlighten the link between formula (9) and the existence of auxiliary mea-
sures mq satisfying

1

C
m(I)q |I |τ(q) ≤ mq(I) ≤ C m(I)q |I |τ(q) . (10)

In fact, it is shown in [Ben94, BBH02] that the existence of a measure mq satisfying

mq(I) ≤ C m(I)q |I |τ(q) (11)

is sufficient to obtain the nontrivial inequality

d(α) ≥ inf
q

(αq + τ(q)) .

Now again, the dynamical context is a paradigm for multifractal analysis. In
many situations, the existence of measures mq satisfying (10) and the validity of
(9) are proved. This is for example the case for quasi-Bernoulli measures ([BMP92,
Heu98, Pey92]), self-similar measures ([CM92, Fen03, Fen05, FO03, HL01, LN98,
LN00, Rie95, Tes06a, Ye05]), measures on cookie-cutters ([Ran89]), graph-directed
constructions ([EM92]), invariant measures of rational maps on the complex plane
([Lop89]). The context of self-affine measures is much more complicated ([Kin95,
Ols98]). The case of random self-similar measures was also studied ([Man74, KP76,
Bar99, Bar00a, Bar00b]).

Let us briefly explain the ideas that are used to validate the multifractal for-
malism in the context of self-similar measures on a self-similar Cantor set. The
notations are the same as before (see (5) and the notations below). The partitions
given by the compact sets Ei1,··· ,in

are prefered to the (Fn)n≥0. In fact, it is easy
to show that the measure m is doubling and that the sequence Ei1(x),··· ,in(x) of
neighborhoods of x calculates the local exponents at point x. Let q ∈ R and let
τ = τ(q) be the unique real number such that

k
∑

i=1

pq
i r

τ
i = 1 . (12)

The function τ = τ(q) is similar to the Lq-spectrum defined by (8). The function
τ is convex and real analytic. Let mq be the self-similar measure such that for all
i,

mq(Ei) = pq
i r

τ
i .

The measure mq is such that for all i1, · · · , in,

mq(Ei1,··· ,in
) = (pi1 · · · pin

)q (ri1 · · · rin
)τ ≈ m (Ei1,··· ,in

)q diam (Ei1,··· ,in
)τ ,

which is similar to (10). Let

α = −τ ′(q) =

∑k
i=1 pq

i r
τ
i log pi

∑k
i=1 pq

i r
τ
i log ri
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and

Eα =

{

x ∈ E ; lim
n→+∞

log m
(

Ei1(x),··· ,in(x)

)

log diam
(

Ei1(x),··· ,in(x)

) = α

}

.

We observe that x ∈ Eα if and only if

lim
n→∞

log m
(

Ei1(x),··· ,in(x)

)

log diam
(

Ei1(x),··· ,in(x)

) = αq + τ(q) =

∑k
i=1 pq

i r
τ
i log(pq

i r
τ
i )

∑k
i=1 pq

i r
τ
i log ri

.

Applying (6) and (7) to the measure mq , we obtain

dim(Eα) = dim(mq) = −qτ ′(q) + τ(q) = inf
q

(αq + τ(q))

which is the desired formula.
This example points out the importance of auxiliary measures in the multi-

fractal analysis. In Part 5, we will apply the same technique to quasi-Bernoulli
measures.

The purpose of this survey paper is to revisit the notion of dimension of a
measure in a very simple way. We do not refer to any dynamical context and we
try to obtain estimates of the lower and the upper dimension which are always
true. The probabilistic interpretation of the notion of dimension will be useful to
achieve our purpose.

As it is shown in Part 3, the lower and the upper dimension of a measure m
are related to the asymptotic behaviour of a sequence of random variables. More
precisely, if (Fn)n≥0 are the natural partitions in dyadic (or `-adic) cubes in R

d

and if In(x) is the unique cube that contains x, we will see that the lower dimension
(resp. upper dimension) of the measure m coincides with the lower essential bound
(resp. upper essential bound) of the random variable lim inf

n→+∞
Sn/n, where

Sn

n
=

X1 + · · · + Xn

n
and Xn(x) = − log`

(

m(In(x))

m(In−1(x))

)

.

Similar interpretation of Dim∗(m) and Dim∗(m) in terms of the essential bounds
of lim sup

n→+∞
Sn/n is also possible. It is then not surprising that the lower and the

upper dimension of the measure m are related to the log-Laplace transform of the
sequence Sn :

L(q) = lim sup
n→+∞

1

n
log` E

[

`qSn
]

,

where the expectation is related to the probability m.
An easy calculation gives

L(1 − q) = lim sup
n→+∞

1

n log `
log

(

∑

I∈Fn

m(I)q

)

:= τ(q)

where we recognize the classical Lq-spectrum τ used in multifractal analysis. The
lower and the upper entropy of the measure m can also be expressed in terms of
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the sequence of random variables Sn. More precisely, we have

h∗(m) := lim inf
n→+∞

−1

n

∑

I∈Fn

m(I) log` m(I) = lim inf
n→+∞

E

[

Sn

n

]

h∗(m) := lim sup
n→+∞

−1

n

∑

I∈Fn

m(I) log` m(I) = lim sup
n→+∞

E

[

Sn

n

]

and these quantities are also related to the dimension of the measure m.
All those estimates are gathered in Theorem 3.1 which states that

−τ ′
+(1) ≤ dim∗(m) ≤ h∗(m) ≤ h∗(m) ≤ Dim∗(m) ≤ −τ ′

−(1) . (13)

A probabilistic interpretation of (13) is proposed in Theorem 3.2 and the equality
cases are discussed in Part 4. Classical examples and concrete estimates are also
developed to illustrate the purpose.

In the last part (Part 5), we revisit the notion of quasi-Bernoulli measures in
order to explain the importance of the estimates that are developed in the previ-
ous sections. Ergodicity properties are explained, the existence of the derivative
function τ ′ is shown and an elementary proof of the validity of the multifractal
formalism is given. Such a proof points out the important role played by the
dimension of auxiliary measures in multifractal analysis.

1 A classical example : the Bernoulli product

We begin this paper with the study of a classical example. It is a convenient way
to introduce the notion of dimension of measures and to precise some notations.
Moreover, generalizations of this example will be developed later (see Part 3.1).

Let Fn be the family of dyadic intervals of the nth generation on [0, 1), 0 <
p < 1 and let m be the Bernoulli product of parameter p. It is defined as follows.
If ε1 · · · εn are integers in {0, 1}, and if

Iε1 ···εn
=

[

n
∑

i=1

εi

2i
,

n
∑

i=1

εi

2i
+

1

2n

)

∈ Fn

then
m (Iε1···εn

) = psn(1 − p)n−sn , where sn = ε1 + · · · + εn .

If x ∈ [0, 1), we can find ε1, · · · , εn, · · · ∈ {0, 1} uniquely determined and such that
for every n, x ∈ Iε1···εn

. Recall that 0, ε1 · · · εn · · · is the proper dyadic expansion
of the real number x. In the space [0, 1) equipped with the probability m, it is easy
to see that (εn)n≥1 are independent Bernoulli random variables with parameter
p. More precisely,

m({εi = 1}) = p and m({εi = 0}) = 1 − p .

Using the strong law of large numbers, we know that sn/n converges dm-almost
surely to p. If In(x) is the unique interval in Fn which contains x, we deduce that
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for almost every x ∈ [0, 1),

lim
n→+∞

ln(m(In(x)))

ln |In(x)|
= lim

n→+∞
−

sn ln p + (n − sn) ln(1 − p)

n ln 2

= −(p log2(p) + (1 − p) log2(1 − p)) .

Let h(p) = −(p log2(p) + (1 − p) log2(1 − p)). Using Billingsley’s theorem (see for
example Proposition 2.3 in [Fal97]), it is easy to conclude that

dim∗(m) = dim∗(m) = h(p)

where dim∗(m) and dim∗(m) are the lower and the upper dimension defined in
(3). It means that the measure m is supported by a set of Hausdorff dimension
h(p) and that every set of dimension less that h(p) is negligible. We say that the
measure m is unidimensional with dimension h(p).

We also have
Dim∗(m) = Dim∗(m) = h(p)

where Dim∗(m) and Dim∗(m) are the lower and the upper packing dimension
defined in (4). This example is well known. The measure m allows to prove that
the set Fp of real numbers x such that sn/n converges to p has dimension h(p)
(see for example [Bes35], [Egg49] or [Fal90]) .

2 Dimensions of a measure

2.1 Lower and upper dimension of a measure

In general, a probability measure m is not unidimensional (in the sense described
in the previous example). Nevertheless, we can always define the so called lower
and upper dimension in the following way.

Definition 2.1. Let m be a probability measure on R
d. The quantities

dim∗(m) = inf(dim(E) ; m(E) > 0) and dim∗(m) = inf(dim(E) ; m(E) = 1)

are respectively called the lower and the upper dimension of the measure m.

The inequalities 0 ≤ dim∗(m) ≤ dim∗(m) ≤ d are always true. When the
equality dim∗(m) = dim∗(m) is satisfied, we say that the measure m is unidimen-
sional and we denote by dim(m) the common value.

Recall that m1 << m2 (resp. m1⊥m2) says that the measure m1 is absolutely
continuous (resp. singular) with respect to m2. Quantities dim∗(m) and dim∗(m)
allow us to compare the measure m with Hausdorff measures. More precisely, we
have the following quick result :

Proposition 2.2. Let m be a probability measure on R
d. Then

dim∗(m) = sup(α ; m << Hα) and dim∗(m) = inf(α ; m⊥Hα) .

9



When the upper dimension of the measure is small, it means that the measure
m is “very singular”. In the same way, when the lower dimension of the measure
is large, then the measure m is “quite regular”.

Quantities dim∗(m) and dim∗(m) are also related to the asymptotic behavior

of the functions Φr(x) = ln m(B(x,r))
ln(r) . More precisely, we have

Theorem 2.3. ([Fan94, Fal97, Edg98, Heu98]) Let m be a probability measure on
R

d. Let

Φ∗(x) = lim inf
r→0

Φr(x) where Φr(x) =
ln m(B(x, r))

ln(r)
.

We have

dim∗(m) = ess inf (Φ∗) and dim∗(m) = ess sup (Φ∗),

the essential bounds being related to the measure m. In particular, the inequalities
0 ≤ Φ∗ ≤ d are true dm-almost surely.

Proof. Let us prove the equality dim∗(m) = ess inf (Φ∗). The proof of the equality
dim∗(m) = ess sup (Φ∗) is quite similar. Let α < ess inf Φ∗. For dm-almost every
x, there exists r0 such that if r < r0, m(B(x, r)) < rα. Let

En = {x ; ∀r < 1/n, m(B(x, r)) < rα} .

The measure m is carried by
⋃

n En. If m(E) > 0, we can then find an integer n
such that m(E∩En) > 0. Using the definition of En, it follows that Hα(E∩En) > 0
and that dim(E) ≥ α. We have proved that ess inf (Φ∗) ≤ dim∗(m).

Conversely, if α > ess inf Φ∗, we can find E such that m(E) > 0 and such
that for every x ∈ E, Φ∗(x) < α. If x ∈ E, and if δ > 0, we can find rx < δ
such that m(B(x, rx)) > rα

x . The balls B(x, rx) constitute a 2δ-covering of E.
The problem is that these balls are not disjoint. Nevertheless, using Besicovich’s
covering lemma, we can find a constant ξ which only depends on the dimension d
and we can choose ξ sub families B(x1,j , rx1,j

)j , · · · , B(xξ,j , rxξ,j
)j of disjoint balls

which always cover E. We then have

∀i,
∑

j

(diam (B(xi,j , rxi,j
)))α =

∑

j

(2rxi,j
)α

≤ 2α
∑

j

m(B(xi,j , rxi,j
))

≤ 2αm(Rd)
< +∞ .

Finally, Hα
2δ(E) ≤ ξ2αm(Rd) and we can conclude that Hα(E) < +∞ and that

dim(E) ≤ α. When α → ess inf Φ∗, we obtain dim∗(m) ≤ ess inf (Φ∗). •

Remark 1. We can also use Proposition 2.2 in [Fal97] to give another proof of
Theorem 2.3.

Remark 2. The measure m is unidimensional (that is dim∗(m) = dim∗(m)) if
and only if there exists α ≥ 0 such that m is carried by a a set of dimension
α while m(E) = 0 for every Borel set E satisfying dim(E) < α. In that case,
α = dim∗(m) = dim∗(m). This notion was first introduced by Rogers and Taylor
([RT59]) and revived by Cutler [[Cut86]).
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2.2 And what about packing dimensions ?

It is then natural to ask about the interpretation of the essential bounds of the
function Φ∗ = lim supr→0 Φr. Those are related to the packing dimension of the
measure m (for more details on packing dimension, see [Fal90] or the original
paper of Tricot [Tri82]). Without any new idea, we can prove the twin results of
Proposition 2.2 and Theorem 2.3.

Proposition 2.4. Let m be a probability measure on R
d. Let us denote

Dim∗(m) = inf(Dim(E) ; m(E) > 0) and Dim∗(m) = inf(Dim(E) ; m(E) = 1) .

Then,

Dim∗(m) = sup(α ; m << P̂α) and Dim∗(m) = inf(α ; m⊥P̂α),

where (P̂α)α>0 are the packing measures and Dim the packing dimension.

Theorem 2.5. ([Fal97, Edg98, Heu98]) Let m be a probability measure on R
d.

Let

Φ∗(x) = lim sup
r→0

Φr(x) where Φr(x) =
ln m(B(x, r))

ln(r)
.

We have

Dim∗(m) = ess inf (Φ∗) and Dim∗(m) = ess sup (Φ∗),

the essential bounds being related to the measure m. In particular, the inequalities
0 ≤ Φ∗ ≤ d are true dm-almost surely.

2.3 Unidimensionality and ergodicity

Let us come back to the Bernoulli product which is described in Section 1. This
measure satisfies :

{

Dim∗(m) = Dim∗(m) = dim∗(m) = dim∗(m) = h(p)
Φ∗(x) = Φ∗(x) = h(p) dm − almost surely .

In particular, it is a unidimensional measure.
Moreover, the Bernoulli product has interesting properties with respect to the

doubling operator
σ(x) = 2x − [2x]

where [2x] is the integer part of 2x.
Let us precise those properties. Denote by

IJ = Iε1···εn+p
if I = Iε1 ···εn

and J = Iεn+1···εn+p
.

Independence properties of the random variables εn easily ensure that

m(σ−1(I)) = m(I), ∀I ∈
⋃

n

Fn (14)
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and

m(I ∩ σ−n(J)) = m(IJ) = m(I)m(J) if I ∈ Fn . (15)

Finally, using a monotone class argument, it is easy to deduce from (14) and (15)
that the measure m is σ-invariant and ergodic (see also Part 5).

This result is not surprising. More generally we can prove the following prop-
erty which can be found in [Fal97].

Proposition 2.6. Let X be a closed subset of R
d, T : X → X a lipschitz function

and m a T -invariant and ergodic probability measure on X. Then :

dim∗(m) = dim∗(m) and Dim∗(m) = Dim∗(m) .

Proof. Let us give a proof of this proposition which is somewhat simpler to the
one proposed by Falconer in [Fal97] and which does not need the use of the ergodic
theorem. If T is C-lipschitz, T (B(x, r)) ⊂ B(T (x), Cr). We can deduce that

m(B(x, r)) ≤ m(T−1(T (B(x, r)))) ≤ m(T−1(B(T (x), Cr))) = m(B(T (x), Cr)) .

So, Φr(x) ≥ ΦCr(T (x)) ln(Cr)
ln(r) , which proves that Φ∗(x) ≥ Φ∗(T (x)). The function

Φ∗(x)−Φ∗(T (x)) is then positive and satisfies
∫

(Φ∗(x)−Φ∗(T (x)))dm(x) = 0. We
can conclude that Φ∗(x) = Φ∗(T (x)) almost surely and that Φ∗ is T -invariant. On
the other hand, Φ∗ is essentially bounded (see Theorem 2.3) and the measure m is
ergodic. It follows that Φ∗ is almost surely constant, which says that dim∗(m) =
dim∗(m). The proof of Dim∗(m) = Dim∗(m) is similar. •

Remark 1. The function σ(x) = 2x− [2x] is not lipschitz. Apparently, Proposition
2.6 is not relevant for this function. Nevertheless, if we identify the points 0 and
1, that is, if we imagine the measure m defined on the circle R/Z = S1, then, m is
invariant with respect to the doubling function which is a smooth function on S1.

Remark 2. Another way to study m is to consider that the Bernoulli product is
defined on the Cantor set {0, 1}N

∗

. Then, the intervals Iε1···εn
become the cylinders

ε1 · · · εn of the Cantor set and the function σ is nothing else but the shift operator
(εn)n≥1 7→ (εn)n≥2 on the Cantor set.

Remark 3. Ergodic criteria for unidimensionality are also given by Cutler ([Cut90])
and Fan ([Fan94]).

3 The discrete point of view

The Hausdorff dimension may be calculated with the use of the `-adic cubes.
Therefore we can obtain discrete versions of the previous results. Let ` ≥ 2 be
an integer and Fn the dyadic cubes of the nth generation. Suppose that m is a
probability measure on [0, 1)d. If In(x) is the unique cube in Fn which contains
x and if log` is the logarithm in base `, we can introduce the sequence of random
variables Xn defined by

Xn(x) = − log`

(

m(In(x))

m(In−1(x))

)

. (16)
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If |In(x)| = `−n is the “length” of the cube In(x), we have

Sn(x)

n
=

X1(x) + . . . + Xn(x)

n
=

log m(In(x))

log |In(x)|

and the quantities dim∗(m) and dim∗(m) are related to the asymptotic behavior
of the sequence Sn

n . More precisely, we have the two following relations

dim∗(m) = ess inf

(

lim inf
n→∞

Sn

n

)

dim∗(m) = ess sup

(

lim inf
n→∞

Sn

n

)

. (17)

In the same way, we can also prove that

Dim∗(m) = ess inf

(

lim sup
n→∞

Sn

n

)

Dim∗(m) = ess sup

(

lim sup
n→∞

Sn

n

)

. (18)

3.1 An example

Let us describe a well known elementary example (see for example [BK90] or
[Bis95]) which is more general than the Bernoulli product and indicates that the
probabilistic point of view is useful. Let d = 1, ` = 2 and let us consider a sequence
(pn)n≥1 of real numbers satisfying 0 < pn < 1. With the notations of Section 1,
let us construct the measure m in the following way.

m
(

Iε1···εn−11

)

= pnm
(

Iε1 ···εn−1

)

and m
(

Iε1···εn−10

)

= (1 − pn)m
(

Iε1···εn−1

)

.

The random variables εi are independent and verify

m ({εn = 1}) = pn and m ({εn = 0}) = 1 − pn .

The random variables Xn, defined by (16) are independent and bounded in L2.
The strong law of large numbers ensures that the sequence

Sn − E [Sn]

n
(19)

is almost surely converging to 0. We can easily conclude that for dm-almost every
x ∈ [0, 1),

lim inf
n→∞

log m(In(x))

log |In(x)|
= lim inf

n→∞
E

[

Sn

n

]

= lim inf
n→∞

−1

n

n
∑

k=1

pk log2 pk + (1 − pk) log2(1 − pk) .

We write h∗(m) = lim infn→∞ E
[

Sn

n

]

. This quantity is called the lower entropy
of the measure m (see Section 3.2).
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In this case, the measure m is always a unidimensional measure with dimension
dim(m) = h∗(m). More precisely, we can deduce from (19) the existence of a
subsequence nk such that for almost every x ∈ [0, 1),

lim
k→+∞

log m(Ink
(x))

log |Ink
(x)|

= h∗(m) .

We will see in Section 4.3 that this kind of property characterizes measures for
which the dimension can be calculated with an entropy formula.

Of course, a similar result can be written with packing dimensions. The mea-
sure m is unidimensional and satisfies

Dim(m) = lim sup
n→∞

E

[

Sn

n

]

= lim sup
n→∞

−1

n

n
∑

k=1

pk log2 pk + (1 − pk) log2(1 − pk)

:= h∗(m) .

Note that we may have dim(m) 6= Dim(m).

3.2 The function τ , probabilistic interpretation and links

with entropy

Relations (17) and (18) do not help to find the dimensions of the measure m. From
now on we try to obtain estimates of the quantities dim∗(m), dim∗(m), Dim∗(m),
Dim∗(m) and describe some equality cases.

Let us introduce the function τ which is well known in multifractal analysis.
It is defined as

τ(q) = lim sup
n→+∞

τn(q) with τn(q) =
1

n log `
log

(

∑

I∈Fn

m(I)q

)

(20)

where m is a probability measure on [0, 1)d. The function τ is finite on [0, +∞)
and may be degenerated on the open interval (−∞, 0). It is convex, non increasing
on its definition domain. If we equip the set [0, 1)d with the probability m, we can
write :

τn(1 − q) =
1

n
log` E

[

`qSn
]

and τ(1 − q) = lim sup
n→∞

1

n
log` E

[

`qSn
]

. (21)

Taking the derivative, we get

−τ ′
n(1) = E

[

Sn

n

]

=
−1

n

∑

I∈Fn

m(I) log` m(I) .

This quantity is nothing else but the entropy of the probability m related to the
partition Fn. It will be denoted by hn(m). In a general setting the sequence hn(m)
does not necessarily converge. Nevertheless, one can always define the lower and
the upper entropy with the formula

h∗(m) = lim inf
n→∞

hn(m) and h∗(m) = lim sup
n→∞

hn(m) . (22)
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If h∗(m) = h∗(m), the common value is denoted by h(m). It is the entropy of the
measure m.

Let us remark that convexity properties ensure that

−τ ′
+(1) ≤ h∗(m) ≤ h∗(m) ≤ −τ ′

−(1) , (23)

where τ ′
− et τ ′

+ are respectively the left and the right derivative of the convex
function τ .

Let us finish this section with the example described in Part 3.1. Easy calcu-
lations give

τ(q) = lim sup
n→+∞

1

n

n
∑

k=1

log2 (pq
k + (1 − pk)q)

h∗(m) = lim inf
n→∞

−1

n

n
∑

k=1

pk log2 pk + (1 − pk) log2(1 − pk)

h∗(m) = lim sup
n→∞

−1

n

n
∑

k=1

pk log2 pk + (1 − pk) log2(1 − pk) .

In particular, if m is a Bernoulli product with parameter p (that is, if pk = p for
all k), we get

τ(q) = log2 (pq + (1 − p)q) and h(m) = −(p log2(p) + (1 − p) log2(1 − p)) .

3.3 General estimates

There are deep links between the function τ , entropy and the dimension of the
measure m. These can be resumed in the following theorem.

Theorem 3.1. ([Heu98, BH02]) Let m be a probability measure on [0, 1)d. We
have ;

−τ ′
+(1) ≤ dim∗(m) ≤ h∗(m) ≤ h∗(m) ≤ Dim∗(m) ≤ −τ ′

−(1) . (24)

Remarks. 1. In particular, (17) and (18) ensure that if dim∗(m) = Dim∗(m),
then the entropy h(m) exists and

lim
n→∞

− log` m(In(x))

n
= h(m), dm-almost surely .

We then obtain some kind of ”Shannon-McMillan conclusion” in a non dynamical
context. It is in particular the case if τ ′(1) exists.

2. Conversely, if there exists a real number h such that lim
n→∞

− log` m(In(x))

n
=

h almost surely, we have

dim∗(m) = Dim∗(m) and h∗(m) = h∗(m) = h .

3. In [Nga97], S.M. Ngai proves inequalities like −τ ′
+(1) ≤ dim∗(m) and

Dim∗(m) ≤ −τ ′
−(1). His purpose is then to consider the case where τ ′(1) ex-

ists. Here we will first consider the non differentiable case (see Part 3.4 and 4.2)
and then find conditions that ensure that τ ′(1) exists (see Part 5).
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Formulas (17) and (18) give links between the dimension of the measure m
and the asymptotic behavior of the sequence Sn/n. They allow us to propose a
very simple proof of Theorem 3.1. This is not the way used in [Heu98] but we can
isolate the following result which immediately gives Theorem 3.1.

Theorem 3.2. Let (Sn)n≥0 be a sequence of random variables on a probability
space (Ω,A, P). Suppose that the function

L(q) = lim sup
n→∞

1

n
log` E

[

`qSn
]

is finite on a neighborhood V of 0. Then we have :

L′
−(0) ≤ ess inf

(

lim inf
n→∞

Sn

n

)

and ess sup

(

lim sup
n→∞

Sn

n

)

≤ L′
+(0) .

Moreover, the sequence Sn

n is dominated in L1(P) and

ess inf

(

lim inf
n→+∞

Sn

n

)

≤ lim inf
n→+∞

E

[

Sn

n

]

≤ lim sup
n→+∞

E

[

Sn

n

]

≤ ess sup

(

lim sup
n→+∞

Sn

n

)

.

Proof of Theorem 3.2. Let α > L′
+(0) and q > 0. Using Cramer-Chernov’s idea,

we have

P

(

Sn

n
≥ α

)

≤
1

`qnα
E
[

`qSn
]

.

Taking the logarithm and the lim sup, we get

lim sup
n→∞

1

n
log`

(

P

(

Sn

n
≥ α

))

≤ L(q) − qα

and we can conclude that

lim sup
n→∞

1

n
log`

(

P

(

Sn

n
≥ α

))

≤ − sup
q>0 , q∈V

(qα − L(q)) = −L∗(α) < 0,

where L∗ is the Legendre transform of L. If 0 < ε < L∗(α) and if n is sufficiently
large, we obtain

P

(

Sn

n
≥ α

)

≤ e−n(L∗(α)−ε) .

Then, Borel-Cantelli’s lemma gives

P

(

lim sup
n→∞

{

Sn

n
≥ α

})

= 0,

which clearly implies that lim supn→+∞
Sn

n ≤ α almost surely. The inequality

ess sup

(

lim sup
n→∞

Sn

n

)

≤ L′
+(0)

follows. With a similar argument, we can also prove the other inequality

L′
−(0) ≤ ess inf

(

lim inf
n→∞

Sn

n

)

.
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In order to obtain the second point of the theorem, we first observe that the
sequence Sn

n is dominated in L1(P). Indeed, let X = supn

∣

∣

Sn

n

∣

∣. We have :

P (X > t) ≤
∑

n≥1

P

(∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> t

)

=
∑

n≥1

P

(

Sn

n
> t

)

+ P

(

Sn

n
< −t

)

.

On the other hand, if q > 0 is such that L(q) < +∞ and if ε > 0, the preceding
calculus allows us to find an integer n0 such that for every n ≥ n0,

1

n
log`

(

P

(

Sn

n
> t

))

≤ L(q) + ε − qt .

If t is large enough, we get

∑

n≥n0

P

(

Sn

n
> t

)

≤
∑

n≥n0

`n(L(q)+ε−qt) ≤
`L(q)+ε−qt

1 − `L(q)+ε−qt

which proves that the function

t 7→
∑

n≥1

P

(

Sn

n
> t

)

is integrable with respect to the Lebesgue’s measure. A similar result is true for
the function t 7→

∑

n≥1 P
(

Sn

n < −t
)

. Finally,

E [X ] =

∫ +∞

0

P (X > t) dt < +∞ .

Having just proved that the sequence Sn

n is dominated in L1(P) by the random

variable X , Fatou’s lemma applied to the positive sequence X + Sn

n gives

E [X ] + ess inf

(

lim inf
n→+∞

Sn

n

)

= E

[

X + ess inf

(

lim inf
n→+∞

Sn

n

)]

≤ E

[

X +

(

lim inf
n→+∞

Sn

n

)]

≤ lim inf
n→+∞

E

[

X +
Sn

n

]

= E [X ] + lim inf
n→+∞

E

[

Sn

n

]

,

and the first inequality follows. In order to prove the second inequality, it suffices
to apply Fatou’s lemma to the positive sequence X − Sn

n . •

3.4 How to use Theorem 3.1

In general it is awkward or even impossible to obtain exact values for the func-
tion τ and the numbers τ ′

−(1) and τ ′
+(1). Nevertheless, if we can estimate in a

neighborhood of 1 the function τ by a function χ satisfying χ(1) = 0, we obtain

dim∗(m) ≥ −χ′
+(1) and Dim∗(m) ≤ −χ′

−(1) .
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In particular, this remark can be applied to χ = log`(β) where

β(q) = lim sup
n→+∞

βn(q) and βn(q) = sup
I∈Fn





∑

J⊂I, J∈Fn+1

(

m(J)

m(I)

)q


 .

This is a consequence of the inequalities

τ(q) ≤ lim sup
n→+∞

log βn−1(q) + · · · + log β0(q)

n log `

≤ lim sup
n→+∞

log βn(q)

log `
=

log β(q)

log `
.

Finally, using β(1) = 1, we get the following corollary :

Corollary 3.3. ([Heu95, Heu98]) Let m be a probability measure on [0, 1)d and β
defined as above. We have

dim∗(m) ≥ −
β′

+(1)

ln(`)
and Dim∗(m) ≤ −

β′
−(1)

ln(`)
.

3.5 Contrasts and dimension’s estimates

The function βn gives estimates of the contrasts between the mass of a cube I and
the mass of its sons. In numerous situations, those contrasts can be estimated
and we can then deduce estimates of the dimension of the measure. In particular,
this is what is done by Bourgain in [Bou87] and Batakis in [Bat96] when they give
estimates of the dimension of the harmonic measure. Some elementary situations,
which are particular cases of Proposition 3.4 and 3.5 are also proposed in [Heu95].

Let us describe a general way to obtain concrete estimates. Suppose that every
cube I ∈

⋃

n Fn has a positive mass. Let k ∈ {1, · · · , `d − 1} and if I ∈ Fn, n ≥ 1,
let

δk(I) = max

(

m(I1 ∪ · · · ∪ Ik)

m(I)
, I1, · · · , Ik sons of I

)

.

We first remark that if J1, · · · , J`d are the sons of I and satisfy m(J1) ≥ · · · ≥
m(J`d), we have

δk(I) =
m(J1 ∪ · · · ∪ Jk)

m(I)
and ∀j > k, km(Jj) ≤ m(J1 ∪ · · · ∪ Jk) .

It follows that

1 = δk(I) +
∑

j>k

m(Ji)

m(I)
≤ δk(I) +

(`d − k)

k
δk(I)

and we can claim that
k

`d
≤ δk(I) ≤ 1 . (25)

If δk(I) ≈ k
`d , the measure m is quite homogenous in the cube I . If it is true in

every cube, we can hope that the dimension of m is big. On the other hand, if for

18



every cube I , δk(I) ≈ 1, a small part of I contains a large part of the mass and
we can hope that the dimension of m is small.

These remarks can be made precise in the following propositions.

Proposition 3.4. Let m be a probability measure on [0, 1)d, 1 ≤ k < `d and
k`−d < δ < 1 such that for every I ∈

⋃

n Fn, δk(I) ≥ δ. Then, the measure m
satisfies

Dim∗(m) ≤ −δ log`

(

δ

k

)

− (1 − δ) log`

(

1 − δ

`d − k

)

.

Proposition 3.5. Let m be a probability measure on [0, 1)d, 1 ≤ k < `d and
k`−d < δ < 1 such that for every I ∈

⋃

n Fn, δk(I) ≤ δ. Let p =
[

δ−1
]

. Then, the
measure m satisfies

dim∗(m) ≥ −pδ log`(δ) − (1 − pδ) log`(1 − pδ) .

Proposition 3.5 is in fact an elementary consequence of the more general fol-
lowing result.

Proposition 3.6. Let m be a probability measure on [0, 1)d and 0 < δ ≤ 1. Let
p =

[

δ−1
]

and suppose that for every cube I ∈
⋃

n Fn, we can find a partition
A1, · · · , Aj of the set of sons of I such that

∀i ∈ {1, · · · , j},
m
(
⋃

J∈Ai
J
)

m(I)
≤ δ .

Then
dim∗(m) ≥ −pδ log`(δ) − (1 − pδ) log`(1 − pδ) .

Remark 1. If δ > 1/2, then p = 1. This is in particular the case when ` = 2 and
d = 1.

Remark 2. When k = 1 and ` = 2, similar estimations are also obtained by
Llorente and Nicolau in [LN04]. Logarithm corrections are also proposed.

Proof of Proposition 3.4. This proposition can be found in [Heu98]. Let us
sketch the proof in order to be self contained. Let I ∈ Fn and I1, · · · , Ik the sons

of I such that δk(I) = m(I1∪···∪Ik)
m(I) . Denote S = {I1, · · · , Ik}. If q < 1, Hölder’s

inequality gives

∑

J⊂I, J∈Fn+1

(

m(J)

m(I)

)q

=
∑

J∈S

(

m(J)

m(I)

)q

+
∑

J 6∈S

(

m(J)

m(I)

)q

≤ k1−q (δk(I))q + (`d − k)1−q (1− δk(I))q .

Let us observe that the function t 7→ k1−qtq + (`d − k)1−q(1− t)q is decreasing on
the interval [k`−d, 1]. Under the hypothesis of Proposition 3.4, we obtain

∀q ∈]0, 1[, βn(q) ≤ k1−q (δ)
q
+ (`d − k)1−q (1 − δ)

q
,

and the conclusion follows from Corollary 3.3.

Proof of Proposition 3.6. We begin with the following lemma.

19



Lemma 3.7. Let q > 1, j ≥ 2 and 1
j < δ ≤ 1. Denote by M(δ, j) the maximum

of the function F (a1, · · · , aj) = aq
1+ · · ·+aq

j under the constraints a1+ · · ·+aj = 1
and 0 ≤ ai ≤ δ ∀i. Then

M(δ, j) = pδq + (1 − pδ)q

where p =
[

δ−1
]

.

Proof. The function F being symmetric, we can add the constraint a1 ≥ · · · ≥ aj .
Observe that we have j ≥ p + 1.

If 0 < a2 ≤ a1 < δ, the function ε > 0 7→ (a1 + ε)q + (a2 − ε)q is increasing,
so that the maximum is obtained when a1 = δ. We then prove the lemma by
recurrence on the integer p.

Suppose first that p = 1, that is 1
2 < δ ≤ 1. We have

F (δ, a2, · · · , aj) ≤ δq + (a2 + · · · + aj)
q = δq + (1 − δ)q .

Moreover, under the hypothesis p = 1, we have 0 ≤ 1−δ < δ, F (δ, 1−δ, 0, · · · , 0) =
δq + (1 − δ)q and we can conclude that M(δ, j) = δq + (1 − δ)q .

Suppose now that the conclusion of the lemma is satisfied for every value of
[

δ−1
]

between 1 and p − 1 and let δ such that
[

δ−1
]

= p. The real number δ
satisfies the inequalities 1

p+1 < δ ≤ 1
p and we observe that

F (δ, a2, · · · , aj) = δq + (1 − δ)q

((

a2

1 − δ

)q

+ · · · +

(

aj

1 − δ

)q)

.

The real numbers ai

1−δ satisfy the constraints

0 ≤
ai

1− δ
≤

δ

1 − δ
.

Moreover,
[

1 − δ

δ

]

= p − 1 and
1

j − 1
<

δ

1 − δ
.

We can then use the recurrence hypothesis and obtain

F (δ, a2, · · · , aj) ≤ δq + M

(

δ

1 − δ
, j − 1

)

= δq + (1 − δ)q

(

(p − 1)

(

δ

1 − δ

)q

+

(

1 − (p − 1)
δ

1 − δ

)q)

= pδq + (1 − pδ)q .

It follows that M(δ, j) ≤ pδq +(1− pδ)q . In fact, the last inequality is an equality
if we remark that 1 − pδ ≤ δ and

F (δ, · · · , δ, (1− pδ), 0, · · · , 0) = pδq + (1 − pδ)q .

We can now finish the proof of Proposition 3.6. We want to estimate the
function β of Part 3.4. Let I ∈ Fn. If q > 1, Lemma 3.7 ensures that

∑

J⊂I, J∈Fn+1

(

m(J)

m(I)

)q

=

j
∑

i=1

∑

J∈Ai

(

m(J)

m(I)

)q
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≤

j
∑

i=1

(

m
(
⋃

J∈Ai
J
)

m(I)

)q

≤ pδq + (1 − pδ)q .

We can deduce that

β(q) ≤ pδq + (1 − pδ)q if q > 1

and conclude that

dim∗(m) ≥ −
β′

+(1)

log `
≥ −pδ log`(δ) − (1 − pδ) log`(1 − pδ) .

4 Situations where it is possible to obtain an ex-

act formula for the dimension

4.1 Equalities −τ
′

−
(1) = Dim∗(m) and −τ

′

+(1) = dim∗(m) are

often false

In general −τ ′
+(1) 6= dim∗(m) and −τ ′

−(1) 6= Dim∗(m). For example, Olsen
in [Ols00] gives an example of a discrete measure such that −τ ′

−(1) = 1 and
−τ ′

+(1) = 0. We give here a more convincing example.

Proposition 4.1. Let µ be a continuous measure with support [0, 1]. We can
construct a measure m which is equivalent to µ and for which the function τ
satisfies

τ(q) = sup(1 − q, 0) if q > 0 .

In particular, the measures µ and m have the same dimensions but the function τ
associated to m is degenerated.

Applying this proposition to a Bernoulli product for which the parameter p
satisfies

−(p log2(p) + (1 − p) log2(1 − p)) = h,

we obtain the following corollary.

Corollary 4.2. Let 0 < h < 1. There exists a probability measure m on [0, 1)
such that

τ(q) = sup(1 − q, 0) if q > 0 and lim
n→∞

log m(In(x))

log |In(x)|
= h dm-almost surely .

Proof of Proposition 4.1. Suppose that ` = 2 (the construction is quite similar
if ` > 2). Let µ be a measure with support [0, 1] and for which the points have
no mass. The construction of the measure m needs two steps. If I ∈ Fn, let
µI = (µ(I))

−1
11Iµ be the “localized measure” on I . Define the measure m1 with

the formula

m1 =

∞
∑

n=1

∑

I∈Fn

cn−22−nµI ,
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where c is chosen such that c
∑

n≥1 n−2 = 1. The measure m1 is clearly equivalent
to the measure µ. Moreover, if I ∈ Fn, we remark that

m1(I) ≥ cn−22−n

which implies that for every 0 < q < 1,

∑

I∈Fn

m1(I)q ≥ 2n
[

cn−22−n
]q

.

With obvious notations, we get τ1(q) ≥ 1−q if 0 < q < 1. Moreover, the inequality
τ1(q) ≤ 1 − q is always true in dimension 1. So,

τ1(q) = 1 − q if 0 < q < 1 .

In the second step, we denote by Jn the interval Jn = [2−n, 2−n+1) and observe
that the open interval (0, 1) his the union of all the Jn. Let

αn = sup

(

1

n2m1(Jn)
, 1

)

and

m =
+∞
∑

n=1

cαn11Jn
m1

where c is chosen such that m is a probability measure. Using that m ≥ c m1,
we find (with obvious notations) τ(q) ≥ τ1(q) if q > 0. In particular, the equality
τ(q) = 1 − q if 0 < q < 1 is always true. On the other hand,

∑

I∈Fn

m(I)q ≥ m(Jn)q ≥
[ c

n2

]q

,

which implies that τ(q) ≥ 0 if q ≥ 1. The inequality τ(q) ≤ 0 being always true if
q ≥ 1 we finally get

τ(q) = 0 if q > 1

and the proof is finished. •

4.2 A sufficient condition for the equalities −τ
′

+(1) = dim∗(m)
and −τ

′

−
(1) = Dim∗(m)

Corollary 4.2 proves that homogeneity properties are necessary if we want to obtain
the equalities

τ ′
+(1) = dim∗(m) and τ ′

−(1) = Dim∗(m) .

A possible way to obtain such equalities is the following. Suppose for simplicity
that d = 1 and let us code the intervals of Fn with the words ε1 · · · εn where
εi ∈ {0, · · · , ` − 1}. More precisely, let

Iε1···εn
=

[

n
∑

i=1

εi

2i
,

n
∑

i=1

εi

2i
+

1

`n

)

.
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Let us introduce the following notation

IJ = Iε1···εn+p
if I = Iε1 ···εn

and J = Iεn+1···εn+p
. (26)

Suppose that there exists a constant C ≥ 1 such that

∀I, J ∈
⋃

n

Fn, m(IJ) ≤ C m(I) m(J) . (27)

We have the following result.

Theorem 4.3. ([Heu98]) Under the hypothesis (27),

dim∗(m) = −τ ′
+(1) and Dim∗(m) = −τ ′

−(1) .

Remark. Hypothesis (27) is in particular satisfied if m is a Bernoulli product (in
fact, the equality m(IJ) = m(I)m(J) is true in this case). More generally, it is
also satisfied if m is a quasi-Bernoulli measure (see Part 5). Nevertheless, there
are measures satisfying (27) which are not quasi-Bernoulli measures. In particular
every barycenter of two quasi-Bernoulli measures satisfies inequality (27) but is
in general not a quasi-Bernoulli measure (see the example developed page 333 in
[Heu98]).

Suppose that (27) is satisfied and let q > 0. As a consequence of the sub-
multiplicative property of the sequence an = Cq

∑

I∈Fn
m(I)q , we know that

(an)1/n converges to its lower bound. It follows that the sequence τn(q) converges
and that

∑

I∈Fn

m(I)q ≥ C−q`nτ(q) . (28)

In particular, near q = 1, we have the inequality

τn(q) ≥ τ(q) −
c

n
. (29)

In fact, inequality (29) is sufficient to obtain Theorem 4.3. This remark can also be
found in Benôıt Testud thesis ([Tes04]) and we have the general following result.

Theorem 4.4. Let m be a probability measure on [0, 1)d. Suppose that there exists
a constant c > 0 and a neighborhood V of 1 such that

∀n ≥ 1, ∀q ∈ V , τn(q) ≥ τ(q) −
c

n
.

Then, the measure m satisfies

dim∗(m) = −τ ′
+(1) and Dim∗(m) = −τ ′

−(1) .

As in Part 3.3, Theorem 4.4 is a consequence of a result which is true in a
general probability context. More precisely, we have
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Theorem 4.5. Let (Sn)n≥0 be a sequence of random variables on a probability
space (Ω,A, P). Let

Ln(q) =
1

n
log` E

[

`qSn
]

and L(q) = lim sup
n→∞

Ln(q)

and suppose that L(q) is finite on a neighborhood V of 0. Suppose moreover that
there exists a constant C > 0 such that

∀q ∈ V , Ln(q) ≥ L(q) −
C

n
(30)

Then we have

ess inf

(

lim inf
n→∞

Sn

n

)

= L′
−(0) and ess sup

(

lim sup
n→∞

Sn

n

)

= L′
+(0) .

Remark. Inequality (30) ensures that lim
n→+∞

Ln(q) exists if q ∈ V .

Proof of Theorem 4.5. We first prove the inequality ess sup
(

lim supn→∞
Sn

n

)

≥
L′

+(0). Replacing Sn by Sn + nA where A is a sufficiently large number, we can
suppose that L′

+(0) > 0. Let α0 = L′
+(0), α < α0 and q > 0. The convexity of

the function L ensures that L(q) ≥ α0q. We get

`−C`α0nq ≤ E
[

`qSn
]

= E
[

`qSn11Sn<nα

]

+ E
[

`qSn11Sn≥nα

]

≤ [1 − P[Sn ≥ nα]] `qnα + P[Sn ≥ nα]1/2
E
[

`2qSn
]1/2

.

We claim that we can find α1 > 0 and q0 > 0 such that if 0 ≤ q ≤ q0, E
[

`qSn
]

≤
`qnα1 for all n. More precisely, if Ln(q0) ≤ λ for all n, convexity inequalities imply
that Ln(q) ≤ λ

q0
q ≡ α1q.

If q = δ
n ≤ q0

2 , we get

`δα
P[Sn ≥ nα] − `δα1P[Sn ≥ nα]1/2 ≤ `δα − `−C`δα0 . (31)

We can chose δ sufficiently large such that `δα − `−C`δα0 < 0. The zeros of the
polynome Φ(t) = `δαt2− `δα1t are nonnegative and we can deduce from inequality
(31) the existence of a positive real number γ such that

P[Sn ≥ nα] ≥ γ2

if n is large enough. Finally

P

[

lim sup
n→+∞

{

Sn

n
≥ α

}]

> 0 .

In that set, Sn

n ≥ α infinitely often and lim supn→+∞
Sn

n ≥ α. We have proved
that

ess sup

(

lim sup
n→∞

Sn

n

)

≥ α

and the conclusion follows when α → α0.
In order to prove that ess inf

(

lim infn→∞
Sn

n

)

= L′
−(0), it suffices to apply the

previous result to the sequence −Sn. •
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4.3 Measures whose dimensions can be calculated with an

entropy formula

In this part, we are interested in probability measures such that

dim∗(m) = h∗(m) or Dim∗(m) = h∗(m) .

This kind of property is due to a very special behavior of the sequence Sn

n =
log m(In(x)

|In(x)| . This is the object of the following theorem.

Theorem 4.6. ([BH02]) Let m be a probability measure on [0, 1)d. The following
are equivalent.

(i) dim∗(m) = h∗(m)

(ii) dim∗(m) = dim∗(m) = h∗(m)

(iii) There exists a sub-sequence (nk)k≥1 such that

lim
k→+∞

log m(Ink
(x))

log |Ink
(x)|

= lim
k→+∞

Snk
(x)

nk
= dim∗(m) dm − almost surely .

Remarks.
1. In particular, measures for which dimension can be calculated with an

entropy formula are unidimensional. Nevertheless, the equality dim∗(m) = h∗(m)
corresponds to a deeper homogeneity property : the measure m is unidimensional
if and only if for almost every x, there exists a subsequence nk such that Snk

/nk

converges to dim∗(m), but it satisfies dim∗(m) = h∗(m) if and only if there exists
a sub-sequence nk such that for almost every x, Snk

/nk converges to dim∗(m). In
particular, we can construct unidimensional measures for which the dimension is
not equal to the entropy (see [BH02]).

2. Conclusion (iii) is some kind of ”Shannon-McMillan result” obtained in a
non dynamical context.

3. We can of course also prove the equivalence between

(i) Dim∗(m) = h∗(m)

(ii) Dim∗(m) = Dim∗(m) = h∗(m)

(iii) There exists a sub-sequence (nk)k≥1 such that

lim
k→+∞

log m(Ink
(x))

log |Ink
|

= lim
k→+∞

Snk
(x)

nk
= Dim∗(m) dm − almost surely .

Like in Section 3.3 and 4.2, Theorem 4.6 is a consequence of a result which is
valid in a general probability context.

Theorem 4.7. Let (Zn)n≥0 be a sequence of random variables on a probability
space (Ω,A, P). Suppose that the sequence (Zn)n≥0 is dominated in L1(P). Let

Z∗ = lim inf
n→+∞

Zn .

The following are equivalent :
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(i) ess inf (Z∗) = lim inf
n→+∞

E [Zn]

(ii) Z∗ = lim inf
n→+∞

E [Zn] dP−almost surely

(iii) There exists a sub-sequence (nk)k≥1 such that

lim
k→+∞

Znk
= ess inf (Z∗) dP − almost surely .

Remark. To obtain Theorem 4.6, it suffices to apply Theorem 4.7 to the sequence

Zn = Sn

n where Sn(x)
n = log m(In(x))

log |In(x)| .

Proof of Theorem 4.7. Let X be a non negative random variable such that E[X ] <
+∞ and |Zn| ≤ X for all n. Fatou’s Lemma applied to the positive sequence
X + Zn shows that

E [X ] + ess inf (Z∗) ≤ E [X + Z∗] ≤ E [X ] + lim inf
n→+∞

E [Zn] . (32)

Proof of (iii) ⇒ (i). The dominated convergence theorem applied to the sequence
Znk

gives

ess inf (Z∗) = E

[

lim
k→+∞

Znk

]

= lim
k→+∞

E [Znk
] ≥ lim inf

n→+∞
E [Zn] .

The reverse inequality follows from (32).

Proof of (i) ⇒ (ii). We are in the equality case in (32) so that Z∗ = lim inf
n→+∞

E [Zn]

dP−almost surely.

Proof of (ii) ⇒ (iii). Replacing Zn by Zn + X , we can suppose that Zn ≥ 0. Let
δ = lim infn→+∞ E[Zn]. We begin with the following lemma.

Lemma 4.8. Let 0 < η < 1 and n0 ≥ 1. We can find n1 ≥ n0 such that

P [Zn1
> δ + η] ≤ (2 + δ)η .

Proof. Hypothesis (ii) says that Z∗ = δ almost surely. We can then find n′
0 ≥ n0

such that

P





⋂

n≥n′

0

{

Zn > δ − η2
}



 > 1 − η2 .

Moreover, we can find n1 ≥ n′
0 such that

E [Zn1
] < δ + η2 .

Let
A =

{

Zn1
> δ − η2

}

and B = {Zn1
> δ + η} .

Recalling that Zn ≥ 0, we get

δ + η2 ≥ E [Zn1
]

≥

∫

A\B

Zn1
dP +

∫

B

Zn1
dP
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≥ (δ − η2)(P [A] − P [B]) + (δ + η)P [B] .

Moreover, P[A] ≥ 1 − η2, so that

P [B] ≤
2η2 + δη2

η + η2
≤ (2 + δ)η .

In order to prove Theorem 4.7, we use Lemma 4.8 with η = 2−k and then
construct a subsequence nk such that

∀k, P
[

Znk
> δ + 2−k

]

≤ (2 + δ)2−k .

Using Borel-Cantelli’s lemma, we deduce that

lim sup
k→+∞

Znk
≤ δ dP − almost surely .

Moreover
δ = S∗ ≤ lim inf

k→+∞
Znk

dP − almost surely

and we can conclude that the subsequence Znk
is almost surely converging to δ.

The proof is finished if we observe that under hypothesis (ii), Z∗ = ess inf (Z∗) = δ
dP−almost surely. •

4.4 Entropy is a bad notion of dimension

Entropy can not allow us to classify measures. For example, there exist equivalent
probability measures with different entropies. Let us precise this phenomenon in
the following example.

Proposition 4.9. Let m0 and m1 be two probability measures on [0, 1)d such that
the entropies h(m0) et h(m1) exist and are different. If 0 < α < 1, let

mα = αm1 + (1 − α)m0 .

Then,
h(mα) = αh(m1) + (1 − α)h(m0) .

In particular, the family (mα)0<α<1 is constituted of equivalent measures for which
entropy varies in a non trivial interval.

Proof. The notations are the same as in Part 3.2. We remark that the function
x 7→ −x log`(x) is concave. It follows that

hn(mα) ≥ αhn(m1) + (1 − α)hn(m0),

and
h∗(mα) ≥ αh(m1) + (1 − α)h(m0) . (33)

On the other hand, if q < 1 and if x and y are two positive numbers, it is well
known that

(αx + (1 − α)y)q ≤ αqxq + (1 − α)qyq .
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We can deduce that
∑

I∈Fn

m(I)q ≤ αq
∑

I∈Fn

m1(I)q + (1 − α)q
∑

I∈Fn

m0(I)q .

These two quantities are equal to 1 if q = 1. We can then take the derivative at
q = 1 and obtain

hn(mα) ≤ αhn(m1) −
α log` α

n
+ (1 − α)hn(m0) −

(1 − α) log`(1 − α)

n
,

Finally,
h∗(mα) ≤ αh(m1) + (1 − α)h(m0) . (34)

Inequalities (33) and (34) give the conclusion of Proposition 4.9.

5 Quasi-Bernoulli measures

In this section, we suppose for simplicity that d = 1. The notations are the same
as in Section 4.2. We say that the probability measure m is a quasi-Bernoulli
measure if we can find C ≥ 1 such that

∀I, J ∈
⋃

n

Fn,
1

C
m(I) m(J) ≤ m(IJ) ≤ C m(I) m(J) . (35)

Quasi-Bernoulli property does appear in many situations. In particular, this is
the case for the harmonic measure in regular Cantor sets ([Car85, MV86]) and for
the caloric measure in domains delimited by Weierstrass type graphs ([BH00]).

Let us introduce the natural applications between [0, 1) and the Cantor set
C = {0, . . . , ` − 1}N

∗

:

J : [0, 1) −→ C and S : C −→ [0, 1] .

They are defined by :

J(x) = (εi)i≥1 if {x} =
⋂

n

Iε1...εn
and S((εi)i≥1) =

⋂

n

Īε1...εn
.

The application J is a bijection between [0, 1) and the complement of a countable
subset of C. Observing that a quasi Bernoulli measure does not contain any Dirac
mass, we can carry the measure m through the application J and work on the
Cantor set C. We always denote by m this new measure and every property that
is proved for this new measure can be pulled back.

Let M be the set of words written with the alphabet {0, · · · , ` − 1}. There
is a link between the words of M and the cylinders in the Cantor set C, so that
Property (35) can be rewritten

∀a, b ∈ M,
1

C
m(a)m(b) ≤ m(ab) ≤ C m(a)m(b) . (36)

(ab is the concatenation of the words a and b). We say that the measure m is a
quasi Bernoulli measure on the Cantor set C.
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Let Mn be the set of words of length n, and if x = x1x2 · · · ∈ C, let In(x) =
x1 · · ·xn be the unique cylinder Mn that contains x.

In this new context, it is always possible to define τn and τ . Sub-multiplicative
properties like in Part 4.2 ensure that the sequence τn(q) is convergent when m is
a quasi-Bernoulli measure. We then have

τ(q) = lim
n→+∞

τn(q) with τn(q) =
1

n log `
log

(

∑

a∈Mn

m(a)q

)

. (37)

and the following inequalities are true

C−|q|`nτ(q) ≤
∑

a∈Mn

m(a)q = `nτn(q) ≤ C |q|`nτ(q) . (38)

Let us finally remark that we can suppose that for every a ∈ M, m(a) > 0.
Indeed, if it is not the case, quasi-Bernoulli property ensures that there exists a
cylinder a ∈ M1 such that m(a) = 0. Finally, several letters are not useful in the
alphabet and one can work in a smaller Cantor set.

5.1 0-1 law and mixing properties

The interest in working on the Cantor set C is the dynamical context related to
the shift

σ : (εn)n≥1 ∈ C 7−→ (εn)n≥2 ∈ C . (39)

In particular, if a ∈ Mn, then ab = a ∩ σ−n(b).
We can isolate the following properties that precise some previous remarks due

to Carleson and Makarov-Volberg ([Car85, MV86]).

Proposition 5.1. Let m be a quasi-Bernoulli measure on the Cantor set C. Let
B0 be the σ-field of Borel sets , Bn = σ−n(B0) and B∞ =

⋂

n Bn.

(i) For every E ∈ B∞, m(E) = 0 or m(E) = 1. (0-1 law)

(ii) Moreover, if m is σ-invariant, the strong mixing property is true. That is

∀A, B ∈ B0, lim
n→∞

m
(

A ∩ σ−n(B)
)

= m(A) m(B) .

Remark. In particular, every σ-invariant quasi-Bernoulli measure is ergodic.

Proof. Let E ∈ B∞ be such that m(E) > 0. For every n ∈ N we can find a Borel
set F such that E = σ−n(F ). We can also find a cylinder a0 ∈ Mn such that

m(a0 ∩ E)

m(a0)
≥

1

2
m(E) .

Quasi-Bernoulli property ensures that

∀a ∈ Mn, ∀b ∈ M,
m(a ∩ σ−n(b))

m(a)
≥

1

C2

m(a0 ∩ σ−n(b))

m(a0)
.

Observing that an open set is the union of a countable family of disjoint cylin-
ders, the previous inequality is also true if b is an open set. Finally, using the
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regularity properties of the measure m, it is true for every Borel set b. Replacing
b by F , we obtain

∀a ∈ Mn,
m(a ∩ E)

m(a)
≥

1

C2

m(a0 ∩ E)

m(a0)
≥

1

2C2
m(E) .

A similar argument proves that the inequality m(a ∩ E) ≥ (2C2)−1 m(E) m(a) is
also true for every Borel set a. In particular, m((C\E)∩E) ≥ (2C2)−1 m(E) m(C\
E), which says that m(C \ E) = 0. That is what we wanted to prove.

The proof of (ii) is then classical. Let Zn = E [11A|Bn]. It is a martingale with
respect to de decreasing sequence of σ-fields Bn. It is converging in the L2 sense
(and also almost-surely) to Z∞ = E [11A|B∞]. But B∞ is the trivial σ-field. Then
Z∞ is a constant random variable. Moreover, E[Zn] = m(A). Taking the limit,
we get

Z∞ = E [Z∞] = m(A) dm − almost-surely .

Finally,

∣

∣m(A ∩ σ−n(B)) − m(A)m(B)
∣

∣ =
∣

∣E
[

11A11σ−n(B)

]

− E
[

m(A)11σ−n(B)

]∣

∣

=
∣

∣E
[

(Zn − Z∞)11σ−n(B)

]∣

∣

≤
(

E

[

|Zn − Z∞|
2
])1/2

,

and the strong mixing property is proved. •
Let us now introduce the following definition.

Definition 5.2. Let m1 and m2 be two probability measures on C. We say that
m1 and m2 are strongly equivalent if we can find c > 0 such that :

1

c
m1 ≤ m2 ≤ c m1 .

We then have the following corollary.

Corollary 5.3. Let m be a quasi-Bernoulli measure on C. There exists a unique
probability measure, which is quasi-Bernoulli, σ-invariant and strongly equivalent
to m. Moreover, it is obtained as the weak limit of the sequence mn defined by

mn(E) =
1

n

n
∑

k=1

m
(

σ−k(E)
)

.

Proof. Observe that every probability measure which is strongly equivalent to a
quasi-Bernoulli measure is also a quasi-Bernoulli measure. Moreover, it is well
known that two equivalent ergodic probabilities are equal. These two facts prove
the uniqueness.

In order to prove the existence, we first compare the measures mn and m. If
a ∈ M, we have :

m(σ−k(a)) = m

(

⋃

b∈Mk

ba

)

=
∑

b∈Mk

m(ba) ≤ C
∑

b∈Mk

m(b)m(a) = Cm(a) .
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It follows that mn ≤ Cm with a constant C that does not depend on n. The
inequality mn ≥ 1

C m is also true. We can then deduce that the measures mn are
quasi-Bernoulli with a constant that does not depend on n. It follows that every
weak limit of a subsequence mnk

is quasi-Bernoulli and strongly equivalent to m.
Let us finally consider an adherent value µ of the sequence mn and a subse-

quence mnk
which is weakly convergent to µ. If f is a continuous function on C,

then

∫

f ◦ σ(x)dmnk
(x) =

1

nk

nk
∑

j=1

∫

f ◦ σj+1(x)dm(x)

=

∫

f(x)dmnk
(x) +

1

nk

[∫

f ◦ σnk+1(x)dm(x) −

∫

f ◦ σ(x)dm(x)

]

.

Taking the limit, we obtain
∫

f ◦ σ(x)dµ(x) =
∫

f(x)dµ(x), which says that µ is
σ-invariant.

Finally, using the uniqueness, there is only one adherent value for the sequence
mn. Then, the sequence mn is converging.

5.2 Showing that τ is differentiable at point 1

Corollary 5.3, Theorem 4.3 and the Shannon-McMillan’s theorem allow us to prove
that τ ′(1) exists. This was done in [Heu98].

Theorem 5.4. Let m be a quasi-Bernoulli measure on C. Quantities τ ′(1) and
h(m) exist and we have

lim
n→∞

− log` m(In(x))

n
= −τ ′(1) = h(m) dm-almost surely .

Remark. If the Cantor set C is equipped with the natural ultra metric which gives

the diameter `−n to each cylinder in Mn, then − log` m(In(x))
n is nothing else but the

quotient of the logarithm of the mass of In(x) and the logarithm of its diameter.
So, the measure m is unidimensional with dimension dim (m) = −τ ′(1) = h(m).

Let us now introduce the sets

Eα =

{

x ∈ C ; lim
n→∞

− log` m(In(x))

n
= α

}

. (40)

Using Billingsley’s theorem (see [Fal90]), Theorem 5.4 shows that

dim (E−τ ′(1)) = dim(m) = −τ ′(1) . (41)

This is the first step in the multifractal analysis of the measure m.

Proof of Theorem 5.4. Let µ be the unique quasi-Bernoulli probability which is
strongly equivalent to m and σ-invariant. The measures m and µ have the same
function τ and the same dimensions. Moreover, results of Part 4.2 can be applied
to the measures m and µ. It follows that

dim∗(m) = dim∗(µ) = −τ ′
+(1) and Dim∗(m) = Dim∗(µ) = −τ ′

−(1) .

31



Let us apply Shannon-McMillan’s theorem (see [Zin97]) to the measure µ. It says
that the entropy

h(µ) = lim
n→+∞

−1

n

∑

a∈Mn

µ(a) log`(µ(a))

exists and that for dµ almost every x = x1x2 · · · ∈ C,

− log` µ(In(x))

n
=

− log` µ(x1 · · ·xn)

n
−−−−−→
n→+∞

h(µ) . (42)

So, the measure µ is unidimensional. Measures m and µ being strongly equivalent,
one can replace µ by m in (42). Finally, we have

dim∗(m) = −τ ′
+(1) = h(m) = −τ ′

−(1) = Dim∗(m),

which proves that τ ′(1) exists. •
Let us finally remark that Theorem 5.4 and Corollary 3.3 allow us to deduce

the following corollary.

Corollary 5.5. Let m be a quasi-Bernoulli probability on C. Let m0 be the ho-
mogenous probability on C which gives the mass `−n to each cylinder in Mn. We
have :

dim(m) = 1 ⇐⇒ τ ′(1) = −1 ⇐⇒ m is strongly equivalent to m0 .

Proof. Suppose that m is not strongly equivalent to m0. We can for example
suppose that the inequality m0 ≤ cm is never satisfied. We can then find an
integer n0 and a cylinder a0 ∈ Mn0

such that m(a0) < 1
`C m0(a0) where C is the

constant which appears in the quasi-Bernoulli property. If a ∈ M, we have

m(aa0)

m(a)
≤

1

`
m0(a0) = `−(n0+1) .

If 0 < q < 1, then

∑

b∈Mn0

m(ab)q ≤ m(aa0)
q + (`n0 − 1)

[

m(a) − m(aa0)

`n0 − 1

]q

≤

(

`−(n0+1)q + (`n0 − 1)

[

1 − `−(n0+1)

`n0 − 1

]q
)

m(a)q

:= γ(q)m(a)q .

We can then sum this inequality on every cylinder of the same generation and
then iterate the process. We get

∑

a∈Mpn0

m(a)q ≤ (γ(q))p, ∀p ≥ 0,

which gives

τ(q) ≤
1

n0
log` γ(q) .

Finally we have

dim(m) = −τ ′(1) ≤
−γ′(1)

n0 log `
< 1 .
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5.3 Multifractal analysis of quasi-Bernoulli measures

In [BMP92], Brown, Michon and Peyrière proved that the multifractal formalism
is valid for quasi-Bernoulli measures at every point α which can be written α =
−τ ′(q). This result was one of the first rigorous results on multifractal analysis
of measures. Unfortunately, they could not prove that the function τ is of class
C1. This has been done a few years later in [Heu98] and we can resume these two
results in the following theorem.

Theorem 5.6. ([BMP92, Heu98]) Let m be a quasi-Bernoulli measure on C. The
function τ is of class C1. Moreover, for every −τ ′(+∞) < α < −τ ′(−∞),

dim(Eα) = τ∗(α)

where the level set Eα is defined like in formula (40) and τ ∗(α) = infq(αq + τ(q))
is the Legrendre transform of the function τ .

Remark. In [Tes06a], Testud introduces a weaker notion which is called weak quasi-
Bernoulli property. In this more general context, he proves that the function τ is
differentiable on [0, +∞) and satisfies dim(Eα) = τ∗(α) for every −τ ′(+∞) < α <
−τ ′

+(0). Moreover, he also proves in [Tes06b] that the function τ is not necessary
differentiable on (−∞, 0]. His results can be applied to a large class of self-similar
measures with overlaps.

5.4 An easy proof of Theorem 5.6

We can give a proof of Theorem 5.6 which is much simpler than the original one
and which points out the important role of auxiliary measures in multifractal
analysis of measures. This approach is quite different to the one used in [BMP92]
and [Heu98]. It was already present in my ”mémoire d’habilitation” [Heu99] but
never published. It makes use of the relation between the real number τ ′(1)
(when it exists) and the asymptotic behavior of m(In(x)) (see Theorem 3.1 and
the associated remarks).

We begin with the construction of auxiliary measures mq , q ∈ R (so called
Gibbs measures) which satisfy mq(a) ≈ m(a)q |a|τ(q) for every a ∈ M (here |a| =
`−n if a ∈ Mn).

Lemma 5.7. Let q ∈ R. There exists a probability measure mq and a constant
c ≥ 1 such that

∀a ∈ M
1

c
m(a)q |a|τ(q) ≤ mq(a) ≤ c m(a)q|a|τ(q) .

The measure mq is called the Gibbs measure at state q.

Proof. In [Mic83], Michon proposed a construction of such measures. Let us
present a simpler proof.

Let us introduce some notation. If F1 and F2 are two functions which depend
on q and on cylinders in M =

⋃

n Mn, we will write F1 ≈ F2 if there exists a
constant C > 0 which eventually depends on q but which does not depend on the
cylinders such that 1

C F1 ≤ F2 ≤ CF1. Let us first observe that

`(n+p)τn+p(q) =
∑

a∈Mn,b∈Mp

m(ab)q ≈
∑

a∈Mn

∑

b∈Mp

m(a)qm(b)q = `nτn(q) `pτp(q) .
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Let µn be the unique measure such that µn(a) = m(a)q |a|τn(q) = m(a)q`−nτn(q) if
a ∈ Mn and which is homogenous on the cylinders of Mn. The measure µn is a
probability measure. If a ∈ Mn and if p ≥ 1, we have

µn+p(a) =
∑

b∈Mp

µn+p(ab)

=
∑

b∈Mp

m(ab)q`−(n+p)τn+p(q)

≈ m(a)q`−nτn(q)
∑

b∈Mp

m(b)q`−pτp(q)

= m(a)q`−nτn(q) .

Moreover, we saw in (38) that `nτn(q) ≈ `nτ(q). Finally,

∀a ∈ Mn, ∀k > n, µk(a) ≈ m(a)q`−nτ(q) = m(a)q |a|τ(q) .

Let mq be an adherent value of the sequence (µk)k≥1. The function 11a being
continuous on the Cantor set C, we can take the limit and obtain

∀a ∈ M,
1

c
m(a)q |a|τ(q) ≤ mq(a) ≤ c m(a)q|a|τ(q), (43)

which finishes the proof of Lemma 5.7. •
We can now prove Theorem 5.6. An elementary computation shows that the

function τ associated with the measure mq (which is denoted by τq) satisfies :

τq(t) = τ(qt) − tτ(q) .

Moreover,

mq(ab) ≈ m(ab)q|ab|τ(q) ≈ [m(a)m(b)]q(|a||b|)τ(q) ≈ mq(a)mq(b),

which says that mq is a quasi-Bernoulli measure. The existence of τ ′
q(1) proves

the existence of τ ′(q) and the relation

−τ ′
q(1) = −qτ ′(q) + τ(q) = τ∗(−τ ′(q)) .

Let α = −τ ′(q). Inequalities (43) ensure that

Eα =

{

x ∈ C ; lim
n→∞

− log` mq(In(x))

n
= −τ ′

q(1)

}

.

Finally, Relation (41) written for the measure mq gives

dim(Eα) = dim(mq) = −τ ′
q(1) = τ∗(α) .

Of course, we need another argument to prove the existence of τ ′(0). Taking the
logarithm in (38), we have

|τn(q) − τ(q)| ≤
|q| log` C

n
.
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In particular, τn(0) = τ(0) and we deduce that
∣

∣

∣

∣

τn(q) − τn(0)

q
−

τ(q) − τ(0)

q

∣

∣

∣

∣

≤
log` C

n
.

If q → 0+ and q → 0−, we get










∣

∣τ ′
n(0) − τ ′

+(0)
∣

∣ ≤
log` C

n
∣

∣τ ′
n(0) − τ ′

−(0)
∣

∣ ≤
log` C

n

and we can conclude that τ ′
+(0) = τ ′

−(0). •

5.5 Coming back to the case of Bernoulli products

Let us finish this paper by applying the previous results to the Bernoulli products
which are the simplest cases of quasi-Bernoulli measures. The notations are the
same as in Part 1 and m is a Bernoulli product with parameter p. Let

Eα =

{

x ; lim
n→∞

log m(In(x))

log |In(x)|
= α

}

and Fβ =
{

x ; lim
n→∞

sn

n
= β

}

.

Let us remember that the quantities m(In(x)) and sn satisfy the relation

m(In(x)) = psn(1 − p)n−sn .

So, if 0 ≤ β ≤ 1 and if α = −β log2 p − (1 − β) log2(1 − p), we have Eα = Fβ .
Moreover, let us remark that the sets Fβ are empty if β 6∈ [0, 1]. It follows that
the sets Eα are empty if α 6∈ [− log2 p,− log2(1 − p)].

Let µβ be Bernoulli product with parameter β. The results of Part 1 say that

dim (µβ) = dim (Fβ) = h(β) = −(β log2(β) + (1 − β) log2(1 − β))

and we can write

dim (Eα) = −(β log2(β) + (1 − β) log2(1 − β))

where
α = −(β log2 p + (1 − β) log2(1 − p)) .

In other words,

dim (Eα) = h

(

α + log2(1 − p)

log2(1 − p) − log2(p)

)

(44)

where h(t) = −t log2 t − (1 − t) log2(1 − t).

Remark 1. We know that τ(q) = log2 (pq + (1 − p)q). Another way to obtain (44)
is to calculate the Legendre transform τ ∗ and to use Theorem 5.6.

Remark 2. If α = −(β log2 p+(1−β) log2(1−p)) and if q is such that α = −τ ′(q),
it is easy to show that µβ is nothing else but the Gibbs measure at state q for the
measure m (see Lemma 5.7).
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des recherches. Technical report, Orsay, 1999.

[HL01] T.Y. Hu and K.S. Lau. Multifractal structure of convolution of the
cantor measure. Adv. Appl. Math., 27 : 1–16, 2001.

[Hut81] J.E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J.,
30 : 713–747, 1981.

37



[JW88] P. Jones and T. Wolff. Hausdorff dimension of harmonic measures in
the plane. Acta Math., 161 : 131–144, 1988.

[KP76] J.P. Kahane and J. Peyrière. Sur certaines martingales de Benoit Man-
delbrot. Adv. Math., 22 : 131–145, 1976.

[Kin95] J. King. The singularity spectrum for general Sierpinski carpets. Adv.
Math., 116 : 1–8, 1995.

[LN98] K.S. Lau and S.M. Ngai. Lq-spectrum of the Bernoulli convolution
associated with the golden ratio. Studia Math., 131 : 225–251, 1998.

[LN99] K.S. Lau and S.M. Ngai. Multifractal measures and a weak separation
condition. Adv. Math., 141 : 45–96, 1999.

[LN00] K.S. Lau and S.M. Ngai. Second-order self-similar identities and multi-
fractal decompositions. Indiana Univ. Math. J., 49 : 925–972, 2000.

[LN04] J.G. Llorente and A. Nicolau. Regularity properties of measures, entropy
and the law of the iterated logarithm. Proc. London Math. Soc. (3), 89

: 485–524, 2004.

[Lop89] A.O. Lopes. The dimension spectrum of the maximal measure. SIAM
J. Math. Anal., 20 : 1243–1254, 1989.

[Mak85] N. G. Makarov. On the distortion of boundary sets under conformal
mappings. Proc. London Math. Soc. (3), 51 : 369–384, 1985.

[Mak98] N. G. Makarov. Fine structure of harmonic measure. Algebra i Analiz,
10 : 1–62, 1998 ; translation in St. Petersburg Math J., 10 : 217–268,
1999.

[MV86] N. Makarov and A. Volberg. On the harmonic measure of discontinous
fractals. preprint LOMI E-6-86, Lenningrad, 1986.

[Man74] B.B. Mandelbrot. Intermittent turbulence in self-similar cascades : di-
vergence of high moments and dimension of the carrier. J. Fluid Mech.,
62 : 331–358, 1974.

[Mat95] P. Mattila. Geometry of sets and measures in Euclidean spaces. Frac-
tals and rectifiability. Cambridge Studies in Advanced Mathematics 44,
Cambridge University Press, Cambridge, 1995.

[MW88] R.D. Mauldin and S.C. Williams. Hausdorff dimension in graph directed
constructions. Trans. Amer. Math. Soc., 309 : 811–829, 1988.

[McM84] C. McMullen. The Hausdorff dimension of general Sierpiǹski carpets.
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