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Université Blaise Pascal (Clermont-Ferrand, France)
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Foreword. This course attempts to reach two apparently contradictory goals: to be a basic introduction
with minimal prerequisites, and to introduce to some recent aspects of the current research in the area.
This motivates our main orientations: to start with an overview on some topics from the heart of classical
invariant theory, to be self-contained for a beginner (and so to remind if necessary some well known
results), to give a particular emphasis to concrete examples and explicit calculations, to follow as a main
thread some significant mathematical objects in various contexts (for instance the finite subgroups of
SL2), to select some recent subjects without any other criterion that the subjective interest of the author
and, more seriously, their capacity to illustrate interesting general noncommutative methods and to lead
to relevant current topics. These notes have been written in some rush; so the author apologizes in
advance for all misprints, mistakes and misspells in this draft version.
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1. Commutative polynomial invariants: some classical results

1.1. Polynomial invariants for linear actions.

1.1.1. Polynomial functions. We fixe k a infinite commutative field. Let V be a k-vector space
of finite dimension n ≥ 1. We denote by k[V ] the ring of polynomial (or regular) functions on V .
Let us recall that f : V → k is an element of k[V ] means that, for any k-basis (e1, . . . , en) of V ,
there exists some polynomial ϕ ∈ k[x1, . . . , xn] such that f(α1e1+· · ·+αnen) = ϕ(α1, . . . , αn) for
all (α1, . . . , αn) ∈ kn. In other words, f is a polynomial into the elements x1 = e∗1, . . . , xn = e∗n
of the dual basis. It is clear that:

(1) k[V ] ' S(V ∗) ' k[x1, . . . , xn].

1.1.2. Linear actions. Let G be a group. For any representation ρ : G→ GL(V ) of G on V , the
corresponding left action of G on V defined by:

(2) ∀ g ∈ G, ∀ v ∈ V, g.v = ρ(g)(v),

can be canonically extended into an left action of G on k[V ] by:

(3) ∀ g ∈ G, ∀ f ∈ k[V ], ∀ v ∈ V, (g.f)(v) = f(g−1.v) = f(ρ(g−1)(v)).

The function f being polynomial and ρ(g−1) being linear, it is clear that f(ρ(g−1)(v)) is poly-
nomial in the coordinates of v with respect of any basis of V and so g.f ∈ k[V ]; then it is trivial
to check that g.(g′.f) = gg′.f and 1.f = f .

• Remark 1. By definition, the dual representation of ρ is ρ∗ : G → GL(V ∗) such that, for any f ∈ V ∗,
the linear form ρ∗(g)(f) is given by v 7→ f(ρ(g−1)(v)). Then formula (3) is just the extension of the
action associated to the dual representation from V ∗ to k[V ].

• Remark 2. Let (αi,j)1≤i,j≤n be the matrix of ρ(g) relative to the basis (e1, . . . , en) of V , and (βi,j)1≤i,j≤n
its inverse in GLn(k). Denoting by (x1, . . . , xn) the dual basis, the linear form g.xj (for any 1 ≤ j ≤ n)
is defined from (3) by (g.xj)(ei) = xj(ρ(g−1)(ei)) = xj

(∑n
k=1 βi,kek

)
= βi,j for all 1 ≤ i ≤ n. Then

g.xj =
∑n
i=1 βi,jxi. Finally, G acts by k-algebra automorphisms on k[x1, . . . , xn]:

g.
(∑
j

αjx
j1
1 x

j2
2 . . . xjnn

)
=
∑
j

αj
( n∑
i=1

βi,1xi
)j1( n∑

i=1

βi,2xi
)j2

. . .
( n∑
i=1

βi,nxi
)jn

.

1.1.3. Invariants. Let G be a group and ρ : G → GL(V ) a representation of G on V . A
polynomial function f ∈ k[V ] is invariant under the action of G if g.f = f for all g ∈ G. It is
clear that the invariants form a subalgebra of k[V ] called the invariant algebra and denoted by
k[V ]G. So we have:

k[V ]G = {f ∈ k[V ], g.f = f, ∀ g ∈ G}
= {f ∈ k[V ], f(g.v) = f(v), ∀ g ∈ G, ∀ v ∈ V }.

In other words a polynomial function f ∈ k[V ] is invariant if and only if it is constant on all
orbits Gv = {g.v ; g ∈ G} of elements v ∈ V under the action of G.

• Remarks.
(i) Any H subgroup of G acts on k[V ] and k[V ]G ⊂ k[V ]H

(ii) If H is normal in G, then G/H acts on k[V ]H (via g.f = g.f for any f ∈ k[V ]H) and we have
(k[V ]H)G/H = k[V ]G.

(iii) Let H be a subgroup of G and g ∈ G. For any f ∈ k[V ], we have f ∈ k[V ]H if and only if
g.f ∈ k[V ]gHg

−1
.

(iv) In particular, if H and K are conjugate in G, then k[V ]H is isomorphic to k[V ]K .
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1.1.4. Grading. For any integer d ≥ 0, a polynomial function f ∈ k[V ] is said to be homogeneous
of degree d if f(αv) = αdf(v) for any α ∈ k and v ∈ V . We denote by k[V ]d the subspace of k[V ]
of homogeneous functions of degree d. In particular k[V ]0 = k and k[V ]1 = V ∗, and k[V ]d is
canonically identified in the first isomorphism of (1) with the d-th symmetric power Sd(V ∗). In
the second isomorphism of (1), k[V ]d is identified with the subspace of k[x1, . . . , xn] generated
by monomials xd11 x

d2
2 . . . xdn

n such that d1 + d2 · · · + dn = d. We deduce in particular from a
classical combinatorial result that dim k[V ]d =

(
n+d−1

d

)
.

It is clear that the family (k[V ]d)d≥0 is a grading of the algebra k[V ], i.e.

(4) k[V ] =
⊕
d≥0

k[V ]d and k[V ]d k[V ]d′ ⊂ k[V ]d+d′ .

Moreover k[V ]d is stable under the action (3) because any g ∈ G acts as a degree one function.
With the natural notation:

(5) k[V ]Gd = k[V ]d ∩ k[V ]G,

we obtain the following grading of the algebra of invariants:

(6) k[V ]G =
⊕
d≥0

k[V ]Gd with k[V ]Gd k[V ]Gd′ ⊂ k[V ]Gd+d′ .

1.2. First example: symmetric polynomials. We begin with the following well known and
historical situation. We fix an integer n ≥ 1 and consider the symmetric group G = Sn on n
letters. In the canonical representation of Sn on a n-dimensional vector space V = ke1⊕· · ·⊕ken,
a permutation g acts by g(ei) = eg(i). The associated action on k[V ] ' k[x1, . . . , xn] is defined
by:

(7) ∀ g ∈ Sn, ∀ f ∈ k[x1, . . . , xn], g.f(x1, . . . , xn) = f(xg−1(1), . . . , xg−1(n)).

The elements of the invariant algebra k[x1, . . . , xn]Sn are no more than the usual symmetric
polynomials:

(8) k[x1, . . . , xn]Sn = {f ∈ k[x1, . . . , xn] ; f(xg(1), . . . , xg(n)) = f(x1, . . . , xn), ∀ g ∈ Sn}.

In particular, the following so called elementary symmetric polynomials are invariant:

σ1 = x1 + x2 + · · ·+ xn,
σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn,
· · ·
σk =

∑
1≤i1<i2<···<ik≤n

xi1xi2 . . . xik (sum of ( nk ) terms),

· · ·
σn = x1x2 . . . xn.

They satisfy in k[x1, x2, . . . , xn, z] the relation:

(9)
∏

1≤i≤n(z − xi) = zn − σ1z
n−1 + σ2z

n−2 − · · ·+ (−1)n−1σn−1z + (−1)nσn.

The following classical theorem gives then a very precise description of the invariant algebra as
an algebra of polynomials.
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1.2.1. Theorem. The elementary symmetric polynomials σ1, . . . , σn are algebraically indepen-
dent and generate the algebra of symmetric polynomials

k[x1, x2, . . . , xn]Sn = k[σ1, σ2, . . . , σn].

Proof ([35]). We proceed by induction on n. We assume in the following that the theorem is true for the
elementary symmetric polynomials σ′1, . . . , σ

′
n−1 in the variables x1, x2, . . . , xn−1. We have:

σ1 = σ′1 + xn, σ2 = σ′2 + xnσ
′
1, . . . , σn−1 = σ′n−1 + xnσ

′
n−2, σn = xnσ

′
n−1.

We prove first that σ1, . . . , σn are algebraically independent. Suppose that there exists some algebraic re-
lation P (σ1, . . . , σn) = 0 of minimal degree, with P ∈ k[t1, . . . , tn]. Set P = Qtn+R with Q ∈ k[t1, . . . , tn]
and R ∈ k[t1, . . . , tn−1]. From the above relations, it is clear that R(σ1, . . . , σn−1) equals R(σ′1, . . . , σ

′
n−1)

modulo xn in k[x1, . . . , xn]. Then P (σ1, . . . , σn) = 0 implies that R(σ′1, . . . , σ
′
n−1) is divisible by xn in

k[x1, . . . , xn]. Because R(σ′1, . . . , σ
′
n−1) lies in k[x1, . . . , xn−1], we deduce R(σ′1, . . . , σ

′
n−1) = 0. By as-

sumption, σ′1, . . . , σ
′
n are algebraically independent and then R = 0 in k[t1, . . . , tn−1]. Hence P is divisible

by tn in k[t1, . . . , tn], which contradicts the minimality.
We prove now that any symmetric polynomial f ∈ k[x1, . . . , xn] lies in k[σ1, . . . , σn]. According to (6),
we can suppose that f is homogeneous of some degree d. Writing f =

∑m
i=0 fi(x1, . . . , xn−1)xin, we

have fi ∈ k[x1, . . . , xn−1]Sn−1 (consider the permutations in Sn fixing the letter n). By assumption
k[x1, . . . , xn−1]Sn−1 = k[σ′1, . . . , σ

′
n−1]. From the above relations, we deduce that f ∈ k[σ1, . . . , σn−1, xn].

Thus f has the form f = p(σ1, . . . , σn−1)+xnh(σ1, . . . , σn−1, xn) with two polynomials p ∈ k[t1, . . . , tn−1]
and h ∈ k[t1, . . . , tn]. Again we can assume that, in the algebra k[x1, . . . , xn], p(σ1, . . . , σn−1) is homoge-
neous of degree d and h(σ1, . . . , σn−1, xn) is homogeneous of degree d−1. It follows that f−p(σ1, . . . , σn−1)
is again homogeneous of degree d and is divisible by xn. Since it is clearly symmetric, it is also divisible
by x1, . . . , xn−1, and then by the product x1x2 . . . xn = σn. So f−p = σnf

′ with a symmetric polynomial
f ′ of degree at most d− n. We achieve the proof by induction on d. �

1.2.2. Remark. Among other useful examples of symmetric polynomials, we must mention:
• the Newton functions: sk = xk1 + xk2 + · · ·+ xkn, for any integer k ≥ 1,

• the Wronski polynomials: wk =
∑

i1+i2+···+in=k x
i1
1 x

i2
2 . . . x

in
n , for any integer k ≥ 1,

• the discriminant: δ =
∏

1≤i<j≤n(xi − xj)2.

In particular, it is easy to see that:
sk − σ1sk−1 + σ2sk−2 − · · ·+ (−1)k−1σk−1s1 + (−1)kkσk = 0, for all 1 ≤ k ≤ n,
s` − σ1s`−1 + σ2s`−2 + · · ·+ (−1)nσns`−n = 0, for all ` > n.

We deduce:
s1 = σ1, s2 = s1σ1 − 2σ2 = σ2

1 − 2σ2, s3 = s2σ1 − s1σ2 + 3σ3 = σ3
1 − 3σ1σ2 + 3σ3, · · ·

and sk ∈ k[σ1, . . . , σk] for all 1 ≤ k ≤ n. If moreover k is of characteristic zero, we also have:
σ1 = s1, σ2 = 1

2s
2
1 − 1

2s2, σ3 = 1
6s

3
1 − 1

2s1s2 + 1
3s3, · · ·

In this case, the Newton function s1, . . . , sn are algebraically independent and generate the
algebra of symmetric polynomials

k[x1, x2, . . . , xn]Sn = k[s1, s2, . . . , sn].

En particular, we observe that:

(10) ∀ ` > n, s` ∈ k[s1, . . . , sn].
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1.3. Second example: actions of SL2. We consider here G = SL2(C) (briefly denoted by
SL2 if there is no doubt about the base field), V = Ce1 ⊕ Ce2 and C[V ] ' C[x, y]. The natural
action corresponds to the trivial two dimensional representation SL2 → GL(V ) and is defined
by:

∀ g =
(
α β
γ δ

)
∈ SL2, g.e1 = αe1 + γe2 and g.e2 = βe1 + δe2.

Following remark 2 of 1.1.2, the associated action on C[x, y] is the left action defined from:

(11) ∀ g =
(
α β
γ δ

)
∈ SL2, g.x = δx− βy and g.y = −γx+ αy

and extended by algebra automorphism to any polynomial.

1.3.1. Some examples of calculations. We compute the algebra of invariants under this action
for some subgroups of SL2.

1. For T = {
(
α 0
0 α−1

)
; α ∈ C×}, we have C[x, y]T = C[xy].

Proof. Choose δ ∈ C× of infinite order and denote by g the automorphism x 7→ δx and
y 7→ δ−1y. For any monomial λi,jxiyj with λi,j ∈ C, we have g(λi,jxiyj) = λi,jδ

i−jxiyj .
Then a polynomial

∑
i,j λi,jx

iyj lies in C[x, y]T if and only if λi,j = 0 for i 6= j. �

2. For U = {
(

1 β
0 1

)
; β ∈ C}, we have C[x, y]U = C[y].

Proof. Choose β ∈ C× and denote by g the automorphism x 7→ x− βy and y 7→ y. Any
polynomial f ∈ C[x, y] can be written f = hm(y)xm + hm−1(y)xm−1 + · · ·+ h0(y) with
hi(y) ∈ C[y]. Then g(f) = hm(y)(xm −mβyxm−1 + · · · ) + hm−1(y)(xm−1 + · · · ) + · · ·+
h0(y). Supposing g(f) = f , we observe by a trivial identification that mβyhm(y) = 0.
We conclude that f = h0(y) ∈ C[y]. �

3. We deduce in particular that C[x, y]SL2 = C.

4. We fix an integer n ≥ 1. The subgroup Cn = {
(
ζ 0
0 ζ−1

)
; ζn = 1} of SL2 is cyclic of order n.

We have C[x, y]Cn = C[xn, xy, yn].

Proof. Choose ζ a primitive n-th root of one and denote by g the automorphism x 7→ ζx
and y 7→ ζ−1y. Each monomial being an eigenvector for the action, C[x, y]Cn is generated
by invariant monomials. Let f = xiyj be a invariant monomial. If i = j, then f ∈ C[xy].
If i > j, then f = (xy)jxi−j ; the identity g(f) = f implies i − j = kn for some integer
n ≥ 1 and we conclude that f ∈ C[xy, xn]. In the same way we obtain f ∈ C[xy, yn]
when j > i. �

5. We fix an integer n ≥ 1. The binary dihedral group is the subgroup Dn of SL2 generated by
C2n and the matrix µ =

(
0 i
i 0

)
. Its order is 4n; C2n is normal in Dn; any element of Dn can

be written cµ` with c ∈ C2n and ` = 0 or 1. We have:
C[x, y]Dn = C[x2y2 , x2n + (−1)ny2n , x2n+1y − (−1)nxy2n+1].

Proof. We put X = x2n, Y = y2n and Z = xy. Then C[x, y]C2n = C[X,Y, Z] with
XY = Z2n. The automorphism g : x 7→ iy, y 7→ ix of C[x, y] associated to µ acts on
C[x, y]C2n by g(X) = (−1)nY , g(Y ) = (−1)nX and g(Z) = −Z. Then C[x, y]D2n =
C[X,Y, Z]g. We have:

C[X,Y, Z] =
⊕
d≥1

C[Z2]ZXd ⊕
⊕
d≥1

C[Z2]Xd ⊕ C[Z]⊕
⊕
d≥1

C[Z2]Y d ⊕
⊕
d≥1

C[Z2]ZY d.

For even n, we deduce:

C[X,Y, Z]g =
⊕
d≥1

C[Z2]Z(Xd − Y d)⊕
⊕
d≥1

C[Z2](Xd + Y d)⊕ C[Z2].
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Using relation XY = Z2n and the binomial formula, it is easy to prove by induction on
d that Xd + Y d belongs to the algebra generated over C by Z2 and X + Y , and that
Xd − Y d is the product of X − Y by an element of the algebra generated over C by Z2

and X + Y . We conclude in this case that C[X,Y, Z]g = C[Z2, X + Y,Z(X − Y )]. The
proof for odd n is similar. �

1.3.2. First additional comment: Kleinian surfaces. The finite subgroups of SL2 are classified
up to conjugation in five types, two infinite families parameterized by the positive integers (the
type An−1 corresponding of the cyclic group of order n and the type Dn corresponding to the
binary dihedral group of order 4n) and three groups E6, E7, E8 of respective orders 24, 48, 120.
This groups can be explicitly described in the following way.
Let us denote ζn = exp(2iπ/n) ∈ C for any integer n ≥ 1 and consider in SL2 the matrices:

θn =
(
ζn 0

0 ζ−1
n

)
, µ =

(
0 i
i 0

)
, ν =

(
0 1
−1 0

)
, ϕ =

(
−ζ35 0

0 −ζ25

)
,

η = 1√
2

(
ζ78 ζ78
ζ58 ζ8

)
, ψ = 1

ζ25−ζ
−2
5

(
ζ5+ζ−1

5 1

1 −(ζ5+ζ−1
5 )

)
.

We define the following subgroups of SL2:
• type An−1 : the cyclic group Cn, of order n, generated by θn,
• type Dn : the binary dihedral group Dn, of order 4n, generated by θ2n and µ,
• type E6 : the binary tetrahedral group T , of order 24, generated by θ4, µ and η,
• type E7 : the binary octahedral group O, of order 48, generated by θ8, µ and η,
• type E8 : the binary icosahedral group I, of order 120, generated by ϕ, ν and ψ.

Since any finite subgroup G of SL2 is conjugate to one of these types, it follows from remark (iv)
of 1.1.3 that we can suppose without restriction in the determination of the algebra of invariants
C[x, y]G for the natural action (11) that G is Cn, Dn, T,O or I. In each case, one can compute
(see [51]) a system of three generators f1, f2, f3 of the algebra of invariants C[x, y]G for the
natural action. Observe that the two first cases are no more than examples 4 and 5 above.

type generators equation

An−1 f1 = xy, f2 = xn, f3 = yn Xn + Y Z = 0

Dn f1 = x2y2, f2 = x2n + (−1)ny2n,

f3 = x2n+1y − (−1)nxy2n+1 Xn+1 +XY 2 + Z2 = 0

E6 f1 = xy5 − x5y, f2 = x8 + 14x4y4 + y8,

f3 = x12 − 33x8y4 − 33x4y8 + y12 X4 + Y 3 + Z2 = 0

E7 f1 = x8 + 14x4y4 + y8, f2 = x10y2 − 2x6y6 + x2y10

f3 = x17y − 34x13y5 + 34x5y13 − xy17 X3Y + Y 3 + Z2 = 0

E8 f1 = x11y + 11x6y6 − xy11,

f2 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20, X5 + Y 3 + Z2 = 0

f3 = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30

In all cases, the algebra C[x, y]G = C[f1, f2, f3] appears as the factor of the polynomial algebra
C[X,Y, Z] in three variables by the ideal generated by one relation (of degree n, n + 1, 4, 4, 5
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respectively). The corresponding surfaces of C3 are the Kleinian surfaces, which are the subject
of many geometric, algebraic and homological studies. It is proved in [51] that, for G and G′ two
groups among the types An−1, Dn, E6, E7, E8, the algebras C[x, y]G and C[x, y]G

′
are isomorphic

if and only if G = G′.

1.3.3. Second additional comment: irreducible representations of SL2. For any integer d ≥ 0,
we denote here by Wd the vector space C[x, y]d of homogeneous polynomials of degree d. In
the terminology of classical invariant theory, the elements of Wd are called the binary forms
of degree d. A C-basis of Wd is (ei)0≤i≤d where ei = xiyd−i. As we have seen in 1.1.4, any
space Wd is stable under the natural action of SL2 on C[x, y] defined by (11). Then we obtain
a representation ρd : SL2 → GL(Wd), satisfying:

(12) ∀ g =
(
α β
γ δ

)
∈ SL2, ∀ 0 ≤ i ≤ d, ρd(g)(ei) = (δx− βy)i(−γx+ αy)d−i.

It is not difficult to verify that the representation ρd is irreducible (i.e. there is no proper and
non trivial subspace W ′ of Wd such that ρd(g)(W ′) ⊂ W ′ for any g ∈ SL2). A more profound
theorem asserts that any irreducible rational representation of finite dimension d+ 1 of SL2 (the
notion of rational representation is connected with the structure of algebraic group of SL2) is
equivalent to ρd (see for instance [51]).

1.4. Third example: duality double. The following situation will turn to be important in
further considerations about actions on Weyl algebras. We return to the general situation of
a representation ρ : G → GL(V ) of a group G on a n-dimensional k-vector space V . We put
W = V ⊕ V ∗. Any element of W can be written uniquely w = v + x with v ∈ V and x ∈ V ∗.
Then we denote w = (v, x). Combining the action (2) of G on V and the associated action (3)
on V ∗, we define the action:

(13) ∀ g ∈ G, ∀ w = (v, x) ∈W = V ⊕ V ∗, g.w = (g.v, g.x).

Here g.v = ρ(g)(v) ∈ V and g.x ∈ V ∗ is defined by (g.x)(u) = x(ρ(g−1)(u)) for all u ∈ V . We
define the following bilinear form q : W → k:

(14) ∀ (v, x) ∈W, q(v, x) = x(v).

1.4.1. Lemma. Let (e1, . . . , en) a k-basis of V and (x1, . . . , xn) its dual basis in V ∗; we consider
the basis (e1, . . . , en, x1, . . . , xn) of W and its dual basis (x1, . . . , xn, ζ1, . . . , ζn) in W ∗. Then:

q = x1ζ1 + · · ·+ xnζn.

Proof. By definition of the xi’s and ζi’s, we have xi(v, x) = xi(v, 0) = xi(v) and ζi(v, x) = ζi(0, x) = ζi(x)
for all (v, x) ∈ W . It follows that the polynomial function q′ = x1ζ1 + · · · + xnζn is a bilinear form
W → k. For any 1 ≤ i, j ≤ n, we have: q′(ei, xj) =

∑n
k=1 xk(ei, xj)ζk(ei, xj). Since xk(ei, xj) = δi,k and

ζk(ei, xj) = δj,k, we obtain q′(ei, xj) = δi,j = xj(ei) = q(ei, xj). Using the bilinearity of q and q′, this
proves that q′ = q. �

1.4.2. Proposition. For any ρ : G→ GL(V ), we have: q ∈ k[W ]G.

Proof. It’s clear from previous lemma that q ∈ k[W ]. Moreover, for any g ∈ G and (v, x) ∈ W , we have
q(g.(v, x)) = (g.x)(g.v) = x

(
ρ(g−1)(ρ(g)(v))

)
= x(v) = q(v, x). �
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1.4.3. Proposition. For the natural representation of GL(V ) on V , we have: k[W ]GL(V) = k[q].

Proof. First we observe that the subset Wq = {w ∈ W ; q(w) 6= 0} is Zariski-dense on W (i.e. every
function f ∈ k[W ] which vanishes on Wq is the zero function). Indeed, if f vanishes on Wq, then fq
vanishes on W by definition of Wq, hence fq = 0. Since q is nonzero this implies in the domain k[W ]
that f = 0.
Now fix some vector w0 = (v0, x0) ∈Wq such that x0(v0) = 1. By standard arguments of linear algebra,
one can check that, for any w = (v, x) ∈ Wq, there exists g ∈ GL(V ) such that g.w = (v0, λx0) where
λ = x(v) ∈ k×. Take f ∈ k[W ]GL(V ). We can write f = f0 + f1 + · · · + fd with any fj homogeneous of
degree j related to the component in V ∗ (i.e. fj(v, αx) = αjfj(v, x) for any v ∈ V , x ∈ V ∗ and α ∈ k×).
Let p(t) be the polynomial in k[t] defined by: p(t) =

∑d
j=0 fj(v0, x0)tj . Then, considering any w ∈ Wq

with g ∈ GL(V ) satisfying g.w = (v0, λx0) with λ = q(w) ∈ k×, we obtain:

f(w) = f(g.w) = f(v0, λx0) =
∑d
j=0 fj(v0, λx0) =

∑d
j=0 λ

jfj(v0, x0) = p(λ) = p(q(w)) = p(q)(w).

Then the polynomial functions f and p(q) =
∑d
j=0 fj(v0, x0)qj are equal on Wq. Because Wq is Zariski-

dense in W , we conclude that f = p(q). �

1.4.4. Proposition. We recall the notations of 1.4.1 and denote by Tn the subgroup of linear
automorphisms g ∈ GL(V ) with diagonal matrices with respect of the basis (e1, . . . , en). Then:

k[W ]Tn = k[x1ζ1, x2ζ2, . . . , xnζn].

Proof. An element g ∈ Tn, with matrix Mg = diag(λ1, λ2, . . . , λn), acts by g.xj = λ−1
j xj and g.ζj = λjζj .

Therefore, any monomial y = xj11 . . . xjnn ζ
i1
1 . . . ζinn is an eigenvector under the action, and any element of

k[W ]Tn is a k-linear combination of invariant monomials. If we choose Mg = (λ1, 1, . . . , 1) with λ1 of
infinite order in k×, the relation g.y = y implies i1 = j1. Proceeding on the same way for all diagonal
entries, we obtain y = (x1ζ1)i1(x2ζ2)i2 . . . (xnζn)in . The result follows. �

1.5. Finiteness theorems. We start with the following well known result, which is one of the
most simple about invariant under finite group actions.

1.5.1. Theorem (E. Noether). Assume that k is of characteristic zero. For any representation
ρ : G→ GL(V ) of a finite group G, the invariant algebra k[V ]G is generated by the homogeneous
invariants functions of degree less than or equal to the order of G.

Proof. We can find many different proofs in the literature (see for instance [48],[50],...). The following is
particulary enlightening and proceeds from [35].
• We choose a basis of V and identify k[V ] = k[x1, . . . , xn], where n = dimV . For any integer j ≥ 0, we
consider the polynomial pj in k[x1, . . . , xn, t1, . . . , tn] defined by:

pj(x1, . . . , xn, t1, . . . , tn) =
∑
g∈G

[
(g.x1)t1 + (g.x2)t2 + . . .+ (g.xn)tn

]j .
Denoting Xg = (g.x1)t1 + (g.x2)t2 + . . . + (g.xn)tn for any g ∈ G, and G = {g1, g2, . . . , gd} with d the
order of G, we can observe that pj = Xj

g1 +Xj
g2 + · · ·+Xj

gd
is the j-th Newton function on the d variables

Xgi
. It follows from (10) that pj ∈ k[p1, . . . , pd] for any j.

• For any n-tuple µ = (µ1, µ2, . . . , µn) of non-negative integers, define the following polynomial:
hµ =

∑
g∈G

g.(xµ1
1 xµ2

2 . . . xµn
n ).

Then hµ ∈ k[x1, . . . , xn]G and hµ is homogeneous of degree |µ| = µ1 +µ2 + · · ·+µn. By definition of the
pj ’s and hµ’s, we have:

pj =
∑
|µ|=j

j!
µ1!µ2!...µn! hµ t

µ1
1 tµ2

2 . . . tµn
n .

Because each pj with j > d can be expressed as a polynomial in the pi’s with i ≤ d, we deduce from this
relation that the invariants hµ for |µ| > d can be written as polynomials in the hη where |η| ≤ d.
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• Finally consider any invariant polynomial function f =
∑
µ λµx

µ1
1 xµ2

2 . . . xµn
n , where λµ ∈ k. We have

f = 1
d

∑
g∈G g.f = 1

d

∑
µ

∑
g∈G λµg.(x

µ1
1 xµ2

2 . . . xµn
n ) = 1

d

∑
µ λµhµ. This proves that any element of

k[x1, . . . , xn]G is a polynomial in the hµ’s, and then (by the second step of the proof) is a polynomial in
the hη such that |η| ≤ d. �

1.5.2. Remark. For a given finite group G, the minimal number m such that for every represen-
tation ρ : G→ GL(V ) the invariant algebra k[V ]G can be generated by invariants of degree less
or equal to m is denoted by β(G). Noether’s theorem asserts that β(G) ≤ |G|. It is possible to
prove that we always have β(G) < |G| unless for cyclic G (the part “G cyclic implies β(G) = |G|”
is obvious considering a one dimensional faithful representation), and to compute β(G) for some
small groups (see [48]).

1.5.3. More about finiteness of invariants for finite groups. If we only consider the question on
the finite generation of invariants (independently of the research of some bound on the degree
of generators), we can obtain results in more general contexts. Observe in particular that the
following theorem doesn’t apply only to linear actions, but to any finite group of automorphisms
(see further 1.6 for comments on this point).

Theorem (E. Noether). Let A be a commutative noetherian ring, R a commutative finitely
generated A-algebra, and G a finite group of A-algebra automorphisms of R. Then:

(i) RG is a finitely generated A-algebra, (ii) R is finitely generated RG-module.

Proof. Let r1, r2, . . . , rn be generators of R over A. We denote R = A[r1, r2, . . . , rn]. For any p ∈ R, we
consider in R[x] the monic polynomial q(x) =

∏
g∈G(x−g.p). It is clear from formula (9) that q ∈ RG[x].

Since q(p) = 0, we deduce that R is integral over RG. Each generator ri (1 ≤ i ≤ n) satisfies a monic
polynomial relation:

rdi
i +

∑di−1
j=0 αi,jr

j
i = 0, with αi,j ∈ RG for all 1 ≤ i ≤ n and 1 ≤ j ≤ di.

Denoting simply {a1, . . . , a`} the finite set of all coefficients αi,j , we introduce the algebraB = A[a1, . . . , a`]
generated over A by the aj ’s. We have B ⊂ RG. From Hilbert’s basis theorem, B is noetherian (as a
factor of a polynomial algebra with coefficients in a noetherian ring). The n monic relations above imply
that any monomial in the ri’s is a linear combination with coefficients in B of monomials rj11 r

j2
2 . . . rjnn

with ji ≤ di − 1. Thus R is a finitely generated B-module. Because B is noetherian, it follows that any
B-submodule of R is itself finitely generated. In particular RG (which is obviously a B submodule of R
since B ⊂ RG ⊂ R) is a finitely generated B-module. As B is a finitely generated A-algebra, point (i)
of the theorem is proved. Finally, R finitely generated as B-module and B ⊂ RG trivially imply point
(ii). �

1.5.4. Finiteness results for reductive groups. We must mention to finish the following important
theorem which is related to linear actions of non necessarily finite groups.

Theorem (D. Hilbert) Let ρ : G→ GL(V ) be a finite dimensional representation of a group
G. Assume that the representation of G on the polynomial functions algebra k[V ] is completely
reducible. Then the invariant algebra k[V ]G is finitely generated as a k-algebra.

The proof (that we don’t develop here) uses two main arguments: the Hilbert’s basis theorem
(as in the previous theorem) and the existence under the hypothesis of a linear projection
R : k[V ] → k[V ]G which is k[V ]G-linear (i.e. R(hf) = hR(f) for all h ∈ k[V ]G, f ∈ k[V ]) and
equivariant (i.e. R(g.f) = R(f) for all g ∈ G, f ∈ k[V ]). Such an R is called a Reynolds operator.
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The theorem applies in particular to the class of reductive groups, including finite groups (in
this case R(f) = 1

|G|
∑

g∈G g.f), but also tori, linear and special linear groups, orthogonal and
special orthogonal groups, symplectic groups,...
This theorem is the starting point of a wide literature around Hilbert’s 14-th problem. We just
enumerate some points of reference and refer the reader to [50], [51], [52], [35]

1. The condition “G reductive” is sufficient but not necessary for k[V ]G to be finitely
generated.

2. There exist non reductive groups G with linear finite dimensional actions such that k[V ]G

is not finitely generated (the first counter example is by Nagata for V of dimension 18).
3. It is possible to characterize the groups G such that, for any finite dimensional repre-

sentation on V , the algebra k[V ]G is not only finitely generated, but also a polynomial
algebra. The Shephard-Todd and Chevalley theorem asserts that this is the case if and
only if G is generated by pseudo-reflections.

1.6. Non linear actions and polynomial automorphisms. As we have seen in 1.5.3, many
problems on polynomial invariants make sense for non necessarily linear actions. We recall here
some basic facts about the automorphism groups of commutative polynomial algebra (and refer
to [52] for more details).

1.6.1. Linear automorphisms, triangular automorphisms. Consider the polynomial algebra R =
k[x1, . . . , xn], and denote by AutR the group of k-algebra automorphisms of R.
• An element g ∈ AutR is said to be linear if it stabilizes the vector space kx1⊕kx2⊕· · ·⊕kxn.
So the subgroup GL(R) of linear automorphisms of R is just (up to isomorphism) GLn(k) acting
as we have seen in the previous sections. In particular g is said to be diagonal if it stabilizes
kxi for all 1 ≤ i ≤ n. Then up to isomorphism the subgroup of linear automorphisms of R is
just GLn(k) acting as we have seen in the previous sections. An element g ∈ AutR is said to
be affine if it acts on the xi’s by:

g(xi) =
n∑
j=1

αi,jxj + βi, with (αi,j)1≤i,j≤n ∈ GLn(k) and (β1, . . . , βn) ∈ kn.

We denote by Aff(R) the subgroup of affine automorphisms of R.

• An element g ∈ AutR is said to be triangular if it acts on the xi’s by:

g(x1) = λ1x1 + f1(x2, x3, . . . , xn)
g(x2) = λ2x2 + f2(x3, x4, . . . , xn)
. . .

g(xn−1) = λn−1xn−1 + fn−1(xn)
g(xn) = λnxn + fn

with λi ∈ k× and fi ∈ k[xi+1, . . . , xn]
for any 1 ≤ i ≤ n.

The subgroup of AutR consisting of all triangular automorphisms is traditionally denoted by
J(R) (from de Jonquières). The following proposition (see [4]) is elementary but gives useful
informations about the case of a finite subgroup of J(R).

Proposition.

(i) Any finite subgroup of triangular automorphisms of R = k[x1, x2, . . . , xn] is conjugated
in AutR to a subgroup of diagonal automorphisms.

(ii) Any finite subgroup of affine automorphisms of R = k[x1, x2, . . . , xn] is conjugated in
AutR to a subgroup of linear automorphisms.
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Proof. Let G be a finite subgroup of triangular automorphisms of R. It acts on kxn ⊕ k fixing k.
By semi-simplicity of G (see the lemma below), there exists x′n ∈ kxn ⊕ k such that G stabilizes kx′n
and kxn ⊕ k = kx′n ⊕ k. Then G acts on kxn−1 ⊕ k[xn] = kxn−1 ⊕ k[x′n] stabilizing k[x′n]. By semi-
simplicity of G, there exists x′n−1 ∈ kxn−1 ⊕ k[x′n] such that G stabilizes kx′n−1 and kxn−1 ⊕ k[x′n] =
kx′n−1 ⊕ k[x′n]. In the third step, G acts on kxn−2 ⊕ k[xn−1, xn] = kxn−2 ⊕ k[x′n−1, x

′
n] stabilizing

k[x′n−1, x
′
n]. By semi-simplicity of G, there exists x′n−2 ∈ kxn−2⊕k[x′n−1, x

′
n] such that G stabilizes kx′n−2

and kxn−2⊕k[x′n−1, x
′
n] = kx′n−2⊕k[x′n−1, x

′
n]. We construct so inductively a family x′n, x

′
n−1, . . . , x

′
1 such

that, for any 1 ≤ i ≤ n, we have x′i ∈ kxi ⊕ k[xi+1, . . . , xn] = kxi ⊕ k[x′i+1, . . . , x
′
n], x′i /∈ k[xi+1, . . . , xn],

and kx′i is stable under the action of G. Denoting by h the triangular automorphism defined by h(xi) = x′i
for any 1 ≤ i ≤ n, we conclude that h−1Gh acts diagonally on the xi’s. This proves point (i).
For (ii), let G be a finite subgroup of affine automorphisms of R. It acts on kx1⊕kx2⊕· · ·⊕kxn⊕k fixing
k. By semi-simplicity of G, there exists k-linearly independents elements x′1, x

′
2, . . . , x

′
n of kx1⊕kx2⊕· · ·⊕

kxn⊕k such that G stabilizes kx′1⊕kx′2⊕· · ·⊕kx′n and kx1⊕kx2⊕· · ·⊕kxn⊕k = kx′1⊕kx′2⊕· · ·⊕kx′n⊕k.
Denoting by h the affine automorphism defined by h(xi) = x′i for any 1 ≤ i ≤ n, we conclude that h−1Gh
acts linearly on the xi’s. �

In order to be complete, we recall in the following lemma the semi-simplicity argument used in
the proof of the proposition.

Lemma (Maschke). Let ρ : G → GL(V ) a representation of a finite group G whose
order doesn’t divide the characteristic of k, with V a non necessarily finite dimensional
vector space. Suppose that V = W ⊕W1 with W and W1 subspaces such that W is
G-stable. Then there exists a G-stable subspace W2 'W1 such that V = W ⊕W2.

Proof. Denote by p1 the canonical projection p1 : V → W and define q : V → V by
q(v) = 1

|G|
∑
g∈G ρ(g)(p1(ρ(g)−1(v))). Because W is G-stable, we have q(v) ∈ W for all

v ∈ V and q(w) = w for all w ∈ W . Then Im q = W . An easy calculation shows that
q(ρ(h)(v)) = ρ(h)(q(v)) for any h ∈ G and v ∈ V . It follows that Ker q is G-stable.
Then the lemma is proved with W2 = Ker q. �

1.6.2. The case n = 2. For R = k[x1, x2] the structure of the group AutR is very explicitly
known. Papers by Jung, Van der Kulk, Rentschler, Makar-Limanov (see [52] for more complete
references) led to prove that AutR is generated by the subgroup Aff(R) of linear automorphisms
and the subgroup J(R) of triangular automorphisms. More precisely, AutR is the amalgamated
free product of Aff(R) and J(R) over their intersection (i.e. if gi ∈ J(R) \ Aff(R) and hi ∈
Aff(R) \ J(R), then g1h1g2h2 . . . gnhngn+1 /∈ Aff(R)). It follows by a theorem of Serre (see [49],
théorème 8 p. 53) that any finite subgroup G of AutR is conjugate either to a subgroup of
Aff(R) or to a subgroup of J(R). Applying proposition 1.6.1, we finally conclude that:

Corollary. If R = k[x1, x2], any finite subgroup of AutR is conjugate to a subgroup of linear
automorphisms.

For k = C, the finite subgroups of GL2 are classified up to isomorphism and the corresponding
invariant algebras determined in [45] similarly to the description given in 1.3.2 for SL2.

1.6.3. Comments. For any n ≥ 1, the subgroup of AutR generated by Aff(R) and J(R) is called
the group of tame automorphisms and is denoted by T(R). The results of 1.6.2 are no more right
for n > 2. Firstly, it is easy to observe that, if n ≥ 3, then T(R) is not the amalgamated free
product of Aff(R) and J(R) over their intersection (define g the automorphism of R exchanging
x2 and x3, and h the automorphism x1 7→ x1 + x2

2, x2 7→ x2, x3 7→ x3; the automorphism
t = ghg−1 and h belong to J(R)\Aff(R), however t−1gh = g ∈ Aff(R)). More profoundly, Nagata
conjectured in 1972 that T(R) 6= Aut (R) for n = 3, and proposed as a possible counterexample
the automorphism x1 7→ x1−2x2(x3x1+x2

2)−x3(x3x1+x2
2)2, x2 7→ x2+x3(x3x1+x2)2, x3 7→ x3.
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This conjecture has been solved (by the affirmative) only in 2001 by Chestakhov and Urmibaev.
A canonical way to obtain automorphisms of R consists in considering the exponential of a locally
nilpotent derivation D of R, and in particular of the product of a triangular derivation d by an
element of Ker d (for instance Nagata’s automorphism is expD for D = (x3x1 + x2

2)d, where
d = −2x2∂x1 + x3∂x2). Fixing a locally nilpotent derivation D of R and denoting gt = exp(tD)
for any t ∈ k, the subgroup ED = {gt ; t ∈ k} is a subgroup of AutR isomorphic to the
additive group Ga = (k,+) and it is easy to observe that conversely any action of the algebraic
group Ga on the affine space kn arises in this way. Many questions about the Ga-actions
(triangulability, fixed point freeness, cancellation problem, finite generation of the invariants,...)
reduce to algebraic problems on locally nilpotent derivations of R (in particular about their
kernels) and conjugation of subgroups ED in AutR. We refer the reader interested by this
wealthy research area to [52].

2. Actions on noncommutative polynomial algebras

2.1. Invariants of noetherian rings under finite groups actions.

2.1.1. Noncommutative noetherian rings. Let R be a ring (non necessarily commutative). A
left R-module M is said to be noetherian if M satisfies the ascending chain condition on left
submodule, or equivalently if every left submodule of M is finitely generated. The ring R
himself is a left noetherian ring if it is noetherian as left R-module. There is of course a similar
definition for right modules, and a ring R is said to be noetherian if it is left noetherian and right
noetherian (i.e. if every left ideal is finitely generated and every right ideal is finitely generated).
It is classical and easy to prove that any finite direct sum of noetherian modules is noetherian,
and that, for any submodule N of a module M , we have: M noetherian if and only if N and
M/N are noetherian. These properties imply in particular the following useful observation: if
R a left noetherian ring, then all finitely generated left R-modules are left noetherian.

2.1.2. Skew group rings. Let R be a ring and G a subgroup of the group AutR of ring auto-
morphisms of R. The skew group ring (or trivial crossed product) R#G is defined as the free
left R-module with elements of G as a basis and with multiplication defined from relation:

∀ r, s ∈ R, ∀ g, h ∈ G, (rg)(sh) = rg−1(s)gh
Every element of R#G as a unique expression as

∑
g∈G rgg with rg ∈ R for any g ∈ G and

rg = 0 for all but finitely many g. It is clear that R is a subring of R#G (identifying r with
r1G), and that R#G is also a right R-module. Using the last observation of 2.1.1, we deduce
immediately that:

(15) if G is finite and R is left noetherian, then R#G is left noetherian.

Note that the noetherianity of R#G can be proved in the more general context where G is
polycyclic by finite, see [39]. The skew group ring R#G is closely related to the invariant ring
RG, as shows for instance the following lemma.

Lemma. Let R be a ring, G a finite subgroup of AutR, and S = R#G. Suppose that |G| is
invertible in R and consider in S the element e = 1

|G|
∑

g∈G g. Then we have:

(i) e2 = e, (ii) eS = eR, (iii) eSe = eRG ' RG.

Proof. We have eg = e for all g ∈ G. Relation (i) is then obvious. For any x =
∑
g∈G rgg ∈ S, we have

ex =
∑
g∈G ergg. Since rg = gg(r) for all g ∈ G and r ∈ R by definition of the multiplication in S,

we obtain ex =
∑
g∈G egg(rg). As eg = e, it follows that ex =

∑
g∈G eg(rg) = e

∑
g∈G g(rg) ∈ eR. We
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conclude that eS ⊂ eR. The converse is clear and so equality (ii) holds. It follows from point (ii) that
eSe = eRe. For r ∈ R, we compute:

ere = e
|G|
∑
g∈G rg = e

|G|
∑
g∈G gg(r) = 1

|G|
∑
g∈G egg(r)

= 1
|G|
∑
g∈G eg(r) = e

|G|
∑
g∈G g(r) = e

|G|τ(r) = eτ( r
|G| ),

where τ : R→ RG is the trace of G on R. This proves that eSe = eτ(R). The assumption |G| invertible
in R implies that any r ∈ RG can be written r = τ( 1

|G|r), so RG ⊂ τ(R), and finally RG = τ(R). Hence
eSe = eRG. As er = re for any r ∈ RG, the map r 7→ er defines a ring isomorphism RG → eRG. �

2.1.3. A finiteness theorem. The following theorem is due to S. Montgomery and L. W. Small
(see [42]) and can be viewed as a noncommutative analogue of Noether’s theorem 1.5.3.

Theorem. Let A be a commutative noetherian ring, R a non necessarily commutative ring
such that A is a central subring of R and R is a finitely generated A-algebra, and G a finite
group of A-algebra automorphisms of R such that |G| is invertible in R. If R is left noetherian,
then RG is a finitely generated A-algebra.

Proof. Let us introduce S = R#G. As we have observed in 2.1.2, S is left noetherian. It is clear from the
hypothesis that A is a central subring of S and that S is finitely generated as A-algebra (if {q1, . . . , qm}
generate R over A and G = {g1, . . . , gd}, then {q1, . . . , qm, g1, . . . , gd} generate S over A).

As in 2.1.2, consider in S the element e = 1
|G|
∑
g∈G g which satisfies e2 = e. In particular, eSe is a

subring of S, eS is a left eSe-module, and SeS is a two-sided ideal of S. Observe firstly that eS is a
finitely generated left eSe-module.

Because S is left noetherian, SeS is finitely generated as a left ideal of S. Say that SeS =∑
i Sxi, and write xi =

∑
j vijewij with vij ∈ S and wij ∈ S for all j. Choose r ∈ S.

Then er = eeer ∈ e(SeS), and so er = e(
∑
i sixi) =

∑
esivijewij =

∑
esivije

2wij .
Thus the finite set {ewij} generates eS as a left eSe-module.

Denote more briefly eS =
∑n
i=1 eSexi with xi ∈ S, and take t1, t2, . . . , tm generators of S as a A-algebra.

Now write etj =
∑n
i=1 eyijexi and exktj =

∑n
i=1 ezijkexi with yij ∈ S and zijk ∈ S for all 1 ≤ j ≤ m

and 1 ≤ k ≤ n. Consider the finite set E = {exie, eyije, ezijke}1≤i,k≤n, 1≤j≤m. We compute:

et1t2e = (
n∑
i=1

eyi1exi)t2e =
n∑
i=1

eyi1e(exit2)e =
n∑
i=1

eyi1e(
n∑̀
=1

ez`2iex`)e =
n∑
i=1

eyi1e(
n∑̀
=1

ez`2ieex`e),

and prove so inductively that any monomial etj1tj2 . . . tjke with 1 ≤ j1, j2, . . . , jk ≤ m can be expressed
by a finite sum of products of elements of E. As any element of eSe is a linear combination of such
monomials with coefficients in A, we conclude that E generates eSe as a A-algebra. By lemma 2.1.2, this
achieves the proof. �

This theorem will apply in particular to the iterated Ore extensions (see further 2.3).

2.2. Invariants of simple rings under finite groups actions.

2.2.1. Definitions. Recall that a ring R is simple when (0) and R are the only two-sided ideals
of R. An automorphism g ∈ AutR is said to be inner if there exists a ∈ R invertible in R such
that g(x) = axa−1 for all x ∈ R, and is said to be outer if it is not inner. A subgroup G of
AutR is outer when the identity map is the only inner automorphism in G.
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2.2.2. Simplicity of the invariants. We start with the following lemma about simplicity of crossed
products.

Lemma. Let R be a simple ring and G a finite outer subgroup of AutG. Then the ring R#G
is simple.

Proof. For any nonzero element x =
∑
g∈G rgg in S, define the length of x as the cardinal of the support

{g ∈ G ; rg 6= 0} of x. Let I be a two-sided nonzero ideal of S = R#G and ` be the minimal length of
nonzero elements of I. Because I is a two-sided ideal and ` is minimal, it is clear that the set J consisting
of 0 and of all nonzero elements of I of length ` is a two-sided ideal of S. Thus the set K of all elements
r ∈ R appearing as a coefficient in the decomposition of some element of J is a two-sided ideal of R. Since
R is simple, we have 1 ∈ K. So there exists in I some element with decomposition 1.g0 +

∑
g∈G,g 6=g0 rg.g.

Multiplying at the right by g−1
0 , we deduce that I contains an element x = 1.1G +

∑
g∈G,g 6=1G

rg.g of
length `.

If x = 1.1G (i.e. ` = 1), then I = S and we are done. Assume that rh 6= 0 for some h ∈ G, h 6= 1G. For
any r ∈ R, the bracket rx− xr =

∑
g∈G,g 6=1G

(rrg − rgg−1(r)).g lies in I and has shorter length than x.
Since ` is minimal, it follows that rx−xr = 0. In particular: rrh− rhh−1(r) = 0 for all r ∈ R. Therefore
rhR = Rrh is a two-sided ideal of R. The simplicity of R implies that 1 ∈ rhR, and so rh is invertible in
R. Hence h−1(r) = r−1

h rrh for all r ∈ R, which says that h−1 is an inner automorphism of R, which is
impossible since G is outer and h 6= 1G. �

We need now a brief account on the notion of Morita equivalence. Two rings S and T are
Morita equivalent when their categories of modules are equivalent. There exist several methods
to characterize such an equivalence. None is obvious and we refer for instance to [14] or [39] for a
serious presentation of this classical subject. In the limited frame of this notes, our basis will be
the following concrete criterion (see [39], proposition 3.5.6): S and T are Morita equivalent if and
only if there exist an integer n and an idempotent element e ∈ Mn(S) such that T ' eMn(S)e
and Mn(S)eMn(S) = Mn(S).

Proposition. Let R be a simple ring and G a finite outer subgroup of AutG such that |G| is
invertible in R. Then:

(i) RG and R#G are Morita equivalent,

(ii) the ring RG is simple.

Proof. Set S = R#G. By the lemma of 2.1.2, the element e = 1
|G|
∑
g∈G g of S satisfies e2 = e and we

have a ring isomorphism eSe ' RG. It is clear that SeS is a two-sided ideal of S. Thus SeS = S since
S is simple by the previous lemma. We just apply the above Morita equivalence criterion (with n = 1)
to conclude that S and RG are Morita equivalent. The simplicity being a Morita invariant, RG is then
simple. �

This proposition is a fundamental argument in all homological studies of invariants of Weyl
algebras (see further).

2.3. Iterated Ore extensions.

2.3.1. Definitions. Let A a non necessarily commutative ring. For any σ ∈ AutA, a σ-derivation
of A is an additive map δ : A→ A such that δ(αβ) = σ(α)δ(β) + δ(α)β for all α, β ∈ A.
For any automorphism σ of A and any σ-derivation δ of A, it is a technical elementary exercise
to verify that there exists a ring R containing A as a subring and an element x ∈ R such that
R is a free left A-module with basis {xn , n ≥ 0} and:

(16) xα = σ(α)x+ δ(α) for any α ∈ A.
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The ring R is called the Ore extension of R defined by σ and δ, and is denoted by R = A[x ; σ, δ].
Any element can be written uniquely as a finite sum y =

∑
i αix

i with αi ∈ A. The addition
in R is the ordinary addition of polynomials, and the noncommutative multiplication in R
is defined inductively from the commutation law (16). For y 6= 0, the nonnegative integer
n = max{i , αi 6= 0} is called the degree of y and denoted by degx y, and the corresponding αn is
the leading coefficient of y. By convention 0 has degree −∞ and leading coefficient 0. When A
is a domain, it is clear that, if y, z are two non zero elements of R of respective degrees n,m and
leading coefficients α, β, then yz has degree n+m and leading coefficient ασn(β). We deduce:

if A is a domain, then A[x ; σ, δ] is a domain.
In the particular case where δ = 0, we simply denote R = A[x ; σ]. The commutation relation
becomes:

(17) xα = σ(α)x for any α ∈ A.

In the particular case where σ = idA, the map δ is an ordinary derivation of A and we simply
denote R = A[x ; δ]. The commutation relation becomes:

(18) xα = αx+ δ(α) for any α ∈ A.

When the coefficient ring A is a field, we have as in the commutative case an euclidian algorithm
in A[x ; σ, δ]. The proofs of the following two results are left to the reader (see for instance [20]).

Proposition. Let R = K[x ; σ, δ] where K is a non necessarily commutative field, σ is an
automorphism of K, and δ is a σ-derivation of K. For any a, b ∈ R, with b 6= 0, there exist
q, r ∈ R unique such that a = qb+ r with degx r < degx b, and there exist q′, r′ ∈ R unique such
that a = bq′ + r′ with degx r′ < degx b.

Corollary. For K a non necessarily commutative field, all right ideal and all left ideals of
R = K[x ; σ, δ] are principal.

2.3.2. Examples. Take A = k[y] the commutative polynomial ring in one variable over a com-
mutative field k.

(i) For δ = ∂y the usual derivative, k[y][x ; ∂y] is the first Weyl algebra A1(k), with commu-
tation law xy − yx = 1.

(ii) For δ = y∂y, k[y][x ; y∂y] is the enveloping algebra U1(k) of the non abelian two dimen-
sional Lie algebra, with commutation law xy − yx = y. Note that yx = (x − 1)y and
then U1(k) can also be viewed as k[x][y ; σ] for σ the k-automorphism of k[x] defined by
x 7→ x− 1.

(iii) For δ = y2∂y, k[y][x ; y2∂y] is the Jordanian plane, with homogeneous commutation law
xy − yx = y2.

(iv) For σ the k-automorphism of k[y] defined by y 7→ qy for some fixed scalar q ∈ k×,
k[y][x ; σ] is the quantum plane, denoted by kq[x, y], with commutation law xy = qyx.

(v) Consider again σ the k-automorphism of k[y] defined by y 7→ qy for some fixed scalar
q ∈ k×, q 6= 1. The Jackson derivative is the additive map δ : k[y] → k[y] defined by
δ(f) = f(qy)−f(y)

qy−y ; it is a σ-derivation. The algebra k[y][x ; σ, δ] is then the first Weyl
algebra, denoted by Aq1, with commutation law xy − qyx = 1.

2.3.3. Iterated Ore extension. Starting with a commutative field k and the commutative polyno-
mial ring R1 = k[x1], and considering an automorphism σ2 and a σ2-derivation δ2 of R1, we can
build the Ore extension R2 = R1[x2 ; σ2, δ2]. Taking an automorphism σ3 and a σ3-derivation
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δ3 of R2, we consider then R3 = R2[x3 ; σ3, δ3]. Iterating this process, we obtain a so called
iterated Ore extension:

(19) Rm = k[x1][x2 ; σ2, δ2][x3 ; σ3, δ3] · · · [xm ; σm, δm].

It is clear from the construction that {xi11 x
i2
2 . . . x

im
m }(i1,i2,...,im)∈Nm is a left k-basis of Rm, and

that Rm is a domain. We give here some elementary examples (see also 2.4.1 below).

1. The Lie algebra sl2(k) is ke ⊕ kf ⊕ kh with Lie brackets [h, e] = 2e, [h, f ] = −2f and
[e, f ] = h. By Poincaré-Birkhoff-Witt’s theorem, its enveloping algebra U(sl2) admits
(hiejfk)i,j,k∈N as a left k-basis. Then U(sl2) = k[h][e ; σ′][f ; σ, δ], where σ′ is the k-
automorphism of k[h] defined by h 7→ h − 2, σ is the k-automorphism of k[h][e ; σ′]
defined by h 7→ h+ 2, e 7→ e, and δ is the σ-derivation of k[h][e ; σ′] defined by δ(h) = 0
and δ(e) = −h.

2. The Heisenberg Lie algebra sl+3 (k) is kx ⊕ ky ⊕ kz with Lie brackets [x, z] = [y, z] = 0
and [x, y] = z. Then U(sl+3 ) = k[z][y][x ; δ] for δ = z∂y. It can be proved much more
generally that the enveloping algebra of any nilpotent Lie algebra of dimension n is an
iterated Ore extension on n variables (with σ1 = id for all i’s in the formula 19).

3. Let Q = (qij) a m ×m matrix with entries in k× such that qii = 1 and qij = q−1
ji for

all i, j ’s. The quantum m-dimensional affine space parameterized by Q is the algebra
kQ[x1, . . . , xm] generated over k by m generators x1, . . . , xm satisfying the commutation
relations xixj = qijxjxi. It is the iterated Ore extension:

kQ[x1, . . . , xm] = k[x1][x2 ; σ2][x3 ; σ3] · · · [xm ; σm]

with σi the k-automorphism of k[x1][x2 ; σ2, ] · · · [xi−1 ; σi−1] defined by σi(xj) = qijxj
for any 1 ≤ j ≤ i− 1.

2.3.4. Noetherianity of Ore extension. The following theorem can be viewed as a noncommuta-
tive version of Hilbert’s basis theorem (see in particular the historical note of [30] p. 20).

Theorem. Let A a non necessarily commutative ring, σ an automorphism and δ a σ-derivation
of A. If A is right (resp. left) noetherian, then A[x ; σ, δ] is right (resp. left) noetherian.

Proof. Assume that A is right noetherian. Let J be a non zero right ideal of R = A[x ; σ, δ]. We claim
that the set L of leading coefficients of elements of J is a right ideal of A.

Take α, β ∈ L. If α+ β = 0, we have α+ β ∈ L obviously. So we assume α+ β 6= 0. Let
y, z ∈ J of respective degrees m,n ∈ N with respective leading coefficients α, β. In other
words, y = αxm + · · · and z = βxn + · · · . If n ≥ m, then yxn−m + z = (α+ β)xn + · · ·
lies in J , thus α + β ∈ L. If m > n, then y + zxm−n = (α + β)xm + · · · lies in J and
α + β ∈ L. Now take γ ∈ A such that αγ 6= 0. We have yσ−m(γ) = αγxm + · · · . As
yσ−m(γ) ∈ J , it follows that αγ ∈ L. We conclude that L is a right ideal of A.

A being right noetherian, introduce nonzero generators α1, . . . , αk of L as a right ideal of A. For any
1 ≤ i ≤ k, let yi be an element of J with leading coefficient αi. Denote ni the degree of yi and
n = max{n1, . . . , nk}. Each yi can be replaced by yixn−ni . Hence there is no loss of generality in assuming
that y1, . . . , yk all have the same degree n. Set N the left A-submodule of R generated by 1, x, x2, . . . , xn

(i.e. the set of elements of R whose degree is lower or equal than n). Using the commutation law
αx = xσ−1(α)−δ(σ−1(α)) for any α ∈ A, we observe that N is also the right A-submodule of R generated
by 1, x, x2, . . . , xn. So N is a noetherian right A-module (any right module finitely generated over a right
noetherian ring is right noetherian, see the last observation of 2.1.1). It follows that the right A-submodule
J ∩N of N is finitely generated, say generated by z1, . . . , zt. Thus we have J ∩N = z1A+z2A+ · · ·+ztA.
Set I = y1R+ y2R+ · · ·+ ykR+ z1R+ z2R+ · · ·+ ztR. We will show that J = I.
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The inclusion I ⊂ J is trivial (all yi and zj are in the right ideal J of R). For the converse inclusion observe
first that, A being a subring of R, we have: J ∩N = z1A+ z2A+ · · ·+ ztA ⊂ z1R+ z2R+ · · ·+ ztR ⊂ I.
Thus I contains all elements of J with degree less than n. We will prove by induction on m that, for any
integer m ≥ n, we have: {p ∈ J ; degx p ≤ m} ⊂ I.

The assertion is right for m = n. Assume that it is satisfied up to a rank m − 1 ≥ n.
Take p ∈ J with degree m and leading coefficient α. We have α ∈ L, then there exist
β1, . . . , βk ∈ A such that α = α1β1 + · · ·+αkβk. Set q =

[
y1σ
−n(β1)+y2σ

−n(β2)+ · · ·+
ykσ
−n(βk)

]
xm−n, which lies in I by definition of I. Each yi being of degree n and leading

coefficient αi, the degree of q is m and its leading coefficient is α1β1 + · · ·+αkβk = α. It
follows that p− q is of degree less than m. We have p ∈ J and q ∈ I ⊂ J , thus p− q ∈ J
and we can apply the induction assumption to deduce that p− q ∈ I, and then p ∈ I.

So we have proved that J = I. Since J was any right ideal of R and I is finitely generated as a right
ideal of R, we conclude that R is right noetherian.
Now if A is left noetherian, the opposite ring Aop is right noetherian. It is easy to observe that A[x ; σ, δ]op

is isomorphic to Aop[x ; σ−1,−δσ−1]. Then the left noetherianity of R follows from the first part of the
proof. �

Corollary. Every iterated Ore extension over a commutative field k is a noetherian domain.

Proof. We have seen in 2.3.1 that A[x ; σ, δ] is a domain when A is a domain. We apply this argument
and the previous theorem inductively starting from k. �

2.3.5. Invariants of iterated Ore extension under finite groups. From the previous corollary and
theorem 2.1.3, we deduce immediately the following practical result:

Theorem. Let R be an iterated Ore extension over a commutative field k. Let G be a finite
group of k-automorphisms of R. We suppose that the order of G is prime with the characteristic
of k. Then RG is a finitely generated k-algebra.

2.4. Actions on Weyl algebras.

2.4.1. Definition and first properties of the Weyl algebras. We fix an integer n ≥ 1 and a com-
mutative base field k. Let S = k[q1, q2, . . . , qn] be the commutative polynomial algebra in n
variables. We denote by EndkS the k-algebra of k-linear endomorphisms of S. The canonical
embedding µ : S → EndkS consisting in the identification of any polynomial f with the multipli-
cation µf by f in S is a morphism of algebras. We consider in EndkS the k-vector space DerkS
consisting of the k-derivations of S. It is a S-module with basis (∂q1 , ∂q2 , . . . , ∂qn), where ∂qi is
the usual derivative related to qi. Then the algebra DiffS of differential operators on S is the sub-
algebra of EndkS generated by µq1 , . . . , µqn , ∂q1 , . . . , ∂qn . This algebra DiffS = Diff k[q1, . . . , qn]
is called the n-th Weyl algebra over k, and is denoted by An(k). For all d ∈ DerkS and f, h ∈ S,
the ordinary rule d(fh) = d(f)h+ fd(h) can be written dµf = µfd+ µd(f) in EndkS or, up to
the identification mentioned above, df −fd = d(f). Denoting by pi the derivative ∂qi , we obtain
the following formal definition of An(k):

Definition. The Weyl algebra An(k) is the algebra generated over k by 2n generators q1, . . . , qn,
p1, . . . , pn with relations:

(20) [pi, qi] = 1, [pi, qj ] = [pi, pj ] = [qi, qj ] = 0 for i 6= j,
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where [ . , . ] is the canonical commutation bracket (i.e. [a, b] = ab− ba for all a, b ∈ An(k)). The
monomials (qi11 . . . qinn p

j1
1 . . . pjnn )(i1,...,in,j1,...,jn)∈N2n are a k-left basis of the algebra An(k), which

can be viewed as the iterated Ore extensions:

(21) An(k) = An−1(k)[qn][pn ; ∂qn ],

(22) An(k) = k[q1, q2, . . . , qn][p1 ; ∂q1 ][p2 ; ∂q2 ] . . . [pn ; ∂qn ].

It follows in particular that the invertible elements of An(k) are only the nonzero scalar in k×,
and so that any nontrivial automorphism of An(k) is outer.

Proposition. If k is of characteristic zero, An(k) is a simple noetherian domain of center k.

Proof. By 2.3.4, An(k) is a noetherian domain independently of the characteristic. Let a =
∑
i,j ai,jq

i
np
j
n

be any element of An(k), with ai,j ∈ An−1(k). We have:

(23) [pn, a] =
∑
i,j

i ai,j q
i−1
n pjn and [a, qn] =

∑
i,j

j ai,j q
i
np
j−1
n

If a is central in An(k), we have [pn, a] = [a, qn] = 0. Since k is of characteristic zero, we deduce from (23)
that a reduces to a0,0, and then a ∈ An−1(k). As a must be central in An−1(k), it follows by induction
that a ∈ k. Now consider a two-sided ideal I of An(k) and suppose that a is non zero in I. We must
have aqn ∈ I and qna ∈ I, thus [a, qn] ∈ I. Similarly, [pn, a] ∈ I. Applying (23), we deduce after a
finite number of steps that a0,0 ∈ I. We repeat the process with the element a0,0 in An−1(k), and then
inductively up to obtain 1 ∈ I. This proves that the only two-sided ideals of An(k) are (0) and An(k). �

Proposition. If k is of characteristic zero, then An(k)G is a simple noetherian domain of center
k and a finitely generated k-algebra, for any finite subgroup G of AutAn(k).

Proof. An(k)G is simple by point (ii) of proposition 2.2.2. An(k)G is noetherian by point (i) of proposition
2.2.2 and observation (15) of 2.1.2. An(k)G is a finitely generatd k-algebra by theorem 2.3.5. Any nonzero
central element of An(k)G generates a two-sided principal ideal in An(k)G, so is invertible since An(k)G

is simple, and then belongs to k. �

Proposition. For any nonnegative integer m, denote by Fm the k-vector space generated in

An(k) by monomials qi11 . . . qinn p
j1
1 . . . pjnn such that i1 + · · ·+ in + j1 + · · ·+ jn ≤ m. Then:

(i) B = (Fm)m∈N is a filtration of An(k), called the Bernstein filtration;
(ii) the associated graded algebra gr(An(k)) is the commutative polynomial algebra in 2n

variables over k:
(iii) for any finite subgroup of G of linear automorphisms of An(k), the action of G induces

an action on gr(An(k)), the filtration B induces a filtration of An(C)G, and we have:
gr(An(k)G) ' gr(An(k))G.

Proof. It is clear that An(k) =
⋃
i∈N Fi, Fi ⊂ Fj for i ≤ j, and FiFj ⊂ Fi+j . By definition, the associated

graded algebra is T =
⊕

i≥0 Ti for T0 = k and Ti = Fi/Fi−1; then, by a straightforward verification, the
pi’s and qi’s in T1 generate T as a k-algebra and are algebraically independent (see [22] for a detailed
proof). Point (iii) is left to the reader. �
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2.4.2. Action of SL2 on the Weyl algebra A1(C). Here we take n = 1 and k = C. We denote
simply p for p1 and q for q1. Thus, A1(C) is the algebra generated over C by p, q with the only
relation [p, q] = 1.

(24) A1(C) = C[q][p ; ∂q] = C[p][q ; −∂p].

Any element of SL2 = SL2(C) gives rise to a linear algebra automorphism on A1(C) defined by:

(25) ∀ g =
(
α β
γ δ

)
∈ SL2, g(p) = αp+ βq and g(q) = γp+ δq.

A subgroup of AutA1(C) is said to be linear admissible if it is the image by the canonical
injection ι : SL2 ↪→ AutA1(C) of one of the five types An−1, Dn, E6, E7, E8 defined in 1.3.2.
We can now formulate:

Theorem.

(i) Any finite subgroup of AutA1(C) is conjugate to a linear admissible subgroup.

(ii) If G and G′ are two linear admissible subgroups of AutA1(C), then A1(C)G ' A1(C)G
′

if and only if G = G′.

Proof. It is not possible to give here a complete self contained proof of this theorem, which is based on
many non trivial theorems from various papers. We indicate the structure of the main arguments and
refer the interested reader to the original articles for further details. First we can naturally introduce
two kinds of automorphisms of A1(C). The linear ones (preserving the vector space Cp⊕Cq) correspond
to the action (25) of SL2. The triangular ones are of the form: p 7→ αp + β, q 7→ α−1q + f(p) with
α ∈ C×, β ∈ C, f(p) ∈ C[p], and form a subgroup denoted by J. It is proved in [24] that AutA1(C)
is generated by the subgroups J and SL2 (in fact the image of SL2 by the canonical injection ι). More
precisely, it is shown in [1] that AutA1(C) is the amalgamated free products of SL2 and J over their
intersection. Exactly as in 1.6.2, it follows by the theorem of Serre that any finite subgroup of AutA1(C)
is conjugate either to a subgroup of SL2 or to a subgroup of J. But on the same way that in proposition
1.6.1, a semi-simplicity argument proves that any finite subgroup of J is conjugate to a subgroup of
linear automorphisms (see further lemma 2.4.3). Since the finite subgroups of SL2 are classified up to
conjugation in the five types An−1, Dn, E6, E7, E8 (see 1.3.2), the point (i) follows. The separation (ii),
which cannot be obtained by the standard dimensional invariants, was first proved in [9] by an original
method of “reduction modulo p” (see the second additional comment below for other arguments). �

• First additional comment: finite generation of A1(C)G. By theorem 2.3.5, A1(C)G is a finitely
generated C-algebra, and we can ask for explicit generators of A1(C)G for any type of admissible
G, similarly to the commutative case in 1.3.2.

Example: consider the action p 7→ ζp, q 7→ ζ−1q of the cyclic group Cn on A1(C), with
ζ a primitive n-th root of unity in C. As in example 4 of 1.3.1, it is clear that A1(C)Cn is
generated by invariants monomial piqj . For j ≥ i, write piqj = (piqi)qj−i, and observe
that piqi is invariant to deduce that j−i = kn for some k ≥ 1, and then piqj = (piqi)qkn.
Similarly, piqj = pkn(pjqj) if i > j. We conclude with the formula:

pjqj = pq(pq + 1)(pq + 2) . . . (pq + j − 1)

that A1(C)Cn is generated by qn, pn and pq. This result is formally similar to the one of
example 4 of 1.3.1, but we must of course take care that the generators don’t commute
here. More precisely we have: pqpn = pn(pq − n), qnpq = (pq − n)qn, and

pnqn − qnpn =
∏n
i=1(pq + i− 1)− (−1)n

∏n
i=1(−pq + i).
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We refer to [18] for the calculation of generators for each of the five types of admissible G.

• Second additional comment: A1(C)G as a deformation of the kleinian surfaces. The linear
action of the finite group G on the noncommutative algebra A1(C) induces canonically a linear
action on the commutative graded algebra S = gr(A1(C)) = C[x, y] associated to the Bernstein
filtration, which is the standard action considered in 1.3.2. We have then gr(A1(C)G) = SG,
what allows to see the invariant algebra A1(C)G as a noncommutative deformation of the kleinian
surface SG. The next step would be to see the Hochschild homology of A1(C)G as a deformation
of the Poisson homology of SG (the commutative algebra SG inherits in a natural way a Poisson
algebra structure whose bracket defined from relation {x, y} = 1 is induced by the commutator
bracket of A1(C)G). This program is initiated in [10], which proves that:

dimHH0(A1(C)G) = s(G)− 1 = dimHP0(SG),
where s(G) is the number of conjugacy classes in G. (Recall that: (1) HH0(A) = A/[A,A]
where [A,A] denote the C-vector space generated by all brackets [a, b] = ab− ba with a, b ∈ A);
(2) HP0(S) = S/{S, S} where {S, S} is the C-vector space generated by all {a, b} with a, b ∈ S).

2.4.3. Action of Sp2n on the Weyl algebra An. An automorphism g of An(k) is linear if the
k-vector subspace W = kq1⊕ · · ·⊕kqn⊕kp1⊕ · · ·⊕kpn is stable under g. The restriction to W
of the commutation bracket in An(C) defines an alternated bilinear form and the relations (20)
mean that B = (p1, q1, p2, q2 . . . , pn, qn) is a symplectic basis of W . Then it is clear that the group
of linear automorphisms of An(k) is isomorphic to the symplectic group Sp2n = Sp2n(k). The
previous example 2.4.2 is just the case n = 1. For finite abelian groups of linear automorphisms
and for k = C, the following result (from [6]) simplifies the situation in a way which is used as
a key argument by many studies of this kind of actions (see [12], [11], [7], and further 3.4.2).

Proposition. Any finite abelian subgroup of linear automorphisms of An(C) is conjugated in
Sp2n to a subgroup of diagonal automorphisms.

More precisely, with the above notations, for any finite abelian subgroup G of Sp2n, there exist
a symplectic basis C = (x1, y1, x2, y2, . . . , xn, yn) of W and complex characters χ1, χ2, . . . , χn of
G such that:

g(xj) = χj(g)xj and g(yj) = χj(g)−1yj , for all g ∈ G.

Proof. By Schur’s lemma and total reducibility, there exists a basis U = (u1, u2, . . . , u2n) of W and
complex characters ϕ1, ϕ2, . . . , ϕn of G such that g(uj) = ϕj(g)uj for any 1 ≤ j ≤ 2n. Set ωi,j = [ui, uj ]
for all 1 ≤ i, j ≤ 2n. Up to permutate the ui’s, one can suppose that ω1,2 6= 0. For any 3 ≤ j ≤ 2n, let
us define:

vj = ω1,2uj − ωj,2u1 + ωj,1u2.

Denote x1 = u1 and y1 = ω−1
1,2u2. Then (x1, y1, v3, v4, . . . , v2n) is a basis of W satisfying [x1, y1] = 1 and

[x1, vj ] = [y1, vj ] = 0 for any 3 ≤ j ≤ 2n. The action of G on this new basis can be described on the
following way. It is clear that g(x1) = ϕ1(g)x1 and g(y1) = ϕ2(g)y1 for any g ∈ G. Since ω1,2 6= 0, we
have ϕ2(g) = ϕ1(g)−1. For 3 ≤ j ≤ 2n, it follows from the definition of vj that:

g(vj) = ϕj(g)vj + ωj,2
(
ϕj(g)− ϕ1(g)

)
u1 − ωj,1

(
ϕj(g)− ϕ2(g)

)
u2.

If ωj,2 6= 0, then ϕj(g) = ϕ2(g)−1 = ϕ1(g). Similarly ωj,1 6= 0 implies ϕj(g) = ϕ2(g). Hence g(vj) =
ϕj(g)vj for any 3 ≤ j ≤ 2n. Finally we conclude that the basis (x1, y1, v3, v4, . . . , v2n) of W satisfies
[x1, y1] = 1 and [x1, vj ] = [y1, vj ] = 0 for any 3 ≤ j ≤ 2n, and that G acts by:

g(x1) = ϕ1(g)x1, g(y1) = ϕ1(g)−1y1, g(vj) = ϕj(g)vj for 3 ≤ j ≤ 2n.
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We repeat the process with the subspace generated by v3, . . . , v2n. As W doesn’t contain any totally
isotropic subspace of dimension ≥ n + 1, we can iterate this construction n times to obtain the basis C
and the characters χ1 = ϕ1, χ2 = ϕ3, . . . , χn = ϕ2n−1 of the proposition. �

In order to be complete, we recall in the following lemma two classical arguments on represen-
tation theory used at the beginning of the proof.

Lemma.
(i) (Total reducibility). Let ρ : G→ GL(V ) a representation of a finite group G whose

order doesn’t divide the characteristic of k, with V a finite dimensional vector
space. Then V = V1 ⊕ · · · ⊕ Vm with Vi G-stable and irreducible (i.e. Vi doesn’t
admit proper and non zero G-stable subspace) for any 1 ≤ i ≤ m.

(ii) (Schur’s lemma). If k is algebraically closed and G is abelian, then any finite
dimensional irreducible representation of G is of dimension one.

Proof. Because V is finite dimensional, (i) just follows from Maschke’s lemma (see 1.6.1).
For (ii), consider a finite dimensional irreducible representation ρ : G → GL(V ) of an
abelian group G. Fix s ∈ G and set t = ρ(s). For any g ∈ G, gs = sg implies ρ(g)t =
tρ(g). Let λ ∈ k× be a eigenvalue of t and denote W = {v ∈ V ; t(v) = λv} 6= (0). For
any v ∈ W , we have: t(ρ(g)(v)) = ρ(g)(t(v)) = ρ(g)(λv) = λ(ρ(g)(v)) so ρ(g)(v) ∈ W .
Hence W is G-stable and then W = V . We have proved: for all s ∈ G, there exists
λ ∈ k× such that ρ(s) = λ idV . In particular any one-dimensional subspace of V in
G-stable. Since V is irreducible, we conclude that V is of dimension one. �

This proposition applies in particular to the subgroup generated by one automorphism of finite
order. Under this form, it appears in [12] and [11] as an ingredient for the homological study of
An(C)G when G is finite not necessarily abelian (another fundamental ingredient is the Morita
equivalence between An(C)G and An(C)#G by proposition 2.2.2, as An(C) doesn’t admit non-
trivial inner automorphisms). We cannot develop here the elaborate proofs of these papers
leading in particular to the following theorem, which describes very precisely the Hochschild
(co)homology and Poincaré duality: for any finite subgroup of linear automorphisms of An(C),
we have for all nonnegative integer j:

dimCHHj(An(C)G) = dimCHH
2n−j(An(C)G)) = aj(G)

where aj(G) is the number of conjugacy classes of elements of G which admit the eigenvalue 1
with multiplicity j.

• Additional comment: finite triangular automorphism groups. Let g be an automorphism of
An(k) and suppose that g is triangular with respect of the iterated Ore extension:

(26) An(k) = k[q1][p1 ; ∂q1 ][q2][p2 ; ∂q2 ] . . . [qn][pn ; ∂qn ].

By straightforward calculations from relations (20), we can check that g stabilizes in fact any
subalgebra k[qi][pi ; ∂qi ] ' A1(k), for 1 ≤ i ≤ n, acting on the generators by:

(27) g(qi) = αiqi + γi, g(pi) = α−1
i pi + fi(qi), with αi ∈ k×, γi ∈ k, fi ∈ k[qi].

So, similarly to proposition 1.6.1, we have:

Lemma. Any finite subgroup of triangular automorphisms of An(k) is conjugated in Aut (An(k))
to a finite abelian subgroup of diagonal automorphisms.

Proof. Let G be a finite subgroup of triangular automorphisms of An(k). In each subalgebra k[qi][pi ; ∂qi
],

1 ≤ i ≤ n, consider the k-vector spaces Fi = k ⊕ kqi and Ei = k[qi] ⊕ kpi. By (27), G acts on Fi fixing
k and on Ei stabilizing k[qi]. By the semi-simplicity lemma 1.6.1, there exist yi ∈ Fi with Fi = k ⊕ kyi
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and xi ∈ Ei with Ei = k[qi] ⊕ kxi such that kyi and kxi are G-stable. By construction, yi = αiqi + γi
where αi ∈ k× and γi ∈ k. Up to multiply by a nonzero scalar, we can suppose that xi = α−1

i pi + fi(qi)
with fi ∈ k[qi]. Let h be the triangular automorphism of An(k) defined by h(qi) = yi and h(pi) = xi for
all 1 ≤ i ≤ n. Then h−1Gh acts diagonally on the vectors of the basis q1, p1, . . . , qn, pn. �

• Remark. As seen by previous results, some favorable situations reduce to diagonal actions, i.e.
actions of subgroups of the torus (k×)n by g(qi) = αiqi and g(pi) = α−1

i pi with αi ∈ k×. This
is the most simple case of the following construction.

2.4.4. Dual action of GLn on the Weyl algebra An. We consider here the case of a linear action
on An(k) which extends an action on the polynomial functions by the duality process of 1.4.

We start with a vector space V of finite dimension n over k, (q1, . . . , qn) a k-basis of the dual V ∗,
S := k[V ] ' S(V ∗) ' k[q1, . . . , qn]. As in 2.4.1, we denotes by EndkS the k-algebra of k-linear
endomorphisms of S, µ : S → EndkS the canonical embedding defined by the multiplication,
DerkS the subspace of EndkS consisting of the k-derivations of S, and An(k) = DiffS the
subalgebra of EndkS generated by µq1 , . . . , µqn , ∂q1 , . . . , ∂qn .
Let G be a subgroup of GLn(k) acting by linear automorphisms on V , via the natural represen-
tation ρ : G→ GL(V ). By 1.1.2, this action extends canonically in an action by automorphisms
on S. Recall that the restriction of this action to the subspace V ∗ = kq1 ⊕ kq2 ⊕ · · ·kqn just
corresponds to the dual representation of ρ. Let us define the application:

(28) G× EndkS → EndkS, (g, ϕ) 7→ g.ϕ := gϕg−1.

For any f ∈ S, we have g.µf = µg(f). So we obtain an action of G on EndkS which extends the
action on S making covariant the morphism µ. We observe easily that the subspace DerkS is
stable under this action. We conclude that the restriction to DiffS of the action of G determines
an action of G on the Weyl algebra. We claim that the restriction of this action to the vector
space U = k∂q1 ⊕ k∂q2 ⊕ · · · k∂qn corresponds to the initial representation ρ.

Proof. For all 1 ≤ i, j ≤ n and g ∈ G, we compute

(g.∂qi
)(qj) = g∂qi

g−1(qj) = g∂qi

( n∑
m=1

βm,jqm
)

= βi,j = ∂qi
(g−1(qj)) = ∂qi

(g−1.qj),

where (βi,j) denotes the matrix of g−1 in the basis (q1, . . . , qn) of V ∗. By (3), it follows
that the action on U is dual to the action on V ∗, which is itself dual of the initial action
on V . �

In other words, the so-defined action of G on An(k) is obtained from the linear action of G on S
applying the duality process exposed in 1.4. In particular, lemma 1.4.1 applies. We summarize
this results in the following proposition (with the notation pi = ∂qi).

Proposition. For any subgroup G of GLn(k), the action of G by linear automorphisms on
S = k[q1, . . . , qn] extends in an action by linear automorphisms on the Weyl algebra An(k) by:

(29) [g(pi), qj ] = [pi, g−1(qj)] for all g ∈ G, 1 ≤ i, j ≤ n,

or equivalently

(30) g(pi) =
n∑
j=1

∂qi(g
−1(qj))pj for all g ∈ G, 1 ≤ i ≤ n.

In this action, the element w = q1p1 + q2p2 + · · ·+ qnpn lies in An(k)G for any choice of G.
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• First example: diagonal action. The most simple situation (but interesting as we have seen
before) is when G acts as a diagonal subgroup of GLn(k), and then acts on An(k) as a subgroup
of the torus (k×)n by:

(31) g(qi) = αiqi, g(pi) = α−1
i pi, with g = (α1, . . . , αn) ∈ (k×)n.

Applying proposition 1.4.4, we have in particular:

if G = (k×)n, then An(k)G = k[q1p1, q2p2, . . . , qnpn].

If G is a finite subgroup of (k×)n acting so, the invariant algebra An(k)G is finitely generated over
k (by theorem 2.3.5). Since every monomial in the qi’s and pi’s is an eigenvector under the action
of G, it’s clear that we can find a finite family of k-algebra generators of An(k)G constituted
by invariant monomials. The case where n = 1 is detailed in the example of the first additional
comment of 2.4.2. For n > 1, the determination of such a family becomes an arithmetical and
combinatorial question depending on the mixing between the actions on the various copies of
A1(k) in An(k). We shall solve it completely at the level of the rational functions in the next
section (see 3.4.2). For the moment, we only give the two following toy illustrations:

Example. For G = 〈g〉 the cyclic group of order 6 acting on A2(C) by:

g : p1 7→ −p1, q1 7→ −q1, p2 7→ jp2, q2 7→ j2q2,

A2(C)G is generated by p2
1, p1q1, q

2
1 , p

3
2, p2q2, q

3
2 .

Example. For G = 〈h〉 the cyclic group of order 2 acting on A2(C) by:

h : p1 7→ −p1, q1 7→ −q1, p2 7→ −p2, q2 7→ −q2,

A2(C)G is generated by p2
1, p1q1, p1p2, p1q2, q

2
1 , q1p2, q1q2, p

2
2, p2q2, q

2
2 .

• Second example: differential operators over Kleinian surfaces. We take k = C, n = 1, G a
finite subgroup of SL2 acting on A2(C) by:

(32) ∀ g =
(
α β
γ δ

)
∈ SL2,

{
g(q1) = αq1 + βq2, g(p1) = δp1 − γp2,

g(q2) = γq1 + δq2 g(p2) = −βp1 + αp2.

This action is the extension, following the process described at the beginning of this paragraph,
of the canonical action (11) on C[q1, q2] (don’t mistake with (25) corresponding to the action on
A1(C) described in 2.4.2). Applying theorem 5 from [37] (since G doesn’t contain non trivial
pseudo-reflections), we have Diff(S)G = A2(C)G ' Diff(SG), the differential operator algebra
over the Kleinian surface associated to G. As an application of the main results of part 3, we
will prove further in 3.4.3 that A2(C)G is rationally equivalent to A2(C).

• Third example: dual action of the Weyl group on a Cartan subalgebra of a semi-simple complex
Lie algebra. Let g a semi-simple Lie algebra of rank ` over C and h a Cartan subalgebra. The
Weyl group acts by linear automorphisms on C[h∗] ' S(h), and then on Diff(h∗) ' A`(C) fol-
lowing the process that we described above. The interested reader could find in [12] homological
results and calculations concerning this action.
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2.5. Non linear actions and polynomial automorphisms. Of course, the questions dis-
cussed in 1.6 about invariants under subgroups of non necessarily linear automorphisms of a
commutative polynomial algebra make sense for noncommutative polynomial algebras. It is not
possible to give here a complete survey of the many papers devoted to the determination of such
automorphism groups (see for instance the bibliographies of [1], [2], [3], [5], [24], [29],...). With
the results of part 3 in mind, we focus here on the iterated Ore extension in two variables over
C, for which we have a complete answer.

2.5.1. Examples of automorphism groups. We have already recalled in 1.6.2 and 2.4.2 the de-
scription of the automorphism groups of the commutative ring C[x, y] and of the Weyl algebra
A1(C). In both cases, the group is “rich”, generated by linear and by triangular automorphisms.
This is not the case for the quantum plane Cq[x, y] (with commutation rule xy = qyx, see exam-
ple (iv) of 2.3.2), and for the quantum Weyl algebra Aq1(C) (with commutation rule xy−qyx = 1,
see example (v) of 2.3.2), as the following proposition shows.

Proposition. Suppose that q ∈ C× is not a root of one.

(i) The automorphism group of the quantum plane Cq[x, y] is isomorphic to the torus (C×)2

acting by (α, β) : x 7→ αx, y 7→ βy.
(ii) The automorphism group of the quantum Weyl algebra Aq1(C) is isomorphic to the torus

(C×) acting by α : x 7→ αx, y 7→ α−1y.

Proof. Assertion (i) first appeared in [2], as a particular case of more general results. We give here
a short independent proof. Recall that an element is normal in Cq[x, y] if it generates a two-sided
ideal. Let z be a normal element of Cq[x, y]. We have in particular zy = uz and zx = vz for some
u, v ∈ Cq[x, y]. Considering degx in the first equality, we have u ∈ C[y] and it follows by straightforward
identifications that z = f(y)xi for some nonnegative integer i and some f ∈ C[y]. From the second equality
f(y)xi+1 = xv, it is easy to deduce that z = αyjxi for some nonnegative integer j and some α ∈ C. This
proves that the normal elements of Cq[x, y] are the monomials. Let g be an C-automorphism of Cq[x, y].
It preserves the set of nonzero normal elements. Hence we have g(x) = αyjxi and g(y) = βykxh with
α, β ∈ C× and j, i, k, h nonnegative integers satisfying ik − hj = 1 (traducing the relation xy = qyx).
Writing similar formulas for g−1 and identifying the exponents in g−1(g(x)) = x and g−1(g(y)) = y, we
obtain j = h = 0 and i = k = 1.
Assertion (ii) can be proved by somewhat similar arguments (see [3] for details). �

Proposition. Suppose that δ is an ordinary derivation of C[y] satisfying δ(y) /∈ C. Let p be
the non constant polynomial in C[y] such that δ = p∂y. Any automorphism of R = C[y][x ; δ] is
triangular, of the form:

y 7→ αy + β, x 7→ λx+ f ,

with f ∈ C[y], and α ∈ C×, λ ∈ C×, β ∈ C satisfying p(αy + β) = αλp(y).

Proof. For any u ∈ C[y], we have xu = ux + p∂y(u), and then xp = p.(x + ∂y(p)). Thus p is normal in
R. It follows that the two-sided ideal I generated by the commutators [r, s] = rs − sr with r, s ∈ R is
the principal ideal generated by p = [x, y]. For any automorphism g ∈ AutR, the element g(p) generates
I. So there exists ε ∈ C× such that g(p) = εp ∈ C[y]. As degx g(p) = n degx g(y) where n = degx p ≥ 1
(by assumption), we deduce that degx g(y) = 0, therefore g(y) ∈ C[y]. Hence g(C[y]) ⊂ C[y], and it’s
clear that there exists α ∈ C×, β ∈ C such that g(y) = αy + β. Then, the surjectivity of g implies that
degx(g(x)) = 1. So there exist λ ∈ C×, f ∈ C[y] such that g(x) = λx + f . We have p(αy + β) = g(p) =
[g(x), g(y)] = αλp(y). �
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2.5.2. Classification lemma. Let σ be a C-automorphism of C[y] and δ a σ-derivation of
C[y]. Set R = C[y][x ; σ, δ]. Up to C-isomorphism, we have one and only one of the following
five cases.

(i) R = C[x, y] is commutative;
(ii) there exists some q ∈ C×, q 6= 1, such that R = Cq[x, y];

(iii) there exists some q ∈ C×, q 6= 1, such that R = A q
1 (C);

(iv) δ is an ordinary k-derivation such that δ(y) /∈ C and R = C[y][x ; δ];
(v) R = A1(C).

Hence, by the results of 2.5.1, the group AutR is explicitly known in all cases.

Proof. There exists q ∈ C× and s ∈ C such that σ(y) = qy+s. If q 6= 1 we set y′ = y+s(q−1)−1 and obtain
R = C[y′][x ; σ, δ] with σ(y′) = qy′ and δ(y′) = δ(y) ∈ C[y]. In C[y′] write δ(y′) = φ(y′)(1− q)y′ + r with
φ(y′) ∈ C[y′] and r ∈ C. It follows that x′ = x−φ(y′) satisfies x′y′−qy′x′ = r. Hence R = C[y′][x′ ; σ, δ′]
with δ′(y′) = r ∈ k. If r = 0, then R = Cq[x′, y′]. If r 6= 0, we set x′′ = r−1x′ and conclude that
R = A q

1 (C). Assume now that q = 1. If s = 0 then σ = id and R = C[y][x ; δ]; we are in case (i) when
δ = 0, in case (v) when δ(y) ∈ C×, and in case (iv) when δ 6= 0. If s 6= 0, we set first y′ = s−1y to reduce
to R = k[y′][x ; σ, δ] with σ(y′) = y′ + 1 and δ(y′) = s−1δ(y). Then we denote x′ = x + δ(y′), which
satisfies x′y′ = (y′+ 1)x′, so that R = C[y′][x′ ; σ] is the enveloping algebra U1(C) introduced in example
(v) of 2.3.2. We write U1(C) = C[x′][y′ ; −x′∂x′ ] and are then in case (iv). �

3. Actions on rational functions

3.1. A survey on some commutative results.

3.1.1. Extension of an action to the field of fractions. Let S be a commutative ring. Assume
that S is a domain and consider F = FracS the field of fractions of S. Any automorphism of
S extends into an automorphism of F and it’s obvious that, for any subgroup G of AutS, we
have FracSG ⊆ FG. For finite G, the converse is true:

Proposition. If G is a finite subgroup of automorphisms of a commutative domain S with
field of fractions F , then we have: FracSG = FG.

Proof. For any x ∈ FG, there exist a, b ∈ S, b 6= 0, such that x = a
b . Define b′ =

∏
g∈G,g 6=idS

g(b). Then
bb′ ∈ SG and x = ab′

bb′ , with ab′ = x(bb′) ∈ FG ∩ S = SG. �

This applies in particular to a polynomial algebra S = k[x1, . . . , xn] and its field of rational
functions F = k(x1, . . . , xn), and we formulate in this case the following problem about the
structure of FG.

3.1.2. Noether’s problem. Let k be commutative field of characteristic zero. Let G be a finite
subgroup of GLn(k) acting by linear automorphisms on S = k[x1, . . . , xn] (in the sense of 1.1.2),
and then on F = FracS = k(x1, . . . , xn). We consider the subfield FG = FracSG of F .

Remark 1. It’s well known (by Artin’s lemma, see for instance [36] page 194) that
[F : FG] = |G|, and then trdegkF

G = trdegkF = n.

Remark 2. We know by theorem 1.5.3 that SG is finitely generated (say by m elements)
as a k-algebra. Thus FG is finitely generated (say by p elements) as a field extension
of k, with p ≤ m. We can have p < m; example: S = k(x, y) and G = 〈g〉 for g : x 7→
−x, y 7→ −y, then SG = k[x2, y2, xy] = k[X,Y, Z]/(Z2 −XY ) and FG = k(xy, x−1y).
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Remark 3. Suppose that SG is not only finitely generated, but isomorphic to a poly-
nomial algebra k[y1, . . . , ym], with y1, . . . , ym algebraically independent over k. Then we
have FG = k(y1, . . . , ym). Thus m = n by remark 1.

Now we can consider the main question:

Problem (Noether’s problem) : is FG a purely transcendental extension of k ?

An abundant literature has been devoted (and is still devoted) to this question and it’s out of
the question to give here a comprehensive presentation of it. We just point out the following
facts.

• The answer is positive if SG is a polynomial algebra. By remark 3, we have then SG =
k[x1, . . . , xn] and FG = k(x1, . . . , xn). This is in particular the case when G is the symmetric
group Sn acting by permutation of the xj ’s (by theorem 1.2.1), or more generally when Shephard-
Todd and Chevalley theorem applies (see the last comment after theorem 1.5.4).

• The answer is positive if n = 1. This is an obvious consequence of Lüroth’s theorem (see [32] p.
520): if F = k(x) is a purely transcendental extension of degree 1 of k, then for any intermediate
subfield k  L ⊂ F , there exists some v ∈ F transcendental over k such that F = k(v).

• The answer is positive if n = 2. This is an obvious consequence of Castelnuovo’s theorem (see
[32] p. 523): if F = k(x, y) is a purely transcendental extension of degree 2 of k, then for any
intermediate subfield k  L ⊂ F such that [F : L] < +∞, there exists some v, w ∈ F such that
F = k(v, w) is purely transcendental of degree 2.

• The answer is positive for all n ≥ 1 when G is abelian and k is algebraically closed. This is a
classical theorem by E. Fisher (1915), see [17] for a proof, or corollary 2 in 3.1.3 below.

Among other cases of positive results, we can cite the cases where G is any subgroup of Sn for
1 ≤ n ≤ 4, the case where G = A5 for n = 5 by Sheperd-Barron or Maeda (see [34] and [38]),
the case where G is the cyclic group of order n in Sn for 1 ≤ n ≤ 7 and n = 11.
The first counterexamples (Swan 1969, Lenstra 1974) were for k = Q (and G the cyclic group
of order n in Sn for n = 47 and n = 8 respectively). D. Saltmann produced in 1984 the first
counter-example for k algebraically closed (see [34], [46], [47]).

3.1.3. Miyata’s theorem. The following result concerns invariants under actions on rational func-
tions resulting from an action on polynomials.

Theorem (T. Miyata). Let K be a commutative field, S = K[x] the commutative ring of
polynomials in one variable over K, and F = K(x) the field of fractions of S. Let G be a
subgroup of ring automorphisms of S such that g(K) ⊆ K for any g ∈ G.

(i) if SG ⊆ K, then FG = SG = KG.

(ii) if SG 6⊂ K, then for any u ∈ SG, u /∈ K of degree m = min{degx y ; y ∈ SG, y /∈ K} we
have SG = K[u] and FG = K(u).

We don’t give a proof of this theorem here, because we will prove it further (see 3.3) in the more
general context of Ore extensions; for a self-contained proof on the commutative case, we refer
the reader to [34] or [40]. Observe that the group G is not necessarily finite.

Corollary 1 (W. Burnside). The answer to Noether’s problem is positive if n = 3.

Proof. Let G be a finite subgroup of GL3(k) acting linearly on S = k[x, y, z]. We introduce in F =
k(x, y, z) the subalgebra S1 = k( yx ,

z
x )[x], which satisfies FracS1 = F . Let g ∈ G. We have:
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g(x) = αx+ βy + γz, g(y) = α′x+ β′y + γ′z, g(z) = α′′x+ β′′y + γ′′z.
Thus:

g( yx ) =
α′ + β′ yx + γ′ zx
α+ β yx + γ zx

and g( zx ) =
α′′ + β′′ yx + γ′′ zx
α+ β yx + γ zx

.

It follows that the subfield K = k( zx ,
y
x ) is stable under the action of G, and we can apply the theorem to

the algebra S1 = K[x]. The finiteness of G implies that [F : FG] is finite and so SG1 6⊂ K. Thus we are in
the second case of the theorem. There exists u ∈ SG1 of minimal degree ≥ 1 such that SG1 = KG[u] and
FG = KG(u). By Castelnuovo’s theorem (see in 3.1.2 above), KG = k(v;w) is purely transcendental of
degree two, and then FG = k(v, w)(u) = k(u, v, w). �

Of course, we can prove similarly that the answer to Noether’s problem is positive if n = 2 using
Lüroth’s theorem instead of Castelnuovo’s theorem.

Corollary 2 (E. Fischer). If k is agebraically closed, the answer to Noether’s problem is
positive for G abelian.

Proof. Here we assume that G is a finite abelian subgroup of GLn(k). By total reducibility and Schur’s
lemma (see 2.4.3) we can suppose up to conjugation that there exist complex characters χ1, . . . , χn of G
such that g(xj) = χj(g)xj for all 1 ≤ j ≤ n and all g ∈ G. In particular, G acts on S1 = k(x2, . . . , xn)[x1]
stabilizing K1 = k(x2, . . . , xn); thus k(x1, . . . , xn)G = KG

1 (u1) for some u1 ∈ SG1 . We apply then Miyata’s
theorem inductively to conclude. �

Another application due to E. B. Vinberg concerns the rational finite dimensional representations
of solvable connected linear algebraic groups and uses Lie-Kolchin theorem about triangulability
of such representations in order to apply inductively Miyata’s theorem (see [53] for more details).

3.2. Noncommutative rational functions.

3.2.1. A survey on skewfields of fractions for noncommutative noetherian domains. Let A be a
ring (non necessarily commutative). Assume that A is a domain; then the set S = {a ∈ A ; a 6= 0}
is multiplicative. We say that S is a (left and right) Ore set if it satisfies the two properties:

[∀ (a, s) ∈ A× S, ∃ (b, t) ∈ A× S, at = sb] and [∀ (a, s) ∈ A× S, ∃ (b′, t′) ∈ A× S, t′a = b′s].

In this case, we define an equivalence on A× S by (a, s) ∼ (b, t) if there exist c, d ∈ A such that
ac = bd and sc = td. The factor set D = (A×S)/ ∼ is canonically equipped with a structure of
skewfield (or noncommutative division ring), which is the smallest skewfield containing A. We
name D the skewfield of fractions of A, denoted by FracA. Concretely, we have:

(33) ∀ q ∈ FracA, [∃ (a, s) ∈ A× S, q = as−1] and [∃ (b, t) ∈ A× S, q = t−1b],

and more generally:
(34)
∀ q1, . . . , qk ∈ FracA, ∃ a1, . . . , ak, b1, . . . bk ∈ A, ∃ s, t ∈ S, ∀ i ∈ {1, . . . , k}, qi = ais

−1 = t−1bi.

We refer the reader to [25], [30], [39] for more details on this standard construction. An important
point is that noetherianity is a sufficient condition for A to admit such a skewfield of fractions.

Lemma. Any noetherian domain admits a skewfield of fractions.

Proof. Let (a, s) ∈ A × S, a 6= 0, where S is the set of nonzero elements of A. For any integer n ≥ 0,
denote by In the left ideal generated by a, as, as2, . . . , asn. We have In ⊆ In+1 for all n ≥ 0. Since A is
noetherian, there exists some m ≥ 0 such that Im = Im+1. In particular, asm+1 = c0a+c1as+· · ·+cmasm
for some c0, c1, . . . , cm ∈ A. Denote by k the smallest index such that ck 6= 0. Because A is a domain,
we can simplify by sk and write asm+1−k = cka + ck+1as + · · · + cmas

m−k. With t′ = ck ∈ S and
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b′ = asm−k − ck+1a − · · · − cmasm−k−1, we conclude that t′a = b′s. So S is a left Ore set; the proof is
similar on the right. �

Remark 1. Many results which are very simple for commutative fields of fractions become more
difficult for skewfields. This is the case for instance of the following noncommutative analogue
of proposition 3.1.1: let R be a domain satisfying the left and right Ore conditions, let F be the
skewfield of fractions of R, let G be a finite subgroup of automorphisms of R such that |G| is
invertible in R, then RG satisfies the left and right Ore conditions and we have FracRG = FG.

Sketch of the proof. We start with a preliminary observation. Let I and J be two nonzero
left ideals of R. Take a ∈ I, a 6= 0, s ∈ J, s 6= 0. Since R satisfies the left Ore condition,
there exist b′, t′ nonzero in R such that t′a = b′s. This element is nonzero (since R is a
domain) and lies in I ∩ J . By induction, we prove similarly that: the intersection of any
family of nonzero left ideals of R is a nonzero left ideal of R.

Now fix a nonzero element x ∈ FG. By (33), there exist nonzero elements b, t ∈ R
such that x = t−1b. It’s clear that I =

⋂
g∈G g(Rt) is a left ideal of R which is stable

under the action of G. Then we can apply Bergman’s and Isaacs’ theorem (see corollary
1.5 in [41] or original paper [15] for a proof of this nontrivial result) to deduce that I
contains a nontrivial fixed point. In other words, there exists a nonzero element v in
RG ∩ I. In particular v ∈ Rt can be written v = dt for some nonzero d ∈ R, and so x =
t−1b = t−1d−1db = v−1db. Since x ∈ FG and v ∈ RG, we have db = vx ∈ FG ∩R = RG.
Denoting u = db, we have proved that: any nonzero x ∈ FG can be written x = v−1u
with v and u nonzero elements of RG.

Finally, let a, s be two nonzero elements of RG. Then x = st−1 ∈ FG. By the second
step, there exist u, v ∈ RG such that st−1 = v−1u, and then vs = ut. This proves that
RG satisfies the left Ore condition. The proof is similar on the right. Therefore RG

admits a skewfield of fractions and the equality FracRG = FG is clear from the second
step of the proof. �

Remark 2. There exists a noncommutative analogue of Galois theory. We cannot develop it
here, but just mention the following version of Artin’s lemma (see remark 1 of 3.1.2): Let D be
a skewfield and G a finite group of automorphisms of D. Then [D : DG] ≤ |G|. If moreover G
doesn’t contain any non trivial inner automorphism, then [D : DG] = |G|.

We refer the reader to [21] (theorem 3.3.7) or [41] (lemma 2.18). �

3.2.2. Noncommutative rational functions. Let A a ring, σ an automorphism of A, δ a σ-
derivation of A, and R = A[x ; σ, δ] the associated Ore extension. We have seen in 2.3.1 that R
is a domain when A is a domain, and in 2.3.4 that R is noetherian when A is noetherian. So
we conclude by the lemma of 3.2.1 that, if A is a noetherian domain, then the Ore extension
R = A[x ; σ, δ] admits a skewfield of fractions.
Denoting K = FracA, it’s easy to check that σ and δ extend uniquely into an automorphism
and a σ-derivation of K, and we can then consider the Ore extension S = K[x ; σ, δ]. It follows
from (34) that any polynomial f ∈ S can be written f = gs−1 = t−1h with s, t nonzero in A
and g, h ∈ R. We deduce that FracR = FracS. This skewfield is denoted by K(x ; σ, δ).

(35) If FracA = K, R = A[x ; σ, δ], S = K[x ; σ, δ], then: D = FracR = FracS = K(x ; σ, δ).

In the case of an iterated Ore extension (19) over a commutative base field k, we have by
induction:

if Rm = k[x1][x2 ; σ2, δ2] · · · [xm ; σm, δm], then FracRm = k(x1)(x2 ; σ2, δ2) · · · (xm ; σm, δm).

We simply denote D = K(x ; σ) when δ = 0 and D = K(x ; δ) when σ = idA.
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Remark. It’s useful in many circumstances to observe (see proposition 8.7.1 of [20])
that K(x ; σ, δ) can be embedded into the skewfield F = K((x−1 ; σ−1,−δσ−1)) whose
elements are the Laurent series

∑
j≥m αjx

−j with m ∈ Z and αj ∈ K, with the commu-
tation law:

x−1α =
∑
n≥1

σ−1(−δσ−1)n−1(α)x−n = σ−1(α)x−1 − x−1δσ−1(α)x−1 for all α ∈ K.

Indeed, multiplying on the left and on the right by x, we obtain the commutation law
of S = K[x ; σ, δ]; then S appears as a subring of F , and so D is a subfield of F .
In particular, for δ = 0, we denote F = K((x−1 ; σ−1)) and just have: x−1α = σ−1(α)x−1.
If σ = idK , then F = K((x−1 ; −δ)) is a pseudo-differential operator skewfield, with com-
mutation law:

x−1α = αx−1 − δ(α)x−2 + · · ·+ (−1)nδn(α)x−n−1 + · · · = αx−1 − x−1δ(α)x−1.

It follows from the embedding of D into K((x−1 ; σ−1,−δσ−1)) that D is canonically
equipped with the discrete valuation vx−1 , or more simply v, satisfying v(s) = −deg s
for all s ∈ S.

Lemma. Let K be a skewfield, with center Z(K).
(i) Let σ be an automorphism of K. Assume that, for all n ≥ 1, the automorphism σn is

not inner. Then the center Z(D) of D = K(x ; σ) is the subfield Z(K) ∩ Kσ, where
Kσ = {a ∈ K ; σ(a) = a}.

(ii) Let δ be a derivation of K. Assume that K is of characteristic zero and δ is not inner.
Then the center Z(D) of D = K(x ; δ) is Z(K) ∩Kδ, where Kδ = {a ∈ K ; δ(a) = 0}.

Proof. In the embedding of D = K(x ; σ) in F = K((x−1 ; σ−1)), any element f ∈ D can be written
f =

∑
j≥m αjx

−j with m ∈ Z and αj ∈ K for all j ≥ m. Assume that f is central. Then xf = fx and
αf = fα for any α ∈ K. This is equivalent to αj ∈ Kσ and ααj = αjσ

−j(α) for all j ≥ m. Since σj is
not inner, we necessarily have αj = 0 for j 6= 0. This achieve the proof of (i). Under the assumptions
of point (ii), let us consider now an element f ∈ D = K(x ; δ) ⊆ F = K((x−1 ; −δ)). From the relation
αf = fα for any α ∈ K, we deduce using the fact that δ is not inner that f ∈ K, and so f ∈ Z(K).
Then f ∈ Kδ follows from the relation fx = xf . �

3.2.3. Weyl skewfields. We fix a commutative base field k.

• We consider firstly as in (24) the first Weyl algebra A1(k) = k[q][p ; ∂q] = k[p][q ; −∂p]. Its
skewfield of fractions is named the first Weyl skewfield and is classically denoted by D1(k):

(36) D1(k) = FracA1(k) = k(q)(p ; ∂q) = k(p)(q ; −∂p).
It would be useful in many circumstances to give another presentation of D1(k). Set w = pq; it
follows from relation pq − qp = 1 that wq = qw + q and pw = (w + 1)p. Thus the subalgebra
of A1(k) generated by q and w, and the subalgebra of A1(k) generated by p and w are both
isomorphic to the enveloping algebra U1(k) defined in example (ii) of 2.3.2. It’s clear that
FracA1(k) = FracU1(k). We conclude:

(37) D1(k) = k(q)(w ; d), with d = q∂q the Euler derivation in k(q),

(38) D1(k) = k(w)(p ; σ), with σ ∈ Aut k(w) defined by σ(w) = w + 1.

Applying the last lemma in 3.2.2, we obtain:

(39) if k is of characteristic zero, then Z(D1(k)) = k.
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The situation where k is of characteristic ` > 0 is quite different, and out of our main interest
here, since D1(k) is then of finite dimension `2 over its center k(p`, q`).

• We defined similarly the n-th Weyl skewfield Dn(k) = FracAn(k). Using (22,26), we write:

(40) Dn(k) = k(q1, q2, . . . , qn)(p1 ; ∂q1)(p2 ; ∂q2) . . . (pn ; ∂qn),

(41) Dn(k) = k(q1)(p1 ; ∂q1)(q2)(p2 ; ∂q2) . . . (qn)(pn ; ∂qn).

Reasoning as above on the products wi = piqi for all 1 ≤ i ≤ n, which satisfy the relations

(42) piwi − wipi = pi, wiqi − qiwi = qi, [pi, wj ] = [qi, wj ] = [wi, wj ] = 0 si j 6= i,

we obtain the alternative presentations:

(43) Dn(k) = k(q1, q2, . . . , qn)(w1 ; d1)(w2 ; d2) . . . (wn ; dn),

with di the Euler derivative di = qi∂qi for all 1 ≤ i ≤ n, and:

(44) Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn ; σn),

where each automorphism σi is defined on k(w1, w2, . . . , wn) by σi(wj) = wj + δi,j , and fixes the
pj ’s for j < i.

• If we replace k by a purely transcendental extension K = k(z1, z2, . . . , zt) of degree t of k, the
skewfield Dn(K) is denoted by Dn,t(k). By convention, we set D0,t(k) = K. To sum up:

(45) Dn,t(k) = Dn(k(z1, . . . , zt)) for all t ≥ 0, n ≥ 0.

One can prove using inductively the last lemma of 3.2.2 (see also [31] or [7]) that:

(46) if k is of characteristic zero, then Z(Dn,t(k)) = k(z1, . . . , zt).

The skewfields Dn,t play a fundamental role in Lie theory and are in the center of the important
conjecture (the Gelfand-Kirillov conjecture) on rational equivalence of enveloping algebras (see
[31], I.2.11 of [16], [13], [7], [8], [44], and 3.4 below).

• Finally, for any q ∈ k×, the skewfield of fractions the quantum plane kq[x, y] defined in example
(iv) of 2.3.2 is sometimes called the first quantum Weyl skewfield, and is denoted by:

(47) Dq
1(k) = Frac kq[x, y] = kq(x, y) = k(y)(x ; σ) with σ ∈ Autk(y) defined by σ(y) = qy.

These skewfields (or more generally their n-dimensional versions as in example 3 of 2.3.3) play
for the quantum algebras a role similar to the one of Weyl skewfields in classical Lie theory (see
II.10.4 of [16], [7], [44]). It follows from the last lemma in 3.2.2, that:

(48) if q is not a root of one in k, then Z(Dq
1(k)) = k.

The situation where q is of finite order ` > 0 on k× is quite different, and out of our main
interest here, since Dq

1(k) is then of finite dimension `2 over its center k(p`, q`).

Let us recall that the first quantum Weyl algebra (see example (v) of 2.3.2) is the algebra
Aq1(k) generated by x and y with commutation law xy − qyx = 1. We observe that the element
z = xy − yx = (q − 1)yx + 1 satisfies the relation zy = qyz. Since x = (q − 1)−1y−1(z − 1),
FracAq1(k) is equal to the subfield generated by z and y, which is clearly isomorphic to Dq

1(k).
Thus we have proved that:

(49) FracAq1(k) ' Dq
1(k).
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3.3. Noncommutative analogue of Miyata’s theorem.

3.3.1. The main result. We can now formulate for Ore extensions an analogue of theorem 3.1.3.
We start with a technical lemma.

Lemma. Let K be a non necessarily commutative field, σ an automorphism and δ a σ-derivation
of K. We consider the Ore extension S = K[x ; σ, δ]. Take u ∈ S such that degx(u) ≥ 1.

(i) For any non necessarily commutative subfield L of K, the family U = {ui ; i ∈ N} is
right and left free over L.

(ii) If the left free L-module T generated by U is a subring of S, then there exist an ring
endomorphism σ′ and a σ′-derivation δ′ of L such that T = L[u ; σ′, δ′]. If moreover T is
equal to the right free L-module T ′ generated by U , then σ′ is an automorphism de L.

(iii) In the particular case where K is commutative, then σ′ is the restriction of σm to L,
with m = degx(u).

Proof. Point (i) is straightforward considering the term of highest degree in left L-linear sum of a finite
number of elements of U . Consider now α ∈ L ⊆ T . We have degx(uα) = degx u and uα ∈ T ; thus there
exist uniquely determined α0, α1 ∈ L such that uα = α0+α1u. So we define two L→ Lmaps σ′ : α 7−→ α1

and δ′ : α 7−→ α0 satisfying uα = σ′(α)u + δ′(α) for all α ∈ L. Denoting u = λmx
m + · · · + λ1x + λ0

with m ≥ 1, λi ∈ K for any 0 ≤ i ≤ m and λm 6= 0, then λmσ
m(α) = σ′(α)λm for all α ∈ L. We deduce

that σ′ is a ring endomorphism of L, and proofs also point (iii). The associativity and distributivity in
the ring T imply that δ′ is a σ′-dérivation. When T ′ = T , there exists for all β ∈ L two elements β1 and
β0 in L such that βu = uβ1 + β0 = σ′(β1)u+ δ′(β1) + β0. Thus β = σ′(β1) and σ′ is surjective. �

Theorem ([5]). Let K be a non necessarily commutative field, σ an automorphism and δ a
σ-derivation of K. We consider the Ore extension S = K[x, ; σ, δ] and its skewfield of fractions
D = FracS = K(x ; σ, δ). Let G be a subgroup of ring automorphisms of S such that g(K) ⊆ K
for any g ∈ G.

(i) if SG ⊆ K, then DG = SG = KG.

(ii) if SG 6⊂ K, then for any u ∈ SG, u /∈ K of degree m = min{degx y ; y ∈ SG, y /∈ K}, there
exist an automorphism σ′ and a σ′-derivation δ′ of KG such that SG = KG[u ; σ′, δ′] and
DG = Frac (SG) = KG(u ; σ′, δ′).

Proof. We simply denote here deg for degx. Take g ∈ G and n = deg g(x); the assumption g(K) ⊆ K
implies deg g(s) ∈ nN ∪ {−∞} for all s ∈ S and so n = 1 since g is surjective. We deduce:

deg g(s) = deg s for all g ∈ G and s ∈ S. (*)

If SG ⊂ K, then SG = KG. If SG 6⊆ K, let us choose in {s ∈ SG ; deg s ≥ 1} an element u of minimal
degree m. In order to apply the previous lemma for L = KG, we check that the free left KG-module T
generated by the powers of u is equal to the subring SG of S. The inclusion T ⊆ SG is clear. For the
converse, let us fixe s ∈ SG. By the proposition in 2.3.1, there exist q1 and r1 unique in S such that s =
q1u+ r1 and deg r1 < deg u. For any g ∈ G, we have then: s = g(s) = g(q1)g(u) + g(r1) = g(q1)u+ g(r1).
Since deg g(r1) = deg r1 < deg u by (*), it follows from the uniqueness of q1 and r1 that g(q1) = q1 and
g(r1) = r1. So r1 ∈ SG; since deg r1 < deg u and deg u is minimal, we deduce that r1 ∈ KG. Moreover,
q1 ∈ SG, and deg q1 < deg s because deg u ≥ 1. To sum up, we obtain s = q1u + r1 with r1 ∈ KG and
q1 ∈ SG such that deg q1 < deg s. We decompose similarly q1 into q1 = q2u + r2 with r2 ∈ KG and
q2 ∈ SG such that deg q2 < deg q1. We obtain s = q2u

2 + r2u + r1. By iteration, it follows that s ∈ T .
The same process using the right euclidian division in S proves that SG is also the right free L-module
T ′ generated by the powers of u. Then we deduce from point (ii) of the previous lemma that there exist
an automorphism σ′ of KG and a σ′-derivation δ′ of de KG such that SG = KG[u ; σ′, δ′].
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In both cases (i) and (ii), the inclusion Frac (SG) ⊆ DG is clear. For the converse (which follows from
remark 1 of 3.2.1 in the particular case where G is finite), we have to prove that:

for any a and b non-zero in S, ab−1 ∈ DG implies ab−1 ∈ Frac (SG). (**)

We proceed by induction on deg a+ deg b. If deg a+ deg b = 0, then a ∈ K, b ∈ K. Thus ab−1 ∈ DG is
equivalent to ab−1 ∈ KG ⊆ SG; the result follows. Assume now that (**) is satisfied for all (a, b) such
that deg a+ deg b ≤ n, for a fixed integer n ≥ 0. Suppose that a et b non-zero in S with ab−1 ∈ DG and
deg a + deg b = n + 1. Up to replace ab−1 by its inverse, we can without any restriction suppose that
deg b ≤ deg a. By the proposition of 2.3.1, there exist q, r ∈ S uniquely determined such that:

a = qb+ r with deg r < deg b ≤ deg a. (***)

For all g ∈ G, we have g(ab−1) = ab−1 and we can so introduce the element c = a−1g(a) = b−1g(b) in
D. Denoting by val the discrete valuation vx−1 in D (see the remark in 3.2.2), it follows from (*) that
val c = 0. Applying g to (***), we have g(a) = g(q)g(b)+g(r); in other words, qbc+rc = ac = g(q)bc+g(r),
or equivalently: (g(q) − q)bc = rc − g(r). The valuation of the left member is val (g(q) − q) + val b. For
the right member, we have val g(r) = −deg g(r) = −deg r = val r = val rc, thus val (rc − g(r)) ≥ val r.
Since g(q) − q, b et r are in S, we conclude that: deg(g(q) − q) + deg(b) ≤ deg(r). The inequality
deg b ≤ deg r being incompatible with (***), it follows that g(q) = q, and then g(r) = rc. Therefore we
have g(rb−1) = rc(bc)−1 = rb−1. So we have proved that ab−1 = (qb+ r)b−1 = q + rb−1 with q ∈ SG et
rb−1 ∈ DG such that deg(r)+deg(b) < 2 deg(b) ≤ deg(a)+deg(b) = n+1. If r = 0, then ab−1 = q ∈ SG.
If not, we apply the inductive assumption to rb−1: there exist r1 and b1 non zero in SG such that que
rb−1 = r1b

−1
1 , and so ab−1 = (qb1 + r1)b−1

1 ∈ Frac (SG). �

3.3.2. Application to the rational invariants of the first Weyl algebra. We consider here the
action of finite subgroups of automorphisms of the Weyl algebra A1(C) on its skewfield of
fractions D1(C). We know from theorem 2.4.2 that the algebras A1(C)G and A1(C)G

′
are not

isomorphic when the finite subgroups G and G′ are not isomorphic. However, these algebras are
always rationally equivalent, as proved by the following theorem from [5].

Theorem. For any finite subgroup G of AutA1(C), we have: D1(C)G ' D1(C).

Proof. With the notations of 2.4.2 and 3.2.3, we have R = A1(C) generated by p and q with pq − qp = 1
and D = D1(C) = FracR. The element w = pq of R satisfies pmw − wpm = mpm for all m ≥ 1. The
field of fractions of the subalgebra Um of R generated by pm and w is Qm = C(w)(pm ; σm), where σ is
the C-automorphism of C(w) defined by σ(w) = w + 1. In particular, Q1 = C(w)(p ; σ) = D. It’s clear
Qm ' D for all m ≥ 1. Let us define v = p−1q, which satisfies wv − vw = 2v. Since wv−1 = p2, we have
Q2 = C(w)(p2 ; σ2) = C(v)(w ; 2v∂v). We denote by S the subalgebra C(v)[w ; 2v∂v].
Let G be a finite subgroup of AutR. From theorem 2.4.2, we can suppose without any restriction that
G is linear admissible. In the cyclic case of order n, the group G is generated by the automorphism
gn : p 7→ ζnp, q 7→ ζ−1

n q for ζn a primitive n-th root of one. Then we have: gn(w) = w, therefore
DG = Dgn = Qgn

1 = Qn ' D. Assume now that we are in one of the cases Dn, E6, E7, E8. Thus G
necessarily contains the involution e : p 7→ −p, q 7→ −q (because µ2 = ν2 = θ2 with the notations of
1.3.2), which satisfies De = Q2. Let g be any element of G. By (25), there exist α, β, γ, δ ∈ C satisfying
αδ − βγ = 1 such that g(p) = αp+ βq et g(q) = γp+ δq. Thus g(p) = p(α + βv) and g(q) = p(γ + δv),
and so:

g(v) =
γ + δv

α+ βv
∈ C(v). (†)

Moreover, g(w) = αγp2 + βδq2 + αδpq + βγqp. From relations qp = pq − 1, p2 = wv−1 = v−1w − 2v−1

and q2 = v + vw = wv − v, it follows that:

g(w) =
(βδv2 + (αδ + βγ)v + αγ

v

)
w +

(βδv2 − βγv − 2αγ
v

)
. (‡)
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We deduce from (†) and (‡) that the restrictions to the algebra S = C(v)[w ; 2v∂v] of the extensions to
D of the elements of G determine a subgroup G′ ' G/(e) of AutS. Since e ∈ G and De = Q2 = FracS,
we have DG = QG

′

2 .
Assertion (†) allows to apply theorem 3.3.1 for K = C(v), d = 2v∂v and S = K[w ; d]. By remark 2 of
3.2.1, we have: [Q2 : QG

′

2 ] ≤ |G′| < +∞, therefore SG
′ 6⊆ K. From the theorem of 3.3.1 and point (iii) of

the lemma of 3.3.1, there exists u ∈ SG′ of positive degree (related to w) and d′ a derivation of C(v)G
′

such
that SG

′
= C(v)G

′
[u ; d′] and QG

′

2 = C(v)G
′
(u ; d′). By Lüroth theorem (see 3.1.2), C(v)G

′
is a purely

transcendental extension C(z) de C. If d′ vanishes on C(z), then the subfield QG
′

2 of Q2 would be C(z, u)
with transcendence degree > 1 over C, which is impossible since Q2 ' D1(C) (it’s a well known but not
trivial result that D1(C) does’nt contain commutative subfields of transcendence degree > 1 ; see [39],
corollary 6.6.18). Therefore d′(z) 6= 0; defining t = d′(z)−1u, we obtain QG

′

2 = C(z)(t ; ∂z) ' D1(C). �

Example 1. In the case where G = Cn is cyclic of order n, we have seen in the proof that
DG = Qn is generated by w = pq and pn; then a pair (pn, qn) of generators of D1(C)Cn satisfying
[pn, qn] = 1 is pn = pn et qn = (npn)−1pq.

Example 2. In the case where G = Dn is binary dihedral of order 4n (see 1.3.2), the interested
reader could find in [5] the calculation of the following pair (pn, qn) of generators of D1(C)Dn

satisfying [pn, qn] = 1 :

pn =
1

16n
(
(p−1q)−n − (p−1q)n

)((p−1q)n − 1
(p−1q)n + 1

)2
(2pq − 1), qn =

((p−1q)n + 1
(p−1q)n − 1

)2
.

3.3.3. Application to the rational invariants of polynomial functions in two variables. We con-
sider R = C[y][x ; σ, δ], for σ a C-automorphism and δ a σ-derivation of C[y].

Lemma. If R = C[y][x ; δ], with δ an ordinary derivation of C[y] such that δ(y) /∈ C, then
FracRG ' D1(C) for any finite subgroup of AutR.

Proof. Let us denote K = C(y) and D = FracR = C(y)(x ; δ). Replacing x by x′ = δ(y)−1x, we have
D = C(y)(x′ ; ∂y),and so D ' D1(C). Since δ(y) /∈ C, the second proposition of 2.5.1 implies that any
g ∈ AutR satisfies g(K) ⊆ K for K = C(y), and the restriction of g to S = C(y)[x ; δ] of the extension
to D = FracS determines an automorphism of S. For G a finite subgroup of AutR we can apply the
theorem of 3.3.1 and point (iii) of the lemma of 3.3.1: there exist u ∈ SG of positive degree and δ′ a
derivation of C(y)G such that SG = C(y)G[u ; δ′] and DG = C(y)G(u ; δ′). Then we achieve the proof as
in the proof of the previous theorem. �

Lemma. If R is the quantum plane Cq[x, y] for q ∈ C× not a root of one, then FracRG ' Dq′

1 (C)
with q′ = q|G| for any finite subgroup G of AutR.

Proof. Let G a finite group of AutR where R = Cq[x, y]. By point (i) of the first proposition of 2.5.1,
there exists for any g ∈ G a pair (αg, βg) ∈ C× × C× such that g(y) = αgy and g(x) = βgx. Denote
by m and m′ the orders of the cyclic groups {αg ; g ∈ G} and {βg ; g ∈ G} of C× respectively. In
particular, C(y)G = C(ym). We can apply the theorem of 3.3.1 to the extension S = C(y)[x ; σ] of
R = C[y][x ; σ], where σ(y) = qy. We have SG 6= C(y)G because xm

′ ∈ SG. Let n be the minimal
degree related to x of the elements of SG of positive degree. For any u ∈ SG of degree n, there exist
σ′ and δ′ such that SG = C(ym)[u ; σ′, δ′]. By assertion (iii) of the lemma of 3.3.1, the automorphism
σ′ of C(ym) is the restriction of σn to C(ym). We show firstly that we can choose u monomial. We
develop u = an(y)xn + · · · + a1(y)x + a0(y) with n ≥ 1, ai(y) ∈ C(y) for all 0 ≤ i ≤ n et an(y) 6= 0.
Denote by p ∈ Z the valuation (related to y) of an(y) in the extension C((y)) of C(y). The action of G
being diagonal on Cx ⊕ Cy, the monomial v = ypxn lies in SG. So we obtain SG = C(ym)[v ; σn] and
DG = C(ym)(v ; σn) ' D q′

1 for q′ = qmn. We have to check that mn = |G|. Let g ∈ G determining
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an inner automorphism of D = FracR = FracS; there exists non-zero r ∈ D such that g(s) = rsr−1

of all s ∈ D. Denoting by d the order of g in G, we have then rd central in D, and so rd ∈ C by
(48). Embedding D = C(y)(x ; σ) in C(y)((x−1 ; σ−1)), see remark in 3.2.2, we deduce that r ∈ C and so
g = idR. We have proved that any nontrivial automorphism in G is outer. Applying remark 2 of 3.2.1,
it follows that [D : DG] = |G|. We have:

DG = C(ym)(ypxn ; σn) ⊆ L = C(y)(ypxn ; σn) = C(y)(xn ; σn) ⊆ D = C(y)(x ; σ).

Thus [D : L] = n and [L : DG] = m. We conclude |G| = [D : DG] = mn. �

Lemma. If R is the quantum Weyl algebra Aq1(C) for q ∈ C× not a root of one, then FracRG '
Dq′

1 (C) with q′ = q|G| for any finite subgroup of AutR.

Proof. The proof is easier than in the case of the quantum plane and left to the reader as an exercise (use
assertion (49) and point (ii) of the first proposition of 2.5.1); see proposition 3.5 of [5] for details. �

We are now in position to summarize in the following theorem the results on rational invariants
for Ore extensions in two variables.

Theorem ([5]). Let R = C[y][x ; σ, δ] with σ an automorphism and δ a σ-derivation of C[y].
Let D = FracR with center C. Then we are in one of the two following cases:

(i) D ' D1(C), and DG ' D1(C) for any finite subgroup G of AutR ;

(ii) there exists q ∈ C× not a root of one such that D ' D q
1 (C), and DG ' D q|G|

1 (C) for any
finite subgroup G of AutR.

Proof. We just combine the classification lemma 2.5.2 with the assertions (39) and (48) on the centers,
the main theorem of 3.3.2, and the three previous lemmas. �

Remark. It could be relevant to underline here that previous results only concern actions
on FracR which extend actions on R. The question of determining DG for other types of
subgroups G of AutD is another problem, and the structure of the groups AutD1(C) and
AutDq

1(C) remains unknown (see [4]). In particular, we can define a notion of rational triangular
automorphism related to one of the presentations (36) or (38) of the Weyl skewfield D1(C) ; the
three following results are proved in [6].

1. The automorphisms of D1(C) = C(q)(p ; ∂q) which stabilizing C(q) are of the form:

θ : q 7→ θ(q) = αq+β
γq+δ , p 7→ θ(p) = 1

∂q(θ(q))p+ f(q),

for
(
α β
γ δ

)
∈ GL2(C) and f(q) ∈ C(q).

2. The automorphisms of D1(C) = C(pq)(p ; σ) stabilizing C(pq) are of the form:

θ : pq 7→ θ(pq) = pq + α, p 7→ θ(p) = f(pq)p,

for α ∈ C and f(pq) ∈ C(pq), or are the product of such an automorphism by the
involution pq 7→ −pq, p 7→ p−1.

3. For any finite subgroup of AutD1(C) stabilizing one of the three subfields C(p), C(q) or
C(pq), we have D1(C)G ' D1(C).
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3.4. Noncommutative Noether’s problem and the Gelfand-Kirillov conjecture.

3.4.1. Formulation of the problem. Let k be a field of characteristic zero. We have seen in
2.4.4 that any representation of dimension n of a group G gives rise to an action of G on the
commutative polynomial algebra S = k[q1, . . . , qn], which extends canonically into an action by
automorphisms on the Weyl algebra An(k) defined from relations (29) or (30), and then to the
Weyl skewfield Dn(k). Following the philosophy of the Gelfand-Kirillov problem by considering
the Weyl skewfields Dn,t(k) as significant classical noncommutative analogues of the purely
transcendental extensions of k, the following question appears as a relevant noncommutative
formulation of Noether’s problem.

Question: do we have Dn(k)G ' Dm,t(k) for some nonnegative integers m and t ?
By somewhat specialized considerations on various noncommutative versions of the transcen-
dence degree (which cannot be developed here), we can give the following two precisions (see [8]
for the proofs):

1. if we have a positive answer to the above question, then m and t satisfy 2m+ t ≤ 2n;
2. if we have a positive answer to the above question for a finite group G, then m = n and
t = 0, and so Dn(k)G ' Dn(k).

3.4.2. The case of a direct summand of representations of dimension one. The main result is
the following.

Theorem. For a representation of a group G (non necessarily finite) which is a direct summand
of n representations of dimension one, there exists a unique integer 0 ≤ s ≤ n such that
Dn(k)G ' Dn−s,s(k).

Proof. By (46), the integer s is no more than the transcendence degree over k of the center of Dn−s,s(k)
and so is unique. Now we proceed by induction on n to prove the existence of s.
1) Assume first that n = 1. Then G acts on A1(k) = k[q1][p1 ; ∂q1 ] by automorphisms of the form:

g(q1) = χ1(g)q1, g(p1) = χ1(g)−1p1, for all g ∈ G

where χ1 is a character G → k×. The element w1 = p1q1 is invariant under G. We define in D1(k) =
k(w1)(p1, σ1), see (38), the subalgebra S1 = k(w1)[p1, σ1]. We have FracS1 = D1(k). Any g ∈ G
fixes w1 and acts on p1 by g(p1) = χ1(g)p1. We can apply the theorem of 3.3.1. If SG1 ⊆ k(w1),
then D1(k)G = SG1 = k(w1)G = k(w1); we deduce that in this case D1(k)G ' D1−s,s(k) with s = 1.
If SG1 6⊆ k(w1), then SG1 is an Ore extension k(w1)[u ; σ′, δ′] for some automorphism σ′ and some σ′-
derivation δ′ of k(w1), and some polynomial u in the variable p1 with coefficients in k(w1) such that
g(u) = u for all g ∈ G and of minimal degree. Because of the form of the action of G on p1, we can
choose without any restriction u = pa1 for an integer a ≥ 1, and so σ′ = σa1 and δ′ = 0. To sum up,
D1(k)G = FracSG1 = k(w1)(pa1 ; σa1 ). This skewfield is also generated by x = pa1 and y = a−1w1p

−a
1 which

satisfy xy − yx = 1. We conclude that D1(k)G ' D1(k) = D1−s,s(k) for s = 0.

2) Now suppose that the theorem is true for any direct summand of n−1 representations of dimension one
of any group over any field of characteristic zero. Let us consider a direct summand of n representations
of dimension one of a group G over k. Then G acts on An(k) by automorphisms of the form:

g(qi) = χi(g)qi, g(pi) = χi(g)−1pi, for all g ∈ G and 1 ≤ i ≤ n,

where χ1, χ2, . . . , χn are characters G→ k×. Thus, recalling the notation wi = piqi, we have:

g(wi) = wi, for any g ∈ G and any 1 ≤ i ≤ n.

In Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)(pn ; σn), see (44), let us consider the sub-
fields:
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L = k(wn),
K = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)

= k(wn)(w1, w2, . . . , wn−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)
' Dn−1(L),

and the subalgebra Sn = K[pn ; σn] which satisfies FracSn = Dn(k). Applying the induction hypothesis
to the restriction of the action of G by L-automorphisms on An−1(L), there exists an integer 0 ≤ s ≤ n−1
such that: Dn−1(L)G ' Dn−1−s,s(L) ' Dn−(s+1),s+1(k). Since K is stable under the action of G, we can
apply the theorem of 3.3.1 to the ring Sn = K[pn ; σn]. Two cases are possible.

First case: SGn = KG. Then we obtain: Dn(k)G = Frac (SGn ) = KG ' Dn−1(L)G ' Dn−(s+1),s+1(k).

Second case: there exists a polynomial u ∈ Sn with degpn
u ≥ 1 such that g(u) = u for all g ∈ G.

Choosing u such that degpn
u is minimal, there exist an automorphism σ′ and a σ′-derivation δ′ of KG

such that SGn = KG[u ; σ′, δ′] and Dn(k)G = FracSGn = KG(u ; σ′, δ′).
Let us develop u = fmp

m
n + · · · + f1pn + f0 with m ≥ 1 and fi ∈ KG for all 0 ≤ i ≤ m. In view of the

action of G on pn, it’s clear that the monomial fmpmn is then invariant under G. Using the embedding in
skewfield of Laurent series (see 3.2.2), we can develop fm in:

K = k(w1, w2, . . . , wn)((p−1
1 ; σ−1

1 ))((p−1
2 ; σ−1

2 )) · · · ((p−1
n−1 ; σ−1

n−1)).

The action of G extends to K acting diagonally on the pi’s and fixing wi’s. Therefore we can choose
without any restriction a monomial u:

u = pa1
1 . . . pan

n with (a1, . . . , an) ∈ Zn, et an ≥ 1.

For any 1 ≤ j ≤ n, we have uwj = (wj + aj)u. Let us introduce the elements:

w′1 = w1 − a−1
n a1wn, w′2 = anw2 − a−1

n a2wn, . . ., w′n−1 = anwn−1 − a−1
n an−1wn.

We obtain: w′ju = uw′j for any 1 ≤ j ≤ n − 1. Since σi(w′j) = w′j + δi,j pour 1 ≤ i, j ≤ n − 1, the
skewfield Fn−1 = k(w′1, w

′
2, . . . , w

′
n−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1) is isomorphic to Dn−1(k). More

precisely, Fn−1 is the skewfield of fractions of the algebra k[q′1, . . . , q
′
n−1][p1 ; ∂q′1 ] . . . [pn−1 ; ∂q′n−1

], where
q′i = wip

−1
i for any 1 ≤ i ≤ n− 1. This algebra is isomorphic to the Weyl algebra An−1(k). Applying the

induction hypothesis, there exists 0 ≤ s ≤ n − 1 such that FGn−1 ' Dn−1−s,s(k). It’s clear by definition
of the w′j ’s that k(wn)(w′1, w

′
2, . . . , w

′
n−1) = k(wn)(w1, w2, . . . , wn−1); since wn commutes with all the

elements of Fn−1, we deduce that K = Fn−1(wn). The algebra SGn = KG[u ; σ′, δ′] can then be written
SGn = FGn−1(wn)[u ; σ′, δ′]. The generator u commutes with w′j for any 0 ≤ j ≤ n−1 as we have seen above,
commutes with all the pi’s by definition, and satisfies with wn the relation uwn = (wn + an)u. Therefore
the change of variables u′ = a−1

n u implies: SGn = FGn−1(wn)[u′ ; σ′′], with σ′′ which is the identity map
on FGn−1 and satisfies σ′′(wn) = wn + 1. It follows that: FracSGn ' D1(FGn−1) ' D1(Dn−1−s,s(k)) '
Dn−s,s(k). �

Corollary (Application to finite abelian groups). We suppose here that k is algebraically
closed. Then, for any finite dimensional representation of a finite abelian group G, we have
Dn(k)G ' Dn(k).

Proof. By Schur’s lemma and total reducibility, any finite representation of G is a direct summand of one
dimensional representations (see 2.4.3). Then the result follows from the previous theorem and remark 2
of 3.4.1. �

This result already appears in [6]. The following corollary proves in particular that for non
necessarily finite groups G, all possible values of s can be obtained in the previous theorem.

Corollary (Application to the canonical action of the subgroups of a torus). Let n be a
positive integer and Tn be the torus (k×)n acting canonically on the vector space kn. Then:
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(i) for any subgroup G of Tn, there exists a unique integer 0 ≤ s ≤ n such that Dn(k)G '
Dn−s,s(k);

(ii) for any integer 0 ≤ s ≤ n there exists at least one subgroup G of Tn such that Dn(k)G '
Dn−s,s(k);

(iii) in particular s = n if G = Tn, and s = 0 if G is finite.

Proof. Point (i) is just the application of the previous theorem. For (ii), let us fix an integer 0 ≤ s ≤ n
and consider in Tn the subgroup:

G = {Diag (α1, . . . , αs, 1, . . . , 1) ; (α1, . . . , αs) ∈ (k×)s} ' Ts,
acting by automorphisms on An(k):

qi 7→ αiqi, pi 7→ α−1
i pi, pour tout 1 ≤ i ≤ s,

qi 7→ qi, pi 7→ pi, pour tout s+ 1 ≤ i ≤ n.
In the skewfield Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn ; σn), we introduce the subfield K =
k(w1, w2, . . . , wn)(ps+1 ; σs+1)(ps+2 ; σs+2) · · · (pn ; σn). Then the subalgebra S = K[p1 ; σ1] · · · [ps ; σs]
satisfies FracS = Dn(k). It’s clear that K is invariant under the action of G. If SG 6⊂ K, we can find in
particular in SG a monomial:

u = vpd11 p
d2
2 · · · pds

s , v ∈ K, v 6= 0, d1, . . . , ds ∈ N, (d1, . . . , ds) 6= (0, . . . , 0),
then αd11 α

d2
2 · · ·αds

s = 1 for all (α1, α2, . . . , αs) ∈ (k×)s, and so a contradiction. We conclude with theorem
3.3.1 that (FracS)G = SG = KG, and so Dn(k)G = K. It’s clear that K ' Dn−s,s(k); this achieves the
proof of point (ii). Point (iii) follows then from the previous corollary. �

The actions of tori Tn on the Weyl algebras have been studied in particular in [43].

3.4.3. Rational invariants for the differential operators on Kleinian surfaces. Another situation
where it’s possible to give a positive answer to the question of 3.4.1 is the case of a 2-dimensional
representation. Using the main theorem 3.3.1 as a key argument, one can the prove (by technical
developments which cannot be detailed her; see [8] for a complete proof) the following general
result.

Theorem ([8]).
(i) For any 2-dimensional representation of a group G, there exist two nonnegative integers

m, t with 1 ≤ m+ t ≤ 2 such that D2(k)G ' Dm,t(k).
(ii) In particular, for any 2-dimensional representation of a finite group G, we have D2(k)G '

D2(k).

As an application, let us consider again the canonical action (see 1.3) of a finite subgroup G
of SL2(C) on S = C[x, y] = C[V ] for V = C2. The corresponding invariant algebra SG is
one of the Kleinian surfaces studied in 1.3.2. This action extends to the rational functions field
K = FracS = C(x, y) and it follows from Castelnuovo or Burnside theorems (see 3.1.2 and 3.1.3)
that KG ' K. Considering the first Weyl algebra A1(C) as a noncommutative deformation of
C[x, y], we have studied in 2.4.2 the action of G on A1(C) and the associated deformation
A1(C)G of the Kleinian surface SG. The extension of the action to FracA1(C) = D1(C) has
been considered in 3.3.2, and we have proved that D1(C)G ' D1(C). From another point of
view, we can apply to the action of G on S the duality extension process described in 2.4.4
in order to obtain an action on A2(C). As explained in second example 2.4.4, the invariant
algebra A2(C)G = (DiffS)G is then isomorphic to Diff (SG); in other words the invariants of
differential operators on S are isomorphic to the differential operators on the Kleinian surface
SG (by theorem 5 of [37]). Of course the action extends to D2(C) = FracA2(C) and the following
corollary follows then from point (ii) of the previous theorem.
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Corollary ([8]). Let G be a finite subgroup of SL2(C). For the action of G on A2(C) = DiffS
canonically deduced from the natural action of G on S = C[x, y], we have D2(C)G ' D2(C).

The method used in [8] to prove this result allows to compute explicitly, according to each type
of G in the classification of 1.3.2, some generators P1, P2, Q1, Q2 of D2(C)G satisfying canonical
relations [P1, Q1] = [P2, Q2] = 1 and [Pi, Pj ] = [Qi, Qj ] = [Pi, Qj ] = 0 for i 6= j. For instance,
starting with A2(C) = C[q1, q2][p1 ; ∂q1 ][p1 ; ∂q2 ], a solution for the type An−1 is:
First case: n = 2p+ 1.

Q1 = q2p+1
1 q−2p−1

2 Q2 = qp+1
1 q−p2

P1 = − p
2p+1 q

−2p
1 q2p+1

2 p1 − p+1
2p+1 q

−2p−1
1 q2p+2

2 p2 P2 = q−p1 qp2p1 + q−p−1
1 qp+1

2 p2

Second case: n = 2p.

Q1 = qp1q
−p
2 Q2 = q1q2

P1 = 1
2p q

1−p
1 qp2p1 − 1

2p q
−p
1 qp+1

2 p2 P2 = 1
2(q−1

2 p1 + q−1
1 p2)

4. Actions on power series

4.1. Actions on pseudo-differential operators and related invariants.

4.1.1. Preliminary results. We fix R a commutative domain (related to forthcoming applications,
we’ll sometimes refer to R as the “ring of functions”). For any derivation d of R, the ring of
formal operators in one variable t over R is by definition the Ore extension T = R[t ; d] in the
sense of 2.3.1. Let us recall that the elements of T are the finite sums

∑
i ait

i where the ai’s are
in R, with usual addition and noncommutative multiplication defined from the law:

(50) ta = at+ d(a) for all a ∈ R.

For any derivation δ of R, the ring A = R[[x ; δ]] of formal power series in one variable x over R
is by definition the set of infinite sums

∑
i≥0 aix

i where the ai’s are in R, with usual addition
and noncommutative multiplication defined from the law:

(51) xa = ax+ δ(a)x2 + δ2(a)x3 + · · · for all a ∈ R.

It’s clear that x generates a two-sided ideal in A; the localized ring of A with respect of the
powers of x is named the ring of formal pseudo-differential operators in one variable x with
coefficients in R, and is denoted B = R((x ; δ)). The elements of B are the Laurent series∑

i>−∞ aix
i where the ai’s are in R, with usual addition and noncommutative multiplication

defined from (51) and

(52) x−1a = ax−1 − δ(a) for all a ∈ R.

It follows from (50) and (52), and we have already observed in 3.2.2, that T = R[x−1 ; −δ] is a
subring of B = R((x ; δ)).

For any nonzero series f ∈ B, there exist an integer m ∈ Z and a sequence (ai)i≥m of elements of
R such that f =

∑
i≥m aix

i and am 6= 0. The integer m is the valuation of f , denoted by vx(f),
and the element am is the coefficient of lowest valuation of f , denoted by ϕ(f). By convention,
we set vx(0) = +∞ and ϕ(0) = 0. It’s easy to check that vx : B → Z is a discrete valuation
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and that ϕ : B → R is a multiplicative map. It follows that A and B are domains. We have
A = {f ∈ B ; vx(f) ≥ 0} and

(53) for all f ∈ B with vx(f) = m ∈ Z, there exists h ∈ A with vx(f) = 0 s.t. f = hxm.

For any integer k ∈ Z, we denote Bk = {f ∈ B ; vx(f) ≥ k} and πk the morphism Bk → R
defined by πk(

∑
i≥k aix

i) = ak. In particular B0 = A.

Remarks

(i) Let U(A) be the group of invertible elements of A. An element f =
∑
i≥0 aix

i of
A lies in U(A) if and only if vx(f) = 0 and ϕ(f) = a0 lies in the group U(R) of
invertible elements of R (although the calculations in A are twisted by δ, the proof
is similar to the commutative case). It follows that an element of B is invertible in
B if and only if its coefficient of lowest valuation is invertible in R.

(ii) Let f =
∑
i≥0 aix

i be an element of A with vx(f) = 0 and ϕ(f) = a0 = 1. Then, for
any positive integer p such that p.1 ∈ U(R), there exist h ∈ A satisfying vx(h) = 0
and ϕ(h) = 1 such that f = hp (the proof is a simple calculation by identification
and is left to the reader).

Proposition. We assume here that R is a field. Then:

(i) B = R((x ; δ)) is a skewfield, and B = FracA where A = R[[x ; δ]];
(ii) R(x−1 ; −δ) = FracR[x−1 ; −δ] is a subfield of B;

(iii) for any f ∈ B, we have f ∈ A, or f 6= 0 and f−1 ∈ A.

Proof. Straightforward by remark (i) and (53). �

The following lemma, which will be fundamental in the following, asserts that any automorphism
of B such that θ(R) = R is continuous for the x-adic topology. The arguments of the proof are
somewhat similar to the ones of [4].

Lemma. Let θ be an automorphism of R((x ; δ)) such that θ(R) = R. Then vx(θ(f)) = vx(f)
for all f ∈ R((x ; δ)).

Proof. It’s clear that θ(x) 6= 0. Denote s = vx(θ(x)) ∈ Z. First we prove that s ≥ 0. Suppose that s < 0.
We set u = 1 + x−1 ∈ B. Since vx(θ(x)−1) = −s > 0, we have θ(u) = 1 + θ(x)−1 ∈ A. We can apply to
θ(u) the remark (ii) above. For an integer p ≥ 2 such that p.1 is invertible in R, there exists f ∈ A such
that θ(u) = fp. Applying the automorphism θ−1, we obtain vx(u) = pvx(θ−1(f)), so a contradiction
since vx(u) = −1 by definition. We have proved that s ≥ 0. In particular the restriction of θ to A is an
automorphism of A.

We can write θ(x) = a(1 + w)xs with nonzero a ∈ R and w ∈ A such that vx(w) ≥ 1. Applying θ−1, we
obtain x = θ−1(a)θ−1(1 + w)θ−1(x)s, and then:

vx(θ−1(a)) + vx(θ−1(1 + w)) + svx(θ−1(x)) = 1.

From the one hand, θ(R) = R implies θ−1(R) = R, thus θ−1(a) is a nonzero element of R, and so
vx(θ−1(a)) = 0. From the other hand, it follows from remark (i) above that 1 + w ∈ U(A); since
U(A) is stable by θ−1 (which is an automorphism of A by the first step of the proof), we deduce that
vx(θ−1(1 + w)) = 0. We deduce that svx(θ−1(x)) = 1. As s ≥ 0, we conclude that s = 1 and the result
follows. �
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4.1.2. Extension of an action from functions to pseudo-differential operators. We fix R a com-
mutative domain of characteristic zero and δ a nonzero derivation of R. We denote by U(R) the
group of invertible elements in R. We consider a group Γ acting by automorphisms on R.

Definitions. We say that the action of Γ on R is δ-compatible if δ is an eigenvector for the action
of Γ by conjugation on DerR, i.e. equivalently when the following condition is satisfied:

(54) for all θ ∈ Γ, there exists pθ ∈ U(R), such that θ ◦ δ = pθ δ ◦ θ.
It’s clear that θ 7→ pθ defines then an application p : Γ→ U(R) which is multiplicative 1-cocycle
for the canonical action of Γ on U(R), that is which satisfies:

(55) pθθ′ = pθθ(pθ′) for all θ, θ′ ∈ Γ.

It follows that, if we set

(56) 〈 f |
k
θ 〉 := p−kθ θ(f) for all k ∈ Z, θ ∈ Γ, f ∈ R,

then the map (θ, f) 7→ 〈 f |
k
θ 〉 defines a left action Γ × R → R. This action is named the left

action of weight k of Γ on R. The weight 0 action is just the canonical action. For the weight
one action, a 1-cocycle for the weight one action is a map r : Γ→ R which satisfies:

(57) rθθ′ = rθ + p−1
θ θ(rθ′) = rθ + 〈 rθ′ |1 θ 〉 for all θ, θ′ ∈ Γ.

We denote by Z1(Γ, R) the left RΓ-module of such 1-cocycles. For all k ∈ Z, we define the
additive subgroup of R of weight k invariants:

(58) Ik := { f ∈ R ; 〈 f |
k
θ 〉 = f for all θ ∈ Γ}.

In particular, I0 = RΓ and IkI` ⊆ Ik+`.

Theorem ([28]). With the previous data and notations, the action of Γ on R extends into an
action by automorphisms on B = R((x ; δ)) if and only if this action is δ-compatible, and we
have then:

(59) θ(x−1) = pθx
−1 + pθrθ for all θ ∈ Γ,

where p : Γ → U(R) is the multiplicative 1-cocycle uniquely determined by condition (54) of
δ-compatibility and r : Γ → R is a 1-cocycle for the weight one action arbitrarily chosen in
Z1(Γ, R).

Proof. Let θ be an automorphism of B such that the restriction of θ to R is an element of Γ. In particular,
we have θ(R) = R. We can apply the lemma of 4.1.1 to write θ(x−1) = c−1x

−1 + c0 + c1x + · · · , with
ci ∈ R for any i ≥ −1 and c−1 6= 0. Moreover x−1 ∈ U(B) implies θ(x−1) ∈ U(B) and then c−1 ∈ U(R)
by remark (i) of 4.1.1. Applying θ to (52), we obtain:

θ(x−1)θ(a)− θ(a)θ(x−1) = −θ(δ(a)) for any a ∈ R.

Since θ(a) ∈ R, we can develop this identity:

[c−1x
−1θ(a)− θ(a)c−1x

−1] + [c0θ(a)− θ(a)c0] +
∑
j≥1[cjxjθ(a)− θ(a)cjxj ] = −θ(δ(a)).

The first term is: c−1[x−1θ(a) − θ(a)x−1] = −c−1δ(θ(a)) ∈ R. The second is zero by commutativity of
R. The third is of valuation ≥ 1. So we deduce that:

−c−1δ(θ(a)) = −θ(δ(a)) and
∑
j≥1[cjxjθ(a)− θ(a)cjxj ] = 0.

Denote pθ := c−1; we have pθ ∈ U(R) and the first assertion above implies that pθδ(θ(a)) = θ(δ(a))
for all a ∈ R. Now we claim that the second assertion implies that cj = 0 for all j ≥ 1. To see that,
suppose that there exists a minimal index m ≥ 1 such that cm 6= 0; then

∑
j≥m[cjxjθ(a)− θ(a)cjxj ] = 0

implies by identification of the coefficients of lowest valuation that cmmδ(θ(a))xm+1 + · · · = 0. Therefore
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cmmδ(θ(a)) = 0. If we choose a ∈ R such that δ(a) 6= 0, then θ(δ(a)) 6= 0; hence δ(θ(a)) 6= 0 [by the
condition pθδ(θ(a)) = θ(δ(a)) that we have proved previously], and we obtain a contradiction since R is
a domain of characteristic zero and cm 6= 0. We conclude that cj = 0 for all j ≥ 1.
We have finally checked that θ(x−1) = c−1x

−1 + c0. We have already observed that pθ = c−1 satisfies
(54). Now we set rθ = (c−1)−1c0. We have θ(x−1) = pθx

−1 + pθrθ. Relations (55) and (57) follow then
from a straightforward calculation of θ(θ′(x−1)).

Conversely, let us assume that the action of Γ on R is δ-compatible. Denote by p the map Γ → U(R)
uniquely determined by (54), which satisfies necessarily (55). Let us choose a 1-cocycle r : Γ → R
arbitrarily in Z1(Γ, R). We consider any θ ∈ Γ; denoting qθ = pθrθ, we calculate for all a ∈ R:

(pθx−1 + qθ)θ(a)− θ(a)(pθx−1 + qθ) = pθ(x−1θ(a)− θ(a)x−1) = −pθδ(θ(a)) = −θ(δ(a)).

Hence we can define an automorphism θr of T = R[t ; −δ] = R[x−1 ; −δ] such that the restriction of
θr to R is θ and θr(t) = pθt + pθrθ; (observe that pθ ∈ U(R) implies the bijectivity of θr). Since
pθ ∈ U(R), the element θr(x−1) = pθx

−1 + qθ is invertible in B by remark (i) of 4.1.1. Then we define:
θr(x) = θr(x−1)−1 = x(pθ + qθx)−1 with pθ + qθx which is invertible in A = R[[x ; δ]]. So we have built
for any θ ∈ Γ an automorphism θr of B which extends θ. It follows immediately from the assumptions
(55) on p and (57) on r that (θθ′)r = θrθ

′
r for all θ, θ′ ∈ Γ. �

Remark. Computing (pθ + qθx)−1 =
(∑

j≥0(−1)j(p−1
θ qθx)j

)
p−1
θ ∈ A, we deduce that, under the

hypothesis of the theorem, we have:

(60) θ(x) = x
(∑
j≥0

(−1)j(rθx)j
)
p−1
θ = p−1

θ x+ · · · for all θ ∈ Γ

In particular, the restriction to Bk of the action of Γ on B defines an action on Bk for any k ∈ Z.

Corollary. Under the assumptions of the theorem, the action of Γ on R extends into an action
by automorphisms on B = R((x ; δ)) if and only if it extends into an action by automorphisms
on T = R[x−1 ; −δ].

Examples. We suppose that the action of Γ on R is δ-compatible; thus the map p : Γ→ U(R)
defined by (54) is uniquely determined and satisfies (55), and we consider here various examples
for the choice of r ∈ Z1(Γ, R).

1. If we take r = 0, the action of Γ on B is defined by θ(x−1) = pθx
−1, and then θ(x) =

xp−1
θ =

∑
j≥0 δ

j(p−1
θ )xj+1 for any θ ∈ Γ.

2. If r is a coboundary (i.e. there exists f ∈ R such that: rθ = 〈 f |1 θ 〉 − f = p−1
θ θ(f)− f

for any θ ∈ Γ), then the element y = (x−1− f)−1 satisfies B = R((x ; δ)) = R((y ; δ)) and
θ(y−1) = pθy

−1 for any θ ∈ Γ. Thus we find the situation of example 1.

3. We can take for r the map Γ → R defined by: rθ = −p−1
θ δ(pθ) for any θ ∈ Γ, which is

an element of Z1(Γ, R) by (54) and (55). The corresponding action of Γ on B is given
by: θ(x−1) = pθx

−1 − δ(pθ) = x−1pθ for any θ ∈ Γ.

4. For any r ∈ Z1(Γ, G) and any f ∈ R, the map θ 7→ rθ + p−1
θ θ(f) − f is an element of

Z1(Γ, R). The corresponding action of Γ on B is defined by θ(x−1) = pθx
−1 + pθrθ +

θ(f) − pθf . As in example 2, y = (x−1 − f)−1 satisfies B = R((x ; δ)) = R((y ; δ)) and
allows to express the action by θ(y−1) = pθy

−1 + pθrθ for any θ ∈ Γ.

5. Since Z1(Γ, R) is a left RΓ-module, the map κ r is an element of Z1(Γ, R) for any
r ∈ Z1(Γ, G) and any κ ∈ RΓ. The corresponding action of Γ on B is given by: θ(x−1) =
pθx
−1+κ pθrθ for any θ ∈ Γ. If we suppose moreover that κ ∈ U(R), then y = (κ−1x−1)−1

satisfies B = R((x ; δ)) = R((y ; κ−1δ)), and we find θ(y−1) = pθy
−1 + pθrθ for any θ ∈ Γ.
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4.1.3. Invariant pseudo-differential operators. We fix R a commutative domain, δ a nonzero
derivation of R, and Γ a group acting by automorphisms on R. We suppose that the action
of Γ is δ-compatible and so extends to B = R((x ; δ)) by (59) where r is an arbitrarily chosen
element of Z1(Γ, R). We denote by BΓ,r (respectively AΓ,r) the subring of invariant elements of
B (respectively A) under this action.

Remarks. For any k ∈ Z, we denote BΓ,r
k = Bk∩BΓ,r. The following observations precise some

relations between invariant pseudo-differential operators of valuation k (i.e. elements of BΓ,r
k )

and weight k invariant functions (i.e. elements of Ik, see (58)).

(i) If BΓ,r 6= RΓ, then there exists some nonzero integer k such that Ik 6= {0}.
Proof. Suppose that there exists y ∈ BΓ,r such that y /∈ RΓ. Set k = vx(y), thus
y ∈ BΓ,r

k . If k 6= 0, then πk(y) is a non zero element of Ik by remark (i). If k = 0, then
π0(y) ∈ I0 = RΓ, thus y′ = y − π0(y) is a nonzero element of BΓ,r

k′ for some integer
k′ > 0 and we apply the first case.

(ii) For any k ∈ Z and y ∈ B, we have: ( y ∈ BΓ,r
k ⇒ πk(y) ∈ Ik ); this is a straightforward

consequence of (56), (58), (59) and (60). If we assume that

0 // BΓ,r
k+1

can

inj
// BΓ,r

k

πk // Ik // 0

is a split exact sequence, then BΓ,r 6= RΓ if and only if there exists some nonzero integer
k such that Ik 6= {0}.

Proof. Suppose that there exists a nonzero integer k and a nonzero element f in Ik.
By assumption, we can consider ψk : Ik → BΓ,r

k such that πk ◦ ψk = idIk
. Then

ψk(f) = fxk + · · · lies in BΓ,r
k with valuation k 6= 0. Therefore ψk(f) /∈ RΓ.

The following theorem gives an explicit description of the ring BΓ,r
k when the functions ring R

is a field. It can be viewed as an analogue for noncommutative power series of the theorem
previously proved in 3.3.1 for noncommutative rational functions.

Theorem ([28]). Let R be a commutative field of characteristic zero. Let δ be a nonzero
derivation of R, A = R[[x ; δ]] and B = R((x ; δ)) = FracA. For any δ-compatible action of a
group Γ on R and for any r ∈ Z1(Γ, R), we have:

(i) if AΓ,r ⊆ R, then AΓ,r = BΓ,r = RΓ;

(ii) if AΓ,r 6⊆ R and RΓ ⊂ ker δ, then there exist elements of positive valuation in AΓ,r and, for
any u ∈ AΓ,r of valuation e = min{vx(y) ; y ∈ AΓ,r, vx(y) ≥ 1}, we have AΓ,r = RΓ[[u]]
and BΓ,r = Frac (AΓ,r) = RΓ((u));

(iii) if AΓ,r 6⊆ R and RΓ 6⊂ ker δ, then there exists an element u of valuation 1 in AΓ,r and
a nonzero derivation δ′ of RΓ such that AΓ,r = RΓ[[u ; δ′]] and BΓ,r = Frac (AΓ,r) =
RΓ((u ; δ′)).

The proof of this theorem is somewhat long and technical and cannot take place here. It uses
in an essential way the notion of higher derivation and related results (see [27] for a survey).
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Some comments.
1. In point (iii) of the theorem, δ′ = c−1

1 δ where u = c1x + c2x
2 + · · · with ci ∈ R,

c1 6= 0.
2. The equality Frac (AΓ,r) = (FracA)Γ,r, which can be nontrivial in some cases (see

the proof of 3.3.1 and remark 1 in 3.2.1) follows here immediately from point (iii) of the
proposition in 4.1.1.

3. Under the assumptions of the theorem, if r and r′ are two 1-cocycles in Z1(Γ, R)
such that BΓ,r 6⊆ R and BΓ,r′ 6⊆ R, then BΓ,r ' BΓ,r′ .

4. Under the assumptions of the theorem, if the exact sequence of remark (ii) is split
for r and r′ two 1-cocycles in Z1(Γ, R), then BΓ,r ' BΓ,r′ .

5. If we don’t assume that R is a field, we don’t have a general theorem, but some
particular results can be useful for further arithmetical applications. In particular it is
proved in [28] that: if there exists in BΓ,r an element w = bx−1 + c with b ∈ U(R) and
c ∈ R, then the derivation D = bδ restricts into a derivation of RΓ, and we have then
AΓ,r = RΓ[[u ; D]] and BΓ,r = RΓ((u ; D)) for u = w−1.

4.1.4. Application to the first Weyl local skewfield. We take here R = C(z) and δ = ∂z. We
consider the ring A = R[[x ; δ]] and its skewfield of fractions F = R((x ; δ)). The skewfield
Q = R(t ; d) where t = x−1 and d = −δ is a subfield of F (see point (ii) of proposition 4.1.1)
which is clearly isomorphic to the Weyl skewfield D1(C) (see 3.2.3). We have:

xz − zx = x2, or equivalently zt− tz = 1.
We name F the first local skewfield. It’s well known that any C-automorphism θ of R is of the
form z 7→ az+b

cz+d with
(
a b
c d

)
∈ GL(2,C). For any f(z) ∈ R, we compute:

∂z(θ(f)) = ∂z(f(az+bcz+d)) = ad−bc
(cz+d)2

f ′(az+bcz+d) = ad−bc
(cz+d)2

θ(∂z(f)).

By (54), it follows that the action of any θ ∈ AutR is δ-compatible, with pθ = (cz+d)2

ad−bc . We
conclude with the theorem of 4.1.2 that any automorphism θ of F which restricts into an
automorphism of R is of the form:

θ : z 7→ az+b
cz+d , x−1 7→ (cz+d)2

ad−bc x
−1 + qθ(z).

where
(
a b
c d

)
∈ GL(2,C) and qθ(z) ∈ C(z). Then, using remark 2 of 3.2.1, we can prove that

point (iii) of the theorem of 4.1.3 applies and it’s easy to deduce with Lüroth’s theorem that:

Proposition. For any finite subgroup Γ of C-automorphisms of F = C(z)((x ; ∂z)) stabilizing
C(z), we have FΓ ' F .

4.2. Applications to modular forms. In order to give an overview about some applications
of the previous results in number theory, we fix the following data and notations.

4.2.1. Data and notations. In the following, Γ is a subgroup of SL(2,C), and R is a commutative
C-algebra R of functions in one variable z such that:

(i) Γ acts (on the right) by homographic automorphisms on R

(f |0 γ) = f(az+bcz+d) for all f ∈ R and γ = ( a bc d ) ∈ Γ,

(ii) the function z 7→ cz + d is invertible in R for any γ = ( a bc d ) ∈ Γ,

(iii) R is stable by the derivation ∂z.
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The case where R = C(z) corresponds to the formal situation studied in 4.1.4. In many arith-
metical situations, R is some particular subalgebra of Fder(∆,C) with ∆ ⊆ C stable by the
homographic action of a subgroup Γ of SL(2,Z). We denote:

(61) (f |k γ)(z) = (cz + d)−kf(az+bcz+d) for all f ∈ R, γ = ( a bc d ) ∈ Γ, k ∈ Z.

Let us observe that ( (f |k γ′) |k γ ) = (f |k γ′γ) for all γ, γ′ ∈ Γ and f ∈ R. For any k ∈ Z, we
define the C-vector space of weight k modular forms:

(62) Mk(Γ, R) = { f ∈ R ; (f |k γ) = f for all γ ∈ Γ }
Remarks.

1. M0(Γ, R) = RΓ.
2. If Γ 3 (−1 0

0 −1 ), then Mk(Γ, R) = (0) for any odd k.

3. If Γ contains at least one element ( a bc d ) such that (c, d) /∈ {0} × U∞, we have
Mk(Γ, R) ∩M`(Γ, R) = (0) pour k 6= `.

4. For all f ∈Mk(Γ, R) and g ∈M`(Γ, R), we have fg ∈Mk+`(Γ, R).
5. For any f ∈ Mk(Γ, R), the function f ′ = ∂z(f) satisfies (f ′ |k+2 γ)(z) = f ′(z) +
k c
cz+df(z). Thus f ′ is not necessarily a modular form (unless for k = 0).

Comment: Rankin-Cohen brackets (see [19]). It follows from remark 5 above that, for
f ∈ Mk(Γ, R) and g ∈ M`(Γ, R), and r, s nonnegative integers, the product f (r)g(s) is
not necessarily an element of Mk+`+2r+2s(Γ, R). For any integer n ≥ 0, we denote by
[ , ]n the n-th Rankin-Cohen bracket, defined as the linear combination:

[f, g]
0

= fg,
[f, g]

1
= kfg′ − `f ′g,

[f, g]
2

= k(k + 1)fg′′ − (k + 1)(`+ 1)f ′g′ + `(`+ 1)f ′′g,
...

[f, g]n =
n∑
r=0

(−1)r
(
k+n−1
n−r

)
( `+n−1

r ) f (r)g(n−r),

and satisfies the characteristic property:

for f ∈Mk(Γ, R) and g ∈M`(Γ, R), we have [f, g]n ∈Mk+`+2n(Γ, R).

(In fact it is possible to prove that any linear combination of f (r)g(s) satisfying this
property is a scalar multiple of the n-th Rankin-Cohen bracket). It follows from the
definition that [g, f ]n = (−1)n[f, g]n , and that [ , ]

1
satisfies Jacobi identity.

4.2.2. Action on the pseudo-differential operators. For δ = −∂z, we compute: δ(f |0 γ )(z) =
−∂z(f(az+bcz+d)) = −f ′(az+bcz+d) × 1

(cz+d)2
, and thus: ( δ(f) |0 γ )(z) = (cz + d)2δ( f |0 γ )(z). Then

the homographic action of Γ on R is δ-compatible. The associated multiplicative 1-cocycle
p : Γ→ U(R) defined by (54) is:

(63) pγ = (cz + d)2 for any γ = ( a bc d ) ∈ Γ

For any k ∈ Z, the weight k action in the sense of (57) corresponds to the weight 2k action in
the sense (61) of modular forms:

(64) 〈f |
k
γ〉(z) = (cz + d)−2kf(

az + b

cz + d
) = (f |

2k
γ)(z) for all γ = ( a bc d ) ∈ Γ, f ∈ R.

and then Ik = M2k(Γ, R).
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We know by example 3 of 4.1.2 that r′γ = −p−1
γ δ(pγ) = (cz + d)−2∂z((cz + d)2) = 2c(cz + d)−1

defines an additive 1-cocycle r′ : Γ → R. Then by example 5 of 4.1.2, we can consider for any
κ ∈ C the additive 1-cocycle r = κ

2 r
′:

(65) rγ = κ c(cz + d)−1 for all γ = ( a bc d ) ∈ Γ.

Applying the theorem of 4.1.2, the action of Γ on R extends for any κ ∈ C into an action by
automorphisms on B = R((x ; −∂z)) by

(66) γ(x−1) = (cz + d)2x−1 + κ c(cz + d) for all γ = ( a bc d ) ∈ Γ.

We denote by BΓ,κ the subalgebra of invariant elements of B under this action.

4.2.3. Invariant pseudo-differential operators. We fix κ ∈ C. For any f ∈ R and any integer
k ≥ 1, we define:

ψk(f) = fxk +
∑
n≥1

(−1)n (n+k−1)!
n! (n+2k−1)! × k! (−κ+k+1)(−κ+k+2)···(−κ+k+n) f (n)xk+n ∈ B,

ψ0(f) = f ∈ R,

ψ−k(f) = fx−k +
k∑

n=1

(2k−n)!
n! (k−n)! ×

(κ+k−n)(κ+k−n+1)···(κ+k−1)
(k−1)! f (n)x−k+n ∈ B,

with the notation f (n) = ∂ nz (f). The following two results by P. Cohen, Y. Manin and Don
Zagier allow to define a vector space isomorphism between the invariant pseudo-differential
operators and the product of even weight modular forms.

Lemma ([19]). For all f ∈ R, k ∈ Z, γ ∈ Γ, we have: ψk( (f |
2k
γ) ) = γ(ψk(f) ), thus:

( f ∈M2k(R; Γ) ) ⇔ ( ψk(f) ∈ BΓ,κ
k ),

and then:

0 // BΓ,r
k+1

can

inj
// BΓ,r

k

πk --
M2k(Γ, R)

ψk
ll // 0

is a split exact sequence.

Theorem ([19]).
(i) For any j ∈ Z, the map

Ψ2j :M2j :=
∏
k≥j

M2k(Γ, R) −→ BΓ,κ
j ; (f2k)k≥j 7−→

∑
k≥j

ψk(f2k)

is a vector space isomorphism.

(ii) The map Ψ2∗ : M2∗ :=
⋃
j∈Z
M2j −→

⋃
j∈Z

BΓ,κ
j = BΓ,κ = R((x ; −∂z))Γ,κ canonically

induced by the Ψ2j ’s is vector space isomorphism.

It’s not possible to give here the proofs of these results and we can only refer the reader to the
original article [19]. In order to illustrate the construction, let us give some explicit calculations
for Ψ0 in the particular case where κ = 0.

Example.

Ψ0 :M0 =
∏
k≥0

M2k(Γ, R) −→ AΓ,0 = R[[x ; −∂z]]Γ,0 = BΓ,0
0 ; (f2k)k≥0 7−→

∑
k≥0

ψk(f2k)

For any (f0, f2, f4, . . .) ∈M0, we have:

ψ0(f0) = f0

ψ1(f2) = f2x− f ′2x2 + f ′′2 x
3 − f ′′′2 x

4 + · · · = xf2
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ψ2(f4) = 1
3f4x

2 − 1
2f
′
4x

3 + 3
5f
′′
4 x

4 + · · ·
ψ3(f6) = 1

10f6x
3 − 1

5f
′
6x

4 + · · ·
ψ4(f8) = 1

35f8x
4 + · · ·

....
thus:

Ψ0 :M0 −→ AΓ,0 ; (f2k)k≥0 7−→
∑
n≥0

hnx
n

Ψ−1
0 : AΓ,0 −→M0 ;

∑
n≥0

hnx
n 7−→ (f2k)k≥0,

with:
h0 = f0 f0 = h0

h1 = f2 f2 = h1

h2 = 1
3f4 − f ′2 f4 = 3h2 + 3h′1

h3 = 1
10f6 − 1

2f
′
4 + f ′′2 f6 = 10h3 + 15h′2 + 5h′′1

h4 = 1
35f8 − 1

5f
′
6 + 3

5f
′′
4 − f ′′′2 f8 = 35h4 + 70h′3 + 42h′′2 + h′′′1

.... ...

hn =
n−1∑
r=0

(−1)r n! (n−1)!
r! (2n−r−1)! f

(r)
2(n−r) f2k =

k−1∑
r=0

(2k−1) (2k−2−r)!
r! (k−r)! (k−r−1)! h

(r)
k−r

4.2.4. Non commutative structure on M2∗ and Rankin-Cohen brackets. By transfer of struc-
tures, the vector space isomorphisms

Ψ2∗ :M2∗ → BΓ,κ et Ψ−1
2∗ : BΓ,κ →M2∗

resulting of point (ii) of the theorem of 4.2.3 allow to equip M2∗ with a structure of non com-
mutative C-algebra. We denote it by Mκ

2∗ which depends in principle on the parameter κ fixed
in the definition of the extension of the action form R to B.

Mκ
2∗ ' BΓ,κ for any κ ∈ C.

The description given in 4.1.3 of the rings BΓ,κ allows to deduce some algebraic properties
(center, centralizers,...) of the algebras Mκ

2∗. In particular, supposing that R is a field of
characteristic zero, the corollary of the theorem on 4.1.3 given in the comment 4 applies by the
lemma of 4.2.3, and we prove so that:

Theorem. If R is a commutative field of characteristic zero, thenMκ
2∗ 'Mκ′

2∗ for all κ, κ′ ∈ C.

Application to the noncommutative product of two modular forms. Let us fix f ∈M2k(Γ, R) and
g ∈M2`(Γ, R). With the identifications:

f ≡ (f, 0, 0, . . .) ∈M2k and g ≡ (g, 0, 0, . . .) ∈M2`,

the noncommutative product of f by g in Mκ
2∗, for an arbitrary choice of κ ∈ C, is given by:

µκ(f, g) = Ψ−1
2∗
(
Ψ2∗(f).Ψ2∗(g)

)
= Ψ−1

2(k+`)

(
ψk(f).ψ`(g)

)
∈M2(k+`).

The authors of [19] prove then that:

µκ(f, g) =
∑
n≥0

tκn(k, `) [f, g]n ,

where [ , ]n : M2k(Γ, R)×M2`(Γ, R)→M2(k+`+n)(Γ, R) is the n-th Rankin-Cohen bracket (see
comment in 4.2.1), and tκn(k, `) ∈ Q is defined by:
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tκn(k, `) = 1

(−2`
n )

∑
r+s=n

(−kr )(−k−1+κ
r )

(−2k
r )

(n+k+`−κ
s )(n+k+`−1

s )
( 2n+2k+2`−2

s )

These coefficients satisfy tκn(k, `) = t2−κn (k, `). In particular for κ = 1
2 or κ = 3

2 , the product
µ

1
2 (f, g) is the well known associative Eholzer product f ? g = µ

1
2 (f, g) =

∑
n≥0

[f, g]n .
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