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Fully developed turbulence

Figure – a velocity vector field



Fully developed turbulence

Figure – a velocity time series



The local Hölder exponent
Definition
Let α > 0, x0 ∈ Rd end f : Rd → R. We say that f is Cα(x0) if
there exists a polynomial Px0 such that

|f (x)− Px0(x)| = O(|x − x0|α) .

The Hölder exponent of f at x0 is then defined by

hf (x0) = sup {α; f is Cα(x0)} .
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Example 2 : the Brownian motion

a.s. lim sup
t→0

Bt√
2t log log 1

t

= 1 .

a.s., for any t0, hB(t0) =
1
2
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What is a multifractal function ?

• Iso Hölder sets :

Eα = {x ; hf (x) = α}

• A multifractal function is a function f for which Eα 6= ∅ for
many values of α
• The multifractal spectrum :

D : α 7→ dimH(Eα)
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How to compute the multifractal spectrum ?
An ad hoc example : the Riemann function (S. Jaffard - 1996)

f (x) =
+∞∑
n=1

1
n2 sin(πn2x)
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What about measures ?

The analogue of the Hölder index :

hm(x0) = sup {α ; m(B(x0, r)) = O(rα)}

= lim inf
r→0

log(m(B(x0, r))

log r

Eα = {x ; hm(x) = α}

An alternative definition of Eα :

Eα =

{
x ; lim

r→0

log(m(B(x0, r))

log r
= α

}
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A toy example : the Bernoulli measure

m (Iε1···εn) = psn(1− p)n−sn where sn = ε1 + · · ·+ εn

Eα =

{
x ; lim

log(m(In(x))

log(|In(x)|)
= α

}
= {x ; m(In(x)) ”≈” |In(x)|α}



Bernoulli measure : the almost sure behavior

m (Iε1···εn) = psn(1− p)n−sn

where sn = ε1 + · · ·+ εn

logm(In(x))

log |In(x)|
= −sn

n
log2(p)−

(
1− sn

n

)
log2(1− p)

Strong law of large numbers :
sn
n
→ p dm-almost surely.

lim
n→∞

logm(In(x))

log |In(x)|
= −p log2 p − (1− p) log2(1− p)

:= h(p) dm − a.s.

Eh(p) =
{sn
n
→ p

}
and dimH(Eh(p)) = h(p)
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The other level sets

logm(In(x))

log |In(x)|
= −

(sn
n
log2 p +

(
1− sn

n

)
log2(1− p)

)
Let α = −(θ log2 p + (1− θ) log2(1− p))

Eα =
{sn
n
→ θ

}
dimH(Eα) = −(θ log2 θ + (1− θ) log2(1− θ)) = h(θ) := F (α)

where

F (α) = h

(
α+ log2(1− p)

log2(1− p)− log2 p

)
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The spectrum of the Bernoulli measure m



Different values of p



A natural way to compute the spectrum

Define the structure function τ :

τ(x) = lim sup
n→+∞

1
n
log2

∑
I∈Fn

m(I )x

 = log2 (p
x + (1− p)x)

−τ ′(x) = −(θ log2 p + (1− θ) log2(1− p))

with θ = px

px+(1−p)x

dimH(Eα) = −(θ log2 θ + (1− θ) log2(1− θ))
= −xτ ′(x) + τ(x)

= τ∗(−τ ′(x))
= τ∗(α)

where τ∗(α) = inft(tα+ τ(t)) is the Legendre transform of τ .
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The Legendre transform



The multifractal formalism scheme

Compute the structure function τ

⇓

Compute the Legendre transform τ∗

⇓

The expected value is dimH(Eα) = τ∗(α)
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What is genericity ?

To define a notion of genericity in E , we need a family G of "big
subsets" of E such that :

• Any A ∈ G is dense in E

• If B ⊃ A and A ∈ G, then B ∈ G
• (An) is a sequence of sets in G, then

⋂
n≥0 An ∈ G

We say that a property P is generic if the set of points where it is
satisfied is in G
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The Baire property

• In a complete metric space E , the intersection of a sequence
of dense open sets is a dense Gδ set
• A set A is called residual if it contains a dense Gδ set
• A set A is called meager if its complement is residual

Definition
If a property P is true in a residual subset of E , we say that P is
true for quasi all element of E .

This is a notion of genericity !
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Three remarks to introduce prevalence

Goal. We want to extend the notion "almost every where" in an
infinite dimensional vector space E .

• The Lebesgue measure m doesn’t exist when dim(E ) = +∞
• Let m be the Lebesgue measure in Rd and A ⊂ Rd . Suppose

that there exists a compactly supported measure µ such that
for any x , µ(x + A) = 0. By Fubini’s theorem :∫

µ(x + A) dm(x) =

∫
m(y − A) dµ(y) = m(A) = 0

• The reverse is true (µ = restriction of the Lebesgue measure)
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Prevalence

Definition
Let E be a (infinite dimensional) complete metric vector space
• A Borel set A ⊂ E is called Haar-null if there exists a

compactly supported probability measure µ such that for any
x ∈ E , µ(x + A) = 0.

• A subset of E is called Haar-null if it is included in a Haar-null
Borel set

• A subset of E is called prevalent if its complement is Haar-null

Proposition

• Prevalence is a notion of genericity
• If A is Haar-null, then x + A is Haar-null
• Compact subsets of E are Haar-null
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Pointwise regularity : generic results (1)
Theorem (Jaffard, 2000)

(i) For any function f ∈ Bs
p,q([0, 1]

d) and any α ∈ [s − d/p, s],

dimH

(
Eα(f )

)
≤ d + (α− s)p.

(ii) For quasi all function f ∈ Bs
p,q([0, 1]

d), for any
α ∈ [s − d/p, s],

dimH

(
Eα(f )

)
= d + (α− s)p.



Pointwise regularity : generic results (2)
Theorem (Fraysse-Jaffard, 2006)
The set of functions f ∈ Bs

p,q([0, 1]
d), such that for any

α ∈ [s − d/p, s],

dimH

(
Eα(f )

)
= d + (α− s)p.

is prevalent in Bs
p,q([0, 1]

d).
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General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic
behavior that change from point to point

−→ Define the level sets

−→ Compute the expected multifractal spectrum
(i.e. give a natural upper bound for dimH(Eα))

−→ Generic behavior ?
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Some examples

• Pointwise regularity of functions (Fraysse & Jaffard)
• Local regularity of measures (Buczolich & Seuret, Bayart)
• Fourier series : asymptotic behavior of Snf (x) (Bayart & H.)
• Harmonic functions : radial behavior of harmonic functions

near the boundary (Bayart & H.)
• Dirichlet series : behavior of

∑n
k=1 akk

−1/2+it (Bayart & H.)
• Wavelet series : behavior of the partial sums
〈f , ϕ〉ϕ+

∑n−1
j=0

∑
µ∈Λj

2j/2〈f , ψµ〉ψµ
(Esser & Jaffard, Bayart & H.)

• Fourier integral : behavior of
∫ R
−R f (t)e−itξdt

• · · ·
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Divergence of Fourier series : historic results

• Du Bois Raymond (1872) ∃f ∈ C(T) ; Snf (0) diverges
• Baire : Snf (0) diverges for quasi all function in C(T)
• Baire : Snf (0) diverges for quasi all function in Lp(T)
• Kolmogorov (1923) ∃f ∈ L1(T) ; Snf (x) diverges a.s.
• Kolmogorov (1926) ∃f ∈ L1(T) ; Snf (x) diverges surely
• Carleson (1966) If f ∈ L2(T), Snf (x) converges a.s.
• Carleson Hunt (1967) Always true if f ∈ Lp(T), p > 1
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Natural questions

Question
Let x be a divergence point for Snf . What is the size of Snf (x) ?

Nikolsky Inequality : If f ∈ Lp(T),

‖Snf ‖∞ ≤ Cn1/p‖Snf ‖p ≤ Cn1/p‖f ‖p .

Question
Let β ∈ [0, 1/p] and f ∈ Lp(T). What is the size of the set of
points x such that |Snf (x)| ≈ nβ when n→ +∞ ?
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The divergence index

Let f ∈ Lp(T) and x0 ∈ T.

β(x0) = inf
(
β ; |Snf (x0)| = O(nβ)

)
= lim sup

n→+∞

log |Snf (x0)|
log n

.

Level sets :
E (β, f ) = {x ∈ T; β(x) = β} .

Multifractal spectrum :

β 7→ dimH

(
E (β, f )

)
.



The divergence index

Let f ∈ Lp(T) and x0 ∈ T.

β(x0) = inf
(
β ; |Snf (x0)| = O(nβ)

)

= lim sup
n→+∞

log |Snf (x0)|
log n

.

Level sets :
E (β, f ) = {x ∈ T; β(x) = β} .

Multifractal spectrum :

β 7→ dimH

(
E (β, f )

)
.



The divergence index

Let f ∈ Lp(T) and x0 ∈ T.

β(x0) = inf
(
β ; |Snf (x0)| = O(nβ)

)
= lim sup

n→+∞

log |Snf (x0)|
log n

.

Level sets :
E (β, f ) = {x ∈ T; β(x) = β} .

Multifractal spectrum :

β 7→ dimH

(
E (β, f )

)
.



The divergence index

Let f ∈ Lp(T) and x0 ∈ T.

β(x0) = inf
(
β ; |Snf (x0)| = O(nβ)

)
= lim sup

n→+∞

log |Snf (x0)|
log n

.

Level sets :
E (β, f ) = {x ∈ T; β(x) = β} .

Multifractal spectrum :

β 7→ dimH

(
E (β, f )

)
.



The divergence index

Let f ∈ Lp(T) and x0 ∈ T.

β(x0) = inf
(
β ; |Snf (x0)| = O(nβ)

)
= lim sup

n→+∞

log |Snf (x0)|
log n

.

Level sets :
E (β, f ) = {x ∈ T; β(x) = β} .

Multifractal spectrum :

β 7→ dimH

(
E (β, f )

)
.



A generic result
Theorem (Bayart, H.)
Let p ≥ 1
• For quasi all function f ∈ Lp(T),

∀β ∈ [0, 1/p], dimH

(
E (β, f )

)
= 1− βp . (3.1)

• Property (3.1) is also prevalent in Lp(T)



First step : the upper bound
Define

F (β, f ) =

{
x ∈ T; lim sup

n→+∞
n−β|Snf (x)| > 0

}
.

(E (β, f ) ⊂ F (β − ε, f ))

Theorem (J.M. Aubry, 2006)
Suppose p > 1 and f ∈ Lp(T). Then

dimH

(
F (β, f )

)
≤ 1− βp .

Tool : Carleson Hunt maximal inequality

‖S∗f ‖p ≤ C‖f ‖p

where S∗f (x) = supn |Snf (x)|.
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And if p = 1 ?
� Carleson Hunt maximal inequality is false when p = 1

Lemma (Bayart, H.)
There exists a constant C > O such that for any f ∈ L1(T),∫

T
sup
n

∣∣∣∣ Snf (x)

(log n)1+ε

∣∣∣∣ dx ≤ C‖f ‖1 .

Remark
In the Lp(T) context, we don’t really need the Carleson Hunt
maximal inequality. The inequality∫

T
sup
n

|Snf (x)|p

(log n)p+ε
dx ≤ C‖f ‖pp

is sufficient.
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A function f ∈ Lp(T) such that β(0) = 1/p

Lemma

Let gn = σn(fn).
Then, gn(0) ≥ 1

4 .

f =
+∞∑
k=1

1
k2 2

k/pek2kg2k :=
+∞∑
k=1

1
k2ϕk

• ‖ϕk‖pp ≤ 2

• |S(n+1)2n f (0)− S(n−1)2n−1f (0)| = 1
n2 2n/p|g2n(0)| ≥ 2n/p

4n2

• There exists N ∼ n2n with |SN f (0)| ≥ C N1/p

log2+1/p(N)
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To go further : dyadic approximation

The real number x is said to be α-approximable by dyadics if∣∣x − k
2j
∣∣ ≤ 1

2αj for infinitely many j .

Dα = {x ∈ [0, 1] ; x is α-approximable}

= lim sup
j→+∞

2j−1⋃
k=0

[
k

2j
− 1

2αj
,
k

2j
+

1
2αj

]
.

Well known : dimH(Dα) = 1/α (in fact H1/α(Dα) > 0).
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To go further : a saturating function

We can construct a function f ∈ Lp(T) such that

x ∈ Dα ⇒ β(x) = lim sup
log Snf (x)

log n
≥ 1

p

(
1− 1

α

)

β =
1
p

(
1− 1

α

)
⇒ 1

α
= 1− βp

dimH(E (β, f )) ≥ dimH(Dα) =
1
α

= 1− βp
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Au patrimoine mondial de l’Unesco

Dimension of measures Selfsimilar measures Harmonic measure The structure function Quasi Bernoulli measures

Merci !
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