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1 — Espaces affines, sous-espaces affines

1.1 Notion d’espace affine

1.1.1 Définition. Un espace affine sur R est la donnée d’un triplet (E, £, 4) formé par :
(i) un R-espace vectoriel E : ses éléments sont appelés des vecteurs; on les notera par des leﬁres
minuscules surmontés d’une fleche 7, 7, E}, ... en particulier le vecteur nul sera noté 0 ;
(ii) un ensemble non-vide & : ses éléments sont appelés des points; on les notera par des lettres
majuscules A, B,C, M, N, P, ...
(iii) une application ¥: € x & — E, (A, B) — AB satisfaisant les deux axiomes suivants :
—
(A1) pour tout A € £ et tout U € E, il existe un unique point M € & tel que AM = ,
(A2) pour tous A, B,C € &, on a dans F la relation AC = AB + BC (relation de Chasles).
On dit plus brievement que £ est un espace affine sur R, d’espace vectoriel directeur E (1’application
9 étant alors sous-entendue).
L’espace affine £ est dit de dimension finie n lorsque E est de dimension finie n (en tant qu’espace

vectoriel). La géométrie élémentaire étudiée au lycée ou les applications usuelles en physique se
situent dans un espace affine de dimension 2 ou 3.

1.1.2 Conséquences pratiques immédiates.

) . r~a .
a) Nullité d’un vecteur. Pour tous points A, B € £, on a @ = 0 si et seulement si A = B.
En effet : d’apres (A2), ﬂ = ﬂ—kﬂ, donc ﬂ = 6) Réciproquement, si E = ﬁ, alors @ = A—>A7
ce qui implique B = A par unicité dans l’axiome (Al). O
. —_—
b) Vecteurs opposés. Pour tous points A, B € £, on a BA = —xﬁ.
En effet : 1l en résulte du a) et de (A2) que AB + BA = A4 = ﬁ, Cest-d -dire BA = —AB. O

¢) Milieu. Pour tous A, B € &, il existe un unique point I € £ tel que 1?[} = %E Le point [ est
appelé le milieu du couple de points (A, B). Il vérifie aussi ﬁ = I@ .

d) Configuration du parallélogramme. Soient A, B, C, D quatre points de €. On a :
[ AB=CD | €| AC = BD ] < [le milieu de (A, D) est égal au milieu de (B, C) |
Le quadruplet (A, B, D, C) est alors appelé un parallélogramme.

En effet : Avec la relation de Chasles, on décompose :

AB - CD =AC +CB — (OB + BD) = AC — BD.
d’ou la premiere équivalence voulue lorsque cette différence est nulle.
Notons I le millieu de (A, D) et J le milieu de (B, C). On calcule :

ﬁ+m:ﬁ+w+ﬁ+ﬁ:ﬁ+ﬁ,puisqung’j:—Bﬁ.

Mais z@ = —Vﬁ d’apres ce qui précede, d’ou zﬁ + m = 6> En réutilisant
la relation de Chasles, il vient ﬂ—‘,—f.j—i— D—[>+ I.j = 6> Mais ﬁ = —ﬁ, d’ou
ﬁ:ﬁ,doncI:J. a




1.1.3 Diverses traduction de ’axiome (A1l).

—
a) Pour tout vecteur W € F et tout point A € &, 'unique point M € £ défini par AM = U est
parfois noté M = A + . C'est une notation commode mais qu’il faut manipuler avec attention
pour éviter certaines confusions dans les calculs.

b) Pour U eE fixé, I'application 7 : £ — £ qui a tout point A € &, associe le point A + U est
une bijection de & sur £, appelée la translation de vecteur .

—
c) Pour A € €& fixé, Papplication ¢4 : &€ — E qui a tout point M € & associe le vecteur AM
est une bijection de £ sur E. Sa bijection réciproque est l'application ¢4 : F — & définie par
Ya(W) = A+ U pour tout « € E.

1.1.4 Terminologie. Lorsque 1@ = 7, on dit que le couple de points (A, B) est un représentant
du vecteur @, dans lequel A est origine et B Iextrémité. Tout autre couple de points (C, D) tel

que U = @ est un autre représentant de . La translation de vecteur o est I’application qui, a
tout point A, associe le point B = A + U qui est 'extrémité de U lorsque son origine est A.

= ||
T[T A

C
M

Bzﬁ,doncB:Aﬂ-ﬁ. E:@:ﬁ:m:ﬁ

Ces couples de points représentent le méme vecteur.

1.1.5 Commentaire. Le point de vue retenu dans ce document définit un espace affine a partir de la
notion supposée connue d’espace vectoriel. On peut envisager une autre présentation consistant a partir
intuitivement d’un ensemble de points £, et & considérer dans £ x £ la relation dite d’équipollence,
définie par : (A, B) ~ (C, D) lorsque ABDC est un parallélogramme. On vérifie que c¢’est une relation

d’équivalence, et un vecteur est alors défini comme une classe d’équivalence pour cette relation [ie. A
est ensemble des couples de points (C, D) équipollents & (A, B), de sorte que 'on retrouve bien la
régle du parallélogramme]. Il s’agit ensuite de retrouver géométriquement les diverses opérations sur les
vecteurs correspondant a la structure d’espace vectoriel.

1.2 Sous-espace affine

Dans tout ce paragraphe, £ est un espace affine sur R, d’espace vectoriel directeur F.

1.2.1 Définition. Une partie F de & est un sous-espace affine de £ lorsqu’il existe un point A

-—
dans F tel que 'ensemble des vecteurs AM pour M décrivant F est un sous-espace vectoriel de E.

Il en résulte en particulier qu'un sous-espace affine n’est jamais vide, et que £ lui-méme est un
sous-espace affine de &.

I1 en résulte aussi que, pour tout point A € &, le singleton {A} est un sous-espace affine de &

Le point fondamental est que le sous-espace vectoriel dans la définition ci-dessus ne dépend en fait
pas du point A, comme le montre la proposition suivante.



1.2.2 Proposition et définition. Soit F un sous-espace affine de €. Il existe un sous-espace

—
vectoriel F' de E tel que, pour tout A € F, on ait F = {AM ; M € F}. On dit que F est le
sous-espace vectoriel directeur du sous-espace affine F, ou encore que F est dirigé par F'.

Preuve. Par hypothese, il existe A € F tel que p4(F) est un sous-espace vectoriel de E. Fixons B € F
quelconque et montrons que w4 (F) = pp(F). On a AB = pa(B) € pa(F). Quel que soit M € F, les
vecteurs AM et AB appartiennent au sous-espace vectoriel @ (F), donc BM = AM — AB € pa(F).
Ceci prouve que ¢p(F) C pa(F). Pour la réciproque, notons que 'on a aussi AM + AB € pa(F);
Lo AB = AN done M — AN - 4B = BN

il existe donc N € F tel que AM + AB = AN donc AM = AN — AB = BN € ¢p(F). On conclut
vA(F) C pp(F), d’ou 'égalité voulue. O

Réciproquement, la donnée d’un sous-espace vectoriel de E et d’un point de £ détermine un unique
sous-espace affine de £, comme le montre le théoreme suivant.

1.2.3 Théoréme fondamental et définition. Soient I’ un sous-espace vectoriel de E et A un
point de £. Il existe un unique sous-espace affine F de £ tel que A appartienne a F et tel que F
soit le sous-espace vectoriel directeur de JF.
On dit que F est le sous-espace affine de £ passant par A et dirigé par F'.

Preuve. Posons F = p,'(F) = {M € &; Ant € F}. On a A € F puisque A4 = T e F'; de plus,

par construction, ¢ (F) = F, donc F est un sous-espace affine dirigé par F. Pour l'unicité, soit F' un

sous-espace affine de £ passant par A et dirigé par F. D’apres la proposition précédente, cela signifie
que @a(F') = F. Mais alors pa(F) = ¢a(F') implique F = F' par bijectivité de @a. O

1.2.4 En résumé, si F est un sous-espace affine de £ et si F est le sous-espace vectoriel directeur
de F, on a les trois propriétés suivantes :

a) pourtouSAE}'etBE}",onaﬁEF;

—
b) pour tous A € F et W € F, il existe un unique point M € F tel que @ = AM ;
c) pourtout A€ Fona: F={Mecf&,; FWGF} et F:{m; MeF}.

1.2.5 Dimension d’un sous-espace affine. On a une notion naturelle et évidente de dimension
d’un sous-espace affine, la dimension de F étant définie comme la dimension du sous-espace vectoriel
F de FE directeur de F. Il résulte aisément des propositions précédentes que :

a) Si E est de dimension finie n (c’est-a-dire que dim € = dim £ = n), alors dim F = dim F' <n
pour tout sous-espace affine F de €.
b) Si F et F' sont deux sous-espaces affines, on a :
[(FFCF)= (dimF <dimF)], ainsique [(F' CF et dimF =dimF) = (F =F)].
¢) Un sous-espace affine de dimension 0 est un singleton {A} formé d’un seul point de £. Un

sous-espace affine de dimension 1 s’appelle une droite affine. Un sous-espace affine de dimen-
sion 2 s’appelle un plan affine. En particulier, dans le cadre de la géométrie élémentaire :

— Si &€ est de dimension 2, les sous-espaces affines sont : les singletons, les droites affines
contenues dans £, et le plan £ lui-méme.

— Si £ de dimension 3, les sous-espaces affines sont : les singletons, les droites affines
contenues dans &, les plans affines contenus dans &, et 'espace £ lui-méme.



d) On appelle hyperplan de € tout sous-espace affine de £ qui est de dimension n—1, ou n est la
dimension de £. Dans le cadre de la géométrie élémentaire, les hyperplans de I'espace affine
de dimension 3 sont les plans, et les hyperplans du plan de dimension 2 sont les droites.

1.2.6 Proposition. Une intersection de sous-espaces affines, si elle est non vide, est un sous-
espace affine, dirigé par l'intersection des sous-espaces vectoriels directeurs.

Preuve. Soit (F;)icr une famille de sous-espaces affines de €. Pour tout ¢ € I, notons F; le sous-espace

vectoriel directeur de F;. On sait que F' = N;ec1 F; est un sous-espace vectoriel de E. Posons F = N;erF;

et supposons que F # (. Prenons A € F quelconque. Parce que ¢4 est injective (car bijective), on a

wa(NierFi) = Nicrpa(F;), cest-a-dire pa(F) = F. Comme F est un sous-espace vectoriel de E, ceci

prouve que F est un ss-e.a. de £ dirigé par F. a
D’apres 1.2.5, il est clair dans ce résultat que le sous-espace affine F est de dimension inférieure ou
égal a la dimension de chacun des sous-espaces F;.

On retrouve les faits intuitivement bien connus en géométrie élémentaire que I'intersection d’une famille
finie de droites ou de plans est vide, un point, une droite ou un plan.

1.3 Parallélisme

Dans tout ce paragraphe, £ est un espace affine sur R, d’espace vectoriel directeur E.

1.3.1 Définition Soient F et F’ deux sous-espaces affines de &£, de sous-espaces vectoriels di-
recteurs respectifs F' et F’. On dit que F et F’ sont paralléles lorsque F = F’. On note F J/F'.

En particulier, deux sous-espaces affines paralléles sont nécessairement de méme dimension.
Il est clair que le parallélisme est une relation d’équivalence dans I’ensemble des sous-espaces affines.

1.3.2 Proposition Deux sous-espaces affines paralléles sont nécessairement égaux ou disjoints.

Preuve. Considérons comme ci-dessus F //F', avec F = F’. Si F et F' ne sont pas disjoints, considérons

A€ FNF'. Alors F et ' passent tous les deux par A en étant dirigés par le méme sous-espace vectoriel

F = F’. On déduit de 'unicité dans le théoréme 1.2.3 que F = F'. a
Attention, la réciproque est trivialement fausse en général! Dans un espace affine de dimension 3,
deux droites qui ne sont pas incluses dans un méme plan sont forcément disjointes sans étre pa-
ralleles. Il y a cependant des arguments de dimensions qui permettent des résultats partiels.

1.3.3 Observation pratique. Dans le cadre de la géométrie élémentaire :

— Si &€ est un plan affine, deux droites affines D et D’ de £ sont paralléles si et seulement si elles
sont égales ou disjointes.

— Si & est un espace affine de dimension 3, deux plans affines P et P’ de £ sont paralléles si et
seulement s’ils sont égaux ou disjoints.
Preuve. Soient D et D’ deux droites dans un plan affine £. La proposition précédente montre I'un des
sens de I’équivalence, et il est trivial que D = D’ implique D//D’. 1l s’agit donc de montrer que DND" = ()
implique D//D’. Pour cela, supposons que D et D’ ne sont pas paralleles. Les droites vectorielles D et
D’ dirigeant D et D’ respectivement sont donc distinctes. Il en résulte que si I’on choisit % € D et
v eD non-nuls, ils ne sont pas colinéaires, donc forment une famille libre du plan vectoriel E, et donc
une base de E. Prenons A € D et A’ € D'. Il existe A\, € R tels que AA” = /\7+,u7. Comme A7 € D
I Ry TN A AA
et A € D, il existe M € D tel que AM = A\u. Donc A’M = AM — AA :)\77/\77#7: fuﬁ.
On a ainsi A’M € D', ce qui, puisque A’ € D', implique M € D’. On conclut que M € DN D', ce qui
acheve la preuve du premier point. La preuve du second point est laissée au lecteur. a



1.3.4 Commentaire. Une propriété fondamentale dans la formulation axiomatique de la géométrie
classique est l’axiome (ou postulat) d’Euclide :

< 81 D est une droite et A un point n’appartenant pas a D, alors il passe par A une
droite et une seule parallele a D >.

Dans la mesure ou étre parallele signifie avoir le méme sous-espace vectoriel directeur (ici la méme
droite vectorielle directrice), cet énoncé “traditionnel” est une formulation du théoreme 1.2.3. Et
elle est de ce fait valable pour tout sous-espace affine. Par exemple :

< si P est un plan et A un point n’appartenant pas a P, alors il passe par A un plan et
un seul paralléle & P >.

1.4 Cas particulier des espaces affines euclidiens, distance, orthogonalité

1.4.1 Définition. On appelle espace affine euclidien tout espace affine £ sur R tel que le sous-
espace vectoriel directeur E est un espace vectoriel euclidien.

» RAPPEL D’ALGEBRE LINEAIRE. Dire que I'espace vectoriel F est euclidien signifie que
E est de dimension finie sur R et qu’il est muni d’un produit scalaire.

On notera .7 le produit scalaire de deux vecteurs U et W de E.
La norme euclidienne associée est alors définie par || 7| = V4.4 pour tout o € E.
Deux vecteurs @ et U de F sont dits orthogonaux lorsque W. 7 =0.On note L.

1.4.2 Distance. Pour tous points A, B dans &, on appelle distance de A a B le réel positif :
d(A,B) = HEH, que l'on note aussi : AB = d(A, B).

On déduit immédiatement des propriétés de la norme que, pour tous points A, B,C € £ :

d(A,B) =d(B, A), [d(A,B) =0] & [A = B, d(A,C) <d(A,B)+d(B,C).

1.4.3 Proposition (propriété de Pythagore).
Soient A, B, C trois points de £. On a :

ﬁL/ﬁ si et seulement si BC? = AB? + AC?. c,-
On dit alors que le triangle (ABC) est rectangle en A. Le c6té [BC] est

B

appelé I’hypothénuse.

Preuve. Avec la relation de Chasles : BC? = BC.BC = (ﬁ—&—ﬁ)(B—.)A—h@) = BA2+2B—>A.R+AC2.
Donc BC? = BA? + AC? si et seulement si Qﬁlﬁ =0, d’ou le résultat. a



1.4.4 Spheére. Soient {2 un point de &£. Pour tout réel positif r, on appelle sphére de centre 1 et
de rayon r ’ensemble des points M de &£ tel que la distance entre €2 et M est égal a r. On note :

SQr)={Mec&;dQ,M)=r}.

On définit de méme la boule fermée B(Q,r) = {M € £; d(Q, M) < r} de centre et de rayon r
(la boule ouverte correspondant de méme & la condition d(€2, M) < r).

Dans le cas ou dim & = 2, S(Q,r) est appelée cercle et B(2,r) est appelée disque fermé de centre
Q) et de rayon r.

1.4.5 Proposition (sphére et orthogonalité). Soient I et J deux points distincts d’une
sphére S(Q,r) de rayon r > 0 tels que Q soit le milieu de (I, J) (on dit que dans ce cas que I et J
sont diamétralement opposés). Alors, un point quelconque M € & appartient a la sphére S(),r) si
et seulement si les points (I, J, M) forment un triangle rectangle.

Preuve. On calcule a ’aide de la relation de Chasles le produit scalaire :

MIMJ = (MS + Q).(MS + QJ) = MM + QF.0J + QF. MG + MO.QJ.

Comme 2 est le milieiu._()ie (I,J), on a Sﬁ = —(ﬁ; il en résulte que d’une part sﬁ]\?ﬁ + 1\75(?7 =
(S.ﬁ + (ﬁ)m = ﬁQM =0, et que d’autre part (ﬁm = —(2—1}(.2—1) = —QI? = —r%. En observant que
mﬁﬁ = QM?, Pégalité précédente devient donc :

m.m:QMQ —r2.

Il est clair alors que mm = 0 équivaut & QM = r, c’est-a-dire que (I, J, M) forment un triangle
rectangle si et seulement si M € S(Q,r). O

Dans le plan Dans 'espace de dimension 3

1.4.6 Sous-espaces affines orthogonaux. Soient F et H deux ss-e.a. de £. On dit que F et
‘H sont orthogonaux lorsque leurs sous-espaces vectoriels respectifs F' et H sont orthogonaux.

» RAPPEL D’ALGEBRE LINEAIRE. Deux sous-espaces vectoriels de F' et H de E sont
dits orthogonaux si tout vecteur de I'un est orthogonal & tout vecteur de l’autre.

Si F est un sous-espace vectoriel de E, on appelle orthogonal de F' I’ensemble F*- formé
des vecteurs de F qui sont orthogonaux a tous les vecteurs de F'.

Ft={% € E; WL pour tout v € F}.
On montre que F est un sous-espace vectoriel de E, supplémentaire de F' dans E.
E=F®F", et donc dim F+ =n —dim F, ou n = dim E.



1.4.7 Proposition et définition (hyperplan médiateur). Soient A, B deux points distincts
de €. Alors :

(i) L’ensemble H = {M € £; d(A, M) = d(B, M)} des points équidistants de A et B est un
hyperplan affine de &€, appelé I’hyperplan médiateur du bipoint (A, B).

(ii) H est I’hyperplan affine passant par le milieu I de (A, B) et dirigé par ’hyperplan vectoriel
H = At de E, ot A est la droite vectorielle de E dirigée par AB.

Preuve. Par définition de H, on a M € H si et seulement si AM = BM, ce qui équivaut & AM? = BM?
puisque les distances AM et BM sont des réels positifs. On calcule :

AM? — BM? — AM.AM — BM.BM = AM.AM — (AM — AB).(AM — AB) = —AB.AD + 2AB.AM.
Ainsi M € H si et seulement si 2AB.AM — AB? — 0; on retient que :
M € H si et seulement si ﬁm =d, ou l'on a posé d = %ABQ.

Remarquons d’abord que le milieu I de (A, B) appartient a H puisque ﬁ = %zﬁ

Le vecteur zﬁ est non-nul par hypothése : introduisons la droite vectorielle A de E dirigée par le vecteur
xﬁ. Notons H son supplémentaire orthogonal A*. On sait que dim H = dimE — dimA = n — 1, de
sorte que H est un hyperplan vectoriel de F.

Pour tout M € &, on décompose : ﬁm = /@B + zﬁm =d+ /@m en utilisant que I € H.
Il en résulte que M € H si et seulement si ,ﬁﬁff =0, ce qui équivaut a 174) € H.

Ceci montre que H est le sous-espace affine passant par I et dirigé par H. a
B
T Be——tomoen J .
A !
Lorsque dim £ = 2, Lorsque dim £ = 3,
droite médiatrice de (A, B) plan médiateur de (A, B)
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2 — Reperes et coordonnées

Dans ce chapitre, £ est un espace affine de dimension finie n sur R, d’espace vectoriel directeur F.

2.1 Sous espace affine engendré par une partie

On a vu en 1.2.6 que l'intersection d’une famille de sous-espaces affines, a condition qu’elle soit non
vide, est un sous-espace affine, dirigé par 'intersection des sous-espaces vectoriels directeurs.

2.1.1 Définition. Il résulte du rappel ci-dessus que, pour toute partie non-vide X de &, on peut
considérer le sous-espace affine (X) défini comme l'intersection de tous les sous-espaces affines de £
contenant X. On 'appelle le sous-espace affine de £ engendré par X. On vérifie de fagon immédiate
que c’est le plus petit (pour 'inclusion) sous-espace affine de £ contenant X'. Le théoréme ci-dessous
décrit le sous-espace affine engendré par un nombre fini de points.

2.1.2 Théoreme. Soient Ay, A1,..., A, des points distincts de £. Soit F le sous-espace affine
engendré par {Ag, A1, ..., Ap}. Alors F est égal au sous-espace affine de £ passant par Ay et dirigé

par le sous-espace vectoriel F' de E engendré par {AgA;, AgAs, ..., AgAp}.

Preuve. Posons X = {Ao, A1,...,Ap}. Soit F le sous-espace vectoriel de E engendré par les p vecteurs

{AoA1, AgA2, ..., AgAp}. Notons F le sous-espace affine de £ passant par Ao et dirigé par F. On
a F = ng;(F). En particulier X C F. Soit maintenant H un sous-espace affine de £ contenant X.

Son sous-espace vectoriel directeur H = 4, (H) contient les vecteurs AgA1, AgAa,. .., AgAp, donc le
sous-espace vectoriel qu’ils engendrent. Ainsi F' est un sous-espace vectoriel de H. On en déduit que
cpz(l) (F) C go}é (H), c’est-a-dire F C H. On a ainsi montré que le sous-espace affine F contient X et
qu'il est inclus dans tout sous-espace affine de £ contenant X'. On conclut F = (X). O

En résumé et en pratique :

Un point M de £ appartient au sous-espace affine engendré par Ao, Ay,..., A, si et
e
seulement s’il existe un p-uplet (v, ..., ap) € RP tel que AgM = >0 | a;AgA;

Il est clair que, dans ce théoreme, Ay peut étre remplacé par n’importe lequel des points A;.

2.2 Base affine.

I1 est clair dans 2.1.2 que dim F < p puisque la famille de vecteurs Xog = {AgA;, AgAsz, ..., AgAp}
est une famille génératrice de F. La question se pose alors de savoir si X est libre ou non, car :
[Xo est libre] < [X( est une base de F] < [dim F' = p| < [dim F = p).

La encore, c’est une propriété qui ne dépend pas du choix de Ay, comme le montre le lemme suivant.

2.2.1 Lemme. Soient Ag, Ai,..., A, des points de £ deux a deux distincts. Les conditions sui-
vantes sont équivalentes :

(i) la famille Xo = {AgA1, AgAa, ..., AgA,} est libre dans E ;

(ii) pour tout 0 < j <p, la famille X; = {A; Ao, ..., AjAj_1,AjA;1, ..., AjA,} est libre;

(iii) aucun des points A; n’appartient au sous-espace affine engendré par les p autres points.




Preuve. Supposons que Xo est libre, et fixons 0 < j < p. Soient Ao, ..., Aj—1, Aj+1,-..,Ap € R tels que
- — o
2 izj AiAjAi = 0. En décomposant A;A; = Aj Ao + AoA;, il vient :
(Z )\i)AjAo + Z NiAoA; = 0.
i#] i#j
Parce que Xg est libre, on déduit que Z#j Ai =0 et A\; =0 pour tout 1 < ¢ < p distinct de j. D’ou
finalement \; = 0 pour tout 0 < ¢ < p distinct de j. Ceci prouve que (i) = (ii), et donc (i) < (ii).

Supposons maintenant qu’il existe 0 < ¢ < p tel que A; appartienne au sous-espace affine engendré par
Ao, Ar, .oy Aic1, Aiga, ..., Ap. Alors, pour tout 0 < j # i < p, il existe des coefficients a, € R pour
. . —_— — > .
0<k#ik#j<ptel que AjA; =, apAjAg, ou encore Y, arAjAr — AjA; = 0, ce qui prouve
que la famille X; est liée. Par contraposée, ceci montre que (ii) = (iii). La réciproque s’obtient par des
calculs analogues. O

2.2.2 Définitions. Une famille X de p + 1 points deux a deux distincts de £ est dite affine-
ment libre si elle satisfait les conditions équivalentes de la proposition précédente. Lorsque X est
affinement libre, on dit que X" est une base affine du sous-espace affine F = (X') engendré par X.

En résumé et en pratique :
{Ao, Ay, ... Ap} est une base affine d’un sous-espace affine F de € si et seulement si, pour
tout M € F il existe un unique p-uplet (a1, ..., ap) € RP tel que AgM = >"F | a; AgA;

Il est clair qu’alors F est de dimension p, et que I’on peut remplacer Ag par n’importe lequel des A;.

2.2.3 Un premier cas particulier : alignement. Par définition, des points de £ sont dits
alignés lorsqu’ils appartiennent a une méme droite affine.

» Prenons deux points distincts A et B dans £. Alors X = {ﬁ} est libre, donc le sous-espace
affine engendré par X = {A, B} est de dimension 1; on lappelle la droite affine passant par A et

B, noté (AB). La droite affine (AB) est dirigée par la droite vectorielle A de base {E}
» En particulier, deux points sont toujours alignés, et on a pour tout M € & :
[A, B, M alignés] & [M e (AB)] & [AM € A] < [{AB, AM) liée]
& il existe A € R tel que AN = /\ﬁ]
[A, B, M non alignés| < [{A, B, M} affinement libre].

2.2.4 Un second cas particulier : coplanarité. Par définition, des points de £ sont dits
coplanaires lorsqu’ils appartiennent & un méme plan affine.

» Prenons trois points A, B, C non alignés dans £. Alors X = {xﬁ,ﬁ} est libre, donc le sous-
espace affine engendré par X = {A, B, C} est de dimension 2 ; on appelle le plan affine passant par
A, B et C, noté (ABC). Le plan affine (ABC) est dirigé par le plan vectoriel II de base {E, fﬁ}

» En particulier trois points sont toujours coplanaires, et on a pour tout M € £ :
— -
[A, B,C, M coplanaires] < [M € (ABC)] & [AM e ll| & [{AB,AC, AM} liéd]
. . -
< il existe A, u € R tels que AM = \AB + u@]
[A, B,C, M non coplanaires| < [{A, B,C, M} affinement libre].
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2.2.5 Un exercice de géométrie élémentaire plane. Soient A, B, A’, B’ quatre points deux
a deux distincts dans un plan affine. On suppose qu’ils ne sont pas alignés. Montrer que :
(AB)/(A'B') et (AA")J(BB') si et seulement si AB = A'B'.

Preuve. Supposons que (AB)//(A’B’) et (AA")/(BB’). 1l résulte de la premlere observation de 2.2.3

qu’il existe deux réels non-nuls X et u tels que ﬁ = )\H et H = MBB On transforme la premiere

égalité en AA' + A'B = \A'B + ABB, d'ott : (1 — \)A'B = \BB — AA' = (A— u)BB.

Si les vecteurs ATB> et ﬁ étaient colinéaires, alors les trois points B, A’, B’ seraient alignés. Comme

BB’ est colinéaires & AA’, les quatre points seraient alignés, ce qui est exclu par hypohese. Donc A’'B

et BB’ sont non colinéaires, donc il résulte de I’égalité vectorielle obtenue ci-dessus que A = pu = 1, ce

. 7 o . . ? 1oz . N 7 7
qui montre le résultat voulu. La réciproque est claire puisque AB = A’B’ équivaut & AA" = BB'). O

Cet exercice complete les résultats de 1.1.2.d) sur les différentes caractérisations d’un parallélogramme.

2.3 Coordonnées d’un point dans un repere cartésien

2.3.1 Repere cartésien. Un repére cartésien de £ est un couple R = (O, B) formé par un point
fixé quelconque O € &, appelé I'origine du repere, et une base B = (e_f, e ,Ei) de E.
Pour tout point M € &£, les composantes du vecteurs O—]\Zf dans la base B sont appelées les coor-
données cartésiennes du point M dans le repére R. On note : M(x1,...,zy). Ainsi :

[ M(z1,...,an) dans le repere (0, a1,...,8) | «= [OM = >z ].
i=1
. . . —
Pour tout 1 < i < n, soit A; le point de & tel que OA; = ¢e;. Comme B = {OA;,0As,...,0A,}
est libre, la famille de n+ 1 points X = {0, A1, A, ..., A, } est affinement libre. Comme de plus B
engendre 'espace vectoriel F, le sous-espace affine de £ engendré par X’ n’est autre que £ lui-méme.
En d’autres termes, X est une base affine de £.

Une conséquence évidente mais tres utile dans la pratique est que :

si M(x1,...,zy,) et N(y1,...,yn) dans le repere R = (O, B), alors les composantes du
. n %
vecteur MN dans la base B sont (Y1 — 1, .oy Yn — Tn), €. MN = S (yi —xi)e;.
i=1

2.3.2 Représentation paramétrique d’un sous-espace affine. Un repere R = (O, B) avec

B= (e_f, e az) étant fixé, considérons un sous-espace affine F de £, de dimension p, passant par un
point donné A, et dont le sous-espace vectoriel directeur F' est donné par une base C = {171, ceey @}

Chaque UZ se décompose dans B en UZ = ai,le_f + ame_g) + --'ai,na, avec «;; € R pour tout
1<j<nettout 1 <i<p. Donc, pour Ag,...,\, € R, ona:

ZAUZ—ZA<Z%€J)= (Z)‘QLJ) €5-

7j=1

n
Notons A(ay,...,ay), de sorte que pour tout M (z1,...,x,), on a AM =3 (z; —aj)e].
7=1

-
L’équivalence (M € F) < (AM € F) devient donc :
P
[M € .7:} = [ il existe A1,...,\p € R, tels que z; = aj + Y Ao j pour tout 1 <j<n (%)
i=1

On dit que les relations () constituent une représentation paramétrique du sous-espace affine F
dans le repere R.
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» EXEMPLE. Dans un plan affine rapporté a un repere, une représentation paramétrique de la

droite passant par A(ai,a2) et de vecteur directeur o (v, a) est : {ﬁ;ig;iﬁg; , avec A € R.

» EXEMPLE. Dans un espace affine £ de dimension 3 rapporté a un repere,

— une représentation paramétrique de la droite passant par A(aq,as,a3) et de vecteur directeur

r1=a1+Ao
7(0&1, ag,a3) est 1 ¢ ma=ax+iaz , avec A € R.
T3=a3+Aa3

— une représentation paramétrique du plan passant par A(ap,az,a3) et dirigé par le plan vectoriel
r1=a1+ o1+pp1

de base {7, W} avec 7(041,042,053) et 3(61,52,63) est : {m2a2+/\a2+u62 , avec \, 1 € R.
rz=az+Aaz+ufBs

2.3.3 Equation cartésienne d’un hyperplan affine. Le théoreme ci-dessous est fondé sur le
fait bien connu en algebre linéaire (conséquence de la formule du rang) que les hyperplans vectoriels
sont les noyaux des formes linéaires non-nulles.

a) Théoréme et définition. On fixe un repére cartésien R = (O, B) de £.

(i) Pour tout hyperplan affine H de &, il existe (ai,...,an,an+1) € R* avec (a1,...,a,) #
(0,...,0), tel que H soit I'ensemble des points M (x1,...,x,) de € vérifiant :
a121 + a2 + - - - + anTp + an+1 = 0. (%%)
(ii) Réciproquement, si (a1,...,an,ans1) € R™ tel que (a1,...,a,) # (0,...,0), 'ensemble

des points M (x1,...,xy) de € vérifiant (xx) est un hyperplan de £.
La relation (%) est appelée une équation cartésienne de I’hyperplan H dans le repére R.

Preuve. Pour montrer (i), soit H un hyperplan affine. Son espace vectoriel directeur H est un hyperplan
vectoriel de F; donc il existe une forme linéaire non-nulle f : £ — R telle que H = Ker f. Notons
B = (e_f7 .. .,e_n>), qui est une base de E. Si 'on note (ai,...,an) les composantes de f dans la base
duale B* = {ej,...,en} de E*, on a (a1,...,an) # (0,...,0) et, pour tout 7(y1, ...yYn), on calcule :

n . n . n _> n n " ﬁ n

f(2) = Zlaiei(ﬁ) = Z:la’iei (.Zlyjej) = 21 Zlaiyjei(ej) = _Zlaiyzw

i= i= Jj= i=1j= i=

Donc H est Phyperplan vectoriel de E d’équation a1y1 + - - - + anyn = 0 dans B. Soit B(b1,...,b,) € H.
—

Ona: [M(z1,...,zn) EH] S [BM e H]| < [ai(z1 —b1)+ -+ an(zn —by) = 0], d’ou le résultat

en posant an+1 = —(a1b1 + -+ + anby).
Pour (ii), supposons donné (ax,...,an,ant+1) € R*™ avec (a1,...,an) # (0,...,0) et notons H 'en-
semble des points M (z1, ..., z,) vérifiant (xx*). Il est non-vide car 'un au moins des a; est non-nul. Soit

B(b1,...,bn) € H. Comme aiby + -+ + anbn + ant1 = 0, on a pour tout M(z1,...,2,) € E :
M e H] & [a1z1+- -+ anTn+ant1 = arbi 4+ anbn +ant1] & [a1(z1 —b1)+- - -+ an(zn —bn) = 0].

Ceci signifie que M € H équivaut a W € Ker f, out 'on note f la forme linéaire f = a1e] +- -+ aney,,
qui est non-nulle d’apres ’hypothese sur les a;. En notant H I’hyperplan vectoriel Ker f dans E, on a
finalement : M € H si et seulement si BM € H, ce qui prouve que H est le sous-espace affine passant
par B et dirigé par H, donc que H est un hyperplan affine. a

b) Corollaire. Soient H et H' deux hyperplans de £ d’équations a1x1 + -+ + apZp + any1 = 0 et
ajry + -+ apxy, + a, = 0 respectivement. Alors :

M JH' siet seulement sil existe X € R, X # 0, tel que a} = Aa; pour tout 1 <i < n.

H = H' si et seulement s’il existe A € R, A # 0, tel que a, = Aa; pour tout 1 <i <n+ 1.

Preuve. Cela découle du fait, observé dans la preuve, que H est dirigé par ’hyperplan vectoriel H de F
d’équation a1x1 + azx2 + - - - + anxy, = 0 dans la base B. 0
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2.4 Exemples en géométrie élémentaire : droites du plan

a) Proposition. On suppose £ de dimension 2, rapporté a un repére cartésien. Une équation
cartésienne d’une droite affine D de £ est de la forme

ax +by+c=0 avec (a,b) # (0,0)

Une base de la droite vectorielle A dirigeant D est alors {1} avec U (—b, a).

Preuve. On applique simplement le théoréme 2.3.3.a) avec n = 2. O

» Exemples d’applications. Ecrire a titre d’exercice le détail des calculs correspondants.

e Condition d’alignement. Soient A(a, B) et B(a’,8"). Pour tout M(x,y), on a :

(M, A,B) alignés & {AM, 4B} lice & |22 92| =0 & (8~ B)a+ (a—a')y+ (oS —af) =0,

ce qui, pour A # B, donne une équation de la droite (AB). Ou encore, en remarquant que les points
sont alignés si et seulement si leurs coordonnées vérifient une équation de droite :
- 0} |

e Position relative de deuz droites. Soient deux droites D et D’ d’équations respectives ax + by +c =0

et 'z +b'y+ ¢ = 0. Notons (5) le systeme { 7% i ;fé i R

ar + by +c¢=0 y 1
[M, A, B alignés| < |il existe a, b, c € R tel que (a,b) # (0,0), { aa + b8 +c 0} & { B 1
aa’ + b8’ + ¢ 0 1

B

Row

et 6 = | & If’, | son déterminant.

(i) (D parallele a D') < (il existe A € R* tel que a’ = Xa, V' = \b) & (6§ =0).
— Si I'on a aussi ¢’ = A¢, les deux équations sont équivalentes, donc D = D’.
— Sinon, (S) n’est pas compatible, donc D ND’ = §.

(i) (D non paralléle 3 D) & (§#£0) & (DND ={Q}) avec Q (ﬁ , ﬁ)

e Condition de concours de trois droites. Soient trois droites D, D’ et D” d’équations respectives ax +
by+c=0,adz+by+c =0ecta’z+b"y+ " = 0. On suppose que les trois droites sont deux &
deux non paralleles, c’est-a-dire que ab’ — a’b, a’b” — a”’V’ et a’’b’ — a’b” sont tous les trois non-nuls. On
dit qu’elles sont concourantes lorsqu’elles se coupent en un méme point, c¢’est-a-dire lorsque leurs trois
points d’intersection deux a deux sont confondus; ceci équivaut a dire que les coordonnées du point
d’intersection Q2 de D et D’ (voir ci-dessus) sont solutions de 1’équation a”z + b"y + ¢” = 0. Il vient
apres calcul :

’ b/ c/

v

S e

(D, D', D" concourantes) < (

=0).

b) Concourance des médianes d’un triangle. Soient A, B, C' trois points non alignés du plan £.
Notons I, J, K les milieux respectifs de (A, B), (B,C) et (C, A). Alors les trois droites (CI), (AJ)
et (BK) sont concourantes. Leur point d’intersection G est appelé le centre de gravité du triangle
(ABC).

Preuve. Les points A, B, C' n’étant pas alignés, les vecteurs @ et ﬁ
sont linéairement indépendants ; on peut donc considérer le repere R =
(A, A ,ﬁ) du plan £. Les coordonnées dans R des points considérés
sont :

A(0,0), B(1,0), C(0,1), I(3,0), J(3,3), K(0,3).
On en déduit les composantes dans la base (ﬁ , A—(,z') des vecteurs :
—
6_[)(%7_1)7 ﬁ(%7%)a BK(_L%)

Il en résulte que les trois droites (CI), (AJ) et (BK), appelées les
médianes du triangle (ABC), admettent comme équations respectives :
2r+y—1=0, z—y=0, z4+2y—1=0,

qui admettent comme unique solution commune le couple (%, %)

Le point G(%, %) est donc le point d’intersection des trois médianes. O
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2.5 Exemples en géométrie élémentaire : droites et plans de ’espace

a) Proposition (cas des plans). On suppose £ de dimension 3, rapporté a un repére cartésien.

Une équation cartésienne d’un plan affine P de £ est de la forme
axr +by+cz+d=0 avec (a,b,c)# (0,0,0)

Une base du plan vectoriel II dirigeant P est {u, v} avec @ (—b,a,0) et ¥ (—¢,0,a).
Preuve. On applique simplement le théoréme 2.3.3.a) avec n = 3. a

» Exemples d’applications. Ecrire le détail des calculs correspondants et faire des figures.

e Condition de coplanarité. Soient A(a, B,7), B(a',B',v"), C(a”,B",+"). Pour tout M(x,y,z), on a :

. r—ao o/foz Ot”*(l 2 % ,‘j 1
(M, A, B, C) coplanaires < |y-8 8'-8 p/-8|=0 & | 5 v 1|=0
2=y =y A=~ ! B 41

ce qui, quand {E, ﬁ} est libre, donne en développant une équation du plan passant par A, B, C.

e Position relative de deux plans. Soient deux plans P et P’ d’équations respectives ax +by+cz+d =0
et a’z+b'y+c'2+d = 0. Notons (9) le systeme {5/’; T_ :;1; i 7 I dd/ - g , et w= (5} 5) samatrice.
(i) (P parallele & P’) & (il existe A € R* tel que @’ = Xa, b' = Xb, = Xc) & (rgp=1).

— Sil’'on a aussi d’ = A\d, les deux équations sont équivalentes, donc P = P’.

— Sinon, (S) n’est pas compatible, donc P NP’ = ().
(ii) Supposons que rgu # 1. Les deux plans P et P’ ne sont donc pas paralleles. Comme (a, b, c) #
(0,0,0) et (a’,b',c") # (0,0,0), on arg u # 0, donc rg u = 2. Donc I'un au moins des 3 mineurs ab’ —a’d,
bc’ — c'b et ca’ — 'a est non-nul. Il en résulte en particulier que P NP’ # ().

Si par exemple ab’ — a’b # 0, 'ensemble des solutions de (S) est {(z(z),y(z),2); z € R},
ar + by = —cz — d

avec z(z),y(z) donnés par les formules de Cramer dans le systeme § /. | by — e d -

Dés lors, P NP’ est un sous-espace affine dirigé par le ss-e.v. I NI, Or o (z,y,2z) € NI si et
ar + by + cz =0

seulement si (z,y, z) est solution du systéme homogene (So) {a/w HEGANDES

On a rg(So) = rgu = 2 donc V'espace vectoriel des solutions de (Sp) est de dimension 3 —2 = 1. On
conclut que IINII" est une droite vectorielle, donc que P NP’ est une droite affine.

On retiendra que : 'intersection de deux plans affines non paralléles est une droite affine.

” NS
7

b) Proposition (cas des droites). On suppose £ de dimension 3, rapporté a un repere cartésien.
Une partie D de & est une droite affine de & si et seulement s’il existe (a,b,c) et (a’,b',c') deux
triplets linéairement indépendants dans R3, et deux scalaires d,d’ € R tels que D soit exactement

I'ensemble des points M (x,y, z) dont les coordonnées sont solutions du systéme (S) suivant :

{;ﬁi%iiijzg, avec (a',b', ") # Aa, b, ¢) pour tout A € R, (a,b,c) # (0,0,0).
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Preuve. Un sens résulte de ce que ’on vient de voir a la fin du paragraphe précédent. Réciproquement,
soient D une droite affine, A un point de D et @ un vecteur non-nul de la droite vectorielle A dirigeant
D. On peut compléter @ en une base {7, 7,?} de E. On introduit le plan P passant par A et de
sous-espace vectoriel directeur le plan vectoriel II de base {7,7} De méme, soit P’ passant par A
et de sous-espace vectoriel directeur le plan vectoriel I’ de base {@,@}. On a {W, ¥, W} libre, donc
II # IT’, donc P non parallele & P’. D’apres ce que I'on a vu précédemment, P NP’ est alors une droite
affine, dirigée par la droite vectorielle IINIT. Comme A € PNP’ et ¥ € IINII', on conclut PNP’ = D.
On introduit des équations cartésiennes de P et de P’ pour achever la preuve. a

On dit que (5) est un systeme d’équations cartésiennes de D dans le repere. Il exprime que :

toute droite affine de £ est (d’une infinité de fagons) I'intersection de deux plans de £.

» Exemples d’application. (Ecrire le détail des calculs et faire des figures).

e Position relative d’une droite et d’un plan. Soient D une droite et P un plan dans £. En utilisant
des équations cartésiennes, montrer que les seuls cas possibles sont :

— la droite vectorielle A dirigeant D est un sous-espace vectoriel du plan vectoriel II dirigeant P ;
dans ce cas : ou bien D C P, alors DNP =D ;
ou bien D ¢ P, alors DNP =0 ;
on dit alors parfois que D et P sont faiblement paralléles.

— la droite vectorielle A n’est pas un sous-espace vectoriel de IT; dans ce cas D NP est un singleton.

e Position relative de deuz droites. Soient D et D’ deux droites dans £. En utilisant des équations
cartésiennes, montrer que les seuls cas possibles sont :

— les droites D et D’ sont confondues, alors DND' =D ;
— les droites D et D’ sont paralleles mais non confondues, alors DND' =0 ;

— les droites D et D’ ne sont pas paralléles, alors : (DND’ =) ou (DN D’) est un singleton.

2.6 Cas particulier des espaces euclidiens, repéeres orthogonaux

On suppose de plus dans cette section que 'espace affine £ de dimension n est euclidien.

2.6.1 Définitions. Soit R = (0,B) un repere cartésien de &, avec B = (ef,...,e,).

On dit que R est un repére orthogonal de £ lorsque la base B est une base orthogonale de E.
Rappelons que cela signifie que les vecteurs e/ sont deux & deux orthogonaux.

On dit que R est un repere orthonormé de £ lorsque B est une base orthonormée de E. Rappelons
que cela signifie que c¢’est une base orthogonale et que de plus |]a>|| =1 pour tout 1 < < n.

Rappelons que, si U et U sont deux vecteurs de E de composantes respectives (x1,...,x,) et
(y1,...,yn) dans une base orthonormée, alors le produit scalaire et la norme se calculent par :

DT =Sy et T =
=1
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2.6.2 Vecteur normal a un hyperplan affine.

a) Définition. On appelle vecteur normal & un hyperplan affine H de £ tout vecteur directeur de
la droite vectorielle A = H+, out H désigne ’hyperplan vectoriel de E directeur de H.

Par définition, un vecteur normal & ‘H est non-nul, et il est orthogonal a tout vecteur de H.
b) Proposition. Soit R = (0, B) un repére orthonormé de £. Soit H un hyperplan de £, d’équation
a1xy + -+ apxp + ant1 =0, avec (ay,...,a,) non-nul dans R" et a,11 € R

par rapport a R. Alors le vecteur non-nul 7 de composantes (ay,...,ay) dans la base B est un
vecteur normal a H.

Preuve. Soit H ’hyperplan vectoriel de E directeur de H. On a vu dans la preuve du théoreme 2.3.3.a)
qu’une équation de H par rapport a B est alors a1x1 + - -+ + anxn, = 0. Le vecteur 7 de composantes

(a1,...,an) dans la base B est non-nul. Notons A la droite de vecteur directeur . Quel que soit U e E,
de composantes (z1,...,2,) dans la base B, on a :

(W eAY) e (WLR) e (U7 =0)< (a1z1+ -+ anzn =0) < (T € H).
Ainsi, A+ = H, ou encore H- = A, ce qui signifie que 7 est un vecteur normal & . m|

2.6.3 Distance entre un point et un hyperplan affine

a) Définition. Soit F un ss-e.a. de £ et soit A un point de £. On appelle distance de A a F le réel
positif d(A, F) = infyrer d(A, M).

En particulier, dire qu'un point M de £ appartient a F signifie que d(M,F) = 0.
On peut explicitement calculer cette distance dans le cas ou F est un hyperplan.

b) Proposition. Soit R = (0, B) un repére orthonormé de E. Soit H un hyperplan de £, d’équation

a1r1 + -+ + apxy + any1 =0, avec (ai,...,a,) non-nul dans R™ et a1 € R
par rapport a R. Soit A un point quelconque de &, de coordonnées (o, ..., ay) par rapport a R.
Alors la distance entre A et ‘H est donnée par :

o |CL10[1 + -t apan + an+1|
a% + - + a%
Preuve. Reprenons toutes les notations de la proposition 2.6.2.b). Soit D la droite affine de £ passant

par A et dirigée par A. Comme H N A = {ﬁ}, il résulte de la proposition 1.2.6 que H N D est un
singleton ; notons-le {A’}. On a donc D = (A4A").

d(A,H)

e Premiére étape : on montre que d(A,H) = AA".
—_— —_—
Pour tout M € H, A’M € H donc AA".A'M = 0.
Des lors, avec la propriété de Pythagore :
(AM)? = (AA")? + (A M)? > (AA))?
et

AM =AA  AM=0&M=A.
Ceci prouve que AA" = inf{AM ; M € H}.

e Seconde étape : On calcule AA’.

Exemple de représentation en dimension 3

Notons (B1, ..., ) les coordonnées de A’.

—
D’apres 2.6.2, H}(al, ...,ay) est normal & H. Par construction de A’, le vecteur AA” est colinéaire & .
I existe donc A € R tel que AA” = A7/. Donc AA" = |\| x || 7|, avec | 7| = /a2 + - + a2.
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D’une part A’ € H, donc : a1B1 + -+ + anfn + any1 = 0.
—
D’autre part AA” = A7, donc : (Br— a1, .., Bn —an) = Aa, ..., an).
Dot ai(a1+Aa1)+- - +an(an+Aan)+ans1 =0, donc arar+---+anan+A(ai+--+a;)+ant1 = 0.
7|

—)
On conclut que |A] X | = |aron + - + @nn + anr1|, ce qui achéve la preuve puisque ||77]| # 0.0

c) Application en géométrie élémentaire.

(i) On se place dans un plan affine euclidien muni d’un repére orthonormé. Soit D une droite
de £ d’équation ax + by + ¢ = 0. Un vecteur normal & D est ﬁ)(a, b).

] ) lac + b8 + |
Pour tout point A de £ de coordonnées (o, 5), on a : d(A, D) = ————.
p (a,B) (A, D) R

(ii) On se place dans un espace affine euclidien de dimension 3 muni d’un repére orthonormé.
Soit P un plan de £ d’équation ax + by + ¢z + d = 0. Un vecteur normal a P est %}(a, b, c).

b d
Pour tout point A de £ de coordonnées (o, 3,7), on a : d(A,P) = jac + b5 + ey + ’
Va2 + b2+ 2

2.6.4 Cosphéricité.

a) Lemme (résultat général en dimension quelconque). Soit (Ay, A1, ..., A,) une famille de
(n+ 1) points affinement libre dans £. Il existe une unique sphere de £ passant par Ag, A1, ..., An.
Son centre est le point d’intersection des hyperplans médiateurs des bipoints (A;, Aj), 1 < i # j < n.

Preuve Rappelons que n est ici la dimension de €. Pour tout 1 < i < n, notons :

- H; ={M € &; d(Ao, M) = d(Ai;, M)} 'hyperplan médiateur de (Ao, A;),

— H; hyperplan vectoriel de E directeur de H,,

- TTZ = m qui est normal & H; d’apres 1.4.7
Par hypothese, la famille N' = {TT{,,TTn)} est libre dans E (donc base de E). Fixons un repére
orthonormé R = (O, B) de &, et notons (a;,1,...,a:n) € R™ les composantes de 7 dans B.
Pour tout 1 < ¢ < n, il existe d’apres 2.3.3.a) et 2.6.2.b) un réel a; n+1 telle qu'une équation de H; soit :

;121 + -+ inTn + Gint1 =0, (hs)

Notons F = {M € £;d(Ao, M) = d(A1,M) = ... = d(An, M)} = (),<;<, H:i Vintersection des
hyperplans médiateurs de tous les bipoints (A4;, A;), 1 < i # j < n. Un point M € £ de coordonnées
(z1,...,2,) appartient & F si et seulement si (z1,...,2n) est solution du systéme linéaire (3) formé
par les n équations & n inconnues (hi),..., (hy). D’aprés ce qui précede, la matrice de (X) n’est autre
que la transposée de la matrice de la base N dans la base B. Elle est donc inversible, de sorte que le
systéme (X) admet une unique solution (wi,...,wy) € R™. Ceci prouve que F est un singleton réduit
au point Q de coordonnées (ws,...,wy) dans le repére R. Ainsi d(Ap, Q) = d(A1,Q) = ... = d(An,,Q),
et en notant r cette valeur commune et S la sphére de centre ) et de rayon 7, on a bien A; € S pour
tout 0 <17 < n.

Montrons maintenant 'unicité. Soit S’ une sphere de centre 2 et de rayon r’ passant par Ag, A1, ... Ap.
En particulier, d(Ao, Q) = d(A4;,Q") = r' pour tout 1 < i < n, ce qui prouve que ' € H; pour tout
1 < i < n, c’est-a-dire Q' € F. D’apres 1’étape précédente, F est un singleton donc Q' = Q. Dés lors,
r' = d(Ao,QY) = d(Ao, ) = r, d’ou finalement S’ = S. |

b) Proposition et définition (cocyclicité dans un plan affine). On se place dans un plan
affine £. Soient A, B, C' trois points non alignés de £.

(i) les médiatrices de (A, B), (B, C) et (C, A) sont concourantes en un point ).

(ii) II existe un unique cercle passant par A, B,C. On I'appelle le cercle circonscrit au triangle
(ABC) ; son centre est ).
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Preuve. On applique directement le lemme précédent. On pourra a titre d’exercice utile re-rédiger la
preuve du lemme général dans le cas particulier ou n = 2. a

Des points du plan £ sont dits cocycliques s’il appartiennent & un méme cercle. L’énoncé précédent
conduit donc & ’observation importante suivante :

» trois points non-alignés sont toujours cocycliques.
Ezercice. Soient A et B deux points du plan affine euclidien £. Montrer qu’il existe une infinité de

cercles passant par A et B, dont les centres appartiennent tous a la médiatrice de (A, B).

c) Remarque (cosphéricité en dimension 3). Dans le cas ol £ est de dimension 3, le lemme
général devient :

» par quatre points non coplanaires, il passe une unique sphére, dont le centre est
Pintersection des plans médiateurs des cotés du tétraédre formé par ces quatre points.

AN

2.6.5 Orientation, repéres orthonormés directs ou indirects. Par définition, on dit qu’un
espace affine euclidien £ est orienté lorsque son espace vectoriel directeur F est orienté.

Dans ce cas, un repére orthonormé R = (0, ) est dit direct (respectivement indirect) lorsque B est
une base orthonormée directe (respectivement indirecte) de l'espace vectoriel euclidien orienté E.

Rappel important d’algébre linéaire. Un endomorphisme f de E est une isométrie vectorielle
lorsqu’il conserve la norme, ou de facon équivalent lorsqu’il conserve le produit scalaire. Les isométries
vectorielles de E forment un sous-groupe de GL(FE) appelé le groupe orthogonal de E et noté O(E).
On montre que toute isométrie vectorielle f de vérifie det f = 1 ou det f = —1. Les isométries vectorielles
de déterminant 1 sont dites directes ; elles forment un sous-groupe de O(E) noté O (E) ou encore SO(E).
Celles de déterminant —1 sont dites indirectes ; leur ensemble noté O~ (E) n’est pas un sous-groupe.

Une isométrie vectorielle transforme une base orthonormée en une base orthonormée, et réciproquement,
quelles que soient deux bases orthonormées B et B, il existe une unique isométrie vectorielle qui envoie

B sur B'.

Orienter E consiste a choisir une base orthormée de référence (ou canonique) Bean. On appelle alors
base orthonormée directe toute base orthonormée B’ de E telle que I'unique isométrie vectorielle qui
envoie Bean sur B’ est une isométrie directe.

Une base orthormée qui n’est pas directe est dite indirecte.
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L3 Mathématiques - UE Géométrie affine 2021-2022

3 — Applications affines, groupe affine

Bien que le contenu de cette section puisse étre dans sa presque totalité rédigé pour des applications
affines d’un espace affine £ vers un espace affine F, on se limite ici au cas ou 'espace d’arrivée F
est le méme que l'espace de départ &.

On se fixe pour tout le chapitre un espace affine £ sur R, de dimension finie n, d’espace vectoriel
directeur FE.

3.1 Notion d’application affine.

3.1.1 Définition. Une application ¢ : & — & est une application affine, ou un endomorphisme
affine, lorsqu’il existe une application linéaire f : E — FE, dite associée a ¢, telle que :

o(A)p( ) — f(ﬁ) pour tous A, B € £.

Le théoreme fondamental suivant, tres utile dans la pratique, exprime qu’une application affine est
entierement déterminée par son application linéaire associée et par I'image d’un point.

3.1.2 Théoréme. Soient A et B deux points de £, et f une application linéaire E — FE. Alors
il existe une unique application affine ¢ : £ — £ telle que p(A) = B et telle que f soit 'application
linéaire associée a .

Preuve. Montrons d’abord 'unicité. Pour cela, soit ¢ : £ — £ affine d’application linéaire associée f et

telle que p(A) = B. Pour tout M € £, on a : B@(M§ = @(A)ap(M§ = f(m), ce qui définit de fagon

unique (M) = B + f(m) pour tout M € £. D’ou 'unicité de .

Réciproquement, définissons ¢ : £ — & en posant (M) = B + f(m) pour tout M € £. On a en

particulier Bgo(A; = f(m) = f(ﬁ) = ﬁ, ce qui implique ¢(A) = B. D’autre part, pour tous M, N € &,
on a :
— —_— =
2(M)(N) = Bo(N) — Bo(M) = f(AN) — f(AM) = f(AN — AM) = f(MN),
Ceci prouve que ¢ est affine, d’application linéaire associée f. a

3.1.3 Exemples usuels d’applications affines. Les translations, les homothéties, les projec-
tions, les symétries, sont des endomorphismes affines que I’on détaillera plus loin en 3.3, 3.4 et 3.5. Si
de plus 'espace affine £ est supposé euclidien, on voit apparaitre parmi les endomorphismes affines
tous les types d’isométries (dont les rotations que 'on étudiera au chapitre 4 ou les similitudes.

Avant de développer géométriquement certains de ces exemples, on donne une série de propriétés
générales des applications affines, qui ne découlent en fait que de la définition.

3.1.4 Proposition (conservation des sous-espaces affines). Soit ¢ : £ — £ une application
affine d’application linéaire asssociée f : E — E.

(i) Soit H un sous-espace affine de £ dirigé par un sous-espace vectoriel H de E. Alors p(H)
est un sous-espace affine de £, dirigé par le sous-espace vectoriel f(H) de E.

(ii) Soit H' un sous-espace affine de £ dirigé par un sous-espace vectoriel H' de E. Si ¢~ 1 (H') # 0,
alors 1 (H') est un sous-espace affine de £, dirigé par le sous-espace vectoriel f~'(H') de E.
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Preuve. Soient A € H C &, et B = ¢(A) € p(H). Dire qu'un point M € £ appartient & ¢(H) signifie
c&’i} existe un point N € H tel que M = p(N). Or M = p(N) équivaut a BM = p(A)p(N), c’est-a-dire
BM = f(m) En d’autre termes, M € @(H) si et seulement s’il existe N € H tel que BM = f(AN).
Comme A € H et H est dirigé par H, ceci équivaut a l’existence de U € H tel que E‘Z\_j = f(ﬁ)

—
On a ainsi établi que ’ensemble {BM ; M € o(H)} est égal & f(H), qui est un sous-espace vectoriel de
E (car image directe d’un sous-espace vectoriel par une application linéaire). Le point (i) est démontré.

Pour (ii), supposons qu'’il existe A € ¢ !(H’). Donc ¢(A) € H'. Pour tout M € E,ona: M € ¢} (H)
si et seulement si p(M) € H', ce qui équivaut & p(A)p(M) € H' car p(A) € H' et H' dirigé par H'. En
résumé, M € ¢ ' (H’) si et seulement si f(m) € H'. On déduit que 'ensemble {m, M e o ' (H)}
est égal & f~(H'), qui est un sous-espace vectoriel de E comme image réciproque d’un sous-espace
vectoriel par une application linéaire. Ceci démontre le point (ii). a

3.1.5 Corollaire (conservation du parallélisme). Soit ¢ : £ — £ une application affine. Si
H1 et Ha sont deux sous-espaces affines paralleles, alors p(H1) et @(Hz) sont paralléles.

Preuve. Si H1 et Ha sont paralleles, on a Hy = Hy dans E. Donc f(Hi) = f(Hz). Or f(H1) est le
sous-espace vectoriel directeur de p(H1), et f(H2) celui de ¢(Hz). D’olt ¢(H1) et p(Hz) paralleles. O

3.1.6 Corollaire (conservation de l’alignement). Soit ¢ : £ — £ une application affine.
Quels que soient A, B,C trois points distincts alignés dans &, les points ¢(A), p(B),p(C) sont
alignés ou confondus dans E.

Preuve. Si AC = AAB avec A € R,X # 0,A # 1, alors f(/@) = )\f(zﬁ), et donc ap(A)ga(C; =

Xp(A)p(B ;, ce qui prouve le résultat voulu. O

3.1.7 Définition et proposition (points fixes d’une application affine). Soit ¢ : € — &

une application affine, d’application linéaire associée f. On appelle ensemble des points fixes de

Iensemble Fix o = {M € £; p(M) = M}. Alors :

- ou bien Fix ¢ est vide (c’est-a-dire que ¢ n’admet aucun point fixe),

- ou bien Fix ¢ est un sous-espace affine de £, dont le sous-espace vectoriel directeur est Ker(f—idg).
Preuve. Notons Fix f = {u € E; f(¥) = U} = Ker(f —idg). C’est un sous-espace vectoriel de E (il

n’est pas réduit a { 0'}, c’est le sous-espace propre associé & la valeur propre 1 de f). Supposons que
Fix ¢ n’est pas vide. Considérons un point A € & tel que p(A) = A. Pour tout M € £, on a :

[M = p(M)] & [Ap(M) = AM] & [p(A)p(M = AM] < [f(AM) = AM).

—
En d’autres termes, M € Fix ¢ si et seulement si AM € Fix f, ce qui prouve que Fix ¢ est le sous-espace
affine de £ passant par A et dirigé par Fix f. O

3.1.8 Détermination d’une application affine par 1’image d’une base affine.

a) Proposition. Une application affine ¢ de £ dans £ est déterminée (entiérement et de fagon
unique) par I'image d’un repeére de &, c’est-a-dire par 'image d’une base affine de £.

Preuve. Soit R = (O, B) un repere de &, avec B = (e_f, e a}) base de E. Pour tout 1 < 1 < n, notons A4;
I'unique point de & tel que OA; = €. La famille de points X = {0, A1,..., A,} est une base affine
de €. Pour tout point M quelconque dans &, de coordonnées (z1,...,z,) dans le repére R, on a :

OM = imle_f = émz()—/}i, donc @(O)«p(M; = f(5]7[) = i xzf(O—A:) = _ilxicp(O)ap(Ai .

% =1
Donc, deés lors que I’on connait les images par ¢ des n+1 points de X', I'image de M par ¢ est déterminée

par (M) = ©(0) + 3217, zip(0)p(Ai). O
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b) Conséquences pratiques en géométrie élémentaire. Ainsi, pour connaitre une application
affine de &, il suffit de connaitre les images d’un nombre fini de points formant une base affine de £.
Par exemple, si I’on connait les images par ¢ de deux points distincts A et B, on connait les images
par ¢ de tous les points de la droite (AB). Si 'on connait les images par ¢ de trois points non
alignés A, B, C, on connait les images par ¢ de tous les points du plan (ABC).

On utilise souvent cet argument sous les formes suivantes :
(1) Deux applications affines qui coincident en deux points distincts A et B coincident en tout

point de la droite (AB). Deux applications affines qui coincident en trois points non alignés
A, B, C coincident en tout point du plan (ABC).

(2) Si & est de dimension 2, une application affine de £ dans £ qui fixe trois points non alignés
est égale a idg.

(3) Si € est de dimension 3, une application affine de £ dans £ qui fixe quatre points non
coplanaires est égale a idg.

3.2 Groupe affine

3.2.1 Lemme (composée de deux applications affines). Soient ¢,v¢ : £ — £ deux appli-
cations affines d’applications linéaires asssociées respectives f,g : E — FE. Alors v o ¢ est affine
d’application linéaire associée g o f.

Preuve. Pour tous A, B € €, on a : %(o(A)b(0(B)) = g(p(A)p(B)) = g(f(AB)). O

3.2.2 Lemme (bijectivité d’une application affine). Soit ¢ : £ — & affine d’application
linéaire asssociée f : E — E. Alors :

(¢ injective < f injective), (¢ surjective < f surjective), (¢ bijective < f bijective).
Preuve. Supposons [ injective. Soient A, B € & tels que ¢(A) = p(B). Alors ﬁ = Lp(A)(p(A; =
o(A)p(B) = f(f@) D’ou .@ = 6> c’est-a-dire A = B. Supposons réciproquement que ¢ est injective.
Soient @ € Ker f. Soit A € £ et M = A+ 7. Ona AM = @ donc 0 = f() = f(AM) = p(A)p(M).

Dot p(A) = (M), et donc A= M et U = AM = T. Le reste est clair et laissé en exercice. O

3.2.3 Corollaire. Soit ¢ : & — £ affine, d’application linéaire asssociée f : E — E. Alors :

(i) ¢ est bijective si et seulement si elle transforme une base affine de £ en une base affine de £.

1

(ii) Si ¢ est bijective, alors sa réciproque ¢~! est affine d’application linéaire associée f~!.

Preuve. Le point (i) découle du lemme 3.2.2 ci-dessus et de la proposition 3.1.8.a).

Pour (ii), considérons M, N € £ quelconques. Par bijectivité de ¢, il existe A, B € £ uniques tels que

w(A) = M et ¢(B) = N. Donc MN = p(A)p(B) = f(ﬁ) puisque ¢ est affine. Donc AB = fﬁl(Mﬁ)
ey

—
puisque f est bijective d’apres le lemme 3.2.2. On déduit o~ (M)p™*(N) = f~*(MN). On conclut que
@~ ! est bijective d’application linéaire associée f~1. a

3.2.4 Définitions et proposition. Une application affine & — £ qui est bijective est appelée
un automorphisme affine de £. L’ensemble des automorphismes affines de £ est un groupe pour la
composition, appelé groupe affine de £, et noté GA(E).

Preuve. GA(E) est un sous-ensemble du groupe des bijections de € sur £, non vide (il contient ide),

stable pour la loi o d’apres le lemme 3.2.1, et stable par passage & I'inverse d’apres le point (ii) du
corollaire 3.2.3. C’est donc un sous-groupe. a
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3.3 Sous-groupe des translations

3.3.1 Définition. Soit ¥ un vecteur de E. On appelle v

translation de vecteur W Dapplication T € = £ qui, a
tout point M de &, associe le point M’ = M + . Donc : M N

-
M= ra(0)] & (T3 = 7). //fv%
Il est résulte de cette définition que : 75 = ide, et si u =+ 6}, A

alors 75 n’admet aucun point fixe.

3.3.2 Proposition.
(i) Toute translation de € est une application affine £ — £, et son application linéaire associée
est idg.
(ii) Réciproquement, toute application affine £ — £ dont Iapplication linéaire associée est idg
est une translation de £.

Preuve. Soit 7 = 75 ot W € E. Pour tous A,B € &, on a : 7(A)7(B) = 7(A)A + AB + Br( ) =
- —|—ﬁ + = E, ce qui prouve le point (i). Pour (ii), considérons une application affine ¢ : £ — &
dont ’application linéaire associée est f = idg. Soit A € £ arbitrairement choisi; posons U = Ap(A).
Pour tout M € &, on a alors M(p(M) = MA + Ap(A) 4 p(A)p(M). Or par hypothese, o(A)p(M) =
f(AM) = AM. On obtient donc Mp(M) = MA+ 1 + AM = . On conclut que ¢ = 7. O

3.3.3 Proposition. L’ensemble des translations de £ forme un sous-groupe abélien du groupe
affine, noté T'(E) et isomorphe au groupe additif de I'espace vectoriel E.

Plus précisément, pour tous 7, = E,ona: tgory =Ty oTy =Ty, et 77_1 =T_3.

Preuve. D’apres le lemme 3.2.2, il résulte de 3.3.2 que toute
translation est une bijection de £ sur £. Donc I’ensemble
T(E) de toutes les translations de & est inclus dans GA(E).
Prenons M € £ quelconque, et posons :

M = 72(M) et M =r3(M') =2 (72(M)).
Ona MM’ = MM + M'M” = @ + . Ceci prouve que
T% © T = Tz 4w Puisque U+ =77+, il en résulte
que T4 O Ty = T O T+

— —
De plus : MM’ = W si et seulement si M'M = —, donc
M' = 13 (M) si et seulement si M = 7_5 (M"). ]

3.3.4 Un commentaire algébrique. On a vu en 3.2.4 que les applications ¢ : £ — & affines
et bijectives forment un groupe GA(E). D’apres le lemme 3.2.2, la bijectivité de ¢ équivaut a celle
de ’endomorphisme vectoriel associé f, de sorte que ¢ € GA(E) si et seulement si f € GL(E).
On peut donc considérer 'application ¢ : GA(E) — GL(E) qui, a tout automorphisme affine de &,
associe son application linéaire associée.

D’apres le lemme 3.2.1, £ est un morphisme de groupes; c’est-a-dire que, si £(¢) = f et £(¢)) = g,
alors £(1) o p) = go f. Le théoreme 3.1.2 montre que ¢ est surjective. Enfin, la proposition 3.3.2
montre que Ker¢ = {p € GA(E); f =idg} n’est autre que le groupe T(E) des translations de €.

En appliquant le premier théoréme d’isomorphisme GA(E)/Ker/ ~ Im/, on en déduit que 'on
I'isomorphisme de groupes : GA(E) / T(E) ~ GL(E).
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3.4 Sous-groupe des homothéties translations

3.4.1 Définition. Soient A un point de £ et A un réel non-nul. On appelle homothétie affine
de centre A et de rapport A l'application ¥4 : £ — £ qui, a tout M € &, associe le point

Var(M)=A+ AAM. En d’autres termes :
—
(M’ = 94,(M)] & [AM' = A\AM]

P2

P

i

A>0 A<O0 A=-1

Lorsque A =1, on a 94,1 = ide.
Lorsque A = —1, 'homothétie ¥4 1 est appelée la symétrie centrale de centre A; elle associe a
tout point M le point M’ tel que A est le milieu de (M, M’).

3.4.2 Proposition.
(i) Toute homothétie ¥4 ) est une application affine, d’application linéaire associée \idp.
(ii) Toute homothétie est une bijection, donc appartient au groupe affine GA(E).
(iii) L’ensemble des points fixes d’une homothétie ¥4 ) distincte de I'identité (ie. de rapport
différent de 1) est réduit au singleton {A} formé par le centre.
Preuve. Fixons A € £ et A € R, et notons plus simplement ¥ = ¥4,x. Pour tous M, N € £, on a :
I(M)I(NS = AI(NY — AO(MS = \AN — AAM = AMN,

ce qui montre (i). Le poirﬂii) s’e_n)déduit avec 3.2.l£nlisque Aidg est une bijection de E sur E. Enfin,
V(M) = M équivaut & AAM = AM, donc (A —1)AM = ﬁ, d’out A = M des lors que X # 1. O

3.4.3 Définition. On appelle homothétie-translation toute application affine ¢ : € — & dont
I’application linéaire associée f est de la forme f = Aidg, avec A € R*. Le réel non-nul A s’appelle
le rapport de 'homothétie-translation.

3.4.4 Théoreme.

(i) Une homothétie-translation de rapport 1 est une translation. Une homothétie-translation de
rapport A # 1 est une homothétie de rapport A, dont le centre est uniquement déterminé.
(ii) L’ensemble H(E) des homothéties-translations est un sous-groupe de GA(E), égal a la
réunion du sous-ensemble des homothéties et du sous-groupe T(E) des translations de E.
Preuve. Soit ¢ € GA(E) d’application linéaire associée f = Aidg avec A € R*. On a déja montré 3.3.2
que, si A = 1, alors ¢ est une translation.
Supposons donc maintenant A # 1. Soit B € £ fixé, et B’ = ¢(B). Pour tout M € £, on a B'p(M) =
Lp(B)go(M; = f(ETJ) — ABM. En particulier ¢(M) = M si et seulement si B'—]\j = AE?V[, c’est-a-dire
avec la relation de Chasles si et seulement si (1 — \)BM = ﬁ . Ceci montre que ¢ admet un unique
point fixe A, qui est défini par B—z>4 =(1- )\)715‘3—;.
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Pour tout M € &, on a alors : Ap(M) = p(A)p(M) = f(m) = )\m, ce qui prouve que ¢ est
Ihomothétie de centre A et de rapport A. Le point (i) est démontré.

11 est clair que {\idg; A € R*} est un sous-groupe de GL(E). Le fait que H(E) soit un sous-groupe
de GA(E) résulte alors du lemme 3.2.1. Le point (i) se traduit par le fait que H(E) est la réunion du
sous-groupe T(&) des translations et du sous-ensemble des homothéties. ad

3.4.5 Remarques complémentaires. Le point (i) du théoreme se traduit sur le plan pratique
par le fait que :

1. une application affine ¢ vérifiant o(M)p(N) = MN pour tous M, N € € est une translation ;

on trouve son vecteur en prenant un point quelconque A et en considérant le vecteur Ap(A ;,

2. une application affine ¢ pour laquelle il existe A € R*, X # 1, vérifiant o(M)o(N) = AMN
pour tous M, N € £ est une homothétie de rapport A; on trouve son centre en déterminant
son unique point fixe.

Quant au point (ii) du théoréme, il reste a préciser comment se composent entre eux les différents
éléments de H(E). C'est ce qu’explicitent les assertions suivantes, dont les preuves (et les dessins
qui les accompagnent) sont laissés au lecteur a titre d’exercice.

composée de deux translations : 74 o Ty =T

composée d’une translation et d’'une homothétie :
Sidx=1, 79004 =773
SiA#1, 7podar=0Upr ouB=A+(1-\N"1"

composée de deux homothéties de méme centre : Ya,x 004 =4 n

composée de deux homothéties non nécessairement de méme centre :
Si AN =1,094 n00 =T —
s VA X AN (1=X)AA’

! H
Si )\)\l # 1, ﬁA’,)\’ 019,4,)\ = ﬁB,AA’ ol B = A+ ((11:/\>\>\/)) AA/

On prendra garde en particulier au fait que la composée de deux homothéties n’est pas forcément
une homothétie (les homothéties ne forment pas un sous-groupe de H(E)).

3.5 Projections et symétries

3.5.1 Unrappel d’algebre linéaire. Soient F' et H deux sous-espaces vectoriels supplémentaires
dans Pespace vectoriel E, ¢’est-a-dire tels que E = F & H. Cela signifie que tout vecteur @ € F se
décompose de fagcon unique en une somime :

7:7+ﬁ avec U € F et W € H.

L’application p : £ — E qui, a tout U € E ainsi décomposé, associe sa composante ¥ sur F
s’appelle la projection (vectorielle) de E sur F' parallelement a H.

L’application s : F — E qui, a tout U € E ainsi décomposé, associe le vecteur - s’appelle la
symétrie (vectorielle) par rapport a F' parallelement a H.

Il est facile de vérifier que p et s sont des applications linéaires, et que 1'on a :
Kerp = H, Imp=F, Ker(p—idg)=F, pop=np,
ﬁ
Kers={0}, Ims=FE, Ker(s—idg)=F, sos=idg.
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3.5.2 Projection affine

a) Lemme préliminaire. Soient F et H deux sous-espaces affines de € dont les sous-espaces
vectoriels directeurs F et H vérifient E = F + H. Alors F NH # ().

Preuve. Soient A € F et B € H. Comme E = F + H, il existe ¥ € F et W € H tels que jﬁ =T+ 7.
Ona A€ Fet ¥ eF,donc il existe C € F tel que ﬁ = . On réécrit alors E = ﬁ + W sous la
forme W = A@ — R = C@ Ainsi, C@ € H avec B € H,dou C € H. On conclut que C € FN'H. O

b) Théoréme et définition. Soient F et H deux sous-espaces affines de £. On suppose que leurs
sous-espaces vectoriels directeurs F' et H sont supplémentaires dans E. Alors

(i) Pour tout point M de &, il existe un unique point M’ € F tels que le vecteur W
appartienne 4 H. Ce point M’ est I'unique point d’intersection de F avec le sous-espace
affine passant par M et parallele & H. Le point M’ est appelé le projeté de M sur F
parallélement a H.

(ii) L’application 7 : € — £ qui, a tout point M associe son projeté M’ défini ci-dessus s’appelle
la projection affine sur F parallelement a H ; c’est une application affine dont ’application
linéaire associée est la projection vectorielle p : E — E sur F parallelement a H.

(ili) Ona:mom=m.
(iv) L’ensemble des points fixes de 7 est Fixm = F.

Preuve. Soit M un point de £. Notons H' le sous-espace affine de £ passant par M et parallele & H,
c’est-a-dire dirigé par H. Comme E = ' ® H par hypothese, on applique le lemme préliminaire pour
déduire que F N H' n’est pas vide. D’apres la _}prOposition 1.2.6, F NH’' un sous-espace affine de sous-
espace vectoriel directeur FNH. Or FNH = { 0 }, donc FNH' est un singleton ; notons FNH' = {M'}.

—
Ainsiona M € H' et M' ¢ H', donc MM’ ¢ H.
Réciproquement, si N est un point de F vérifiant M 13 € H,on a N € H' (puisque H’' passe par M et
est dirigé par H), d’ot N € FNH’', et donc N = M’. Ceci prouve le point (i).
Les points (iii) et (iv) en découlent immédiatement.
Pour montrer (ii), considérons A € F, qui vérifie donc w(A) = A. Soient M € & quelconque, et

= — S i g it El
M' = 7(M). D’une part M’ € F donc AM' € F. D’autre part MM’ € H. Ainsi AM = AM' + M'M
— — — — —
avec AM' € F et M'M € H, ce qui prouve que AM' = p(AM), c’est-a-dire Aw(M) = p(AM).
— — —

Dés lors, m(M)r(N) = An(N) — An(M) = p(m) —p(AM) = p(m — AM) = p(MN) pour tous
M,N € &, ce qui montre (ii) et acheve la preuve. O

E E

projection affine sur F parallelement a H symétrie affine par rappport a F parallelement a H
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3.5.3 Symétrie affine.
a) Théoréme et définition. Soient F et H deux sous-espaces affines de £. On suppose que leurs
sous-espaces vectoriels directeurs F' et H sont supplémentaires dans E. Alors

(i) Pour tout point M de &, il existe un unique point M" € & tels que le projeté M' = w(M)
défini précédemment soit le milieu de (M, M"). Ce point M" est I'unique point vérifiant

Mw(Mj = W(M)M//. Le point M" est appelé le symétrique de M par rapport a F pa-
rallélement a H.

(ii) L’application o : £ — &€ qui, a tout point M associe son symétrique M" défini ci-dessus
s’appelle la symétrie affine par rapport a F parallelement a ‘H ; c’est une application affine
dont I'application linéaire associée est la symétrie vectorielle s : E — E par rapport a F
parallélement a H.

(iii) On a : 0 oo = idg, d’ot il résulte que o est bijective avec 0! = 0.

(iv) L’ensemble des points fixes de o est Fixo = F.

Preuve. Analogue & celle du théoréeme précédent ; laissée au lecteur en exercice. a

b) Remarques.

_>

1. Dans le cas particulier ou F est un singleton {A}, alors ' = {0} et H = F, donc 7 est
Iapplication constante qui envoie tout point M de & sur A, et o est la symétrie centrale
de centre A quivérifi envoie tout point M de & sur le point M” tel que A soit le milieu de
(M, M").

2. Dans le cas particulier ou F est I'espace £ tout entier, alors FF = E et H = { 0 }, donc 7 et
o sont égales a lapplication identité de £ (qui envoie tout point de M sur lui-méme).

3. Hormis ces cas extrémes, les situations non triviales que l'on rencontrera feront intervenir :

— en dimension 2 des symétries par rapport a une droite D parallelement a une autre
droite D’ non parallele & D ;

— en dimension 3, des symétries par rapport a un plan P parallelement a une droite D,
ou des symétries par rapport a une droite D parallelement a un plan P, avec dans les deux
cas la droite vectorielle dirigeant D qui n’est pas incluse dans le plan vectoriel dirigeant P.
vérifi
De méme bien siir pour les projections.

4. On peut vérifier aisément (la preuve est laissée en exercice) que :
— une application affine ¢ : £ — &£ est une projection si et seulement si p o p = @;

— une application affine ¢ : £ — &£ est une symétrie si et seulement si ¢ o ¢ = idg.

3.6 Exemples en géométrie élémentaire dans le plan

On se place dans cette section dans un espace affine £ de dimension 2.

3.6.1 Théoréme de Thaleés

a) Mesure algébrique d’un bipoint. Soit D une droite affine de &, dirigée par une droite
vectorielle A. Un repeére de D est un couple (O, ?), ot O € Det € € A non-nul.
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1. Pour tout A € D, D’abscisse de A relativement au repere (O, €)

—

Dot est le réel x4 défini par
OA=z,7¢.11 dépend de l'origine O du repere et du vecteur €.

2. Pour tous A, B € D, on appelle mesure algébrique du bipoint (A, B) le réel :
AB =z —x4.

Cette notion ne dépend que du choix du vecteur € (et non de lorigine O), puisque :

@:O?—O—}l:x,g?—am?:(:L‘B—a:A)?:E?.

3. On en déduit que pour tous A, B,C,D € D tels que C' # D, le réel 42 ne dépend pas du
repere choisi sur D.

aB

CD

que le coefficient de colinéarité des vecteurs zﬁ et @ Il est caractérisé par I’égalité :

E:g:gaﬁ.

» Le classique théoreme de Thales exprime alors simplement le fait que les projections affines sont
des applications affines.

» En d’autres termes, pour quatre points alignés A, B, C, D tels que C # D, le réel n’est autre

b) Théoréme. Soient dy, ds, ds trois droites paralléles distinctes dans E. Soient D et D' deux autres
droites, telles qu’aucune des deux ne soit paralléle a dq, ds, ds.
On note A, B, C les points d’intersection de D avec dy, do, d3 respectivement, et A, B', C' les points
d’intersection de D' avec di, ds, d3 respectivement. Alors :

AC AT AM  A'C

= = ——=, et C est le seul point M de £ vérifiant — = —=
AB A'B AB A'B

Preuve. Notons A\ = % le coefficient de colinéarité défini par E = )\B. Soit 7 la projection affine sur
D' parallelement & di,ds,ds. Donc w(A) = A’,n(B) = B',n(C) = C’. Soit p la projection vectorielle

associée a . Traduisons simplement la linéarité de p :

A0 = m(A)r(C = p(AC) = p(AAB) = Ap(AB) = An(A)r(B) = AA'B.

On conclut que A = ﬁjgj.
Si maintenant M est un point de D qui vérifie % = %, alors % = % d’apres ce qui précede de
sorte que :
‘—_) —_— R
AM = AM A — AC 4B — AC,
ce qui prouve que M = C' et acheéve la preuve. a



c¢) Corollaire. Soient D et D’ deux droites sécantes en un point C. Soient A, B € D et A', B' € D',
tous distincts de C'. Alors : L
CB CB

(A4))(BB) = Z— =~

Preuve. Observons que A # A’ et B # B’ puisque D N'D’ = {C}. On peut donc considérer les
droites (AA’) et (BB').
e Supposons (AA")/(BB'). Si A = B, la propriété d’Euclide implique
(AA’) = (BB’), donc A’ = B’. Dans ce cas, ’égalité voulue est claire.
De méme si 1’on suppose A’ = B’. On prend donc A # Bet A’ # B’. On
applique le théoréme précédent en choisissant d; = (AA’), d2 = (BB’)
et ds la droite passant par C' et parallele a d; et da.
On a alors C = C’ et %:%donc:
AC(A’'C +CB") = AIC(AC + CB),
d’ott AC.CB’ = A’C.CB et le résultat voulu.

e Réciproquement, supposons % = gf: = A. Donc C@ = )\CTZX et
— ot —_— = s - —

CB' = ACA". Dot : BB' = CB' — CB = ACA — \CA' = \AA' et
donc (AA")/(BB’). O

Remarquons que, dans I’énoncé ci-dessus, I’égalité des deux rapports traduit simplement le fait que
I’homothétie de centre C' qui envoie A sur B envoie aussi A’ sur B’.

d) Théoréme de Pappus. Soient D et D’ deux droites distinctes du plan £. Soient A, B, C' trois
points de D et A', B',C" trois points de D'. Si (AB')J(BA') et (BC")J(CB'), alors (AC") JJ(CA").

Preuve. On raisonne en distinguant deux cas.
e Supposons D et D’ sécantes en un point O. Appliquons le théoréme de Thaleés sous la forme du corollaire

: T / / OB __ OA’ ) / ’ oC __ OB’
ci-dessus : d’une part (AB’)/(BA’) donc g% = 557, d'autre part (BC")/(CB’) donc 57 = 55+

On en déduit que % = %, ce qui, toujours avec le corollaire précédent, implique (AC")J(CA’).

e Supposons maintenant D et D’ paralléles. On a D = (AB) et D' = (A’B’), donc (AB)/(A’B’).
—_
Des [ d’apres 2.2.5, ’hypothe AB")J(BA") impli zﬁ = B'A'". D é BCH ) (CB’
¢s lors, d’apres , hypothese ( )/( ) implique que e mﬂe ( ‘2//( )

—
implique BC = C'B'. On en déduit par la relation de Chasles que AC=C'A ; donc AC” = CA" d’apres
1.1.2.d). On conclut que (AC")/(CA"). O

3.6.2 Théoréme de Desargues. Soient ABC et A’B'C’ deux triangles sans sommets communs.
On suppose que les cotés sont deux a deux paralleles, c’est-a-dire : (AB)J(A'B’), (BC)J/(B'C") et
(CA)J(C'A"). Alors les trois droites (AA"), (BB') et (CC") sont concourantes ou paralléles.

Preuve. On raisonne en distinguant deux cas.
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e Supposons que (AA’) et (BB') se coupent en un point O. D’apres le corollaire 3.6.1.c) le fait que
(AB)//(A’B’) implique que I’homothétie 1 de centre O telle que n(A) = A’ vérifie aussi n(B) = B’. Son
OA’ _ OB
OA ~ OB’

— — s
Introduisons le point C” = n(C). On a donc OC" = AOC et OA' = \OA ce qui, d’apres 3.6.1.c),
implique que (A’C")J(AC). Ainsi, C" est sur la paralléle & (AC) passant par A’. Mais par hypothése,
cette parallele n’est autre que (A’C’). On conlut que C” € (A'C").
On prouve de méme que C” € (B'C’). Finalement, C” € (A'C’") N (B'C’) donc C" = C’. Or par
définition de C”, les points O, C,C"’ sont alignés. En d’autres termes, (CC’) passe par O.

rapport est A =

e Supposons que (AA’)/(BB’). On reprend le méme raisonnement que ci-dessus avec des translations
algieu d’homothéties. D’apres 2.2.5, (AB)/(A’B’) implique que (AA’B’'B) parallélogramme, donc
AA" = BB'.

—
Introduisons le point C” tel que CC” = AA’. On a (A'C")J(AC). Ainsi, C" est sur la paralléle a (AC)
passant par A’. Par hypothése, cette parallele n’est autre que (A’C’). On conclut que C” € (A'C").

On prouve de méme que C” €_(§’C')._]§inalement, C" e (A'C"Yn (B'C’) donc C"” = C’. Mais par
définition de C”', on a CC"”" = AA’ = BB’, donc (CC") est parallele & (AA’) et (BB’). O

3.6.3 Théoreme de Ménélaiis.
a) Théoréme. Soit ABC' un triangle. Soient A" € (BC), B' € (AC) et C' € (AB). Alors :

A'B B'C C"A _

A, B',C" alignés si et seulement si ——.—.—— =
A'C B'A C'B

A'B B'C CrA

&5+ Ces trois réels sont différents de 0 et 1, et par définition

Preuve. Notons : a =
de a, 3,7, 0on a :

=
Q
=
=
N
2
Il

’ !/ ! ! ! /
A'B=aA'C, B'C=pB'A, C'A=~C'B.
Considérons les homothéties 71 = nara, M2 =755, 13 =1c’~, qui par construction vérifent :

B =m(C), C=n2(4), A=n3(B).

On introduite = 11 o2 onz. C’est une application affine comme composée de trois applications affines,
et 'application linéaire associée est f = (aidg) o (Bidg) o (vidg) = (af7v)ids.

Remarquons d’abord que ¢(B) = n1(n2(ns(B))) = ni(n2(A)) = mi(C) = B. 1l en résulte que le point
— Ty % i
A" = p(A") vérifie : A"B = p(A")p(B) = f(A'B) = (afy)A’B. On déduit que p(A") € (A’'B).
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e Supposons que A’, B’, C’ sont alignés. Notons D la droite passant par A’, B’,C’ et A la droite vecto-
rielle qui dirige D.
On sait que 71 (D) est un sous-espace affine dirigé par aidg(A) = A, donc 11 (D), est une droite parallele
a D. Elle passe par exemple par n1(A’) = A’. Donc 11 (D) = D. De méme 12(D) = D et 3(D) = D, et
finalement ¢(D) = D. Il en résulte en particulier que ¢(A”") € D. Or on a vu plus haut que ¢(A4’) € (4’'B),
donc ¢(A’) est le point d’intersection des droites (A’ B) et D, c’est-a-dire p(A’) = A’.

—_— — — —
On déduit que A'B = p(A")(B) = f(A'B) = (a8v)A’'B, on conclut que afy = 1.

e Supposons que afy = 1. Donc 71 072 0 N3 = idg. Ou encore 1, ' = 12 0 3.

Comme Sy = a~ ! # 1, on sait d’aprés 3.4.5 que 72 0 173 est une homothétie de rapport 5y # 1, et dont
le centre O est sur la droite (B'C’). Comme par ailleurs 1, " est ’homothétie de centre A’ et de rapport
a” ! # 1, on déduit de I'égalité ny' = n2 0ns que A’ € (B'C’). O

b) Exercice d’application : théoréme de Newton.
Avec les notations ci-dessus, on suppose A’, B, C' alignés. Soient I,.J, K les milieux respectifs de
(A, A", (B,B),(C,C"). Montrer que I, J, K sont alignés.

Indication : soient E, F,G les milieux respectifs de (B’,C"),(A,C"), (A, B'); montrer que I € (FG),
J e (GE) et K € (EF).
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L3 Mathématiques - UE Géométrie affine 2021-2022

4 — Isométries affines

4.1 Groupe des isométries affines, déplacements et antidéplacements

Dans tout ce chapitre, £ est un espace affine euclidien, de R-espace vectoriel directeur £. On note
n =dim E = dim €. On note O(E) le groupe orthogonal de E (c’est-a-dire le groupe des isométries
vectorielles de E, voir précédemment en 2.6.5).

4.1.1 Notion d’isométrie affine.

a) Définition. On appelle isométrie affine de £ tout application affine ¢ de £ dans £ qui conserve
la distance, ce qui signifie que :

pour tous points M et N de £, on a d(o(M),o(N)) =d(M,N).

b) Théoréme. Une application affine ¢ de £ dans £ est une isométrie affine si et seulement si son
application linéaire associée f est une isométrie vectorielle de F.

Preuve. Supposons f € O(E). Rappelons que cela signifie que f conserve la norme, c’est-a-dire que :
pour tout vecteur @ de E, on a ||f(W)|| = || 7]

Il en résulte que, pour tous points M, N € £, on a :

d(p(M), o(N)) = [ p(MD)(NS|| = || F(MN)| = [[MN|| = d(M, N),

ce qui prouve que ¢ est une isométrie affine. La réciproque découle du méme calcul, en écrivant un
vecteur U € E quelconque sous la forme M ﬁ avec M, N € €&. a

c) Corollaire et définition. Toute isométrie affine est une bijection de & sur &, et les isométries
affines de £ forment un sous-groupe du groupe affine GA(E), noté Is(E)

Preuve. Les deux propriétés résultent des lemmes 3.2.1 et 3.2.2 puisque les isométries vectorielles de
sont bijectives et que O(E) est un sous-groupe de GL(E). O

d) Commentaire (une précision intéressante au plan théorique). En fait, une application
¢ : & — £ qui conserve les distances est nécessairement affine (et donc est une isométrie affine), de
sorte que I’hypothese “p affine” peut étre enlevée de la définition a). On donne a titre d’exercice
une preuve de cette assertion.

Solution. Supposons que ¢ conserve la distance. Cela se traduit par le fait que ||[p(M)p(N)|| = HMZ@ I
pour tous points M, N € £. Ceci étant, fixons un point O de £ est considérons 'application f: E — FE

—
qui, & un tout vecteur 7 associe le vecteur ¢(O)¢ (M) ol M est 'unique point de &£ tel que U =OM.

e Premiere étape : on montre que f conserve le produit scalaire dans FE. Pour cela soient 7 v quel-
conques de E. Les points M = O + W et N = O + ¥ vérifient « = OM et U = ON En utilisant une
des identités de polarisation classiques, on calcule :

2/(0).f(V )—Hf( )H2+Hf( )II2—Hf( ) = F()II?
= (@) (M|I* + [2(0)e (NI ~ o (V) (M) 2

= HOM“ + HWII |NM|| parce que ¢ est une isométrie affine de £
=2+ VP -7 - =22V
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e Deuxiéme étape : on montre que f est linéaire. Pour cela, soient U et U deux vecteurs quelconques
de E et A\ € R. En utilisant les propriétés du produit scalaire, ainsi que le fait que f conserve le produit
scalaire (et donc la norme), on calcule :

£ +2T) = F() = MNP = I1F T+ 2D+ (£ @) + 22 ()P
—2f(q + AV).f(X) = 22 (T + AV).f(V) + 20 f(X).f(V)
=%+ 2T+ 12| + 22| 7|2
— 2 +AV). U =20 +A\V). W + 220UV
= (7 +2V) =AU« = \V|?
=0.
Ceci prouve que f(@ + A7) = f(&) + Af(7) pour tous @, 7 dans E et tout A € R, et donc que f
est une application linéaire.
e Troisiéme étape : on montre que f est bijective. Soit @ € Ker f, on a f(ﬁ) = 0, donc ||f(7)|| =0,
d’ott || || = 0 puisque f conserve la norme, et finalement @ = 0. Ceci prouve que f est injective.
Parce que f est un endomorphisme de E qui est de dimension finie, on conclut que f est bijective. En

résumé, f est une application linéaire bijective de E sur F qui conserve le produit scalaire, c’est-a-dire
une isométrie vectorielle de E.

e Conclusion. On a ainsi construit une application linéaire f : E — E qui est une isométrie vectorielle
PR
et qui par définition vérifie f(OM) = ¢(O)p(M) pour tout M € £. Donc pour tous M, N € £, on a :
— —
f(MN) = f(ON - OM) = f(ON) - f(OM) = p(0)o(N) — p(0)p(M) = p(M)@(N)

ce qui prouve que ¢ est une application affine d’application linéaire associée f. a

e) Remarques pratiques importantes. Les isométries affines étant des bijections affines, toutes
les propriétés de ces dernieres étudiées au chapitre précédent s’appliquent en particulier aux isométries
affines : conservation de ’alignement, conservation du parallélisme, points fixes, etc. Le fait que
de plus elles conservent la distance entraine des propriétés supplémentaires dont la conservation
des sous-espaces orthogonaux, la conservation des aires et des volumes en dimension 2 ou 3, la
conservation des angles dans le plan comme on le verra plus loin.

4.1.2 Déplacements et antidéplacements.

a) Définitions. Une isométrie affine de £ est dite directe (respectivement indirecte) lorsque son
application linéaire associée est une isométrie vectorielle directe (respectivement indirecte) de FE.
Une isométrie affine directe est aussi appelée un déplacement; une isométrie affine indirecte est
aussi appelée un antidéplacement.

Rappel important d’algébre linéaire : un endomorphisme f de E est une isométrie vectorielle si et
seulement si sa matrice M dans une base orthonormée B quelconque de E est une matrice orthogonale
(ce qui signifie que *M.M = M."M = idg). Il en résulte que, comme on I’a déja rappelé en 2.6.5, toute
isométrie vectorielle f de E vérifie det f = 1 ou det f = —1. Les isométries vectorielles de déterminant
1 sont dites directes; elles forment un sous-groupe de O(E) noté O (E) ou encore SO(E). Celles de
déterminant —1 sont dites indirectes ; leur ensemble noté O~ (E) n’est pas un sous-groupe.

b) Proposition. Les déplacements forment un sous-groupe de Is(&), noté Is* ().
Les antidéplacements forment un sous-ensemble de Is(€) qui n’est pas un groupe, noté Is™ (€).

Preuve. Evident d’apres le théoréme 4.1.1.b), le lemme 3.2.1 et les propriétés des groupes O(E) et O1 (E
rappelés ci-dessus. a

En résumé : ¢ € Is(€) si et seulement si f € O(E), et ¢ € IsT(€) si et seulement si f € OT(E).
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4.1.3 Premiers exemples d’isométries affines.

a) Cas des translations. Toute translation est un déplacement. C’est évident puique son appli-
cation linéaire associée est idg, qui appartient & OT(E) ; voir 3.3.2.

b) Cas des symétries centrales. Une homothétie de rapport A € R* est toujours bijective, mais
c’est une isométrie affine si et seulement si A = +1. En effet, 'application linéaire associée est
Aidg comme on 'a vu en 3.4.2, qui appartient & O(E) si et seulement si A = 1. Donc les seules
homothéties qui sont des isométries affines sont idg et les symétries centrales. De plus, puisque
det(—idg) = (—1)", on a :
une symétrie centrale est un déplacement si n est pair et un antidéplacement st n est impair.

c) Cas des symétries orthogonales. Pour tout sous-espace affine F, on appelle symétrie affine
orthogonale par rapport a F la symétrie affine or par rapport a F parallement a la direction
orthogonale a F. On reprend donc la construction et les propriétés de 3.5.3 dans le cas particulier
ou H = F*. L’application linéaire associée & o est la symétrie vectorielle orthogonale sp : E — F

par rapport au sous-espace vectoriel F' directeur de F. On sait d’apres le cours d’algebre linéaire
qu'une telle symétrie orthogonale sp est une isométrie vectorielle. On en déduit que :

les symétries affines orthogonales o sont des isométries affines.

De plus, il résulte aussi du cours d’algébre linéaire que F' = Ker(sg —idg) et F* = Ker(sp +idg),
d’ott 'on déduit par la choix d’une base adaptée & la somme directe E = F & F+ que det sp =
(—1)"=dmE Donc sp € OF(E) si et seulement si n — dim F est pair. On conclut que :

une symétrie affine orthogonale or est un déplacement si et seulement si n — dim F est pair.

Une symétrie orthogonale par rapport & un hyperplan est appelée une symétrie hyperplane ou une
reflexion; c’est toujours un antidéplacement.

d) Contre-exemple. Les projections affines ne sont pas des isométries affines puisque qu’elles ne
sont pas bijectives (voir 3.5.2).

4.1.4 Détermination d’une isométrie par I’image d’une base.
a) Théoréme. Soit (Ap, Ai,...,A,) une base affine de €. Soit (By, Bi,...,By) une famille de
(n + 1) points. On suppose que :

d(A;, Aj) = d(B;, Bj) pour tous 0 < i,j <mn. (*)
Alors il existe une unique isométrie ¢ € Is(€) telle que p(A;) = B; pour tout 1 < i < n. De plus
(Bo, By, ..., By) est une base affine de £.

Preuve D’apres la proposition 3.1.8, il existe une unique application affine ¢ de £ dans & telle que

¢(A4;) = B; pour tout 0 < i < n. Son application linéaire associée est déterminée par I'image des
- — — —
vecteurs de la base A = (AopAi,...,AoAn) de E, a savoir les vecteurs f(AoA;) = BoB; pour tout

1 < ¢ < n. Tout ceci est purement affine, et n’utilise pas I’hypotheése (*). La question est de montrer
que (*) implique que ¢ est une isométrie.
Pour tout 0 < 4,7,k < n, on calcule :

donc AZAJAlAk = %(AlAi =+ AZAi — A]A%) De méme BiBj.Bin = %(B»ngj2 + Ble — BJBE) Or

d’aprés (¥), on a: A;A; = B;Bj, AiAr = BiBy, AjAr = B;jBy. 1l en résulte que :
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AZAJAlAk = BiBj.Bin pour tous 0 < 14,7,k < n. (**)
_

Deés lors, soient M, N € £ quelconques. Le vecteur MZ@ se décompose dans la base A de £ en M N
> i AgA; avec a; € R. On calcule :

PN} = F(MN) = X1, i f(AaA) = 1, aup(Ao)p(A) = X7, BB

— — ——
De plus | MN|J? = (ZZ; aiAOAi).(z;;I al-AoAi) = 31, Y @i AgAr AgA;. En utilisant (%),
on en déduit :

— n n —_— n e n
IMN|? = S0, 5, @i BoBi.BoB; = (S0, aiBoB.) (S0 aiBoBr ) = Il (M) (NJ1>.

En résumé ||<p(M)<p(N}|| = HMI@ ||, et donc ¢ € Is(E).

Il en résulte en particulier que ¢ est bijective. Donc (Bo, Bi, ..., By) est une base affine de £, comme
image d’une base affine par une bijection affine. ad

b) Exemple d’application en géométrie plane élémentaire. On suppose dim & = 2. Soient
(ABC) et (A'B'C") deux triangles tels que A'B’ = AB, B'C' = BC, C'A’ = CA. Alors il existe
une unique ¢ € Is(€) telle que p(A) = A’, p(B) = B, p(C) = C'". Cette propriété est connue sous
le nom de troisieme cas d’égalité des triangles.

A/

i A A
40 ,
AN
\ p \\ o'
\'\ , . AN
N C' 1
\ e B 1
\ 5 “
5 ! ==
\ K,
C \_\ /_
réflexion rotation (voir plus loin)

Le théoreme qui suit a pour objet de ramener ’étude des isométries affines a celles des isométries
vectorielles.

4.1.5 Forme réduite d’une isométrie
a) Théoréme et définitions. Soient ¢ € Is(E) une isométrie affine, et f € O(E) Iisométrie
vectorielle associée.
(i) II existe une unique translation T € T'(€) et une unique isométrie o € Is(€) admettant (au
moins) un point fixe, telles que : ¢ =T 0 g = pgoT.
(ii) Dans cette décomposition, le sous-espace affine V des points fixes de g est dirigé par le
sous espace vectoriel] V.= Ker(f —idg), et le vecteur U de la translation T appartient a V.

La décomposition unique ¢ = 7o ¢y = g o 7 s’appelle la forme réduite ou la décomposition
canonique de ¢; on dit que 7 est la composante translation de ¢ et que g est la composante a
points fizes de .
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Preuve. Observons d’abord que les sous-espaces vectoriels V' = Ker(f —idg) et W = Im(f —idg) sont
supplémentaires et orthogonaux dans E. Soient z € V et y € W. Donc f(z) =z et y = f(z) —z pour un
z€E.Douzy=ux.f(2) —x.2= f(z).f(2) —x.2. Mais f(z).f(2) = z.z car f € O(E), et donc z.y = 0.
Ceci prouve que V. C Wt et W C V1. Or dimV + dim W = dim Ker(f — idg) + dimIm(f — idg) =
dim E = n implique que dimV = n — dimW = dim W, et de méme dimW = dim V' ; les deux
inclusions ci-dessus sont donc des égalités.

e Ceci étant, fixons A € £ quelconque; Ap(A) se décompose de fagon unique en :

Ap( \— W +W avecd eVetwWeW. *)

Pour le vecteur ¥ ainsi déterminé, notons 7 = 7. Introduisons ¢o = 7' 0 ¢ = 7_= o . 1l est clair
que o € Is(€) comme composée de deux isométries affines, et que son application linéaire associée est
I'isométrie vectorielle fo = idgof = f.
Parce que @ € V, on a 70 g = pooT.

En effet : pour M € &, notons M1 = 7(M) et M2 = po(M1) = (poo7)(M), puis M1 = po(M)

et Mh = 7(M]) = (Towo)(M). On calcule My My = My M, +M{ M} = po(M;)o(M)+7U =

—= . ,

FMiM)+d = f(—) + @. Mais f(d) = car @ € V. Donc My = M}.

Par ailleurs, ¢o(A) = 7_= 0 ¢(A) donc p(A)po(A) = =1, de sorte que d’apres (*) :
Apo(A) = Ap(A) + p(A)po(A) = Ap(A) — T = W.
Comme W € Im(f —idg), il existe 5 € E tel que Apo(A) = W = f() — . Introduisons le point
B € £ tel que —% = AB. On obtient :
— — —

Bgo(B) = BA+ Apo(4) + po(A)go(B) = BA+ Apo(4) + f(AB) = 7 + /() = 7 + f(-F) = 0.
Donc B est un point fixe de ¢o.

e Montrons enfin I'unicité de la décomposition. Supposons ¢ = T o @o = @o o T avec T = 74 € T(E)
et po qui admet des points fixes. Fixons A € £ quelconque. Notons A1 = 7(A) et As = @o(A1), et
Al = po(A) et Ay = 7(A]). L’hypothese de commutation de 7 et ¢o impliquant & A = A5, on a, en
reprenant les mémes calculs que ci-dessus :

05 = Az Ab = Az AL + ALAL = o(A1)go(A) + T = f(A1A) + T = f(— ) + 0.
Donc f(ﬁ) = 7, Cest-d-dire @ € V. Par ailleurs, introduisons un point fixe B de ¢g. On a :

Ago(A5 = AB + Boo(A) = AB + go(B)po(A) = AB + f(BA),
ce qui prouve que : m €Im(f —idg) =W.
Or on peut décomposer : Ap(A) = Apo(A) + po(A)p(A) = Apo(A) + 0o(A)T(po(A)) = Apo(A) + .
Ainsi, pourtoutAGE,ona:m:m+7avecm€Wet7€V.

Si on a une autre décomposition ¢ = 74 0 1 = 1 0 T, il vient de méme : Ap( ) = Agm(A; + U avec
Ap1(A EWet W cV. MaisEzV@W,don07:77d’of1gpo=gp1. O

b) Exercice : isométries affines en dimension 1. Dans le cas (trivial) ot £ est de dimension 1,
les déplacements de £ sont les translations, et les antidéplacements de £ sont les composées d’une
translation par une symétrie centrale.

En effet. On suppose que dim& = dim E = 1. Il est clair que End E = {\idg; A € R} et GL(F) =
{\idg; A € R*}. On en déduit que O(E) = {idg, —idg}, avec OT(E) = {idg} et O™ (E) = {—idg}.
Soient alors ¢ € Is(€), et f € O(F) son application lindaire associée.

e Ou bien ¢ € Ist(€); alors f = idr donc ¢ est une translation (dans la décomposition canonique de
p,ona g =1idg et ¢ = 7).

e Ou bien p € Is7(€); alors f = —idg. Dans la décomposition canonique ¢ = 7 0 ¢g, on a aussi
o € Is7(€), avec le méme [ associé, et V={M € £; po(M) = M} # (. Comme V est un sous-espace
affine de la droite &£, deux cas seulement sont possibles :

-V = &, mais alors ¢ = idg, ce qui contredit ¢o € Is™(E).

~ V est un singleton {B}; alors pour tout M € & on a Bgpo(M) = ¢o(B)po(M) = f(B—>) = —B—]\Zf,
donc g est la symétrie centrale de centre B.
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4.2 Exemples en géométrie élémentaire : classification des isométries affines du
plan.

On suppose dans cette section que l'espace affine euclidien £ est de dimension 2. On suppose de
plus que E est orienté (voir 2.6.5).

4.2.1 Exemples déja rencontrés. En appliquant les résultats généraux de 4.1.3, dans le plan
affine euclidien &, on connailt déja comme exemples d’isométries affines :

1. les translations, qui sont des déplacements; I’application linéaire associée a une telle trans-
lation 74 est idg. L’ensemble des points fixes de 74 est vide des lors que w# 0.

2. les symétries centrales, qui sont des déplacements; 'application linéaire associée a une
symétrie centrale o4 est —idg. L’ensemble des points fixes de o4 est le singleton {A}.

3. les réflexions (symétries orthogonales par rapport a une droite affine), qui sont des an-
tidéplacements ; I’application linéaire associée a une telle réflexion op est la symétrie vecto-
rielle orthogonale sa par rapport a la droite vectorielle A dirigeant D. L’ensemble des points
fixes de op est la droite D. On appelle D ['azxe de la réflexion op.

N/

M’
AI

4.2.2 Symétries glissées

a) Définition et proposition. Soient D une droite du plan affine £ et 7 un vecteur appartenant
a la droite vectorielle D de E dirigeant D. On appelle symétrie glissée d’axe D et de vecteur u la
composée de la réflexion d’axe D et de la translation de vecteur . Elle vérifie op o T = T3 00D.

Preuve. Notons pour simplifier 7 = 7 et ¢ = op. Soit M un point

quelconque de £.
Posons N = 7(M), puis M’ = o(M).
Posons par ailleurs P = op (M), puis M = 7(P).

Ona MN = @ = PM” par définition de 7 et MP = NM' par
définition de o. D’ou :

— —— —
MM" = MP + PM" = NM' + MN = MM, done M’ = M",

ce qui montre que Toog =0 oT. O

b) Proposition. Toute symétrie glissée du plan est une isométrie affine, et plus spécifiquement un
antidéplacement.
Preuve. C’est clair puisqu’il s’agit de la composée d’un déplacement et d’un antidéplacement. a

c¢) Remarques. Une réflexion est un cas particulier de symétrie glissée, celui ou le vecteur de
translation dans la symétrie glissée est le vecteur nul.

Une symétrie glissée de vecteur non-nul n’admet aucun point fixe.
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4.2.3 Rotations affines

a) Rappels d’algebre linéaire. Les éléments du groupe orthogonal O(FE) lorsque E est de di-
mension 2 sont connus et peuvent étre explicitement décrits.

— Les éléments de O (E) sont appelés les rotations vectorielles. Pour toute f € O (E), il existe
un réel 0 (défini modulo 27) tel que la matrice de f dans n’importe quelle base orthonormée
directe de E est :

Ry = (cos@ 7sin0).

sin 6 cos 6

On note alors f = rg et on appelle ry la rotation vectorielle d’angle 6. Un calcul immédiat
montre que Ry X Ry = Ry ¢, ot il résulte que :
rg o Tgr = Tr9ig PpoUr tous 6,60 € R.

Remarque. Une propriété importante découlant de cette définition est que, pour tous vecteurs non-
nuls de méme norme ¥ et ¥ dans FE, il existe une unique rotation rg telle que 7‘9(7) =7.

Cela permet de définir I'angle de vecteurs (ﬂ% que 'on identifie & 6 par abus de notation (il
serait plus correct de dire que 0 est une mesure de cet angle). La relation de composition ci-dessus
conduit alors & une forme de relation de Chasles pour les angles sous la forme :

(ﬁ) + (ﬁ) = (ﬁ) pour tous ¥, ¥, W € E.

— Les éléments de O~ (F) sont les symétries vectorielles orthogonales par rapport aux droites

vectorielles. Pour une telle symétrie sa, la matrice de sa dans une base orthonormée de E

est de la forme (% fa) avec a,b € R tels que az + b2 =1.

En particulier, comme les vecteurs de A sont fixés par sa et que les vecteurs de AL sont transformés
en leur opposé, on peut choisir une base orthonormée B de E formée d’un vecteur directeur de A et

d’un vecteur directeur de AJU de sorte que la matrice de sa dans B est ((1) _01 )

b) Définition. Soient A un point du plan orienté £ et 6 un réel. On appelle rotation affine de centre
A et d’angle 8, notée p4 g, 'unique application affine de £ dans £ qui fixe A et dont I'application
linéaire associé est la rotation vectorielle r¢9 de E d’angle 6.

Remarquons que cette définition repose sur ’application du théoreme 3.1.2.
Il en résulte en particulier que :
— si 0 €27, alors pyg = idg,
— si 0 = m modulo 27, alors py ¢ est la symétrie centrale de centre A.

c) Proposition. Toute rotation affine de £ est une isométrie, et plus spécifiquement un déplacement.

Preuve. Evident d’aprés 4.1.1.b et 4.1.2 puisque les rotations vectorielles sont des éléments de O (E).O

d) Construction.
Soit M un point de £ distinct de A.
H T/

Le vecteur @ = AM de E est non-nul. M

Soit ¥ I'image de U par la rotation vectorielle ry de E. N

1l existe un unique point M’ de € tel que ¥ = AM’.
— —

On a ainsi : AM' = rg(AM)

Par construction, on a :

|

d(A, M) =d(A, M), et 0 est Pangle (m,m/) A
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e) Remarques. Les propriétés suivantes découlent directement des considérations précédentes.

1. La composée de deux rotations de méme centre A et d’angles respectifs 6 et 6 est la rotation
de centre A et d’angle 6 + 6. La bijection réciproque de la rotation de centre A et d’angle
0 est la rotation de centre A et d’angle —6.

2. L’ensemble des points fixes d’une rotation affine d’angle non-nul modulo 27 est réduit a son
centre.

4.2.4 Composée de deux réflexions.
a) Proposition.

(i) La composée de deux réflexions d’axes strictement paralléles est une translation dont le
vecteur est dans la direction orthogonale aux axes.

(ii) La composée de deux réflexions d’axes sécants est une rotation dont le centre est le point
d’intersection des axes.

Plus précisément, pour D et D’ deux droites affines distinctes de € de droites vectorielles directrices
Det D' ona:

Si D et D' sont paralleles, alors opy o op est la translation 79z, ol @ est le vecteur orthogonal &
D dont la norme est égal a la distance entre les deux droites et dont le sens est de D vers D'.

Si D et D’ sont sécantes en un point A, opy 0 op est la rotation p4 29 de centre A et d’angle 26,
ou # est I'angle entre les droites D et D', qui est défini modulo 7.

D

Preuve. Soit M un point quelconque de €. Notons M’ = op(M) et P le milieu de [M, M’], qui appartient
a D. Notons M" = opi(M') et Q le milieu de [M’'M"], qui appartient a D’.

— — —
Ona MP = PM et M'Q = QM”, d'ot : MM* = MP + PO+ QM" = PM + PO + M'Q = 2P0.
Dans la premiére configuration, le vecteur F@ est indépendant du point M ; en posant u = I%, on
obtient le résultat voulu.

—

Dans la seconde configuration, on a : (A—>M, ﬁ) = (ﬁ, AM') et (AM', m) = (m, AM"), d’ou :
(AM, AM") = (AM, AP) + (AP, 4Q) + (A0, AM") = (AP, AM') + (AP, AQ) + (AM’, AQ),

o —

c’est-a-dire (m, AM") = 2(@, @), ce qui acheve la preuve. a
b) Remarque. Les mémes calculs permettent de vérifier réciproquement que :

1. Toute translation de £ distincte de idg¢ est la composée de deux réflexions dont les axes sont
paralleles et de direction orthogonale a la direction du vecteur de la translation, et dont I'un
peut étre choisi arbitrairement.

2. Toute rotation de & distincte de ide est la composée de deux réflexions dont les axes sont
sécants en le centre de la rotation, et dont I'un peut étre choisi arbitrairement.
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4.2.5 Classification des isométries du plan (premiére méthode). On donne une descrip-
tion explicite de toutes les isométries affines du plan affine euclidien £, via une classification suivant
leurs points fixes.

a) Lemme. Si ¢ est une isométrie affine de £ qui fixe trois points non alignés, alors ¢ = idg.

Preuve. C’est vrai pour toute application affine de £ dans £ comme on I’a vu en 3.1.8.b.(2). a

b) Lemme. Si ¢ est une isométrie affine de £ distincte de idg qui fixe au moins deux points
distincts A et B, alors ¢ est la réflexion d’axe (AB).

Preuve. Soit C' un point de £ n’appartenant pas a la droite (AB).
Notons C' = ¢(C). Comme ¢ est une isométrie, on a d(A,C) =
d(e(A),p(C)) = d(A,C") et de méme d(B,C) = d(B,C"). Donc la
droite (AB) est la médiatrice de (C,C"). Il en résulte que, si l'on note
o la réflexion d’axe (AB), on a o(C') = C'. Posons 9 = o o ¢, qui
est une isométrie de £ comme composée de deux isométries. On a :
P(A) = o(A) = A, Y(B) = o(B) = B et ¢(C) = o(C') = C. On

applique le lemme 1 pour conclure que ¥ = idg, et donc ¢ = 0. O

c¢) Lemme. Si ¢ est une isométrie affine de £ qui fixe un unique point A, alors ¢ est une rotation

de centre A.

Preuve. Soit B un point de £ distinct de A. Posons B’ = ¢(B), qui
est donc distinct de B et considérons la médiatrice D de (B, B’). On
a d(A, B) = d(p(A),¢(B)) = d(A,B’), d’ou A € D. Si l'on note o la
réflexion d’axe D et 1) = g o, on a donc P(A) =o(A) = A et ¢Y(B) =
o(B") = B. Ainsi, 9 fixe au moins deux points distincts. D’apres les
deux lemmes précédents, deux cas seulement peuvent se présenter : le
cas 1 = idg est impossible car on aurait alors ¢ = o ce qui contredit
I’hypotheése que ¢ n’a qu’'un seul point fixe; on est donc forcément

dans le cas ou 1 est la réflexion o’ d’axe D' = (AB). On en déduit que ¢ = o o ¢’, et comme les axes
D et D' sont sécants en A, on conclut avec 4.2.4 que ¢ est une rotation de centre A. a

d) Lemme. Si ¢ est une isométrie affine de £ qui ne fixe aucun point de &, alors ¢ est une
translation ou une symétrie glissée de vecteur non-nul.
—
Preuve. Soit A un point quelconque de . On a A’ = p(A) # A, donc le vecteur @ = A’ A est non-nul.

La translation 7 de vecteur @ vérifie 7(A’) = A donc lisométrie ¥ = 7 o ¢ vérifie )(A) = A. Elle
satisfait donc aux hypotheses de I'un des trois lemmes précédent.

e Dans le cas ot 9 = idg, on conclut que ¢ = 7! est une translation.

e Le cas oll 9 est une rotation p de centre A conduit & ¢ = 7~ op. Soit alors

D la droite affine passant par A et de direction orthogonal au vecteur AA’
de la translation 7~ . D’apres la premiére des remarques de la fin de 4.2.4,
il existe d’une part une droite D’ parallele & D telle que 771 = op/ 0 op
et d’autre part une droite D" sécante & D en A telle que p = op o opn.
On conclut que ¢ = opr 0 op 0 0p 0 oprr = opr © Opr qui est une rotation
puisque par construction D’ et D’ sont sécantes. Ceci contredisant le fait
que @ est sans point fixe, ce cas est impossible.

e Reste le cas ol 1 est une réflexion o d’axe D passant par A. On a donc ¢ = 7! 0 op. Décomposons

le vecteur — % de la translation 7! sous la forme — % = ¥ + W avec ¥ € D et W € D+, ot
D désigne la droite vectorielle de E dirigeant D. Comme W est orthogonal a D, il existe d’apres la
premiere des remarques de la fin de 4.2.4 une droite D’ parallele & D telle que 75 = opr © op. Ainsi
QW =T_4 00D =T34 OTg 00D = Ty O0p/ O0p O0p = T O Opr Ce qui, puisque o appartient a la
direction D de D’ (rappelons que les droites D et D’ sont paralléles), montre que ¢ est une symétrie
glissée. O
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e) Théoréme de classification.
(i) Les déplacements du plan affine euclidien £ sont les rotations et les translations.
(ii) Les antidéplacements sont les réflexions et les symétries glissées.
Preuve. 11 suffit de synthétiser les résultats précédents. ]

f) Corollaire. La classification des isométries du plan affine euclidien £ suivant leurs ensembles
de points fixes est donnée par le tableau suivant :

ensemble des points fixes déplacement antidéplacement
& ide _
droite D - réflexion d’axe D
singleton {A} rotation de centre A -
0 translation de vecteur non-nul | symétrie glissée de vecteur non-nul

Une autre conséquence est, avec la proposition 4.2.4, que toute isométrie affine du plan peut étre
obtenue en composant des réflexions affines, ce que formule le corollaire suivant.

g) Corollaire. Les réflexions engendrent le groupe Is(€) du plan affine euclidien .

Plus précisément, tout déplacement de & est le produit de deux réflexions, et tout antidéplacement
de £ est une réflexion ou un produit de trois réflexions.

4.2.6 Classification des isométries du plan (seconde méthode). On donne ici une méthode
plus directe, mais moins illustrative : le théoréeme sur la forme réduite d’une isométrie affine vu en
4.1.5 ramene ’étude des isométries affines du plan £ a celle des isométries vectorielles de F, et la
description algébrique connue du groupe orthogonal O(FE) en dimension 2 permet de conclure.

a) Lemme. Tout déplacement affine du plan £ est une translation ou une rotation affine.

Preuve. Soit ¢ € IsT(£), d’application linéaire associés f € OT(E). Comme on ’a rappelé en 4.2.3.a),
il existe # € R (défini modulo 27) tel que f = rg. Si 6 € 27Z, alors f = rp = idg ; d’apreés la proposition
3.3.2, on conclut que ¢ € T(E).

Supposons maintenant 6 ¢ 27Z. Soit R (O B) un repere orthonormé direct de €. Soient (a, 3) les
coordonnées dans ce repere du point (,0 . Pour tout M € S de coordonnées (z,y), en notant (z’,y")

_ ' —a=x cos O—y sin 0
les coordonnées de (M), on a : p(O ) f( OM =Ty (OM) donc : { o/ —B=x sin 04y cos 6 °

(1 —cosf) + ysinfh = «

—zsinf +y(1 —cosh) =8"

Le déterminant de ce systéme est (1 —cos #)?+sin” # qui est non-nul puisque § ¢ 27Z. Le systéme admet
donc une unique solution (z,y), donc ¢ a un unique point fixe A.vérifi En résumé, ¢ est une application
affine qui fixe un point A et dont I’application linéaire associée est 9. On conclut que ¢ = pa,g. a

Deés lors, M est un point fixe de ¢ si et seulement si {

b) Lemme. Tout antidéplacement affine du plan £ est une symétrie glissée.

Preuve. Soit ¢ € Is™(£). D’apres le théoreme 4.1.5.a), il existe 7 € T(E) et po € Is(€) uniques telles
que ¢ = T oy = o o T et telles que o admette des points fixes. Si 'on note U le vecteur de 7 et V
le sous-espace vectoriel de E directeur du sous-espace affine V des points fixes de g, on sait d’apres
4.1.5.a) que Pona: @ € V. Comme po =7 o avec ¢ € Is™(€) et 7 € Ist(E), on a : ¢ € Is™ (€).
L’application linéaire associée vérifie donc fo € O~ (E). Comme on I'a rappelé en 4.2.3.a), fo est une
symétrie orthogonale sa par rapport a une droite vectorielle A de E. Donc V = Ker(fo —idg) = A, ce
qui prouve que V est une droite affine D de £. En résumé, D est le sous-espace affine des points fixes
de ¢o et fo = sa, donc g est la symétrie affine orthogonale op par rapport a D. O
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4.3 Exemples en géométrie élémentaire : isométries affines en dimension 3

On suppose dans cette section que ’espace affine euclidien £ est de dimension 3. On suppose de
plus que E est orienté (voir 2.6.5).

4.3.1 Exemples déja rencontrés. En appliquant les résultats
généraux de 4.1.3, dans l'espace affine euclidien £ de dimension 3, on
connalt déja comme exemples d’isométries affines :

— les translations, qui sont des déplacements, ¥ 0 y

— les symétries centrales, qui sont des antidéplacements,

— les réflexions (symétries orthogonales par rapport a un plan affine),
qui sont des antidéplacements.

4.3.2 Rotations affines en dimension 3.

a) Rappels d’algebre linéaire. Les éléments du groupe orthogonal O(FE) lorsque E est de di-
mension 3 sont connus et peuvent étre explicitement décrits. On rappelle d’abord ici la forme des
éléments du sous-groupe OT (E).
(i) Définition. Pour tout vecteur non-nul U € E et tout réel 6, il existe une isométrie directe f de
E telle que la matrice de f dans toute base orthonormale directe B de E admettant ' = ﬁﬁ
comme premier vecteur est : Lo .

Mati(f) = (g o0 o ).

Cette isométrie est appelé la rotation vectorielle d’axe A dirigé et orienté par 7, et d’angle 0.

On la notera ra g.vérifi (ii) Remarques. Si 0 € 277, alors ra g est égale a idp.

Sinon, A est le sous-espace propre associé a la valeur propre 1, c’est-a-dire que les vecteurs fixés
par ra g sont exactement les vecteurs de A.
Dans le cas particulier ou # = 7 modulo 27Z, la rotation ra g n’est autre que la symétrie orthogonale

par rapport a la droite A.vérifi On dit alors que ra - est le retournement d’axe A, ou le demi-tour
d’axe A.

(iii) Description. Sil’on considere U, U 5 deux vecteurs tels que B = (71, s, 73) constitue une
base orthonormale directe B de E, et si I'on note A la droite de base @1 et H = AL le plan de
base (72, 73), la restriction de 7 ¢ a la droite A est ida, et la restriction de ra ¢ au plan H est
la rotation vectorielle plane d’angle 6.

Un résultat fondamental démontré en algebre linéaire est alors que :

(iv) Théoréme. En dimension 3, les éléments de Ot (E) sont les rotations vectorielles.
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b) Définition. Pour toute droite affine orientée D de £ et
tout # € R, on appelle rotation affine d’axe D et d’angle
¢ T'application affine ppy : &€ — & telle que son applica-
tion linéaire associée soit la rotation vectorielle ra g de E
d’axe la droite vectorielle orientée A de E directrice de D et
d’angle 6, et telle que pp g(M) = M pour tout point M de
la droite D.

Notons que l’existence et 'unicité d’une telle application
affine repose sur le théoreme 3.1.2.

vérifi

c) Proposition. Pour toute droite affine orientée D de £ et tout § € R, la rotation ppg est un
déplacement de £. Si § = 0 modulo 27, alors ppg = idg ; sinon, les points fixes de py g sont les

points de D.

Preuve. La premiere assertion résulte immédiatement de la définition 4.1.2.a) et du théoréme rappelé
au point (iv) du a) ci-dessus. La seconde assertion découle de la proposition 3.1.7 et de la remarque (ii)
des rappels a) ci-dessus. O

4.3.3 Groupe des déplacements en dimension 3.

a) Définition. Pour toute droite affine orientée D de £ et
tout 8 € R, on appelle vissage de £ tout produit d’une rota-
tion pp g au sens précédent par une translation 7 telle que
le vecteur @ de vérifi translation appartienne a la direction
A de l'axe D.

Il est clair qu’un vissage est un déplacement de £.

Une rotation est un vissage dont le vecteur est nul. Une
translation est un vissage dont 1’angle est nul (modulo 27).

Un vissage qui n’est pas une rotation n’admet aucun point
fixe.

vérifi

b) Théoréme. Le groupe Is*(£) des déplacements de I'espace affine euclidien £ de dimension 3

est formé par les vissages.

Preuve. Tout vissage étant produit de 75 € IsT(€) par ppe € IsT(£), il est clair que les vissages sont
des déplacements.

Réciproquement soit ¢ € IsT(£). D’apres le théoreme 4.1.5.a), il existe 7 € T(&) et o € Is(€) uniques
telles que ¢ = T 0 g = o o T et telles que o admette des points fixes.

Comme ¢ € Ist(£) et 7 € IsT(£) , on a ¢y € IsT(&), et donc I'application linéaire associée vérifie
fo € O (E). D’aprés 4.3.2.a), fo est une rotation de E ; notons fo = 7a,¢. vérifi « Dans le cas particulier
ou fo = idg, il résulte de la proposition 3.3.2 que ¢o est une translation de £; comme ¢y admet des
points fixes, on a nécessairement ¢y = ide. Dans ce cas ¢ = 7 est une translation, donc un vissage.

e Si fo # idg, il existe une droite vectorielle orientée A et un réel 6 ¢ 277 tels que fo = rap. Comme
I’ensemble Vy des points fixes de ¢ est supposé non-vide, il résulte de la proposition 3.1.7 que Vp est
un sous-espace affine de & dirigé par Ker(fo —idg) = A. Donc Vs est une droite affine D dirigée par A.
On conclut avec la définition 4.3.2.b) que ¢o est la rotation affine d’axe D et d’angle . vérifi Enfin, le
fait que 7 o o = o o 7 implique (toujours d’apres le théoréme 4.1.5 que le vecteur U de T appartient
a A, de sorte que @ est bien un vissage. a
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4.3.4 Compléments sur les isométries en dimension 3.

On complete ici la description des isométries de I'espace de dimension 3 en énongant des résultats
analogues a ceux qui ont été démontrés en dimension 2 dans la partie 4.2. Les preuves, qui ne sont
pas détaillées ici, pourront faire I’objet d’exercice en travaux dirigés.

a) Antidéplacements. De méme que pour les déplacements au théoreme 4.3.3.b), on a une des-
cription explicite des antidéplacements de &.

Théoréme. L’ensemble Is™(€) des antidéplacements de I’espace affine euclidien £ de dimension 3
est formé par :
1. les réflexions (symétries orthogonales par rapport a un plan affine),
2. les composées d’une réflexion avec une rotation dont I’axe est une droite perpendiculaire au
plan de la réflexion,
3. les composées d’une réflexion avec une translation dont le vecteur appartient au plan vectoriel
directeur du plan de la réflexion (symétrie glissée).

b) Composée de deux réflexions. On a aussi un résultat comparable & la proposition 4.2.4.a).

Proposition. Soient o et ¢’ deux réflexions par rapport a des plans affines P et P’ respectivement.

(i) SiP et P’ sont paralléles, on a : 0’ 0 0 = Ty, oll U est le vecteur orthogonal 4 la direction
commune de P et P’ tel que P' = 7 (P).

(ii) SiP et P’ ne sont pas paralleles, on a : 6’ o0 = pp 99, out D est la droite P NP’ et ot1 0 est
défini (modulo w) comme I’angle des deux plans P et P’.

c) Engendrement par les réflexions. Le résultat suivant, que I’on déduit directement de 4.3.3.b),
4.3.4.a) et 4.3.4.b), est un analogue vérifi en dimension 3 du corollaire 4.2.5.g).

Corollaire. Les réflexions engendrent le groupe Is(E) de 'espace affine euclidien £ de dimension 3.

Plus précisément, tout déplacement de £ est le produit de deux ou quatre réflexions, et tout an-
tidéplacement de £ est une réflexion ou un produit de trois réflexions.
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L3 Mathématiques - UE Géométrie affine 2021-2022

5 — Barycentres

Dans tout le chapitre, on fixe £ un espace affine sur R, d’espace vectoriel directeur E.

5.1 Notion de barycentre.

La notion de barycentre d’une famille de points est un outil essentiel du travail dans les espaces
affines, dont le role est comparable a celui de combinaison linéaire d’'une famille de vecteurs dans
le cadre des espaces vectoriels.

5.1.1 Points pondérés. On appelle famille finie de points pondérés un ensemble A = (A4;, a;)1<i<n
ou chaque A; est un point de £ et chaque «; est un réel, appelé le poids ou la masse affecté a A;.
La somme o0 = )" | a; est appelée la masse totale de la famille.

5.1.2 Théoréme et définition. Prenons les données ci-dessus, et supposons de plus que o # 0.
Alors il existe un unique point G de £ vérifiant I’'une des conditions suivantes équivalentes :
nooo—
(1) Z OZI'GAZ' =0 ;
i=1
(2) il existe un point My € £ tel que Mog' = a; MyA; ;
1

1
o .

)

Ve nooo
(3) pour tout point M € £, on a MG = % > aiMA;.

7 _—

i=1
Ce point G est appelé le barycentre de la famille de points pondérés (A;, o;)i<i<n. On le note :
G =Bar(4j, ai)icicn  ou G =Bar (4ol 4n),

——

Preuve. Soit f I'application & — E définie par f(M) = Y"1 | a; M A; pour tout M € £. Pour M, N € €&,
— - — —

ona f(M)—f(N)=3" aiMA;—> " ouNA; =37 ai(MA;+A;iN) =>""_, cu M N. On retient :

pour tous M,N € &, f(M)— f(N) — oMN. *)
Il en résulte que f est injective (en effet f(M) = f(N) = MN = L(f(M) - f(N)) = T=M= N).

e On montre que les 3 assertions sont équivalentes. Si G vérifie (i), on a f(G) = 6); d’aprés (*) on a
alors f(M) = f(G) + oMC = o MG pour tout M € &, donc (iii) est vérifié. Il est clair que (iii) = (ii).
Enfin, si G vérifie (ii), on a d’aprés (*) : f(GQ) = f(Mo) + 0GMy = o MoG + 0GMy = 7.

e On montre 'existence de G. Soit A € £ quelconque ; alors pour le vecteur %f(A) € F, il existe G € £
tel que AC = L f(A). En utilisant (*), il vient : f(G) = f(A) + 0GA = 0 AC + oGA=T.
-

0 =

e On montre l'unicité de G. Si G’ est un autre point de £ vérifiant (i), on a f(G) = f(@", d’ou
G = G’ par injectivité de f. O

5.1.3 Homogénéité et isobarycentre. Il est clair que, pour tout A € R*, Bar(A4;, Aa;)1<i<n =
Bar(A;, ai)1<i<n. Donc, quitte & multiplier chaque poids par %, on peut toujours supposer que o = 1.

Un cas particulier important est celui ou les masses sont toutes égales. Par homogénéité, on peut
les prendre égales a 1. La somme des masses est n # 0, ce qui autorise la définition suivante.

On appelle isobarycentre d’une famille de points Ay, ..., A, de &€ le barycentre G = Bar(A4;,1)1<i<n.
Il est donc défini par :
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> GA; = 0, ou encore M(?z%EMAl pour tout M € €£.
i=1 i=1

— -
L’isobarycentre de 2 points A et B est leur milieu, défini par 1A + IB=T7 (voir 1.1.2.c).

5.1.4 Associativité du barycentre. La propriété suivante, évidente mais précieuse sur le plan
pratique, indique que ’on peut regrouper les points par paquets, et que le barycentre global est alors
le barycentre des barycentres partiels, affectés des sommes partielles des masses correspondantes.

a) Proposition. Soit A = (A;, ai)i1<i<n une famille finie de points pondérés de masse totale
> i o non-nulle. Notons G son barycentre. On suppose que, pour un entier 1 < p < n, on ait

P L a; #0, et on considére le barycentre partiel G' = Bar (Al’ Az, o ‘35 ) Alors :

al, ag, ...
B Aty Ay Apir, o A _ G Apir, e An
G = Bar (O&l, < Qp, Qpy1 ... On = Bar aij+-Fap, apy1 ... an )°
e N S —
Prewve. Ona: 0 = > a;GA; = > a;GA + >, a,GA; = (Z ozi)GG’ + Y aiGA; O
i=1 i=1 i=pt1 i=1 i=prl

b) Exemple d’application en géométrie plane élémentaire. Dans & supposé de dimen-
sion > 2, soient A, B, C' trois points non alignés, et I, J, K les milieux respectifs de (A, B), (B, C) et
(C, A). Par associativité, I'isobarycentre du triangle (A, B, C) est G = Bar (’f ?’ f) = Bar (é ?),

de sorte que G = 26‘_[), d’ou G € (CI). De méme G € (AJ) et G € (BK). On a prouvé : les trois
médianes d’un triangle se coupent en lisobarycentre (ou centre de gravité) du triangle, situé au
tiers de chacune d’elles a partir du c6té. » Voir aussi 2.4.b).

c) Exercice. De la méme facon, montrer que, dans € supposé de dimension > 3, pour A, B,C, D
quatre points non coplanaires, les 3 droites passant par le milieu d’une des 6 arétes du tétraedre
et le milieu de l'aréte opposée se coupent en l'isobarycentre GG du tétraedre. Montrer que G est
aussi le point de concourrance des quatre droites joignant chaque sommet au centre de gravité du
triangle opposé.

5.1.5 Trois arguments généraux concernant les barycentres.

a) Proposition (applications affines et barycentres). Une application ¢ : £ — £ est affine si

et seulement si elle vérifie la propriété suivante : pour toute famille (A;, o;)1<i<n de points pondérés

de £ admettant un barycentre G, le point ¢(G) est le barycentre de la famille (p(A;), &)1<i<n-
Preuve. Supposons ¢ affine et notons f : E — E Dlapplication linéaire associée & ¢. Soit (As, ;)1<i<n

est une famille de points pondérés de £ avec 0 = a1 + -+ + a,, # 0, et soit G son barycentre. Pour
tout M € £, on a : M(E = %E?Zl a; MA; donc : f(M(?) = f(% A aiMAi) = %Z;L:l a;i f(MA),

cest-a-dire : p(M)p(G) = 2 37 aip(M)p(A; ). Donc »(G) est bien le barycentre de la famille image.
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Réciproquement supposons que ¢ conserve les barycentres. Fixons A un point de €. Pour tout U ek , il
N
existe M € € unique tel que AM = U . Posons alors f(ﬁ) = ¢(A)p(M). On définit ainsi une application
f: E — F; il s’agit de montrer qu’elle est linéaire.
ey
Soient donc W,V € E, A\, € R. Il existe M, N € & tels que W = AM et ¥ = m En appliquant
I’hypothese que ¢ conserve les barycentres, on peut considérer :

G = Bar (17‘;’7% &W ]:) et ¢(G) =Bar (ﬁ&A_);, w(i‘fl), w(‘LN>)

D’une part E =(1-Xx- ,u)ﬂ + )\m + um =AU + u?, ce qui implique par définition de f
que : fAT + 1 T) = o(A)p(G). D'autre part, p(A)p(G) = (1 — A — 1) p(A)p(A) + A p(A)p(M) +
1 o(A)p(N) = Af(T) + wf (7). On a ainsi vérifié que fFONT + pT) = A () + uf (7). O

On obtient ainsi une caractérisation en terme de barycentre de la notion d’application affine, que I'on
peut résumer en disant qu’une application est affine si et seulement si elle converve les barycentres.

b) Proposition (sous-espaces affines et barycentres). Soit F une partie non-vide de . Les
deux conditions suivantes sont équivalentes :
(i) F est un sous-espace affine de & ;
(ii) le barycentre de toute famille finie de points pondérés de F appartient encore a F.
Preuve. Supposons (i). Notons F' le sous-espace vectoriel directeur de F. Soit (A;, a;)1<i<n une famille
finie de points pondérés dans F telle que o0 = a1 + - - + a, # 0. Le barycentre G des (A;, «;) vérifie
m = %Z?:lai]\/[—/li pour tout M € £. Si M € F, on a MA; € F pour tout 1 < i < n. Donc M
étant combinaison linéaire des m ,on a m € F. Comme M € F, ceci implique que G € F.
Supposons (ii). Choisissons A € F. Il s’agit de montrer que F := {m, M € F} est un sous-espace

—
vectoriel de E. Pour cela, considérons AM, AN € F quelconques, avec M, N € F, et o, 8 € R. Soit G le
barycentre de (A, M, N) affectés des coefficients (1 — a — 3, a, 8), dont la somme est non-nulle. D’apres

—
Phypothese (i), G € F. Par déiin—igion du barycentre, E = aAM + ﬂﬁ Mais ﬁ € F puisque
G € F. On a ainsi vérifié que : «aAM + BAN € F, ce qui prouve que F' est un sous-espace vectoriel de

FE, et donc que F est un sous-espace affine de &. a

On résume cette caractérisation des sous-espaces affines en disant qu’une partie de £ est sous-espace
affine si et seulement si elle est stable par barycentres.

c) Proposition (base affine et barycentres). Soit X = (Ao, A1, ..., Ap) une famille affinement
libre de points de £. Soit F le sous-espace affine de £ engendré par X. Alors :

p
vYMeF, 3! (ao,al,...,ap) ERP—H, Zoz,- =1 et M:Bar(Ai,ai)ogigp.
=0

Preuve. Comme on 'a vu & la section 4, X est une base affine de F, et X = {AoA1, AoAs, ..., AcAp}
est une base du sous-espace vectoriel F' de E directeur de F. Soit M € F. Donc AoM € F. Soient

(01, ..., 0p) les composantes de AgM dans la base X. Soit g =1->7_ ;. Ona AgM =Y a;AcAi
et Zf:o a; = 1. L’unicité des «; résulte de la liberté de X. O
La base affine X de F est parfois appelé un repére barycentrique de F, et les réels (ag, o, ..., ap)

sont appelés les coordonnées barycentriques du point M de F relativement a X.

Par exemple, I'isobarycentre G d’un triangle (A, B, C') a pour coordonnées barycentriques (%, %, %)

dans la famille affinement libre (A4, B, C'). De nombreux exercices de géométrie affine se résolvent
d’autant plus simplement que l'on choisit un repere barycentrique bien adapté au probleme.
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5.2 Exemples d’applications en géométrie plane élémentaire

On a déja vu certaines applications concernant les centres de gravité en 5.1.4.b) et c).

5.2.1 Construction du barycentre de deux points a la régle et au compas. On se place

dans un plan affine £. On se donne deux points distincts A et B. On note G = Bar (‘g ?)

Comment construire G a la régle et au compas (ie. sans utiliser de régle graduée) ?

Une méthode est la suivante. On trace une droite quelconque D passant par A. On prend un
écartement quelconque du compas et on reporte la distance correspondante sur D & partir de A.
On note D le point obtenu apres 5 reports et C' le point obtenu apres 7 reports.

On a donc D:Bar<‘gv’§).

On peut considérer la projection affine = de D sur (AB)
parallement a (BC'). On a 7(A) = A et 7(C') = B. Comme

m est une application affine, elle conserve les barycentres

(voir 5.1.5.c), donc Bar (‘3 f) = Bar (”(QA)’ W(f)), c’est-a-

dire que G = n(D).

Le point G cherché est donc le point d’intersection de la
droite (AB) et de la droite parallele & (BC') passant par D
(construction qui est possible & la régle et au compas).

5.2.2 Proposition (exemple de probléme de ligne de niveau). On fixe deux points dis-
tincts A et B dans & distincts. Pour tout réel k, on considére I’ensemble :

Sr={Mec&; 4 =k} Ona:
(i) Sik <0, alors & =0, et si k =0, alors & = {A};
(ii) si k =1, alors &, est la médiatrice de [A, B];
(iii) sik > 0 et k # 1, alors & est le cercle de diamétre [I,J] ou I et J sont les barycentres de
A et B respectivement affectés des coefficients (1, —k) et (1, k).

Preuve. Les deux premiers cas sont évidents et laissés au lecteur. Le troisieme a déja été vu en 1.4.7.
Pour Dassertion (iii), fixons k € R4 distinct de 0 et 1. On a pour tout point M de € :

M€ &) & [MA=kMB] & [MA? — K2MB? = 0]  [(MA — kMB).(MA + kMB) = 0]
Or par définition de I et J (qui sont bien définis puisque k+1#0et k—17#0) on a:
MA — kMB = (1—k)MI et MA+kMB = (1+k)MJ.
D’ot, en utilisant encore que k # +1 :
(M € &] < [(1—K)MIMJ = 0] < [MI.MJ = 0].

Or on a vu en 1.4.5 que 'ensemble des points M vérifiant mm = 0 est le cercle de diametre [, J].O
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5.2.3 Théoréme de Ceva. Soit £ un plan affine. Soit ABC un triangle dans £. Soit M un
point de £ n’appartenant a aucun des cotés ni a aucune des droites passant par un sommet et

paralléles au coté opposé. Les droites (AM), (BM) et CM) coupent les cotés (BC'), (CA) et (AB)

en trois points A’, B’ et C' respectivement. On a alors :
A'B " B'C " C'A
AC " BA OB

—1.

Preuve. Puisque les trois points A, B, C' sont non alignés, il existe des réels a, 8,y avec a + S+ v # 0
—
tels que M = Bar (A’ B, C), ou encore aMA+BM§ —|—’yMZ; = 6>

o, B, v

Parce que M n’appartient a aucun des trois c6tés du triangle, les réels
a, 3, sont non-nuls. Parce que les droites (AM) et (BC) ne sont pas
paralleles, on a 8 + v # 0. On peut alors considérer le barycentre

partiel A; = Bar (]g S), qui appartient a (BC). Par associativité du

barycentre, on a : M = Bar (‘: Ig S) = Bar (‘2 BA+1W)' Il en résulte

que M € (AA1), ou encore A; € (AM). Ainsi A; € (BC)N(AM) d’ot

Ay = A’ L'égalité 6A1§ + 'yAlzé = H devient alors ﬁ% = f%.

B
7

Q

et €4 — —g. D’ou le résultat. ]

: A [
On obtient de méme 5 =

sy}
ES

5.3 Applications a la convexité

5.3.1 Segment. Soient A, B € £. On appelle segment d’extrémités A et B, noté [A, B], la partie
de &£ formée des barycentres des deux points A, B pondérés par des masses positives dans R.

On en déduit immédiatement que, pour tout O € £, on a :
o
(M e [A B]) <= (ilexiste a, € Ry avec a+ > 0, tel que (OH—ﬁ)OM:onA—I—B@ )

ce qui, en notant que les réels ¢t = aLj_ﬁ et 1—t= o%ﬁ appartiennent a [0,1] C R, se reformule en :

(M €e[A,B] )« (ilexiste ¢ € [0,1] tel que OM = (1 — )OA +tOB ),
et en choisissant O = A :
(M e[A,B]) <= (ilexiste t€[0,1] tel que AM = tAB ).
I en résulte en particulier que [A, B] = [B, A] et [A, A] = {A}.

Observation. Pour A et B deux points distincts de &,
ona: (AB) = {M € £;3t € R, m:t@}et
[AB] = {M € £; 3t € [0,1], AM = tAB}. Définissons
par ailleurs la demi-droite fermée d’origine A passant par
Bpar:[AB)={M €&;3te R, A—>M:tzﬁ}. 11 est
facile de vérifier alors (rédiger la preuve en exercice un
dessin) que [AB) N [BA) = [AB].

.

5.3.2 Partie convexe.

a) Définition. Une partie C de £ est dite conveze lorsque, pour tous points A, B dans C, le segment
[A, B] est inclus dans C.
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=\

convexe non convexe

non convexe

convexe

Il découle de cette définition que l'intersection d’une famille de parties convexes est convexe.
b) Théoréme. Une partie C de € est convexe si et seulement si le barycentre de toute famille finie
de points de C pondérés par des masses positives dans R appartient a C.

Preuve. Pour tout n > 1, on dira que C vérifie la propriété (P, ) lorsque : “le barycentre de toute famille
de n points de C pondérés par des masses positives appartient a C”. Par définition, C est convexe si et
seulement si elle vérifie (P2). Il est donc clair que, si C vérifie (P,) pour tout n > 1, alors C est convexe.

Réciproquement, supposons que C est convexe. Donc C vérifie (P2), et ’on raisonne par récurrence en
supposant :  (H.R.) il existe un entier n > 3 tel que C vérifie (Px) pour tout 1 <k <n — 1.

Considérons n points A;,..., A, dans C et a1,...,a, dans Ry tels que 0 = a3 + -+ + an # 0. On
peut définir le barycentre G = Bar(A;, a;)1<i<n. Sil'un des «; est nul, G est le barycentre de k points,
avec k < n — 1 donc G € C d’apres 'hypothese de récurrence. Sinon, «; > 0 pour tout 1 < i < n. En
particulier 0’ = @y + -+ + an—1 # 0, et Pon peut définir G’ = Bar(4;, a;)1<i<n—1, avec G’ € C d’apres

n

’
I’hypothese de récurrence Par associativité des barycentres, on a G = Bar (f, 2”) Comme G’ € C,

A, € C et C convexe, on conclut que G € C.

c) Corollaire. Tout sous-espace affine de £ est une partie convexe.
Preuve. Un sous-espace affine étant stable par barycentre, il est a fortiori stable par barycentre & masses

positives, d’ou le résultat. a

d) Proposition. Soit ¢ : &€ — £ une application affine. On a les propriétés suivantes :
(i) ©([A, B]) = [¢(A),¢(B)] pour tous A, B € &;
(ii) si X' est une partie convexe de &, alors ¢(X) est une partie convexe de & ;
(iii) si X’ est une partie convexe de £, alors ¢~'(X') est une partie convexe de & ;

Preuve. Résulte immédiatement du fait que les applications affines conservent les barycentres (proposi-
tion 5.1.5.a); écrire les détails & titre d’exercice. O

On fait référence a ce résultat en disant que les applications affines conservent la convexité.

5.3.3 Enveloppe convexe d’une partie.

a) Proposition et définition. Soit X" une partie de £. L’intersection de toutes les parties convexes
de £ contenant X est la plus petite partie convexe de £ contenant X. On l'appelle I'enveloppe
convexe de X dans £. On la note Conv X.

Preuve. Evidente ; laissée en exercice. a

Il est clair que X est convexe si et seulement si Conv X’ = X.

b) Proposition. L’enveloppe convexe d’une partie X de £ est égale a ’ensemble des barycentres
des familles finies de points de X pondérés par des masses positives dans R.
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Preuve. Notons C ’ensemble des barycentres des familles finies de points de X pondérés par des masses
positives. On a X C C car tout point A € X peut étre considéré comme le barycentre de (A,1). Par
associativité des barycentres, tout barycentre d’une famille finie de points de C pondérés par des masses
positives est aussi barycentre d’une famille finie de points de X pondérés par des masses positives, donc
appartient a C. Ceci prouve que C est convexe. Ainsi X C C avec C convexe, d’ou Conv X C C.

Réciproquement, comme X C Conv X et Conv X est convexe, il résulte du théoréme ci-dessus que
C C Conv X. D’ou ’égalité. a

Par exemple, pour tous A, B € £, on a Conv{A, B} = [A, B].

5.3.4. Complément : théoréme de Lucas. On mentionne ici ce résultat a titre d’exercice, pour
illustrer que des raisonnements géométriques utilisant des barycentres peuvent étre utilisés dans des
contextes autres, dans le cas présent pour certaines propriétés algébriques des polynoémes.

a) Théoréme . Soit P un polynéme de degré n > 2 dans C[X]. L’ensemble des points du plan dont
les affixes sont les zéros de P’ est inclus dans I’enveloppe convexe de I’ensemble des points du plan dont
les affixes sont les zéros de P.

Preuve. Notons P(X) = an(X — r1)* (X —1r2)?? -+ (X — r»)®™ ol les r; sont les m zéros complexes
distincts de P et a; leur multiplicités. Les «; sont donc non-nulles et telles que a1 + a2 + -+ - + aun = n.

On calcule P'(X) = > 229 g6 I'on déduit que :
j=1 ’

= 2 2 pour tout z € C\ {r1,72,...,7m}.

zZ—=T;
j=1" 7
En appliquant cette identité & un nombre complexe r qui est un zéro de P’ mais n’est pas un zéro de
P, on déduit par des calculs simples dans C que :

m @ m s -1 m .

J ) — LR — J J .
> o (r—r;)=0, dou r= [ N ‘T_MQ] N o i
j=1 J j=1 J j=1 J

Pour tout 1 < j < m, on pose \; = [Z ‘Tfij‘z}i
j=1 !

m
o — e on les \s g \
e On a donc r = '21 AjTj, ot les \; sont des

j=
réels positifs vérifiant A1 + A2 + --- + Ay, = 1, ce qui montre que le point d’affixe r est barycentre a
coefficients positifs des points A1, As, ..., A, d’affixes respectives r1,72,...,7m.

On a ainsi montré que tout point du plan dont I'affixe est un zéro de P’ mais pas de P est dans
Ienveloppe convexe de l’ensemble des points Aj, Aa,..., A,. C’est trivialement encore vrai pour un
point dont l'affixe est un zéro de P’ et de P (puisque c’est alors I'un des points A;), ce qui acheve la
preuve. O

b) Corollaire. Sous les hypothéses du théoréme, I'isobarycentre des points dont les affixes sont les
zéros de P est égal & I'isobaycentre des points dont les affixes sont les zéros de P’.

Preuve. Notons P(X) =37, a; X* avec a; € C, a,, # 0. Si on désigne par z1, ..., zn les n zéros de P

(non nécessairement distincts), alors z1 + -+ - + 2, = — GZ’I . De méme, si l'on désigne par 21, ...,25,_1
n
, . i , . .. “an_
les n zéros de P'(X) = ™ . ia; X'~ (non nécessairement distincts), on a 2} +- - -4z, _, = — "=Dn-1
i=1 ’ 1 n—1 na
= n
n en déduit que (21 + -+ 2,) = == (21 +--- 4+ 2. _1), ce qui prouve le résultat voulu. O
On en déduit que 2 (21 + - + (= n—1);

o1
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L3 Mathématiques - UE Géométrie affine 2021-2022

6 — Sous-groupes d’isométries laissant invariante une partie du
plan ou de I’espace

On fixe un R-espace affine euclidien £ de dimension finie n ; on note E son espace vectoriel directeur.
Le probleme central étudié dans ce chapitre est de déterminer, pour un sous-ensemble X de points
de &, 'ensemble Gy des isométries affines de £ qui laissent X globalement invariant, c’est-a-dire
telles que I'image globale p(X) = {@(M); M € X} est égal a 'ensemble X’ lui-méme. Dans les
applications qui suivent, on aura toujours n = 2 ou n = 3.

6.1 Quelques principes généraux

6.1.1 Proposition et notations. Soit X un ensemble de points de £. On note Gy I’ensemble
des isométries affines de £ qui laissent X globalement invariant, ¢’est-a-dire des isométries ¢ € Is(E)
telles que p(X) = X. On a les propriétés suivantes.

(i) L’ensemble Gy est un sous-groupe de Is(E).
(ii) L’intersection Gy+ = Gy NIst (&) est sous-groupe de Is*(&).
Preuve. Evident. O
On note aussi Gy~ = Gy NIs™(€). On a donc la réunion disjointe Gy = Gx™ U Gy ~. Bien sir,

Gy~ n’est qu’un sous-ensemble, pas un sous-groupe (en particulier Gy~ peut étre vide). Il est clair
que, si ¢ € Gy, la restriction de ¢ a X détermine une bijection de X sur X.

6.1.2 Lemme (trés utile dans la pratique). Supposons que Gy~ n’est pas vide. Alors :

(i) Pour toutc € Gy ,ona Gy  =0cGxT ={oop; peGyT}.

(ii) Le sous-groupe Gy est d’indice 2 dans Gy.

(iii) Si Gy~ est fini, alors Gy est fini, et |Gx™| = |Gx~| = 5 |Gx|.

(iv) Si Gx™ est réduit a {idg}, alors Gy = {idg,0} avec 0 € Gy~ d’ordre 2.
Preuve. Fixons ¢ € Gx~. Il est clair que 0 0o ¢ € Gy~ pour tout ¢ € Gx ™. Réciproquement, toute
W € Gy~ sécrit i = oo (07! o), avec (67 01)) qui appartient & GxT en tant que produit de
deux éléments de G»~. En résumé, 'application ¢ — & o ¢ définit une bijection de Gax™+ sur Gx~, de

bijection réciproque 1 + o~ * 0 1. Les différents points du lemme en découlent, en observant que G~
n’est autre que la classe a gauche de o (et de tous les éléments de Gx~) modulo le sous-groupe Grt.O

Concretement, la détermination de Gy repose donc sur la détermination de G+ et d’un élément
de Gy~ ¢’il en existe.

e FExemple 1. Prenons n = 2 et X = {A} un singleton formé d’un unique point du plan. En utilisant
le théoréme 4.2.5.e), et en rappelant qu’une translation de vecteur non-nul n’admet pas de point fixe,
il est clair que Gx T est le groupe de toutes les rotations de centre A, et que Gx~ est ’ensemble des
symétries orthogonales par rapport aux droites passant par A.

e Exemple 2. Prenons n = 2 et X = D une droite du plan £. On sait que Is (€) est formé des translations
et des rotations. Une translation laisse D globalement invariante lorsque son vecteur appartient a la
direction A de D. Une rotation laisse D globalement invariante lorsque son centre est sur D et que son
angle est 0 modulo 7 (ie.lorsque c’est une symétrie centrale de centre sur D). On conclut que :
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G'{) est formé des symétries centrales dont le centre appartient a D et des translations dont
le vecteur appartient a A.

La réflexion op d’axe D appartient & G5. D’apres le point (i) du lemme précédent, tout élément ¢ € G,
est de la forme ¢ = op o p avec p € G'{,. Si ¢ est une symétrie centrale de centre A appartenant a D,
alors 7 est la réflexion d’axe la droite D’ perpendiculaire en A & D. Si ¢ est une translation de vecteur
kT4 appartenant a A, alors ¢ est la symétrie glissée d’axe D et de vecteur . On conclut que :

G1 est formé des réflexions par rapport aux droites perpendiculaires a D et des symétries
glissées d’axe D et de vecteur appartenant a A.

L’argument général suivant, d’usage tres fréquent, s’applique au cas ou ’ensemble X’ est fini.

6.1.3 Proposition. Soit X = {A1, Ag,..., A} un ensemble fini non vide de m points de &.
Toute isométrie o € Gy fixe l'isobarycentre des points de X.

Preuve. Notons G l'isobarycentre des points de X et f l’application linéaire associée a ¢. On a :
N

§m=§ﬂ@)=ﬂ§@ﬁ)=ﬂ0)= 7.

Comme ¢ laisse X invariant et qu’elle est bijective, elle permute entre eux les m points A;, de sorte

que :
m m —
3 w(Ge(A) = 3 p(@)4; = 0.
1= Jj=

Par unicité du barycentre, cette derniére égalité prouve que ¢(G) = G. O

Le cas le plus simple d’application de cette propriété est le suivant.

e Exemple 3. Prenons n = 2 et X = {A, B} une paire de points distincts de £. Soit ¢ € Gx ™.
D’apres la proposition ci-dessus, ¢ fixe le milieu I de [A, B]. En utilisant

le corollaire 4.2.5.f), ¢ est forcément soit I'identité, soit une rotation v
de centre I; dans ce dernier cas, elle doit échanger A et B donc étre

d’angle 7. On a donc Gx ™ = {ide, p} ol p est la symétrie centrale de

centre 1. B In 4

Par ailleurs, en notant D la droite (AB), il est clair que op € Gx~. En
utilisant le point (i) du lemme 6.1.2, et on observant que op o p = opr
olt D’ est la médiatrice de [A, B], on obtient Gx~ = {op,op' }.

D’ou finalement : Gx = {ide, p,op,0p/}. Comme p*> = 0% = 0%, =
idg, on conclut que Gx est le groupe de Klein.

6.2 Exemples en géométrie élémentaire dans le plan, groupes diédraux

6.2.1 Données. Dans ce qui suit, on se place dans le plan affine euclidien orienté £. On fixe un
entier n > 3 et on considere I’ensemble X des sommets d’un polygone régulier a n cotés.

On note X = {Ag, A1,...,A,—1} et O l'isobarycentre des points de X' qui est aussi le centre du
cercle circonscrit a X'. On a pour tout 1 <k <n-—1:

Ap1Ag = AgAy = Ay 140 et A@Ak = ATO\AI = A@AO = %’T
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Dans un repere bien choisi du plan complexe (dont I'origine est I'isobarycentre O et tel que Ag soit
d’affixe 1), les sommets de X’ sont les affixes des nombres complexes e2km/n hour 1 < k < n.

6.2.2 Lemme. Gyt est le groupe cyclique {idg, p, p?,...,p" '} d’ordre n engendré par la ro-
tation p de centre O et d’angle 2w /n.

Preuve. Il est clair p € Gx™ et que p est d’ordre n. Donc le sous-groupe cyclique {p) d’ordre n engendré

par p est un sous-groupe de Gx". Réciproquement, soit ¢ un éléments de Gx*. D’apres la proposition

6.1.3, le point O est fixé par ¢. Donc d’apres le corollaire 4.2.5.g), ¢ est une rotation de centre O et

d’angle 6. Le fait que ¢(Ao) est I'un des points Ax implique que 0 est un multiple de %’T, et donc que

¢ est une puissance de composition de p. On conclut que Gx ™ = (p). a

6.2.3 Lemme. Gy~ est I'ensemble {o, 0o p,cop? gop? ...,00p" !}, ot o est la réflexion
par rapport a la droite (OAyp). Il est formé de n réflexions par rapport a des droites.

(i) Sin est impair, ces réflexions sont les n réflexions dont les axes sont les droites passant le
centre O et chaque sommet A;.

(ii) Sin = 2p est pair, ces réflexions sont :
— d’une part les p réflexions dont les axes sont les droites (A;Aitp) pour 0 < i < p—1
joignant les sommets opposés,

— d’autre part les p réflexions dont les axes sont les droites joignant les milieux des cotés
opposés [AjAi1] et [AiypAiypr1] pour 0 < i <p—1.
Preuve. Soit o € Is™ (€) la réflexion par rapport & la droite (OAg). On désigne toujours par p la rotation

de centre O et d’angle 27 /n. Pour tout entier k, la composée o o p* appartient & Is~ (€). Comme elle

admet un point fixe O, il résulte du corollaire 4.2.5.g) que c¢’est une réflexion par rapport & une droite.

Donc (00 p*) o (00 p*) =ide, ou encore o0 p* = p" *o0.

Soit Ay un point quelconque de X, avec 0 < k < n—1. On a 0(Ax) = 0(p*(4o)) = p" *(c(Ao)) d’apres
la relation ci-dessus. Mais o(Ag) = Ao par définition de o, et p"~*(A¢) = A,_r € X puisque p € Gx ™.
On en déduit que o(Ax) = A,—r € X. Ceci prouve que X est stable par o. On conclut que o € Gx ™.

On applique le lemme 6.1.2 pour déduire que Gx~ = {0, 00p,c0p* cgop® ...,00p" '} Ces n
isométries sont indirectes et fixent O, donc ce sont des réflexions par rapport a des droites passant
par O. Le résultat s’en déduit aisément en distinguant suivant la parité de n, et en utilisant le fait que
laxe d’une telle réflexion o est la médiatrice du segment [Aro(Ax)] lorsque Ay n’est pas fixé par 0. O

Remarquons que le groupe Gy de I'exemple 3 de 6.1.3 correspond au cas n = 2 du groupe étudié
dans les deux lemmes ci-dessus. On conviendra donc dans ce qui suit d’englober le cas n = 2, en
considérant une paire de points {A1, A3} comme un polygone régulier a 2 sommets (et 2 cotés).

6.2.4 Théoréme et définition. Pour tout entier n > 2, on appelle groupe diédral d’ordre 2n,
noté D,,, le sous-groupe des isométries affines du plan conservant un polygone régulier a n cotés.
(i) Le groupe D,, est engendré par deux éléments p et o, et formé de 2n éléments distincts :

1 2 3 n—1
y0, OO0P, 00P", GOP~,...,00p0 }7

n—k

Dy = {ide, p, 0%, 0%, ..., p""
vérifiant les relations : p" = idg, 02 =idg, 00 pF = p" ¥ oo pour tout 1 < k < n.
(ii) Le sous-groupe (p) engendré par p est cyclique d’ordre n, d’indice 2 et normal dans D,,.
(iii) Le groupe D,, est non abélien pour n > 3 ; le groupe Dy est isomorphe au groupe de Klein.
Preuve. Découle immédiatement des deux lemmes précédents, en observant que p" = idg et op = p" ‘o
impliquent op* = p" o pour tout 1 < k < n. a
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6.2.5 Exemple : groupe du triangle. Dj est le groupe des isométries du plan affine euclidien
conservant un triangle équilatéral (ABC). Il est formé de 'identité idg = e, de la rotation p de
centre l'isobarycentre O de (ABC) et d’angle 27/3, de la rotation p? de centre O et d’angle 47/3,
et des réflexions o1, 09, 03 par rapport aux trois médianes (ou hauteurs) du triangle. Le groupe Ds
est d’ordre 6, non abélien, engendré par les deux éléments p et o1 (on a 03 = pooy et o9 = p?o0y),
et sa table est donnée ci-dessous.

D3 (& P p2 o1 | 02 | 03
\Al € e |1 p P2 01| 02 | 03
plp|p|elog|on]|o
PZ PQ € | p|02|03]|01
Ay o1 | 01 092 | 03 e P p2
o2 | 02 | 03 | 01 /)2 € 14
03 | 03|01 |09 | p P2 €
Cette table est identique a celle du groupe symétrique
/22 S3, un isomorphisme D3 ~ S3 étant donné simplement

d’une numérotation des 3 sommets.

6.2.6 Exemple : groupe du carré. D, est le groupe des isométries du plan affine euclidien
conservant un carré (ABCD). 1l est formé de l'identité e = idg, de la rotation p de centre le centre
O du carré (ABCD) et d’angle 7/2, de la symétrie centrale p? de centre O, de la rotation p3 de
centre O et d’angle 37/2, des réflexions 01,09 par rapport aux deux médianes du carré, et des
réflexions 71, 70 par rapport aux deux diagonales du carré.

Le groupe Dy est d’ordre 8, non abélien, engendré par les deux éléments p et o1 (on a 71 = po oy,
o9 = p2 ool et o= ,03 o01), et sa table est donnée ci-dessous.

Dy e 1% p2 p3 o1 | 09 T1 T2
€ € 14 P2 P3 01| 02 | T1 | T2
p ol leln|nlo|a

PPl lelploloaln|n

Pl elp || n|n|o]o

01|01 | T2 |02 | T1 | € P2 P3 p

02 |02 | T1 | O1 | T2 P2 € P P3

TL | T1 |01 | T2 | 02| p ,03 € ,02

| oo | pP ] p|p] e

Toute isométrie de D, induisant une permutation des 4 sommets, on a l'inclusion D4 C Sy, mais
cette inclusion est stricte puisque Dy est d’ordre 8 et S4 d’ordre 24.

6.2.7 Proposition (application aux sous-groupes finis du groupe des isométries du plan). Soit
& le plan affine euclidien orienté. Tout sous-groupe fini de Is(E) est cyclique ou diédral.

Plus explicitement, cela signifie que, pour tout groupe fini G de Is(€), il existe un entier n tel que
G ~ C), (auquel cas n = |G|) ou G ~ D,, (auquel cas |G| est pair et n = |G|/2).
Preuve. On introduit d’abord les notations suivantes :
(1) pour tout point O de &£ et tout entier n > 1, on note G(O, n) le groupe des rotations de centre O
et d’angle 2km/n,0 < k <n — 1. C’est un groupe cyclique d’ordre n, engendré par la rotation p de
centre O et d’angle 27 /n. D’apres le lemme 6.2.2 c’est le groupe des déplacements de £ conservant
un polygone régulier & n cotés centré en O. A noter que, par convention, G(0,1) = {ide}.
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(2) pour tout point O de £ et toute droite D de £ passant par O, et pour tout entier n > 1, on note
G(0O,D,n) le groupe engendré par G(O, n) et la réflexion o d’axe D. D’apres le théoreéme 6.2.4 c’est
le groupe des isométries de £ conservant un polygone régulier a n cotés centré en O et dont un
des sommets est sur D. Il est donc isomorphe au groupe diédral D,,. A noter que, par convention,
G(0,D,1) = {ide, o }.

Fixons un sous-groupe fini G de Is(£). Posons G = G N1sT (), qui est un sous-groupe de G.

Supposons d’abord que G C Is*(€), c’est-a-dire G = G*. Choisissons A € £ quelconque, et considérons

Pensemble X4 = {p(A); ¢ € G}. C’est un ensemble fini de points {A, A1,..., An} de &, laissé globa-

lement invariant par G. Tout élément ¢ de G est donc un déplacement de £ qui fixe I'isobarycentre O

de X4 (voir 6.1.3), et donc une rotation de centre O. Comme ¢™ = ide en notant |G| = n, on déduit

que @ est d’angle 2k7/n,0 < k <n — 1. On conclut que G C G(O, n), et donc G = G(O,n) puisque les

deux groupes sont de méme ordre n.

Supposons maintenant qu’il existe o € Is™(£) N G. Tout élément de G est alors soit un élément de G,
soit le produit de o par un élément de GT. D’apres la premiere étape de la preuve, il existe O € £ et
n = |G"| > 1 tel que G" = G(O,n). Supposons que n. > 2. En notant p la rotation de centre O et
d’angle 2m/n,ona pe Gt et 67t opoo € GT. Donc o~ (p(c(0))) = O, donc p(a(0)) = ¢(0), donc
0(0) = O puisque O est le seul point fixe de p. Ainsi ¢ € Is™(€)) fixe O, donc o est une réflexion
par rapport & une droite D de £. On conclut que G = G(O,D,n). Enfin, dans le cas ou n = 1, on a
GT = {ide} et G = {idg, 0}, donc 0 € GT c’est-a dire 0 = ide, donc o est une réflexion par rapport
a une droite D', et 'on a G = G(O’,D’, 1) pour tout point O’ de D’. O

6.3 Exemples en géométrie élémentaire dans l’espace, groupe du tétraedre,
groupe du cube

6.3.1 Données et notations. Dans ce qui suit, on se place dans I’espace affine euclidien orienté
€ de dimension 3. On consideére l'ensemble X' = {Aj, Ay, A3, Ay} des sommets d'un tétraedre
régulier. On note O l'isobarycentre des points de X. Les siz arétes de X' sont les segments [A; As],
[AlAg], [A1A4], [AQAg], [A2A4] et [A3A4], de méme longueur. Les quatre faces A1A2A3, A2A3A4,
A3A4 A et AyA1 Ao sont des triangles équilatéraux.

Pour tout 1 < i < 4, la droite (OA;) coupe la face opposée au sommet A; en son centre de gravité
(associativité des barycentres). On note p; la rotation d’axe (OA;) et d’angle 27/3. 1l est clair que
pi et p% sont des éléments de GF, ce qui donne déja 8 éléments d’ordre 3 de G}.

Notons par ailleurs (en rappelant qu'un demi-tour est une rotation d’angle 7) :
a le demi-tour d’axe la droite passant par les milieux de [A; Ay et [A3A4],
B le demi-tour d’axe la droite passant par les milieux de [A;A3] et [A3A4],
v le demi-tour d’axe la droite passant par les milieux de [A; Ay4] et [A2As].
Il est clair que «, 8 et v sont trois nouveaux éléments d’ordre 2 de G}.
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6.3.2 Théoreme. Le groupe Gy des isométries de 1’espace conservant un tétraedre régulier
est d’ordre 24, isomorphe au groupe au groupe symétrique Sy. Le sous-groupe G} des isométries
positives est isomorphe au groupe alterné A, et formé des 12 rotations suivantes :

G} = {idgu «, 67 Y, P1, p%7 P2, p%a P3, p§7 P4, pgl}
Preuve. Toute isométrie ¢ € Gx permute entre eux les 4 sommets A1, Az, Az, A4 et induit donc par
restriction & ’ensemble de ces 4 sommets une permutation dans S, que 1'on notera g(y). On définit
ainsi une application g : Gx — S4, qui est de fagon évidente un morphisme de groupes.
Par exemple, pour tout 1 < 4 < 4, la permutation g(p;) est un des huit 3-cycles de S4 et les rotations
a, B, correspondent aux trois produits de deux transpositions dans Si. Remarquons que ce sont dans
les deux cas des éléments du groupe alterné A,.
Déterminons le noyau de g. Soit ¢ € Kerg. Cela signifie que ¢(A;) = A; pour tout 1 < ¢ < 4.
L’application linéaire f associée & ¢ vérifie donc, pour tout 2 < j <4 :

F(ALA7) = p(A1)p(A;) = AL A;.

Or, les 4 sommets du tétraedre n’étant pas coplanaires dans &£, les 3 vecteurs A; A, A1 As, A1 A4 sont
linéairement indépendants dans 1’espace vectoriel E, donc forment une base de F. Ainsi f fixe les

vecteurs d’une base de E, d’out f = idg. Il en résulte (voir 3.3.2) que ¢ est une translation de £. Mais
on sait (voir 6.1.3) que ¢ fixe O. On conclut que ¢ = ide.

On a ainsi prouvé que le morphisme g : Gy — Si est injectif. Il en résulte que |Gx| < 24. On a déja
trouvé directement 12 éléments dans Gj{, (les 8 rotations p; et p?, les 3 rotations o, 3,7, et Iidentité
de &), d’ou |G;| > 12. De plus G # 0, car il contient par exemple la réflexion par rapport au plan
(OA1A3). 1l en résulte d’apres le lemme 6.1.2 que |Gx| > 24. Finalement, on a |Gx| = 24, et g étant
un morphisme injectif entre deux groupes finis de méme ordre, il est nécessairement bijectif, c’est-a-dire
que g est un isomorphisme entre Gx et Sy.

On a déja observé au début de la preuve que les images par g des différents éléments de G; sont les
éléments de A4, et donc la restriction de g a G}L( réalise un isomorphisme entre G} et Ay. a

6.3.3 Remarques. La table du groupe G} s’obtient directement via l'isomorphisme g a partir
de celle du groupe A, détaillée dans le cours de théorie des groupes.

Les 12 éléments de G (qui sont les produits de chacun des 12 déplacements de G} par un an-
tidéplacement choisi dans G) sont les images réciproques par g~ ! des permutations impaires
dans Sy. Il s’agit donc des images réciproques des six transpositions [z, j] et des six 4-cycles [i, 7, k, /]
de S4. On en donne pour étre complet une description géométrique :

peGy g(p) € Sy peGy g(p) € Sy
pour 1 < 4,7, k,¢ < 4 deux & deux distincts : (6 éléments) T(0A1As) © Y [ 1423 ]
O(0ARAy) = Tij o0A4y) © B [ 1324 ]
= symétrie orthogonale p/r O(0AA3) © [ 1234 |
au plan médiateur de [A4;A;] [i]] 0(0AAz) © Y [ 1432 ]
ie. p/r au plan (OAAy) T(0AAy) © [ 1342 ]
elle fixe Ay, et A, en échangeant A; et A; o0A,A1) © B [ 1243 |

Observons que I'engendrement de Sy par les transpositions (voir cours de théorie des groupes)
correspond a ’engendrement de Gy par des rélexions par rapport & un plan; voir 4.3.4.c).

On termine en donnant un autre exemple, un peu plus complexe, pour lequel on expose les prin-

cipaux résultats sans développer les preuves, qui pourront éventuellement étre étudiées en travaux
dirigés.
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6.3.4 Groupe du cube. On se place toujours dans ’espace affine euclidien orienté £ de dimen-
sion 3. On considére I'ensemble X = {A, B,C, D, A’, B',C", D'} des 8 sommets d’un cube.

6 faces : ABCD, A'B'C'D', ABB'A', DCC'D', AA'D'D, BB'C'C

12 arétes : [AA], [BB'], [CC"], [DD'], [AD], [BC], [B'C"], [A’ D], longueur a
[AB], [A’'B'], [D'C"], [DC]

12 petites diagonales : | [AC], [BD], [A’C’], [B'D’], [A'B), [AB’], [D'C], [DC'], longueur v/2a
[AD'], [A’D], [BC"], [B'C]

4 grandes diagonales : | [AC'], [A’C], [DB'], [D'B] longueur v/3a

On note O l'isobarycentre des points de X' ; O est le point de concours des 4 grandes diagonales.

D '

On considere :
- les quatre droites Dy = (AC"), Dy = (BD'), D3 = (CA’) et Dy = (DB’) portant les grandes
diagonales du cube,
- les trois droites Ay, As, Ag passant par les isobarycentres des trois paires de faces opposées
du cube (ABCD et A’B'C'D’', ABB'A’ et DCC'D', AA'D'D et BB'C'C),
- les six droites 0; (pour 1 <14 < 6) joignant les milieux des six paires d’arétes opposées ([AB]
et [D'C’], [CD] et [A'B'], [AA] et [CC'], [BB'] et [DD'], [AD] et [B'C'], [A'D'] et [BC]).

/

D (e D' (o4

\\ ’ B
A A A %é g
C / £ ¢

On en déduit les rotations suivantes de G} :
- pour 1 < i <4, p; la rotation d’axe D; et d’angle 27/3, ainsi que p? d’angle 47/3,
- pour 1 < < 3, ¢; la rotation d’axe A; et d’angle 7/2, ainsi que gp? d’angle 7 et go? d’angle
31/2,
- pour 1 < i <6, ¢; d’axe §; et d’angle 7 (demi-tours).
On obtient ainsi 8 + 9 + 6 = 23 éléments de G},;, auxquels il faut ajouter bien sur idg. Donc
|GL| > 24. Le théoréme suivant montre que I'on a en fait ici tous les éléments de G7.
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6.3.5 Théoreme. Le groupe Gy des isométries de ’espace conservant un cube est d’ordre 48.
Le sous-groupe G} des isométries positives est isomorphe au groupe symétrique Sy, et formé des
24 rotations décrites ci-dessus.

Preuve. Admise ; des parties pourront étre étudiées en travaux dirigés.

6.3.6 Remarques.
(i) Conformément & 6.1.2, tout élément de Gx~ est le produit d’'une des 24 rotations de Gy

par un élément de Gy, par exemple la symétrie centrale o de centre O. On peut en déduire,
géométriquement une description des 24 isométries indirectes de Gy, et algébriquement
une description du groupe Gy comme un produit semi-direct (voir cours de théorie des
groupes) du groupe symétrique Sy par le groupe cyclique Cs.

(ii) On peut montrer que G+ ~ S, est aussi le groupe des déplacements de & laissant invariant
I'octaedre régulier dont les six sommets sont les centres des six faces du cube X.
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