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FOREWORD. This course attempts to reach two apparently contradictory goals: to be a basic introduction
with minimal prerequisites, and to introduce to some recent aspects of the current research in the area.
This motivates our main orientations: to start with an overview on some topics from the heart of classical
invariant theory, to be self-contained for a beginner (and so to remind if necessary some well known
results), to give a particular emphasis to concrete examples and explicit calculations, to follow as a main
thread some significant mathematical objects in various contexts (for instance the finite subgroups of
SLs), to select some recent subjects without any other criterion that the subjective interest of the author
and, more seriously, their capacity to illustrate interesting general noncommutative methods and to lead
to relevant current topics. These notes have been written in some rush; so the author apologizes in
advance for all misprints, mistakes and misspells in this draft version.



1. COMMUTATIVE POLYNOMIAL INVARIANTS: SOME CLASSICAL RESULTS

1.1. Polynomial invariants for linear actions.

1.1.1. Polynomial functions. We fixe k a infinite commutative field. Let V be a k-vector space
of finite dimension n > 1. We denote by k[V] the ring of polynomial (or regular) functions on V.
Let us recall that f: V — k is an element of k[V] means that, for any k-basis (eq,...,e,) of V,

there exists some polynomial ¢ € k[z1, ..., z,] such that f(aje;+---+anen) = @(aq, ..., ay) for
all (aq,...,a,) € k™. In other words, f is a polynomial into the elements z1 = €], ..., z, = €,
of the dual basis. It is clear that:

(1) k[V] ~ S(V*) ~k[z1, ..., 2]

1.1.2. Linear actions. Let G be a group. For any representation p : G — GL(V) of G on V, the
corresponding left action of G on V' defined by:

(2) VgeG, YveV, gv=rpg)(v),
can be canonically extended into an left action of G' on k[V] by:
3) VgeG, vV feklV], YveV, (g.f)(v) = flg"v) = flplg™")(v)).

The function f being polynomial and p(g~!) being linear, it is clear that f(p(g~')(v)) is poly-
nomial in the coordinates of v with respect of any basis of V and so g.f € k[V]; then it is trivial
to check that ¢.(¢'.f) = g¢’.f and 1.f = f.

e Remark 1. By definition, the dual representation of p is p* : G — GL(V*) such that, for any f € V*,
the linear form p*(g)(f) is given by v — f(p(g~1)(v)). Then formula (3) is just the extension of the
action associated to the dual representation from V* to k[V].

o Remark 2. Let (o j)1<i j<n be the matrix of p(g) relative to the basis (eq, ..., e,) of V, and (8; j)1<i,j<n
its inverse in GL,, (k). Denoting by (z1,...,2,) the dual basis, the linear form g.z; (for any 1 < j < n)
is defined from (3) by (g.z;)(e;) = x;(p(g")(e;)) = 2 (X j_1 Biwer) = Bi; for all 1 < i < n. Then
g.x; = >, Bi;z;. Finally, G acts by k-algebra automorphisms on k{1, ...,z,]:

(Z A Lxin) = Zaj(_ilﬁmwi)jl (‘ilﬁi}gxi)jz . (anﬁi’nati)j”.
j i= i= =

1.1.3. Invariants. Let G be a group and p : G — GL(V) a representation of G on V. A
polynomial function f € k[V] is invariant under the action of G if g.f = f for all g € G. It is
clear that the invariants form a subalgebra of k[V] called the invariant algebra and denoted by
k[V]%. So we have:

k[VI = {fek[V], g.f=f VgeG}
= {fek[V], f(gv)=f(v), VgeG, YveV}]

In other words a polynomial function f € k[V] is invariant if and only if it is constant on all
orbits Gv = {g.v; g € G} of elements v € V under the action of G.

e Remarks.
(i) Any H subgroup of G acts on k[V] and k[V]¢ C k[V]#
(ii) If H is normal in G, then G/H acts on k[V]# (via g.f = g.f for any f € k[V]#) and we have
(k[V]")SH = k[V]C.
(iii) Let H be a subgroup of G and g € G. For any f € k[V], we have f € k[V]H if and only if
g.f €k[V]9Hs "
(iv) In particular, if H and K are conjugate in G, then k[V]¥ is isomorphic to k[V]¥
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1.1.4. Grading. For any integer d > 0, a polynomial function f € k[V] is said to be homogeneous
of degree d if f(av) = af(v) for any a € k and v € V. We denote by k[V]; the subspace of k[V]
of homogeneous functions of degree d. In particular k[V]p = k and k[V]; = V*, and k[V]; is
canonically identified in the first isomorphism of (1) with the d-th symmetric power S¢(V*). In

the second isomorphism of (1), k[V], is identified with the subspace of k[x1,...,x,] generated
by monomials x‘lila:gz ...z% such that dy +ds---+ d, = d. We deduce in particular from a

classical combinatorial result that dimk[V]g = ("*91).

It is clear that the family (k[V]4)4>0 is a grading of the algebra k[V], i.e.

(4) KV]= @KVl and KVIakV]e € K[V]aso.

Moreover k[V], is stable under the action (3) because any g € G acts as a degree one function.
With the natural notation:

(5) k[V]§ =k[V]ank[V],

we obtain the following grading of the algebra of invariants:

(6) k[V] = @k[V]§ with k[VISkV]S Ck[V]$,q-
d>0

1.2. First example: symmetric polynomials. We begin with the following well known and
historical situation. We fix an integer n > 1 and consider the symmetric group G = S,, on n
letters. In the canonical representation of S, on a n-dimensional vector space V = ke @- - -Pke,,

a permutation g acts by g(e;) = e,4(;). The associated action on k[V] ~ k|1, ..., ;] is defined
by:

(7) VgeSn, VIeklzry,...,znl, gf(x1,.. 20) = f(Tg101), -+, Tg-1(n))-

The elements of the invariant algebra k[zi,...,x,]5" are no more than the usual symmetric
polynomials:

(8) k[zq,... ,xn]S” ={f €klzr,....znl; f(2g01)s-- s Tgn)) = f(T1, .- T0), ¥V g € S}
In particular, the following so called elementary symmetric polynomials are invariant:

01 =21 +ZT2+ -+ Tn,
02 = 21X2 + 13+ -+ + 1Ty + T2T3 + - -+ T2Xy + -+ Tp_1Tn,

o = E Tiy Tiy ... Ti,,  (sum of () terms),
1<i1 <ig<-<ix<n

Op = T1X2...Tp.
They satisty in k[x1, x9, ..., 2y, 2] the relation:
9) [Ticicn(z —@i) = 2" — 012" V4 092" 2 — o (=) Loy 12+ (—1)"0p.

The following classical theorem gives then a very precise description of the invariant algebra as
an algebra of polynomials.



1.2.1. THEOREM. The elementary symmetric polynomials o1, ..., o0, are algebraically indepen-
dent and generate the algebra of symmetric polynomials
k[zy1, zo, ... ,xn]S” =klo1,09,...,00].

Proof ([35]). We proceed by induction on n. We assume in the following that the theorem is true for the
elementary symmetric polynomials o7, ...,0/,_; in the variables x1,zs,...,2,_1. We have:
o1=0y+ Ty, O2=0L+Tp0), ..., Opn_1 =0l 1+ Tn0l_o, Opn=Tno,_i.

We prove first that o1, ..., 0, are algebraically independent. Suppose that there exists some algebraic re-
lation P(o1,...,0,) = 0 of minimal degree, with P € k[ty,...,t,]. Set P = Qt,,+R with Q € k[ty,...,t,)
and R € k[tq,...,t,—1]. From the above relations, it is clear that R(oq,...,0,-1) equals R(o],...,00,_4)
modulo z, in k[z1,...,2,]). Then P(oy,...,0,) = 0 implies that R(o},...,0,,_;) is divisible by z,, in
k[z1,...,z,]). Because R(c},...,0l,_1) lies in k[xy,...,2,_1], we deduce R(c},...,0l,_1) = 0. By as-
sumption, o}, ..., o}, are algebraically independent and then R = 0 in k[t1,...,t,—1]. Hence P is divisible
by t, in k[t1,...,t,], which contradicts the minimality.

We prove now that any symmetric polynomial f € k[z1,...,x,] lies in k[o1,...,0,]. According to (6),
we can suppose that f is homogeneous of some degree d. Writing f = ZZ 0 fZ (1, Tp_1)xl, We
have f; € k[xy,...,2,_1]%"~! (consider the permutations in S, fixing the letter n). By assumption
k[zi,..., 2, 1]t =k[o],...,0!,_,]. From the above relations, we deduce that f € k[o1,...,0,_1,Zn].
Thus f has the form f = p(o1,...,0n-1)+znh(01,...,0n_1,Ty) With two polynomials p € k[t1,...,tn_1]
and h € k[t1,...,t,]. Again we can assume that, in the algebra k[z1,...,z,], p(o1,...,0,—1) is homoge-
neous of degree d and h(oy,...,0,—_1, ;) is homogeneous of degree d—1. It follows that f—p(o1,...,0n-1)
is again homogeneous of degree d and is divisible by z,. Since it is clearly symmetric, it is also divisible
by x1,...,o,_1, and then by the product z123...2, = 0,. So f —p = o, f with a symmetric polynomial
f' of degree at most d — n. We achieve the proof by induction on d. O

1.2.2. Remark. Among other useful examples of symmetric polynomials, we must mention:

o the Newton functions: s = x’f + xlg + .-+ xF for any integer k > 1,

o the Wronski polynomials: wy = Zz1+m+ =k :cllxg" ...z for any integer k > 1,
o the discriminant: § = H1§i<j§n(xi — xj)z.
In particular, it is easy to see that:
Sk — 018p—1 + 0289 — -+ (=1)*Lop_151 + (=1)Fkop, =0, forall 1 <k < n,
Sp— 0181+ 098p—o+ -+ (—=1)"ops¢—n =0, for all £ > n.
We deduce:
$1 =01, Sy =8101—209= O'% — 209, 83 = S9071 — §109 + 303 = ai)’ — 30109 + 303,
and sy € k[o1,...,0] for all 1 <k < n. If moreover k is of characteristic zero, we also have:
o1 = 81, 09 = 131 182, 03:%8?—58132—1—%83,
In this case, the Newton function si,...,s, are algebraically independent and generate the

algebra of symmetric polynomials

k[zyi, zo, ... 7:Cn]S" =Kk[s1,52,..., 8]
En particular, we observe that:

(10) Vie>n, spe€klsi,...,sn)
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1.3. Second example: actions of SLs. We consider here G = SLy(C) (briefly denoted by
SLy if there is no doubt about the base field), V' = Ce; @ Ceg and C[V] ~ C[z,y]. The natural
action corresponds to the trivial two dimensional representation SLy — GL(V') and is defined
by:

Vg= (f; g) € SLy, g.eq = aey +ves and g.eo = Bey + des.

Following remark 2 of 1.1.2, the associated action on C[z,y]| is the left action defined from:
(11) ng(j?)ESLg, gx=0dr— Py and gy =—yr+ ay
and extended by algebra automorphism to any polynomial.

1.3.1. Some examples of calculations. We compute the algebra of invariants under this action
for some subgroups of SLo.
1. For T = {(§ Ofll) : a € C*}, we have C[z,y]" = Clzy].
Proof. Choose § € C* of infinite order and denote by g the automorphism z +— dz and
y — 6 'y. For any monomial \; jz'y’ with \; ; € C, we have g(\; ja'y?) = \; ;6" Txiyd.
Then a polynomial 3, ; Aijz'y? lies in Clz,y]” if and only if \; ; = 0 for i # j. O
2. For U = {((1) f) : 3 € C}, we have Clx,y]Y = C[y].

Proof. Choose 8 € C* and denote by g the automorphism x — x — By and y — y. Any
polynomial f € Clz,y] can be written f = hy, (y)z™ + hp_1(y)2™ 1 + -+ + ho(y) with
hi(y) € Clyl. Then g(f) = hm(y) (@™ —mByz™ "4+ ) + A1 (y) (@™ -0 ) -
ho(y). Supposing g(f) = f, we observe by a trivial identification that mpByh.,(y) = 0.
We conclude that f = ho(y) € Cly]. O

3. We deduce in particular that C[z,y]3"2 = C.

4. We fix an integer n > 1. The subgroup C,, = {(g <91> ; (" =1} of SLy is cyclic of order n.
We have C[z, y]“" = Cla", zy, y"].

Proof. Choose ¢ a primitive n-th root of one and denote by g the automorphism z — (x
and y +— ¢ ~'y. Each monomial being an eigenvector for the action, C[z, y]“~ is generated
by invariant monomials. Let f = 2°y/ be a invariant monomial. If i = j, then f € C[zy].
If i > j, then f = (wy)?2~7; the identity g(f) = f implies i — j = kn for some integer
n > 1 and we conclude that f € Clzy,z"]. In the same way we obtain f € Clxy, y"]
when j > i. O

5. We fix an integer n > 1. The binary dihedral group is the subgroup D,, of SLy generated by
Coy, and the matrix g = (93). Its order is 4n; Co, is normal in Dy; any element of D, can

be written cu’ with ¢ € Cs, and £ = 0 or 1. We have:
Clz,y)Pn = Cla?y?, 2" + (=1)"y*", 2>y — (=1)"ay> ],

Proof. We put X = 22", Y = 42" and Z = xy. Then C[z,y]“>» = C[X,Y, 7] with
XY = Z?". The automorphism g : z — iy,y — iz of C[z,y] associated to u acts on
Clx,y] by g(X) = (-=1)"Y, g(Y) = (-1)"X and ¢g(Z) = —Z. Then C[z,y]P> =
C[X,Y, Z]9. We have:
CIX,Y,Z]= @ C[z2?|zXs P C[Z2 X @ C[Z] ® @ C[Z%)Yi®  C[2?|zY .
d>1 d>1 d>1 d>1
For even n, we deduce:

CIX,Y, Z)9 = d@l ClZ%z( X1 -YH o de>91 ClZY (X% + YY) @ C[Z2).



Using relation XY = Z2" and the binomial formula, it is easy to prove by induction on
d that X 4+ Y% belongs to the algebra generated over C by Z? and X + Y, and that
X — Y4 is the product of X —Y by an element of the algebra generated over C by Z?2
and X +Y. We conclude in this case that C[X,Y, Z]9 = C[Z%, X + Y, Z(X — Y)]. The
proof for odd n is similar. O

1.3.2. First additional comment: Kleinian surfaces. The finite subgroups of SLy are classified
up to conjugation in five types, two infinite families parameterized by the positive integers (the
type A,_1 corresponding of the cyclic group of order n and the type D,, corresponding to the
binary dihedral group of order 4n) and three groups Eg, E7, Eg of respective orders 24, 48, 120.
This groups can be explicitly described in the following way.

Let us denote ¢, = exp(2im/n) € C for any integer n > 1 and consider in SLgy the matrices:

b= (G 0) m=(20), v=(28). e=( %)

nzi<<§cg)’ d):%(gﬁgl 1_1>.

V2 \ (3 ¢s ¢ 1T =G+ )

We define the following subgroups of SLo:

e type A,—1 : the cyclic group C,,, of order n, generated by 6,,,

e type D,, : the binary dihedral group D,,, of order 4n, generated by 62, and u,

o type Eg : the binary tetrahedral group 7', of order 24, generated by 64, u and 7,
o type E7 : the binary octahedral group O, of order 48, generated by 0g, u and 7,
o type FEg : the binary icosahedral group I, of order 120, generated by ¢, v and .

Since any finite subgroup G of SLg is conjugate to one of these types, it follows from remark (iv)
of 1.1.3 that we can suppose without restriction in the determination of the algebra of invariants
Clz,y]¢ for the natural action (11) that G is Cy,, D,,, T, O or I. In each case, one can compute
(see [51]) a system of three generators fi, fa, f3 of the algebra of invariants C[z,y] for the
natural action. Observe that the two first cases are no more than examples 4 and 5 above.

type | generators equation
Ap-1 | fr =y, fo=a", fs=y" X"+YZ=0
Dy, =22 fo=a2"+(-1)"y*",
f3 — $2n+1y _ (_1)nxy2n+1 Xn+1 + XY2 + 22 =0
Es fi = xy® — 20y, fo = a® + 1daty* + 48,
f3 — x12 _ 33$8y4 _ 33l‘4y8 4 y12 X4 + YS 4 Z2 =0
E7 fl — 1.8 + 14x4y4 + yS’ f2 — xlOyQ _ 2$6y6 + $2y10
f3 = 21Ty — 342139° + 3425y13 — 29y'7 XY +Y342%2=0
Eg fi=aty + 11255 — ay't,
fo = 220 — 22821545 + 494210410 4 29825y15 4 20, XP+Y3422=0
fs = %0 4 5222255 — 1000522090 — 10005210920 — 52225925 + /%0

In all cases, the algebra Clz,y]® = C[f1, f2, f3] appears as the factor of the polynomial algebra
C[X,Y, Z] in three variables by the ideal generated by one relation (of degree n, n+1, 4, 4, 5
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respectively). The corresponding surfaces of C3 are the Kleinian surfaces, which are the subject
of many geometric, algebraic and homological studies. It is proved in [51] that, for G and G’ two
groups among the types A,_1, Dy, Fg, E7, Es, the algebras C[z,y]¢ and Clz, 4] are isomorphic
if and only if G = G.

1.3.3. Second additional comment: irreducible representations of SLs. For any integer d > 0,
we denote here by Wy the vector space Clz,y]s of homogeneous polynomials of degree d. In
the terminology of classical invariant theory, the elements of W, are called the binary forms
of degree d. A C-basis of Wy is (e;)o<i<a Where ¢; = z'y¢=". As we have seen in 1.1.4, any
space Wy is stable under the natural action of SLs on Clz,y] defined by (11). Then we obtain

a representation pg : SLy — GL(Wy), satisfying:

(12) Vg=(25) €S, V0<i<d palg)es) = (6w — By) (—ya + ay)' .

It is not difficult to verify that the representation p, is irreducible (i.e. there is no proper and
non trivial subspace W’ of W, such that py(g)(W’) € W’ for any g € SLy). A more profound
theorem asserts that any irreducible rational representation of finite dimension d+ 1 of SLy (the
notion of rational representation is connected with the structure of algebraic group of SLg) is
equivalent to p,4 (see for instance [51]).

1.4. Third example: duality double. The following situation will turn to be important in
further considerations about actions on Weyl algebras. We return to the general situation of
a representation p : G — GL(V) of a group G on a n-dimensional k-vector space V. We put
W =V & V*. Any element of W can be written uniquely w = v + x with v € V and = € V*.
Then we denote w = (v, ). Combining the action (2) of G on V and the associated action (3)
on V*, we define the action:

(13) VgeG, Vw=(v,x) e W=VaV*" gw=(g.v,9.2).

Here g.v = p(g)(v) € V and g.x € V* is defined by (g.2)(u) = z(p(g~!)(u)) for all u € V. We
define the following bilinear form ¢ : W — k:

(14) YV (v,x) € W, q(v,z) = z(v).

1.4.1. LEMMA. Let (eq,...,e,) ak-basis of V and (x1,...,x,) its dual basis in V*; we consider
the basis (e1,...,epn,21,...,2y) of W and its dual basis (x1,...,2n,(1,...,Cn) in W*. Then:

q=z1C1 + "+ TpCy.

Proof. By definition of the z;’s and (;’s, we have z;(v, ) = z;(v,0) = z;(v) and ¢;(v,z) = (;(0,z) = (;(x)
for all (v,z) € W. It follows that the polynomial function ¢ = 21(; + --- + x,(, is a bilinear form
W — k. For any 1 <i,j <n, we have: ¢'(e;,x;) = > r_; x(e;, xj)C(€i, z;). Since xy(e;, ;) = 0; and
Ck(ei, xj) = 0%, we obtain ¢'(e;,z;) = §;; = xj(e;) = q(es, ;). Using the bilinearity of ¢ and ¢, this
proves that ¢’ = q. d

1.4.2. PROPOSITION. For any p: G — GL(V), we have: q € k[IW]%.

Proof. It’s clear from previous lemma that ¢ € k[W]. Moreover, for any g € G and (v,x) € W, we have
q(g-(v, 2)) = (9.2)(9v) = z(p(g™)(p(9)(v))) = =(v) = (v, ). O
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1.4.3. PROPOSITION. For the natural representation of GL(V) on V, we have: k[W]SL(V) = K[q].

Proof. First we observe that the subset W, = {w € W; g(w) # 0} is Zariski-dense on W (i.e. every
function f € k[W] which vanishes on Wy is the zero function). Indeed, if f vanishes on Wy, then fq
vanishes on W by definition of W, hence fq = 0. Since ¢ is nonzero this implies in the domain k[WW]
that f = 0.

Now fix some vector wg = (vg, zo) € W, such that zo(vg) = 1. By standard arguments of linear algebra,
one can check that, for any w = (v,z) € W, there exists g € GL(V') such that g.w = (vp, Axg) where
A =z(v) € k*. Take f € k[W]SV), We can write f = fo + f1 + --- + f4 with any f; homogeneous of
degree j related to the component in V* (i.e. f;(v,azx) = ol f;(v,z) for any v € V, z € V* and a € k*).
Let p(t) be the polynomial in k[t] defined by: p(t) = Z;l:o fi(vo, zo)t/. Then, considering any w € W,
with g € GL(V) satisfying g.w = (vo, Azg) with A = ¢(w) € k*, we obtain:

Flw) = fgw) = f(vo, Axo) = Y5 fi(v0, Awo) = 35— N f;(v0, 0) = p(A) = p(a(w)) = p(q)(w).

Then the polynomial functions f and p(q) = Z?:o [ (vo, To)q’ are equal on W,. Because W, is Zariski-
dense in W, we conclude that f = p(q). O

1.4.4. PROPOSITION. We recall the notations of 1.4.1 and denote by T,, the subgroup of linear
automorphisms g € GL(V') with diagonal matrices with respect of the basis (e1,...,e,). Then:

k(W)™ = k[z1(1, 22C2, - -, Tnlal.
Proof. An element g € T,,, with matrix M, = diag(A1, A2,..., A\y), acts by g.x; = /\j_lxj and g.¢; = A;¢;.

Therefore, any monomial y = z7" ... 2" (' ... (" is an eigenvector under the action, and any element of

k[W]T» is a k-linear combination of invariant monomials. If we choose M, = (A1,1,...,1) with A\; of
infinite order in k*, the relation g.y = y implies i; = j;. Proceeding on the same way for all diagonal
entries, we obtain y = (21(1)" (22(2)" ... (x,(,)". The result follows. O

1.5. Finiteness theorems. We start with the following well known result, which is one of the
most simple about invariant under finite group actions.

1.5.1. THEOREM (E. NOETHER). Assume that k is of characteristic zero. For any representation
p: G — GL(V) of a finite group G, the invariant algebra k[V|® is generated by the homogeneous
invariants functions of degree less than or equal to the order of G.

Proof. We can find many different proofs in the literature (see for instance [48],[50],...). The following is
particulary enlightening and proceeds from [35].
o We choose a basis of V' and identify k[V] = k[z1,...,z,], where n = dim V. For any integer j > 0, we
consider the polynomial p; in k{z1,..., @y, t1,...,t,] defined by:
Pi(T1, ey Ty tr, e tn) = D [(g.ml)tl + (gxa)ta+ ...+ (g.xn)tn}j.

geG
Denoting X, = (g.z1)t1 + (g9.22)t2 + ... + (9.2n)t, for any g € G, and G = {g1,92,...,94} with d the
order of G, we can observe that p; = Xgl Jng2 +-- ~+ng is the j-th Newton function on the d variables
Xg,. It follows from (10) that p; € k[p1,...,pq] for any j.

« For any n-tuple p = (u1, 2, - - ., ptn,) of non-negative integers, define the following polynomial:
hy= > g.(xfah? .. akn).
geG

Then h, € k[z,... ,2,]¢ and h,, is homogeneous of degree |u| = p11 + p12 + - - - + f1,. By definition of the
p;’s and h,’s, we have:

j!

pji= m!uzj!..w byt R Lt
[pl=i

Because each p; with j > d can be expressed as a polynomial in the p;’s with i < d, we deduce from this

relation that the invariants h,, for |u| > d can be written as polynomials in the h, where |n| < d.



9

o Finally consider any invariant polynomial function f =5 u At ah? o akn, where A, € k. We have

f= %deGg.f = %Zu dogec Aug-(zytah® L ahn) = %ZM Auhy. This proves that any element of
k[z1,...,7,]¢ is a polynomial in the h,’s, and then (by the second step of the proof) is a polynomial in
the h,, such that || <d. O

1.5.2. Remark. For a given finite group G, the minimal number m such that for every represen-
tation p : G — GL(V) the invariant algebra k[V]“ can be generated by invariants of degree less
or equal to m is denoted by (G). Noether’s theorem asserts that 3(G) < |G|. It is possible to
prove that we always have 5(G) < |G| unless for cyclic G (the part “G cyclic implies 8(G) = |G|”
is obvious considering a one dimensional faithful representation), and to compute 3(G) for some
small groups (see [48]).

1.5.3. More about finiteness of invariants for finite groups. If we only consider the question on
the finite generation of invariants (independently of the research of some bound on the degree
of generators), we can obtain results in more general contexts. Observe in particular that the
following theorem doesn’t apply only to linear actions, but to any finite group of automorphisms
(see further 1.6 for comments on this point).

THEOREM (E. NOETHER). Let A be a commutative noetherian ring, R a commutative finitely
generated A-algebra, and G a finite group of A-algebra automorphisms of R. Then:

(i) RC is a finitely generated A-algebra, (ii) R is finitely generated R%-module.

Proof. Let r1,rg,...,7, be generators of R over A. We denote R = A[ry,r2,...,7r,]. For any p € R, we
consider in R[z] the monic polynomial ¢(z) = [[ ¢ (2 — g.p). It is clear from formula (9) that g € RC[z].
Since ¢(p) = 0, we deduce that R is integral over RY. Each generator r; (1 <4 < n) satisfies a monic

polynomial relation:

Tgi + 251—01 ozm-rf =0, witha;; € RC foralll1<i<mnand1<j<d,.

Denoting simply {a1, ..., a,} the finite set of all coefficients ¢ j, we introduce the algebra B = Alay, . .., a¢]
generated over A by the a;’s. We have B C RE. From Hilbert’s basis theorem, B is noetherian (as a
factor of a polynomial algebra with coefficients in a noetherian ring). The n monic relations above imply
that any monomial in the r;’s is a linear combination with coefficients in B of monomials 73> ... rir
with j; < d; — 1. Thus R is a finitely generated B-module. Because B is noetherian, it follows that any
B-submodule of R is itself finitely generated. In particular R“ (which is obviously a B submodule of R
since B C RY C R) is a finitely generated B-module. As B is a finitely generated A-algebra, point (i)
of the theorem is proved. Finally, R finitely generated as B-module and B C RS trivially imply point
(ii). O

1.5.4. Finiteness results for reductive groups. We must mention to finish the following important
theorem which is related to linear actions of non necessarily finite groups.

THEOREM (D. HILBERT) Let p: G — GL(V) be a finite dimensional representation of a group
G. Assume that the representation of G on the polynomial functions algebra k[V] is completely
reducible. Then the invariant algebra ]k[V]G is finitely generated as a k-algebra.

The proof (that we don’t develop here) uses two main arguments: the Hilbert’s basis theorem
(as in the previous theorem) and the existence under the hypothesis of a linear projection
R : k[V] — k[V]¢ which is k[V]%-linear (i.e. R(hf) = hR(f) for all h € k[V], f € k[V]) and
equivariant (i.e. R(g.f) = R(f) for all g € G, f € k[V]). Such an R is called a Reynolds operator.
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The theorem applies in particular to the class of reductive groups, including finite groups (in
this case R(f) = ﬁ >_gec 9-f), but also tori, linear and special linear groups, orthogonal and
special orthogonal groups, symplectic groups,...

This theorem is the starting point of a wide literature around Hilbert’s 14-th problem. We just
enumerate some points of reference and refer the reader to [50], [51], [52], [35]

1. The condition “G reductive” is sufficient but not necessary for k[V]“ to be finitely
generated.

2. There exist non reductive groups G with linear finite dimensional actions such that k[V]¢
is not finitely generated (the first counter example is by Nagata for V' of dimension 18).

3. It is possible to characterize the groups G such that, for any finite dimensional repre-
sentation on V', the algebra k[V] is not only finitely generated, but also a polynomial
algebra. The Shephard-Todd and Chevalley theorem asserts that this is the case if and
only if GG is generated by pseudo-reflections.

1.6. Non linear actions and polynomial automorphisms. As we have seen in 1.5.3, many
problems on polynomial invariants make sense for non necessarily linear actions. We recall here
some basic facts about the automorphism groups of commutative polynomial algebra (and refer
to [52] for more details).

1.6.1. Linear automorphisms, triangular automorphisms. Consider the polynomial algebra R =
k[z1,...,x,], and denote by Aut R the group of k-algebra automorphisms of R.

e An element g € Aut R is said to be linear if it stabilizes the vector space kx1 ®kxo B - - - k.
So the subgroup GL(R) of linear automorphisms of R is just (up to isomorphism) GL, (k) acting
as we have seen in the previous sections. In particular g is said to be diagonal if it stabilizes
kz; for all 1 <4 < n. Then up to isomorphism the subgroup of linear automorphisms of R is
just GL, (k) acting as we have seen in the previous sections. An element g € Aut R is said to
be affine if it acts on the x;’s by:

g(x;) = Y ajjxj + Fi, with (e j)1<ij<n € GLy(k) and (51,...,0n) € k™
j=1

We denote by Aff(R) the subgroup of affine automorphisms of R.
e An element g € Aut R is said to be triangular if it acts on the z;’s by:

g(xz1) = Mz + fi(ze,xs3,...,2,)
g(z2) = Xowa+ folxs,x4,...,2p)
with \; € k* and f; € k[zjy1,...,24)
forany 1 <47 <mn.
g(wnfl) = A_1Tp—1+ fnfl(xn) vists

The subgroup of Aut R consisting of all triangular automorphisms is traditionally denoted by
J(R) (from de Jonquieres). The following proposition (see [4]) is elementary but gives useful
informations about the case of a finite subgroup of J(R).

PROPOSITION.
(i) Any finite subgroup of triangular automorphisms of R = k[x1, za,...,x,] Is conjugated
in Aut R to a subgroup of diagonal automorphisms.
(ii) Any finite subgroup of affine automorphisms of R = k[x1,xza,...,x,] is conjugated in

Aut R to a subgroup of linear automorphisms.
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Proof. Let G be a finite subgroup of triangular automorphisms of R. It acts on kz, @ k fixing k.
By semi-simplicity of G (see the lemma below), there exists a], € kx,, ® k such that G stabilizes k!,
and kz, ® k = ka], k. Then G acts on kz,,—1 @ k[z,] = kx,—1 & k[z]] stabilizing k[z),]. By semi-
simplicity of G, there exists x],_; € kx,,—1 @ k[z],] such that G stabilizes kz],_; and kz,_1 ® k[z],] =
ka!,_; @ k[z]]. In the third step, G acts on kx,—2 @ K[zp_1,2,] = kzp_o ® k[z),_1,z]] stabilizing

/

klz],_;, 2] By semi-simplicity of G, there exists x],_5 € ka,,—o®k[x],_;, 2},] such that G stabilizes kz!,_,

n—1%n n—1*n
and kz,,_o®k[x], 1,z ] =ka!,_,Pk[z),_,,x!]. We construct so inductively a family =/, 2}, 4, ...z} such
that, for any 1 <1i < n, we have zj € kx; @ kl[rip1,...,2,] = ka; @ klz), (..., 2], 2] € klzip1,..., 2],

and ka is stable under the action of G. Denoting by h the triangular automorphism defined by h(x;) = «}
for any 1 < i < n, we conclude that h~'Gh acts diagonally on the z;’s. This proves point (i).

For (ii), let G be a finite subgroup of affine automorphisms of R. It acts on kz1 ®kzo®- - - D ke, k fixing
k. By semi-simplicity of G, there exists k-linearly independents elements z, x5, ..., 2!, of kx; Bkro®---P
kz,, @k such that G stabilizes ko @k, ®- - -Okz! and kzy Pkao®- - -dk, Dk = ko @kah - - -dka!, Dk.
Denoting by & the affine automorphism defined by h(z;) = 2} for any 1 < i < n, we conclude that h=*Gh
acts linearly on the x;’s. O

In order to be complete, we recall in the following lemma the semi-simplicity argument used in
the proof of the proposition.

LEMMA (MASCHKE). Let p : G — GL(V) a representation of a finite group G whose
order doesn’t divide the characteristic of k, with V' a non necessarily finite dimensional
vector space. Suppose that V.= W & Wy with W and W, subspaces such that W is
G-stable. Then there exists a G-stable subspace Wy ~ W7 such that V =W & W5.

Proof. Denote by p; the canonical projection p; : V. — W and define ¢ : V. — V by
q(v) = Tcl:| > ogec p(9)(p1(p(g)~1(v))). Because W is G-stable, we have q(v) € W for all
v €V and g(w) = w for all w € W. Then Img = W. An easy calculation shows that
q(p(h)(v)) = p(h)(g(v)) for any h € G and v € V. It follows that Kerq is G-stable.
Then the lemma is proved with Wy = Kerg. (]

1.6.2. The case n = 2. For R = k[z1,z3] the structure of the group Aut R is very explicitly
known. Papers by Jung, Van der Kulk, Rentschler, Makar-Limanov (see [52] for more complete
references) led to prove that Aut R is generated by the subgroup Aff(R) of linear automorphisms
and the subgroup J(R) of triangular automorphisms. More precisely, Aut R is the amalgamated
free product of Aff(R) and J(R) over their intersection (i.e. if g; € J(R) \ Aff(R) and h; €
Aff(R) \ J(R), then gihigahs ... gnhngn+1 ¢ Aff(R)). It follows by a theorem of Serre (see [49],
théoréme 8 p. 53) that any finite subgroup G of Aut R is conjugate either to a subgroup of
Aff(R) or to a subgroup of J(R). Applying proposition 1.6.1, we finally conclude that:

COROLLARY. If R = k[z1,x2], any finite subgroup of Aut R is conjugate to a subgroup of linear
automorphisms.

For k = C, the finite subgroups of GLs are classified up to isomorphism and the corresponding
invariant algebras determined in [45] similarly to the description given in 1.3.2 for SLo.

1.6.3. Comments. For any n > 1, the subgroup of Aut R generated by Aff(R) and J(R) is called
the group of tame automorphisms and is denoted by T(R). The results of 1.6.2 are no more right
for n > 2. Firstly, it is easy to observe that, if n > 3, then T(R) is not the amalgamated free
product of Aff(R) and J(R) over their intersection (define g the automorphism of R exchanging
z9 and x3, and h the automorphism x; — x1 + x%, T9 +— xo,x3 — x3; the automorphism
t = ghg~! and h belong to J(R)\Aff(R), however t"'gh = g € Aff(R)). More profoundly, Nagata
conjectured in 1972 that T(R) # Aut (R) for n = 3, and proposed as a possible counterexample
the automorphism xq — x1—279(v321+23)—23 (2371 +23)%, T2 — Tota3(T371+72)?, T3 — T3.
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This conjecture has been solved (by the affirmative) only in 2001 by Chestakhov and Urmibaev.
A canonical way to obtain automorphisms of R consists in considering the exponential of a locally
nilpotent derivation D of R, and in particular of the product of a triangular derivation d by an
element of Kerd (for instance Nagata’s automorphism is exp D for D = (z3x; + x%)d, where
d = —2x90,, + x30,,). Fixing a locally nilpotent derivation D of R and denoting g; = exp(tD)
for any ¢t € k, the subgroup Ep = {g¢:;t € k} is a subgroup of Aut R isomorphic to the
additive group G, = (k,+) and it is easy to observe that conversely any action of the algebraic
group G, on the affine space k™ arises in this way. Many questions about the Gg-actions
(triangulability, fixed point freeness, cancellation problem, finite generation of the invariants,...)
reduce to algebraic problems on locally nilpotent derivations of R (in particular about their
kernels) and conjugation of subgroups Ep in Aut R. We refer the reader interested by this
wealthy research area to [52].

2. ACTIONS ON NONCOMMUTATIVE POLYNOMIAL ALGEBRAS
2.1. Invariants of noetherian rings under finite groups actions.

2.1.1. Noncommutative noetherian rings. Let R be a ring (non necessarily commutative). A
left R-module M is said to be noetherian if M satisfies the ascending chain condition on left
submodule, or equivalently if every left submodule of M is finitely generated. The ring R
himself is a left noetherian ring if it is noetherian as left R-module. There is of course a similar
definition for right modules, and a ring R is said to be noetherian if it is left noetherian and right
noetherian (i.e. if every left ideal is finitely generated and every right ideal is finitely generated).
It is classical and easy to prove that any finite direct sum of noetherian modules is noetherian,
and that, for any submodule N of a module M, we have: M noetherian if and only if N and
M/N are noetherian. These properties imply in particular the following useful observation: if
R a left noetherian ring, then all finitely generated left R-modules are left noetherian.

2.1.2. Skew group rings. Let R be a ring and G a subgroup of the group Aut R of ring auto-

morphisms of R. The skew group ring (or trivial crossed product) R#G is defined as the free

left R-module with elements of G as a basis and with multiplication defined from relation:
Vr,seR, VgheG, (rg)(sh)=rg '(s)gh

Every element of R#G as a unique expression as » geG g9 With 7g € R for any g € G and

rq = 0 for all but finitely many g. It is clear that R is a subring of R#G (identifying r with

rlg), and that R#G is also a right R-module. Using the last observation of 2.1.1, we deduce
immediately that:

(15) if G is finite and R is left noetherian, then R#G is left noetherian.

Note that the noetherianity of R#G can be proved in the more general context where G is
polycyclic by finite, see [39]. The skew group ring R#G is closely related to the invariant ring
RC, as shows for instance the following lemma.

LEMMA. Let R be a ring, G a finite subgroup of Aut R, and S = R#G. Suppose that |G| is

invertible in R and consider in S the element e = ﬁ > gec9- Then we have:

(i) e?=e, (ii) eS = eR, (iii) eSe =eR% ~ RC.

Proof. We have eg = e for all g € G. Relation (i) is then obvious. For any © = EgeG rqg € S, we have
exr = dec ergg. Since rg = gg(r) for all g € G and r € R by definition of the multiplication in S,
we obtain ex = > egg(ry). As eg = e, it follows that ex = >° eg(ry) =€) c59(rg) € eR. We
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conclude that eS C eR. The converse is clear and so equality (ii) holds. It follows from point (ii) that
eSe = eRe. For r € R, we compute:

ere = \75\ Zggc rg = ﬁ dec 99(r) = fé\ dec egg(r)
= 11 Lgec €9(r) = 1& Xgec 9(r) = G7(r) = em(G);
where 7 : R — R is the trace of G on R. This proves that eSe = er(R). The assumption |G| invertible
in R implies that any » € R® can be written r = T(ﬁr), so RY C 7(R), and finally RY = 7(R). Hence
eSe = eRY. As er = re for any r € R®, the map 7 — er defines a ring isomorphism R® — eRC. 0

2.1.3. A finiteness theorem. The following theorem is due to S. Montgomery and L. W. Small
(see [42]) and can be viewed as a noncommutative analogue of Noether’s theorem 1.5.3.

THEOREM. Let A be a commutative noetherian ring, R a non necessarily commutative ring
such that A is a central subring of R and R is a finitely generated A-algebra, and G a finite
group of A-algebra automorphisms of R such that |G| is invertible in R. If R is left noetherian,
then RC is a finitely generated A-algebra.

Proof. Let us introduce S = R#G. As we have observed in 2.1.2, S is left noetherian. It is clear from the
hypothesis that A is a central subring of S and that S is finitely generated as A-algebra (if {q1,...,qm}
generate R over A and G = {g1,...,94}, then {q1,...,¢m,01,.-.,94} generate S over A).

As in 2.1.2; consider in S the element e = ﬁ decg which satisfies €2 = e. In particular, eSe is a
subring of S, eS is a left eSe-module, and SeS is a two-sided ideal of S. Observe firstly that eS is a
finitely generated left eSe-module.

Because S is left noetherian, SeS is finitely generated as a left ideal of S. Say that SeS =

>, Sz, and write z; = Zj vijew;; with v;; € S and w;; € S for all j. Choose r € S.

Then er = eeer € e(SeS), and so er = e(d_, s,2;) = D es;v;jew;; = ZesivijeQwij.

Thus the finite set {ew;;} generates eS as a left eSe-module.
Denote more briefly eS = 2?21 eSex; with z; € S, and take t1,%o,...,t,, generators of S as a A-algebra.
Now write et; = Y., ey;jex; and exyt; = Y . ezjrex; with y;; € S and 2, € Sforall 1 < j <m
and 1 < k < n. Consider the finite set E = {ex;e, ey;je, €zijxe}1<i k<n,1<j<m- We compute:

n n n n n n
etitoe = (Y eyirex;)tae = > eyne(ex;ta)e = > eyne( D ezpiexp)e = Y eye( D, ezpeexge),
i=1 i=1 i=1 =1 i=1 =1
and prove so inductively that any monomial et; t;, ...t; e with 1 < jq,ja,...,jx < m can be expressed

by a finite sum of products of elements of F. As any element of eSe is a linear combination of such
monomials with coefficients in A, we conclude that E generates eSe as a A-algebra. By lemma 2.1.2, this
achieves the proof. O

This theorem will apply in particular to the iterated Ore extensions (see further 2.3).
2.2. Invariants of simple rings under finite groups actions.

2.2.1. Definitions. Recall that a ring R is simple when (0) and R are the only two-sided ideals
of R. An automorphism g € Aut R is said to be inner if there exists a € R invertible in R such
that g(r) = axa™! for all x € R, and is said to be outer if it is not inner. A subgroup G of
Aut R is outer when the identity map is the only inner automorphism in G.
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2.2.2. Simplicity of the invariants. We start with the following lemma about simplicity of crossed
products.

LEMMA. Let R be a simple ring and G a finite outer subgroup of Aut G. Then the ring R#G
is simple.

Proof. For any nonzero element x = deG r9g in S, define the length of x as the cardinal of the support
{9 € G;ry#0} of 2. Let I be a two-sided nonzero ideal of S = R#G and ¢ be the minimal length of
nonzero elements of I. Because [ is a two-sided ideal and ¢ is minimal, it is clear that the set J consisting
of 0 and of all nonzero elements of I of length ¢ is a two-sided ideal of S. Thus the set K of all elements
r € R appearing as a coefficient in the decomposition of some element of J is a two-sided ideal of R. Since
R is simple, we have 1 € K. So there exists in I some element with decomposition 1.gg + deG,g;ﬁgo rg.g.
Multiplying at the right by gal, we deduce that I contains an element x = 1.1g + deG,g;ﬂG r4.9 of
length £.

If £ =1.1¢ (i.e. £=1), then I = S and we are done. Assume that rj, # 0 for some h € G, h # 1. For
any r € R, the bracket ro —ar =3 5 . (rrg — 749~ 1(r)).g lies in I and has shorter length than z.
Since ¢ is minimal, it follows that rz —xr = 0. In particular: rr;, —rph~1(r) = 0 for all r € R. Therefore
rpR = Rry, is a two-sided ideal of R. The simplicity of R implies that 1 € r;, R, and so 7}, is invertible in
R. Hence h™1(r) = r;lrrh for all r € R, which says that A~! is an inner automorphism of R, which is
impossible since G is outer and h # 1. O

We need now a brief account on the notion of Morita equivalence. Two rings S and T are
Morita equivalent when their categories of modules are equivalent. There exist several methods
to characterize such an equivalence. None is obvious and we refer for instance to [14] or [39] for a
serious presentation of this classical subject. In the limited frame of this notes, our basis will be
the following concrete criterion (see [39], proposition 3.5.6): S and T" are Morita equivalent if and
only if there exist an integer n and an idempotent element e € M, (S) such that T ~ eM,(S)e
and M, (S)eM,(S) = M,(S5).

PROPOSITION. Let R be a simple ring and G a finite outer subgroup of Aut G such that |G| is
invertible in R. Then:

(i) RE and R#G are Morita equivalent,

(ii) the ring R is simple.
Proof. Set S = R#G. By the lemma of 2.1.2; the element e = \%I deGg of S satisfies e? = e and we

have a ring isomorphism eSe ~ RY. It is clear that SeS is a two-sided ideal of S. Thus SeS = S since
S is simple by the previous lemma. We just apply the above Morita equivalence criterion (with n = 1)
to conclude that S and R® are Morita equivalent. The simplicity being a Morita invariant, R is then
simple. O

This proposition is a fundamental argument in all homological studies of invariants of Weyl
algebras (see further).

2.3. Iterated Ore extensions.

2.3.1. Definitions. Let A a non necessarily commutative ring. For any o € Aut A, a o-derivation
of A is an additive map § : A — A such that §(af) = o(a)d(5) + 6(«)p for all a, f € A.

For any automorphism o of A and any o-derivation § of A, it is a technical elementary exercise
to verify that there exists a ring R containing A as a subring and an element x € R such that
R is a free left A-module with basis {z™,n > 0} and:

(16) za=o(a)r+ 6(a) for any a € A.
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The ring R is called the Ore extension of R defined by o and 4, and is denoted by R = A[z; o, 4].
Any element can be written uniquely as a finite sum y = >, ay2’ with a; € A. The addition
in R is the ordinary addition of polynomials, and the noncommutative multiplication in R
is defined inductively from the commutation law (16). For y # 0, the nonnegative integer
n = max{i, a; # 0} is called the degree of y and denoted by deg, y, and the corresponding «, is
the leading coefficient of y. By convention 0 has degree —oo and leading coefficient 0. When A
is a domain, it is clear that, if y, z are two non zero elements of R of respective degrees n, m and
leading coefficients «, 3, then yz has degree n + m and leading coefficient a.o™(3). We deduce:

if A is a domain, then A[x; o,4] is a domain.

In the particular case where § = 0, we simply denote R = A[z; o]. The commutation relation
becomes:

(17) za=o(a)r forany o€ A.

In the particular case where o = id4, the map 0 is an ordinary derivation of A and we simply
denote R = A[x; §]. The commutation relation becomes:

(18) ra=axr+6(a) for any a € A.

When the coefficient ring A is a field, we have as in the commutative case an euclidian algorithm
in Afz; 0,6]. The proofs of the following two results are left to the reader (see for instance [20]).

PROPOSITION. Let R = K{z; 0,0] where K is a non necessarily commutative field, o is an
automorphism of K, and ¢ is a o-derivation of K. For any a,b € R, with b # 0, there exist
q,r € R unique such that a = gb+ r with deg, r < deg, b, and there exist ¢',r’ € R unique such
that a = bq' + r' with deg, v’ < deg, b.

COROLLARY. For K a non necessarily commutative field, all right ideal and all left ideals of
R = K|[x; 0,0] are principal.

2.3.2. Ezamples. Take A = k[y| the commutative polynomial ring in one variable over a com-
mutative field k.

(i) For 6 = 0, the usual derivative, k[y|[z; J,] is the first Weyl algebra A; (k), with commu-
tation law xy — yxr = 1.

(ii) For 6 = y0y, kly][x; y0,| is the enveloping algebra U, (k) of the non abelian two dimen-
sional Lie algebra, with commutation law zy — yz = y. Note that yz = (x — 1)y and
then Uj (k) can also be viewed as k[z][y; o] for o the k-automorphism of k[z]| defined by

z—ax—1.
(iii) For 6 = 4?9y, k[y][z ; ¥?9,] is the Jordanian plane, with homogeneous commutation law
2
Ty —yxr = y°.

(iv) For o the k-automorphism of k[y| defined by y — ¢y for some fixed scalar ¢ € k*,
kly][x; o] is the quantum plane, denoted by k[x, y], with commutation law xy = qyz.

(v) Consider again o the k-automorphism of k[y] defined by y +— ¢y for some fixed scalar
q € k*,q # 1. The Jackson derivative is the additive map ¢ : k[y] — k[y] defined by

o(f) = %; it is a o-derivation. The algebra k[y|[z; o,d] is then the first Weyl

algebra, denoted by A?, with commutation law zy — qyz = 1.

2.3.3. Iterated Ore extension. Starting with a commutative field k and the commutative polyno-
mial ring Ry = k[z1], and considering an automorphism o9 and a oy-derivation d2 of Ri, we can
build the Ore extension Ry = Rj[x2; 02,d2]. Taking an automorphism o3 and a o3-derivation
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d3 of Ry, we consider then R3 = Ro[zs; 03,03]. Iterating this process, we obtain a so called
iterated Ore extension:

(19) Ry =k[zi][ze; 02, 00][235 03,03] -+ [T 3 O, O]
It is clear from the construction that {xilx’; e x%qi}(ihi%_“’im)eNm is a left k-basis of R,,, and
that Ry, is a domain. We give here some elementary examples (see also 2.4.1 below).

1. The Lie algebra sla(k) is ke @ kf @ kh with Lie brackets [h,e] = 2e, [h, f] = —2f and
le, f] = h. By Poincaré-Birkhoff-Witt’s theorem, its enveloping algebra U (sls) admits
(hie? f*); i ken as a left k-basis. Then U(sly) = k[h][e; o’][f; o,6], where o’ is the k-
automorphism of k[h] defined by h — h — 2, ¢ is the k-automorphism of k[h][e; o’
defined by h +— h + 2,e +— e, and § is the o-derivation of k[h|[e; o] defined by d(h) =0
and d(e) = —h.

2. The Heisenberg Lie algebra s(j (k) is kz @ ky @ kz with Lie brackets [z, 2] = [y, 2] = 0
and [z,y] = 2. Then U(sld) = k[2][y][z; d] for § = 20,. It can be proved much more
generally that the enveloping algebra of any nilpotent Lie algebra of dimension n is an
iterated Ore extension on n variables (with o = id for all ¢’s in the formula 19).

3. Let @ = (gij) a m x m matrix with entries in k™ such that ¢;; = 1 and ¢;; = qj_i1 for
all 7,j’s. The quantum m-dimensional affine space parameterized by @ is the algebra
kolzi,. .., xm] generated over k by m generators 1, ..., z,, satisfying the commutation
relations x;x; = g;jz;2;. It is the iterated Ore extension:

kolz1,...,zm] = klz1][z2; ool[z3; 03] - [Tm 5 Om)

with o; the k-automorphism of klz1][z2; 02,] - [zi—1; 0i—1] defined by o(z;) = gijx;
forany 1 <j<i—1.

2.3.4. Noetherianity of Ore extension. The following theorem can be viewed as a noncommuta-
tive version of Hilbert’s basis theorem (see in particular the historical note of [30] p. 20).

THEOREM. Let A a non necessarily commutative ring, o an automorphism and § a o-derivation
of A. If A is right (resp. left) noetherian, then Alx; o,d] is right (resp. left) noetherian.

Proof. Assume that A is right noetherian. Let J be a non zero right ideal of R = A[x; o,6]. We claim
that the set L of leading coefficients of elements of J is a right ideal of A.

Take o, 8 € L. If a+ 3 =0, we have a4+ 8 € L obviously. So we assume a+ 0 # 0. Let
y, 2z € J of respective degrees m,n € N with respective leading coefficients «, 8. In other
words, y = ax™ + -+ and z = B2 +---. Iif n > m, then ya" ™ 4+ 2z = (a+ B)a" + - --
lies in J, thus o+ 8 € L. If m > n, then y + zz™ ™ = (o + B)a™ + --- lies in J and
a+ f € L. Now take v € A such that ay # 0. We have yo~™(v) = ayz™ + ---. As
yo~™(y) € J, it follows that ay € L. We conclude that L is a right ideal of A.

A being right noetherian, introduce nonzero generators a;,...,ax of L as a right ideal of A. For any
1 <@ <k, let y; be an element of J with leading coefficient «;. Denote n; the degree of y; and
n = max{ni,...,n}. Each y; can be replaced by y;z™~"i. Hence there is no loss of generality in assuming
that y1, ...,y all have the same degree n. Set N the left A-submodule of R generated by 1,x,22,...,z"
(i.e. the set of elements of R whose degree is lower or equal than n). Using the commutation law
ar = zo~H(a)—d(c71(a)) for any a € A, we observe that N is also the right A-submodule of R generated
by 1,2,22,...,2™. So N is a noetherian right A-module (any right module finitely generated over a right
noetherian ring is right noetherian, see the last observation of 2.1.1). It follows that the right A-submodule
JNN of N is finitely generated, say generated by z1,...,2;. Thus we have JON = 21 A+ 20 A+ -+ 2 A.
Set =y R+ysR+ - +yr R+ 21R+ 2R+ - - - + 2, R. We will show that J = 1.
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The inclusion I C J is trivial (all y; and z; are in the right ideal J of R). For the converse inclusion observe
first that, A being a subring of R, we have: JNN = z1A+ 20A+---+2AC z1R+ 2R+ -+ 2z R C I.
Thus I contains all elements of J with degree less than n. We will prove by induction on m that, for any
integer m > n, we have: {p € J; deg,p <m} CI.

The assertion is right for m = n. Assume that it is satisfied up to a rank m — 1 > n.

Take p € J with degree m and leading coefficient . We have o € L, then there exist

Bi,..., B, € Asuch that a = a1 81+ +apBe. Set ¢ = [y10 " (B1) +y20 " (B2) + -+

yka_"(ﬂk)] ™™™ which lies in I by definition of I. Each y; being of degree n and leading

coefficient «;, the degree of ¢ is m and its leading coefficient is a1 81 4+ - - - + B = . It

follows that p — q is of degree less than m. We havep e Jandge I C J,thusp—qg € J

and we can apply the induction assumption to deduce that p — ¢ € I, and then p € I.
So we have proved that J = I. Since J was any right ideal of R and I is finitely generated as a right
ideal of R, we conclude that R is right noetherian.
Now if A is left noetherian, the opposite ring A°P is right noetherian. It is easy to observe that A[z; o, §]°P
is isomorphic to A°P[x; 0=, —Jo~1]. Then the left noetherianity of R follows from the first part of the
proof. O

COROLLARY. Every iterated Ore extension over a commutative field k is a noetherian domain.

Proof. We have seen in 2.3.1 that Az ; 0,d] is a domain when A is a domain. We apply this argument
and the previous theorem inductively starting from k. O

2.3.5. Invariants of iterated Ore extension under finite groups. From the previous corollary and
theorem 2.1.3, we deduce immediately the following practical result:

THEOREM. Let R be an iterated Ore extension over a commutative field k. Let G be a finite
group of k-automorphisms of R. We suppose that the order of G is prime with the characteristic
of k. Then RC is a finitely generated k-algebra.

2.4. Actions on Weyl algebras.

2.4.1. Definition and first properties of the Weyl algebras. We fix an integer n > 1 and a com-
mutative base field k. Let S = k[q1,q2,...,¢n] be the commutative polynomial algebra in n
variables. We denote by End;S the k-algebra of k-linear endomorphisms of S. The canonical
embedding p : S — EndS consisting in the identification of any polynomial f with the multipli-
cation py by f in S is a morphism of algebras. We consider in EndS the k-vector space DerS
consisting of the k-derivations of S. It is a S-module with basis (9y,, 0y, - - ., 0y, ), where 9y, is
the usual derivative related to ¢;. Then the algebra Diff S of differential operators on S'is the sub-
algebra of EndyS generated by fig,, ..., g, Oq,---,0q,. This algebra Diff S = Diffk|q, ..., ¢n]
is called the n-th Weyl algebra over k, and is denoted by A, (k). For all d € DeryS and f,h € S,
the ordinary rule d(fh) = d(f)h + fd(h) can be written duy = pgd + piq¢) in EndgS or, up to
the identification mentioned above, df — fd = d(f). Denoting by p; the derivative J,,, we obtain
the following formal definition of A, (k):

DEFINITION. The Weyl algebra A, (k) is the algebra generated over k by 2n generators qi, . . . , gn,
D1, .., Dpn With relations:

(20) pi, @il =1, [pi,q5] = [pi, j] = lai,q5] =0 for i # j,
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where [., .] is the canonical commutation bracket (i.e. [a,b] = ab—ba for all a,b € A, (k)). The

monomials (¢} ... q;'{lp]f . -pZLn)(il,...,z’n,jl,...,jn)eN2" are a k-left basis of the algebra A, (k), which
can be viewed as the iterated Ore extensions:

(21) An(k) = An—1(K)[gn][pn ; 9,],

(22) An(k) = Klq1, g2, -+, qnl[pr5 0qy][p2; 9] - - [Pn 5 Oy ]-

It follows in particular that the invertible elements of A, (k) are only the nonzero scalar in k*,
and so that any nontrivial automorphism of A, (k) is outer.

PROPOSITION. Ifk is of characteristic zero, A, (k) is a simple noetherian domain of center k.

Proof. By 2.3.4, A, (k) is a noetherian domain independently of the characteristic. Let a = Y=, - a; ;q;,p},
be any element of A, (k), with a; ; € A,_1(k). We have:

(23) [pn,a] = Z iaij gy Pl and [a, qn] = Zj aij quph "
] N

If a is central in A, (k), we have [p,, a] = [a, ¢,] = 0. Since k is of characteristic zero, we deduce from (23)
that a reduces to ag, and then a € A,,_1(k). As @ must be central in A,,_4(k), it follows by induction
that a € k. Now consider a two-sided ideal I of A, (k) and suppose that a is non zero in I. We must
have ag, € I and gna € I, thus [a,q,] € I. Similarly, [p,,a] € I. Applying (23), we deduce after a
finite number of steps that ago € I. We repeat the process with the element ago in A,_;(k), and then
inductively up to obtain 1 € I. This proves that the only two-sided ideals of A, (k) are (0) and A, (k). O

PROPOSITION. Ifk is of characteristic zero, then A, (k)® is a simple noetherian domain of center
k and a finitely generated k-algebra, for any finite subgroup G of Aut A, (k).

Proof. A, (k)¢ is simple by point (ii) of proposition 2.2.2. A, (k)¢ is noetherian by point (i) of proposition
2.2.2 and observation (15) of 2.1.2. A,, (k)¢ is a finitely generatd k-algebra by theorem 2.3.5. Any nonzero
central element of A, (k) generates a two-sided principal ideal in A,,(k)%, so is invertible since A, (k)¢
is simple, and then belongs to k. O

PROPOSITION. For any nonnegative integer m, denote by Fy, the k-vector space generated in
Apn (k) by monomials qi' ...q¢rpit ... plh such that iy + -+ +ip + j1 + -+ + jn < m. Then:

(i) B = (Fpm)men is a filtration of A, (k), called the Bernstein filtration;
(ii) the associated graded algebra gr(A,(k)) is the commutative polynomial algebra in 2n
variables over k:
(iii) for any finite subgroup of G of linear automorphisms of A, (k), the action of G induces
an action on gr(A,(k)), the filtration B induces a filtration of A,(C)®, and we have:
g1(An (k)F) ~ gr(A, (K))C.

Proof. It is clear that A, (k) = U,y Fi, Fi C Fj for i < j, and F;F; C Fy ;. By definition, the associated
graded algebra is T' = €, T; for Ty =k and T; = F;/F;_y; then, by a straightforward verification, the
p;’s and g,;’s in T; generate T as a k-algebra and are algebraically independent (see [22] for a detailed
proof). Point (iii) is left to the reader. O
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2.4.2. Action of SLy on the Weyl algebra A;(C). Here we take n = 1 and k = C. We denote
simply p for p; and ¢ for ¢;. Thus, A;(C) is the algebra generated over C by p, ¢ with the only
relation [p,q] = 1.

(24) A1(C) = Cld][p; 9] = Clplla; —0p].
Any element of SLy = SL2(C) gives rise to a linear algebra automorphism on A;(C) defined by:

(25) Vg= (3?) € SLs, g(p) =ap+ Bq and g(q) =yp + dq.

A subgroup of Aut A;(C) is said to be linear admissible if it is the image by the canonical
injection ¢ : SLy < Aut A1(C) of one of the five types A,_1, Dy, Eg, Ey, Eg defined in 1.3.2.
We can now formulate:

THEOREM.
(i) Any finite subgroup of Aut A;1(C) is conjugate to a linear admissible subgroup.

(ii) If G and G’ are two linear admissible subgroups of Aut A;(C), then A;(C)% ~ A;(C)¢
if and only if G = G'.

Proof. It is not possible to give here a complete self contained proof of this theorem, which is based on
many non trivial theorems from various papers. We indicate the structure of the main arguments and
refer the interested reader to the original articles for further details. First we can naturally introduce
two kinds of automorphisms of A;(C). The linear ones (preserving the vector space Cp @ Cq) correspond
to the action (25) of SLy. The triangular ones are of the form: p — ap + 3,q — a~'q + f(p) with
a € C* B e C, f(p) € Clp], and form a subgroup denoted by J. It is proved in [24] that Aut A;(C)
is generated by the subgroups J and SLs (in fact the image of SLy by the canonical injection ¢). More
precisely, it is shown in [1] that Aut A;(C) is the amalgamated free products of SLy and J over their
intersection. Exactly as in 1.6.2, it follows by the theorem of Serre that any finite subgroup of Aut A;(C)
is conjugate either to a subgroup of SLs or to a subgroup of J. But on the same way that in proposition
1.6.1, a semi-simplicity argument proves that any finite subgroup of J is conjugate to a subgroup of
linear automorphisms (see further lemma 2.4.3). Since the finite subgroups of SLy are classified up to
conjugation in the five types A,_1, Dy, Eg, F7, Eg (see 1.3.2), the point (i) follows. The separation (ii),
which cannot be obtained by the standard dimensional invariants, was first proved in [9] by an original
method of “reduction modulo p” (see the second additional comment below for other arguments). O

e First additional comment: finite generation of A;(C)%. By theorem 2.3.5, A;(C)¢ is a finitely
generated C-algebra, and we can ask for explicit generators of A;(C) for any type of admissible
G, similarly to the commutative case in 1.3.2.

Example: consider the action p — (p, ¢ — (~1q of the cyclic group C,, on A;(C), with
¢ a primitive n-th root of unity in C. As in example 4 of 1.3.1, it is clear that A;(C)%" is
generated by invariants monomial piq’. For j > i, write pi¢’ = (p'q‘)¢’ ¢, and observe
that p’q’ is invariant to deduce that j—i = kn for some k > 1, and then p’q’ = (piq?)q*".
Similarly, p'¢? = p*"(p?¢’) if i > j. We conclude with the formula:

P& =palpg+1)(pa+2)...(pg+j—1)
that A;(C) is generated by ¢", p™ and pq. This result is formally similar to the one of

example 4 of 1.3.1, but we must of course take care that the generators don’t commute
here. More precisely we have: pgp™ = p™(pqg —n), ¢"pq = (pq —n)q"™, and

Pt —q"p" =TI (pg+i—1) — (=1)" [T\, (—pg + 7).
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We refer to [18] for the calculation of generators for each of the five types of admissible G.

e Second additional comment: Ay(C)Y as a deformation of the kleinian surfaces. The linear

action of the finite group G on the noncommutative algebra A;(C) induces canonically a linear
action on the commutative graded algebra S = gr(A4;(C)) = C|x, y] associated to the Bernstein
filtration, which is the standard action considered in 1.3.2. We have then gr(4;(C)%) = S%,
what allows to see the invariant algebra A;(C)% as a noncommutative deformation of the kleinian
surface S¢. The next step would be to see the Hochschild homology of A1(C)% as a deformation
of the Poisson homology of S¢ (the commutative algebra S inherits in a natural way a Poisson
algebra structure whose bracket defined from relation {x,y} = 1 is induced by the commutator
bracket of A;(C)%). This program is initiated in [10], which proves that:

dim HHy(A1(C)%) = 5(G) — 1 = dim HPy(S%),
where s(G) is the number of conjugacy classes in G. (Recall that: (1) HHy(A) = A/[A, 4]

where [A, A] denote the C-vector space generated by all brackets [a, b] = ab — ba with a,b € A);
(2) HPy(S) = S/{S, S} where {S, S} is the C-vector space generated by all {a, b} with a,b € S).

2.4.3. Action of Sps, on the Weyl algebra A,. An automorphism g of A, (k) is linear if the
k-vector subspace W =kq, & --- & kg, D kp1 & - - - kp, is stable under g. The restriction to W
of the commutation bracket in A4, (C) defines an alternated bilinear form and the relations (20)
mean that B = (p1,q1,P2,92 - - -, Pn, qn) is a symplectic basis of W. Then it is clear that the group
of linear automorphisms of A, (k) is isomorphic to the symplectic group Sps,, = Sps,, (k). The
previous example 2.4.2 is just the case n = 1. For finite abelian groups of linear automorphisms
and for k = C, the following result (from [6]) simplifies the situation in a way which is used as
a key argument by many studies of this kind of actions (see [12], [11], [7], and further 3.4.2).

PROPOSITION. Any finite abelian subgroup of linear automorphisms of A, (C) is conjugated in
Spy,, to a subgroup of diagonal automorphisms.

More precisely, with the above notations, for any finite abelian subgroup G of Sp,,,, there exist
a symplectic basis C = (z1,y1, 2,92, ..., Zn,Yn) of W and complex characters x1, X2, .., Xn Of
G such that:

g9(zj) = x;(g9)z; and g(y;) = Xj(g)_lyj, for all g € G.

Proof. By Schur’s lemma and total reducibility, there exists a basis U = (uq,us,...,us,) of W and
complex characters o1, 2, ..., ¢, of G such that g(u;) = ¢;(g9)u; for any 1 < j < 2n. Set w; ; = [u;, u;]
for all 1 <4,j < 2n. Up to permutate the u;’s, one can suppose that w; 2 # 0. For any 3 < j < 2n, let
us define:

Vj = W1 2U5 — Wj2U + Wy 1Us.

Denote x1 = u; and y; = wl_éug. Then (z1,y1,vs, V4, - - ., Va2y,) is a basis of W satisfying [z1,y1] = 1 and
[z1,v;] = [y1,v;] = 0 for any 3 < j < 2n. The action of G on this new basis can be described on the
following way. It is clear that g(z1) = ¢1(g)x1 and g(y1) = p2(g)y1 for any g € G. Since wq 2 # 0, we
have ¢2(g) = ¢1(g)~*. For 3 < j < 2n, it follows from the definition of v; that:

9(v;) = 0i(9)v; +wi2(e;(9) — ¢1(9))ur — wja(pi(g) — p2(g))ue.

If wjo # 0, then ¢;(9) = v2(9)™" = p1(g). Similarly w;; # 0 implies ;(g) = p2(g). Hence g(v;) =
@;(g)v; for any 3 < j < 2n. Finally we conclude that the basis (x1,y1,v3,v4,...,v2,) of W satisfies
[z1,y1] =1 and [z1,v;] = [y1,v;] = 0 for any 3 < j < 2n, and that G acts by:

9(z1) = e1(9)z1,  g) =e1(9) 'y,  9(vj) = ¢j(g)v; for 3 < j < 2n.
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We repeat the process with the subspace generated by wvs,...,va,. As W doesn’t contain any totally
isotropic subspace of dimension > n + 1, we can iterate this construction n times to obtain the basis C
and the characters x1 = ¢1, X2 = ©3,- .-, Xn = @2n—1 Of the proposition. O

In order to be complete, we recall in the following lemma two classical arguments on represen-
tation theory used at the beginning of the proof.

LEMMA.

(i) (Total reducibility). Let p : G — GL(V') a representation of a finite group G whose
order doesn’t divide the characteristic of k, with V a finite dimensional vector
space. ThenV =V, & --- @V, with V; G-stable and irreducible (i.e. V; doesn’t
admit proper and non zero G-stable subspace) for any 1 <i < m.

(ii) (Schur’s lemma). If k is algebraically closed and G is abelian, then any finite
dimensional irreducible representation of G is of dimension one.

Proof. Because V' is finite dimensional, (i) just follows from Maschke’s lemma (see 1.6.1).
For (ii), consider a finite dimensional irreducible representation p : G — GL(V) of an
abelian group G. Fix s € G and set ¢ = p(s). For any g € G, gs = sg implies p(g)t =
tp(g). Let A € k* be a eigenvalue of ¢t and denote W = {v € V'; t(v) = Av} # (0). For

any v € W, we haves £(p(g)(0)) = p(9)(t(v)) = p(g) (M) = Alp(g)(v)) 50 p(g)(v) € W.
Hence W is G-stable and then W = V. We have proved: for all s € G, there exists

A € k* such that p(s) = Aidy. In particular any one-dimensional subspace of V' in
G-stable. Since V' is irreducible, we conclude that V is of dimension one. O

This proposition applies in particular to the subgroup generated by one automorphism of finite
order. Under this form, it appears in [12] and [11] as an ingredient for the homological study of
A, (C)% when G is finite not necessarily abelian (another fundamental ingredient is the Morita
equivalence between A, (C)% and A,,(C)#G by proposition 2.2.2, as A, (C) doesn’t admit non-
trivial inner automorphisms). We cannot develop here the elaborate proofs of these papers
leading in particular to the following theorem, which describes very precisely the Hochschild
(co)homology and Poincaré duality: for any finite subgroup of linear automorphisms of A,(C),
we have for all nonnegative integer j:

dime H H;(A,(C)%) = dime HH?*" (A, (C)%)) = a;(G)
where a;(G) is the number of conjugacy classes of elements of G which admit the eigenvalue 1
with multiplicity j.

o Additional comment: finite triangular automorphism groups. Let g be an automorphism of
A, (k) and suppose that g is triangular with respect of the iterated Ore extension:

(26) An(k) = Kk[q1][p1; 0q,][a2][p25 Ogol - - - [anlpn 5 Og.]-

By straightforward calculations from relations (20), we can check that g stabilizes in fact any
subalgebra k|g;|[p; ; 0g,] ~ A1(k), for 1 < i < n, acting on the generators by:

(27) 9(a) = cigi + i, 9(pi) = oi 'pi+ fila), with a; € KX, % €k, fi € klgi]-

So, similarly to proposition 1.6.1, we have:

LEMMA. Any finite subgroup of triangular automorphisms of A, (k) is conjugated in Aut (A, (k))
to a finite abelian subgroup of diagonal automorphisms.

Proof. Let G be a finite subgroup of triangular automorphisms of A,,(k). In each subalgebra kig;][p; ; 0],
1 < i < n, consider the k-vector spaces F; = k @ kg; and E; = k[g;] © kp;. By (27), G acts on F; fixing
k and on E; stabilizing k[g;]. By the semi-simplicity lemma 1.6.1, there exist y; € F; with F; = k @ ky;
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and z; € E; with E; = Kk[¢;] ® ka; such that ky; and kz; are G-stable. By construction, y; = a;q; + 7;
where o; € k™ and v; € k. Up to multiply by a nonzero scalar, we can suppose that z; = a;lpi + fi(a)
with f; € k[g;]. Let h be the triangular automorphism of A, (k) defined by h(g;) = y; and h(p;) = x; for
all 1 < i <n. Then h~'Gh acts diagonally on the vectors of the basis q1,p1, .- -, @n, Pn- O

e Remark. As seen by previous results, some favorable situations reduce to diagonal actions, i.e.
actions of subgroups of the torus (k*)" by g(¢;) = ;¢ and g(p;) = ; 'p; with a; € k*. This
is the most simple case of the following construction.

2.4.4. Dual action of GL,, on the Weyl algebra A,,. We consider here the case of a linear action
on A, (k) which extends an action on the polynomial functions by the duality process of 1.4.

We start with a vector space V' of finite dimension n over k, (g1, ..., ¢,) a k-basis of the dual V*,
S :=k[V] = S(V*) ~Kk|[q,...,qn]. As in 2.4.1, we denotes by EndyS the k-algebra of k-linear
endomorphisms of S, u : S — EndiS the canonical embedding defined by the multiplication,
DeryS the subspace of EndyS consisting of the k-derivations of S, and A, (k) = Diff S the
subalgebra of EndyS generated by fig,, ..., flg,s0q1s---,0q,-

Let G be a subgroup of GL, (k) acting by linear automorphisms on V', via the natural represen-
tation p : G — GL(V). By 1.1.2, this action extends canonically in an action by automorphisms
on S. Recall that the restriction of this action to the subspace V* = kq1 ® kg @ - - - kq,, just
corresponds to the dual representation of p. Let us define the application:

(28) G x EndiS — EndiS, (g,9) — g.¢ = gpg~ L.

For any f € S, we have g.uy = pgyp). So we obtain an action of G' on EndgS which extends the
action on S making covariant the morphism p. We observe easily that the subspace DeryS' is
stable under this action. We conclude that the restriction to Diff S of the action of G determines
an action of G on the Weyl algebra. We claim that the restriction of this action to the vector
space U = k0, ®k0,, ® ---kd,, corresponds to the initial representation p.

Proof. For all 1 <i,5 <n and g € G, we compute
(9-04,)(a5) = 994,9"(a;) = 994, ( 2_:1 B, jdm) = Bij = 04,(97(a5)) = 04, (97 "45),

where (53; ;) denotes the matrix of g~' in the basis (g1,...,¢,) of V*. By (3), it follows
that the action on U is dual to the action on V*, which is itself dual of the initial action
on V. 0

In other words, the so-defined action of G on A, (k) is obtained from the linear action of G on S
applying the duality process exposed in 1.4. In particular, lemma 1.4.1 applies. We summarize
this results in the following proposition (with the notation p; = dy,).

PROPOSITION. For any subgroup G of GL,(k), the action of G by linear automorphisms on
S =Kk[q1,...,qn] extends in an action by linear automorphisms on the Weyl algebra A,,(k) by:

(29) l9(pi), qj] = [pi,g ' (q;)] forallge G, 1<4i,j<n,

or equivalently

(30) g(pi) = '21 94, (g qj))p; forallge G, 1<i<n.
]:

In this action, the element w = q1p1 + qap2 + + - - + qnpn lies in An(k)G for any choice of G.



23

e First example: diagonal action. The most simple situation (but interesting as we have seen
before) is when G acts as a diagonal subgroup of GLy,(k), and then acts on A, (k) as a subgroup
of the torus (k™)™ by:

(31) 9(qi) = aigi, g(pi) = o7 'pi, with g = (o1,...,a0) € (K*)™.
Applying proposition 1.4.4, we have in particular:
if G = (k*)", then A, (k)Y =Kk[qip1,q2p2, - - -, Gnpn)-

If G is a finite subgroup of (k*)™ acting so, the invariant algebra A, (k) is finitely generated over
k (by theorem 2.3.5). Since every monomial in the ¢;’s and p;’s is an eigenvector under the action
of G, it’s clear that we can find a finite family of k-algebra generators of A, (k)¢ constituted
by invariant monomials. The case where n = 1 is detailed in the example of the first additional
comment of 2.4.2. For n > 1, the determination of such a family becomes an arithmetical and
combinatorial question depending on the mixing between the actions on the various copies of
A;(k) in A, (k). We shall solve it completely at the level of the rational functions in the next
section (see 3.4.2). For the moment, we only give the two following toy illustrations:

Example. For G = (g) the cyclic group of order 6 acting on As(C) by:
g: pL— =P, Q= —qu, P2 P2, G2 5,

A(C)Y is generated by pf, p1a1, 47,3, paga; 43

Example. For G = (h) the cyclic group of order 2 acting on A,(C) by:

h: pi——p1, ¢1— —q1, P2+ —p2, g2+ —qa,
A5(C)% is generated by p?, p1g1, p1p2, P142, 43, 4102+ 4142+ P3, D242, 43

o Second example: differential operators over Kleinian surfaces. We take k = C, n =1, G a
finite subgroup of SLy acting on A2(C) by:
= = 6 —
(32) Vg = (: ,g) € SL. 9(q1) = aq1 + Bg2,  g(p1) = dp1 — Vp2,
9(q2) =vq1 +0g2  g(p2) = —Bp1 + aps.

This action is the extension, following the process described at the beginning of this paragraph,
of the canonical action (11) on C|g, ¢2] (don’t mistake with (25) corresponding to the action on
A1(C) described in 2.4.2). Applying theorem 5 from [37] (since G doesn’t contain non trivial
pseudo-reflections), we have Diff(S)¢ = Ay(C)¢ ~ Diff(S), the differential operator algebra
over the Kleinian surface associated to G. As an application of the main results of part 3, we
will prove further in 3.4.3 that A3(C)% is rationally equivalent to Az(C).

e Third example: dual action of the Weyl group on a Cartan subalgebra of a semi-simple complex
Lie algebra. Let g a semi-simple Lie algebra of rank ¢ over C and § a Cartan subalgebra. The
Weyl group acts by linear automorphisms on C[h*] ~ S(h), and then on Diff(h*) ~ A,(C) fol-
lowing the process that we described above. The interested reader could find in [12] homological
results and calculations concerning this action.
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2.5. Non linear actions and polynomial automorphisms. Of course, the questions dis-
cussed in 1.6 about invariants under subgroups of non necessarily linear automorphisms of a
commutative polynomial algebra make sense for noncommutative polynomial algebras. It is not
possible to give here a complete survey of the many papers devoted to the determination of such
automorphism groups (see for instance the bibliographies of [1], [2], [3], [5], [24], [29],...). With
the results of part 3 in mind, we focus here on the iterated Ore extension in two variables over
C, for which we have a complete answer.

2.5.1. Ezamples of automorphism groups. We have already recalled in 1.6.2 and 2.4.2 the de-
scription of the automorphism groups of the commutative ring C[z, y| and of the Weyl algebra
A1(C). In both cases, the group is “rich”, generated by linear and by triangular automorphisms.
This is not the case for the quantum plane Cgy[x, y] (with commutation rule zy = qyz, see exam-
ple (iv) of 2.3.2), and for the quantum Weyl algebra A¥(C) (with commutation rule zy —qyz = 1,
see example (v) of 2.3.2), as the following proposition shows.

PROPOSITION. Suppose that ¢ € C* is not a root of one.

(i) The automorphism group of the quantum plane C,[z,y] is isomorphic to the torus (C*)?
acting by (o, 8) : x — ax, y— By.

(i) The automorphism group of the quantum Weyl algebra A%(C) is isomorphic to the torus
(CX) acting by o : x +— ax, yr— a”ly.

Proof. Assertion (i) first appeared in [2], as a particular case of more general results. We give here
a short independent proof. Recall that an element is normal in C,[x,y] if it generates a two-sided
ideal. Let z be a normal element of Cylz,y]. We have in particular zy = uz and zx = vz for some
u,v € Cylz,y]. Considering deg, in the first equality, we have v € Cly] and it follows by straightforward
identifications that z = f(y)x® for some nonnegative integer i and some f € C[y]. From the second equality
f(y)x™™ = 2o, it is easy to deduce that z = ay’/z* for some nonnegative integer j and some o € C. This
proves that the normal elements of C,[z,y] are the monomials. Let g be an C-automorphism of Cg [z, y].
It preserves the set of nonzero normal elements. Hence we have g(z) = ay’z? and g(y) = By*az" with
a, € C* and j,1,k, h nonnegative integers satisfying ik — hj = 1 (traducing the relation xy = gqyx).
Writing similar formulas for g~! and identifying the exponents in g=!(g(x)) =  and g~ '(g9(y)) = y, we
obtain j =h=0andi=k = 1.

Assertion (ii) can be proved by somewhat similar arguments (see [3] for details). O

PROPOSITION. Suppose that 0 is an ordinary derivation of Cly| satisfying d(y) ¢ C. Let p be
the non constant polynomial in Cly| such that § = p0,. Any automorphism of R = C[y][x; 6] is
triangular, of the form:

y—ay+p, z—Ar+f,

with f € Cly|, and a € C*, A € C*, 8 € C satisfying p(ay + ) = a\p(y).

Proof. For any u € Cly|, we have zu = ux + pd,(u), and then zp = p.(x + dy(p)). Thus p is normal in
R. Tt follows that the two-sided ideal I generated by the commutators [r,s] = rs — sr with r,s € R is
the principal ideal generated by p = [z, y]. For any automorphism ¢g € Aut R, the element g(p) generates
1. So there exists ¢ € C* such that g(p) = ep € C[y]. As deg, g(p) = ndeg, g(y) where n = deg,p > 1
(by assumption), we deduce that deg, g(y) = 0, therefore g(y) € Cly]. Hence g(Cly]) C Cly], and it’s
clear that there exists a € C*, 3 € C such that g(y) = ay + 8. Then, the surjectivity of g implies that
deg,(g(x)) = 1. So there exist A € C*, f € C[y] such that g(z) = A\x + f. We have p(ay + ) = g(p) =

[9(z), 9(y)] = arp(y). O
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2.5.2. CLASSIFICATION LEMMA. Let o be a C-automorphism of Cly] and 0 a o-derivation of
Cly]. Set R = Cly|[z; 0,d]. Up to C-isomorphism, we have one and only one of the following
five cases.
(i) R = C[x,y] is commutative;
(ii) there exists some g € C*, g # 1, such that R = Cgy[x, y];
(iii) there exists some g € C*, q # 1, such that R = A}(C);
(iv) 0 is an ordinary k-derivation such that 0(y) ¢ C and R = Cly|[x; d];
) R= 4().
Hence, by the results of 2.5.1, the group Aut R is explicitly known in all cases.

Proof. There exists ¢ € C* and s € C such that o(y) = qy—l—s If ¢ # 1 weset y' = y+s(¢—1)~! and obtain
R=Cly)lz; 0,6] with o(y') = gy and 8(y') = &(y) € Cly]. Tn Cly/] write &(y/) = 3(/)(1 — @)y’ +r with
o(y') € Cly'] and r € C. It follows that z’ = x — ¢(y’) satisfies 'y’ — qy’z’ = r. Hence R = C[y’][z’; 0, ]
with §'(y) = r € k. If r = 0, then R = C,[2/,y/]. If r # 0, we set 2”7 = r~'2’ and conclude that
R = A}(C). Assume now that ¢ = 1. If s = 0 then o = id and R = Cly][z; ]; we are in case (i) when
§ =0, in case (v) when §(y) € C*, and in case (iv) when & # 0. If s # 0, we set first ¢’ = s~y to reduce
to R = k[y'][z; 0,8] with o(y/) = ¢/ + 1 and §(y’') = s716(y). Then we denote 2’ = z + 6(y’), which
satisfies 'y’ = (y' 4+ 1)a’, so that R = C[y'][2’; o] is the enveloping algebra U; (C) introduced in example
(v) of 2.3.2. We write U1 (C) = C[2'][y'; —2'0,/] and are then in case (iv). O

/

3. ACTIONS ON RATIONAL FUNCTIONS

3.1. A survey on some commutative results.

3.1.1. Extension of an action to the field of fractions. Let S be a commutative ring. Assume
that S is a domain and consider F' = Frac S the field of fractions of S. Any automorphism of
S extends into an automorphism of F' and it’s obvious that, for any subgroup G of Aut S, we
have Frac S¢ C FC. For finite G, the converse is true:

PROPOSITION. If G is a finite subgroup of automorphisms of a commutative domain S with
field of fractions F, then we have: Frac S¢ = FC.

Proof. For any z € F, there exist a,b € S, b # 0, such that z = %. Define &/ = [yec.g2ias 9(b). Then

by € S¢ andx—bb,,w1thab’—x(bb’)€FGﬂS Sé. O
This applies in particular to a polynomial algebra S = k[z1,...,2,] and its field of rational
functions F' = k(x1,...,z,), and we formulate in this case the following problem about the

structure of FC.

3.1.2. Noether’s problem. Let k be commutative field of characteristic zero. Let G be a finite
subgroup of GL, (k) acting by linear automorphisms on S = k[z1, ..., z,] (in the sense of 1.1.2),
and then on F = FracS = k(z1,...,,). We consider the subfield F¢ = Frac S¢ of F.

REMARK 1. It’s well known (by Artin’s lemma, see for instance [36] page 194) that
[F: F9] = |G|, and then trdeg, F& = trdeg, F = n.

REMARK 2. We know by theorem 1.5.3 that S is finitely generated (say by m elements)
as a k-algebra. Thus F© is finitely generated (say by p elements) as a field extension
of k, with p < m. We can have p < m; example: S = k(z,y) and G = (g) for g : ©
—z,y +— —y, then S¢ = k[22,y%, xy] = k[X,Y, Z]/(Z? — XY) and FY = k(zy, 2~ 'y).
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REMARK 3. Suppose that S¢ is not only finitely generated, but isomorphic to a poly-
nomial algebra K[y1, ..., ym], with y1, ..., ym algebraically independent over k. Then we
have F¢ =Kk(y1,...,¥m). Thus m = n by remark 1.

Now we can consider the main question:
ProBLEM (Noether’s problem) : is F& a purely transcendental extension of k ?

An abundant literature has been devoted (and is still devoted) to this question and it’s out of
the question to give here a comprehensive presentation of it. We just point out the following
facts.

e The answer is positive if S is a polynomial algebra. By remark 3, we have then S¢ =
k[z1,...,2,] and F€ = Kk(x1,...,2,). This is in particular the case when G is the symmetric
group S, acting by permutation of the x;’s (by theorem 1.2.1), or more generally when Shephard-
Todd and Chevalley theorem applies (see the last comment after theorem 1.5.4).

e The answer is positive if n = 1. This is an obvious consequence of Liiroth’s theorem (see [32] p.
520): if F' =k(z) is a purely transcendental extension of degree 1 of k, then for any intermediate
subfield k & L C F, there exists some v € F transcendental over k such that F' = k(v).

e The answer is positive if n = 2. This is an obvious consequence of Castelnuovo’s theorem (see
[32] p. 523): if FF = k(x,y) is a purely transcendental extension of degree 2 of k, then for any
intermediate subfield k & L C F such that [F' : L] < 400, there exists some v, w € F such that
F =k(v,w) is purely transcendental of degree 2.

e The answer is positive for all n > 1 when G is abelian and k is algebraically closed. This is a
classical theorem by E. Fisher (1915), see [17] for a proof, or corollary 2 in 3.1.3 below.

Among other cases of positive results, we can cite the cases where G is any subgroup of .S,, for
1 < n < 4, the case where G = A for n = 5 by Sheperd-Barron or Maeda (see [34] and [38]),
the case where G is the cyclic group of order n in S,, for 1 <n <7 and n = 11.

The first counterexamples (Swan 1969, Lenstra 1974) were for k = Q (and G the cyclic group
of order n in S,, for n = 47 and n = 8 respectively). D. Saltmann produced in 1984 the first
counter-example for k algebraically closed (see [34], [46], [47]).

3.1.3. Miyata’s theorem. The following result concerns invariants under actions on rational func-
tions resulting from an action on polynomials.

THEOREM (T. M1vaTA). Let K be a commutative field, S = K|x] the commutative ring of
polynomials in one variable over K, and F' = K(x) the field of fractions of S. Let G be a
subgroup of ring automorphisms of S such that g(K) C K for any g € G.

(i) if S¢ C K, then F¢ = S¢ = K©.

(ii) if SY ¢ K, then for any u € S% u ¢ K of degree m = min{deg, y;y € S% y ¢ K} we
have S¢ = K[u] and F& = K (u).

We don’t give a proof of this theorem here, because we will prove it further (see 3.3) in the more

general context of Ore extensions; for a self-contained proof on the commutative case, we refer
the reader to [34] or [40]. Observe that the group G is not necessarily finite.

COROLLARY 1 (W. BURNSIDE). The answer to Noether’s problem is positive if n = 3.

Proof. Let G be a finite subgroup of GL3(k) acting linearly on S = k[z,y,z]. We introduce in F =
k(z,y,z) the subalgebra S = k(%, 2)[z], which satisfies Frac S; = F'. Let g € G. We have:
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g(x) =ax+ Py +vz, gly) =dz+P0y++"2, g(z)=a"z+ 5"y ++"2

a/_'_ﬁ/g_’_,y/g Ck”-f—ﬂ//ﬂ-i-’yﬂi
T atBLgz a+pfL+qz
It follows that the subfield K = k(Z, £) is stable under the action of G, and we can apply the theorem to
the algebra S; = K|[x]. The finiteness of G implies that [F : F¢] is finite and so S ¢ K. Thus we are in
the second case of the theorem. There exists u € S of minimal degree > 1 such that S{ = K%[u] and

F& = K%(u). By Castelnuovo’s theorem (see in 3.1.2 above), K¢ = k(v;w) is purely transcendental of
degree two, and then F& = k(v,w)(u) = k(u, v, w). O

Thus:

and  g(2) =

z
T

Of course, we can prove similarly that the answer to Noether’s problem is positive if n = 2 using
Liiroth’s theorem instead of Castelnuovo’s theorem.

COROLLARY 2 (E. FiscHER). If k is agebraically closed, the answer to Noether’s problem is
positive for G abelian.

Proof. Here we assume that G is a finite abelian subgroup of GL,, (k). By total reducibility and Schur’s
lemma (see 2.4.3) we can suppose up to conjugation that there exist complex characters x1,...,xn of G
such that g(x;) = x;(g)z, forall 1 < j <n and all g € G. In particular, G acts on S1 =k(xo, ..., z,)[x1]
stabilizing K1 = k(2a, ..., 2,); thus k(z1,...,2,)% = K&(u;) for some u; € S&. We apply then Miyata’s
theorem inductively to conclude. O

Another application due to E. B. Vinberg concerns the rational finite dimensional representations
of solvable connected linear algebraic groups and uses Lie-Kolchin theorem about triangulability
of such representations in order to apply inductively Miyata’s theorem (see [53] for more details).

3.2. Noncommutative rational functions.

3.2.1. A survey on skewfields of fractions for noncommutative noetherian domains. Let A be a
ring (non necessarily commutative). Assume that A is a domain; then the set S = {a € A;a # 0}
is multiplicative. We say that S is a (left and right) Ore set if it satisfies the two properties:

[V (a,s) € Ax S, 3 (bt) € Ax S, at = sb] and [V (a,s) € Ax S, 3 (,t') e Ax S, t'a=10s].

In this case, we define an equivalence on A x S by (a, s) ~ (b,t) if there exist ¢,d € A such that
ac = bd and sc = td. The factor set D = (A x §)/ ~ is canonically equipped with a structure of
skewfield (or noncommutative division ring), which is the smallest skewfield containing A. We
name D the skewfield of fractions of A, denoted by Frac A. Concretely, we have:

(33) VgcFracA, 3 (a,s) €AxS, g=as ' and [3 (b,t) € Ax S, ¢q=1t""0],
and more generally:
(34)

Vaqi,...,qn € FracA, Jay,...,axb1,...00 €A, Is,t €S, Vie{l,...,k}, ¢ =a;s ' =t"'b;.

We refer the reader to [25], [30], [39] for more details on this standard construction. An important
point is that noetherianity is a sufficient condition for A to admit such a skewfield of fractions.

LEMMA. Any noetherian domain admits a skewfield of fractions.

Proof. Let (a,s) € A x S, a # 0, where S is the set of nonzero elements of A. For any integer n > 0,
denote by I,, the left ideal generated by a,as,as?,...,as™. We have I,, C I, for all n > 0. Since A is
noetherian, there exists some m > 0 such that I,,, = I,,,11. In particular, as™"! = coa+cias+---+cpas™
for some cg,cq,...,¢m € A. Denote by k the smallest index such that ¢, # 0. Because A is a domain,
we can simplify by s¥ and write as™t17F = ¢cra 4+ Ck+108 + - + emas™ k. With ¢/ = ¢, € S and
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b =as™ % —cpi1a— - — cpas™ F71, we conclude that t’a = b's. So S is a left Ore set; the proof is
similar on the right. O

REMARK 1. Many results which are very simple for commutative fields of fractions become more
difficult for skewfields. This is the case for instance of the following noncommutative analogue
of proposition 3.1.1: let R be a domain satisfying the left and right Ore conditions, let F' be the
skewfield of fractions of R, let G be a finite subgroup of automorphisms of R such that |G| is
invertible in R, then RC satisfies the left and right Ore conditions and we have Frac R® = F¢.

Sketch of the proof. We start with a preliminary observation. Let I and J be two nonzero
left ideals of R. Take a € I,a # 0,s € J,s # 0. Since R satisfies the left Ore condition,
there exist o', ¢’ nonzero in R such that t'a = &’s. This element is nonzero (since R is a
domain) and lies in I NJ. By induction, we prove similarly that: the intersection of any
family of nonzero left ideals of R is a nonzero left ideal of R.

Now fix a nonzero element z € FY. By (33), there exist nonzero elements b,t € R
such that = ¢t71b. It’s clear that I = Nyec 9(R) is a left ideal of R which is stable
under the action of G. Then we can apply Bergman’s and Isaacs’ theorem (see corollary
1.5 in [41] or original paper [15] for a proof of this nontrivial result) to deduce that I
contains a nontrivial fixed point. In other words, there exists a nonzero element v in
RGN I. In particular v € Rt can be written v = dt for some nonzero d € R, and so z =

t='b =t"'d~'db = v=1db. Since z € F and v € RS, we have db = vz € FE N R = RC.

Denoting u = db, we have proved that: any nonzero € F& can be written z = v~'u

with v and « nonzero elements of R®.

Finally, let a, s be two nonzero elements of R“. Then z = st~' € F“. By the second
step, there exist u,v € R® such that st~' = v~'u, and then vs = ut. This proves that
RC satisfies the left Ore condition. The proof is similar on the right. Therefore R
admits a skewfield of fractions and the equality Frac R = F¢ is clear from the second
step of the proof. O

REMARK 2. There exists a noncommutative analogue of Galois theory. We cannot develop it
here, but just mention the following version of Artin’s lemma (see remark 1 of 3.1.2): Let D be
a skewfield and G a finite group of automorphisms of D. Then [D : DY) < |G|. If moreover G
doesn’t contain any non trivial inner automorphism, then [D : DY) = |G].

We refer the reader to [21] (theorem 3.3.7) or [41] (lemma 2.18). O

3.2.2. Noncommutative rational functions. Let A a ring, ¢ an automorphism of A, § a o-
derivation of A, and R = A[z; o0,4] the associated Ore extension. We have seen in 2.3.1 that R
is a domain when A is a domain, and in 2.3.4 that R is noetherian when A is noetherian. So
we conclude by the lemma of 3.2.1 that, if A is a noetherian domain, then the Ore extension
R = Alz; 0,0] admits a skewfield of fractions.

Denoting K = Frac A, it’s easy to check that ¢ and § extend uniquely into an automorphism
and a o-derivation of K, and we can then consider the Ore extension S = K|z ; 0,4]. It follows
from (34) that any polynomial f € S can be written f = gs~! = ¢~'h with s, nonzero in A
and g, h € R. We deduce that Frac R = Frac S. This skewfield is denoted by K(z; 0,9).

(35) If FracA= K, R= Alx; 0,0], S = K|z; 0,6], then: D = Frac R = FracS = K(x; 0,0).

In the case of an iterated Ore extension (19) over a commutative base field k, we have by
induction:

if Ry, =k[z1][z2; 02,02] - [Tm; Om,Om], then Frac R, = k(x1)(x2; 02,02) -+ (T ; Om, Om)-

We simply denote D = K(z; o) when 6 =0 and D = K(x; §) when o = idy4.
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REMARK. It’s useful in many circumstances to observe (see proposition 8.7.1 of [20])
that K(x; 0,0) can be embedded into the skewfield F = K((x~!; 0~!, —do~1)) whose
elements are the Laurent series ajz™7 with m € Z and a; € K, with the commu-
tation law:
= Z o N =dc )" Ha)z™" =0 Ha)z™t — 2 6o (a)z™! forall a € K.
n>1

Jj=zm

Indeed, multiplying on the left and on the right by z, we obtain the commutation law
of S = K[z; o,4]; then S appears as a subring of F', and so D is a subfield of F'.

In particular, for § = 0, we denote F' = K (z~1; 07!)) and just have: z7ta = 071 (a)z L.
If o = idg, then F = K((z~!; —9)) is a pseudo-differential operator skewfield, with com-
mutation law:

s la=az' =)z 4+ (=) ()T = a2 (o)
It follows from the embedding of D into K(z~'; 0=, —d0~1)) that D is canonically

equipped with the discrete valuation v,-1, or more simply v, satisfying v(s) = —degs
for all s € S.

LEMMA. Let K be a skewfield, with center Z(K).

(i) Let o be an automorphism of K. Assume that, for all n > 1, the automorphism o™ is
not inner. Then the center Z(D) of D = K(x; o) is the subfield Z(K) N K°, where
K?={a€ K;o(a) =a}.

(ii) Let & be a derivation of K. Assume that K is of characteristic zero and 0 is not inner.
Then the center Z(D) of D = K(x; ) is Z(K) N Ks, where K5 = {a € K; §(a) = 0}.

Proof. In the embedding of D = K(x; o) in F = K(x7'; 071)), any element f € D can be written
f= Zj>m ajz™d with m € Z and o € K for all j > m. Assume that f is central. Then zf = fz and
af = fa for any o € K. This is equivalent to a; € K° and aa; = ajo ™I () for all j > m. Since o7 is
not inner, we necessarily have a; = 0 for j # 0. This achieve the proof of (i). Under the assumptions
of point (ii), let us consider now an element f € D = K(z;6) C F = K((x~!; —4)). From the relation
af = fa for any a € K, we deduce using the fact that § is not inner that f € K, and so f € Z(K).
Then f € Ks follows from the relation fz = zf. O

3.2.3. Weyl skewfields. We fix a commutative base field k.

e We consider firstly as in (24) the first Weyl algebra A;(k) = klg|[p; 04] = k[p|[g; —0p]. Its
skewfield of fractions is named the first Weyl skewfield and is classically denoted by D (k):
(36) D, (k) = Frac A1 (k) = k(q)(p; 0;) = k(p)(q; —p).

It would be useful in many circumstances to give another presentation of Dj(k). Set w = pq; it
follows from relation pg — gp = 1 that wqg = qw + ¢ and pw = (w + 1)p. Thus the subalgebra
of A;(k) generated by ¢ and w, and the subalgebra of A;(k) generated by p and w are both
isomorphic to the enveloping algebra Uj(k) defined in example (ii) of 2.3.2. It’s clear that
Frac A; (k) = Frac U; (k). We conclude:

(37) D (k) =k(q)(w; d), with d = g0, the Euler derivation in k(g),
(38) D (k) =k(w)(p; o), with o € Autk(w) defined by o(w) = w + 1.
Applying the last lemma in 3.2.2, we obtain:

(39) if k is of characteristic zero, then Z(D;(k)) = k.
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The situation where k is of characteristic £ > 0 is quite different, and out of our main interest
here, since Dy (k) is then of finite dimension £2 over its center k(p’, ¢*).

e We defined similarly the n-th Weyl skewfield D,,(k) = Frac A,,(k). Using (22,26), we write:

(40) Dy (k) =k(q1,02,- -, n) (P13 01) (P23 0gs) - - - (Pns Ogn),

(41) D (k) = k(q1) (P15 94,)(42) (P25 Ogo) - - - (qn)(Pn; 0y,

Reasoning as above on the products w; = p;q; for all 1 < i < n, which satisfy the relations

(42)  piw; —wip; = pi, Wig; — Giw; = Gi, [pi, wi] = [gi, w;] = [wi, ws] =081 j # 1,

we obtain the alternative presentations:

(43) D, (k) =k(q1,q2, -, qn)(w1; d1)(wa; da) ... (wy; dy),

with d; the Euler derivative d; = ¢;0,, for all 1 <1 <n, and:

(44) D, (k) = k(wy,wa, ..., wy)(p1; 01)(p2; 02) - (Pn; on),

where each automorphism o; is defined on k(wq, wa, ..., wy) by oi(w;) = wj + 6; j, and fixes the
pj’s for j <.

e If we replace k by a purely transcendental extension K = k(z1, 29, ..., 2) of degree ¢ of k, the
skewfield D, (K) is denoted by D), (k). By convention, we set Dy (k) = K. To sum up:

(45) Dy (k) = Dp(k(21,...,2)) forall t>0,n>0.

One can prove using inductively the last lemma of 3.2.2 (see also [31] or [7]) that:

(46) if k is of characteristic zero, then Z(D,+(k)) =k(z1,. .., 2).

The skewfields D,, ; play a fundamental role in Lie theory and are in the center of the important

conjecture (the Gelfand-Kirillov conjecture) on rational equivalence of enveloping algebras (see
31], 1.2.11 of [16], [13], [7], [8], [44], and 3.4 below).

e Finally, for any g € k*, the skewfield of fractions the quantum plane ky[x, y] defined in example
(iv) of 2.3.2 is sometimes called the first quantum Weyl skewfield, and is denoted by:

(47) Di(k) = Fracky[z,y] = kq(z,y) =k(y)(z; o) with o € Autk(y) defined by o(y) = qy.

These skewfields (or more generally their n-dimensional versions as in example 3 of 2.3.3) play
for the quantum algebras a role similar to the one of Weyl skewfields in classical Lie theory (see
11.10.4 of [16], [7], [44]). It follows from the last lemma in 3.2.2, that:

(48) if ¢ is not a root of one in k, then Z(Dj(k)) = k.

The situation where ¢ is of finite order £ > 0 on k* is quite different, and out of our main
interest here, since DY(k) is then of finite dimension £ over its center k(p?, ¢*).

Let us recall that the first quantum Weyl algebra (see example (v) of 2.3.2) is the algebra
Al(k) generated by z and y with commutation law zy — gyz = 1. We observe that the element
z = xy —yr = (¢ — 1)yx + 1 satisfies the relation zy = qyz. Since z = (¢ — 1) "'y~ (z — 1),
Frac A (k) is equal to the subfield generated by z and y, which is clearly isomorphic to D} (k).
Thus we have proved that:

(49) Frac A (k) ~ Di(k).
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3.3. Noncommutative analogue of Miyata’s theorem.

3.3.1. The main result. We can now formulate for Ore extensions an analogue of theorem 3.1.3.
We start with a technical lemma.

LEMMA. Let K be a non necessarily commutative field, o an automorphism and ¢ a o-derivation
of K. We consider the Ore extension S = K|z ; 0,0|. Take uw € S such that deg,(u) > 1.

(i) For any non necessarily commutative subfield L of K, the family U = {u’; i € N} is
right and left free over L.

(ii) If the left free L-module T generated by U is a subring of S, then there exist an ring
endomorphism ¢’ and a o’-derivation §' of L such that T = L[u; ¢’,d']. If moreover T is
equal to the right free L-module T' generated by U, then ¢’ is an automorphism de L.

(iii) In the particular case where K is commutative, then o’ is the restriction of c™ to L,
with m = deg, (u).

Proof. Point (i) is straightforward considering the term of highest degree in left L-linear sum of a finite
number of elements of U. Consider now aw € L C T. We have deg, (ua) = deg, v and ua € T'; thus there
exist uniquely determined ag, oy € L such that ua = ag+ayu. So we define two L — L maps o’ : o — a3
and ¢’ : @ — «p satisfying ua = o’(a)u + ¢'(«) for all @ € L. Denoting u = Apz™ + -+ + Mz + Ao
with m > 1, \; € K for any 0 < i <m and A, # 0, then \,,0™(a) = o’(a)Ay, for all @ € L. We deduce
that ¢’ is a ring endomorphism of L, and proofs also point (iii). The associativity and distributivity in
the ring T imply that ¢’ is a o’-dérivation. When T" = T, there exists for all § € L two elements 3; and
Bo in L such that Su = ufy + Bo = o' (B1)u+ 8’ (61) + Bo- Thus 8 = o'(51) and o’ is surjective. O

THEOREM ([5]). Let K be a non necessarily commutative field, o an automorphism and § a
o-derivation of K. We consider the Ore extension S = K|z, ; 0,d] and its skewfield of fractions
D =FracS = K(x; 0,0). Let G be a subgroup of ring automorphisms of S such that g(K) C K
for any g € G.

(i) if S¢ C K, then D¢ = 8¢ = K¢,

(ii) if SY ¢ K, then for anyu € S¢ u ¢ K of degreem = min{deg, y; y € S% y ¢ K}, there
exist an automorphism o' and a o’'-derivation &' of K& such that S© = K%[u; o', '] and
D¢ = Frac (SY) = K%(u; o', ¢").

Proof. We simply denote here deg for deg,. Take g € G and n = deg g(z); the assumption g(K) C K
implies deg g(s) € nNU {—o0} for all s € S and so n = 1 since g is surjective. We deduce:

degg(s) =degs for all g€ G and s € S. ")

If S¢ C K, then S¢ = K&, If S¢ ¢ K, let us choose in {s € S%; degs > 1} an element u of minimal
degree m. In order to apply the previous lemma for L = K¢, we check that the free left K“-module T
generated by the powers of u is equal to the subring S¢ of S. The inclusion T C S¢ is clear. For the
converse, let us fixe s € S¢. By the proposition in 2.3.1, there exist ¢; and 7 unique in S such that s =
qru+ry and degry < degu. For any g € G, we have then: s = g(s) = g(¢1)g(w) + g(r1) = g(q1)u+ g(r1).
Since deg g(r1) = degr; < degu by (*), it follows from the uniqueness of ¢; and r; that g(¢1) = ¢1 and
g(r1) =r1. Sor € SC: since degr; < degu and degu is minimal, we deduce that , € K&. Moreover,
q1 € S, and degq; < degs because degu > 1. To sum up, we obtain s = qyu + r; with r; € K¢ and
q1 € SY such that degq; < degs. We decompose similarly ¢; into ¢; = qau + ro with ry € K¢ and
q2 € SE such that deg ¢y < degq;. We obtain s = quu? + mou + r1. By iteration, it follows that s € T.
The same process using the right euclidian division in S proves that S¢ is also the right free L-module
T’ generated by the powers of u. Then we deduce from point (ii) of the previous lemma that there exist
an automorphism o’ of K¢ and a o’-derivation ¢’ of de K¢ such that S¢ = K%[u; o', '].
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In both cases (i) and (ii), the inclusion Frac (S¢) C DY is clear. For the converse (which follows from
remark 1 of 3.2.1 in the particular case where G is finite), we have to prove that:

for any a and b non-zero in S, ab~! € DY implies ab~! € Frac (S¢). (**)

We proceed by induction on dega + degb. If dega + degb = 0, then a € K, b € K. Thus ab~' € D% is
equivalent to ab™! € K& C SY; the result follows. Assume now that (**) is satisfied for all (a,b) such
that dega + degb < n, for a fixed integer n > 0. Suppose that a et b non-zero in S with ab~' € D¢ and
dega 4+ degb = n + 1. Up to replace ab~! by its inverse, we can without any restriction suppose that
degb < dega. By the proposition of 2.3.1, there exist ¢q,r € S uniquely determined such that:
a=qgb+r with degr < degb < dega. ()
For all g € G, we have g(ab™!) = ab™! and we can so introduce the element ¢ = a~!g(a) = b=1g(b) in
D. Denoting by val the discrete valuation v,—1 in D (see the remark in 3.2.2), it follows from (*) that
valc = 0. Applying g to (***), we have g(a) = g(¢)g(b)+g(r); in other words, gbc+rc = ac = g(q)be+g(r),
or equivalently: (g(q) — q)bc = rc — g(r). The valuation of the left member is val (g(q) — q) + valb. For
the right member, we have valg(r) = —degg(r) = —degr = valr = valre, thus val (rc — g(r)) > valr.
Since g(q) — ¢q, b et r are in S, we conclude that: deg(g(q) — q) + deg(b) < deg(r). The inequality
degb < degr being incompatible with (***), it follows that g(q) = ¢, and then g(r) = re. Therefore we
have g(rb~1) = re(be) ™! = rb~L. So we have proved that ab™! = (gb+ )b~ = ¢+ rb~! with ¢ € S¢ et
rb~1 € DY such that deg(r) +deg(b) < 2deg(b) < deg(a)+deg(b) =n+1. If r = 0, then ab~! = q € S°.
If not, we apply the inductive assumption to rb~': there exist 1 and b; non zero in S¢ such that que
b~ = ribyt, and so ab~! = (gby +71)b7 ! € Frac (SY). O

3.3.2. Application to the rational invariants of the first Weyl algebra. We consider here the
action of finite subgroups of automorphisms of the Weyl algebra A;(C) on its skewfield of
fractions D1 (C). We know from theorem 2.4.2 that the algebras A;(C) and A;(C)¢" are not
isomorphic when the finite subgroups G and G’ are not isomorphic. However, these algebras are
always rationally equivalent, as proved by the following theorem from [5].

THEOREM. For any finite subgroup G of Aut A;(C), we have: D1(C)% ~ D;(C).

Proof. With the notations of 2.4.2 and 3.2.3, we have R = A;(C) generated by p and ¢ with pg — gp =1
and D = D;(C) = Frac R. The element w = pq of R satisfies p™w — wp™ = mp™ for all m > 1. The
field of fractions of the subalgebra U, of R generated by p™ and w is @,, = C(w)(p™; ¢™), where o is
the C-automorphism of C(w) defined by o(w) = w + 1. In particular, @; = C(w)(p; o) = D. It’s clear
Q. ~ D for all m > 1. Let us define v = p~'q, which satisfies wv — vw = 2v. Since wv™! = p?, we have
Q2 = C(w)(p?; 0?) = C(v)(w; 209,). We denote by S the subalgebra C(v)[w ; 2v3,].

Let G be a finite subgroup of Aut R. From theorem 2.4.2, we can suppose without any restriction that
G is linear admissible. In the cyclic case of order n, the group G is generated by the automorphism
Gn 1 P+ Capyq — Ctq for ¢, a primitive n-th root of one. Then we have: g,(w) = w, therefore
DG = DIn = Q"ll" = @, >~ D. Assume now that we are in one of the cases D,,, Fs, F7, Es. Thus G
necessarily contains the involution e : p — —p,q +— —q (because u? = v? = f, with the notations of
1.3.2), which satisfies D¢ = Q5. Let g be any element of G. By (25), there exist a, 3,7, € C satisfying
ad — By = 1 such that g(p) = ap + Bq et g(q) = vp + d¢q. Thus g(p) = p(a + Bv) and g(q) = p(y + dv),
and so:

9yt ov

o) = 150 € T, (1

Moreover, g(w) = ayp? + B6¢* + adpq + Byqp. From relations gp = pqg — 1, p* = wv~
and ¢ = v 4+ vw = wv — v, it follows that:

L=yl —2p71

o(w) = (651)2 + (ad + By)v +a’y)w+ (661)2 — Byv — 2a'y>. @

v (%
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We deduce from (1) and (1) that the restrictions to the algebra S = C(v)[w; 2v0,] of the extensions to
D of the elements of G determine a subgroup G’ ~ G/(e) of Aut S. Since e € G and D¢ = Q2 = Frac S,
we have D¢ = gl.

Assertion () allows to apply theorem 3.3.1 for K = C(v), d = 200, and S = K[w; d]. By remark 2 of
3.2.1, we have: [Qy : QS'] < |G'| < +00, therefore S&’ Z K. From the theorem of 3.3.1 and point (iii) of
the lemma of 3.3.1, there exists u € SE of positive degree (related to w) and d’ a derivation of C(v)%" such
that S = C(v)%[u; d'] and QS = C(v)% (u; d’). By Liiroth theorem (see 3.1.2), C(v)%" is a purely
transcendental extension C(z) de C. If d’ vanishes on C(z), then the subfield QS of Q2 would be C(z,u)
with transcendence degree > 1 over C, which is impossible since Q2 ~ D;(C) (it’s a well known but not
trivial result that D;(C) does’nt contain commutative subfields of transcendence degree > 1 ; see [39],
corollary 6.6.18). Therefore d’(z) # 0; defining t = d’(2) " u, we obtain Q5" = C(z)(t; 8.) ~ D{(C). O

ExaMPLE 1. In the case where G = (), is cyclic of order n, we have seen in the proof that
D@ = Q,, is generated by w = pq and p™; then a pair (p,, g,) of generators of D;(C) % satisfying
(s an] = 18 pp = p" et g = (np™) " "pg.

EXAMPLE 2. In the case where G = D, is binary dihedral of order 4n (see 1.3.2), the interested
reader could find in [5] the calculation of the following pair (pn,¢,) of generators of Dy(C)P»

satisfying [pn,qn] =1 :
1. \n

_ 1 —1,\—n Sy (P — 12 (Tl 12
pn=15-(07 )" = (0) )(m) 2pg—1),  an= (W) :

3.3.3. Application to the rational invariants of polynomial functions in two variables. We con-
sider R = C[y][z; o,6], for 0 a C-automorphism and § a o-derivation of C[y].

LEMMA. If R = Cly][z; 6], with § an ordinary derivation of Cly| such that 6(y) ¢ C, then
Frac RY ~ D;(C) for any finite subgroup of Aut R.

Proof. Let us denote K = C(y) and D = Frac R = C(y)(z; 6). Replacing z by 2’ = §(y) 'z, we have
D = C(y)(«'; 0y),and so D ~ D;(C). Since 6(y) ¢ C, the second proposition of 2.5.1 implies that any
g € Aut R satisfies g(K) C K for K = C(y), and the restriction of g to S = C(y)[z; J] of the extension
to D = Frac S determines an automorphism of S. For G a finite subgroup of Aut R we can apply the
theorem of 3.3.1 and point (iii) of the lemma of 3.3.1: there exist u € S¢ of positive degree and ¢’ a
derivation of C(y)“ such that S = C(y)%[u; §'] and DE = C(y)“(u; §'). Then we achieve the proof as
in the proof of the previous theorem. O

LEMMA. If R is the quantum plane C,[z,y] for ¢ € C* not a root of one, then Frac R% ~ D'lll (C)
with ¢ = ¢/¢! for any finite subgroup G of Aut R.

Proof. Let G a finite group of Aut R where R = C,[z,y]. By point (i) of the first proposition of 2.5.1,
there exists for any g € G a pair (ay, 8y) € C* x C* such that g(y) = a4y and g(x) = Fgz. Denote
by m and m’ the orders of the cyclic groups {agy; g € G} and {B,; g € G} of C* respectively. In
particular, C(y)¢ = C(y™). We can apply the theorem of 3.3.1 to the extension S = C(y)[z; o] of
R = Cly][z; o], where o(y) = qy. We have S¢ # C(y)¢ because ™ € S¢. Let n be the minimal
degree related to x of the elements of S¢ of positive degree. For any u € S¢ of degree n, there exist
o’ and ¢’ such that S¢ = C(y™)[u; o’,6']. By assertion (iii) of the lemma of 3.3.1, the automorphism
o’ of C(y™) is the restriction of o™ to C(y™). We show firstly that we can choose v monomial. We
develop v = a,(y)z™ + - + a1(y)x + ap(y) with n > 1, a;(y) € C(y) for all 0 < i < n et a,(y) # 0.
Denote by p € Z the valuation (related to y) of a,(y) in the extension C((y)) of C(y). The action of G
being diagonal on Cz @ Cy, the monomial v = yPx™ lies in S. So we obtain S¢ = C(y™)[v; ¢"] and
D¢ = C(y™)(v; o™) ~ qu/ for ¢ = ¢™™. We have to check that mn = |G|. Let g € G determining
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an inner automorphism of D = Frac R = Frac S; there exists non-zero r € D such that g(s) = rsr—!

of all s € D. Denoting by d the order of g in G, we have then r¢ central in D, and so r¢ € C by
(48). Embedding D = C(y)(z; o) in C(y)(z~t; 071)), see remark in 3.2.2, we deduce that r € C and so
g = idr. We have proved that any nontrivial automorphism in G is outer. Applying remark 2 of 3.2.1,
it follows that [D : D¢] = |G|. We have:

DY =C(y™)(y*a"; o) S L=C(y)(yz"; ") = Cy)(z"; 0") € D =C(y)(z; o).
Thus [D : L] = n and [L : D%] = m. We conclude |G| = [D : D] = mn. O

LEMMA. If R is the quantum Weyl algebra A%(C) for ¢ € C* not a root of one, then Frac RY ~
D‘f, (C) with ¢’ = ¢!l for any finite subgroup of Aut R.

Proof. The proof is easier than in the case of the quantum plane and left to the reader as an exercise (use
assertion (49) and point (ii) of the first proposition of 2.5.1); see proposition 3.5 of [5] for details. O

We are now in position to summarize in the following theorem the results on rational invariants
for Ore extensions in two variables.

THEOREM ([5]). Let R = Cly|[z; 0,6] with o an automorphism and 0 a o-derivation of C[y].
Let D = Frac R with center C. Then we are in one of the two following cases:
(i) D ~ D{(C), and D% ~ Dy(C) for any finite subgroup G of Aut R ;

(ii) there exists ¢ € C* not a root of one such that D ~ D{(C), and D% ~ qulcl (C) for any
finite subgroup G of Aut R.

Proof. We just combine the classification lemma 2.5.2 with the assertions (39) and (48) on the centers,
the main theorem of 3.3.2, and the three previous lemmas. O

REMARK. It could be relevant to underline here that previous results only concern actions
on Frac R which extend actions on R. The question of determining D¢ for other types of
subgroups G of Aut D is another problem, and the structure of the groups Aut D;(C) and
Aut D{(C) remains unknown (see [4]). In particular, we can define a notion of rational triangular
automorphism related to one of the presentations (36) or (38) of the Weyl skewfield D;(C) ; the
three following results are proved in [6].

1. The automorphisms of D1(C) = C(q)(p; J4) which stabilizing C(q) are of the form:
0: q—0(q) =1 ga p—0(p) = q(.gl(q))P+ f(a),

Yq+
for (41) € GLa(C) and f(q) € C(q).
2. The automorphisms of D;(C) = C(p
0: pg— 0(pq) =pq+a, p—0(p)= f(pq)p,

for « € C and f(pq) € C(pq), or are the product of such an automorphism by the
involution pq — —pgq, p— p~*

3. For any finite subgroup of Aut D;(C) stabilizing one of the three subfields C(p), C(gq) or
C(pq), we have D;(C)% ~ D;(C).

q)(p; o) stabilizing C(pq) are of the form:
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3.4. Noncommutative Noether’s problem and the Gelfand-Kirillov conjecture.

3.4.1. Formulation of the problem. Let k be a field of characteristic zero. We have seen in
2.4.4 that any representation of dimension n of a group G gives rise to an action of G on the
commutative polynomial algebra S = k[q1, ..., ¢,], which extends canonically into an action by
automorphisms on the Weyl algebra A,,(k) defined from relations (29) or (30), and then to the
Weyl skewfield D, (k). Following the philosophy of the Gelfand-Kirillov problem by considering
the Weyl skewfields Dy, (k) as significant classical noncommutative analogues of the purely
transcendental extensions of k, the following question appears as a relevant noncommutative
formulation of Noether’s problem.

Question: do we have D, (k)¢ ~ D,, (k) for some nonnegative integers m and ¢ ?

By somewhat specialized considerations on various noncommutative versions of the transcen-
dence degree (which cannot be developed here), we can give the following two precisions (see [8]
for the proofs):

1. if we have a positive answer to the above question, then m and ¢ satisfy 2m + ¢ < 2n;

2. if we have a positive answer to the above question for a finite group G, then m = n and
t =0, and so D, (k)¢ ~ D, (k).

3.4.2. The case of a direct summand of representations of dimension one. The main result is
the following.

THEOREM. For a representation of a group G (non necessarily finite) which is a direct summand
of n representations of dimension one, there exists a unique integer 0 < s < n such that
Dy (k)¢ ~ Dy, (k).

Proof. By (46), the integer s is no more than the transcendence degree over k of the center of D,,_; 5(k)
and so is unique. Now we proceed by induction on n to prove the existence of s.

1) Assume first that n = 1. Then G acts on A (k) = k[¢1][p1; 94, ] by automorphisms of the form:

9(q) =x1(9)a, g9(p1) =x1(9)'p1, forallge @

where y; is a character G — k*. The element w; = pi1q; is invariant under G. We define in D;(k) =
k(w1)(p1, o1), see (38), the subalgebra S; = k(wi)[p1, o1]. We have FracS; = Di(k). Any g € G
fixes w; and acts on p; by g(p1) = x1(g)pi. We can apply the theorem of 3.3.1. If S¢ C k(w),
then D; (k)¢ = S¢ = k(w;)® = k(w;); we deduce that in this case D;(k)¢ ~ D;_, ((k) with s = 1.
If S¢ ¢ k(w;), then S¢ is an Ore extension k(wy)[u; o’,4'] for some automorphism ¢’ and some o'~
derivation §’ of k(w;), and some polynomial u in the variable p; with coefficients in k(w;) such that
g(u) = u for all g € G and of minimal degree. Because of the form of the action of G on p;, we can
choose without any restriction u = p{ for an integer a > 1, and so ¢/ = ¢¢ and ¢’ = 0. To sum up,
D1 (k)¢ = Frac S = k(w1 )(p$ ; o). This skewfield is also generated by = = p§ and y = a~1w;p; * which
satisfy xy — yx = 1. We conclude that D; (k)¢ ~ D;(k) = D;_, (k) for s = 0.

2) Now suppose that the theorem is true for any direct summand of n—1 representations of dimension one
of any group over any field of characteristic zero. Let us consider a direct summand of n representations
of dimension one of a group G over k. Then G acts on A, (k) by automorphisms of the form:

9(@) = xi(9)ai, 9(pi) = xi(9)~'pi, forallge€ Gand1<i<n,
where X1, X2, ..., Xn are characters G — k*. Thus, recalling the notation w; = p;¢;, we have:
g(w;) =w;, forany ge G and any 1 <i < n.

In D, (k) = k(wy,wa, ..., w,)(p1; 01)(P2; 02) (P13 On-1)(Pn; on), see (44), let us consider the sub-
fields:
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L = k(wy),

K = k(wi,wa,...,w,)(p1;01)(p2; 02) - (Pn-1; On-1)
= k(wn)(wr,wa, ..., wa—1)(p1; 01)(P2; 02) - (Pn-1; On-1)
~ Dn—l(L)7

and the subalgebra S, = K[p, ; 0,] which satisfies Frac S,, = D, (k). Applying the induction hypothesis
to the restriction of the action of G by L-automorphisms on A,,_1 (L), there exists an integer 0 < s <n—1
such that: Dy,_1(L)% ~ Dy,_1_4 (L) = D,,_(541),s+1(k). Since K is stable under the action of G, we can
apply the theorem of 3.3.1 to the ring S,, = K|p,, ; 0,]. Two cases are possible.

First case: S§ = K€. Then we obtain: D,, (k)¢ = Frac (5¢) = K¢ ~ D,,_1(L)° ~ D,,_(51+1),5+1(k).

Second case: there exists a polynomial u € S, with deg, u > 1 such that g(u) = u for all g € G.
Choosing u such that deg, wu is minimal, there exist an automorphism ¢’ and a o’-derivation ¢’ of K G
such that S¢ = K%[u; ¢',6'] and D,, (k)¢ = FracSS = K% (u; o’,4).

Let us develop u = fp + -+ + fipn + fo with m > 1 and f; € K€ for all 0 < i < m. In view of the
action of G on p,, it’s clear that the monomial f,,,p)’ is then invariant under G. Using the embedding in
skewfield of Laurent series (see 3.2.2), we can develop f,, in:

K =k(wi,wa,...,wn)((py "5 07 NP2 502 1) - (0l 00 10))-

The action of G extends to K acting diagonally on the p;’s and fixing w;’s. Therefore we can choose
without any restriction a monomial w:

u=p{*...p¢ with (a1,...,a,) € Z", et a, > 1.

For any 1 < j < n, we have uw; = (w; + a;)u. Let us introduce the elements:

/o —1 /o —1 / _ —1
w] =W — a, a1Wy, Wy = ApW2 — A, A2Wp, ceay Wy, 1 = AnWp—1 — Q) Ap—1Wy,.

We obtain: wju = uwj for any 1 < j < n —1. Since oy(wj) = wj + d; ; pour 1 < i,j < n — 1, the
skewfield F,,_1 = k(wi,wh,...,wl,_1)(p1; 01)(p2; 02) - (Pn_1; on_1) is isomorphic to D, (k). More
precisely, F,,_1 is the skewfield of fractions of the algebra k[q}, ..., q;,_][p1; Og] .- [Pn—1; 9y _ |, where
¢, = w;p; ! for any 1 <i <n—1. This algebra is isomorphic to the Weyl algebra A,,_; (k). Applying the
induction hypothesis, there exists 0 < s < n — 1 such that F¥ ; ~ D,,_1_ 4(k). It’s clear by definition
of the w}’s that k(wy)(w},ws, ..., w;,_1) = k(w,)(w1,ws, ..., wy—1); since w, commutes with all the
elements of F,,_;, we deduce that K = F,,_(w,). The algebra S¢ = K%[u; ¢/, 8] can then be written
SG = FF 1 (wn)[u; o’,8']. The generator u commutes with w/; for any 0 < j < n—1 as we have seen above,
commutes with all the p;’s by definition, and satisfies with w,, the relation ww,, = (w,, + a,)u. Therefore
the change of variables ' = a, 'u implies: S¢ = FS | (w,)[u'; "], with o” which is the identity map
on FY | and satisfies 0" (w,) = w, + 1. It follows that: FracSS ~ D1(F¢ ;) ~ D1(Dp_1_ss(k)) =~
Dy—s,s(k). O

COROLLARY (Application to finite abelian groups). We suppose here that k is algebraically

closed. Then, for any finite dimensional representation of a finite abelian group G, we have
D, (k)¢ ~ D, (k).

Proof. By Schur’s lemma and total reducibility, any finite representation of G is a direct summand of one
dimensional representations (see 2.4.3). Then the result follows from the previous theorem and remark 2
of 3.4.1. O

This result already appears in [6]. The following corollary proves in particular that for non
necessarily finite groups G, all possible values of s can be obtained in the previous theorem.

COROLLARY (Application to the canonical action of the subgroups of a torus). Let n be a
positive integer and T,, be the torus (k*)" acting canonically on the vector space k™. Then:



(i) for any subgroup G of T, there exists a unique integer 0 < s < n such that D, (k)% ~
Dn—s,s(k);
(ii) for any integer 0 < s < n there exists at least one subgroup G of T, such that D, (k)" ~
Dy —s,s(k);
(iii) in particular s = n if G = T,,, and s = 0 if G is finite.

Proof. Point (i) is just the application of the previous theorem. For (ii), let us fix an integer 0 < s <n
and consider in T,, the subgroup:
G = {Diag(aq,...,as,1,...,1) ; (a1,...,a5) € (kK*)*} ~ T,
acting by automorphisms on A, (k):
Qi — Qi P a;lpi, pour tout 1 <1< s,
qi — G, Di > D, pour tout s+1 <4< n.
In the skewfield D, (k) = k(wy,wa, ..., wy)(p1; 01)(p2; 02) - (Pn; on), we introduce the subfield K =

k(wi,wa, ..., wn)(Pst1; 0s11)(Ps+25 Osi2) -+ (P 3 05). Then the subalgebra S = Klpy; o1+ [ps; o]
satisfies Frac S = D, (k). It’s clear that K is invariant under the action of G. If S¢ ¢ K, we can find in
particular in S a monomial:

u:vpillp?-npff‘, veEK, v#£0, dy,...,ds €N, (dy,...,ds) # (0,...,0),

then o/flagz ~wals = 1forall (ag,as,...,as) € (kX)*, and so a contradiction. We conclude with theorem
3.3.1 that (FracS)¢ = S¢ = K¢, and so D, (k) = K. It’s clear that K ~ D,,_ ¢(k); this achieves the
proof of point (ii). Point (iii) follows then from the previous corollary. O

The actions of tori T,, on the Weyl algebras have been studied in particular in [43].

3.4.3. Rational invariants for the differential operators on Kleinian surfaces. Another situation
where it’s possible to give a positive answer to the question of 3.4.1 is the case of a 2-dimensional
representation. Using the main theorem 3.3.1 as a key argument, one can the prove (by technical
developments which cannot be detailed her; see [8] for a complete proof) the following general
result.

THEOREM (][8]).

(i) For any 2-dimensional representation of a group G, there exist two nonnegative integers
m,t with 1 < m +t < 2 such that Dy(k)® ~ Dy, (k).

(ii) In particular, for any 2-dimensional representation of a finite group G, we have Dy(k)& ~
Dy (k).

As an application, let us consider again the canonical action (see 1.3) of a finite subgroup G
of SLy(C) on S = Clz,y] = C[V] for V. = C2 The corresponding invariant algebra S¢ is
one of the Kleinian surfaces studied in 1.3.2. This action extends to the rational functions field
K = FracS = C(x,y) and it follows from Castelnuovo or Burnside theorems (see 3.1.2 and 3.1.3)
that K& ~ K. Considering the first Weyl algebra A;(C) as a noncommutative deformation of
Clz,y], we have studied in 2.4.2 the action of G on A;(C) and the associated deformation
A1(C)% of the Kleinian surface S@. The extension of the action to Frac A;(C) = D;(C) has
been considered in 3.3.2, and we have proved that D;(C)¢ ~ D;(C). From another point of
view, we can apply to the action of G on S the duality extension process described in 2.4.4
in order to obtain an action on A3(C). As explained in second example 2.4.4, the invariant
algebra A5(C)¢ = (Diff S)¢ is then isomorphic to Diff (S¢); in other words the invariants of
differential operators on S are isomorphic to the differential operators on the Kleinian surface
S (by theorem 5 of [37]). Of course the action extends to Dy(C) = Frac A(C) and the following
corollary follows then from point (ii) of the previous theorem.
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Diff §

COROLLARY ([8]). Let G be a finite subgroup of SLa(C). For the action of G on Ag( ) =
~ Dy(C).

canonically deduced from the natural action of G on S = C[x,y], we have Dy(C)%

The method used in [8] to prove this result allows to compute explicitly, according to each type
of G in the classification of 1.3.2, some generators Pp, Py, Q1, Q2 of Dy(C)% satisfying canonical
relations [P, Q1] = [P, Q2] = 1 and [P}, Pj] = [Qi, Q;] = [P, Q4] = 0 for ¢ # j. For instance,
starting with As(C) = Clg1, ¢2][p1; O ][p1; Oy, @ solution for the type A, is:

First case: n=2p+ 1.

Q1= qu”“q;?p‘1 Q@=q""a"
Pr=—lq P o - P PTG e Pe=aqtdp ot s
Second case: n = 2p.
Q1= qu;p Q2 = q1¢2
Pi=ga ' — 5 aPd e Pa=3(a; " p1+ay 'p2)

4. ACTIONS ON POWER SERIES

4.1. Actions on pseudo-differential operators and related invariants.

4.1.1. Preliminary results. We fix R a commutative domain (related to forthcoming applications,
we’ll sometimes refer to R as the “ring of functions”). For any derivation d of R, the ring of
formal operators in one variable ¢ over R is by definition the Ore extension 7' = R|[t; d] in the
sense of 2.3.1. Let us recall that the elements of T are the finite sums ZZ a;t" where the a;’s are
in R, with usual addition and noncommutative multiplication defined from the law:

(50) ta = at + d(a) for all a € R.

For any derivation d of R, the ring A = R[[x; d]] of formal power series in one variable x over R
is by definition the set of infinite sums ZiZO a;x" where the a;’s are in R, with usual addition
and noncommutative multiplication defined from the law:

(51) ra = ax + 6(a)z® + 6%(a)a® + - - for all a € R.

It’s clear that x generates a two-sided ideal in A; the localized ring of A with respect of the
powers of x is named the ring of formal pseudo-differential operators in one variable x with
coefficients in R, and is denoted B = R((x; §)). The elements of B are the Laurent series

Y s oo a;z’ where the a;’s are in R, with usual addition and noncommutative multiplication
defined from (51) and

(52) t7la = az™! — §(a) for all a € R.
It follows from (50) and (52), and we have already observed in 3.2.2, that T = R[z~!; —§] is a
subring of B = R((z; 9)).

For any nonzero series f € B, there exist an integer m € Z and a sequence (a;);>m, of elements of
R such that f =3",., a;x" and a,, # 0. The integer m is the valuation of f, denoted by v, (f),
and the element a,, is the coefficient of lowest valuation of f, denoted by ¢(f). By convention,
we set v,(0) = +o00 and ¢(0) = 0. It’s easy to check that v, : B — Z is a discrete valuation
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and that ¢ : B — R is a multiplicative map. It follows that A and B are domains. We have
A={feB;v,(f) >0} and

(563)  for all f € B with v,(f) =m € Z, there exists h € A with v,(f) =0 s.t. f = ha™.

For any integer k € Z, we denote By = {f € B; v,(f) > k} and m the morphism By — R
defined by m¢( ;> @iz’) = ag. In particular By = A.

REMARKS

(i) Let U(A) be the group of invertible elements of A. An element f = }_,.,a;z" of
A lies in U(A) if and only if v,(f) = 0 and o(f) = ag lies in the group U(R) of
invertible elements of R (although the calculations in A are twisted by d, the proof
is similar to the commutative case). It follows that an element of B is invertible in
B if and only if its coefficient of lowest valuation is invertible in R.

(ii) Let f = 3,5, a;x" be an element of A with v,(f) = 0 and ¢(f) = ap = 1. Then, for
any positive integer p such that p.1 € U(R), there exist h € A satisfying v, (h) = 0
and p(h) = 1 such that f = hP (the proof is a simple calculation by identification
and is left to the reader).

PROPOSITION. We assume here that R is a field. Then:

(i) B= R((x; 9)) is a skewfield, and B = Frac A where A = R|[x; ¢]];
(i) R(z~!; —8) = Frac R[x~1; —4] is a subfield of B;
(iii) for any f € B, we have f € A, or f # 0 and f~! € A.

Proof. Straightforward by remark (i) and (53). O

The following lemma, which will be fundamental in the following, asserts that any automorphism
of B such that §(R) = R is continuous for the z-adic topology. The arguments of the proof are
somewhat similar to the ones of [4].

LEMMA. Let 6 be an automorphism of R((x; §)) such that 6(R) = R. Then v;(0(f)) = vz(f)
for all f € R((x; 9)).

Proof. Tt’s clear that 6(x) # 0. Denote s = v, (6(x)) € Z. First we prove that s > 0. Suppose that s < 0.
We set u =1+ 2"t € B. Since v,(f(z)"!) = —s > 0, we have O(u) = 1 +0(x)~* € A. We can apply to
0(u) the remark (ii) above. For an integer p > 2 such that p.1 is invertible in R, there exists f € A such
that 6(u) = fP. Applying the automorphism 6~!, we obtain v,(u) = pv,(6~1(f)), so a contradiction
since v, (u) = —1 by definition. We have proved that s > 0. In particular the restriction of 6 to A is an
automorphism of A.

We can write 0(z) = a(1 + w)z® with nonzero a € R and w € A such that v, (w) > 1. Applying 67!, we
obtain = 0~ (a)0~ (1 + w)0~1(x)*, and then:
0207 a)) + v (0711 +w)) + sv. (071 (z)) = 1.

From the one hand, §(R) = R implies 6~}(R) = R, thus 6~ !(a) is a nonzero element of R, and so
v:(071(a)) = 0. From the other hand, it follows from remark (i) above that 1 + w € U(A); since
U(A) is stable by §~! (which is an automorphism of A by the first step of the proof), we deduce that
v (071 (1 + w)) = 0. We deduce that sv,(0~1(x)) = 1. As s > 0, we conclude that s = 1 and the result
follows. O
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4.1.2. Extension of an action from functions to pseudo-differential operators. We fix R a com-
mutative domain of characteristic zero and d a nonzero derivation of R. We denote by U(R) the
group of invertible elements in R. We consider a group I' acting by automorphisms on R.

Definitions. We say that the action of I" on R is §-compatible if § is an eigenvector for the action
of I' by conjugation on DerR, i.e. equivalently when the following condition is satisfied:

(54) for all @ € ', there exists pp € U(R), such that §od = pgd o 6.

It’s clear that 6 — py defines then an application p : I' — U(R) which is multiplicative 1-cocycle
for the canonical action of I' on U(R), that is which satisfies:

(55) Doy = pg@(pgl) for all 9,6/ el.
It follows that, if we set
(56) <f]k9)::p6_k0(f) forall keZ, 0el, f R,

then the map (0, f) — (f |, 0) defines a left action I' x R — R. This action is named the left
action of weight k£ of I' on R. The weight 0 action is just the canonical action. For the weight
one action, a 1-cocycle for the weight one action is a map r : I' — R which satisfies:

(57) rog =19 +p, 0(re)) =19+ (19 |,0)  forall 0,0 €T.

We denote by Z1(T', R) the left R'-module of such 1-cocycles. For all k € Z, we define the
additive subgroup of R of weight k invariants:

(58) In:={feR; (f|.0)=/[ forall 0 €'}

In particular, Iy = R' and I.Iy C Iy .

THEOREM ([28]). With the previous data and notations, the action of I' on R extends into an
action by automorphisms on B = R((x; 0)) if and only if this action is -compatible, and we
have then:

(59) 0(z™1) = pgx ™ + poreg for all § € T,

where p : I' — U(R) is the multiplicative 1-cocycle uniquely determined by condition (54) of
0-compatibility and r : I' — R is a 1-cocycle for the weight one action arbitrarily chosen in
ZYT,R).

Proof. Let 6 be an automorphism of B such that the restriction of 6 to R is an element of I'. In particular,
we have 0(R) = R. We can apply the lemma of 4.1.1 to write §(z7!) = c_1z7! + ¢o + 1z + - - -, with
¢; € R for any i > —1 and c_; # 0. Moreover ! € U(B) implies (z~!) € U(B) and then c_; € U(R)
by remark (i) of 4.1.1. Applying 6 to (52), we obtain:
O(xz=1)0(a) — 0(a)d(z~t) = —0(5(a)) for any a € R.
Since 6(a) € R, we can develop this identity:
[c_12710(a) — O(a)c_1271] + [cof(a) — O(a)co] + Zj21[cjxj9(a) —0(a)cjzi] = —0(3(a)).

The first term is: c_1[z7*0(a) — 0(a)r™] = —c_16(0(a)) € R. The second is zero by commutativity of
R. The third is of valuation > 1. So we deduce that:

—c_10(0(a)) = —0(5(a)) and Ej21[cjxj0(a) —0(a)c;x’] = 0.

Denote py := c_1; we have pg € U(R) and the first assertion above implies that pgd(6(a)) = 0(6(a))
for all @ € R. Now we claim that the second assertion implies that ¢; = 0 for all j > 1. To see that,
suppose that there exists a minimal index m > 1 such that ¢, # 0; then Zj>m[cja?j9(a) —0(a)cjz’] =0
implies by identification of the coefficients of lowest valuation that c¢,,md(6(a))z™*! + .. = 0. Therefore
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emmd(6(a)) = 0. If we choose a € R such that §(a) # 0, then 6(d(a)) # 0; hence §(0(a)) # 0 [by the
condition pgd(f(a)) = 6(d(a)) that we have proved previously], and we obtain a contradiction since R is
a domain of characteristic zero and ¢, # 0. We conclude that ¢; = 0 for all j > 1.

We have finally checked that 6(z~1) = c_j27! + cg. We have already observed that ps = c_; satisfies
(54). Now we set rg = (c_1) Lco. We have §(x~1) = pgz~! + pyry. Relations (55) and (57) follow then
from a straightforward calculation of (¢ (x~1)).

Conversely, let us assume that the action of I' on R is d-compatible. Denote by p the map I' — U(R)
uniquely determined by (54), which satisfies necessarily (55). Let us choose a 1-cocycle r : T' — R
arbitrarily in Z1(I', R). We consider any 6 € T'; denoting gy = pery, we calculate for all a € R:

(o™ + g0)0(a) — 0(a)(pox ™" + qo) = po(x™"0(a) — O(a)z™") = —pyd(6(a)) = —0(5(a)).
Hence we can define an automorphism 6, of T = R[t; —§] = R[z~!; —4] such that the restriction of
6, to R is 6 and 6,(t) = pet + pere; (observe that py € U(R) implies the bijectivity of 6,). Since
po € U(R), the element 0, (x71) = pgx~! + gy is invertible in B by remark (i) of 4.1.1. Then we define:
0,(z) = 0,.(x7 1)~ = z(pg + qox) ~* with py + gez which is invertible in A = R|[[z; ]]. So we have built
for any 6 € T' an automorphism 6, of B which extends 6. It follows immediately from the assumptions
(55) on p and (57) on r that (89'), = 6,0 for all 0,6’ € T. O

Remark. Computing (pg + qpx) ™! = (Z:jzo(—l)j(pe_lqgﬂc)j)p@_1 € A, we deduce that, under the
hypothesis of the theorem, we have:

(60) O(x) = x(Z(—l)j(rga:)j)pe_l =p,lo+-- forallfel
Jj=0

In particular, the restriction to By of the action of I' on B defines an action on By, for any k € Z.

COROLLARY. Under the assumptions of the theorem, the action of I" on R extends into an action
by automorphisms on B = R((x; 0)) if and only if it extends into an action by automorphisms
on T = Rlz~t; —4].

ExAMPLES. We suppose that the action of I" on R is §-compatible; thus the map p: I' — U(R)
defined by (54) is uniquely determined and satisfies (55), and we consider here various examples
for the choice of r € ZY(T, R).
1. If we take r = 0, the action of I on B is defined by 6(z~1) = pgx~!, and then 0(z) =
ap, ' = 3550 &7 (p, )T for any 6 € T

2. If r is a coboundary (i.e. there exists f € R such that: 7 = (f|,0) — f = pe_le(f) —f
for any 6 € '), then the element y = (z~! — f)~! satisfies B = R((z; 6)) = R((y; §)) and
O(y~—') = pyy~! for any 6 € I'. Thus we find the situation of example 1.

3. We can take for r the map I' — R defined by: ry = —p;lé(pg) for any 6 € I', which is
an element of Z1(T', R) by (54) and (55). The corresponding action of I' on B is given
by: 0(z71) = pgr~! — 5(pg) = v 'py for any € T.

4. For any r € ZY(T',G) and any f € R, the map 6 — 7y +p9_19(f) — f is an element of
ZY(T',R). The corresponding action of ' on B is defined by §(z~!) = ppz=! + pgry +
O(f) — pof. As in example 2, y = (z~! — f)7! satisfies B = R((z; §)) = R(y; 0)) and
allows to express the action by 8(y~1) = pgy~! + pgry for any 6 € T.

5. Since ZY(T, R) is a left R'-module, the map s is an element of Z'(T, R) for any
r € Z1(T,G) and any x € R'. The corresponding action of I' on B is given by: (z7!) =
pox 14K porg for any 6 € T. If we suppose moreover that k € U(R), theny = (k~1z~1)~!
satisfies B = R((z; 0)) = R((y; x~16)), and we find 8(y~!) = ppy~! + pyry for any 6 € T.
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4.1.3. Invariant pseudo-differential operators. We fix R a commutative domain, d a nonzero
derivation of R, and I' a group acting by automorphisms on R. We suppose that the action
of I' is d-compatible and so extends to B = R((z; 4)) by (59) where r is an arbitrarily chosen
element of Z'(I', R). We denote by B""" (respectively A" the subring of invariant elements of
B (respectively A) under this action.

REMARKS. For any k € Z, we denote B};’T = B, N B, The following observations precise some

relations between invariant pseudo-differential operators of valuation k (i.e. elements of B,E’T)
and weight k invariant functions (i.e. elements of Iy, see (58)).

(i) If B # R, then there exists some nonzero integer k such that I, # {0}.

Proof. Suppose that there exists y € B'"" such that y ¢ R'. Set k = v,(y), thus
Yy € B,S’T. If k& # 0, then 74 (y) is a non zero element of I, by remark (i). If £ = 0, then

mo(y) € Ip = RY, thus ¢/ = y — mo(y) is a nonzero element of B,l;’r for some integer
k' > 0 and we apply the first case.

(ii) For any k € Z and y € B, we have: (y € B,l;’r = 7(y) € 1) ); this is a straightforward
consequence of (56), (58), (59) and (60). If we assume that

0 Bll;’:l Clzl B ™l —0
is a split exact sequence, then B'"" # R if and only if there exists some nonzero integer
k such that I, # {0}.

Proof. Suppose that there exists a nonzero integer k and a nonzero element f in Ij.
By assumption, we can consider v : I — B,E’T such that 7, o ¢y = id7,. Then
Vr(f) = fa* + - lies in B,E’T with valuation k # 0. Therefore ¥y (f) ¢ R'.

The following theorem gives an explicit description of the ring B,I;’r when the functions ring R
is a field. It can be viewed as an analogue for noncommutative power series of the theorem
previously proved in 3.3.1 for noncommutative rational functions.

THEOREM ([28]). Let R be a commutative field of characteristic zero. Let § be a nonzero
derivation of R, A = R|[[z; d]] and B = R((z; ¢)) = Frac A. For any d-compatible action of a
group I' on R and for any r € Z(T', R), we have:

(i) if AU C R, then AV = B = RY;

(i) if A" ¢ R and R" C ker 6, then there exist elements of positive valuation in A" and, for
any u € AV of valuation e = min{v.(y); y € AV, v.(y) > 1}, we have AV" = R [[u]]
and BU'" = Frac (AY") = RN ((w));

(iii) if A'"" ¢ R and R ¢ ker§, then there exists an element u of valuation 1 in A" and
a nonzero derivation &' of R such that A'" = RI[[u; ¢§']] and B = Frac (A7) =
R (us ).

The proof of this theorem is somewhat long and technical and cannot take place here. It uses
in an essential way the notion of higher derivation and related results (see [27] for a survey).
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SOME COMMENTS.

1. In point (iii) of the theorem, ¢’ = cflé where u = ¢1x + coz? + -+ with ¢; € R,
C1 7é 0.

2. The equality Frac (A7) = (Frac A)"", which can be nontrivial in some cases (see
the proof of 3.3.1 and remark 1 in 3.2.1) follows here immediately from point (iii) of the
proposition in 4.1.1.

3. Under the assumptions of the theorem, if r and ' are two 1-cocycles in Z}(T', R)
such that BT ¢ R and BU ¢ R, then BU'" ~ BU,

4. Under the assumptions of the theorem, if the exact sequence of remark (ii) is split
for r and 7 two 1-cocycles in Z'(T', R), then BT ~ BT,

5. If we don’t assume that R is a field, we don’t have a general theorem, but some
particular results can be useful for further arithmetical applications. In particular it is
proved in [28] that: if there exists in BY"" an element w = bxz~! + ¢ with b € U(R) and

¢ € R, then the derivation D = bd restricts into a derivation of R', and we have then
AU = RU[[u; D]] and BV = RY((u; D)) foru = w!.

4.1.4. Application to the first Weyl local skewfield. We take here R = C(z) and § = 9,. We
consider the ring A = R[[z; d]] and its skewfield of fractions F' = R((z; ¢)). The skewfield
Q = R(t; d) where t = 7! and d = —§ is a subfield of F' (see point (ii) of proposition 4.1.1)
which is clearly isomorphic to the Weyl skewfield D;(C) (see 3.2.3). We have:

xz —zx =2, or equivalently 2zt —tz = 1.

We name F' the first local skewfield. It’s well known that any C-automorphism 6 of R is of the

form z — ‘Clzzig with (2%) € GL(2,C). For any f(z) € R, we compute:

0:(0(1)) = 0-(F(222h)) = (2debe, /(228 = 2d=be, 0(0.(f)).

By (54), it follows that the action of any # € Aut R is d-compatible, with py = (Zzti)j. We

conclude with the theorem of 4.1.2 that any automorphism 6 of F' which restricts into an
automorphism of R is of the form:

st ool T gy,

0 : z— cz+d’ z ad—bc

where (2%) € GL(2,C) and gg(z) € C(z). Then, using remark 2 of 3.2.1, we can prove that
point (iii) of the theorem of 4.1.3 applies and it’s easy to deduce with Liiroth’s theorem that:

PROPOSITION. For any finite subgroup I' of C-automorphisms of F' = C(z)((z; 0,)) stabilizing
C(z), we have F'' ~ I,

4.2. Applications to modular forms. In order to give an overview about some applications
of the previous results in number theory, we fix the following data and notations.

4.2.1. Data and notations. In the following, I' is a subgroup of SL(2, C), and R is a commutative
C-algebra R of functions in one variable z such that:

(i) T acts (on the right) by homographic automorphisms on R

(flo7) = f(£&) forall f€ Rand y=(24) €T,

(ii) the function z — ¢z + d is invertible in R for any v = (2Y) € T,

(iii) R is stable by the derivation 0.
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The case where R = C(z) corresponds to the formal situation studied in 4.1.4. In many arith-
metical situations, R is some particular subalgebra of Fye (A, C) with A C C stable by the
homographic action of a subgroup I' of SL(2,Z). We denote:

(61)

(FlpN(z) = (cz+d)7* (&) forall feR, y=(24) €T, ke

Let us observe that ((f[.7)[,v) = (f|7y) forall 7,7 €T and f € R. For any k € Z, we
define the C-vector space of weight k£ modular forms:

(62)

My(T,R) = { f€ R; (f],7) = fforally €T}
REMARKS.
1. My(T,R) = R.
2. If ' > (" %), then M (T, R) = (0) for any odd k.
3. If T contains at least one element (¢%) such that (¢,d) ¢ {0} x Us, we have
M (T, R) N M,(T', R) = (0) pour k # ¢.
4. For all f € Mi(T,R) and g € My(T', R), we have fg € M1¢(T, R).
5. For any f € My(I, R), the function f" = 0.(f) satisfies (f' [, ,7)(2) = f'(2) +
k55 f(2). Thus f" is not necessarily a modular form (unless for k = 0).

CoMMENT: Rankin-Cohen brackets (see [19]). It follows from remark 5 above that, for
f € M(T,R) and g € My(T', R), and r, s nonnegative integers, the product f("g(*) is
not necessarily an element of My syo,42+(I', R). For any integer n > 0, we denote by
[, ]n the n-th Rankin-Cohen bracket, defined as the linear combination:

[fvg]() = fg,
[f,g]l = kfg/ _ef/g7
[f:9], = k(E+ 1) fg" = (k+ D+ 1)f'g" + L+ 1)f"9,

n

[Frgla = X (=17 (M271) () £,

and satisfies the characteristic property:
for f € My (T, R) and g € M,y(T', R), we have [f,g],, € Miis42.(T, R).

(In fact it is possible to prove that any linear combination of f("g(*) satisfying this
property is a scalar multiple of the n-th Rankin-Cohen bracket). It follows from the
definition that [g, f],, = (=1)"[f,g],,, and that [, ], satisfies Jacobi identity.

4.2.2. Action on the pseudo-differential operators. For § = —0,, we compute:

§(flov)(z) =

—0(f(E5D) = —F'(E250) % (oqpe» and thus: (8(f)|o7)(2) = (2 + d)*3(floy)(2)- Then
the homographic action of I' on R is d-compatible. The associated multiplicative 1-cocycle

p:I' = U(R) defined by (54) is:
(63) py = (cz+d)* for any y = (24) €T

For any k € Z, the weight k action in the sense of (57) corresponds to the weight 2k action in

the sense (61) of modular forms:

(64) (Fl)(2) = (cz+d) 7 f(
and then Ik = Mgk(r, R)

az+b
cz+d

)= (fly)(z) forall y=(¢4) €T, feR
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We know by example 3 of 4.1.2 that v/, = —p>16(py) = (cz + d)720.((cz + d)?) = 2¢(cz + d)~*
defines an additive 1-cocycle 7’ : I' — R. Then by example 5 of 4.1.2, we can consider for any
r € C the additive 1-cocycle r = 57

(65) ry=rc(cz+d)~" forall y=(20)el.

Applying the theorem of 4.1.2, the action of I' on R extends for any x € C into an action by
automorphisms on B = R((x; —3,)) by

(66) Y@t = (cz+d)*a + ke(ecz+d) forall y=(2%)el.

We denote by BT* the subalgebra of invariant elements of B under this action.

4.2.3. Invariant pseudo-differential operators. We fix Kk € C. For any f € R and any integer
k > 1, we define:

Uk(f) = fak + 3 (- )"% X Bl (—Rek+1) (—ktht 2)(—thn) fME+ € B

n>1
Yo(f)=1F € R,
b= ot s 5 el (e ) ke
with the notation () = 9(f). The following two results by P. COHEN, Y. MANIN and DON

ZAGIER allow to define a vector space isomorphism between the invariant pseudo-differential
operators and the product of even weight modular forms.

LEMMA ([19]). For all f € R, k € Z, v € T, we have: ¥ ((f|,. 7)) = v(¥x(f)), thus:
(f€My(BT)) = (du(f) € B,

can

and then:

Tr /Mﬂkj MQk(F R) —0

0—= B, =B

is a split exact sequence.

THEOREM ([19]).
(i) For any j € Z, the map
j: Mo = [T Mar(T,R) — B;™ 5 (far)izj — 3 Ue(for)
k>3 k>j

is a vector space isomorphism.

(ii) The map Vo, : Mg, == | Moy — U BF” = BU" = R((x; —9.)"" canonically
JEZL JEZ
induced by the Wy;’s is vector space isomorphism.

It’s not possible to give here the proofs of these results and we can only refer the reader to the
original article [19]. In order to illustrate the construction, let us give some explicit calculations
for ¥y in the particular case where x = 0.

EXAMPLE.
Wo: Mo = [] Mag(T,R) — A™0 = R[[z; —0.]70 = By* ; (far)kso — > ¥k(for)

E>0 E>0
For any (fo, f2, f4,...) € Mo, we have:

o(fo) = fo

(0
Y1(fo) = fox — foa® + fola® — f'at + - = fs
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Ya(fa) =
V3(fo) = 15 fex® — & féa
Va(fs) = gfsﬂ? + -
thus:
Ty : My — ATO -
~l.oAl0 Mo ;
with:
ho = fo
hi = fo
hy = $fa—f3

1 1
hazrofta*ifiﬂLfé,
ha=ghfs = AT+ 40— Y

n=1 n! (n—1)! r
hy, = Z:O(—l)’”m f2((1)7,—r)

L faa? —ff:v3+§4’x4+-~-

(for)k>0 —— D2 hpa"

n>0

> hpx™ — (far)r>o0,
n>0

fo=ho
fo=m
o= 3hs + 3K,

fo = 10hs + 15h, + 5hY
fs = 35hy + TOR, + 42hY + h!V'

k=l r)! T
. N

4.2.4. Non commutative structure on Mas, and Rankin-Cohen brackets. By transfer of struc-

tures, the vector space isomorphisms
oy : Moy — BYF et U5l BUF - Mo,

resulting of point (ii) of the theorem of 4.2.3 allow to equip Ma, with a structure of non com-
mutative C-algebra. We denote it by M5, which depends in principle on the parameter « fixed
in the definition of the extension of the action form R to B.

ME, ~ BUF for any k € C.

The description given in 4.1.3 of the rings B'* allows to deduce some algebraic properties
(center, centralizers,...) of the algebras M¥,. In particular, supposing that R is a field of
characteristic zero, the corollary of the theorem on 4.1.3 given in the comment 4 applies by the

lemma of 4.2.3, and we prove so that:
THEOREM. If R is a commutative field of characteristic zero, then M$, ~ 5; for all k, k' € C.

Application to the noncommutative product of two modular forms. Let us fix f € Mo (T, R) and
g € My (T, R). With the identifications:

f=(£,0,0,...) € My, and g =(g,0,0,...) € Moy,
the noncommutative product of f by g in Mg*, for an arbitrary choice of xk € C, is given by:
1E(F,9) = U5, (U2e(f) Wau(9)) = Wiy gy (V1) 0(9)) € Maise)-
The authors of [19] prove then that:
pe(f,9) = ngo ta(k, ) [f, 91,

where [, |,, : Mog(I', R) X Mag(', R) — Mo (jqp40) (', R) is the n-th Rankin-Cohen bracket (see
comment in 4.2.1), and ¢f(k,¢) € Q is defined by:
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( _rk )( —k—Tl-H-i ) (n—l—k—sl-i—/{ ) ( n—l—k;}-é—l )

1
( 726) Z —2k (2n+2k8+2€72 )

to(k, 0) =
n( ) n r+s=n ( r )

These coefficients satisfy t%(k,£) = t27%(k, ). In particular for k = § or k = 3, the product

,u%(f, g) is the well known associative Eholzer product fxg = ,u%(f, g)

Yo [f9ln
>0

n
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