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L3 Mathématiques - UE Géométrie affine 2021-2022

1 – Espaces affines, sous-espaces affines

1.1 Notion d’espace affine

1.1.1 Définition. Un espace affine sur R est la donnée d’un triplet (E, E , ϑ) formé par :

(i) un R-espace vectoriel E : ses éléments sont appelés des vecteurs ; on les notera par des lettres

minuscules surmontés d’une flèche −→u ,−→v ,−→w , . . . en particulier le vecteur nul sera noté
−→
0 ;

(ii) un ensemble non-vide E : ses éléments sont appelés des points ; on les notera par des lettres
majuscules A,B,C,M,N, P,Ω . . .

(iii) une application ϑ : E × E → E, (A,B) 7→
−−→
AB satisfaisant les deux axiomes suivants :

(A1) pour tout A ∈ E et tout −→u ∈ E, il existe un unique point M ∈ E tel que
−−→
AM = −→u ,

(A2) pour tous A,B,C ∈ E , on a dans E la relation
−→
AC =

−−→
AB +

−−→
BC (relation de Chasles).

On dit plus brièvement que E est un espace affine sur R, d’espace vectoriel directeur E (l’application
ϑ étant alors sous-entendue).
L’espace affine E est dit de dimension finie n lorsque E est de dimension finie n (en tant qu’espace
vectoriel). La géométrie élémentaire étudiée au lycée ou les applications usuelles en physique se
situent dans un espace affine de dimension 2 ou 3.

1.1.2 Conséquences pratiques immédiates.

a) Nullité d’un vecteur. Pour tous points A,B ∈ E , on a
−−→
AB =

−→
0 si et seulement si A = B.

En effet : d’après (A2),
−→
AA =

−→
AA+

−→
AA, donc

−→
AA =

−→
0 . Réciproquement, si

−→
AB =

−→
0 , alors

−→
AB =

−→
AA,

ce qui implique B = A par unicité dans l’axiome (A1). ut

b) Vecteurs opposés. Pour tous points A,B ∈ E , on a
−−→
BA = −

−−→
AB.

En effet : Il en résulte du a) et de (A2) que
−→
AB +

−→
BA =

−→
AA =

−→
0 , c’est-à -dire

−→
BA = −

−→
AB. ut

c) Milieu. Pour tous A,B ∈ E , il existe un unique point I ∈ E tel que
−→
AI = 1

2

−−→
AB. Le point I est

appelé le milieu du couple de points (A,B). Il vérifie aussi
−→
AI =

−→
IB.

d) Configuration du parallélogramme. Soient A,B,C,D quatre points de E . On a :

[
−−→
AB =

−−→
CD ] ⇔ [

−→
AC =

−−→
BD ] ⇔ [ le milieu de (A,D) est égal au milieu de (B,C) ]

Le quadruplet (A,B,D,C) est alors appelé un parallélogramme.

En effet : Avec la relation de Chasles, on décompose :
−→
AB −

−−→
CD =

−→
AC +

−−→
CB − (

−−→
CB +

−−→
BD) =

−→
AC −

−−→
BD.

d’où la première équivalence voulue lorsque cette différence est nulle.

Notons I le millieu de (A,D) et J le milieu de (B,C). On calcule :
−→
AJ +

−→
DJ =

−→
AC +

−→
CJ +

−−→
DB +

−→
BJ =

−→
AC +

−−→
DB, puisque

−→
CJ = −

−→
BJ .

Mais
−→
AC = −

−−→
DB d’après ce qui précède, d’où

−→
AJ +

−→
DJ =

−→
0 . En réutilisant

la relation de Chasles, il vient
−→
AI+

−→
IJ +

−→
DI+

−→
IJ =

−→
0 . Mais

−→
AI = −

−→
DI, d’où−→

IJ =
−→
0 , donc I = J . ut
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1.1.3 Diverses traduction de l’axiome (A1).

a) Pour tout vecteur −→u ∈ E et tout point A ∈ E , l’unique point M ∈ E défini par
−−→
AM = −→u est

parfois noté M = A + −→u . C’est une notation commode mais qu’il faut manipuler avec attention
pour éviter certaines confusions dans les calculs.

b) Pour −→u ∈ E fixé, l’application τ−→u : E → E qui à tout point A ∈ E , associe le point A + −→u est
une bijection de E sur E , appelée la translation de vecteur −→u .

c) Pour A ∈ E fixé, l’application ϕA : E → E qui à tout point M ∈ E associe le vecteur
−−→
AM

est une bijection de E sur E. Sa bijection réciproque est l’application ψA : E → E définie par
ψA(−→u ) = A+−→u pour tout −→u ∈ E.

1.1.4 Terminologie. Lorsque
−−→
AB = −→u , on dit que le couple de points (A,B) est un représentant

du vecteur −→u , dans lequel A est l’origine et B l’extrémité. Tout autre couple de points (C,D) tel

que −→u =
−−→
CD est un autre représentant de −→u . La translation de vecteur −→u est l’application qui, à

tout point A, associe le point B = A+−→u qui est l’extrémité de −→u lorsque son origine est A.

−→
AB = −→u , donc B = A+−→u .

−→
AB =

−−→
CD =

−−→
EF =

−−→
MN =

−−→
XY

Ces couples de points représentent le même vecteur.

1.1.5 Commentaire. Le point de vue retenu dans ce document définit un espace affine à partir de la
notion supposée connue d’espace vectoriel. On peut envisager une autre présentation consistant à partir
intuitivement d’un ensemble de points E , et à considérer dans E × E la relation dite d’équipollence,
définie par : (A,B) ∼ (C,D) lorsque ABDC est un parallélogramme. On vérifie que c’est une relation

d’équivalence, et un vecteur est alors défini comme une classe d’équivalence pour cette relation [ie.
−→
AB

est l’ensemble des couples de points (C,D) équipollents à (A,B), de sorte que l’on retrouve bien la
règle du parallélogramme]. Il s’agit ensuite de retrouver géométriquement les diverses opérations sur les
vecteurs correspondant à la structure d’espace vectoriel.

1.2 Sous-espace affine

Dans tout ce paragraphe, E est un espace affine sur R, d’espace vectoriel directeur E.

1.2.1 Définition. Une partie F de E est un sous-espace affine de E lorsqu’il existe un point A

dans F tel que l’ensemble des vecteurs
−−→
AM pour M décrivant F est un sous-espace vectoriel de E.

Il en résulte en particulier qu’un sous-espace affine n’est jamais vide, et que E lui-même est un
sous-espace affine de E .

Il en résulte aussi que, pour tout point A ∈ E , le singleton {A} est un sous-espace affine de E
Le point fondamental est que le sous-espace vectoriel dans la définition ci-dessus ne dépend en fait
pas du point A, comme le montre la proposition suivante.
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1.2.2 Proposition et définition. Soit F un sous-espace affine de E . Il existe un sous-espace

vectoriel F de E tel que, pour tout A ∈ F , on ait F = {
−−→
AM ; M ∈ F}. On dit que F est le

sous-espace vectoriel directeur du sous-espace affine F , ou encore que F est dirigé par F .

Preuve. Par hypothèse, il existe A ∈ F tel que ϕA(F) est un sous-espace vectoriel de E. Fixons B ∈ F
quelconque et montrons que ϕA(F) = ϕB(F). On a

−→
AB = ϕA(B) ∈ ϕA(F). Quel que soit M ∈ F , les

vecteurs
−−→
AM et

−→
AB appartiennent au sous-espace vectoriel ϕA(F), donc

−−→
BM =

−−→
AM −

−→
AB ∈ ϕA(F).

Ceci prouve que ϕB(F) ⊆ ϕA(F). Pour la réciproque, notons que l’on a aussi
−−→
AM +

−→
AB ∈ ϕA(F) ;

il existe donc N ∈ F tel que
−−→
AM +

−→
AB =

−−→
AN donc

−−→
AM =

−−→
AN −

−→
AB =

−−→
BN ∈ ϕB(F). On conclut

ϕA(F) ⊆ ϕB(F), d’où l’égalité voulue. ut

Réciproquement, la donnée d’un sous-espace vectoriel de E et d’un point de E détermine un unique
sous-espace affine de E , comme le montre le théorème suivant.

1.2.3 Théorème fondamental et définition. Soient F un sous-espace vectoriel de E et A un
point de E . Il existe un unique sous-espace affine F de E tel que A appartienne à F et tel que F
soit le sous-espace vectoriel directeur de F .

On dit que F est le sous-espace affine de E passant par A et dirigé par F .

Preuve. Posons F = ϕ−1
A (F ) = {M ∈ E ;

−−→
AM ∈ F}. On a A ∈ F puisque

−→
AA =

−→
0 ∈ F ; de plus,

par construction, ϕA(F) = F , donc F est un sous-espace affine dirigé par F . Pour l’unicité, soit F ′ un
sous-espace affine de E passant par A et dirigé par F . D’après la proposition précédente, cela signifie
que ϕA(F ′) = F . Mais alors ϕA(F) = ϕA(F ′) implique F = F ′ par bijectivité de ϕA. ut

1.2.4 En résumé, si F est un sous-espace affine de E et si F est le sous-espace vectoriel directeur
de F , on a les trois propriétés suivantes :

a) pour tous A ∈ F et B ∈ F , on a
−−→
AB ∈ F ;

b) pour tous A ∈ F et −→u ∈ F , il existe un unique point M ∈ F tel que −→u =
−−→
AM ;

c) pour tout A ∈ F on a : F = { M ∈ E ;
−−→
AM ∈ F } et F = {

−−→
AM ; M ∈ F }.

1.2.5 Dimension d’un sous-espace affine. On a une notion naturelle et évidente de dimension
d’un sous-espace affine, la dimension de F étant définie comme la dimension du sous-espace vectoriel
F de E directeur de F . Il résulte aisément des propositions précédentes que :

a) Si E est de dimension finie n (c’est-à-dire que dim E = dimE = n), alors dimF = dimF ≤ n
pour tout sous-espace affine F de E .

b) Si F et F ′ sont deux sous-espaces affines, on a :

[ (F ′ ⊆ F)⇒ (dimF ′ ≤ dimF) ], ainsi que [ (F ′ ⊆ F et dimF ′ = dimF)⇒ (F ′ = F) ].

c) Un sous-espace affine de dimension 0 est un singleton {A} formé d’un seul point de E . Un
sous-espace affine de dimension 1 s’appelle une droite affine. Un sous-espace affine de dimen-
sion 2 s’appelle un plan affine. En particulier, dans le cadre de la géométrie élémentaire :

− Si E est de dimension 2, les sous-espaces affines sont : les singletons, les droites affines
contenues dans E , et le plan E lui-même.

− Si E de dimension 3, les sous-espaces affines sont : les singletons, les droites affines
contenues dans E , les plans affines contenus dans E , et l’espace E lui-même.
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d) On appelle hyperplan de E tout sous-espace affine de E qui est de dimension n−1, où n est la
dimension de E . Dans le cadre de la géométrie élémentaire, les hyperplans de l’espace affine
de dimension 3 sont les plans, et les hyperplans du plan de dimension 2 sont les droites.

1.2.6 Proposition. Une intersection de sous-espaces affines, si elle est non vide, est un sous-
espace affine, dirigé par l’intersection des sous-espaces vectoriels directeurs.

Preuve. Soit (Fi)i∈I une famille de sous-espaces affines de E . Pour tout i ∈ I, notons Fi le sous-espace
vectoriel directeur de Fi. On sait que F = ∩i∈IFi est un sous-espace vectoriel de E. Posons F = ∩i∈IFi
et supposons que F 6= ∅. Prenons A ∈ F quelconque. Parce que ϕA est injective (car bijective), on a
ϕA(∩i∈IFi) = ∩i∈IϕA(Fi), c’est-à-dire ϕA(F) = F . Comme F est un sous-espace vectoriel de E, ceci
prouve que F est un ss-e.a. de E dirigé par F . ut

D’après 1.2.5, il est clair dans ce résultat que le sous-espace affine F est de dimension inférieure ou
égal à la dimension de chacun des sous-espaces Fi.

On retrouve les faits intuitivement bien connus en géométrie élémentaire que l’intersection d’une famille
finie de droites ou de plans est vide, un point, une droite ou un plan.

1.3 Parallélisme

Dans tout ce paragraphe, E est un espace affine sur R, d’espace vectoriel directeur E.

1.3.1 Définition Soient F et F ′ deux sous-espaces affines de E , de sous-espaces vectoriels di-
recteurs respectifs F et F ′. On dit que F et F ′ sont parallèles lorsque F = F ′. On note F//F ′.
En particulier, deux sous-espaces affines parallèles sont nécessairement de même dimension.
Il est clair que le parallélisme est une relation d’équivalence dans l’ensemble des sous-espaces affines.

1.3.2 Proposition Deux sous-espaces affines parallèles sont nécessairement égaux ou disjoints.

Preuve. Considérons comme ci-dessus F//F ′, avec F = F ′. Si F et F ′ ne sont pas disjoints, considérons
A ∈ F∩F ′. Alors F et F ′ passent tous les deux par A en étant dirigés par le même sous-espace vectoriel
F = F ′. On déduit de l’unicité dans le théorème 1.2.3 que F = F ′. ut

Attention, la réciproque est trivialement fausse en général ! Dans un espace affine de dimension 3,
deux droites qui ne sont pas incluses dans un même plan sont forcément disjointes sans être pa-
rallèles. Il y a cependant des arguments de dimensions qui permettent des résultats partiels.

1.3.3 Observation pratique. Dans le cadre de la géométrie élémentaire :

− Si E est un plan affine, deux droites affines D et D′ de E sont parallèles si et seulement si elles
sont égales ou disjointes.

− Si E est un espace affine de dimension 3, deux plans affines P et P ′ de E sont parallèles si et
seulement s’ils sont égaux ou disjoints.

Preuve. Soient D et D′ deux droites dans un plan affine E . La proposition précédente montre l’un des
sens de l’équivalence, et il est trivial que D = D′ implique D//D′. Il s’agit donc de montrer que D∩D′ = ∅
implique D//D′. Pour cela, supposons que D et D′ ne sont pas parallèles. Les droites vectorielles D et
D′ dirigeant D et D′ respectivement sont donc distinctes. Il en résulte que si l’on choisit −→u ∈ D et
−→v ∈ D′ non-nuls, ils ne sont pas colinéaires, donc forment une famille libre du plan vectoriel E, et donc

une base de E. Prenons A ∈ D et A′ ∈ D′. Il existe λ, µ ∈ R tels que
−−→
AA′ = λ−→u +µ−→v . Comme λ−→u ∈ D

et A ∈ D, il existe M ∈ D tel que
−−→
AM = λ−→u . Donc

−−−→
A′M =

−−→
AM −

−−→
AA′ = λ−→u − λ−→u − µ−→v = −µ−→v .

On a ainsi
−−−→
A′M ∈ D′, ce qui, puisque A′ ∈ D′, implique M ∈ D′. On conclut que M ∈ D ∩ D′, ce qui

achève la preuve du premier point. La preuve du second point est laissée au lecteur. ut
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1.3.4 Commentaire. Une propriété fondamentale dans la formulation axiomatique de la géométrie
classique est l’axiome (ou postulat) d’Euclide :

� si D est une droite et A un point n’appartenant pas à D, alors il passe par A une
droite et une seule parallèle à D �.

Dans la mesure où être parallèle signifie avoir le même sous-espace vectoriel directeur (ici la même
droite vectorielle directrice), cet énoncé “traditionnel” est une formulation du théorème 1.2.3. Et
elle est de ce fait valable pour tout sous-espace affine. Par exemple :

� si P est un plan et A un point n’appartenant pas à P, alors il passe par A un plan et
un seul parallèle à P �.

1.4 Cas particulier des espaces affines euclidiens, distance, orthogonalité

1.4.1 Définition. On appelle espace affine euclidien tout espace affine E sur R tel que le sous-
espace vectoriel directeur E est un espace vectoriel euclidien.

I Rappel d’algèbre linéaire. Dire que l’espace vectoriel E est euclidien signifie que
E est de dimension finie sur R et qu’il est muni d’un produit scalaire.

On notera −→u .−→v le produit scalaire de deux vecteurs −→u et −→v de E.

La norme euclidienne associée est alors définie par ‖−→u ‖ =
√−→u .−→u pour tout −→u ∈ E.

Deux vecteurs −→u et −→v de E sont dits orthogonaux lorsque −→u .−→v = 0. On note −→u⊥−→v .

1.4.2 Distance. Pour tous points A,B dans E , on appelle distance de A à B le réel positif :

d(A,B) = ‖
−−→
AB‖, que l’on note aussi : AB = d(A,B).

On déduit immédiatement des propriétés de la norme que, pour tous points A,B,C ∈ E :

d(A,B) = d(B,A), [d(A,B) = 0]⇔ [A = B], d(A,C) ≤ d(A,B) + d(B,C).

1.4.3 Proposition (propriété de Pythagore).

Soient A,B,C trois points de E . On a :
−−→
AB⊥

−→
AC si et seulement si BC2 = AB2 +AC2.

On dit alors que le triangle (ABC) est rectangle en A. Le côté [BC] est
appelé l’hypothénuse.

Preuve. Avec la relation de Chasles : BC2 =
−−→
BC.
−−→
BC = (

−→
BA+

−→
AC).(

−→
BA+

−→
AC) = BA2+2

−→
BA.
−→
AC+AC2.

Donc BC2 = BA2 +AC2 si et seulement si 2
−→
BA.
−→
AC = 0, d’où le résultat. ut
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1.4.4 Sphère. Soient Ω un point de E . Pour tout réel positif r, on appelle sphère de centre Ω et
de rayon r l’ensemble des points M de E tel que la distance entre Ω et M est égal à r. On note :

S(Ω, r) = {M ∈ E ; d(Ω,M) = r}.

On définit de même la boule fermée B(Ω, r) = {M ∈ E ; d(Ω,M) ≤ r} de centre Ω et de rayon r
(la boule ouverte correspondant de même à la condition d(Ω,M) < r).

Dans le cas où dim E = 2, S(Ω, r) est appelée cercle et B(Ω, r) est appelée disque fermé de centre
Ω et de rayon r.

1.4.5 Proposition (sphère et orthogonalité). Soient I et J deux points distincts d’une
sphère S(Ω, r) de rayon r > 0 tels que Ω soit le milieu de (I, J) (on dit que dans ce cas que I et J
sont diamétralement opposés). Alors, un point quelconque M ∈ E appartient à la sphère S(Ω, r) si
et seulement si les points (I, J,M) forment un triangle rectangle.

Preuve. On calcule à l’aide de la relation de Chasles le produit scalaire :
−−→
MI.
−−→
MJ = (

−−→
MΩ +

−→
ΩI).(

−−→
MΩ +

−→
ΩJ) =

−−→
MΩ.

−−→
MΩ +

−→
ΩI.
−→
ΩJ +

−→
ΩI.
−−→
MΩ +

−−→
MΩ.

−→
ΩJ .

Comme Ω est le milieu de (I, J), on a
−→
ΩI = −

−→
ΩJ ; il en résulte que d’une part

−→
ΩI.
−−→
MΩ +

−−→
MΩ.

−→
ΩJ =

(
−→
ΩI +

−→
ΩJ).

−−→
MΩ =

−→
0 .
−−→
ΩM = 0, et que d’autre part

−→
ΩI.
−→
ΩJ = −

−→
ΩI.
−→
ΩI = −ΩI2 = −r2. En observant que

−−→
MΩ.

−−→
MΩ = ΩM2, l’égalité précédente devient donc :

−−→
MI.
−−→
MJ = ΩM2 − r2.

Il est clair alors que
−−→
MI.
−−→
MJ = 0 équivaut à ΩM = r, c’est-à-dire que (I, J,M) forment un triangle

rectangle si et seulement si M ∈ S(Ω, r). ut

1.4.6 Sous-espaces affines orthogonaux. Soient F et H deux ss-e.a. de E . On dit que F et
H sont orthogonaux lorsque leurs sous-espaces vectoriels respectifs F et H sont orthogonaux.

I Rappel d’algèbre linéaire. Deux sous-espaces vectoriels de F et H de E sont
dits orthogonaux si tout vecteur de l’un est orthogonal à tout vecteur de l’autre.

Si F est un sous-espace vectoriel de E, on appelle orthogonal de F l’ensemble F⊥ formé
des vecteurs de E qui sont orthogonaux à tous les vecteurs de F .

F⊥ = {−→u ∈ E ; −→u⊥−→v pour tout −→v ∈ F}.
On montre que F⊥ est un sous-espace vectoriel de E, supplémentaire de F dans E.

E = F ⊕ F⊥, et donc dimF⊥ = n− dimF , où n = dimE.
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1.4.7 Proposition et définition (hyperplan médiateur). Soient A,B deux points distincts
de E . Alors :

(i) L’ensemble H = {M ∈ E ; d(A,M) = d(B,M)} des points équidistants de A et B est un
hyperplan affine de E , appelé l’hyperplan médiateur du bipoint (A,B).

(ii) H est l’hyperplan affine passant par le milieu I de (A,B) et dirigé par l’hyperplan vectoriel

H = ∆⊥ de E, où ∆ est la droite vectorielle de E dirigée par
−−→
AB.

Preuve. Par définition de H, on a M ∈ H si et seulement si AM = BM , ce qui équivaut à AM2 = BM2

puisque les distances AM et BM sont des réels positifs. On calcule :

AM2 −BM2 =
−−→
AM.

−−→
AM −

−−→
BM.

−−→
BM =

−−→
AM.

−−→
AM − (

−−→
AM −

−→
AB).(

−−→
AM −

−→
AB) = −

−→
AB.
−→
AB + 2

−→
AB.
−−→
AM .

Ainsi M ∈ H si et seulement si 2
−→
AB.
−−→
AM −AB2 = 0 ; on retient que :

M ∈ H si et seulement si
−→
AB.
−−→
AM = d, où l’on a posé d = 1

2
AB2.

Remarquons d’abord que le milieu I de (A,B) appartient à H puisque
−→
AI = 1

2

−→
AB.

Le vecteur
−→
AB est non-nul par hypothèse : introduisons la droite vectorielle ∆ de E dirigée par le vecteur−→

AB. Notons H son supplémentaire orthogonal ∆⊥. On sait que dimH = dimE − dim ∆ = n − 1, de
sorte que H est un hyperplan vectoriel de E.

Pour tout M ∈ E , on décompose :
−→
AB.
−−→
AM =

−→
AB.
−→
AI +

−→
AB.
−−→
IM = d+

−→
AB.
−−→
IM en utilisant que I ∈ H.

Il en résulte que M ∈ H si et seulement si
−→
AB.
−−→
IM = 0, ce qui équivaut à

−−→
IM ∈ H.

Ceci montre que H est le sous-espace affine passant par I et dirigé par H. ut

Lorsque dim E = 2,
droite médiatrice de (A,B)

Lorsque dim E = 3,
plan médiateur de (A,B)
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L3 Mathématiques - UE Géométrie affine 2021-2022

2 – Repères et coordonnées

Dans ce chapitre, E est un espace affine de dimension finie n sur R, d’espace vectoriel directeur E.

2.1 Sous espace affine engendré par une partie

On a vu en 1.2.6 que l’intersection d’une famille de sous-espaces affines, à condition qu’elle soit non
vide, est un sous-espace affine, dirigé par l’intersection des sous-espaces vectoriels directeurs.

2.1.1 Définition. Il résulte du rappel ci-dessus que, pour toute partie non-vide X de E , on peut
considérer le sous-espace affine 〈X 〉 défini comme l’intersection de tous les sous-espaces affines de E
contenant X . On l’appelle le sous-espace affine de E engendré par X . On vérifie de façon immédiate
que c’est le plus petit (pour l’inclusion) sous-espace affine de E contenant X . Le théorème ci-dessous
décrit le sous-espace affine engendré par un nombre fini de points.

2.1.2 Théorème. Soient A0, A1, . . . , Ap des points distincts de E . Soit F le sous-espace affine
engendré par {A0, A1, . . . , Ap}. Alors F est égal au sous-espace affine de E passant par A0 et dirigé

par le sous-espace vectoriel F de E engendré par {
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap}.

Preuve. Posons X = {A0, A1, . . . , Ap}. Soit F le sous-espace vectoriel de E engendré par les p vecteurs

{
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap}. Notons F le sous-espace affine de E passant par A0 et dirigé par F . On

a F = ϕ−1
A0

(F ). En particulier X ⊆ F . Soit maintenant H un sous-espace affine de E contenant X .

Son sous-espace vectoriel directeur H = ϕA0(H) contient les vecteurs
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap, donc le

sous-espace vectoriel qu’ils engendrent. Ainsi F est un sous-espace vectoriel de H. On en déduit que
ϕ−1
A0

(F ) ⊆ ϕ−1
A0

(H), c’est-à-dire F ⊆ H. On a ainsi montré que le sous-espace affine F contient X et
qu’il est inclus dans tout sous-espace affine de E contenant X . On conclut F = 〈X 〉. ut

En résumé et en pratique :

Un point M de E appartient au sous-espace affine engendré par A0, A1, . . . , Ap si et

seulement s’il existe un p-uplet (α1, . . . , αp) ∈ Rp tel que
−−−→
A0M =

∑p
i=1 αi

−−−→
A0Ai

Il est clair que, dans ce théorème, A0 peut être remplacé par n’importe lequel des points Ai.

2.2 Base affine.

Il est clair dans 2.1.2 que dimF ≤ p puisque la famille de vecteurs X0 = {
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap}

est une famille génératrice de F . La question se pose alors de savoir si X0 est libre ou non, car :

[X0 est libre] ⇔ [X0 est une base de F ] ⇔ [dimF = p] ⇔ [dimF = p].

Là encore, c’est une propriété qui ne dépend pas du choix de A0, comme le montre le lemme suivant.

2.2.1 Lemme. Soient A0, A1, . . . , Ap des points de E deux à deux distincts. Les conditions sui-
vantes sont équivalentes :

(i) la famille X0 = {
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap} est libre dans E ;

(ii) pour tout 0 ≤ j ≤ p, la famille Xj = {
−−−→
AjA0, . . . ,

−−−−−→
AjAj−1,

−−−−−→
AjAj+1, . . . ,

−−−→
AjAp} est libre ;

(iii) aucun des points Ai n’appartient au sous-espace affine engendré par les p autres points.
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Preuve. Supposons que X0 est libre, et fixons 0 < j ≤ p. Soient λ0, . . . , λj−1, λj+1, . . . , λp ∈ R tels que∑
i 6=j λi

−−−→
AjAi =

−→
0 . En décomposant

−−−→
AjAi =

−−−→
AjA0 +

−−−→
A0Ai, il vient :(∑

i 6=j
λi
)−−−→
AjA0 +

∑
i6=j

λi
−−−→
A0Ai =

−→
0 .

Parce que X0 est libre, on déduit que
∑
i6=j λi = 0 et λi = 0 pour tout 1 ≤ i ≤ p distinct de j. D’où

finalement λi = 0 pour tout 0 ≤ i ≤ p distinct de j. Ceci prouve que (i) ⇒ (ii), et donc (i) ⇔ (ii).

Supposons maintenant qu’il existe 0 ≤ i ≤ p tel que Ai appartienne au sous-espace affine engendré par
A0, A1, . . . , Ai−1, Ai+1, . . . , Ap. Alors, pour tout 0 ≤ j 6= i ≤ p, il existe des coefficients αk ∈ R pour

0 ≤ k 6= i, k 6= j ≤ p tel que
−−−→
AjAi =

∑
k αk
−−−→
AjAk, ou encore

∑
k αk
−−−→
AjAk −

−−−→
AjAi =

−→
0 , ce qui prouve

que la famille Xj est liée. Par contraposée, ceci montre que (ii) ⇒ (iii). La réciproque s’obtient par des
calculs analogues. ut

2.2.2 Définitions. Une famille X de p + 1 points deux à deux distincts de E est dite affine-
ment libre si elle satisfait les conditions équivalentes de la proposition précédente. Lorsque X est
affinement libre, on dit que X est une base affine du sous-espace affine F = 〈X 〉 engendré par X .

En résumé et en pratique :

{A0, A1, . . . Ap} est une base affine d’un sous-espace affine F de E si et seulement si, pour

tout M ∈ F il existe un unique p-uplet (α1, . . . , αp) ∈ Rp tel que
−−−→
A0M =

∑p
i=1 αi

−−−→
A0Ai

Il est clair qu’alors F est de dimension p, et que l’on peut remplacer A0 par n’importe lequel des Ai.

2.2.3 Un premier cas particulier : alignement. Par définition, des points de E sont dits
alignés lorsqu’ils appartiennent à une même droite affine.

I Prenons deux points distincts A et B dans E . Alors X = {
−−→
AB} est libre, donc le sous-espace

affine engendré par X = {A,B} est de dimension 1 ; on l’appelle la droite affine passant par A et

B, noté (AB). La droite affine (AB) est dirigée par la droite vectorielle ∆ de base {
−−→
AB}.

I En particulier, deux points sont toujours alignés, et on a pour tout M ∈ E :

[A,B,M alignés] ⇔ [M ∈ (AB)] ⇔ [
−−→
AM ∈ ∆] ⇔ [{

−−→
AB,

−−→
AM} liée]

⇔ [il existe λ ∈ R tel que
−−→
AM = λ

−−→
AB].

[A,B,M non alignés] ⇔ [{A,B,M} affinement libre].

2.2.4 Un second cas particulier : coplanarité. Par définition, des points de E sont dits
coplanaires lorsqu’ils appartiennent à un même plan affine.

I Prenons trois points A,B,C non alignés dans E . Alors X = {
−−→
AB,

−→
AC} est libre, donc le sous-

espace affine engendré par X = {A,B,C} est de dimension 2 ; on l’appelle le plan affine passant par

A,B et C, noté (ABC). Le plan affine (ABC) est dirigé par le plan vectoriel Π de base {
−−→
AB,

−→
AC}.

I En particulier trois points sont toujours coplanaires, et on a pour tout M ∈ E :

[A,B,C,M coplanaires] ⇔ [M ∈ (ABC)] ⇔ [
−−→
AM ∈ Π] ⇔ [{

−−→
AB,

−→
AC,
−−→
AM} liée]

⇔ [il existe λ, µ ∈ R tels que
−−→
AM = λ

−−→
AB + µ

−→
AC].

[A,B,C,M non coplanaires] ⇔ [{A,B,C,M} affinement libre].
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2.2.5 Un exercice de géométrie élémentaire plane. Soient A,B,A′, B′ quatre points deux
à deux distincts dans un plan affine. On suppose qu’ils ne sont pas alignés. Montrer que :

(AB)//(A′B′) et (AA′)//(BB′) si et seulement si
−−→
AB =

−−→
A′B′.

Preuve. Supposons que (AB)//(A′B′) et (AA′)//(BB′). Il résulte de la première observation de 2.2.3

qu’il existe deux réels non-nuls λ et µ tels que
−→
AB = λ

−−−→
A′B′ et

−−→
AA′ = µ

−−→
BB′. On transforme la première

égalité en
−−→
AA′ +

−−→
A′B = λ

−−→
A′B + λ

−−→
BB′, d’où : (1− λ)

−−→
A′B = λ

−−→
BB′ −

−−→
AA′ = (λ− µ)

−−→
BB′.

Si les vecteurs
−−→
A′B et

−−→
BB′ étaient colinéaires, alors les trois points B,A′, B′ seraient alignés. Comme−−→

BB′ est colinéaires à
−−→
AA′, les quatre points seraient alignés, ce qui est exclu par hypohèse. Donc

−−→
A′B

et
−−→
BB′ sont non colinéaires, donc il résulte de l’égalité vectorielle obtenue ci-dessus que λ = µ = 1, ce

qui montre le résultat voulu. La réciproque est claire puisque
−→
AB =

−−−→
A′B′ équivaut à

−−→
AA′ =

−−→
BB′). ut

Cet exercice complète les résultats de 1.1.2.d) sur les différentes caractérisations d’un parallélogramme.

2.3 Coordonnées d’un point dans un repère cartésien

2.3.1 Repère cartésien. Un repère cartésien de E est un couple R = (O,B) formé par un point
fixé quelconque O ∈ E , appelé l’origine du repère, et une base B = (−→e1 , . . . ,

−→en) de E.

Pour tout point M ∈ E , les composantes du vecteurs
−−→
OM dans la base B sont appelées les coor-

données cartésiennes du point M dans le repère R. On note : M(x1, . . . , xn). Ainsi :

[ M(x1, . . . , xn) dans le repère (O,−→e1 , . . . ,
−→en) ] ⇐⇒ [

−−→
OM =

n∑
i=1

xi
−→ei ].

Pour tout 1 ≤ i ≤ n, soit Ai le point de E tel que
−−→
OAi = −→ei . Comme B = {

−−→
OA1,

−−→
OA2, . . . ,

−−→
OAn}

est libre, la famille de n+ 1 points X = {O,A1, A2, . . . , An} est affinement libre. Comme de plus B
engendre l’espace vectoriel E, le sous-espace affine de E engendré par X n’est autre que E lui-même.
En d’autres termes, X est une base affine de E .

Une conséquence évidente mais très utile dans la pratique est que :

si M(x1, . . . , xn) et N(y1, . . . , yn) dans le repère R = (O,B), alors les composantes du

vecteur
−−→
MN dans la base B sont (y1 − x1, . . . , yn − xn), ie.

−−→
MN =

n∑
i=1

(yi − xi)−→ei .

2.3.2 Représentation paramétrique d’un sous-espace affine. Un repère R = (O,B) avec
B = (−→e1 , . . . ,

−→en) étant fixé, considérons un sous-espace affine F de E , de dimension p, passant par un
point donné A, et dont le sous-espace vectoriel directeur F est donné par une base C = {−→v1 , . . . ,

−→vp}.
Chaque −→vi se décompose dans B en −→vi = αi,1

−→e1 + αi,2
−→e2 + · · ·αi,n−→en, avec αi,j ∈ R pour tout

1 ≤ j ≤ n et tout 1 ≤ i ≤ p. Donc, pour λ1, . . . , λp ∈ R, on a :
p∑
i=1

λi
−→vi =

p∑
i=1

λi

( n∑
j=1

αi,j
−→ej
)

=
n∑
j=1

( p∑
i=1

λiαi,j

)−→ej .
Notons A(a1, . . . , an), de sorte que pour tout M(x1, . . . , xn), on a

−−→
AM =

n∑
j=1

(xj − aj)−→ej .

L’équivalence (M ∈ F)⇔ (
−−→
AM ∈ F ) devient donc :[

M ∈ F
]
⇐⇒

[
il existe λ1, . . . , λp ∈ R, tels que xj = aj +

p∑
i=1

λiαi,j pour tout 1 ≤ j ≤ n (?)
]

On dit que les relations (?) constituent une représentation paramétrique du sous-espace affine F
dans le repère R.
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I Exemple. Dans un plan affine rapporté à un repère, une représentation paramétrique de la

droite passant par A(a1, a2) et de vecteur directeur −→v (α1, α2) est :
{
x1=a1+λα1
x2=a2+λα2

, avec λ ∈ R.

I Exemple. Dans un espace affine E de dimension 3 rapporté à un repère,

− une représentation paramétrique de la droite passant par A(a1, a2, a3) et de vecteur directeur

−→v (α1, α2, α3) est :

{
x1=a1+λα1
x2=a2+λα2
x3=a3+λα3

, avec λ ∈ R.

− une représentation paramétrique du plan passant par A(a1, a2, a3) et dirigé par le plan vectoriel

de base {−→v ,−→w } avec −→v (α1, α2, α3) et −→w (β1, β2, β3) est :

{
x1=a1+λα1+µβ1

x2=a2+λα2+µβ2

x3=a3+λα3+µβ3

, avec λ, µ ∈ R.

2.3.3 Equation cartésienne d’un hyperplan affine. Le théorème ci-dessous est fondé sur le
fait bien connu en algèbre linéaire (conséquence de la formule du rang) que les hyperplans vectoriels
sont les noyaux des formes linéaires non-nulles.

a) Théorème et définition. On fixe un repère cartésien R = (O,B) de E .

(i) Pour tout hyperplan affine H de E , il existe (a1, . . . , an, an+1) ∈ Rn+1 avec (a1, . . . , an) 6=
(0, . . . , 0), tel que H soit l’ensemble des points M(x1, . . . , xn) de E vérifiant :

a1x1 + a2x2 + · · ·+ anxn + an+1 = 0. (??)

(ii) Réciproquement, si (a1, . . . , an, an+1) ∈ Rn+1 tel que (a1, . . . , an) 6= (0, . . . , 0), l’ensemble
des points M(x1, . . . , xn) de E vérifiant (??) est un hyperplan de E .

La relation (??) est appelée une équation cartésienne de l’hyperplan H dans le repère R.

Preuve. Pour montrer (i), soit H un hyperplan affine. Son espace vectoriel directeur H est un hyperplan
vectoriel de E ; donc il existe une forme linéaire non-nulle f : E → R telle que H = Ker f . Notons
B = (−→e1 , . . . ,

−→en), qui est une base de E. Si l’on note (a1, . . . , an) les composantes de f dans la base
duale B∗ = {e∗1, . . . , e∗n} de E∗, on a (a1, . . . , an) 6= (0, . . . , 0) et, pour tout −→u (y1, . . . , yn), on calcule :

f(−→u ) =
n∑
i=1

aie
∗
i (
−→u ) =

n∑
i=1

aie
∗
i

( n∑
j=1

yj
−→ej
)

=
n∑
i=1

n∑
j=1

aiyje
∗
i (
−→ej ) =

n∑
i=1

aiyi.

Donc H est l’hyperplan vectoriel de E d’équation a1y1 + · · ·+anyn = 0 dans B. Soit B(b1, . . . , bn) ∈ H.

On a : [ M(x1, . . . , xn) ∈ H ] ⇔ [
−−→
BM ∈ H ] ⇔ [ a1(x1 − b1) + · · ·+ an(xn − bn) = 0 ], d’où le résultat

en posant an+1 = −(a1b1 + · · ·+ anbn).

Pour (ii), supposons donné (a1, . . . , an, an+1) ∈ Rn+1 avec (a1, . . . , an) 6= (0, . . . , 0) et notons H l’en-
semble des points M(x1, . . . , xn) vérifiant (∗∗). Il est non-vide car l’un au moins des ai est non-nul. Soit
B(b1, . . . , bn) ∈ H. Comme a1b1 + · · ·+ anbn + an+1 = 0, on a pour tout M(x1, . . . , xn) ∈ E :

[M ∈ H]⇔ [a1x1 + · · ·+anxn+an+1 = a1b1 + · · ·+anbn+an+1]⇔ [a1(x1−b1)+ · · ·+an(xn−bn) = 0].

Ceci signifie que M ∈ H équivaut à
−−→
BM ∈ Ker f , où l’on note f la forme linéaire f = a1e

∗
1 + · · ·+ane

∗
n,

qui est non-nulle d’après l’hypothèse sur les ai. En notant H l’hyperplan vectoriel Ker f dans E, on a

finalement : M ∈ H si et seulement si
−−→
BM ∈ H, ce qui prouve que H est le sous-espace affine passant

par B et dirigé par H, donc que H est un hyperplan affine. ut

b) Corollaire. Soient H et H′ deux hyperplans de E d’équations a1x1 + · · ·+ anxn + an+1 = 0 et
a′1x1 + · · ·+ a′nxn + a′n+1 = 0 respectivement. Alors :

H //H′ si et seulement s’il existe λ ∈ R, λ 6= 0, tel que a′i = λai pour tout 1 ≤ i ≤ n.

H = H′ si et seulement s’il existe λ ∈ R, λ 6= 0, tel que a′i = λai pour tout 1 ≤ i ≤ n+ 1.

Preuve. Cela découle du fait, observé dans la preuve, que H est dirigé par l’hyperplan vectoriel H de E
d’équation a1x1 + a2x2 + · · ·+ anxn = 0 dans la base B. ut
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2.4 Exemples en géométrie élémentaire : droites du plan

a) Proposition. On suppose E de dimension 2, rapporté à un repère cartésien. Une équation
cartésienne d’une droite affine D de E est de la forme

ax+ by + c = 0 avec (a, b) 6= (0, 0)

Une base de la droite vectorielle ∆ dirigeant D est alors {−→u } avec −→u (−b, a).

Preuve. On applique simplement le théorème 2.3.3.a) avec n = 2. ut

I Exemples d’applications. Ecrire à titre d’exercice le détail des calculs correspondants.

• Condition d’alignement. Soient A(α, β) et B(α′, β′). Pour tout M(x, y), on a :

(M,A,B) alignés ⇔ {
−−→
AM,

−→
AB} liée ⇔

∣∣∣ x−α α′−α
y−β β′−β

∣∣∣ = 0 ⇔ (β′ − β)x+ (α− α′)y + (α′β − αβ′) = 0,

ce qui, pour A 6= B, donne une équation de la droite (AB). Ou encore, en remarquant que les points
sont alignés si et seulement si leurs coordonnées vérifient une équation de droite :

[M,A,B alignés]⇔
[
il existe a, b, c ∈ R tel que (a, b) 6= (0, 0),

{
ax + by + c = 0
aα + bβ + c = 0

aα′ + bβ′ + c = 0

]
⇔
[ ∣∣∣∣ x y 1

α β 1

α′ β′ 1

∣∣∣∣ = 0

]
.

• Position relative de deux droites. Soient deux droites D et D′ d’équations respectives ax+ by + c = 0

et a′x+ b′y + c′ = 0. Notons (S) le système
{
ax + by + c = 0

a′x + b′y + c′ = 0
, et δ =

∣∣ a b
a′ b′

∣∣ son déterminant.

(i) (D parallèle à D′) ⇔ (il existe λ ∈ R∗ tel que a′ = λa, b′ = λb) ⇔ (δ = 0).

− Si l’on a aussi c′ = λc, les deux équations sont équivalentes, donc D = D′.
− Sinon, (S) n’est pas compatible, donc D ∩D′ = ∅.

(ii) (D non parallèle à D′) ⇔ (δ 6= 0) ⇔ (D ∩D′ = {Ω}) avec Ω
(
bc′−b′c
ab′−a′b ,

a′c−ac′
ab′−a′b

)
.

• Condition de concours de trois droites. Soient trois droites D, D′ et D′′ d’équations respectives ax+
by + c = 0, a′x + b′y + c′ = 0 et a′′x + b′′y + c′′ = 0. On suppose que les trois droites sont deux à
deux non parallèles, c’est-à-dire que ab′− a′b, a′b′′− a′′b′ et a′′b′− a′b′′ sont tous les trois non-nuls. On
dit qu’elles sont concourantes lorsqu’elles se coupent en un même point, c’est-à-dire lorsque leurs trois
points d’intersection deux à deux sont confondus ; ceci équivaut à dire que les coordonnées du point
d’intersection Ω de D et D′ (voir ci-dessus) sont solutions de l’équation a′′x + b′′y + c′′ = 0. Il vient
après calcul :

(D,D′,D′′ concourantes) ⇔ (
∣∣∣ a b c
a′ b′ c′

a′′ b′′ c′′

∣∣∣ = 0 ).

b) Concourance des médianes d’un triangle. Soient A,B,C trois points non alignés du plan E .
Notons I, J,K les milieux respectifs de (A,B), (B,C) et (C,A). Alors les trois droites (CI), (AJ)
et (BK) sont concourantes. Leur point d’intersection G est appelé le centre de gravité du triangle
(ABC).

Preuve. Les points A,B,C n’étant pas alignés, les vecteurs
−→
AB et

−→
AC

sont linéairement indépendants ; on peut donc considérer le repère R =

(A,
−→
AB,
−→
AC) du plan E . Les coordonnées dans R des points considérés

sont :

A(0, 0), B(1, 0), C(0, 1), I( 1
2
, 0), J( 1

2
, 1

2
), K(0, 1

2
).

On en déduit les composantes dans la base (
−→
AB,
−→
AC) des vecteurs :

−→
CI( 1

2
,−1),

−→
AJ( 1

2
, 1

2
),
−−→
BK(−1, 1

2
)

Il en résulte que les trois droites (CI), (AJ) et (BK), appelées les
médianes du triangle (ABC), admettent comme équations respectives :

2x+ y − 1 = 0, x− y = 0, x+ 2y − 1 = 0,
qui admettent comme unique solution commune le couple ( 1

3
, 1

3
).

Le point G( 1
3
, 1

3
) est donc le point d’intersection des trois médianes. ut
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2.5 Exemples en géométrie élémentaire : droites et plans de l’espace

a) Proposition (cas des plans). On suppose E de dimension 3, rapporté à un repère cartésien.
Une équation cartésienne d’un plan affine P de E est de la forme

ax+ by + cz + d = 0 avec (a, b, c) 6= (0, 0, 0)

Une base du plan vectoriel Π dirigeant P est {−→u ,−→v } avec −→u (−b, a, 0) et −→v (−c, 0, a).

Preuve. On applique simplement le théorème 2.3.3.a) avec n = 3. ut

I Exemples d’applications. Ecrire le détail des calculs correspondants et faire des figures.

• Condition de coplanarité. Soient A(α, β, γ), B(α′, β′, γ′), C(α′′, β′′, γ′′). Pour tout M(x, y, z), on a :

(M,A,B,C) coplanaires ⇔
∣∣∣∣ x−α α′−α α′′−α
y−β β′−β β′′−β
z−γ γ′−γ γ′′−γ

∣∣∣∣ = 0 ⇔

∣∣∣∣∣
x y z 1
α β γ 1

α′ β′ γ′ 1

α′′ β′′ γ′′ 1

∣∣∣∣∣ = 0

ce qui, quand {
−→
AB,
−→
AC} est libre, donne en développant une équation du plan passant par A,B,C.

• Position relative de deux plans. Soient deux plans P et P ′ d’équations respectives ax+ by+ cz+d = 0

et a′x+ b′y+ c′z+ d′ = 0. Notons (S) le système
{
ax + by + cz + d = 0

a′x + b′y + c′z + d′ = 0
, et µ =

(
a b c
a′ b′ c′

)
sa matrice.

(i) (P parallèle à P ′) ⇔ (il existe λ ∈ R∗ tel que a′ = λa, b′ = λb, c′ = λc) ⇔ (rgµ = 1).

− Si l’on a aussi d′ = λd, les deux équations sont équivalentes, donc P = P ′.
− Sinon, (S) n’est pas compatible, donc P ∩ P ′ = ∅.

(ii) Supposons que rg µ 6= 1. Les deux plans P et P ′ ne sont donc pas parallèles. Comme (a, b, c) 6=
(0, 0, 0) et (a′, b′, c′) 6= (0, 0, 0), on a rg µ 6= 0, donc rgµ = 2. Donc l’un au moins des 3 mineurs ab′−a′b,
bc′ − c′b et ca′ − c′a est non-nul. Il en résulte en particulier que P ∩ P ′ 6= ∅.

Si par exemple ab′ − a′b 6= 0, l’ensemble des solutions de (S) est {(x(z), y(z), z) ; z ∈ R},
avec x(z), y(z) donnés par les formules de Cramer dans le système

{
ax + by = −cz − d

a′x + b′y = −c′z − d′ .

Dès lors, P ∩ P ′ est un sous-espace affine dirigé par le ss-e.v. Π ∩ Π′. Or −→u (x, y, z) ∈ Π ∩ Π′ si et

seulement si (x, y, z) est solution du système homogène (S0)
{
ax + by + cz = 0

a′x + b′y + c′z = 0
.

On a rg(S0) = rgµ = 2 donc l’espace vectoriel des solutions de (S0) est de dimension 3 − 2 = 1. On
conclut que Π ∩Π′ est une droite vectorielle, donc que P ∩ P ′ est une droite affine.

On retiendra que : l’intersection de deux plans affines non parallèles est une droite affine.

b) Proposition (cas des droites). On suppose E de dimension 3, rapporté à un repère cartésien.
Une partie D de E est une droite affine de E si et seulement s’il existe (a, b, c) et (a′, b′, c′) deux
triplets linéairement indépendants dans R3, et deux scalaires d, d′ ∈ R tels que D soit exactement
l’ensemble des points M(x, y, z) dont les coordonnées sont solutions du système (S) suivant :{

ax + by + cz + d = 0
a′x + b′y + c′z + d′ = 0 , avec (a′, b′, c′) 6= λ(a, b, c) pour tout λ ∈ R, (a, b, c) 6= (0, 0, 0).
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Preuve. Un sens résulte de ce que l’on vient de voir à la fin du paragraphe précédent. Réciproquement,
soient D une droite affine, A un point de D et −→u un vecteur non-nul de la droite vectorielle ∆ dirigeant
D. On peut compléter −→u en une base {−→u ,−→v ,−→w } de E. On introduit le plan P passant par A et de
sous-espace vectoriel directeur le plan vectoriel Π de base {−→u ,−→v }. De même, soit P ′ passant par A
et de sous-espace vectoriel directeur le plan vectoriel Π′ de base {−→u ,−→w }. On a {−→u ,−→v ,−→w } libre, donc
Π 6= Π′, donc P non parallèle à P ′. D’après ce que l’on a vu précédemment, P ∩P ′ est alors une droite
affine, dirigée par la droite vectorielle Π∩Π′. Comme A ∈ P ∩P ′ et −→u ∈ Π∩Π′, on conclut P∩P ′ = D.
On introduit des équations cartésiennes de P et de P ′ pour achever la preuve. ut

On dit que (S) est un système d’équations cartésiennes de D dans le repère. Il exprime que :

toute droite affine de E est (d’une infinité de façons) l’intersection de deux plans de E .

I Exemples d’application. (Ecrire le détail des calculs et faire des figures).

• Position relative d’une droite et d’un plan. Soient D une droite et P un plan dans E . En utilisant
des équations cartésiennes, montrer que les seuls cas possibles sont :

− la droite vectorielle ∆ dirigeant D est un sous-espace vectoriel du plan vectoriel Π dirigeant P ;

dans ce cas : ou bien D ⊂ P, alors D ∩ P = D ;

ou bien D 6⊂ P, alors D ∩ P = ∅ ;

on dit alors parfois que D et P sont faiblement parallèles.

− la droite vectorielle ∆ n’est pas un sous-espace vectoriel de Π ; dans ce cas D ∩P est un singleton.

• Position relative de deux droites. Soient D et D′ deux droites dans E . En utilisant des équations
cartésiennes, montrer que les seuls cas possibles sont :

− les droites D et D′ sont confondues, alors D ∩D′ = D ;

− les droites D et D′ sont parallèles mais non confondues, alors D ∩D′ = ∅ ;

− les droites D et D′ ne sont pas parallèles, alors : (D ∩D′ = ∅) ou (D ∩D′) est un singleton.

2.6 Cas particulier des espaces euclidiens, repères orthogonaux

On suppose de plus dans cette section que l’espace affine E de dimension n est euclidien.

2.6.1 Définitions. Soit R = (0,B) un repère cartésien de E , avec B = (−→e1 , . . . ,
−→en).

On dit que R est un repère orthogonal de E lorsque la base B est une base orthogonale de E.
Rappelons que cela signifie que les vecteurs −→ei sont deux à deux orthogonaux.

On dit que R est un repère orthonormé de E lorsque B est une base orthonormée de E. Rappelons
que cela signifie que c’est une base orthogonale et que de plus ‖−→ei ‖ = 1 pour tout 1 ≤ i ≤ n.

Rappelons que, si −→u et −→v sont deux vecteurs de E de composantes respectives (x1, . . . , xn) et
(y1, . . . , yn) dans une base orthonormée, alors le produit scalaire et la norme se calculent par :

−→u .−→v =
n∑
i=1

xiyi et ‖−→u ‖ =

√
n∑
i=1

x2
i .
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2.6.2 Vecteur normal à un hyperplan affine.

a) Définition. On appelle vecteur normal à un hyperplan affine H de E tout vecteur directeur de
la droite vectorielle ∆ = H⊥, où H désigne l’hyperplan vectoriel de E directeur de H.

Par définition, un vecteur normal à H est non-nul, et il est orthogonal à tout vecteur de H.

b) Proposition. Soit R = (0,B) un repère orthonormé de E . Soit H un hyperplan de E , d’équation

a1x1 + · · ·+ anxn + an+1 = 0, avec (a1, . . . , an) non-nul dans Rn et an+1 ∈ R

par rapport à R. Alors le vecteur non-nul −→n de composantes (a1, . . . , an) dans la base B est un
vecteur normal à H.

Preuve. Soit H l’hyperplan vectoriel de E directeur de H. On a vu dans la preuve du théorème 2.3.3.a)
qu’une équation de H par rapport à B est alors a1x1 + · · · + anxn = 0. Le vecteur −→n de composantes
(a1, . . . , an) dans la base B est non-nul. Notons ∆ la droite de vecteur directeur −→n . Quel que soit −→u ∈ E,
de composantes (x1, . . . , xn) dans la base B, on a :

(−→u ∈ ∆⊥)⇔ (−→u⊥−→n )⇔ (−→u .−→n = 0)⇔ (a1x1 + · · ·+ anxn = 0)⇔ (−→u ∈ H).

Ainsi, ∆⊥ = H, ou encore H⊥ = ∆, ce qui signifie que −→n est un vecteur normal à H. ut

2.6.3 Distance entre un point et un hyperplan affine

a) Définition. Soit F un ss-e.a. de E et soit A un point de E . On appelle distance de A à F le réel
positif d(A,F) = infM∈F d(A,M).

En particulier, dire qu’un point M de E appartient à F signifie que d(M,F) = 0.

On peut explicitement calculer cette distance dans le cas où F est un hyperplan.

b) Proposition. Soit R = (0,B) un repère orthonormé de E . Soit H un hyperplan de E , d’équation

a1x1 + · · ·+ anxn + an+1 = 0, avec (a1, . . . , an) non-nul dans Rn et an+1 ∈ R

par rapport à R. Soit A un point quelconque de E , de coordonnées (α1, . . . , αn) par rapport à R.
Alors la distance entre A et H est donnée par :

d(A,H) =
|a1α1 + · · ·+ anαn + an+1|√

a2
1 + · · ·+ a2

n

.

Preuve. Reprenons toutes les notations de la proposition 2.6.2.b). Soit D la droite affine de E passant

par A et dirigée par ∆. Comme H ∩ ∆ = {−→0 }, il résulte de la proposition 1.2.6 que H ∩ D est un
singleton ; notons-le {A′}. On a donc D = (AA′).

• Première étape : on montre que d(A,H) = AA′.

Pour tout M ∈ H,
−−−→
A′M ∈ H donc

−−→
AA′.

−−−→
A′M = 0.

Dès lors, avec la propriété de Pythagore :

(AM)2 = (AA′)2 + (A′M)2 ≥ (AA′)2

et
AM = AA′ ⇔ A′M = 0⇔M = A′.

Ceci prouve que AA′ = inf{AM ; M ∈ H}.

• Seconde étape : On calcule AA′.

Notons (β1, . . . , βn) les coordonnées de A′.

D’après 2.6.2, −→n (a1, . . . , an) est normal à H. Par construction de A′, le vecteur
−−→
AA′ est colinéaire à −→n .

Il existe donc λ ∈ R tel que
−−→
AA′ = λ−→n . Donc AA′ = |λ| × ‖−→n ‖, avec ‖−→n ‖ =

√
a2

1 + · · ·+ a2
n.
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D’une part A′ ∈ H, donc : a1β1 + · · ·+ anβn + an+1 = 0.

D’autre part
−−→
AA′ = λ−→n , donc : (β1 − α1, . . . , βn − αn) = λ(a1, . . . , an).

D’où a1(α1 +λa1)+· · ·+an(αn+λan)+an+1 = 0, donc a1α1 +· · ·+anαn+λ(a2
1 +· · ·+a2

n)+an+1 = 0.

On conclut que |λ| × ‖−→n ‖2 = |a1α1 + · · ·+ anαn + an+1|, ce qui achève la preuve puisque ‖−→n ‖ 6= −→0 .ut

c) Application en géométrie élémentaire.

(i) On se place dans un plan affine euclidien muni d’un repère orthonormé. Soit D une droite
de E d’équation ax+ by + c = 0. Un vecteur normal à D est −→n (a, b).

Pour tout point A de E de coordonnées (α, β), on a : d(A,D) =
|aα+ bβ + c|√

a2 + b2
.

(ii) On se place dans un espace affine euclidien de dimension 3 muni d’un repère orthonormé.
Soit P un plan de E d’équation ax+ by + cz + d = 0. Un vecteur normal à P est −→n (a, b, c).

Pour tout point A de E de coordonnées (α, β, γ), on a : d(A,P) =
|aα+ bβ + cγ + d|√

a2 + b2 + c2
.

2.6.4 Cosphéricité.

a) Lemme (résultat général en dimension quelconque). Soit (A0, A1, . . . , An) une famille de
(n+ 1) points affinement libre dans E . Il existe une unique sphère de E passant par A0, A1, . . . , An.
Son centre est le point d’intersection des hyperplans médiateurs des bipoints (Ai, Aj), 1 ≤ i 6= j ≤ n.

Preuve Rappelons que n est ici la dimension de E . Pour tout 1 ≤ i ≤ n, notons :

– Hi = {M ∈ E ; d(A0,M) = d(Ai,M)} l’hyperplan médiateur de (A0, Ai),

– Hi l’hyperplan vectoriel de E directeur de Hi,
– −→ni =

−−−→
A0Ai qui est normal à Hi d’après 1.4.7

Par hypothèse, la famille N = {−→n1, . . . ,
−→nn} est libre dans E (donc base de E). Fixons un repère

orthonormé R = (O,B) de E , et notons (ai,1, . . . , ai,n) ∈ Rn les composantes de −→ni dans B.

Pour tout 1 ≤ i ≤ n, il existe d’après 2.3.3.a) et 2.6.2.b) un réel ai,n+1 telle qu’une équation de Hi soit :

ai,1x1 + · · ·+ ai,nxn + ai,n+1 = 0, (hi)

Notons F = {M ∈ E ; d(A0,M) = d(A1,M) = . . . = d(An,M)} =
⋂

1≤i≤nHi l’intersection des
hyperplans médiateurs de tous les bipoints (Ai, Aj), 1 ≤ i 6= j ≤ n. Un point M ∈ E de coordonnées
(x1, . . . , xn) appartient à F si et seulement si (x1, . . . , xn) est solution du système linéaire (Σ) formé
par les n équations à n inconnues (h1), . . . , (hn). D’après ce qui précède, la matrice de (Σ) n’est autre
que la transposée de la matrice de la base N dans la base B. Elle est donc inversible, de sorte que le
système (Σ) admet une unique solution (ω1, . . . , ωn) ∈ Rn. Ceci prouve que F est un singleton réduit
au point Ω de coordonnées (ω1, . . . , ωn) dans le repère R. Ainsi d(A0,Ω) = d(A1,Ω) = . . . = d(An,Ω),
et en notant r cette valeur commune et S la sphère de centre Ω et de rayon r, on a bien Ai ∈ S pour
tout 0 ≤ i ≤ n.

Montrons maintenant l’unicité. Soit S ′ une sphère de centre Ω′ et de rayon r′ passant par A0, A1, . . . An.
En particulier, d(A0,Ω

′) = d(Ai,Ω
′) = r′ pour tout 1 ≤ i ≤ n, ce qui prouve que Ω′ ∈ Hi pour tout

1 ≤ i ≤ n, c’est-à-dire Ω′ ∈ F . D’après l’étape précédente, F est un singleton donc Ω′ = Ω. Dès lors,
r′ = d(A0,Ω

′) = d(A0,Ω) = r, d’où finalement S ′ = S. ut

b) Proposition et définition (cocyclicité dans un plan affine). On se place dans un plan
affine E . Soient A,B,C trois points non alignés de E .

(i) les médiatrices de (A,B), (B,C) et (C,A) sont concourantes en un point Ω.

(ii) Il existe un unique cercle passant par A,B,C. On l’appelle le cercle circonscrit au triangle
(ABC) ; son centre est Ω.
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Preuve. On applique directement le lemme précédent. On pourra à titre d’exercice utile re-rédiger la
preuve du lemme général dans le cas particulier où n = 2. ut

Des points du plan E sont dits cocycliques s’il appartiennent à un même cercle. L’énoncé précédent
conduit donc à l’observation importante suivante :

I trois points non-alignés sont toujours cocycliques.

Exercice. Soient A et B deux points du plan affine euclidien E . Montrer qu’il existe une infinité de
cercles passant par A et B, dont les centres appartiennent tous à la médiatrice de (A,B).

c) Remarque (cosphéricité en dimension 3). Dans le cas où E est de dimension 3, le lemme
général devient :

I par quatre points non coplanaires, il passe une unique sphère, dont le centre est
l’intersection des plans médiateurs des côtés du tétraèdre formé par ces quatre points.

2.6.5 Orientation, repères orthonormés directs ou indirects. Par définition, on dit qu’un
espace affine euclidien E est orienté lorsque son espace vectoriel directeur E est orienté.
Dans ce cas, un repère orthonormé R = (0,B) est dit direct (respectivement indirect) lorsque B est
une base orthonormée directe (respectivement indirecte) de l’espace vectoriel euclidien orienté E.

Rappel important d’algèbre linéaire. Un endomorphisme f de E est une isométrie vectorielle
lorsqu’il conserve la norme, ou de façon équivalent lorsqu’il conserve le produit scalaire. Les isométries
vectorielles de E forment un sous-groupe de GL(E) appelé le groupe orthogonal de E et noté O(E).

On montre que toute isométrie vectorielle f de vérifie det f = 1 ou det f = −1. Les isométries vectorielles
de déterminant 1 sont dites directes ; elles forment un sous-groupe de O(E) noté O+(E) ou encore SO(E).
Celles de déterminant −1 sont dites indirectes ; leur ensemble noté O−(E) n’est pas un sous-groupe.

Une isométrie vectorielle transforme une base orthonormée en une base orthonormée, et réciproquement,
quelles que soient deux bases orthonormées B et B′, il existe une unique isométrie vectorielle qui envoie
B sur B′.
Orienter E consiste à choisir une base orthormée de référence (ou canonique) Bcan. On appelle alors
base orthonormée directe toute base orthonormée B′ de E telle que l’unique isométrie vectorielle qui
envoie Bcan sur B′ est une isométrie directe.

Une base orthormée qui n’est pas directe est dite indirecte.
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3 – Applications affines, groupe affine

Bien que le contenu de cette section puisse être dans sa presque totalité rédigé pour des applications
affines d’un espace affine E vers un espace affine F , on se limite ici au cas où l’espace d’arrivée F
est le même que l’espace de départ E .
On se fixe pour tout le chapitre un espace affine E sur R, de dimension finie n, d’espace vectoriel
directeur E.

3.1 Notion d’application affine.

3.1.1 Définition. Une application ϕ : E → E est une application affine, ou un endomorphisme
affine, lorsqu’il existe une application linéaire f : E → E, dite associée à ϕ, telle que :

−−−−−−−→
ϕ(A)ϕ(B) = f(

−−→
AB) pour tous A,B ∈ E .

Le théorème fondamental suivant, très utile dans la pratique, exprime qu’une application affine est
entièrement déterminée par son application linéaire associée et par l’image d’un point.

3.1.2 Théorème. Soient A et B deux points de E , et f une application linéaire E → E. Alors
il existe une unique application affine ϕ : E → E telle que ϕ(A) = B et telle que f soit l’application
linéaire associée à ϕ.

Preuve. Montrons d’abord l’unicité. Pour cela, soit ϕ : E → E affine d’application linéaire associée f et

telle que ϕ(A) = B. Pour tout M ∈ E , on a :
−−−−−→
Bϕ(M) =

−−−−−−−→
ϕ(A)ϕ(M) = f(

−−→
AM), ce qui définit de façon

unique ϕ(M) = B + f(
−−→
AM) pour tout M ∈ E . D’où l’unicité de ϕ.

Réciproquement, définissons ϕ : E → E en posant ϕ(M) = B + f(
−−→
AM) pour tout M ∈ E . On a en

particulier
−−−−→
Bϕ(A) = f(

−→
AA) = f(

−→
0 ) =

−→
0 , ce qui implique ϕ(A) = B. D’autre part, pour tous M,N ∈ E ,

on a :
−−−−−−−→
ϕ(M)ϕ(N) =

−−−−→
Bϕ(N)−

−−−−−→
Bϕ(M) = f(

−−→
AN)− f(

−−→
AM) = f(

−−→
AN −

−−→
AM) = f(

−−→
MN),

Ceci prouve que ϕ est affine, d’application linéaire associée f . ut

3.1.3 Exemples usuels d’applications affines. Les translations, les homothéties, les projec-
tions, les symétries, sont des endomorphismes affines que l’on détaillera plus loin en 3.3, 3.4 et 3.5. Si
de plus l’espace affine E est supposé euclidien, on voit apparâıtre parmi les endomorphismes affines
tous les types d’isométries (dont les rotations que l’on étudiera au chapitre 4 ou les similitudes.

Avant de développer géométriquement certains de ces exemples, on donne une série de propriétés
générales des applications affines, qui ne découlent en fait que de la définition.

3.1.4 Proposition (conservation des sous-espaces affines). Soit ϕ : E → E une application
affine d’application linéaire asssociée f : E → E.

(i) Soit H un sous-espace affine de E dirigé par un sous-espace vectoriel H de E. Alors ϕ(H)
est un sous-espace affine de E , dirigé par le sous-espace vectoriel f(H) de E.

(ii) SoitH′ un sous-espace affine de E dirigé par un sous-espace vectorielH ′ de E. Si ϕ−1(H′) 6= ∅,
alors ϕ−1(H′) est un sous-espace affine de E , dirigé par le sous-espace vectoriel f−1(H ′) de E.
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Preuve. Soient A ∈ H ⊂ E , et B = ϕ(A) ∈ ϕ(H). Dire qu’un point M ∈ E appartient à ϕ(H) signifie

qu’il existe un point N ∈ H tel que M = ϕ(N). Or M = ϕ(N) équivaut à
−−→
BM =

−−−−−−−→
ϕ(A)ϕ(N), c’est-à-dire

−−→
BM = f(

−−→
AN). En d’autre termes, M ∈ ϕ(H) si et seulement s’il existe N ∈ H tel que

−−→
BM = f(

−−→
AN).

Comme A ∈ H et H est dirigé par H, ceci équivaut à l’existence de −→u ∈ H tel que
−−→
BM = f(−→u ).

On a ainsi établi que l’ensemble {
−−→
BM ; M ∈ ϕ(H)} est égal à f(H), qui est un sous-espace vectoriel de

E (car image directe d’un sous-espace vectoriel par une application linéaire). Le point (i) est démontré.

Pour (ii), supposons qu’il existe A ∈ ϕ−1(H′). Donc ϕ(A) ∈ H′. Pour tout M ∈ E , on a : M ∈ ϕ−1(H′)
si et seulement si ϕ(M) ∈ H′, ce qui équivaut à

−−−−−−−→
ϕ(A)ϕ(M) ∈ H ′ car ϕ(A) ∈ H′ et H′ dirigé par H ′. En

résumé, M ∈ ϕ−1(H′) si et seulement si f(
−−→
AM) ∈ H ′. On déduit que l’ensemble {

−−→
AM ; M ∈ ϕ−1(H′)}

est égal à f−1(H ′), qui est un sous-espace vectoriel de E comme image réciproque d’un sous-espace
vectoriel par une application linéaire. Ceci démontre le point (ii). ut

3.1.5 Corollaire (conservation du parallélisme). Soit ϕ : E → E une application affine. Si
H1 et H2 sont deux sous-espaces affines parallèles, alors ϕ(H1) et ϕ(H2) sont parallèles.

Preuve. Si H1 et H2 sont parallèles, on a H1 = H2 dans E. Donc f(H1) = f(H2). Or f(H1) est le
sous-espace vectoriel directeur de ϕ(H1), et f(H2) celui de ϕ(H2). D’où ϕ(H1) et ϕ(H2) parallèles. ut

3.1.6 Corollaire (conservation de l’alignement). Soit ϕ : E → E une application affine.
Quels que soient A,B,C trois points distincts alignés dans E , les points ϕ(A), ϕ(B), ϕ(C) sont
alignés ou confondus dans E .

Preuve. Si
−→
AC = λ

−→
AB avec λ ∈ R, λ 6= 0, λ 6= 1, alors f(

−→
AC) = λf(

−→
AB), et donc

−−−−−−−→
ϕ(A)ϕ(C) =

λ
−−−−−−−→
ϕ(A)ϕ(B), ce qui prouve le résultat voulu. ut

3.1.7 Définition et proposition (points fixes d’une application affine). Soit ϕ : E → E
une application affine, d’application linéaire associée f . On appelle ensemble des points fixes de ϕ
l’ensemble Fixϕ = {M ∈ E ; ϕ(M) = M}. Alors :

- ou bien Fixϕ est vide (c’est-à-dire que ϕ n’admet aucun point fixe),

- ou bien Fixϕ est un sous-espace affine de E , dont le sous-espace vectoriel directeur est Ker(f−idE).

Preuve. Notons Fix f = {−→u ∈ E ; f(−→u ) = −→u } = Ker(f − idE). C’est un sous-espace vectoriel de E (s’il

n’est pas réduit à {−→0 }, c’est le sous-espace propre associé à la valeur propre 1 de f). Supposons que
Fixϕ n’est pas vide. Considérons un point A ∈ E tel que ϕ(A) = A. Pour tout M ∈ E , on a :

[M = ϕ(M)] ⇔ [
−−−−−→
Aϕ(M) =

−−→
AM ] ⇔ [

−−−−−−−→
ϕ(A)ϕ(M) =

−−→
AM ] ⇔ [f(

−−→
AM) =

−−→
AM ].

En d’autres termes, M ∈ Fixϕ si et seulement si
−−→
AM ∈ Fix f , ce qui prouve que Fixϕ est le sous-espace

affine de E passant par A et dirigé par Fix f . ut

3.1.8 Détermination d’une application affine par l’image d’une base affine.

a) Proposition. Une application affine ϕ de E dans E est déterminée (entièrement et de façon
unique) par l’image d’un repère de E , c’est-à-dire par l’image d’une base affine de E .

Preuve. Soit R = (O,B) un repère de E , avec B = (−→e1 , . . . ,
−→en) base de E. Pour tout 1 ≤ i ≤ n, notons Ai

l’unique point de E tel que
−−→
OAi = −→ei . La famille de points X = {O,A1, . . . , An} est une base affine

de E . Pour tout point M quelconque dans E , de coordonnées (x1, . . . , xn) dans le repère R, on a :

−−→
OM =

n∑
i=1

xi
−→ei =

n∑
i=1

xi
−−→
OAi, donc

−−−−−−−→
ϕ(O)ϕ(M) = f(

−−→
OM) =

n∑
i=1

xif(
−−→
OAi) =

n∑
i=1

xi
−−−−−−−→
ϕ(O)ϕ(Ai).

Donc, dès lors que l’on connâıt les images par ϕ des n+1 points de X , l’image de M par ϕ est déterminée

par ϕ(M) = ϕ(O) +
∑n
i=1 xi

−−−−−−−→
ϕ(O)ϕ(Ai). ut
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b) Conséquences pratiques en géométrie élémentaire. Ainsi, pour connâıtre une application
affine de E , il suffit de connâıtre les images d’un nombre fini de points formant une base affine de E .

Par exemple, si l’on connâıt les images par ϕ de deux points distincts A et B, on connâıt les images
par ϕ de tous les points de la droite (AB). Si l’on connâıt les images par ϕ de trois points non
alignés A,B,C, on connâıt les images par ϕ de tous les points du plan (ABC).

On utilise souvent cet argument sous les formes suivantes :

(1) Deux applications affines qui cöıncident en deux points distincts A et B cöıncident en tout
point de la droite (AB). Deux applications affines qui cöıncident en trois points non alignés
A,B,C cöıncident en tout point du plan (ABC).

(2) Si E est de dimension 2, une application affine de E dans E qui fixe trois points non alignés
est égale à idE .

(3) Si E est de dimension 3, une application affine de E dans E qui fixe quatre points non
coplanaires est égale à idE .

3.2 Groupe affine

3.2.1 Lemme (composée de deux applications affines). Soient ϕ,ψ : E → E deux appli-
cations affines d’applications linéaires asssociées respectives f, g : E → E. Alors ψ ◦ ϕ est affine
d’application linéaire associée g ◦ f .

Preuve. Pour tous A,B ∈ E , on a :
−−−−−−−−−−−−→
ψ(ϕ(A))ψ(ϕ(B)) = g(

−−−−−−−→
ϕ(A)ϕ(B)) = g(f(

−→
AB)). ut

3.2.2 Lemme (bijectivité d’une application affine). Soit ϕ : E → E affine d’application
linéaire asssociée f : E → E. Alors :

(ϕ injective ⇔ f injective), (ϕ surjective ⇔ f surjective), (ϕ bijective ⇔ f bijective).

Preuve. Supposons f injective. Soient A,B ∈ E tels que ϕ(A) = ϕ(B). Alors
−→
0 =

−−−−−−−→
ϕ(A)ϕ(A) =

−−−−−−−→
ϕ(A)ϕ(B) = f(

−→
AB). D’où

−→
AB =

−→
0 c’est-à-dire A = B. Supposons réciproquement que ϕ est injective.

Soient −→u ∈ Ker f . Soit A ∈ E et M = A+−→u . On a
−−→
AM = −→u donc

−→
0 = f(−→u ) = f(

−−→
AM) =

−−−−−−−→
ϕ(A)ϕ(M).

D’où ϕ(A) = ϕ(M), et donc A = M et −→u =
−−→
AM =

−→
0 . Le reste est clair et laissé en exercice. ut

3.2.3 Corollaire. Soit ϕ : E → E affine, d’application linéaire asssociée f : E → E. Alors :

(i) ϕ est bijective si et seulement si elle transforme une base affine de E en une base affine de E .

(ii) Si ϕ est bijective, alors sa réciproque ϕ−1 est affine d’application linéaire associée f−1.

Preuve. Le point (i) découle du lemme 3.2.2 ci-dessus et de la proposition 3.1.8.a).

Pour (ii), considérons M,N ∈ E quelconques. Par bijectivité de ϕ, il existe A,B ∈ E uniques tels que

ϕ(A) = M et ϕ(B) = N . Donc
−−→
MN =

−−−−−−−→
ϕ(A)ϕ(B) = f(

−→
AB) puisque ϕ est affine. Donc

−→
AB = f−1(

−−→
MN)

puisque f est bijective d’après le lemme 3.2.2. On déduit
−−−−−−−−−−−→
ϕ−1(M)ϕ−1(N) = f−1(

−−→
MN). On conclut que

ϕ−1 est bijective d’application linéaire associée f−1. ut

3.2.4 Définitions et proposition. Une application affine E → E qui est bijective est appelée
un automorphisme affine de E . L’ensemble des automorphismes affines de E est un groupe pour la
composition, appelé groupe affine de E , et noté GA(E).

Preuve. GA(E) est un sous-ensemble du groupe des bijections de E sur E , non vide (il contient idE),
stable pour la loi ◦ d’après le lemme 3.2.1, et stable par passage à l’inverse d’après le point (ii) du
corollaire 3.2.3. C’est donc un sous-groupe. ut
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3.3 Sous-groupe des translations

3.3.1 Définition. Soit −→u un vecteur de E. On appelle
translation de vecteur −→u l’application τ−→u : E → E qui, à
tout point M de E , associe le point M ′ = M +−→u . Donc :

[M ′ = τ−→u (M)] ⇔ [
−−−→
MM ′ = −→u ].

Il est résulte de cette définition que : τ−→
0

= idE , et si −→u 6= −→0 ,
alors τ−→u n’admet aucun point fixe.

3.3.2 Proposition.
(i) Toute translation de E est une application affine E → E , et son application linéaire associée

est idE .
(ii) Réciproquement, toute application affine E → E dont l’application linéaire associée est idE

est une translation de E .

Preuve. Soit τ = τ−→u où −→u ∈ E. Pour tous A,B ∈ E , on a :
−−−−−−→
τ(A)τ(B) =

−−−−→
τ(A)A +

−→
AB +

−−−−→
Bτ(B) =

−−→u +
−→
AB+−→u =

−→
AB, ce qui prouve le point (i). Pour (ii), considérons une application affine ϕ : E → E

dont l’application linéaire associée est f = idE . Soit A ∈ E arbitrairement choisi ; posons −→u =
−−−−→
Aϕ(A).

Pour tout M ∈ E , on a alors
−−−−−→
Mϕ(M) =

−−→
MA +

−−−−→
Aϕ(A) +

−−−−−−−→
ϕ(A)ϕ(M). Or par hypothèse,

−−−−−−−→
ϕ(A)ϕ(M) =

f(
−−→
AM) =

−−→
AM . On obtient donc

−−−−−→
Mϕ(M) =

−−→
MA+−→u +

−−→
AM = −→u . On conclut que ϕ = τ−→u . ut

3.3.3 Proposition. L’ensemble des translations de E forme un sous-groupe abélien du groupe
affine, noté T (E) et isomorphe au groupe additif de l’espace vectoriel E.

Plus précisément, pour tous −→u ,−→v ∈ E, on a : τ−→u ◦ τ−→v = τ−→v ◦ τ−→u = τ−→u+−→v et τ −1
−→u = τ−−→u .

Preuve. D’après le lemme 3.2.2, il résulte de 3.3.2 que toute
translation est une bijection de E sur E . Donc l’ensemble
T(E) de toutes les translations de E est inclus dans GA(E).
Prenons M ∈ E quelconque, et posons :

M ′ = τ−→u (M) et M ′′ = τ−→v (M ′) = τ−→v

(
τ−→u (M)

)
.

On a
−−−−→
MM ′′ =

−−−→
MM ′ +

−−−−→
M ′M ′′ = −→u + −→v . Ceci prouve que

τ−→v ◦ τ−→u = τ−→u+−→v . Puisque −→u + −→v = −→v + −→u , il en résulte
que τ−→v ◦ τ−→u = τ−→u ◦ τ−→v .

De plus :
−−−→
MM ′ = −→u si et seulement si

−−−→
M ′M = −−→u , donc

M ′ = τ−→u (M) si et seulement si M = τ−−→u (M ′). ut

3.3.4 Un commentaire algébrique. On a vu en 3.2.4 que les applications ϕ : E → E affines
et bijectives forment un groupe GA(E). D’après le lemme 3.2.2, la bijectivité de ϕ équivaut à celle
de l’endomorphisme vectoriel associé f , de sorte que ϕ ∈ GA(E) si et seulement si f ∈ GL(E).
On peut donc considérer l’application ` : GA(E)→ GL(E) qui, à tout automorphisme affine de E ,
associe son application linéaire associée.

D’après le lemme 3.2.1, ` est un morphisme de groupes ; c’est-à-dire que, si `(ϕ) = f et `(ψ) = g,
alors `(ψ ◦ ϕ) = g ◦ f . Le théorème 3.1.2 montre que ` est surjective. Enfin, la proposition 3.3.2
montre que Ker ` = {ϕ ∈ GA(E) ; f = idE} n’est autre que le groupe T(E) des translations de E .

En appliquant le premier théorème d’isomorphisme GA(E)/Ker ` ' Im `, on en déduit que l’on
l’isomorphisme de groupes : GA(E) /T(E) ' GL(E).
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3.4 Sous-groupe des homothéties translations

3.4.1 Définition. Soient A un point de E et λ un réel non-nul. On appelle homothétie affine
de centre A et de rapport λ l’application ϑA,λ : E → E qui, à tout M ∈ E , associe le point

ϑA,λ(M) = A+ λ
−−→
AM . En d’autres termes :

[M ′ = ϑA,λ(M)] ⇔ [
−−→
AM ′ = λ

−−→
AM ]

λ > 0 λ < 0 λ = −1

Lorsque λ = 1, on a ϑA,1 = idE .
Lorsque λ = −1, l’homothétie ϑA,−1 est appelée la symétrie centrale de centre A ; elle associe à
tout point M le point M ′ tel que A est le milieu de (M,M ′).

3.4.2 Proposition.

(i) Toute homothétie ϑA,λ est une application affine, d’application linéaire associée λ idE .

(ii) Toute homothétie est une bijection, donc appartient au groupe affine GA(E).

(iii) L’ensemble des points fixes d’une homothétie ϑA,λ distincte de l’identité (ie. de rapport
différent de 1) est réduit au singleton {A} formé par le centre.

Preuve. Fixons A ∈ E et λ ∈ R∗, et notons plus simplement ϑ = ϑA,λ. Pour tous M,N ∈ E , on a :
−−−−−−−→
ϑ(M)ϑ(N) =

−−−−→
Aϑ(N)−

−−−−→
Aϑ(M) = λ

−−→
AN − λ

−−→
AM = λ

−−→
MN ,

ce qui montre (i). Le point (ii) s’en déduit avec 3.2.2 puisque λ idE est une bijection de E sur E. Enfin,

ϑ(M) = M équivaut à λ
−−→
AM =

−−→
AM , donc (λ− 1)

−−→
AM =

−→
0 , d’où A = M dès lors que λ 6= 1. ut

3.4.3 Définition. On appelle homothétie-translation toute application affine ϕ : E → E dont
l’application linéaire associée f est de la forme f = λ idE , avec λ ∈ R∗. Le réel non-nul λ s’appelle
le rapport de l’homothétie-translation.

3.4.4 Théorème.

(i) Une homothétie-translation de rapport 1 est une translation. Une homothétie-translation de
rapport λ 6= 1 est une homothétie de rapport λ, dont le centre est uniquement déterminé.

(ii) L’ensemble H(E) des homothéties-translations est un sous-groupe de GA(E), égal à la
réunion du sous-ensemble des homothéties et du sous-groupe T(E) des translations de E .

Preuve. Soit ϕ ∈ GA(E) d’application linéaire associée f = λ idE avec λ ∈ R∗. On a déjà montré 3.3.2
que, si λ = 1, alors ϕ est une translation.

Supposons donc maintenant λ 6= 1. Soit B ∈ E fixé, et B′ = ϕ(B). Pour tout M ∈ E , on a
−−−−−→
B′ϕ(M) =

−−−−−−−→
ϕ(B)ϕ(M) = f(

−−→
BM) = λ

−−→
BM . En particulier ϕ(M) = M si et seulement si

−−−→
B′M = λ

−−→
BM , c’est-à-dire

avec la relation de Chasles si et seulement si (1 − λ)
−−→
BM =

−−→
BB′. Ceci montre que ϕ admet un unique

point fixe A, qui est défini par
−→
BA = (1− λ)−1

−−→
BB′.
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Pour tout M ∈ E , on a alors :
−−−−−→
Aϕ(M) =

−−−−−−−→
ϕ(A)ϕ(M) = f(

−−→
AM) = λ

−−→
AM , ce qui prouve que ϕ est

l’homothétie de centre A et de rapport λ. Le point (i) est démontré.

Il est clair que {λ idE ; λ ∈ R∗} est un sous-groupe de GL(E). Le fait que H(E) soit un sous-groupe
de GA(E) résulte alors du lemme 3.2.1. Le point (i) se traduit par le fait que H(E) est la réunion du
sous-groupe T(E) des translations et du sous-ensemble des homothéties. ut

3.4.5 Remarques complémentaires. Le point (i) du théorème se traduit sur le plan pratique
par le fait que :

1. une application affine ϕ vérifiant
−−−−−−−→
ϕ(M)ϕ(N) =

−−→
MN pour tous M,N ∈ E est une translation ;

on trouve son vecteur en prenant un point quelconque A et en considérant le vecteur
−−−−→
Aϕ(A),

2. une application affine ϕ pour laquelle il existe λ ∈ R∗, λ 6= 1, vérifiant
−−−−−−−→
ϕ(M)ϕ(N) = λ

−−→
MN

pour tous M,N ∈ E est une homothétie de rapport λ ; on trouve son centre en déterminant
son unique point fixe.

Quant au point (ii) du théorème, il reste à préciser comment se composent entre eux les différents
éléments de H(E). C’est ce qu’explicitent les assertions suivantes, dont les preuves (et les dessins
qui les accompagnent) sont laissés au lecteur à titre d’exercice.

composée de deux translations : τ−→u ◦ τ−→v = τ−→u+−→v

composée d’une translation et d’une homothétie :

Si λ = 1, τ−→u ◦ ϑA,λ = τ−→u

Si λ 6= 1, τ−→u ◦ ϑA,λ = ϑB,λ où B = A+ (1− λ)−1−→u

composée de deux homothéties de même centre : ϑA,λ ◦ ϑA,λ′ = ϑA,λλ′

composée de deux homothéties non nécessairement de même centre :

Si λλ′ = 1, ϑA′,λ′ ◦ ϑA,λ = τ
(1−λ′)

−−→
AA′

Si λλ′ 6= 1, ϑA′,λ′ ◦ ϑA,λ = ϑB,λλ′ où B = A+ (1−λ′)
(1−λλ′)

−−→
AA′

On prendra garde en particulier au fait que la composée de deux homothéties n’est pas forcément
une homothétie (les homothéties ne forment pas un sous-groupe de H(E)).

3.5 Projections et symétries

3.5.1 Un rappel d’algèbre linéaire. Soient F etH deux sous-espaces vectoriels supplémentaires
dans l’espace vectoriel E, c’est-à-dire tels que E = F ⊕H. Cela signifie que tout vecteur −→u ∈ E se
décompose de façon unique en une somme :

−→u = −→v +−→w avec −→v ∈ F et −→w ∈ H.

L’application p : E → E qui, à tout −→u ∈ E ainsi décomposé, associe sa composante −→v sur F
s’appelle la projection (vectorielle) de E sur F parallèlement à H.

L’application s : E → E qui, à tout −→u ∈ E ainsi décomposé, associe le vecteur −→v −−→w s’appelle la
symétrie (vectorielle) par rapport à F parallèlement à H.

Il est facile de vérifier que p et s sont des applications linéaires, et que l’on a :

Ker p = H, Im p = F , Ker(p− idE) = F , p ◦ p = p,

Ker s = {−→0 }, Im s = E, Ker(s− idE) = F , s ◦ s = idE .
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3.5.2 Projection affine

a) Lemme préliminaire. Soient F et H deux sous-espaces affines de E dont les sous-espaces
vectoriels directeurs F et H vérifient E = F +H. Alors F ∩H 6= ∅.

Preuve. Soient A ∈ F et B ∈ H. Comme E = F +H, il existe −→v ∈ F et −→w ∈ H tels que
−→
AB = −→v +−→w .

On a A ∈ F et −→v ∈ F , donc il existe C ∈ F tel que
−→
AC = −→v . On réécrit alors

−→
AB =

−→
AC +−→w sous la

forme −→w =
−→
AB −

−→
AC =

−−→
CB. Ainsi,

−−→
CB ∈ H avec B ∈ H, d’où C ∈ H. On conclut que C ∈ F ∩H. ut

b) Théorème et définition. Soient F et H deux sous-espaces affines de E . On suppose que leurs
sous-espaces vectoriels directeurs F et H sont supplémentaires dans E. Alors

(i) Pour tout point M de E , il existe un unique point M ′ ∈ F tels que le vecteur
−−−→
MM ′

appartienne à H. Ce point M ′ est l’unique point d’intersection de F avec le sous-espace
affine passant par M et parallèle à H. Le point M ′ est appelé le projeté de M sur F
parallèlement à H.

(ii) L’application π : E → E qui, à tout point M associe son projeté M ′ défini ci-dessus s’appelle
la projection affine sur F parallèlement à H ; c’est une application affine dont l’application
linéaire associée est la projection vectorielle p : E → E sur F parallèlement à H.

(iii) On a : π ◦ π = π.

(iv) L’ensemble des points fixes de π est Fixπ = F .

Preuve. Soit M un point de E . Notons H′ le sous-espace affine de E passant par M et parallèle à H,
c’est-à-dire dirigé par H. Comme E = F ⊕H par hypothèse, on applique le lemme préliminaire pour
déduire que F ∩ H′ n’est pas vide. D’après la proposition 1.2.6, F ∩ H′ un sous-espace affine de sous-
espace vectoriel directeur F ∩H. Or F ∩H = {−→0 }, donc F∩H′ est un singleton ; notons F∩H′ = {M ′}.
Ainsi on a M ∈ H′ et M ′ ∈ H′, donc

−−−→
MM ′ ∈ H.

Réciproquement, si N est un point de F vérifiant
−−→
MN ∈ H, on a N ∈ H′ (puisque H′ passe par M et

est dirigé par H), d’où N ∈ F ∩H′, et donc N = M ′. Ceci prouve le point (i).

Les points (iii) et (iv) en découlent immédiatement.

Pour montrer (ii), considérons A ∈ F , qui vérifie donc π(A) = A. Soient M ∈ E quelconque, et

M ′ = π(M). D’une part M ′ ∈ F donc
−−−→
AM ′ ∈ F . D’autre part

−−−→
MM ′ ∈ H. Ainsi

−−→
AM =

−−−→
AM ′ +

−−−→
M ′M

avec
−−−→
AM ′ ∈ F et

−−−→
M ′M ∈ H, ce qui prouve que

−−−→
AM ′ = p(

−−→
AM), c’est-à-dire

−−−−→
Aπ(M) = p(

−−→
AM).

Dès lors,
−−−−−−−→
π(M)π(N) =

−−−−→
Aπ(N) −

−−−−→
Aπ(M) = p(

−−→
AN) − p(

−−→
AM) = p(

−−→
AN −

−−→
AM) = p(

−−→
MN) pour tous

M,N ∈ E , ce qui montre (ii) et achève la preuve. ut

projection affine sur F parallèlement à H symétrie affine par rappport à F parallèlement à H
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3.5.3 Symétrie affine.

a) Théorème et définition. Soient F et H deux sous-espaces affines de E . On suppose que leurs
sous-espaces vectoriels directeurs F et H sont supplémentaires dans E. Alors

(i) Pour tout point M de E , il existe un unique point M ′′ ∈ E tels que le projeté M ′ = π(M)
défini précédemment soit le milieu de (M,M ′′). Ce point M ′′ est l’unique point vérifiant
−−−−−→
Mπ(M) =

−−−−−−→
π(M)M ′′. Le point M ′′ est appelé le symétrique de M par rapport à F pa-

rallèlement à H.

(ii) L’application σ : E → E qui, à tout point M associe son symétrique M ′′ défini ci-dessus
s’appelle la symétrie affine par rapport à F parallèlement à H ; c’est une application affine
dont l’application linéaire associée est la symétrie vectorielle s : E → E par rapport à F
parallèlement à H.

(iii) On a : σ ◦ σ = idE , d’où il résulte que σ est bijective avec σ−1 = σ.

(iv) L’ensemble des points fixes de σ est Fixσ = F .

Preuve. Analogue à celle du théorème précédent ; laissée au lecteur en exercice. ut

b) Remarques.

1. Dans le cas particulier où F est un singleton {A}, alors F = {−→0 } et H = E, donc π est
l’application constante qui envoie tout point M de E sur A, et σ est la symétrie centrale
de centre A quivérifi envoie tout point M de E sur le point M ′′ tel que A soit le milieu de
(M,M ′′).

2. Dans le cas particulier où F est l’espace E tout entier, alors F = E et H = {−→0 }, donc π et
σ sont égales à l’application identité de E (qui envoie tout point de M sur lui-même).

3. Hormis ces cas extrêmes, les situations non triviales que l’on rencontrera feront intervenir :

− en dimension 2 des symétries par rapport à une droite D parallèlement à une autre
droite D′ non parallèle à D ;

− en dimension 3, des symétries par rapport à un plan P parallèlement à une droite D,
ou des symétries par rapport à une droite D parallèlement à un plan P, avec dans les deux
cas la droite vectorielle dirigeant D qui n’est pas incluse dans le plan vectoriel dirigeant P.
vérifi

De même bien sûr pour les projections.

4. On peut vérifier aisément (la preuve est laissée en exercice) que :

− une application affine ϕ : E → E est une projection si et seulement si ϕ ◦ ϕ = ϕ ;

− une application affine ϕ : E → E est une symétrie si et seulement si ϕ ◦ ϕ = idE .

3.6 Exemples en géométrie élémentaire dans le plan

On se place dans cette section dans un espace affine E de dimension 2.

3.6.1 Théorème de Thalès

a) Mesure algébrique d’un bipoint. Soit D une droite affine de E , dirigée par une droite
vectorielle ∆. Un repère de D est un couple (O,−→e ), où O ∈ D et −→e ∈ ∆ non-nul.
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1. Pour tout A ∈ D, l’abscisse de A relativement au repère (O,−→e ) est le réel xA défini par
−→
OA = xA

−→e . Il dépend de l’origine O du repère et du vecteur −→e .

2. Pour tous A,B ∈ D, on appelle mesure algébrique du bipoint (A,B) le réel :

AB = xB − xA.

Cette notion ne dépend que du choix du vecteur −→e (et non de l’origine O), puisque :
−−→
AB =

−−→
OB −

−→
OA = xB

−→e − xA−→e = (xB − xA)−→e = AB−→e .

3. On en déduit que pour tous A,B,C,D ∈ D tels que C 6= D, le réel AB
CD

ne dépend pas du
repère choisi sur D.

I En d’autres termes, pour quatre points alignés A,B,C,D tels que C 6= D, le réel AB
CD

n’est autre

que le coefficient de colinéarité des vecteurs
−−→
AB et

−−→
CD. Il est caractérisé par l’égalité :

−−→
AB = AB

CD

−−→
CD.

I Le classique théorème de Thalès exprime alors simplement le fait que les projections affines sont
des applications affines.

b) Théorème. Soient d1, d2, d3 trois droites parallèles distinctes dans E . Soient D et D′ deux autres
droites, telles qu’aucune des deux ne soit parallèle à d1, d2, d3.
On note A,B,C les points d’intersection de D avec d1, d2, d3 respectivement, et A′, B′, C ′ les points
d’intersection de D′ avec d1, d2, d3 respectivement. Alors :

AC

AB
=
A′C ′

A′B′
, et C est le seul point M de E vérifiant

AM

AB
=
A′C ′

A′B′

Preuve. Notons λ = AC

AB
le coefficient de colinéarité défini par

−→
AC = λ

−→
AB. Soit π la projection affine sur

D′ parallèlement à d1, d2, d3. Donc π(A) = A′, π(B) = B′, π(C) = C′. Soit p la projection vectorielle
associée à π. Traduisons simplement la linéarité de p :

−−−→
A′C′ =

−−−−−−→
π(A)π(C) = p(

−→
AC) = p(λ

−→
AB) = λp(

−→
AB) = λ

−−−−−−→
π(A)π(B) = λ

−−−→
A′B′.

On conclut que λ = A′C′

A′B′
.

Si maintenant M est un point de D qui vérifie AM

AB
= A′C′

A′B′
, alors AM

AB
= AC

AB
d’après ce qui précède de

sorte que :
−−→
AM = AM

AB

−→
AB = AC

AB

−→
AB =

−→
AC,

ce qui prouve que M = C et achève la preuve. ut
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c) Corollaire. Soient D et D′ deux droites sécantes en un point C. Soient A,B ∈ D et A′, B′ ∈ D′,
tous distincts de C. Alors :

(AA′)//(BB′) ⇐⇒ CB

CA
=
CB′

CA′
.

Preuve. Observons que A 6= A′ et B 6= B′ puisque D ∩ D′ = {C}. On peut donc considérer les
droites (AA′) et (BB′).

• Supposons (AA′)//(BB′). Si A = B, la propriété d’Euclide implique
(AA′) = (BB′), donc A′ = B′. Dans ce cas, l’égalité voulue est claire.
De même si l’on suppose A′ = B′. On prend donc A 6= B et A′ 6= B′. On
applique le théorème précédent en choisissant d1 = (AA′), d2 = (BB′)
et d3 la droite passant par C et parallèle à d1 et d2.

On a alors C = C′ et AC

AB
= A′C

A′B′
donc :

AC(A′C + CB′) = A′C(AC + CB),

d’où AC.CB′ = A′C.CB et le résultat voulu.

• Réciproquement, supposons CB

CA
= CB′

CA′
= λ. Donc

−−→
CB = λ

−→
CA et

−−→
CB′ = λ

−−→
CA′. D’où :

−−→
BB′ =

−−→
CB′ −

−−→
CB = λ

−→
CA − λ

−−→
CA′ = λ

−−→
AA′ et

donc (AA′)//(BB′). ut

Remarquons que, dans l’énoncé ci-dessus, l’égalité des deux rapports traduit simplement le fait que
l’homothétie de centre C qui envoie A sur B envoie aussi A′ sur B′.

d) Théorème de Pappus. Soient D et D′ deux droites distinctes du plan E . Soient A,B,C trois
points de D et A′, B′, C ′ trois points de D′. Si (AB′)//(BA′) et (BC ′)//(CB′), alors (AC ′)//(CA′).

Preuve. On raisonne en distinguant deux cas.

• SupposonsD etD′ sécantes en un pointO. Appliquons le théorème de Thalès sous la forme du corollaire

ci-dessus : d’une part (AB′)//(BA′) donc OB

OA
= OA′

OB′
, d’autre part (BC′)//(CB′) donc OC

OB
= OB′

OC′
.

On en déduit que OC

OA
= OA′

OC′
, ce qui, toujours avec le corollaire précédent, implique (AC′)//(CA′).

• Supposons maintenant D et D′ parallèles. On a D = (AB) et D′ = (A′B′), donc (AB)//(A′B′).

Dès lors, d’après 2.2.5, l’hypothèse (AB′)//(BA′) implique que
−→
AB =

−−−→
B′A′. De même (BC′)//(CB′)

implique
−−→
BC =

−−−→
C′B′. On en déduit par la relation de Chasles que

−→
AC =

−−−→
C′A′ ; donc

−−→
AC′ =

−−→
CA′ d’après

1.1.2.d). On conclut que (AC′)//(CA′). ut

3.6.2 Théorème de Desargues. Soient ABC et A′B′C ′ deux triangles sans sommets communs.
On suppose que les côtés sont deux à deux parallèles, c’est-à-dire : (AB)//(A′B′), (BC)//(B′C ′) et
(CA)//(C ′A′). Alors les trois droites (AA′), (BB′) et (CC ′) sont concourantes ou parallèles.

Preuve. On raisonne en distinguant deux cas.
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• Supposons que (AA′) et (BB′) se coupent en un point O. D’après le corollaire 3.6.1.c) le fait que
(AB)//(A′B′) implique que l’homothétie η de centre O telle que η(A) = A′ vérifie aussi η(B) = B′. Son

rapport est λ = OA′

OA
= OB′

OB
.

Introduisons le point C′′ = η(C). On a donc
−−→
OC′′ = λ

−−→
OC et

−−→
OA′ = λ

−→
OA ce qui, d’après 3.6.1.c),

implique que (A′C′′)//(AC). Ainsi, C′′ est sur la parallèle à (AC) passant par A′. Mais par hypothèse,
cette parallèle n’est autre que (A′C′). On conlut que C′′ ∈ (A′C′).

On prouve de même que C′′ ∈ (B′C′). Finalement, C′′ ∈ (A′C′) ∩ (B′C′) donc C′′ = C′. Or par
définition de C′′, les points O,C,C′′ sont alignés. En d’autres termes, (CC′) passe par O.

• Supposons que (AA′)//(BB′). On reprend le même raisonnement que ci-dessus avec des translations
au lieu d’homothéties. D’après 2.2.5, (AB)//(A′B′) implique que (AA′B′B) parallélogramme, donc
−−→
AA′ =

−−→
BB′.

Introduisons le point C′′ tel que
−−→
CC′′ =

−−→
AA′. On a (A′C′′)//(AC). Ainsi, C′′ est sur la parallèle à (AC)

passant par A′. Par hypothèse, cette parallèle n’est autre que (A′C′). On conclut que C′′ ∈ (A′C′).
On prouve de même que C′′ ∈ (B′C′). Finalement, C′′ ∈ (A′C′) ∩ (B′C′) donc C′′ = C′. Mais par

définition de C′′, on a
−−→
CC′′ =

−−→
AA′ =

−−→
BB′, donc (CC′) est parallèle à (AA′) et (BB′). ut

3.6.3 Théorème de Ménélaüs.

a) Théorème. Soit ABC un triangle. Soient A′ ∈ (BC), B′ ∈ (AC) et C ′ ∈ (AB). Alors :

A′, B′, C ′ alignés si et seulement si
A′B

A′C
.
B′C

B′A
.
C ′A

C ′B
= 1

Preuve. Notons : α = A′B
A′C

, β = B′C
B′A

, γ = C′A
C′B

. Ces trois réels sont différents de 0 et 1, et par définition
de α, β, γ, on a : −−→

A′B = α
−−→
A′C,

−−→
B′C = β

−−→
B′A,

−−→
C′A = γ

−−→
C′B.

Considérons les homothéties η1 = ηA′,α, η2 = ηB′,β , η3 = ηC′,γ , qui par construction vérifent :

B = η1(C), C = η2(A), A = η3(B).

On introduitϕ = η1 ◦ η2 ◦ η3. C’est une application affine comme composée de trois applications affines,
et l’application linéaire associée est f = (α idE) ◦ (β idE) ◦ (γ idE) = (αβγ) idE .

Remarquons d’abord que ϕ(B) = η1(η2(η3(B))) = η1(η2(A)) = η1(C) = B. Il en résulte que le point

A′′ = ϕ(A′) vérifie :
−−→
A′′B =

−−−−−−−→
ϕ(A′)ϕ(B) = f(

−−→
A′B) = (αβγ)

−−→
A′B. On déduit que ϕ(A′) ∈ (A′B).
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• Supposons que A′, B′, C′ sont alignés. Notons D la droite passant par A′, B′, C′ et ∆ la droite vecto-
rielle qui dirige D.

On sait que η1(D) est un sous-espace affine dirigé par α idE(∆) = ∆, donc η1(D), est une droite parallèle
à D. Elle passe par exemple par η1(A′) = A′. Donc η1(D) = D. De même η2(D) = D et η3(D) = D, et
finalement ϕ(D) = D. Il en résulte en particulier que ϕ(A′) ∈ D. Or on a vu plus haut que ϕ(A′) ∈ (A′B),
donc ϕ(A′) est le point d’intersection des droites (A′B) et D, c’est-à-dire ϕ(A′) = A′.

On déduit que
−−→
A′B =

−−−−−−−→
ϕ(A′)ϕ(B) = f(

−−→
A′B) = (αβγ)

−−→
A′B, on conclut que αβγ = 1.

• Supposons que αβγ = 1. Donc η1 ◦ η2 ◦ η3 = idE . Ou encore η−1
1 = η2 ◦ η3.

Comme βγ = α−1 6= 1, on sait d’après 3.4.5 que η2 ◦ η3 est une homothétie de rapport βγ 6= 1, et dont
le centre O est sur la droite (B′C′). Comme par ailleurs η−1

1 est l’homothétie de centre A′ et de rapport
α−1 6= 1, on déduit de l’égalité η−1

1 = η2 ◦ η3 que A′ ∈ (B′C′). ut

b) Exercice d’application : théorème de Newton.
Avec les notations ci-dessus, on suppose A′, B′, C ′ alignés. Soient I, J,K les milieux respectifs de
(A,A′), (B,B′), (C,C ′). Montrer que I, J,K sont alignés.

Indication : soient E,F,G les milieux respectifs de (B′, C′), (A,C′), (A,B′) ; montrer que I ∈ (FG),
J ∈ (GE) et K ∈ (EF ).
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L3 Mathématiques - UE Géométrie affine 2021-2022

4 – Isométries affines

4.1 Groupe des isométries affines, déplacements et antidéplacements

Dans tout ce chapitre, E est un espace affine euclidien, de R-espace vectoriel directeur E. On note
n = dimE = dim E . On note O(E) le groupe orthogonal de E (c’est-à-dire le groupe des isométries
vectorielles de E, voir précédemment en 2.6.5).

4.1.1 Notion d’isométrie affine.

a) Définition. On appelle isométrie affine de E tout application affine ϕ de E dans E qui conserve
la distance, ce qui signifie que :

pour tous points M et N de E , on a d(ϕ(M), ϕ(N)) = d(M,N).

b) Théorème. Une application affine ϕ de E dans E est une isométrie affine si et seulement si son
application linéaire associée f est une isométrie vectorielle de E.

Preuve. Supposons f ∈ O(E). Rappelons que cela signifie que f conserve la norme, c’est-à-dire que :

pour tout vecteur −→u de E, on a ‖f(−→u )‖ = ‖−→u ‖.

Il en résulte que, pour tous points M,N ∈ E , on a :

d(ϕ(M), ϕ(N)) = ‖
−−−−−−−→
ϕ(M)ϕ(N)‖ = ‖f(

−−→
MN)‖ = ‖

−−→
MN‖ = d(M,N),

ce qui prouve que ϕ est une isométrie affine. La réciproque découle du même calcul, en écrivant un

vecteur −→u ∈ E quelconque sous la forme
−−→
MN avec M,N ∈ E . ut

c) Corollaire et définition. Toute isométrie affine est une bijection de E sur E , et les isométries
affines de E forment un sous-groupe du groupe affine GA(E), noté Is(E)

Preuve. Les deux propriétés résultent des lemmes 3.2.1 et 3.2.2 puisque les isométries vectorielles de E
sont bijectives et que O(E) est un sous-groupe de GL(E). ut

d) Commentaire (une précision intéressante au plan théorique). En fait, une application
ϕ : E → E qui conserve les distances est nécessairement affine (et donc est une isométrie affine), de
sorte que l’hypothèse “ϕ affine” peut être enlevée de la définition a). On donne à titre d’exercice
une preuve de cette assertion.

Solution. Supposons que ϕ conserve la distance. Cela se traduit par le fait que ‖ϕ(M)ϕ(N)‖ = ‖
−−→
MN‖

pour tous points M,N ∈ E . Ceci étant, fixons un point O de E est considérons l’application f : E → E

qui, à un tout vecteur −→u , associe le vecteur
−−−−−−−→
ϕ(O)ϕ(M) où M est l’unique point de E tel que −→u =

−−→
OM .

• Première étape : on montre que f conserve le produit scalaire dans E. Pour cela, soient −→u ,−→v quel-

conques de E. Les points M = O+−→u et N = O+−→v vérifient −→u =
−−→
OM et −→v =

−−→
ON . En utilisant une

des identités de polarisation classiques, on calcule :

2f(−→u ).f(−→v ) = ‖f(−→u )‖2 + ‖f(−→v )‖2 − ‖f(−→u )− f(−→v )‖2

= ‖
−−−−−−−→
ϕ(O)ϕ(M)‖2 + ‖

−−−−−−−→
ϕ(O)ϕ(N)‖2 − ‖

−−−−−−−→
ϕ(N)ϕ(M)‖2

= ‖
−−→
OM‖2 + ‖

−−→
ON‖2 − ‖

−−→
NM‖2 parce que ϕ est une isométrie affine de E

= ‖−→u ‖2 + ‖−→v ‖2 − ‖−→u −−→v ‖2 = 2−→u .−→v .
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• Deuxième étape : on montre que f est linéaire. Pour cela, soient −→u et −→v deux vecteurs quelconques
de E et λ ∈ R. En utilisant les propriétés du produit scalaire, ainsi que le fait que f conserve le produit
scalaire (et donc la norme), on calcule :

‖f(−→u + λ−→v )− f(−→u )− λf(−→v )‖2 = ‖f(−→u + λ−→v )‖2 + ‖f(−→u )‖2 + λ2‖f(−→v )‖2

− 2f(−→u + λ−→v ).f(−→u )− 2λf(−→u + λ−→v ).f(−→v ) + 2λf(−→u ).f(−→v )

= ‖−→u + λ−→v ‖2 + ‖−→u ‖2 + λ2‖−→v ‖2

− 2(−→u + λ−→v ).−→u − 2λ(−→u + λ−→v ).−→v + 2λ−→u .−→v

= ‖(−→u + λ−→v )− λ−→u − λ−→v ‖2

= 0.

Ceci prouve que f(−→u + λ−→v ) = f(−→u ) + λf(−→v ) pour tous −→u ,−→v dans E et tout λ ∈ R, et donc que f
est une application linéaire.

• Troisième étape : on montre que f est bijective. Soit −→u ∈ Ker f , on a f(−→u ) =
−→
0 , donc ‖f(−→u )‖ = 0,

d’où ‖−→u ‖ = 0 puisque f conserve la norme, et finalement −→u =
−→
0 . Ceci prouve que f est injective.

Parce que f est un endomorphisme de E qui est de dimension finie, on conclut que f est bijective. En
résumé, f est une application linéaire bijective de E sur E qui conserve le produit scalaire, c’est-à-dire
une isométrie vectorielle de E.

• Conclusion. On a ainsi construit une application linéaire f : E → E qui est une isométrie vectorielle

et qui par définition vérifie f(
−−→
OM) =

−−−−−−−→
ϕ(O)ϕ(M) pour tout M ∈ E . Donc pour tous M,N ∈ E , on a :

f(
−−→
MN) = f(

−−→
ON −

−−→
OM) = f(

−−→
ON)− f(

−−→
OM) =

−−−−−−−→
ϕ(O)ϕ(N)−

−−−−−−−→
ϕ(O)ϕ(M) =

−−−−−−−→
ϕ(M)ϕ(N)

ce qui prouve que ϕ est une application affine d’application linéaire associée f . ut

e) Remarques pratiques importantes. Les isométries affines étant des bijections affines, toutes
les propriétés de ces dernières étudiées au chapitre précédent s’appliquent en particulier aux isométries
affines : conservation de l’alignement, conservation du parallélisme, points fixes, etc. Le fait que
de plus elles conservent la distance entrâıne des propriétés supplémentaires dont la conservation
des sous-espaces orthogonaux, la conservation des aires et des volumes en dimension 2 ou 3, la
conservation des angles dans le plan comme on le verra plus loin.

4.1.2 Déplacements et antidéplacements.

a) Définitions. Une isométrie affine de E est dite directe (respectivement indirecte) lorsque son
application linéaire associée est une isométrie vectorielle directe (respectivement indirecte) de E.
Une isométrie affine directe est aussi appelée un déplacement ; une isométrie affine indirecte est
aussi appelée un antidéplacement.

Rappel important d’algèbre linéaire : un endomorphisme f de E est une isométrie vectorielle si et
seulement si sa matrice M dans une base orthonormée B quelconque de E est une matrice orthogonale
(ce qui signifie que tM.M = M.tM = idE). Il en résulte que, comme on l’a déjà rappelé en 2.6.5, toute
isométrie vectorielle f de E vérifie det f = 1 ou det f = −1. Les isométries vectorielles de déterminant
1 sont dites directes ; elles forment un sous-groupe de O(E) noté O+(E) ou encore SO(E). Celles de
déterminant −1 sont dites indirectes ; leur ensemble noté O−(E) n’est pas un sous-groupe.

b) Proposition. Les déplacements forment un sous-groupe de Is(E), noté Is+(E).
Les antidéplacements forment un sous-ensemble de Is(E) qui n’est pas un groupe, noté Is−(E).

Preuve. Evident d’après le théorème 4.1.1.b), le lemme 3.2.1 et les propriétés des groupes O(E) et O+(E)
rappelés ci-dessus. ut

En résumé : ϕ ∈ Is(E) si et seulement si f ∈ O(E), et ϕ ∈ Is+(E) si et seulement si f ∈ O+(E).
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4.1.3 Premiers exemples d’isométries affines.

a) Cas des translations. Toute translation est un déplacement. C’est évident puique son appli-
cation linéaire associée est idE , qui appartient à O+(E) ; voir 3.3.2.

b) Cas des symétries centrales. Une homothétie de rapport λ ∈ R∗ est toujours bijective, mais
c’est une isométrie affine si et seulement si λ = ±1. En effet, l’application linéaire associée est
λ idE comme on l’a vu en 3.4.2, qui appartient à O(E) si et seulement si λ = ±1. Donc les seules
homothéties qui sont des isométries affines sont idE et les symétries centrales. De plus, puisque
det(− idE) = (−1)n, on a :

une symétrie centrale est un déplacement si n est pair et un antidéplacement si n est impair.

c) Cas des symétries orthogonales. Pour tout sous-espace affine F , on appelle symétrie affine
orthogonale par rapport à F la symétrie affine σF par rapport à F parallèment à la direction
orthogonale à F . On reprend donc la construction et les propriétés de 3.5.3 dans le cas particulier
où H = F⊥. L’application linéaire associée à σF est la symétrie vectorielle orthogonale sF : E → E
par rapport au sous-espace vectoriel F directeur de F . On sait d’après le cours d’algèbre linéaire
qu’une telle symétrie orthogonale sF est une isométrie vectorielle. On en déduit que :

les symétries affines orthogonales σF sont des isométries affines.

De plus, il résulte aussi du cours d’algèbre linéaire que F = Ker(sF − idE) et F⊥ = Ker(sF + idE),
d’où l’on déduit par la choix d’une base adaptée à la somme directe E = F ⊕ F⊥ que det sF =
(−1)n−dimF . Donc sF ∈ O+(E) si et seulement si n− dimF est pair. On conclut que :

une symétrie affine orthogonale σF est un déplacement si et seulement si n− dimF est pair.

Une symétrie orthogonale par rapport à un hyperplan est appelée une symétrie hyperplane ou une
reflexion ; c’est toujours un antidéplacement.

d) Contre-exemple. Les projections affines ne sont pas des isométries affines puisque qu’elles ne
sont pas bijectives (voir 3.5.2).

4.1.4 Détermination d’une isométrie par l’image d’une base.

a) Théorème. Soit (A0, A1, . . . , An) une base affine de E . Soit (B0, B1, . . . , Bn) une famille de
(n+ 1) points. On suppose que :

d(Ai, Aj) = d(Bi, Bj) pour tous 0 ≤ i, j ≤ n. (*)

Alors il existe une unique isométrie ϕ ∈ Is(E) telle que ϕ(Ai) = Bi pour tout 1 ≤ i ≤ n. De plus
(B0, B1, . . . , Bn) est une base affine de E .

Preuve D’après la proposition 3.1.8, il existe une unique application affine ϕ de E dans E telle que
ϕ(Ai) = Bi pour tout 0 ≤ i ≤ n. Son application linéaire associée est déterminée par l’image des

vecteurs de la base A = (
−−−→
A0A1, . . . ,

−−−→
A0An) de E, à savoir les vecteurs f(

−−−→
A0Ai) =

−−−→
B0Bi pour tout

1 ≤ i ≤ n. Tout ceci est purement affine, et n’utilise pas l’hypothèse (*). La question est de montrer
que (*) implique que ϕ est une isométrie.

Pour tout 0 ≤ i, j, k ≤ n, on calcule :
−−−→
AjAk.

−−−→
AjAk = (

−−−→
AiAk −

−−−→
AiAj).(

−−−→
AiAk −

−−−→
AiAj) =

−−−→
AiAk

2 +
−−−→
AiAj

2 − 2
−−−→
AiAj .

−−−→
AiAk,

donc
−−−→
AiAj .

−−−→
AiAk = 1

2
(AiA

2
j + AiA

2
k − AjA2

k). De même
−−−→
BiBj .

−−−→
BiBk = 1

2
(BiB

2
j + BiB

2
k − BjB2

k). Or
d’après (*), on a : AiAj = BiBj , AiAk = BiBk, AjAk = BjBk. Il en résulte que :
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−−−→
AiAj .

−−−→
AiAk =

−−−→
BiBj .

−−−→
BiBk pour tous 0 ≤ i, j, k ≤ n. (**).

Dès lors, soient M,N ∈ E quelconques. Le vecteur
−−→
MN se décompose dans la base A de E en

−−→
MN =∑n

i=1 αi
−−−→
A0Ai avec αi ∈ R. On calcule :
−−−−−−−→
ϕ(M)ϕ(N) = f(

−−→
MN) =

∑n
i=1 αif(

−−−→
A0Ai) =

∑n
i=1 αi

−−−−−−−−→
ϕ(A0)ϕ(Ai) =

∑n
i=1 αi

−−−→
B0Bi.

De plus ‖
−−→
MN‖2 =

(∑n
i=1 αi

−−−→
A0Ai

)
.
(∑n

i=1 αi
−−−→
A0Ai

)
=
∑n
i=1

∑n
j=1 αiαj

−−−→
A0Ai.

−−−→
A0Aj . En utilisant (**),

on en déduit :

‖
−−→
MN‖2 =

∑n
i=1

∑n
j=1 αiαj

−−−→
B0Bi.

−−−→
B0Bj =

(∑n
i=1 αi

−−−→
B0Bi

)
.
(∑n

i=1 αi
−−−→
B0Bi

)
= ‖
−−−−−−−→
ϕ(M)ϕ(N)‖2.

En résumé ‖
−−−−−−−→
ϕ(M)ϕ(N)‖ = ‖

−−→
MN‖, et donc ϕ ∈ Is(E).

Il en résulte en particulier que ϕ est bijective. Donc (B0, B1, . . . , Bn) est une base affine de E , comme
image d’une base affine par une bijection affine. ut

b) Exemple d’application en géométrie plane élémentaire. On suppose dim E = 2. Soient
(ABC) et (A′B′C ′) deux triangles tels que A′B′ = AB, B′C ′ = BC, C ′A′ = CA. Alors il existe
une unique ϕ ∈ Is(E) telle que ϕ(A) = A′, ϕ(B) = B′, ϕ(C) = C ′. Cette propriété est connue sous
le nom de troisième cas d’égalité des triangles.

translation symétrie centrale

réflexion rotation (voir plus loin)

Le théorème qui suit a pour objet de ramener l’étude des isométries affines à celles des isométries
vectorielles.

4.1.5 Forme réduite d’une isométrie

a) Théorème et définitions. Soient ϕ ∈ Is(E) une isométrie affine, et f ∈ O(E) l’isométrie
vectorielle associée.

(i) Il existe une unique translation τ ∈ T (E) et une unique isométrie ϕ0 ∈ Is(E) admettant (au
moins) un point fixe, telles que : ϕ = τ ◦ ϕ0 = ϕ0 ◦ τ .

(ii) Dans cette décomposition, le sous-espace affine V des points fixes de ϕ0 est dirigé par le
sous espace vectoriel V = Ker(f − idE), et le vecteur −→u de la translation τ appartient à V .

La décomposition unique ϕ = τ ◦ ϕ0 = ϕ0 ◦ τ s’appelle la forme réduite ou la décomposition
canonique de ϕ ; on dit que τ est la composante translation de ϕ et que ϕ0 est la composante à
points fixes de ϕ.
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Preuve. Observons d’abord que les sous-espaces vectoriels V = Ker(f − idE) et W = Im(f − idE) sont
supplémentaires et orthogonaux dans E. Soient x ∈ V et y ∈W . Donc f(x) = x et y = f(z)−z pour un
z ∈ E. D’où x.y = x.f(z)− x.z = f(x).f(z)− x.z. Mais f(x).f(z) = x.z car f ∈ O(E), et donc x.y = 0.
Ceci prouve que V ⊂ W⊥ et W ⊂ V ⊥. Or dimV + dimW = dim Ker(f − idE) + dim Im(f − idE) =
dimE = n implique que dimV = n − dimW = dimW⊥, et de même dimW = dimV ⊥ ; les deux
inclusions ci-dessus sont donc des égalités.

• Ceci étant, fixons A ∈ E quelconque ;
−−−−→
Aϕ(A) se décompose de façon unique en :

−−−−→
Aϕ(A) = −→u +−→w avec −→u ∈ V et −→w ∈W . (*)

Pour le vecteur −→u ainsi déterminé, notons τ = τ−→u . Introduisons ϕ0 = τ−1 ◦ ϕ = τ−−→u ◦ ϕ. Il est clair
que ϕ0 ∈ Is(E) comme composée de deux isométries affines, et que son application linéaire associée est
l’isométrie vectorielle f0 = idE ◦f = f .

Parce que −→u ∈ V , on a τ ◦ ϕ0 = ϕ0 ◦ τ .

En effet : pourM ∈ E , notonsM1 = τ(M) etM2 = ϕ0(M1) = (ϕ0◦τ)(M), puisM ′1 = ϕ0(M)

et M ′2 = τ(M ′1) = (τ ◦ϕ0)(M). On calcule
−−−−→
M2M

′
2 =
−−−−→
M2M

′
1 +
−−−−→
M ′1M

′
2 =
−−−−−−−−−−→
ϕ0(M1)ϕ0(M)+−→u =

f(
−−−→
M1M) +−→u = f(−−→u ) +−→u . Mais f(−→u ) = −→u car −→u ∈ V . Donc M2 = M ′2.

Par ailleurs, ϕ0(A) = τ−−→u ◦ ϕ(A) donc
−−−−−−−→
ϕ(A)ϕ0(A) = −−→u , de sorte que d’après (*) :

−−−−−→
Aϕ0(A) =

−−−−→
Aϕ(A) +

−−−−−−−→
ϕ(A)ϕ0(A) =

−−−−→
Aϕ(A)−−→u = −→w .

Comme −→w ∈ Im(f − idE), il existe −→s ∈ E tel que
−−−−−→
Aϕ0(A) = −→w = f(−→s ) − −→s . Introduisons le point

B ∈ E tel que −−→s =
−→
AB. On obtient :

−−−−−→
Bϕ0(B) =

−→
BA+

−−−−−→
Aϕ0(A) +

−−−−−−−−→
ϕ0(A)ϕ0(B) =

−→
BA+

−−−−−→
Aϕ0(A) + f(

−→
AB) = −→s + f(−→s )−−→s + f(−−→s ) =

−→
0E .

Donc B est un point fixe de ϕ0.

• Montrons enfin l’unicité de la décomposition. Supposons ϕ = τ ◦ ϕ0 = ϕ0 ◦ τ avec τ = τ−→u ∈ T (E)
et ϕ0 qui admet des points fixes. Fixons A ∈ E quelconque. Notons A1 = τ(A) et A2 = ϕ0(A1), et
A′1 = ϕ0(A) et A′2 = τ(A′1). L’hypothèse de commutation de τ et ϕ0 impliquant à A2 = A′2, on a, en
reprenant les mêmes calculs que ci-dessus :

−→
0E =

−−−→
A2A

′
2 =
−−−→
A2A

′
1 +
−−−→
A′1A

′
2 =
−−−−−−−−−→
ϕ0(A1)ϕ0(A) +−→u = f(

−−→
A1A) +−→u = f(−−→u ) +−→u .

Donc f(−→u ) = −→u , c’est-à-dire −→u ∈ V . Par ailleurs, introduisons un point fixe B de ϕ0. On a :
−−−−−→
Aϕ0(A) =

−→
AB +

−−−−−→
Bϕ0(A) =

−→
AB +

−−−−−−−−→
ϕ0(B)ϕ0(A) =

−→
AB + f(

−→
BA),

ce qui prouve que :
−−−−−→
Aϕ0(A) ∈ Im(f − idE) = W .

Or on peut décomposer :
−−−−→
Aϕ(A) =

−−−−−→
Aϕ0(A) +

−−−−−−−→
ϕ0(A)ϕ(A) =

−−−−−→
Aϕ0(A) +

−−−−−−−−−−−→
ϕ0(A)τ(ϕ0(A)) =

−−−−−→
Aϕ0(A) +−→u .

Ainsi, pour tout A ∈ E , on a :
−−−−→
Aϕ(A) =

−−−−−→
Aϕ0(A) +−→u avec

−−−−−→
Aϕ0(A) ∈W et −→u ∈ V .

Si on a une autre décomposition ϕ = τ−→v ◦ϕ1 = ϕ1 ◦ τ−→v , il vient de même :
−−−−→
Aϕ(A) =

−−−−−→
Aϕ1(A) +−→v avec

−−−−−→
Aϕ1(A) ∈W et −→v ∈ V . Mais E = V ⊕W , donc −→u = −→v , d’où ϕ0 = ϕ1. ut

b) Exercice : isométries affines en dimension 1. Dans le cas (trivial) où E est de dimension 1,
les déplacements de E sont les translations, et les antidéplacements de E sont les composées d’une
translation par une symétrie centrale.

En effet. On suppose que dim E = dimE = 1. Il est clair que EndE = {λ idE ; λ ∈ R} et GL(E) =
{λ idE ; λ ∈ R∗}. On en déduit que O(E) = {idE ,− idE}, avec O+(E) = {idE} et O−(E) = {− idE}.
Soient alors ϕ ∈ Is(E), et f ∈ O(E) son application linéaire associée.

• Ou bien ϕ ∈ Is+(E) ; alors f = idE donc ϕ est une translation (dans la décomposition canonique de
ϕ, on a ϕ0 = idE et ϕ = τ).

• Ou bien ϕ ∈ Is−(E) ; alors f = − idE . Dans la décomposition canonique ϕ = τ ◦ ϕ0, on a aussi
ϕ0 ∈ Is−(E), avec le même f associé, et V = {M ∈ E ; ϕ0(M) = M} 6= ∅. Comme V est un sous-espace
affine de la droite E , deux cas seulement sont possibles :

– V = E , mais alors ϕ0 = idE , ce qui contredit ϕ0 ∈ Is−(E).

– V est un singleton {B} ; alors pour tout M ∈ E on a
−−−−−→
Bϕ0(M) =

−−−−−−−−−→
ϕ0(B)ϕ0(M) = f(

−−→
BM) = −

−−→
BM ,

donc ϕ0 est la symétrie centrale de centre B.
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4.2 Exemples en géométrie élémentaire : classification des isométries affines du
plan.

On suppose dans cette section que l’espace affine euclidien E est de dimension 2. On suppose de
plus que E est orienté (voir 2.6.5).

4.2.1 Exemples déjà rencontrés. En appliquant les résultats généraux de 4.1.3, dans le plan
affine euclidien E , on connâıt déjà comme exemples d’isométries affines :

1. les translations, qui sont des déplacements ; l’application linéaire associée à une telle trans-
lation τ−→u est idE . L’ensemble des points fixes de τ−→u est vide dès lors que −→u 6= −→0 .

2. les symétries centrales, qui sont des déplacements ; l’application linéaire associée à une
symétrie centrale σA est − idE . L’ensemble des points fixes de σA est le singleton {A}.

3. les réflexions (symétries orthogonales par rapport à une droite affine), qui sont des an-
tidéplacements ; l’application linéaire associée à une telle réflexion σD est la symétrie vecto-
rielle orthogonale s∆ par rapport à la droite vectorielle ∆ dirigeant D. L’ensemble des points
fixes de σD est la droite D. On appelle D l’axe de la réflexion σD.

4.2.2 Symétries glissées

a) Définition et proposition. Soient D une droite du plan affine E et −→u un vecteur appartenant
à la droite vectorielle D de E dirigeant D. On appelle symétrie glissée d’axe D et de vecteur −→u la
composée de la réflexion d’axe D et de la translation de vecteur −→u . Elle vérifie σD ◦ τ−→u = τ−→u ◦ σD.

Preuve. Notons pour simplifier τ = τ−→u et σ = σD. Soit M un point
quelconque de E .
Posons N = τ(M), puis M ′ = σ(M).
Posons par ailleurs P = σD(M), puis M ′′ = τ(P ).

On a
−−→
MN = −→u =

−−−→
PM ′′ par définition de τ et

−−→
MP =

−−−→
NM ′ par

définition de σ. D’où :
−−−−→
MM ′′ =

−−→
MP +

−−−→
PM ′′ =

−−−→
NM ′ +

−−→
MN =

−−−→
MM ′, donc M ′ = M ′′,

ce qui montre que τ ◦ σ = σ ◦ τ . ut

b) Proposition. Toute symétrie glissée du plan est une isométrie affine, et plus spécifiquement un
antidéplacement.

Preuve. C’est clair puisqu’il s’agit de la composée d’un déplacement et d’un antidéplacement. ut

c) Remarques. Une réflexion est un cas particulier de symétrie glissée, celui où le vecteur de
translation dans la symétrie glissée est le vecteur nul.

Une symétrie glissée de vecteur non-nul n’admet aucun point fixe.
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4.2.3 Rotations affines

a) Rappels d’algèbre linéaire. Les éléments du groupe orthogonal O(E) lorsque E est de di-
mension 2 sont connus et peuvent être explicitement décrits.

— Les éléments de O+(E) sont appelés les rotations vectorielles. Pour toute f ∈ O+(E), il existe
un réel θ (défini modulo 2π) tel que la matrice de f dans n’importe quelle base orthonormée
directe de E est :

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

On note alors f = rθ et on appelle rθ la rotation vectorielle d’angle θ. Un calcul immédiat
montre que Rθ ×Rθ′ = Rθ+θ′ , d’où il résulte que :

rθ ◦ rθ′ = rθ+θ′ pour tous θ, θ′ ∈ R.

Remarque. Une propriété importante découlant de cette définition est que, pour tous vecteurs non-
nuls de même norme −→u et −→v dans E, il existe une unique rotation rθ telle que rθ(

−→u ) = −→v .

Cela permet de définir l’angle de vecteurs ̂(−→u ,−→v ), que l’on identifie à θ par abus de notation (il
serait plus correct de dire que θ est une mesure de cet angle). La relation de composition ci-dessus
conduit alors à une forme de relation de Chasles pour les angles sous la forme :

̂(−→u ,−→v ) + ̂(−→v ,−→w ) = ̂(−→u ,−→w ) pour tous −→u ,−→v ,−→w ∈ E.

— Les éléments de O−(E) sont les symétries vectorielles orthogonales par rapport aux droites
vectorielles. Pour une telle symétrie s∆, la matrice de s∆ dans une base orthonormée de E
est de la forme

(
a b
b −a

)
avec a, b ∈ R tels que a2 + b2 = 1.

En particulier, comme les vecteurs de ∆ sont fixés par s∆ et que les vecteurs de ∆⊥ sont transformés
en leur opposé, on peut choisir une base orthonormée B de E formée d’un vecteur directeur de ∆ et
d’un vecteur directeur de ∆⊥, de sorte que la matrice de s∆ dans B est

(
1 0
0 −1

)
.

b) Définition. Soient A un point du plan orienté E et θ un réel. On appelle rotation affine de centre
A et d’angle θ, notée ρA,θ, l’unique application affine de E dans E qui fixe A et dont l’application
linéaire associé est la rotation vectorielle rθ de E d’angle θ.

Remarquons que cette définition repose sur l’application du théorème 3.1.2.

Il en résulte en particulier que :

− si θ ∈ 2πZ, alors ρA,θ = idE ,

− si θ = π modulo 2π, alors ρA,θ est la symétrie centrale de centre A.

c) Proposition. Toute rotation affine de E est une isométrie, et plus spécifiquement un déplacement.

Preuve. Evident d’après 4.1.1.b et 4.1.2 puisque les rotations vectorielles sont des éléments de O+(E).ut

d) Construction.

Soit M un point de E distinct de A.

Le vecteur −→u =
−−→
AM de E est non-nul.

Soit −→v l’image de −→u par la rotation vectorielle rθ de E.

Il existe un unique point M ′ de E tel que −→v =
−−→
AM ′.

On a ainsi :
−−→
AM ′ = rθ(

−−→
AM)

Par construction, on a :

d(A,M) = d(A,M ′), et θ est l’angle
̂

(
−−→
AM,

−−→
AM ′).
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e) Remarques. Les propriétés suivantes découlent directement des considérations précédentes.

1. La composée de deux rotations de même centre A et d’angles respectifs θ et θ′ est la rotation
de centre A et d’angle θ + θ′. La bijection réciproque de la rotation de centre A et d’angle
θ est la rotation de centre A et d’angle −θ.

2. L’ensemble des points fixes d’une rotation affine d’angle non-nul modulo 2π est réduit à son
centre.

4.2.4 Composée de deux réflexions.

a) Proposition.

(i) La composée de deux réflexions d’axes strictement parallèles est une translation dont le
vecteur est dans la direction orthogonale aux axes.

(ii) La composée de deux réflexions d’axes sécants est une rotation dont le centre est le point
d’intersection des axes.

Plus précisément, pour D et D′ deux droites affines distinctes de E de droites vectorielles directrices
D et D′, on a :

Si D et D′ sont parallèles, alors σD′ ◦ σD est la translation τ2~u, où ~u est le vecteur orthogonal à
D dont la norme est égal à la distance entre les deux droites et dont le sens est de D vers D′.
Si D et D′ sont sécantes en un point A, σD′ ◦ σD est la rotation ρA,2θ de centre A et d’angle 2θ,
où θ est l’angle entre les droites D et D′, qui est défini modulo π.

Preuve. Soit M un point quelconque de E . Notons M ′ = σD(M) et P le milieu de [M,M ′], qui appartient
à D. Notons M ′′ = σD′′(M

′) et Q le milieu de [M ′M ′′], qui appartient à D′.
On a

−−→
MP =

−−−→
PM ′ et

−−−→
M ′Q =

−−−→
QM ′′, d’où :

−−−→
MM” =

−−→
MP +

−−→
PQ+

−−−→
QM ′′ =

−−−→
PM ′ +

−−→
PQ+

−−−→
M ′Q = 2

−−→
PQ.

Dans la première configuration, le vecteur
−−→
PQ est indépendant du point M ; en posant −→u =

−−→
PQ, on

obtient le résultat voulu.

Dans la seconde configuration, on a :
̂

(
−−→
AM,

−→
AP ) =

̂
(
−→
AP,
−−−→
AM ′) et

̂
(
−−−→
AM ′,

−→
AQ) =

̂
(
−→
AQ,
−−−→
AM ′′), d’où :

̂
(
−−→
AM,

−−−→
AM ′′) =

̂
(
−−→
AM,

−→
AP ) +

̂
(
−→
AP,
−→
AQ) +

̂
(
−→
AQ,
−−−→
AM ′′) =

̂
(
−→
AP,
−−−→
AM ′) +

̂
(
−→
AP,
−→
AQ) +

̂
(
−−−→
AM ′,

−→
AQ),

c’est-à-dire
̂

(
−−→
AM,

−−−→
AM ′′) = 2

̂
(
−→
AP,
−→
AQ), ce qui achève la preuve. ut

b) Remarque. Les mêmes calculs permettent de vérifier réciproquement que :

1. Toute translation de E distincte de idE est la composée de deux réflexions dont les axes sont
parallèles et de direction orthogonale à la direction du vecteur de la translation, et dont l’un
peut être choisi arbitrairement.

2. Toute rotation de E distincte de idE est la composée de deux réflexions dont les axes sont
sécants en le centre de la rotation, et dont l’un peut être choisi arbitrairement.
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4.2.5 Classification des isométries du plan (première méthode). On donne une descrip-
tion explicite de toutes les isométries affines du plan affine euclidien E , via une classification suivant
leurs points fixes.

a) Lemme. Si ϕ est une isométrie affine de E qui fixe trois points non alignés, alors ϕ = idE .

Preuve. C’est vrai pour toute application affine de E dans E comme on l’a vu en 3.1.8.b.(2). ut

b) Lemme. Si ϕ est une isométrie affine de E distincte de idE qui fixe au moins deux points
distincts A et B, alors ϕ est la réflexion d’axe (AB).

Preuve. Soit C un point de E n’appartenant pas à la droite (AB).
Notons C′ = ϕ(C). Comme ϕ est une isométrie, on a d(A,C) =
d(ϕ(A), ϕ(C)) = d(A,C′) et de même d(B,C) = d(B,C′). Donc la
droite (AB) est la médiatrice de (C,C′). Il en résulte que, si l’on note
σ la réflexion d’axe (AB), on a σ(C) = C′. Posons ψ = σ ◦ ϕ, qui
est une isométrie de E comme composée de deux isométries. On a :
ψ(A) = σ(A) = A, ψ(B) = σ(B) = B et ψ(C) = σ(C′) = C. On
applique le lemme 1 pour conclure que ψ = idE , et donc ϕ = σ. ut

c) Lemme. Si ϕ est une isométrie affine de E qui fixe un unique point A, alors ϕ est une rotation
de centre A.

Preuve. Soit B un point de E distinct de A. Posons B′ = ϕ(B), qui
est donc distinct de B et considérons la médiatrice D de (B,B′). On
a d(A,B) = d(ϕ(A), ϕ(B)) = d(A,B′), d’où A ∈ D. Si l’on note σ la
réflexion d’axe D et ψ = σ ◦ϕ, on a donc ψ(A) = σ(A) = A et ψ(B) =
σ(B′) = B. Ainsi, ψ fixe au moins deux points distincts. D’après les
deux lemmes précédents, deux cas seulement peuvent se présenter : le
cas ψ = idE est impossible car on aurait alors ϕ = σ ce qui contredit
l’hypothèse que ϕ n’a qu’un seul point fixe ; on est donc forcément

dans le cas où ψ est la réflexion σ′ d’axe D′ = (AB). On en déduit que ϕ = σ ◦ σ′, et comme les axes
D et D′ sont sécants en A, on conclut avec 4.2.4 que ϕ est une rotation de centre A. ut

d) Lemme. Si ϕ est une isométrie affine de E qui ne fixe aucun point de E , alors ϕ est une
translation ou une symétrie glissée de vecteur non-nul.

Preuve. Soit A un point quelconque de E . On a A′ = ϕ(A) 6= A, donc le vecteur −→u =
−−→
A′A est non-nul.

La translation τ de vecteur −→u vérifie τ(A′) = A donc l’isométrie ψ = τ ◦ ϕ vérifie ψ(A) = A. Elle
satisfait donc aux hypothèses de l’un des trois lemmes précédent.

• Dans le cas où ψ = idE , on conclut que ϕ = τ−1 est une translation.

• Le cas où ψ est une rotation ρ de centre A conduit à ϕ = τ−1◦ρ. Soit alors

D la droite affine passant par A et de direction orthogonal au vecteur
−−→
AA′

de la translation τ−1. D’après la première des remarques de la fin de 4.2.4,
il existe d’une part une droite D′ parallèle à D telle que τ−1 = σD′ ◦ σD
et d’autre part une droite D′′ sécante à D en A telle que ρ = σD ◦ σD′′ .
On conclut que ϕ = σD′ ◦ σD ◦ σD ◦ σD′′ = σD′ ◦ σD′′ qui est une rotation
puisque par construction D′ et D′′ sont sécantes. Ceci contredisant le fait
que ϕ est sans point fixe, ce cas est impossible.

• Reste le cas où ψ est une réflexion σ d’axe D passant par A. On a donc ϕ = τ−1 ◦ σD. Décomposons
le vecteur −−→u de la translation τ−1 sous la forme −−→u = −→v + −→w avec −→v ∈ D et −→w ∈ D⊥, où
D désigne la droite vectorielle de E dirigeant D. Comme −→w est orthogonal à D, il existe d’après la
première des remarques de la fin de 4.2.4 une droite D′ parallèle à D telle que τ−→w = σD′ ◦ σD. Ainsi
ϕ = τ−−→u ◦ σD = τ−→v ◦ τ−→w ◦ σD = τ−→v ◦ σD′ ◦ σD ◦ σD = τ−→v ◦ σD′ ce qui, puisque −→v appartient à la
direction D de D′ (rappelons que les droites D et D′ sont parallèles), montre que ϕ est une symétrie
glissée. ut
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e) Théorème de classification.

(i) Les déplacements du plan affine euclidien E sont les rotations et les translations.

(ii) Les antidéplacements sont les réflexions et les symétries glissées.

Preuve. Il suffit de synthétiser les résultats précédents. ut

f) Corollaire. La classification des isométries du plan affine euclidien E suivant leurs ensembles
de points fixes est donnée par le tableau suivant :

ensemble des points fixes déplacement antidéplacement

E idE −

droite D − réflexion d’axe D

singleton {A} rotation de centre A −

∅ translation de vecteur non-nul symétrie glissée de vecteur non-nul

Une autre conséquence est, avec la proposition 4.2.4, que toute isométrie affine du plan peut être
obtenue en composant des réflexions affines, ce que formule le corollaire suivant.

g) Corollaire. Les réflexions engendrent le groupe Is(E) du plan affine euclidien E .

Plus précisément, tout déplacement de E est le produit de deux réflexions, et tout antidéplacement
de E est une réflexion ou un produit de trois réflexions.

4.2.6 Classification des isométries du plan (seconde méthode). On donne ici une méthode
plus directe, mais moins illustrative : le théorème sur la forme réduite d’une isométrie affine vu en
4.1.5 ramène l’étude des isométries affines du plan E à celle des isométries vectorielles de E, et la
description algébrique connue du groupe orthogonal O(E) en dimension 2 permet de conclure.

a) Lemme. Tout déplacement affine du plan E est une translation ou une rotation affine.

Preuve. Soit ϕ ∈ Is+(E), d’application linéaire associés f ∈ O+(E). Comme on l’a rappelé en 4.2.3.a),
il existe θ ∈ R (défini modulo 2π) tel que f = rθ. Si θ ∈ 2πZ, alors f = rθ = idE ; d’après la proposition
3.3.2, on conclut que ϕ ∈ T (E).

Supposons maintenant θ /∈ 2πZ. Soit R = (O,B) un repère orthonormé direct de E . Soient (α, β) les
coordonnées dans ce repère du point ϕ(O). Pour tout M ∈ E de coordonnées (x, y), en notant (x′, y′)

les coordonnées de ϕ(M), on a :
−−−−−−−→
ϕ(O)ϕ(M) = f(

−−→
OM) = rθ(

−−→
OM), donc :

{
x′−α=x cos θ−y sin θ

y′−β=x sin θ+y cos θ
.

Dès lors, M est un point fixe de ϕ si et seulement si

{
x(1− cos θ) + y sin θ = α
−x sin θ + y(1− cos θ) = β

.

Le déterminant de ce système est (1−cos θ)2 +sin2 θ qui est non-nul puisque θ /∈ 2πZ. Le système admet
donc une unique solution (x, y), donc ϕ a un unique point fixe A.vérifi En résumé, ϕ est une application
affine qui fixe un point A et dont l’application linéaire associée est rθ. On conclut que ϕ = ρA,θ. ut

b) Lemme. Tout antidéplacement affine du plan E est une symétrie glissée.

Preuve. Soit ϕ ∈ Is−(E). D’après le théorème 4.1.5.a), il existe τ ∈ T (E) et ϕ0 ∈ Is(E) uniques telles
que ϕ = τ ◦ ϕ0 = ϕ0 ◦ τ et telles que ϕ0 admette des points fixes. Si l’on note −→u le vecteur de τ et V
le sous-espace vectoriel de E directeur du sous-espace affine V des points fixes de ϕ0, on sait d’après
4.1.5.a) que l’on a : −→u ∈ V . Comme ϕ0 = τ−1 ◦ ϕ avec ϕ ∈ Is−(E) et τ ∈ Is+(E), on a : ϕ0 ∈ Is−(E).
L’application linéaire associée vérifie donc f0 ∈ O−(E). Comme on l’a rappelé en 4.2.3.a), f0 est une
symétrie orthogonale s∆ par rapport à une droite vectorielle ∆ de E. Donc V = Ker(f0 − idE) = ∆, ce
qui prouve que V est une droite affine D de E . En résumé, D est le sous-espace affine des points fixes
de ϕ0 et f0 = s∆, donc ϕ0 est la symétrie affine orthogonale σD par rapport à D. ut
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4.3 Exemples en géométrie élémentaire : isométries affines en dimension 3

On suppose dans cette section que l’espace affine euclidien E est de dimension 3. On suppose de
plus que E est orienté (voir 2.6.5).

4.3.1 Exemples déjà rencontrés. En appliquant les résultats
généraux de 4.1.3, dans l’espace affine euclidien E de dimension 3, on
connâıt déjà comme exemples d’isométries affines :

− les translations, qui sont des déplacements,

− les symétries centrales, qui sont des antidéplacements,

− les réflexions (symétries orthogonales par rapport à un plan affine),
qui sont des antidéplacements.

4.3.2 Rotations affines en dimension 3.

a) Rappels d’algèbre linéaire. Les éléments du groupe orthogonal O(E) lorsque E est de di-
mension 3 sont connus et peuvent être explicitement décrits. On rappelle d’abord ici la forme des
éléments du sous-groupe O+(E).

(i) Définition. Pour tout vecteur non-nul −→u ∈ E et tout réel θ, il existe une isométrie directe f de
E telle que la matrice de f dans toute base orthonormale directe B de E admettant −→u 1 = 1

‖−→u ‖
−→u

comme premier vecteur est :

MatB(f) =
(

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
.

Cette isométrie est appelé la rotation vectorielle d’axe ∆ dirigé et orienté par −→u , et d’angle θ.

On la notera r∆,θ.vérifi (ii) Remarques. Si θ ∈ 2πZ, alors r∆,θ est égale à idE .

Sinon, ∆ est le sous-espace propre associé à la valeur propre 1, c’est-à-dire que les vecteurs fixés
par r∆,θ sont exactement les vecteurs de ∆.

Dans le cas particulier où θ ≡ π modulo 2πZ, la rotation r∆,θ n’est autre que la symétrie orthogonale
par rapport à la droite ∆.vérifi On dit alors que r∆,π est le retournement d’axe ∆, ou le demi-tour
d’axe ∆.

(iii) Description. Si l’on considère −→u 2,
−→u 3 deux vecteurs tels que B = (−→u 1,

−→u 2,
−→u 3) constitue une

base orthonormale directe B de E, et si l’on note ∆ la droite de base −→u 1 et H = ∆⊥ le plan de
base (−→u 2,

−→u 3), la restriction de r∆,θ à la droite ∆ est id∆, et la restriction de r∆,θ au plan H est
la rotation vectorielle plane d’angle θ.

Un résultat fondamental démontré en algèbre linéaire est alors que :

(iv) Théorème. En dimension 3, les éléments de O+(E) sont les rotations vectorielles.
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b) Définition. Pour toute droite affine orientée D de E et
tout θ ∈ R, on appelle rotation affine d’axe D et d’angle
θ l’application affine ρD,θ : E → E telle que son applica-
tion linéaire associée soit la rotation vectorielle r∆,θ de E
d’axe la droite vectorielle orientée ∆ de E directrice de D et
d’angle θ, et telle que ρD,θ(M) = M pour tout point M de
la droite D.

Notons que l’existence et l’unicité d’une telle application
affine repose sur le théorème 3.1.2.

vérifi

c) Proposition. Pour toute droite affine orientée D de E et tout θ ∈ R, la rotation ρD,θ est un
déplacement de E . Si θ ≡ 0 modulo 2π, alors ρD,θ = idE ; sinon, les points fixes de ρA,θ sont les
points de D.

Preuve. La première assertion résulte immédiatement de la définition 4.1.2.a) et du théorème rappelé
au point (iv) du a) ci-dessus. La seconde assertion découle de la proposition 3.1.7 et de la remarque (ii)
des rappels a) ci-dessus. ut

4.3.3 Groupe des déplacements en dimension 3.

a) Définition. Pour toute droite affine orientée D de E et
tout θ ∈ R, on appelle vissage de E tout produit d’une rota-
tion ρD,θ au sens précédent par une translation τ−→u telle que
le vecteur −→u de vérifi translation appartienne à la direction
∆ de l’axe D.

Il est clair qu’un vissage est un déplacement de E .

Une rotation est un vissage dont le vecteur est nul. Une
translation est un vissage dont l’angle est nul (modulo 2π).

Un vissage qui n’est pas une rotation n’admet aucun point
fixe.

vérifi

b) Théorème. Le groupe Is+(E) des déplacements de l’espace affine euclidien E de dimension 3
est formé par les vissages.

Preuve. Tout vissage étant produit de τ−→u ∈ Is+(E) par ρD,θ ∈ Is+(E), il est clair que les vissages sont
des déplacements.

Réciproquement soit ϕ ∈ Is+(E). D’après le théorème 4.1.5.a), il existe τ ∈ T (E) et ϕ0 ∈ Is(E) uniques
telles que ϕ = τ ◦ ϕ0 = ϕ0 ◦ τ et telles que ϕ0 admette des points fixes.

Comme ϕ ∈ Is+(E) et τ ∈ Is+(E) , on a ϕ0 ∈ Is+(E), et donc l’application linéaire associée vérifie
f0 ∈ O+(E). D’après 4.3.2.a), f0 est une rotation de E ; notons f0 = r∆,θ. vérifi • Dans le cas particulier
où f0 = idE , il résulte de la proposition 3.3.2 que ϕ0 est une translation de E ; comme ϕ0 admet des
points fixes, on a nécessairement ϕ0 = idE . Dans ce cas ϕ = τ est une translation, donc un vissage.

• Si f0 6= idE , il existe une droite vectorielle orientée ∆ et un réel θ /∈ 2πZ tels que f0 = r∆,θ. Comme
l’ensemble V0 des points fixes de ϕ0 est supposé non-vide, il résulte de la proposition 3.1.7 que V0 est
un sous-espace affine de E dirigé par Ker(f0− idE) = ∆. Donc V0 est une droite affine D dirigée par ∆.
On conclut avec la définition 4.3.2.b) que ϕ0 est la rotation affine d’axe D et d’angle θ. vérifi Enfin, le
fait que τ ◦ ϕ0 = ϕ0 ◦ τ implique (toujours d’après le théorème 4.1.5 que le vecteur −→u de τ appartient
à ∆, de sorte que ϕ est bien un vissage. ut
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4.3.4 Compléments sur les isométries en dimension 3.

On complète ici la description des isométries de l’espace de dimension 3 en énonçant des résultats
analogues à ceux qui ont été démontrés en dimension 2 dans la partie 4.2. Les preuves, qui ne sont
pas détaillées ici, pourront faire l’objet d’exercice en travaux dirigés.

a) Antidéplacements. De même que pour les déplacements au théorème 4.3.3.b), on a une des-
cription explicite des antidéplacements de E .

Théorème. L’ensemble Is−(E) des antidéplacements de l’espace affine euclidien E de dimension 3
est formé par :

1. les réflexions (symétries orthogonales par rapport à un plan affine),
2. les composées d’une réflexion avec une rotation dont l’axe est une droite perpendiculaire au

plan de la réflexion,
3. les composées d’une réflexion avec une translation dont le vecteur appartient au plan vectoriel

directeur du plan de la réflexion (symétrie glissée).

b) Composée de deux réflexions. On a aussi un résultat comparable à la proposition 4.2.4.a).

Proposition. Soient σ et σ′ deux réflexions par rapport à des plans affines P et P ′ respectivement.

(i) Si P et P ′ sont parallèles, on a : σ′ ◦ σ = τ2−→u , où −→u est le vecteur orthogonal à la direction
commune de P et P ′ tel que P ′ = τ−→u (P).

(ii) Si P et P ′ ne sont pas parallèles, on a : σ′ ◦ σ = ρD,2θ, où D est la droite P ∩ P ′ et où θ est
défini (modulo π) comme l’angle des deux plans P et P ′.

c) Engendrement par les réflexions. Le résultat suivant, que l’on déduit directement de 4.3.3.b),
4.3.4.a) et 4.3.4.b), est un analogue vérifi en dimension 3 du corollaire 4.2.5.g).

Corollaire. Les réflexions engendrent le groupe Is(E) de l’espace affine euclidien E de dimension 3.

Plus précisément, tout déplacement de E est le produit de deux ou quatre réflexions, et tout an-
tidéplacement de E est une réflexion ou un produit de trois réflexions.
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5 – Barycentres

Dans tout le chapitre, on fixe E un espace affine sur R, d’espace vectoriel directeur E.

5.1 Notion de barycentre.

La notion de barycentre d’une famille de points est un outil essentiel du travail dans les espaces
affines, dont le rôle est comparable à celui de combinaison linéaire d’une famille de vecteurs dans
le cadre des espaces vectoriels.

5.1.1 Points pondérés. On appelle famille finie de points pondérés un ensembleA = (Ai, αi)1≤i≤n
où chaque Ai est un point de E et chaque αi est un réel, appelé le poids ou la masse affecté à Ai.
La somme σ =

∑n
i=1 αi est appelée la masse totale de la famille.

5.1.2 Théorème et définition. Prenons les données ci-dessus, et supposons de plus que σ 6= 0.
Alors il existe un unique point G de E vérifiant l’une des conditions suivantes équivalentes :

(1)
n∑
i=1

αi
−−→
GAi =

−→
0 ;

(2) il existe un point M0 ∈ E tel que
−−−→
M0G = 1

σ

n∑
i=1

αi
−−−→
M0Ai ;

(3) pour tout point M ∈ E , on a
−−→
MG = 1

σ

n∑
i=1

αi
−−−→
MAi.

Ce point G est appelé le barycentre de la famille de points pondérés (Ai, αi)1≤i≤n. On le note :

G = Bar(Ai, αi)1≤i≤n ou G = Bar
(
A1, ... Ai, ... An
α1, ... αi, ... αn

)
,

Preuve. Soit f l’application E → E définie par f(M) =
∑n
i=1 αi

−−−→
MAi pour tout M ∈ E . Pour M,N ∈ E ,

on a f(M)−f(N) =
∑n
i=1 αi

−−−→
MAi−

∑n
i=1 αi

−−→
NAi =

∑n
i=1 αi(

−−−→
MAi+

−−→
AiN) =

∑n
i=1 αi

−−→
MN . On retient :

pour tous M,N ∈ E , f(M)− f(N) = σ
−−→
MN . (*)

Il en résulte que f est injective (en effet f(M) = f(N)⇒
−−→
MN = 1

σ
(f(M)− f(N)) =

−→
0 ⇒M = N).

• On montre que les 3 assertions sont équivalentes. Si G vérifie (i), on a f(G) =
−→
0 ; d’après (*) on a

alors f(M) = f(G) + σ
−−→
MG = σ

−−→
MG pour tout M ∈ E , donc (iii) est vérifié. Il est clair que (iii) ⇒ (ii).

Enfin, si G vérifie (ii), on a d’après (*) : f(G) = f(M0) + σ
−−−→
GM0 = σ

−−−→
M0G+ σ

−−−→
GM0 =

−→
0 .

• On montre l’existence de G. Soit A ∈ E quelconque ; alors pour le vecteur 1
σ
f(A) ∈ E, il existe G ∈ E

tel que
−→
AG = 1

σ
f(A). En utilisant (*), il vient : f(G) = f(A) + σ

−→
GA = σ

−→
AG+ σ

−→
GA =

−→
0 .

• On montre l’unicité de G. Si G′ est un autre point de E vérifiant (i), on a f(G) =
−→
0 = f(G′), d’où

G = G′ par injectivité de f . ut

5.1.3 Homogénéité et isobarycentre. Il est clair que, pour tout λ ∈ R∗, Bar(Ai, λαi)1≤i≤n =
Bar(Ai, αi)1≤i≤n. Donc, quitte à multiplier chaque poids par 1

σ , on peut toujours supposer que σ = 1.

Un cas particulier important est celui où les masses sont toutes égales. Par homogénéité, on peut
les prendre égales à 1. La somme des masses est n 6= 0, ce qui autorise la définition suivante.

On appelle isobarycentre d’une famille de points A1, . . . , An de E le barycentre G = Bar(Ai, 1)1≤i≤n.
Il est donc défini par :
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n∑
i=1

−−→
GAi =

−→
0 , ou encore

−−→
MG = 1

n

n∑
i=1

−−−→
MAi pour tout M ∈ E .

L’isobarycentre de 2 points A et B est leur milieu, défini par
−→
IA+

−→
IB =

−→
0 (voir 1.1.2.c).

5.1.4 Associativité du barycentre. La propriété suivante, évidente mais précieuse sur le plan
pratique, indique que l’on peut regrouper les points par paquets, et que le barycentre global est alors
le barycentre des barycentres partiels, affectés des sommes partielles des masses correspondantes.

a) Proposition. Soit A = (Ai, αi)1≤i≤n une famille finie de points pondérés de masse totale∑n
i=1 αi non-nulle. Notons G son barycentre. On suppose que, pour un entier 1 ≤ p < n, on ait∑p
i=1 αi 6= 0, et on considère le barycentre partiel G′ = Bar

(
A1, A2, ... Ap
α1, α2, ... αp

)
. Alors :

G = Bar
(
A1, ... Ap, Ap+1, ... An
α1, ... αp, αp+1 ... αn

)
= Bar

(
G′, Ap+1, ... An

α1+···+αp, αp+1 ... αn

)
.

Preuve. On a :
−→
0 =

n∑
i=1

αi
−−→
GAi =

p∑
i=1

αi
−−→
GAi +

n∑
i=p+1

αi
−−→
GAi =

( p∑
i=1

αi
)−−→
GG′ +

n∑
i=p+1

αi
−−→
GAi ut

b) Exemple d’application en géométrie plane élémentaire. Dans E supposé de dimen-
sion ≥ 2, soient A,B,C trois points non alignés, et I, J,K les milieux respectifs de (A,B), (B,C) et

(C,A). Par associativité, l’isobarycentre du triangle (A,B,C) est G = Bar
(
A, B, C
1, 1, 1,

)
= Bar

(
I, C
2, 1,

)
,

de sorte que
−−→
CG = 2

−→
GI, d’où G ∈ (CI). De même G ∈ (AJ) et G ∈ (BK). On a prouvé : les trois

médianes d’un triangle se coupent en l’isobarycentre (ou centre de gravité) du triangle, situé au
tiers de chacune d’elles à partir du côté. I Voir aussi 2.4.b).

c) Exercice. De la même façon, montrer que, dans E supposé de dimension ≥ 3, pour A,B,C,D
quatre points non coplanaires, les 3 droites passant par le milieu d’une des 6 arêtes du tétraèdre
et le milieu de l’arête opposée se coupent en l’isobarycentre G du tétraèdre. Montrer que G est
aussi le point de concourrance des quatre droites joignant chaque sommet au centre de gravité du
triangle opposé.

5.1.5 Trois arguments généraux concernant les barycentres.

a) Proposition (applications affines et barycentres). Une application ϕ : E → E est affine si
et seulement si elle vérifie la propriété suivante : pour toute famille (Ai, αi)1≤i≤n de points pondérés
de E admettant un barycentre G, le point ϕ(G) est le barycentre de la famille (ϕ(Ai), αi)1≤i≤n.

Preuve. Supposons ϕ affine et notons f : E → E l’application linéaire associée à ϕ. Soit (Ai, αi)1≤i≤n
est une famille de points pondérés de E avec σ = α1 + · · · + αn 6= 0, et soit G son barycentre. Pour

tout M ∈ E , on a :
−−→
MG = 1

σ

∑n
i=1 αi

−−−→
MAi donc : f(

−−→
MG) = f

(
1
σ

∑n
i=1 αi

−−−→
MAi

)
= 1

σ

∑n
i=1 αif(

−−−→
MAi),

c’est-à-dire :
−−−−−−−→
ϕ(M)ϕ(G) = 1

σ

∑n
i=1 αi

−−−−−−−−→
ϕ(M)ϕ(Ai). Donc ϕ(G) est bien le barycentre de la famille image.

46



Réciproquement supposons que ϕ conserve les barycentres. Fixons A un point de E . Pour tout −→u ∈ E, il

existe M ∈ E unique tel que
−−→
AM = −→u . Posons alors f(−→u ) =

−−−−−−−→
ϕ(A)ϕ(M). On définit ainsi une application

f : E → F ; il s’agit de montrer qu’elle est linéaire.

Soient donc −→u ,−→v ∈ E, λ, µ ∈ R. Il existe M,N ∈ E tels que −→u =
−−→
AM et −→v =

−−→
AN . En appliquant

l’hypothèse que ϕ conserve les barycentres, on peut considérer :

G = Bar
(

A, M, N
1−λ−µ, λ, µ

)
et ϕ(G) = Bar

(
ϕ(A), ϕ(M), ϕ(N)

1−λ−µ, λ, µ

)
D’une part

−→
AG = (1 − λ − µ)

−→
AA + λ

−−→
AM + µ

−−→
AN = λ−→u + µ−→v , ce qui implique par définition de f

que : f(λ−→u + µ−→v ) =
−−−−−−−→
ϕ(A)ϕ(G). D’autre part,

−−−−−−−→
ϕ(A)ϕ(G) = (1 − λ − µ)

−−−−−−−→
ϕ(A)ϕ(A) + λ

−−−−−−−→
ϕ(A)ϕ(M) +

µ
−−−−−−−→
ϕ(A)ϕ(N) = λf(−→u ) + µf(−→v ). On a ainsi vérifié que f(λ−→u + µ−→v ) = λf(−→u ) + µf(−→v ). ut

On obtient ainsi une caractérisation en terme de barycentre de la notion d’application affine, que l’on
peut résumer en disant qu’une application est affine si et seulement si elle converve les barycentres.

b) Proposition (sous-espaces affines et barycentres). Soit F une partie non-vide de E . Les
deux conditions suivantes sont équivalentes :

(i) F est un sous-espace affine de E ;
(ii) le barycentre de toute famille finie de points pondérés de F appartient encore à F .

Preuve. Supposons (i). Notons F le sous-espace vectoriel directeur de F . Soit (Ai, αi)1≤i≤n une famille
finie de points pondérés dans F telle que σ = α1 + · · · + αn 6= 0. Le barycentre G des (Ai, αi) vérifie
−−→
MG = 1

σ

∑n
i=1 αi

−−−→
MAi pour tout M ∈ E . Si M ∈ F , on a

−−−→
MAi ∈ F pour tout 1 ≤ i ≤ n. Donc

−−→
MG

étant combinaison linéaire des
−−−→
MAi, on a

−−→
MG ∈ F . Comme M ∈ F , ceci implique que G ∈ F .

Supposons (ii). Choisissons A ∈ F . Il s’agit de montrer que F := {
−−→
AM ; M ∈ F} est un sous-espace

vectoriel de E. Pour cela, considérons
−−→
AM,

−−→
AN ∈ F quelconques, avec M,N ∈ F , et α, β ∈ R. Soit G le

barycentre de (A,M,N) affectés des coefficients (1−α− β, α, β), dont la somme est non-nulle. D’après

l’hypothèse (ii), G ∈ F . Par définition du barycentre,
−→
AG = α

−−→
AM + β

−−→
AN . Mais

−→
AG ∈ F puisque

G ∈ F . On a ainsi vérifié que : α
−−→
AM + β

−−→
AN ∈ F , ce qui prouve que F est un sous-espace vectoriel de

E, et donc que F est un sous-espace affine de E . ut

On résume cette caractérisation des sous-espaces affines en disant qu’une partie de E est sous-espace
affine si et seulement si elle est stable par barycentres.

c) Proposition (base affine et barycentres). Soit X = (A0, A1, . . . , Ap) une famille affinement
libre de points de E . Soit F le sous-espace affine de E engendré par X . Alors :

∀ M ∈ F , ∃ ! (α0, α1, . . . , αp) ∈ Rp+1,
p∑
i=0

αi = 1 et M = Bar(Ai, αi)0≤i≤p.

Preuve. Comme on l’a vu à la section 4, X est une base affine de F , et X = {
−−−→
A0A1,

−−−→
A0A2, . . . ,

−−−→
A0Ap}

est une base du sous-espace vectoriel F de E directeur de F . Soit M ∈ F . Donc
−−−→
A0M ∈ F . Soient

(α1, . . . , αp) les composantes de
−−−→
A0M dans la base X. Soit α0 = 1−

∑p
i=1 αi. On a

−−−→
A0M =

∑p
i=0 αi

−−−→
A0Ai

et
∑p
i=0 αi = 1. L’unicité des αi résulte de la liberté de X. ut

La base affine X de F est parfois appelé un repère barycentrique de F , et les réels (α0, α1, . . . , αp)
sont appelés les coordonnées barycentriques du point M de F relativement à X .

Par exemple, l’isobarycentre G d’un triangle (A,B,C) a pour coordonnées barycentriques (1
3 ,

1
3 ,

1
3)

dans la famille affinement libre (A,B,C). De nombreux exercices de géométrie affine se résolvent
d’autant plus simplement que l’on choisit un repère barycentrique bien adapté au problème.
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5.2 Exemples d’applications en géométrie plane élémentaire

On a déjà vu certaines applications concernant les centres de gravité en 5.1.4.b) et c).

5.2.1 Construction du barycentre de deux points à la règle et au compas. On se place

dans un plan affine E . On se donne deux points distincts A et B. On note G = Bar
(
A, B
2, 5

)
.

Comment construire G à la règle et au compas (ie. sans utiliser de règle graduée) ?

Une méthode est la suivante. On trace une droite quelconque D passant par A. On prend un
écartement quelconque du compas et on reporte la distance correspondante sur D à partir de A.
On note D le point obtenu après 5 reports et C le point obtenu après 7 reports.

On a donc D = Bar
(
A, C
2, 5

)
.

On peut considérer la projection affine π de D sur (AB)
parallèment à (BC). On a π(A) = A et π(C) = B. Comme
π est une application affine, elle conserve les barycentres

(voir 5.1.5.c), donc Bar
(
A, B
2, 5

)
= Bar

(
π(A), π(C)

2, 5

)
, c’est-à-

dire que G = π(D).
Le point G cherché est donc le point d’intersection de la
droite (AB) et de la droite parallèle à (BC) passant par D
(construction qui est possible à la règle et au compas).

5.2.2 Proposition (exemple de problème de ligne de niveau). On fixe deux points dis-
tincts A et B dans E distincts. Pour tout réel k, on considère l’ensemble :

Ek = {M ∈ E ; AM
BM = k}. On a :

(i) Si k < 0, alors Ek = ∅, et si k = 0, alors Ek = {A} ;

(ii) si k = 1, alors Ek est la médiatrice de [A,B] ;

(iii) si k > 0 et k 6= 1, alors Ek est le cercle de diamètre [I, J ] où I et J sont les barycentres de
A et B respectivement affectés des coefficients (1,−k) et (1, k).

Preuve. Les deux premiers cas sont évidents et laissés au lecteur. Le troisième a déjà été vu en 1.4.7.
Pour l’assertion (iii), fixons k ∈ R+ distinct de 0 et 1. On a pour tout point M de E :

[M ∈ Ek] ⇔ [MA = kMB] ⇔ [MA2 − k2MB2 = 0] ⇔ [(
−−→
MA− k

−−→
MB).(

−−→
MA+ k

−−→
MB) = 0]

Or par définition de I et J (qui sont bien définis puisque k + 1 6= 0 et k − 1 6= 0) on a :
−−→
MA− k

−−→
MB = (1− k)

−−→
MI et

−−→
MA+ k

−−→
MB = (1 + k)

−−→
MJ .

D’où, en utilisant encore que k 6= ±1 :

[M ∈ Ek] ⇔ [(1− k2)
−−→
MI.
−−→
MJ = 0] ⇔ [

−−→
MI.
−−→
MJ = 0].

Or on a vu en 1.4.5 que l’ensemble des points M vérifiant
−−→
MI.
−−→
MJ = 0 est le cercle de diamètre [I, J ].ut
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5.2.3 Théorème de Ceva. Soit E un plan affine. Soit ABC un triangle dans E . Soit M un
point de E n’appartenant à aucun des côtés ni à aucune des droites passant par un sommet et
parallèles au côté opposé. Les droites (AM), (BM) et CM) coupent les côtés (BC), (CA) et (AB)
en trois points A′, B′ et C ′ respectivement. On a alors :

A′B

A′C
× B′C

B′A
× C ′A

C ′B
= −1.

Preuve. Puisque les trois points A,B,C sont non alignés, il existe des réels α, β, γ avec α + β + γ 6= 0

tels que M = Bar
(
A, B, C
α, β, γ

)
, ou encore α

−−→
MA+ β

−−→
MB + γ

−−→
MC =

−→
0 .

Parce que M n’appartient à aucun des trois côtés du triangle, les réels
α, β, γ sont non-nuls. Parce que les droites (AM) et (BC) ne sont pas
parallèles, on a β + γ 6= 0. On peut alors considérer le barycentre

partiel A1 = Bar
(
B, C
β, γ

)
, qui appartient à (BC). Par associativité du

barycentre, on a : M = Bar
(
A, B, C
α, β, γ

)
= Bar

(
A, A1
α, β+γ

)
. Il en résulte

que M ∈ (AA1), ou encore A1 ∈ (AM). Ainsi A1 ∈ (BC)∩ (AM) d’où

A1 = A′. L’égalité β
−−→
A1B + γ

−−→
A1C =

−→
0 devient alors A′B

A′C
= − γ

β
.

On obtient de même B′C
B′A

= −α
γ

et C′A
B′A

= − β
α

. D’où le résultat. ut

5.3 Applications à la convexité

5.3.1 Segment. Soient A,B ∈ E . On appelle segment d’extrémités A et B, noté [A,B], la partie
de E formée des barycentres des deux points A,B pondérés par des masses positives dans R.

On en déduit immédiatement que, pour tout O ∈ E , on a :

( M ∈ [A,B] )⇐⇒ ( il existe α, β ∈ R+ avec α+ β > 0, tel que (α+ β)
−−→
OM = α

−→
OA+ β

−−→
OB ),

ce qui, en notant que les réels t = β
α+β et 1− t = α

α+β appartiennent à [0, 1] ⊂ R, se reformule en :

( M ∈ [A,B] )⇐⇒ ( il existe t ∈ [0, 1] tel que
−−→
OM = (1− t)

−→
OA+ t

−−→
OB ),

et en choisissant O = A :

( M ∈ [A,B] )⇐⇒ ( il existe t ∈ [0, 1] tel que
−−→
AM = t

−−→
AB ).

Il en résulte en particulier que [A,B] = [B,A] et [A,A] = {A}.

Observation. Pour A et B deux points distincts de E ,

on a : (AB) = {M ∈ E ; ∃ t ∈ R,
−−→
AM = t

−→
AB} et

[AB] = {M ∈ E ; ∃ t ∈ [0, 1],
−−→
AM = t

−→
AB}. Définissons

par ailleurs la demi-droite fermée d’origine A passant par

B par : [AB) = {M ∈ E ; ∃ t ∈ R+,
−−→
AM = t

−→
AB}. Il est

facile de vérifier alors (rédiger la preuve en exercice un
dessin) que [AB) ∩ [BA) = [AB].

5.3.2 Partie convexe.

a) Définition. Une partie C de E est dite convexe lorsque, pour tous points A,B dans C, le segment
[A,B] est inclus dans C.
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Il découle de cette définition que l’intersection d’une famille de parties convexes est convexe.

b) Théorème. Une partie C de E est convexe si et seulement si le barycentre de toute famille finie
de points de C pondérés par des masses positives dans R appartient à C.

Preuve. Pour tout n ≥ 1, on dira que C vérifie la propriété (Pn) lorsque : “le barycentre de toute famille
de n points de C pondérés par des masses positives appartient à C ”. Par définition, C est convexe si et
seulement si elle vérifie (P2). Il est donc clair que, si C vérifie (Pn) pour tout n ≥ 1, alors C est convexe.

Réciproquement, supposons que C est convexe. Donc C vérifie (P2), et l’on raisonne par récurrence en
supposant : (H.R.) il existe un entier n ≥ 3 tel que C vérifie (Pk) pour tout 1 ≤ k ≤ n− 1.

Considérons n points A1, . . . , An dans C et α1, . . . , αn dans R+ tels que σ = α1 + · · · + αn 6= 0. On
peut définir le barycentre G = Bar(Ai, αi)1≤i≤n. Si l’un des αi est nul, G est le barycentre de k points,
avec k ≤ n − 1 donc G ∈ C d’après l’hypothèse de récurrence. Sinon, αi > 0 pour tout 1 ≤ i ≤ n. En
particulier σ′ = α1 + · · ·+ αn−1 6= 0, et l’on peut définir G′ = Bar(Ai, αi)1≤i≤n−1, avec G′ ∈ C d’après

l’hypothèse de récurrence Par associativité des barycentres, on a G = Bar
(
G′, An

σ′, αn

)
. Comme G′ ∈ C,

An ∈ C et C convexe, on conclut que G ∈ C. ut

c) Corollaire. Tout sous-espace affine de E est une partie convexe.

Preuve. Un sous-espace affine étant stable par barycentre, il est à fortiori stable par barycentre à masses
positives, d’où le résultat. ut

d) Proposition. Soit ϕ : E → E une application affine. On a les propriétés suivantes :

(i) ϕ([A,B]) = [ϕ(A), ϕ(B)] pour tous A,B ∈ E ;

(ii) si X est une partie convexe de E , alors ϕ(X ) est une partie convexe de E ;

(iii) si X ′ est une partie convexe de E , alors ϕ−1(X ′) est une partie convexe de E ;

Preuve. Résulte immédiatement du fait que les applications affines conservent les barycentres (proposi-
tion 5.1.5.a) ; écrire les détails à titre d’exercice. ut

On fait référence à ce résultat en disant que les applications affines conservent la convexité.

5.3.3 Enveloppe convexe d’une partie.

a) Proposition et définition. Soit X une partie de E . L’intersection de toutes les parties convexes
de E contenant X est la plus petite partie convexe de E contenant X . On l’appelle l’enveloppe
convexe de X dans E . On la note ConvX .

Preuve. Evidente ; laissée en exercice. ut

Il est clair que X est convexe si et seulement si ConvX = X .

b) Proposition. L’enveloppe convexe d’une partie X de E est égale à l’ensemble des barycentres
des familles finies de points de X pondérés par des masses positives dans R.
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Preuve. Notons C l’ensemble des barycentres des familles finies de points de X pondérés par des masses
positives. On a X ⊆ C car tout point A ∈ X peut être considéré comme le barycentre de (A, 1). Par
associativité des barycentres, tout barycentre d’une famille finie de points de C pondérés par des masses
positives est aussi barycentre d’une famille finie de points de X pondérés par des masses positives, donc
appartient à C. Ceci prouve que C est convexe. Ainsi X ⊆ C avec C convexe, d’où ConvX ⊆ C.
Réciproquement, comme X ⊆ ConvX et ConvX est convexe, il résulte du théorème ci-dessus que
C ⊆ ConvX . D’où l’égalité. ut

Par exemple, pour tous A,B ∈ E , on a Conv{A,B} = [A,B].

5.3.4. Complément : théorème de Lucas. On mentionne ici ce résultat à titre d’exercice, pour
illustrer que des raisonnements géométriques utilisant des barycentres peuvent être utilisés dans des
contextes autres, dans le cas présent pour certaines propriétés algébriques des polynômes.

a) Théorème . Soit P un polynôme de degré n ≥ 2 dans C[X]. L’ensemble des points du plan dont
les affixes sont les zéros de P ′ est inclus dans l’enveloppe convexe de l’ensemble des points du plan dont
les affixes sont les zéros de P .

Preuve. Notons P (X) = an(X − r1)α1(X − r2)α2 · · · (X − rm)αm où les ri sont les m zéros complexes
distincts de P et αi leur multiplicités. Les αi sont donc non-nulles et telles que α1 +α2 + · · ·+αm = n.

On calcule P ′(X) =
m∑
j=1

αjP (X)

X−rj
, d’où l’on déduit que :

P ′(z)
P (z)

=
m∑
j=1

αj

z−rj
pour tout z ∈ C \ {r1, r2, . . . , rm}.

En appliquant cette identité à un nombre complexe r qui est un zéro de P ′ mais n’est pas un zéro de
P , on déduit par des calculs simples dans C que :

m∑
j=1

αj

|r−rj |2
(r − rj) = 0, d’où r =

[ m∑
j=1

αj

|r−rj |2

]−1 m∑
j=1

αj

|r−rj |2
rj .

Pour tout 1 ≤ j ≤ m, on pose λj =
[ m∑
j=1

αj

|r−rj |2

]−1 αj

|r−rj |2
. On a donc r =

m∑
j=1

λjrj , où les λj sont des

réels positifs vérifiant λ1 + λ2 + · · · + λm = 1, ce qui montre que le point d’affixe r est barycentre à
coefficients positifs des points A1, A2, . . . , Ar d’affixes respectives r1, r2, . . . , rm.

On a ainsi montré que tout point du plan dont l’affixe est un zéro de P ′ mais pas de P est dans
l’enveloppe convexe de l’ensemble des points A1, A2, . . . , Ar. C’est trivialement encore vrai pour un
point dont l’affixe est un zéro de P ′ et de P (puisque c’est alors l’un des points Aj), ce qui achève la
preuve. ut

b) Corollaire. Sous les hypothèses du théorème, l’isobarycentre des points dont les affixes sont les
zéros de P est égal à l’isobaycentre des points dont les affixes sont les zéros de P ′.

Preuve. Notons P (X) =
∑n
i=0 aiX

i avec ai ∈ C, an 6= 0. Si l’on désigne par z1, . . . , zn les n zéros de P
(non nécessairement distincts), alors z1 + · · ·+ zn = −an−1

an
. De même, si l’on désigne par z′1, . . . , z

′
n−1

les n zéros de P ′(X) =
∑n
i=1 iaiX

i−1 (non nécessairement distincts), on a z′1 + · · ·+z′n−1 = − (n−1)an−1

nan
.

On en déduit que 1
n

(z1 + · · ·+ zn) = 1
n−1

(z′1 + · · ·+ z′n−1), ce qui prouve le résultat voulu. ut
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6 – Sous-groupes d’isométries laissant invariante une partie du
plan ou de l’espace

On fixe un R-espace affine euclidien E de dimension finie n ; on note E son espace vectoriel directeur.
Le problème central étudié dans ce chapitre est de déterminer, pour un sous-ensemble X de points
de E , l’ensemble GX des isométries affines de E qui laissent X globalement invariant, c’est-à-dire
telles que l’image globale ϕ(X ) = {ϕ(M) ; M ∈ X} est égal à l’ensemble X lui-même. Dans les
applications qui suivent, on aura toujours n = 2 ou n = 3.

6.1 Quelques principes généraux

6.1.1 Proposition et notations. Soit X un ensemble de points de E . On note GX l’ensemble
des isométries affines de E qui laissent X globalement invariant, c’est-à-dire des isométries ϕ ∈ Is(E)
telles que ϕ(X ) = X . On a les propriétés suivantes.

(i) L’ensemble GX est un sous-groupe de Is(E).

(ii) L’intersection GX
+ = GX ∩ Is+(E) est sous-groupe de Is+(E).

Preuve. Evident. ut

On note aussi GX
− = GX ∩ Is−(E). On a donc la réunion disjointe GX = GX

+ ∪ GX−. Bien sûr,
GX
− n’est qu’un sous-ensemble, pas un sous-groupe (en particulier GX

− peut être vide). Il est clair
que, si ϕ ∈ GX , la restriction de ϕ à X détermine une bijection de X sur X .

6.1.2 Lemme (très utile dans la pratique). Supposons que GX
− n’est pas vide. Alors :

(i) Pour tout σ ∈ GX−, on a GX
− = σGX

+ = {σ ◦ ϕ ; ϕ ∈ GX+}.
(ii) Le sous-groupe GX

+ est d’indice 2 dans GX .

(iii) Si GX
− est fini, alors GX

+ est fini, et |GX+| = |GX−| = 1
2 |GX |.

(iv) Si GX
+ est réduit à {idE}, alors GX = {idE , σ} avec σ ∈ GX− d’ordre 2.

Preuve. Fixons σ ∈ GX−. Il est clair que σ ◦ ϕ ∈ GX− pour tout ϕ ∈ GX+. Réciproquement, toute
ψ ∈ GX

− s’écrit ψ = σ ◦ (σ−1 ◦ ψ), avec (σ−1 ◦ ψ) qui appartient à GX
+ en tant que produit de

deux éléments de GX
−. En résumé, l’application ϕ 7→ σ ◦ ϕ définit une bijection de GX

+ sur GX
−, de

bijection réciproque ψ 7→ σ−1 ◦ ψ. Les différents points du lemme en découlent, en observant que GX
−

n’est autre que la classe à gauche de σ (et de tous les éléments de GX
−) modulo le sous-groupe GX

+.ut

Concrètement, la détermination de GX repose donc sur la détermination de GX
+ et d’un élément

de GX
− s’il en existe.

• Exemple 1. Prenons n = 2 et X = {A} un singleton formé d’un unique point du plan. En utilisant
le théorème 4.2.5.e), et en rappelant qu’une translation de vecteur non-nul n’admet pas de point fixe,
il est clair que GX

+ est le groupe de toutes les rotations de centre A, et que GX
− est l’ensemble des

symétries orthogonales par rapport aux droites passant par A.

• Exemple 2. Prenons n = 2 et X = D une droite du plan E . On sait que Is+(E) est formé des translations
et des rotations. Une translation laisse D globalement invariante lorsque son vecteur appartient à la
direction ∆ de D. Une rotation laisse D globalement invariante lorsque son centre est sur D et que son
angle est 0 modulo π (ie. lorsque c’est une symétrie centrale de centre sur D). On conclut que :
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G+
D est formé des symétries centrales dont le centre appartient à D et des translations dont

le vecteur appartient à ∆.

La réflexion σD d’axe D appartient à G−D. D’après le point (i) du lemme précédent, tout élément ψ ∈ G−D
est de la forme ψ = σD ◦ ϕ avec ϕ ∈ G+

D. Si ϕ est une symétrie centrale de centre A appartenant à D,
alors ψ est la réflexion d’axe la droite D′ perpendiculaire en A à D. Si ϕ est une translation de vecteur
−→u appartenant à ∆, alors ψ est la symétrie glissée d’axe D et de vecteur −→u . On conclut que :

G−D est formé des réflexions par rapport aux droites perpendiculaires à D et des symétries
glissées d’axe D et de vecteur appartenant à ∆.

L’argument général suivant, d’usage très fréquent, s’applique au cas où l’ensemble X est fini.

6.1.3 Proposition. Soit X = {A1, A2, . . . , Am} un ensemble fini non vide de m points de E .
Toute isométrie ϕ ∈ GX fixe l’isobarycentre des points de X .

Preuve. Notons G l’isobarycentre des points de X et f l’application linéaire associée à ϕ. On a :
m∑
i=1

−−−−−−−→
ϕ(G)ϕ(Ai) =

m∑
i=1

f(
−−→
GAi) = f(

m∑
i=1

−−→
GAi) = f(

−→
0 ) =

−→
0 .

Comme ϕ laisse X invariant et qu’elle est bijective, elle permute entre eux les m points Ai, de sorte
que :

m∑
i=1

−−−−−−−→
ϕ(G)ϕ(Ai) =

m∑
j=1

−−−−−→
ϕ(G)Aj =

−→
0 .

Par unicité du barycentre, cette dernière égalité prouve que ϕ(G) = G. ut

Le cas le plus simple d’application de cette propriété est le suivant.

• Exemple 3. Prenons n = 2 et X = {A,B} une paire de points distincts de E . Soit ϕ ∈ GX+.
D’après la proposition ci-dessus, ϕ fixe le milieu I de [A,B]. En utilisant
le corollaire 4.2.5.f), ϕ est forcément soit l’identité, soit une rotation
de centre I ; dans ce dernier cas, elle doit échanger A et B donc être
d’angle π. On a donc GX

+ = {idE , ρ} où ρ est la symétrie centrale de
centre I.
Par ailleurs, en notant D la droite (AB), il est clair que σD ∈ GX−. En
utilisant le point (i) du lemme 6.1.2, et on observant que σD ◦ ρ = σD′

où D′ est la médiatrice de [A,B], on obtient GX
− = {σD, σD′}.

D’où finalement : GX = {idE , ρ, σD, σD′}. Comme ρ2 = σ2
D = σ2

D′ =
idE , on conclut que GX est le groupe de Klein.

6.2 Exemples en géométrie élémentaire dans le plan, groupes diédraux

6.2.1 Données. Dans ce qui suit, on se place dans le plan affine euclidien orienté E . On fixe un
entier n ≥ 3 et on considère l’ensemble X des sommets d’un polygone régulier à n côtés.

On note X = {A0, A1, . . . , An−1} et O l’isobarycentre des points de X qui est aussi le centre du
cercle circonscrit à X . On a pour tout 1 ≤ k ≤ n− 1 :

Ak−1Ak = A0A1 = An−1A0 et ̂Ak−1OAk = Â0OA1 = ̂An−1OA0 = 2π
n .
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Dans un repère bien choisi du plan complexe (dont l’origine est l’isobarycentre O et tel que A0 soit
d’affixe 1), les sommets de X sont les affixes des nombres complexes e2ikπ/n pour 1 ≤ k ≤ n.

6.2.2 Lemme. GX
+ est le groupe cyclique {idE , ρ, ρ2, . . . , ρn−1} d’ordre n engendré par la ro-

tation ρ de centre O et d’angle 2π/n.

Preuve. Il est clair ρ ∈ GX+ et que ρ est d’ordre n. Donc le sous-groupe cyclique 〈ρ〉 d’ordre n engendré
par ρ est un sous-groupe de GX

+. Réciproquement, soit ϕ un éléments de GX
+. D’après la proposition

6.1.3, le point O est fixé par ϕ. Donc d’après le corollaire 4.2.5.g), ϕ est une rotation de centre O et
d’angle θ. Le fait que ϕ(A0) est l’un des points Ak implique que θ est un multiple de 2π

n
, et donc que

ϕ est une puissance de composition de ρ. On conclut que GX
+ = 〈ρ〉. ut

6.2.3 Lemme. GX
− est l’ensemble {σ, σ ◦ ρ, σ ◦ ρ2, σ ◦ ρ3, . . . , σ ◦ ρn−1}, où σ est la réflexion

par rapport à la droite (OA0). Il est formé de n réflexions par rapport à des droites.

(i) Si n est impair, ces réflexions sont les n réflexions dont les axes sont les droites passant le
centre O et chaque sommet Ai.

(ii) Si n = 2p est pair, ces réflexions sont :

— d’une part les p réflexions dont les axes sont les droites (AiAi+p) pour 0 ≤ i ≤ p − 1
joignant les sommets opposés,

— d’autre part les p réflexions dont les axes sont les droites joignant les milieux des côtés
opposés [AiAi+1] et [Ai+pAi+p+1] pour 0 ≤ i ≤ p− 1.

Preuve. Soit σ ∈ Is−(E) la réflexion par rapport à la droite (OA0). On désigne toujours par ρ la rotation
de centre O et d’angle 2π/n. Pour tout entier k, la composée σ ◦ ρk appartient à Is−(E). Comme elle
admet un point fixe O, il résulte du corollaire 4.2.5.g) que c’est une réflexion par rapport à une droite.
Donc (σ ◦ ρk) ◦ (σ ◦ ρk) = idE , ou encore σ ◦ ρk = ρn−k ◦ σ.

Soit Ak un point quelconque de X , avec 0 ≤ k ≤ n−1. On a σ(Ak) = σ(ρk(A0)) = ρn−k(σ(A0)) d’après
la relation ci-dessus. Mais σ(A0) = A0 par définition de σ, et ρn−k(A0) = An−k ∈ X puisque ρ ∈ GX+.
On en déduit que σ(Ak) = An−k ∈ X . Ceci prouve que X est stable par σ. On conclut que σ ∈ GX−.

On applique le lemme 6.1.2 pour déduire que GX
− = {σ, σ ◦ ρ, σ ◦ ρ2, σ ◦ ρ3, . . . , σ ◦ ρn−1}. Ces n

isométries sont indirectes et fixent O, donc ce sont des réflexions par rapport à des droites passant
par O. Le résultat s’en déduit aisément en distinguant suivant la parité de n, et en utilisant le fait que
l’axe d’une telle réflexion σ est la médiatrice du segment [Akσ(Ak)] lorsque Ak n’est pas fixé par σ. ut

Remarquons que le groupe GX de l’exemple 3 de 6.1.3 correspond au cas n = 2 du groupe étudié
dans les deux lemmes ci-dessus. On conviendra donc dans ce qui suit d’englober le cas n = 2, en
considérant une paire de points {A1, A2} comme un polygône régulier à 2 sommets (et 2 côtés).

6.2.4 Théorème et définition. Pour tout entier n ≥ 2, on appelle groupe diédral d’ordre 2n,
noté Dn, le sous-groupe des isométries affines du plan conservant un polygone régulier à n côtés.

(i) Le groupe Dn est engendré par deux éléments ρ et σ, et formé de 2n éléments distincts :

Dn = {idE , ρ, ρ2, ρ3, . . . , ρn−1, σ, σ ◦ ρ, σ ◦ ρ2, σ ◦ ρ3, . . . , σ ◦ ρn−1},

vérifiant les relations : ρn = idE , σ
2 = idE , σ ◦ ρk = ρn−k ◦ σ pour tout 1 ≤ k ≤ n.

(ii) Le sous-groupe 〈ρ〉 engendré par ρ est cyclique d’ordre n, d’indice 2 et normal dans Dn.

(iii) Le groupe Dn est non abélien pour n ≥ 3 ; le groupe D2 est isomorphe au groupe de Klein.

Preuve. Découle immédiatement des deux lemmes précédents, en observant que ρn = idE et σρ = ρn−1σ
impliquent σρk = ρn−kσ pour tout 1 ≤ k ≤ n. ut
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6.2.5 Exemple : groupe du triangle. D3 est le groupe des isométries du plan affine euclidien
conservant un triangle équilatéral (ABC). Il est formé de l’identité idE = e, de la rotation ρ de
centre l’isobarycentre O de (ABC) et d’angle 2π/3, de la rotation ρ2 de centre O et d’angle 4π/3,
et des réflexions σ1, σ2, σ3 par rapport aux trois médianes (ou hauteurs) du triangle. Le groupe D3

est d’ordre 6, non abélien, engendré par les deux éléments ρ et σ1 (on a σ3 = ρ◦σ1 et σ2 = ρ2 ◦σ1),
et sa table est donnée ci-dessous.

D3 e ρ ρ2 σ1 σ2 σ3

e e ρ ρ2 σ1 σ2 σ3

ρ ρ ρ2 e σ3 σ1 σ2

ρ2 ρ2 e ρ σ2 σ3 σ1

σ1 σ1 σ2 σ3 e ρ ρ2

σ2 σ2 σ3 σ1 ρ2 e ρ

σ3 σ3 σ1 σ2 ρ ρ2 e

Cette table est identique à celle du groupe symétrique
S3, un isomorphisme D3 ' S3 étant donné simplement
d’une numérotation des 3 sommets.

6.2.6 Exemple : groupe du carré. D4 est le groupe des isométries du plan affine euclidien
conservant un carré (ABCD). Il est formé de l’identité e = idE , de la rotation ρ de centre le centre
O du carré (ABCD) et d’angle π/2, de la symétrie centrale ρ2 de centre O, de la rotation ρ3 de
centre O et d’angle 3π/2, des réflexions σ1, σ2 par rapport aux deux médianes du carré, et des
réflexions τ1, τ2 par rapport aux deux diagonales du carré.
Le groupe D4 est d’ordre 8, non abélien, engendré par les deux éléments ρ et σ1 (on a τ1 = ρ ◦ σ1,
σ2 = ρ2 ◦ σ1 et τ2 = ρ3 ◦ σ1), et sa table est donnée ci-dessous.

D4 e ρ ρ2 ρ3 σ1 σ2 τ1 τ2

e e ρ ρ2 ρ3 σ1 σ2 τ1 τ2

ρ ρ ρ2 ρ3 e τ1 τ2 σ2 σ1

ρ2 ρ2 ρ3 e ρ σ2 σ1 τ2 τ1

ρ3 ρ3 e ρ ρ2 τ2 τ1 σ1 σ2

σ1 σ1 τ2 σ2 τ1 e ρ2 ρ3 ρ

σ2 σ2 τ1 σ1 τ2 ρ2 e ρ ρ3

τ1 τ1 σ1 τ2 σ2 ρ ρ3 e ρ2

τ2 τ2 σ2 τ1 σ1 ρ3 ρ ρ2 e

Toute isométrie de D4 induisant une permutation des 4 sommets, on a l’inclusion D4 ⊂ S4, mais
cette inclusion est stricte puisque D4 est d’ordre 8 et S4 d’ordre 24.

6.2.7 Proposition (application aux sous-groupes finis du groupe des isométries du plan). Soit
E le plan affine euclidien orienté. Tout sous-groupe fini de Is(E) est cyclique ou diédral.

Plus explicitement, cela signifie que, pour tout groupe fini G de Is(E), il existe un entier n tel que
G ' Cn (auquel cas n = |G|) ou G ' Dn (auquel cas |G| est pair et n = |G|/2).

Preuve. On introduit d’abord les notations suivantes :
(1) pour tout point O de E et tout entier n ≥ 1, on note G(O,n) le groupe des rotations de centre O

et d’angle 2kπ/n, 0 ≤ k ≤ n− 1. C’est un groupe cyclique d’ordre n, engendré par la rotation ρ de
centre O et d’angle 2π/n. D’après le lemme 6.2.2 c’est le groupe des déplacements de E conservant
un polygone régulier à n côtés centré en O. A noter que, par convention, G(O, 1) = {idE}.
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(2) pour tout point O de E et toute droite D de E passant par O, et pour tout entier n ≥ 1, on note
G(O,D, n) le groupe engendré par G(O,n) et la réflexion σ d’axe D. D’après le théorème 6.2.4 c’est
le groupe des isométries de E conservant un polygone régulier à n côtés centré en O et dont un
des sommets est sur D. Il est donc isomorphe au groupe diédral Dn. A noter que, par convention,
G(O,D, 1) = {idE , σ}.

Fixons un sous-groupe fini G de Is(E). Posons G+ = G ∩ Is+(E), qui est un sous-groupe de G.

Supposons d’abord que G ⊆ Is+(E), c’est-à-dire G = G+. Choisissons A ∈ E quelconque, et considérons
l’ensemble XA = {ϕ(A) ; ϕ ∈ G}. C’est un ensemble fini de points {A,A1, . . . , Am} de E , laissé globa-
lement invariant par G. Tout élément ϕ de G est donc un déplacement de E qui fixe l’isobarycentre O
de XA (voir 6.1.3), et donc une rotation de centre O. Comme ϕn = idE en notant |G| = n, on déduit
que ϕ est d’angle 2kπ/n, 0 ≤ k ≤ n− 1. On conclut que G ⊆ G(O,n), et donc G = G(O,n) puisque les
deux groupes sont de même ordre n.

Supposons maintenant qu’il existe σ ∈ Is−(E) ∩G. Tout élément de G est alors soit un élément de G+,
soit le produit de σ par un élément de G+. D’après la première étape de la preuve, il existe O ∈ E et
n = |G+| ≥ 1 tel que G+ = G(O,n). Supposons que n ≥ 2. En notant ρ la rotation de centre O et
d’angle 2π/n, on a ρ ∈ G+ et σ−1 ◦ ρ ◦ σ ∈ G+. Donc σ−1(ρ(σ(O))) = O, donc ρ(σ(O)) = σ(O), donc
σ(O) = O puisque O est le seul point fixe de ρ. Ainsi ϕ ∈ Is−(E)) fixe O, donc σ est une réflexion
par rapport à une droite D de E . On conclut que G = G(O,D, n). Enfin, dans le cas où n = 1, on a
G+ = {idE} et G = {idE , σ}, donc σ2 ∈ G+ c’est-à dire σ2 = idE , donc σ est une réflexion par rapport
à une droite D′, et l’on a G = G(O′,D′, 1) pour tout point O′ de D′. ut

6.3 Exemples en géométrie élémentaire dans l’espace, groupe du tétraèdre,
groupe du cube

6.3.1 Données et notations. Dans ce qui suit, on se place dans l’espace affine euclidien orienté
E de dimension 3. On considère l’ensemble X = {A1, A2, A3, A4} des sommets d’un tétraèdre
régulier. On note O l’isobarycentre des points de X . Les six arêtes de X sont les segments [A1A2],
[A1A3], [A1A4], [A2A3], [A2A4] et [A3A4], de même longueur. Les quatre faces A1A2A3, A2A3A4,
A3A4A1 et A4A1A2 sont des triangles équilatéraux.

Pour tout 1 ≤ i ≤ 4, la droite (OAi) coupe la face opposée au sommet Ai en son centre de gravité
(associativité des barycentres). On note ρi la rotation d’axe (OAi) et d’angle 2π/3. Il est clair que
ρi et ρ2

i sont des éléments de G+
X , ce qui donne déjà 8 éléments d’ordre 3 de G+

X .

Notons par ailleurs (en rappelant qu’un demi-tour est une rotation d’angle π) :

α le demi-tour d’axe la droite passant par les milieux de [A1A2] et [A3A4],

β le demi-tour d’axe la droite passant par les milieux de [A1A3] et [A2A4],

γ le demi-tour d’axe la droite passant par les milieux de [A1A4] et [A2A3].

Il est clair que α, β et γ sont trois nouveaux éléments d’ordre 2 de G+
X .
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6.3.2 Théorème. Le groupe GX des isométries de l’espace conservant un tétraèdre régulier
est d’ordre 24, isomorphe au groupe au groupe symétrique S4. Le sous-groupe G+

X des isométries
positives est isomorphe au groupe alterné A4 et formé des 12 rotations suivantes :

G+
X = {idE , α, β, γ, ρ1, ρ

2
1, ρ2, ρ

2
2, ρ3, ρ

2
3, ρ4, ρ

2
4}.

Preuve. Toute isométrie ϕ ∈ GX permute entre eux les 4 sommets A1, A2, A3, A4 et induit donc par
restriction à l’ensemble de ces 4 sommets une permutation dans S4, que l’on notera g(ϕ). On définit
ainsi une application g : GX → S4, qui est de façon évidente un morphisme de groupes.

Par exemple, pour tout 1 ≤ i ≤ 4, la permutation g(ρi) est un des huit 3-cycles de S4 et les rotations
α, β, γ correspondent aux trois produits de deux transpositions dans S4. Remarquons que ce sont dans
les deux cas des éléments du groupe alterné A4.

Déterminons le noyau de g. Soit ϕ ∈ Ker g. Cela signifie que ϕ(Ai) = Ai pour tout 1 ≤ i ≤ 4.
L’application linéaire f associée à ϕ vérifie donc, pour tout 2 ≤ j ≤ 4 :

f(
−−−→
A1Aj) =

−−−−−−−−→
ϕ(A1)ϕ(Aj) =

−−−→
A1Aj .

Or, les 4 sommets du tétraèdre n’étant pas coplanaires dans E , les 3 vecteurs
−−−→
A1A2,

−−−→
A1A3,

−−−→
A1A4 sont

linéairement indépendants dans l’espace vectoriel E, donc forment une base de E. Ainsi f fixe les
vecteurs d’une base de E, d’où f = idE . Il en résulte (voir 3.3.2) que ϕ est une translation de E . Mais
on sait (voir 6.1.3) que ϕ fixe O. On conclut que ϕ = idE .

On a ainsi prouvé que le morphisme g : GX → S4 est injectif. Il en résulte que |GX | ≤ 24. On a déjà
trouvé directement 12 éléments dans G+

X (les 8 rotations ρi et ρ2
i , les 3 rotations α, β, γ, et l’identité

de E), d’où |G+
X | ≥ 12. De plus G−X 6= ∅, car il contient par exemple la réflexion par rapport au plan

(OA1A2). Il en résulte d’après le lemme 6.1.2 que |GX | ≥ 24. Finalement, on a |GX | = 24, et g étant
un morphisme injectif entre deux groupes finis de même ordre, il est nécessairement bijectif, c’est-à-dire
que g est un isomorphisme entre GX et S4.

On a déjà observé au début de la preuve que les images par g des différents éléments de G+
X sont les

éléments de A4, et donc la restriction de g à G+
X réalise un isomorphisme entre G+

X et A4. ut

6.3.3 Remarques. La table du groupe G+
X s’obtient directement via l’isomorphisme g à partir

de celle du groupe A4 détaillée dans le cours de théorie des groupes.

Les 12 éléments de G−X (qui sont les produits de chacun des 12 déplacements de G+
X par un an-

tidéplacement choisi dans G−X ) sont les images réciproques par g−1 des permutations impaires
dans S4. Il s’agit donc des images réciproques des six transpositions [i, j] et des six 4-cycles [i, j, k, `]
de S4. On en donne pour être complet une description géométrique :

ϕ ∈ G−X g(ϕ) ∈ S4

pour 1 ≤ i, j, k, ` ≤ 4 deux à deux distincts : (6 éléments)

σ(OAkA`) = τij

= symétrie orthogonale p/r

au plan médiateur de [AiAj ] [ij]

ie. p/r au plan (OAkA`)

elle fixe Ak et A` en échangeant Ai et Aj

ϕ ∈ G−X g(ϕ) ∈ S4

σ(OA1A2) ◦ γ [ 1423 ]

σ(OA1A2) ◦ β [ 1324 ]

σ(OA1A3) ◦ α [ 1234 ]

σ(OA1A3) ◦ γ [ 1432 ]

σ(OA1A4) ◦ α [ 1342 ]

σ(OA1A4) ◦ β [ 1243 ]

Observons que l’engendrement de S4 par les transpositions (voir cours de théorie des groupes)
correspond à l’engendrement de GX par des rélexions par rapport à un plan ; voir 4.3.4.c).

On termine en donnant un autre exemple, un peu plus complexe, pour lequel on expose les prin-
cipaux résultats sans développer les preuves, qui pourront éventuellement être étudiées en travaux
dirigés.
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6.3.4 Groupe du cube. On se place toujours dans l’espace affine euclidien orienté E de dimen-
sion 3. On considère l’ensemble X = {A,B,C,D,A′, B′, C ′, D′} des 8 sommets d’un cube.

6 faces : ABCD, A′B′C′D′, ABB′A′, DCC′D′, AA′D′D, BB′C′C

12 arêtes : [AA′], [BB′], [CC′], [DD′], [AD], [BC], [B′C′], [A′D′], longueur a

[AB], [A′B′], [D′C′], [DC]

12 petites diagonales : [AC], [BD], [A′C′], [B′D′], [A′B], [AB′], [D′C], [DC′], longueur
√

2a

[AD′], [A′D], [BC′], [B′C]

4 grandes diagonales : [AC′], [A′C], [DB′], [D′B] longueur
√

3a

On note O l’isobarycentre des points de X ; O est le point de concours des 4 grandes diagonales.

On considère :

- les quatre droites D1 = (AC ′), D2 = (BD′), D3 = (CA′) et D4 = (DB′) portant les grandes
diagonales du cube,

- les trois droites ∆1,∆2,∆3 passant par les isobarycentres des trois paires de faces opposées
du cube (ABCD et A′B′C ′D′, ABB′A′ et DCC ′D′, AA′D′D et BB′C ′C),

- les six droites δi (pour 1 ≤ i ≤ 6) joignant les milieux des six paires d’arêtes opposées ([AB]
et [D′C ′], [CD] et [A′B′], [AA′] et [CC ′], [BB′] et [DD′], [AD] et [B′C ′], [A′D′] et [BC]).

On en déduit les rotations suivantes de G+
X :

- pour 1 ≤ i ≤ 4, ρi la rotation d’axe Di et d’angle 2π/3, ainsi que ρ2
i d’angle 4π/3,

- pour 1 ≤ i ≤ 3, ϕi la rotation d’axe ∆i et d’angle π/2, ainsi que ϕ2
i d’angle π et ϕ3

i d’angle
3π/2,

- pour 1 ≤ i ≤ 6, ψi d’axe δi et d’angle π (demi-tours).

On obtient ainsi 8 + 9 + 6 = 23 éléments de G+
X , auxquels il faut ajouter bien sûr idE . Donc

|G+
X | ≥ 24. Le théorème suivant montre que l’on a en fait ici tous les éléments de G+

X .
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6.3.5 Théorème. Le groupe GX des isométries de l’espace conservant un cube est d’ordre 48.
Le sous-groupe G+

X des isométries positives est isomorphe au groupe symétrique S4, et formé des
24 rotations décrites ci-dessus.

Preuve. Admise ; des parties pourront être étudiées en travaux dirigés. ut

6.3.6 Remarques.
(i) Conformément à 6.1.2, tout élément de GX

− est le produit d’une des 24 rotations de GX
+

par un élément de GX
−, par exemple la symétrie centrale σ de centre O. On peut en déduire,

géométriquement une description des 24 isométries indirectes de GX
−, et algébriquement

une description du groupe GX comme un produit semi-direct (voir cours de théorie des
groupes) du groupe symétrique S4 par le groupe cyclique C2.

(ii) On peut montrer que GX
+ ' S4 est aussi le groupe des déplacements de E laissant invariant

l’octaèdre régulier dont les six sommets sont les centres des six faces du cube X .
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