On multifractal phenomena

Yanick Heurteaux

Université Clermont-Auvergne − Clermont-Ferrand

ANR Front, October 2019

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Summary

[1- Multifractal formalism : the beginning of the story](#page-2-0)

[2- Two notions of genericity](#page-45-0)

[3- Generic multifractal phenomena \(with Frédéric Bayart\)](#page-68-0)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Summary

[1- Multifractal formalism : the beginning of the story](#page-2-0)

- [2- Two notions of genericity](#page-45-0)
- [3- Generic multifractal phenomena \(with Frédéric Bayart\)](#page-68-0)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Fully developed turbulence

Figure – a velocity vector field

イロト 不優 トイ磨 トイ磨 トー 磨っ

 2990

Fully developed turbulence

Figure – a velocity time series

 $2Q$

∍

舌

≮ロ ▶ (何 ▶ (三)

The local Hölder exponent

Definition

Let $\alpha>0,$ $x_0\in\mathbb{R}^d$ end f $:$ $\mathcal{R}^d\rightarrow\mathbb{R}.$ We say that f is $C^{\alpha}(x_0)$ if there exists a polynomial $P_{\mathsf{x}_\mathsf{0}}$ such that

$$
|f(x)-P_{x_0}(x)|=O(|x-x_0|^{\alpha}).
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

The local Hölder exponent

Definition

Let $\alpha>0,$ $x_0\in\mathbb{R}^d$ end f $:$ $\mathcal{R}^d\rightarrow\mathbb{R}.$ We say that f is $C^{\alpha}(x_0)$ if there exists a polynomial $P_{\mathsf{x}_\mathsf{0}}$ such that

$$
|f(x)-P_{x_0}(x)|=O(|x-x_0|^{\alpha}).
$$

The Hölder exponent of f at x_0 is then defined by

$$
h_f(x_0) = \sup \{ \alpha; f \text{ is } C^{\alpha}(x_0) \} .
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

The local Hölder exponent

Definition

Let $\alpha>0,$ $x_0\in\mathbb{R}^d$ end f $:$ $\mathcal{R}^d\rightarrow\mathbb{R}.$ We say that f is $C^{\alpha}(x_0)$ if there exists a polynomial $P_{\mathsf{x}_\mathsf{0}}$ such that

$$
|f(x)-P_{x_0}(x)|=O(|x-x_0|^{\alpha}).
$$

The Hölder exponent of f at x_0 is then defined by

$$
h_f(x_0) = \sup \{\alpha; f \text{ is } C^{\alpha}(x_0)\} .
$$

Example 1 : the Weierstrass series

$$
f(x) = \sum_{n=0}^{+\infty} b^{-\alpha n} \cos(b^n x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example 1 : the Weierstrass series

$$
f(x) = \sum_{n=0}^{+\infty} b^{-\alpha n} \cos(b^n x)
$$

メロトメ 御 トメ 君 トメ 君 ト 重 299

Example 1 : the Weierstrass series

$$
f(x) = \sum_{n=0}^{+\infty} b^{-\alpha n} \cos(b^n x)
$$

重

 299

Example 2 : the Brownian motion

メロトメ 御 トメ 君 トメ 君 ト

È

 290

Example 2 : the Brownian motion

メロトメ 御 トメ 君 トメ 君 ト

 $2Q$

ŧ

Example 2 : the Brownian motion

K ロ ト K 何 ト K ヨ ト $2Q$ B ∍

• Iso Hölder sets :

$$
E_{\alpha} = \{x \; ; \; h_f(x) = \alpha\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

• Iso Hölder sets :

$$
E_{\alpha} = \{x \; ; \; h_f(x) = \alpha\}
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

• A multifractal function is a function f for which $E_{\alpha} \neq \emptyset$ for many values of α

• Iso Hölder sets :

$$
E_{\alpha} = \{x \; ; \; h_f(x) = \alpha\}
$$

- A multifractal function is a function f for which $E_{\alpha} \neq \emptyset$ for many values of α
- The multifractal spectrum :

$$
\mathcal{D} \; : \; \alpha \mapsto \text{dim}_{H}(E_{\alpha})
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

• Iso Hölder sets :

$$
E_\alpha=\{x\ ;\ h_f(x)=\alpha\}
$$

- A multifractal function is a function f for which $E_{\alpha} \neq \emptyset$ for many values of α
- The multifractal spectrum :

$$
\mathcal{D} \; : \; \alpha \mapsto \text{dim}_{H}(E_{\alpha})
$$

 Ω

• Iso Hölder sets :

$$
E_{\alpha} = \{x \; ; \; h_f(x) = \alpha\}
$$

- A multifractal function is a function f for which $E_{\alpha} \neq \emptyset$ for many values of α
- The multifractal spectrum :

$$
\mathcal{D} \; : \; \alpha \mapsto \textsf{dim}_{H}(E_{\alpha})
$$

 Ω

• Iso Hölder sets :

$$
E_{\alpha} = \{x \; ; \; h_f(x) = \alpha\}
$$

- A multifractal function is a function f for which $E_{\alpha} \neq \emptyset$ for many values of α
- The multifractal spectrum :

$$
\mathcal{D} \; : \; \alpha \mapsto \textsf{dim}_{H}(E_{\alpha})
$$

 Ω

How to compute the multifractal spectrum ?

An ad hoc example : the Riemann function (S. Jaffard - 1996)

$$
f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} \sin(\pi n^2 x)
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

How to compute the multifractal spectrum ?

An ad hoc example : the Riemann function (S. Jaffard - 1996)

$$
f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} \sin(\pi n^2 x)
$$

KORK STRAIN A STRAIN A STRAIN

What about measures ?

The analogue of the Hölder index :

$$
h_m(x_0) = \sup \{ \alpha : m(B(x_0, r)) = O(r^{\alpha}) \}
$$

$$
= \liminf_{r \to 0} \frac{\log(m(B(x_0, r))}{\log r}
$$

$$
E_{\alpha} = \{x : h_m(x) = \alpha\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

What about measures ?

The analogue of the Hölder index :

$$
h_m(x_0) = \sup \{ \alpha : m(B(x_0, r)) = O(r^{\alpha}) \}
$$

$$
= \liminf_{r \to 0} \frac{\log(m(B(x_0, r)))}{\log r}
$$

$$
E_{\alpha} = \{x \; ; \; h_m(x) = \alpha\}
$$

An alternative definition of E_{α} :

$$
E_{\alpha} = \left\{ x : \lim_{r \to 0} \frac{\log(m(B(x_0, r))}{\log r} = \alpha \right\}
$$

K ロ > K 레 > K 코 > K 코 > - 코 - Y Q Q Q

A toy example : the Bernoulli measure

$$
m(l_{\varepsilon_1\cdots\varepsilon_n})=p^{s_n}(1-p)^{n-s_n}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

where $s_n = \varepsilon_1 + \cdots + \varepsilon_n$

$$
m(l_{\varepsilon_1\cdots\varepsilon_n})=p^{s_n}(1-p)^{n-s_n}
$$

where $s_n = \varepsilon_1 + \cdots + \varepsilon_n$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\frac{s_n}{n} \log_2(p) - \left(1 - \frac{s_n}{n}\right) \log_2(1-p)
$$

K ロ > K d > K 할 > K 할 > L 할 > O Q @

$$
m(l_{\varepsilon_1\cdots\varepsilon_n})=p^{s_n}(1-p)^{n-s_n}
$$

where $s_n = \varepsilon_1 + \cdots + \varepsilon_n$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\frac{s_n}{n} \log_2(p) - \left(1 - \frac{s_n}{n}\right) \log_2(1-p)
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Strong law of large numbers : $\frac{s_n}{n} \to p$ dm-almost surely.

$$
m(l_{\varepsilon_1\cdots\varepsilon_n})=p^{s_n}(1-p)^{n-s_n}
$$

where $s_n = \varepsilon_1 + \cdots + \varepsilon_n$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\frac{s_n}{n} \log_2(p) - \left(1 - \frac{s_n}{n}\right) \log_2(1 - p)
$$

Strong law of large numbers : $\frac{s_n}{n} \to p$ dm-almost surely.

$$
\lim_{n\to\infty}\frac{\log m(I_n(x))}{\log |I_n(x)|}=-p\log_2 p-(1-p)\log_2(1-p)
$$

:= $h(p)$ dm – a.s.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

$$
m(l_{\varepsilon_1\cdots\varepsilon_n})=p^{s_n}(1-p)^{n-s_n}
$$

where $s_n = \varepsilon_1 + \cdots + \varepsilon_n$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\frac{s_n}{n} \log_2(p) - \left(1 - \frac{s_n}{n}\right) \log_2(1-p)
$$

Strong law of large numbers : $\frac{s_n}{n} \to p$ dm-almost surely.

$$
\lim_{n\to\infty}\frac{\log m(I_n(x))}{\log |I_n(x)|}=-p\log_2 p-(1-p)\log_2(1-p)
$$

:= $h(p)$ dm – a.s.

$$
E_{h(p)} = \left\{ \frac{s_n}{n} \to p \right\} \quad \text{and} \quad \dim_H(E_{h(p)}) = h(p)
$$

K ロ X (日) X (日)

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\left(\frac{s_n}{n}\log_2 p + \left(1 - \frac{s_n}{n}\right)\log_2(1-p)\right)
$$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\left(\frac{s_n}{n}\log_2 p + \left(1 - \frac{s_n}{n}\right)\log_2(1 - p)\right)
$$

Let $\alpha = -(\theta \log_2 p + (1 - \theta) \log_2(1 - p))$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\left(\frac{s_n}{n}\log_2 p + \left(1 - \frac{s_n}{n}\right)\log_2(1 - p)\right)
$$

Let $\alpha = -\left(\theta \log_2 p + (1 - \theta) \log_2(1 - p)\right)$

$$
\mathcal{E}_{\alpha} = \left\{ \frac{s_n}{n} \to \theta \right\}
$$

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\left(\frac{s_n}{n}\log_2 p + \left(1 - \frac{s_n}{n}\right)\log_2(1 - p)\right)
$$

Let $\alpha = -(\theta \log_2 p + (1 - \theta) \log_2(1 - p))$

$$
E_{\alpha} = \left\{\frac{s_n}{n} \to \theta\right\}
$$

 $\dim_{H}(\mathcal{E}_{\alpha})=-(\theta\log_{2}\theta+(1-\theta)\log_{2}(1-\theta))=\mathit{h}(\theta)$

KD ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 | X 9 Q @
The other level sets

$$
\frac{\log m(I_n(x))}{\log |I_n(x)|} = -\left(\frac{s_n}{n}\log_2 p + \left(1 - \frac{s_n}{n}\right)\log_2(1 - p)\right)
$$

Let $\alpha = -(\theta \log_2 p + (1 - \theta) \log_2(1 - p))$

$$
E_{\alpha} = \left\{\frac{s_n}{n} \to \theta\right\}
$$

 $\mathsf{dim}_{H}(E_{\alpha})=-(\theta\log_2\theta+(1-\theta)\log_2(1-\theta))=\mathsf{h}(\theta):=\mathsf{F}(\alpha)$

where

$$
F(\alpha) = h\left(\frac{\alpha + \log_2(1-p)}{\log_2(1-p) - \log_2 p}\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

The spectrum of the Bernoulli measure m

K ロ > K 레 > K 코 > K 코 > - 코 - Y Q Q Q

Different values of p

イロメ イ部メ イ君メ イ君メ 重。 299

Define the structure function τ :

$$
\tau(x) = \limsup_{n \to +\infty} \frac{1}{n} \log_2 \left(\sum_{l \in \mathcal{F}_n} m(l)^x \right) = \log_2 (p^x + (1-p)^x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Define the structure function τ :

$$
\tau(x) = \limsup_{n \to +\infty} \frac{1}{n} \log_2 \left(\sum_{l \in \mathcal{F}_n} m(l)^x \right) = \log_2 (p^x + (1-p)^x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

$$
-\tau'(x) = -(\theta \log_2 p + (1-\theta) \log_2(1-p))
$$

with
$$
\theta = \frac{p^x}{p^x + (1-p)^x}
$$

Define the structure function τ :

$$
\tau(x) = \limsup_{n \to +\infty} \frac{1}{n} \log_2 \left(\sum_{l \in \mathcal{F}_n} m(l)^x \right) = \log_2 (p^x + (1-p)^x)
$$

$$
-\tau'(x) = -(\theta \log_2 p + (1-\theta) \log_2(1-p)) = \alpha
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

with
$$
\theta = \frac{p^x}{p^x + (1-p)^x}
$$

Define the structure function τ :

$$
\tau(x) = \limsup_{n \to +\infty} \frac{1}{n} \log_2 \left(\sum_{l \in \mathcal{F}_n} m(l)^x \right) = \log_2 (p^x + (1-p)^x)
$$

$$
-\tau'(x) = -(\theta \log_2 p + (1-\theta) \log_2(1-p)) = \alpha
$$

with $\theta = \frac{p^x}{p^x + (1-p)^x}$ $p^x+(1-p)^x$ $\dim_{H}(\mathcal{E}_{\alpha})=-(\theta\log_{2}\theta+(1-\theta)\log_{2}(1-\theta))$ $= -x\tau'(x) + \tau(x)$ $= \tau^*(-\tau'(x))$ $=\tau^*(\alpha)$

where $\tau^*(\alpha) = \inf_t (t\alpha + \tau(t))$ is the Legendre transform of τ .

KORKAR KERKER EL VOLO

The Legendre transform

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @

The multifractal formalism scheme

Compute the structure function τ

⇓

Compute the Legendre transform τ^*

⇓

The expected value is $\dim_H(E_\alpha)=\tau^*(\alpha)$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Summary

- [1- Multifractal formalism : the beginning of the story](#page-2-0)
- [2- Two notions of genericity](#page-45-0)
- [3- Generic multifractal phenomena \(with Frédéric Bayart\)](#page-68-0)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

What is genericity ?

To define a notion of genericity in E , we need a family G of "big subsets" of E such that :

- Any $A \in \mathcal{G}$ is dense in E
- If $B \supset A$ and $A \in \mathcal{G}$, then $B \in \mathcal{G}$
- (A_n) is a sequence of sets in G , then $\bigcap_{n\geq 0} A_n \in \mathcal{G}$

What is genericity ?

To define a notion of genericity in E , we need a family G of "big subsets" of E such that :

- Any $A \in \mathcal{G}$ is dense in E
- If $B \supset A$ and $A \in \mathcal{G}$, then $B \in \mathcal{G}$
- (A_n) is a sequence of sets in G , then $\bigcap_{n\geq 0} A_n \in \mathcal{G}$

We say that a property $\mathcal P$ is generic if the set of points where it is satisfied is in G

 \bullet In a complete metric space E , the intersection of a sequence of dense open sets is a dense \mathcal{G}_{δ} set

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

 \bullet In a complete metric space E , the intersection of a sequence of dense open sets is a dense \mathcal{G}_{δ} set

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

• A set A is called *residual* if it contains a dense G_{δ} set

 \bullet In a complete metric space E , the intersection of a sequence of dense open sets is a dense \mathcal{G}_{δ} set

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

- A set A is called *residual* if it contains a dense G_{δ} set
- A set A is called *meager* if its complement is residual

- In a complete metric space E , the intersection of a sequence of dense open sets is a dense \mathcal{G}_{δ} set
- A set A is called *residual* if it contains a dense G_{δ} set
- A set A is called *meager* if its complement is residual

Definition

If a property P is true in a residual subset of E, we say that P is true for quasi all element of E.

- \bullet In a complete metric space E , the intersection of a sequence of dense open sets is a dense \mathcal{G}_{δ} set
- A set A is called *residual* if it contains a dense G_{δ} set
- A set A is called *meager* if its complement is residual

Definition

If a property P is true in a residual subset of E, we say that P is true for quasi all element of E.

KORKA BRADE KORA

This is a notion of genericity !

Goal. We want to extend the notion "almost every where" in an infinite dimensional vector space E.

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Goal. We want to extend the notion "almost every where" in an infinite dimensional vector space E.

• The Lebesgue measure m doesn't exist when dim(E) = $+\infty$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Goal. We want to extend the notion "almost every where" in an infinite dimensional vector space E.

- The Lebesgue measure m doesn't exist when dim(E) = $+\infty$
- $\bullet\,$ Let m be the Lebesgue measure in \mathbb{R}^d and $A\subset\mathbb{R}^d$. Suppose that there exists a compactly supported measure μ such that for any x, $\mu(x + A) = 0$. By Fubini's theorem :

$$
\int \mu(x + A) \, dm(x) = \int m(y - A) \, d\mu(y) = m(A) = 0
$$

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

Goal. We want to extend the notion "almost every where" in an infinite dimensional vector space E.

- The Lebesgue measure m doesn't exist when dim(E) = $+\infty$
- $\bullet\,$ Let m be the Lebesgue measure in \mathbb{R}^d and $A\subset\mathbb{R}^d$. Suppose that there exists a compactly supported measure μ such that for any x, $\mu(x + A) = 0$. By Fubini's theorem :

$$
\int \mu(x + A) \, dm(x) = \int m(y - A) \, d\mu(y) = m(A) = 0
$$

KORKAR KERKER EL VOLO

• The reverse is true

Goal. We want to extend the notion "almost every where" in an infinite dimensional vector space E.

- The Lebesgue measure m doesn't exist when dim(E) = $+\infty$
- $\bullet\,$ Let m be the Lebesgue measure in \mathbb{R}^d and $A\subset\mathbb{R}^d$. Suppose that there exists a compactly supported measure μ such that for any x, $\mu(x + A) = 0$. By Fubini's theorem :

$$
\int \mu(x + A) \, dm(x) = \int m(y - A) \, d\mu(y) = m(A) = 0
$$

• The reverse is true (μ = restriction of the Lebesgue measure)

KORKAR KERKER EL VOLO

Definition

Let E be a (infinite dimensional) complete metric vector space

• A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.

Definition

Let E be a (infinite dimensional) complete metric vector space

- A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.
- A subset of E is called *Haar-null* if it is included in a Haar-null Borel set

Definition

Let E be a (infinite dimensional) complete metric vector space

- A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.
- A subset of E is called *Haar-null* if it is included in a Haar-null Borel set
- A subset of E is called *prevalent* if its complement is Haar-null

Definition

Let E be a (infinite dimensional) complete metric vector space

- A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.
- A subset of E is called *Haar-null* if it is included in a Haar-null Borel set
- A subset of E is called *prevalent* if its complement is Haar-null

KORKA BRADE KORA

Proposition

• Prevalence is a notion of genericity

Definition

Let E be a (infinite dimensional) complete metric vector space

- A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.
- A subset of E is called *Haar-null* if it is included in a Haar-null Borel set
- A subset of E is called *prevalent* if its complement is Haar-null

KORKA BRADE KORA

Proposition

- Prevalence is a notion of genericity
- If A is Haar-null, then $x + A$ is Haar-null

Definition

Let E be a (infinite dimensional) complete metric vector space

- A Borel set $A \subset E$ is called Haar-null if there exists a compactly supported probability measure μ such that for any $x \in E$, $\mu(x + A) = 0$.
- A subset of E is called *Haar-null* if it is included in a Haar-null Borel set
- A subset of E is called *prevalent* if its complement is Haar-null

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Proposition

- Prevalence is a notion of genericity
- If A is Haar-null, then $x + A$ is Haar-null
- Compact subsets of E are Haar-null

Pointwise regularity : generic results (1) Theorem (Jaffard, 2000)

(i) For any function $f \in B^s_{p,q}([0,1]^d)$ and any $\alpha \in [s-d/p,s]$, $\mathsf{dim}_H\left(E_\alpha(f)\right)\leq d+(\alpha-\mathsf{s})p.$

 $\displaystyle \text{(ii)}$ For quasi all function $f\in B^s_{p,q}([0,1]^d)$, for any $\alpha \in [s-d/p,s]$,

$$
\dim_H \big(F_\alpha(f) \big) = d + (\alpha - s)p.
$$

Pointwise regularity : generic results (2) Theorem (Fraysse-Jaffard, 2006) The set of functions $f \in B^s_{p,q}([0,1]^d)$, such that for any $\alpha \in [s-d/p,s],$

$$
\dim_H \big(E_\alpha(f) \big) = d + (\alpha - s)p.
$$

is prevalent in $B^s_{p,q}([0,1]^d)$.

Summary

- [1- Multifractal formalism : the beginning of the story](#page-2-0)
- [2- Two notions of genericity](#page-45-0)
- [3- Generic multifractal phenomena \(with Frédéric Bayart\)](#page-68-0)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

General context for multifractal analysis

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic behavior that change from point to point

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic behavior that change from point to point

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

 \longrightarrow Define the level sets
General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic behavior that change from point to point

- \longrightarrow Define the level sets
- \rightarrow Compute the expected multifractal spectrum (i.e. give a natural upper bound for dim $H(E_{\alpha})$)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

General context for multifractal analysis

Any situation where we observe a collection of possible asymptotic behavior that change from point to point

- \longrightarrow Define the level sets
- \rightarrow Compute the expected multifractal spectrum (i.e. give a natural upper bound for dim $H(E_{\alpha})$)

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

−→ Generic behavior ?

Some examples

- Pointwise regularity of functions (Fraysse & Jaffard)
- Local regularity of measures (Buczolich & Seuret, Bayart)
- Fourier series : asymptotic behavior of $S_n f(x)$ (Bayart & H.)
- Harmonic functions : radial behavior of harmonic functions near the boundary (Bayart & H.)
- Dirichlet series : behavior of $\sum_{k=1}^{n} a_k k^{-1/2+it}$ (Bayart & H.)

KORKAR KERKER EL VOLO

- Wavelet series : behavior of the partial sums $\langle f, \varphi \rangle \varphi + \sum_{j=0}^{n-1} \sum_{\mu \in \Lambda_j} 2^{j/2} \langle f, \psi_\mu \rangle \psi_\mu$ (Esser & Jaffard, Bayart & H.)
- Fourier integral : behavior of $\int_{-R}^{R} f(t)e^{-it\xi}dt$

 \bullet \cdots

Some examples

- Pointwise regularity of functions (Fraysse & Jaffard)
- Local regularity of measures (Buczolich & Seuret, Bayart)
- Fourier series : asymptotic behavior of $S_n f(x)$ (Bayart & H.)
- Harmonic functions : radial behavior of harmonic functions near the boundary (Bayart & H.)
- Dirichlet series : behavior of $\sum_{k=1}^{n} a_k k^{-1/2+it}$ (Bayart & H.)

KORKAR KERKER EL VOLO

- Wavelet series : behavior of the partial sums $\langle f, \varphi \rangle \varphi + \sum_{j=0}^{n-1} \sum_{\mu \in \Lambda_j} 2^{j/2} \langle f, \psi_\mu \rangle \psi_\mu$ (Esser & Jaffard, Bayart & H.)
- Fourier integral : behavior of $\int_{-R}^{R} f(t)e^{-it\xi}dt$

 \bullet \cdots

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges

K □ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q *

• Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

• Baire : $S_n f(0)$ diverges for quasi all function in $C(\mathbb{T})$

- Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges
- Baire : $S_n f(0)$ diverges for quasi all function in $C(T)$
- Baire : $S_n f(0)$ diverges for quasi all function in $L^p(\mathbb{T})$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

- Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges
- Baire : $S_n f(0)$ diverges for quasi all function in $C(\mathbb{T})$
- Baire : $S_n f(0)$ diverges for quasi all function in $L^p(\mathbb{T})$
- Kolmogorov (1923) $\exists f \in L^1(\mathbb{T})$; $S_n f(x)$ diverges a.s.

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

- Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges
- Baire : $S_n f(0)$ diverges for quasi all function in $C(\mathbb{T})$
- Baire : $S_n f(0)$ diverges for quasi all function in $L^p(\mathbb{T})$
- Kolmogorov (1923) $\exists f \in L^1(\mathbb{T})$; $S_n f(x)$ diverges a.s.
- Kolmogorov (1926) $\exists f \in L^1(\mathbb{T})$; $S_nf(x)$ diverges surely

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

- Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges
- Baire : $S_n f(0)$ diverges for quasi all function in $C(\mathbb{T})$
- Baire : $S_n f(0)$ diverges for quasi all function in $L^p(\mathbb{T})$
- Kolmogorov (1923) $\exists f \in L^1(\mathbb{T})$; $S_n f(x)$ diverges a.s.
- Kolmogorov (1926) $\exists f \in L^1(\mathbb{T})$; $S_nf(x)$ diverges surely

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

• Carleson (1966) If $f \in L^2(\mathbb{T})$, $S_n f(x)$ converges a.s.

- Du Bois Raymond (1872) $\exists f \in \mathcal{C}(\mathbb{T})$; $S_n f(0)$ diverges
- Baire : $S_n f(0)$ diverges for quasi all function in $C(\mathbb{T})$
- Baire : $S_n f(0)$ diverges for quasi all function in $L^p(\mathbb{T})$
- Kolmogorov (1923) $\exists f \in L^1(\mathbb{T})$; $S_n f(x)$ diverges a.s.
- Kolmogorov (1926) $\exists f \in L^1(\mathbb{T})$; $S_nf(x)$ diverges surely
- Carleson (1966) If $f \in L^2(\mathbb{T})$, $S_n f(x)$ converges a.s.
- Carleson Hunt (1967) Always true if $f \in L^p(\mathbb{T})$, $p > 1$

KID KA KERKER KID KO

Natural questions

Question Let x be a divergence point for $S_n f$. What is the size of $S_n f(x)$?

Natural questions

Question Let x be a divergence point for $S_n f$. What is the size of $S_n f(x)$?

Nikolsky Inequality : If $f \in L^p(\mathbb{T})$,

$$
||S_nf||_{\infty} \leq Cn^{1/p}||S_nf||_p \leq Cn^{1/p}||f||_p.
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Natural questions

Question Let x be a divergence point for $S_n f$. What is the size of $S_n f(x)$?

Nikolsky Inequality : If $f \in L^p(\mathbb{T})$,

$$
||S_nf||_{\infty} \leq Cn^{1/p}||S_nf||_p \leq Cn^{1/p}||f||_p.
$$

Question

Let $\beta \in [0, 1/p]$ and $f \in L^p(\mathbb{T})$. What is the size of the set of points x such that $|S_n f(x)| \approx n^{\beta}$ when $n \to +\infty$?

KORKA BRADE KORA

Let $f \in L^p(\mathbb{T})$ and $x_0 \in \mathbb{T}$.

$$
\beta(x_0) = \inf \left(\beta : |S_n f(x_0)| = O(n^{\beta}) \right)
$$

Let $f \in L^p(\mathbb{T})$ and $x_0 \in \mathbb{T}$.

$$
\beta(x_0) = \inf \left(\beta : |S_n f(x_0)| = O(n^{\beta}) \right)
$$

=
$$
\limsup_{n \to +\infty} \frac{\log |S_n f(x_0)|}{\log n} .
$$

Let $f \in L^p(\mathbb{T})$ and $x_0 \in \mathbb{T}$.

$$
\beta(x_0) = \inf \left(\beta : |S_n f(x_0)| = O(n^{\beta}) \right)
$$

=
$$
\limsup_{n \to +\infty} \frac{\log |S_n f(x_0)|}{\log n} .
$$

Level sets :

$$
E(\beta, f) = \{x \in \mathbb{T}; \ \beta(x) = \beta\}.
$$

Let $f \in L^p(\mathbb{T})$ and $x_0 \in \mathbb{T}$.

$$
\beta(x_0) = \inf \left(\beta : |S_n f(x_0)| = O(n^{\beta}) \right)
$$

=
$$
\limsup_{n \to +\infty} \frac{\log |S_n f(x_0)|}{\log n} .
$$

Level sets :

$$
E(\beta, f) = \{x \in \mathbb{T}; \ \beta(x) = \beta\}.
$$

Multifractal spectrum :

$$
\beta \mapsto \dim_H \big(E(\beta, f) \big) \ .
$$

A generic result

```
Theorem (Bayart, H.)
```
Let $p \geq 1$

• For quasi all function $f \in L^p(\mathbb{T})$,

$$
\forall \beta \in [0, 1/p], \quad \dim_H \big(E(\beta, f) \big) = 1 - \beta p \ . \tag{3.1}
$$

• Property (3.1) is also prevalent in $L^p(\mathbb{T})$

Define

$$
F(\beta, f) = \left\{x \in \mathbb{T}; \limsup_{n \to +\infty} n^{-\beta} |S_n f(x)| > 0\right\}.
$$

Define

$$
F(\beta, f) = \left\{ x \in \mathbb{T}; \limsup_{n \to +\infty} n^{-\beta} |S_n f(x)| > 0 \right\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 $(E(\beta, f) \subset F(\beta - \varepsilon, f))$

Define

$$
F(\beta, f) = \left\{ x \in \mathbb{T}; \limsup_{n \to +\infty} n^{-\beta} |S_n f(x)| > 0 \right\}.
$$

 $(E(\beta, f) \subset F(\beta - \varepsilon, f))$

Theorem (J.M. Aubry, 2006) Suppose $p > 1$ and $f \in L^p(\mathbb{T})$. Then

 $\mathsf{dim}_H\left(\mathcal{F}(\beta, f)\right) \leq 1 - \beta \pmb{\rho}$.

KORKA BRADE KORA

Define

$$
F(\beta, f) = \left\{ x \in \mathbb{T}; \limsup_{n \to +\infty} n^{-\beta} |S_n f(x)| > 0 \right\}.
$$

 $(E(\beta, f) \subset F(\beta - \varepsilon, f))$

Theorem (J.M. Aubry, 2006) Suppose $p > 1$ and $f \in L^p(\mathbb{T})$. Then

$$
\dim_H\big(F(\beta,f)\big)\leq 1-\beta p.
$$

Tool : Carleson Hunt maximal inequality

$$
||S^*f||_p\leq C||f||_p
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

where $S^*f(x) = \sup_n |S_nf(x)|$.

And if $p = 1$?

K ロ > K d > K 할 > K 할 > L 할 > O Q @

Carleson Hunt maximal inequality is false when $p = 1$

And if $p = 1$? Carleson Hunt maximal inequality is false when $p = 1$

Lemma (Bayart, H.)

There exists a constant $C > 0$ such that for any $f \in L^1(\mathbb{T})$,

$$
\int_{\mathbb{T}} \sup_{n} \left| \frac{S_n f(x)}{(\log n)^{1+\varepsilon}} \right| dx \leq C \|f\|_1.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

And if $p = 1$?

Carleson Hunt maximal inequality is false when $p = 1$

Lemma (Bayart, H.)

There exists a constant $C > 0$ such that for any $f \in L^1(\mathbb{T})$,

$$
\int_{\mathbb{T}} \sup_{n} \left| \frac{S_n f(x)}{(\log n)^{1+\varepsilon}} \right| dx \leq C \|f\|_1.
$$

Remark

In the $L^p(\mathbb{T})$ context, we don't really need the Carleson Hunt maximal inequality. The inequality

$$
\int_{\mathbb{T}} \sup_{n} \frac{|S_{n}f(x)|^{p}}{(\log n)^{p+\varepsilon}} dx \leq C||f||_{p}^{p}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

is sufficient.

Let
$$
g_n = \sigma_n(f_n)
$$
.
Then, $g_n(0) \geq \frac{1}{4}$.

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

KORK STRAIN A STRAIN A STRAIN

KORK STRAIN A STRAIN A STRAIN

• $\|\varphi_k\|_p^p \leq 2$

- $\|\varphi_k\|_p^p \leq 2$
- $|S_{(n+1)2^n}f(0) S_{(n-1)2^n-1}f(0)| = \frac{1}{n^2}$ $\frac{1}{n^2} 2^{n/p} |g_{2^n}(0)| \geq \frac{2^{n/p}}{4n^2}$ $4n²$

KORK STRAIN A STRAIN A STRAIN

- $\|\varphi_k\|_p^p \leq 2$
- $|S_{(n+1)2^n}f(0) S_{(n-1)2^n-1}f(0)| = \frac{1}{n^2}$ $\frac{1}{n^2} 2^{n/p} |g_{2^n}(0)| \geq \frac{2^{n/p}}{4n^2}$ $4n²$
- There exists $N \sim n2^n$ with $|S_N f(0)| \ge C \frac{N^{1/p}}{\log^{2+1/p}}$ $\log^{2+1/p}(N)$

To go further : dyadic approximation

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

The real number x is said to be α -approximable by dyadics if $x-\frac{k}{2}$ $\left|\frac{k}{2^j}\right| \leq \frac{1}{2^{\alpha j}}$ for infinitely many j .

To go further : dyadic approximation

The real number x is said to be α -approximable by dyadics if $x-\frac{k}{2}$ $\left|\frac{k}{2^j}\right| \leq \frac{1}{2^{\alpha j}}$ for infinitely many j .

$$
D_{\alpha} = \{x \in [0, 1] ; x \text{ is } \alpha\text{-approximable}\}
$$

=
$$
\limsup_{j \to +\infty} \bigcup_{k=0}^{2^{j}-1} \left[\frac{k}{2^{j}} - \frac{1}{2^{\alpha j}}, \frac{k}{2^{j}} + \frac{1}{2^{\alpha j}} \right]
$$

.

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

To go further : dyadic approximation

The real number x is said to be α -approximable by dyadics if $x-\frac{k}{2}$ $\left|\frac{k}{2^j}\right| \leq \frac{1}{2^{\alpha j}}$ for infinitely many j .

$$
D_{\alpha} = \{x \in [0, 1] ; x \text{ is } \alpha\text{-approximable}\}
$$

=
$$
\limsup_{j \to +\infty} \bigcup_{k=0}^{2^{j}-1} \left[\frac{k}{2^{j}} - \frac{1}{2^{\alpha j}}, \frac{k}{2^{j}} + \frac{1}{2^{\alpha j}} \right]
$$

.

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Well known : dim $H(D_{\alpha}) = 1/\alpha$
To go further : dyadic approximation

The real number x is said to be α -approximable by dyadics if $x-\frac{k}{2}$ $\left|\frac{k}{2^j}\right| \leq \frac{1}{2^{\alpha j}}$ for infinitely many j .

$$
D_{\alpha} = \{x \in [0, 1] : x \text{ is } \alpha\text{-approximable}\}
$$

=
$$
\limsup_{j \to +\infty} \bigcup_{k=0}^{2^{j}-1} \left[\frac{k}{2^{j}} - \frac{1}{2^{\alpha j}}, \frac{k}{2^{j}} + \frac{1}{2^{\alpha j}} \right]
$$

.

Well known : dim $H(D_\alpha) = 1/\alpha$ (in fact $\mathcal{H}^{1/\alpha}(D_\alpha) > 0$).

To go further : a saturating function

We can construct a function $f \in L^p(\mathbb{T})$ such that

$$
x \in D_{\alpha} \Rightarrow \beta(x) = \limsup \frac{\log S_n f(x)}{\log n} \ge \frac{1}{p} \left(1 - \frac{1}{\alpha} \right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

To go further : a saturating function

We can construct a function $f \in L^p(\mathbb{T})$ such that

$$
x \in D_{\alpha} \Rightarrow \beta(x) = \limsup \frac{\log S_n f(x)}{\log n} \ge \frac{1}{p} \left(1 - \frac{1}{\alpha} \right)
$$

$$
\beta = \frac{1}{\rho} \left(1 - \frac{1}{\alpha} \right) \Rightarrow \frac{1}{\alpha} = 1 - \beta \rho
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

To go further : a saturating function

We can construct a function $f \in L^p(\mathbb{T})$ such that

$$
x \in D_{\alpha} \Rightarrow \beta(x) = \limsup \frac{\log S_n f(x)}{\log n} \ge \frac{1}{p} \left(1 - \frac{1}{\alpha} \right)
$$

$$
\beta = \frac{1}{\rho} \left(1 - \frac{1}{\alpha} \right) \Rightarrow \frac{1}{\alpha} = 1 - \beta \rho
$$

$$
\dim_H(E(\beta, f)) \ge \dim_H(D_\alpha) = \frac{1}{\alpha} = 1 - \beta p
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Au patrimoine mondial de l'Unesco

