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Figure — a velocity time series



The local Holder exponent

Definition
Let >0, x € R9end f : RY — R. We say that f is C%(xp) if
there exists a polynomial Py, such that

(%) = Pxo(x)| = O(Ix = x0[*) -



The local Holder exponent
Definition
Let >0, x € R9end f : RY — R. We say that f is C%(xp) if
there exists a polynomial Py, such that
[£(x) = Po(X)| = O(|x — x0*) -
The Holder exponent of f at xg is then defined by

he(x0) = sup{a; fis C%(x0)} -



The local Holder exponent
Definition
Let >0, x € R9end f : RY — R. We say that f is C%(xp) if
there exists a polynomial Py, such that
|£(x) = Pxo(x)| = O(]x — x0[) -
The Holder exponent of f at xg is then defined by

he(x0) = sup{a; fis C%(x0)} -

a= 0.2 0.6
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wit)

0.5 1 15
time (t)



Example 2 : the Brownian motion

wit)

time (t)

. B
a.s.  limsup =1.

t=0  /2tloglog1




Example 2 : the Brownian motion

wit)

time (t)

. B
a.s.  limsup =1.

t=0  /2tloglog1

1
as., forany ty, hg(ty) = 5
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What is a multifractal function ?
® |so Holder sets :
E, ={x; he(x) =a}

e A multifractal function is a function f for which E, # ) for
many values of «
e The multifractal spectrum :

D : ar—dimy(E,)

h(t) = 0.6




How to compute the multifractal spectrum?
An ad hoc example : the Riemann function (S. Jaffard - 1996)
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How to compute the multifractal spectrum?
An ad hoc example : the Riemann function (S. Jaffard - 1996)

+o0

o)=Y % sin(7r2x)

n=1
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Y Yy = diHl][(E,z')




What about measures?

The analogue of the Hoélder index :
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What about measures?

The analogue of the Hoélder index :

hm(x0) = sup{a; m(B(xo,r)) = O(r%)}
o log(m(B(x. 1))
r—0 log r

‘Ea:{x; hm(x):a}‘

An alternative definition of E, :

£~ {x: iy B0 _ )

r—0 log r




A toy example : the Bernoulli measure

(1-p) p(1-pf p(=p) p’(1-p) p(1-p)f p(1-p)p(1=p) P’

m(/gl...gn) — psn(l _ p)nfsn Where Sp = €1 + e+ €n

L o loBm(1(0)
.= {x: im e )

—af =i mlh()" ="

In ()|}
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Bernoulli measure : the almost sure behavior

m(ley..e,) = p(1—p)"™

where s, =1+ -+ + ¢

log m(1,(x))
log |/n(x)|

= —S;” logz(p) — (1 - S;) log»(1 — p)

s
Strong law of large numbers : == — p dm-almost surely.
n

log m(/n(x))

= —plo —(1—p)logy(1—p
S g 1) plogy p— (1 — p)loga(1 - p)

= h(p) dm—as.

Sn .
Eh(p) = {F — p} and dImH(Eh(p)) = h(p)
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e = (5 eeer (1) om0
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o (5-1)
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Sn
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The other level sets

e = (5 eeer (1) om0

Let o = —(0logy p + (1 — 6) logy(1 — p))
o5
dimy(E,) = —(0logy 6 + (1 — 0) logy(1 — 6)) = h(h) := F(«)

Fla) = h( o + log,(1 — p) )

log,(1 — p) — log, p

where




The spectrum of the Bernoulli measure m
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Different values of p
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A natural way to compute the spectrum

Define the structure function 7 :

n—-+o0o IeF,

7(x) = limsup % log; (Z m(/)X> = log, (p* + (1 = p)*)

—7'(x) = —(0logy p + (1 — 0) logy(1 — p)) = a

dimy(Ey) = —(0log, 0 + (1 — 0) log,(1 — 0))
= —x7'(x) + 7(x)
)

= "(0)

where 7*(a) = infs(ta + 7(t)) is the Legendre transform of 7.



The Legendre transform

y = 7(x)

3




The multifractal formalism scheme

Compute the structure function 7

4

Compute the Legendre transform 7*

I

The expected value is  dimy(E,) = 7(«)
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What is genericity ?

To define a notion of genericity in E, we need a family G of "big
subsets" of E such that :

® Any Ac Gisdensein E
e fBODAand Ac G, then Be g
e (A,) is a sequence of sets in G, then ﬂnzo A, e€G

We say that a property P is generic if the set of points where it is
satisfied is in G
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The Baire property

® |n a complete metric space E, the intersection of a sequence
of dense open sets is a dense G set

e A set Ais called residual if it contains a dense Gs set

e A set Ais called meager if its complement is residual

Definition
If a property P is true in a residual subset of E, we say that P is
true for quasi all element of E.

This is a notion of genericity !
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Three remarks to introduce prevalence

Goal. We want to extend the notion "almost every where" in an
infinite dimensional vector space E.

® The Lebesgue measure m doesn't exist when dim(E) = 400

e Let m be the Lebesgue measure in RY and A € RY. Suppose
that there exists a compactly supported measure 1 such that
for any x, u(x + A) = 0. By Fubini's theorem :

[ o Ay dm(x) = [ mly ) dy) = m(A) =0

® The reverse is true (u = restriction of the Lebesgue measure)
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Prevalence

Definition
Let E be a (infinite dimensional) complete metric vector space

e A Borel set A C E is called Haar-null if there exists a
compactly supported probability measure . such that for any
xeE, pux+A)=0.

e A subset of E is called Haar-null if it is included in a Haar-null
Borel set

® A subset of E is called prevalent if its complement is Haar-null

Proposition

® Prevalence is a notion of genericity
e [f A is Haar-null, then x + A is Haar-null

e Compact subsets of E are Haar-null



Pointwise regularity : generic results (1)
Theorem (Jaffard, 2000)

(i) For any function f € Bj ([0,1]%) and any a € [s — d/p, 5],
dimpy (Ea(f)) < d + (a —s)p.

(ii) For quasi all function f € B ([0, 1]9), for any
a€[s—d/p,s],

dimy (Ea(f)) =d + (a — s)p.

dimp(Ea(f)) = d+ (o — s)p

s i T -
s—d/p s o



Pointwise regularity : generic results (2)

Theorem (Fraysse-Jaffard, 2006)

The set of functions f € B; ([0, 1]9), such that for any
Q€ [S_ d/p75]'

dimy (Ea(f)) =d + (a — s)p.

is prevalent in Bg ([0, 1]7).

dimg(E.(f)) =d+ (a—s)p

sfd'/p s a
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General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic
behavior that change from point to point

Define the level sets

l

Compute the expected multifractal spectrum
(i.e. give a natural upper bound for dimy(E,))

l

—  Generic behavior?



Some examples

Pointwise regularity of functions (Fraysse & Jaffard)
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Divergence of Fourier series : historic results

Du Bois Raymond (1872) 3f € C(T) ; S,f(0) diverges
Baire : S,f(0) diverges for quasi all function in C(T)

Baire : S,f(0) diverges for quasi all function in LP(T)
Kolmogorov (1923) 3f € L}(T) ; S,f(x) diverges a.s.
Kolmogorov (1926) 3f € L}(T) ; S,f(x) diverges surely
Carleson (1966) If f € L2(T), S,f(x) converges a.s.
Carleson Hunt (1967) Always true if f € LP(T), p > 1



Natural questions

Question
Let x be a divergence point for S,f. What is the size of S,f(x)?



Natural questions

Question
Let x be a divergence point for S,f. What is the size of S,f(x)?

Nikolsky Inequality : If f € LP(T),

I15nflloc < C/PI|Suf ||, < Cn*/P]f]|, .



Natural questions

Question
Let x be a divergence point for S,f. What is the size of S,f(x)?

Nikolsky Inequality : If f € LP(T),

I15nflloc < C/PI|Suf ||, < Cn*/P]f]|, .

Question
Let 8 €[0,1/p] and f € LP(T). What is the size of the set of
points x such that |S,f(x)| ~ n® when n — 4007
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The divergence index

Let f € LP(T) and xp € T.

Blx) = inf (8 |SF(x0)| = O(n"))

log | S, f
— limsup (28100l
n—-+00 log n

Level sets :
E(B,f)={xeT,; B(x) =4} .

Multifractal spectrum :

,3 — dimH (E(ﬂ, f)) .



A generic result
Theorem (Bayart, H.)
Letp>1
® for quasi all function f € LP(T),

Vg e€[0,1/p], dimy (E(ﬂ7 f)) =1-08p.

® Property (3.1) is also prevalent in LP(T)

1.2
1

8.8

0 dimy(E(B, f)) =1— Bp

8.4

(3.1)
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First step : the upper bound
Define

F(B,f) = {X €T; limsupn~”|S,f(x)| > O}'

n——+o00

(E(B,f) C F(B—¢,1))

Theorem (J.M. Aubry, 2006)
Suppose p > 1 and f € LP(T). Then

dimy (F(B, f)) <1-0p.

Tool : Carleson Hunt maximal inequality
I5*Fll, < Clifllp

where S*f(x) = sup,, |Saf(x)|.
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Andif p=17
@ Carleson Hunt maximal inequality is false when p =1

Lemma (Bayart, H.)
There exists a constant C > O such that for any f € L(T),

/ Sf()

dx < C||f|1 -
P Tog n)t+

Remark
In the LP(T) context, we don't really need the Carleson Hunt
maximal inequality. The inequality

S, F(x)|P
/sup|(X)|dx < Clif|?
T n

(log n)pte

is sufficient.
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Lemma

1

Let gn = opn(fn).
Then, gn(0) > %.

8.5 ® 1/n 0.5

1,4 =1

k o
52 Pejokgor i= E k280k
k=1 k=1

-




A function f € LP(T) such that 8(0) =1/p

Lemma

1

Let gn = opn(fn).
Then, gn(0) > %.

-8.5 L] 1/n 8.5
1 =1
f= p2 Peongor = Z 12 Pk
k=1 k=1

® llexllp <2



A function f € LP(T) such that 8(0) =1/p

Lemma
| v = Ffal2)
Let gn = on(fn)-
) Then, g,(0) > 3.
8.5 ® l/n 8.5
+oo 1 +oo 1
_ k .
f= Z p2 /pekzkgzk = Z 12 Pk
k=1 k=1
* Jlowllp <2

® [Stn1)anf(0) = Sia1)on-1£(0)] = 5277| g0 (0)] > 225
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® There exists N ~ n2" with |Syf(0)| > C
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‘x — —| < 2M for infinitely many j.
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To go further : dyadic approximation

The real number x is said to be a-approximable by dyadics if
‘x — —| < 2M for infinitely many j.

D, = {xe€][0,1]; x is a-approximable}

2-1
. k 1 k 1
= I[msupU |:2J._Z“j’2j+2"j

Well known : dimy(Ds) = 1/a  (in fact H'/*(D,) > 0).
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To go further : a saturating function

We can construct a function f € LP(T) such that

XEDa:ﬁ(x)_IimsupIOglf;';() ;(1—(1)

s=2(1-3)=2=1-0
p a «

dimp(E(3.F)) > dimi(Do) = = =1 5p
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