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Foreword

These lectures propose an introduction to various problems about group actions by au-
tomorphisms on noncommutative algebras. The underlying noncommutativity deals with
Poisson structures on polynomial algebras, their deformations into noncommutative as-
sociative algebras, some localized or completed versions, the associated Lie algebras. The
typical objects are noncommutative polynomial algebras (Ore extensions), skewfields of
fractions, noncommutative power series, and specially among them Weyl algebras, quan-
tum spaces and tori, quantum groups. The typical results concern the finite generation
of invariants, in continuity with Noether’s and Hilbert’s theorems in the classical the-
ory. We try to provide a primer on some basic theorems and to give some evidence on
many profounds links between the questions under consideration. It seems difficult to give
within the framework of this course complete proofs of all general results (when they are
known...); our choice is to illustrate the problems studied by concrete developments on the
two-dimensional case, which it is rich enough to carry the whole interest of the situations,
although being open to a direct approach. From this point of view, the following three
diagrams can be seen as constituting parts of a guide through these lectures.

Picture 1: action of SL2(C) on symplectic Poisson two-dimensional
polynomial algebras, associated deformations, and around

F (C) ∼ // F (C)Γ

FracA1(C) := D1(C) ∼ //
?�
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OO
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A1(C) //
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localization
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OO
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Picture 2: action of SL2(Z) on multiplicative Poisson,
two-dimensional polynomial algebras, quantum deformations, and around
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Picture 3: automorphisms of quantum and jordanian deformations
of the plane, and around
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localiz.oo � � // Oq(M2)

coaction
nn

// // Oq(SL2)

T := C[x±1, y±1]

deform.

OO
O�
O�
O�

S := C[x, y]

deform.

OO
O�
O�
O�

_?
localiz.oo � � //

deform.
�� �O
�O
�O

O(M2)

coaction
nn

deform.

OO
O�
O�
O�

deform.
�� �O
�O
�O

// // O(SL2)

deform.

OO
O�
O�
O�

deform.
�� �O
�O
�O

SJ := CJ[x, y] �
� // OJ(M2)

coaction
nn

// // OJ(SL2)

Acknowledgements

These are the notes for a series of lectures given at the FaMAF of Córdoba University
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1 Invariants of noncommutative polynomial rings

1.1 Invariants of noetherian rings under finite group actions

1.1.1 Noncommutative noetherian rings

LetR be a ring (non necessarily commutative). A leftR-moduleM is said to be noetherian
if M satisfies the ascending chain condition on left submodules, or equivalently if every
left submodule ofM is finitely generated. The ring R himself is a left noetherian ring if it
is noetherian as left R-module. There is of course a similar definition for right modules,
and a ring R is said to be noetherian if it is left noetherian and right noetherian (i.e.
if every left ideal is finitely generated and every right ideal is finitely generated). It is
classical (see for instance [8]) that: (i) for any submodule N of a module M , we have:
M noetherian if and only if N and M/N are noetherian ; (ii) any finite direct sum of
noetherian modules is noetherian.

Proof. We suppose that M is noetherian. Any ascending chain of submodules of
N being an ascending chain of submodules of M , it is clear that N is noetherian.
Let C1 ⊂ C2 ⊂ · · · ⊂ Ci ⊂ · · · be an ascending chain of submodules of M/N . Any
Ci is a quotient Ai/N where A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · · is an ascending chain of
submodules of M . The noetherianity of M implies the existence of n ≥ 1 such that
Ai = An for all i ≥ n. Therefore Ci = Cn for any i ≥ n and M/N is noetherian.

Suppose conversely that N andM/N are noetherian. Let A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · ·
be an ascending chain of submodules of M . From one hand, (Ai ∩ N)i≥0 is an
ascending chain of submodules of N ; there exists m ≥ 1 such that Ai∩N = Am∩N
for any i ≥ m. From the other hand, ((Ai + N)/N)i≥0 is an ascending chain of
submodules of M/N ; there exists p ≥ 1 such that (Ai +N)/N = (Am +N)/N for
any i ≥ p. Take i ≥ n := max(m, p). We have Ai ∩N = An ∩N and (Ai+N)/N =
(An+N)/N . If x ∈ Ai, there exists y ∈ An such that x− y ∈ N . Since An ⊂ Ai, it
follows that y ∈ Ai, then x− y ∈ (Ai ∩N) = (An ∩N). So x− y ∈ An and finally
x ∈ An. We conclude that Ai ⊂ An, i.e. Ai = An and M is noetherian.

If N1 and N2 are noetherian left modules, the submodule N = N1 ⊕ (0) in M =
N1⊕N2 is noetherian byN ' N1 and the moduleM/N is noetherian byM/N ' N2.
Therefore M is noetherian applying the previous property. The result follows by
induction.

These properties imply in particular the following useful observation: if R a left noetherian
ring, then all finitely generated left R-modules are left noetherian.

Let P be a finitely generated R-module, and {x1 . . . , xn} a generating family of P .
Consider some free R-module M of rank n and {ξ1, . . . , ξn} a R-basis of M . The R-
module morphism f :M → P defined by f(ξi) = xi for any 1 ≤ i ≤ n is surjective.
So P ' M/ ker f . Since M '

⊕
1≤i≤nRξi and each Rξi is a noetherian R-module

because R is a noetherian ring, we deduce that M is a noetherian R-module. Then
M/ ker f is noetherian, i.e. P is noetherian.
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1.1.2 Invariant ring and skew group ring

Let R be a ring and G a subgroup of the group AutR of ring automorphisms of R. The
invariant ring (or fixed ring) RG is by definition the subring of R:

RG = {r ∈ R ; g(r) = r for all g ∈ G}.

The skew group ring (or trivial crossed product) R?G is defined as the free left R-module
with elements of G as a basis and with multiplication defined from relation:

∀ r, s ∈ R, ∀ g, h ∈ G, (rg)(sh) = rg(s)gh.
In particular:

∀ r ∈ R, ∀ g ∈ G, gr = g(r)g and rg = gg−1(r)

Every element of R ? G as a unique expression as
∑

g∈G rgg with rg ∈ R for any g ∈ G
and rg = 0 for all but finitely many g. It is clear that R is a subring of R ?G (identifying
r with r1G), and that R ? G is also a right R-module. In the particular case where G
is finite, the left R-module R ? G is finitely generated, then using the last observation of
1.1.1, we deduce immediately that:

if G is finite and R is left noetherian, then R ? G is left noetherian. (1)

Note that the noetherianity of R ? G can be proved in the more general context where
G is polycyclic by finite, see [13]. The skew group ring R ? G is closely related to the
invariant ring RG, as shows for instance the following lemma (from [14]).

Lemma. Let R be a ring, G a finite subgroup of AutR, and S = R ? G.

(i) The element f =
∑

g∈G g of S satisfies fS = fR and Sf = Rf .

(ii) If |G| is invertible in R, the element e = 1
|G|f of S satisfies e2 = e, eS = eR, and

eSe = eRG ' RG.

Proof. We have fg = f = gf for all g ∈ G. For any x =
∑

g∈G rgg ∈ S, we compute

fx =
∑

g∈G frgg =
∑

g∈G fgg
−1(rg) =

∑
g∈G fg

−1(rg) = f
∑

g∈G g
−1(rg) ∈ fR. We conclude

that fS ⊆ fR ; the converse is clear and so sS = fR. On the same way xf =
∑

g∈G rggf =∑
g∈G rgf = (

∑
g∈G rg)f implies Sf ⊆ Rf and finally Sf = Rf .

It follows from point (i) that e2 = e, eS = eR, Se = Re and eSe = eRe. For r ∈ R, we compute:

ere = e
|G|
∑

g∈G rg = e
|G|
∑

g∈G gg
−1(r) = 1

|G|
∑

g∈G egg
−1(r)

= 1
|G|
∑

g∈G eg
−1(r) = e

|G|
∑

g∈G g
−1(r) = e

|G|
∑

g∈G g(r) = eτ(r),

where τ : R→ RG is the trace map r 7→ 1
|G|
∑

g∈G g(r). This proves that eSe = eτ(R). Since any

r ∈ RG can be written r = τ(r), we have RG ⊂ τ(R), so RG = τ(R). Hence eSe = eRG. Finally,
because er = re for any r ∈ RG, the map r 7→ er defines a ring isomorphism RG → eRG.
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1.1.3 A finiteness theorem

The following theorem is due to S. Montgomery and L. W. Small (see [57]) and can be
viewed as a noncommutative analogue of the classical Noether’s theorem.

Theorem. Let A be a commutative noetherian ring, R a non necessarily commutative
ring such that A is a central subring of R and R is a finitely generated A-algebra, and G
a finite group of A-algebra automorphisms of R such that |G| is invertible in R. If R is
left noetherian, then RG is a finitely generated A-algebra.

Proof. Let us introduce S = R ? G. As we have observed in 1.1.2, S is left noetherian. It is
clear from the hypothesis that A is a central subring of S and that S is finitely generated as
A-algebra (if {q1, . . . , qm} generate R over A and G = {g1, . . . , gd}, then {q1, . . . , qm, g1, . . . , gd}
generate S over A).

As in 1.1.2, consider in S the element e = 1
|G|
∑

g∈G g which satisfies e2 = e. In particular, eSe
is a subring of S, eS is a left eSe-module, and SeS is a two-sided ideal of S. Observe firstly
that eS is a finitely generated left eSe-module.

Because S is left noetherian, SeS is finitely generated as a left ideal of S. Say
that SeS =

∑
i Sxi, and write xi =

∑
j vijewij with vij ∈ S and wij ∈ S for all j.

Choose r ∈ S. Then er = eeer ∈ e(SeS), and so er = e(
∑

i sixi) =
∑
esivijewij =∑

esivije
2wij . Thus the finite set {ewij} generates eS as a left eSe-module.

Denote more briefly eS =
∑n

i=1 eSexi with xi ∈ S, and take t1, t2, . . . , tm generators of S as a
A-algebra. Now write etj =

∑n
i=1 eyijexi and exktj =

∑n
i=1 ezijkexi with yij ∈ S and zijk ∈ S

for all 1 ≤ j ≤ m and 1 ≤ k ≤ n. Consider the finite set E = {exie, eyije, ezijke}1≤i,k≤n, 1≤j≤m.
We compute:

et1t2e = (
n∑
i=1

eyi1exi)t2e =
n∑
i=1

eyi1e(exit2)e =
n∑
i=1

eyi1e(
n∑̀
=1

ez`2iex`)e =
n∑
i=1

eyi1e(
n∑̀
=1

ez`2ieex`e),

and prove so inductively that any monomial etj1tj2 . . . tjke with 1 ≤ j1, j2, . . . , jk ≤ m can be
expressed by a finite sum of products of elements of E. As any element of eSe is a linear
combination of such monomials with coefficients in A, we conclude that E generates eSe as a
A-algebra. By point (ii) of lemma 1.1.2, the proof is complete.

This theorem will apply in particular to the iterated Ore extensions (see further 1.3).

1.2 Invariants of simple rings under finite group actions

1.2.1 Simplicity of invariants

Definitions. Recall that a ring R is simple when (0) and R are the only two-sided ideals
of R. An automorphism g ∈ AutR is said to be inner if there exists a ∈ R invertible in R
such that g(x) = axa−1 for all x ∈ R, and is said to be outer if it is not inner. A subgroup
G of AutR is outer when the identity map is the only inner automorphism in G.

We start with the following lemma (from [14]) about simplicity of crossed products.

Lemma. Let R be a simple ring and G a finite outer subgroup of AutR. Then the ring
R ? G is simple.

3



Proof. We denote S = R ? G. For any nonzero element x =
∑

g∈G rgg in S, define the length
of x as the cardinal of the support {g ∈ G ; rg 6= 0} of x. Let I be a two-sided nonzero ideal of
S = R ?G and ` be the minimal length of nonzero elements of I. Because I is a two-sided ideal
and ` is minimal, it is clear that the set K of all elements r ∈ R appearing as a coefficient in
the decomposition of some element of I of length ` is a two-sided ideal of R. Since R is simple,
we have 1 ∈ K. So there exists in I some element with decomposition 1.g0 +

∑
g∈G,g 6=g0 rg.g.

Multiplying at the right by g−1
0 , we deduce that I contains an element x = 1.1G+

∑
g∈G,g 6=1G

rg.g
of length `.

If x = 1.1G (i.e. ` = 1), then I = S and we are done. Assume that rh 6= 0 for some
h ∈ G, h 6= 1G. For any r ∈ R, the bracket rx − xr =

∑
g∈G,g 6=1G

(rrg − rgg(r))g lies in I
and has shorter length than x. Since ` is minimal, it follows that rx − xr = 0. In particular:
rrh− rhh(r) = 0 for all r ∈ R. Therefore rhR = Rrh is a two-sided ideal of R. The simplicity of
R implies that 1 ∈ rhR, and so rh is invertible in R. Hence h(r) = r−1

h rrh for all r ∈ R, which
says that h is an inner automorphism of R, which is impossible since G is outer and h 6= 1G.

We need now a brief account on the notion of Morita equivalence. Two rings S and T are
Morita equivalent when their categories of modules are equivalent. There exist several
methods to characterize such an equivalence. None is obvious and we refer for instance
to [1] or [13] for a serious presentation of this classical subject. In the limited frame of
this notes, our basis will be the following concrete criterion (see [13], proposition 3.5.6):
S and T are Morita equivalent if and only if T is a corner in some matrix algebra with
entries in S, that is if and only if there exist an integer n and an idempotent element
e ∈Mn(S) such that T ' eMn(S)e and Mn(S)eMn(S) =Mn(S).

Theorem. Let R be a simple ring and G a finite outer subgroup of AutR such that |G|
is invertible in R. Then:

(i) RG and R ? G are Morita equivalent,

(ii) the ring RG is simple.

Proof. We denote S = R ? G. By point (ii) of lemma 1.1.2, the element e = 1
|G|
∑

g∈G g of S

satisfies e2 = e and we have a ring isomorphism eSe ' RG. It is clear that SeS is a two-sided
ideal of S. Thus SeS = S since S is simple by the previous lemma. We just apply the above
Morita equivalence criterion (with n = 1) to conclude that S and RG are Morita equivalent.

Point (ii) can be deduced from the simplicity of S using the fact that simplicity is a Morita
invariant. We give here a direct proof (which doesn’t use Morita equivalence) of the simplicity
of RG. By point (iii) of lemma 1.1.2, it is equivalent to prove the simplicity of the subring
eSe of S. Let I be a two-sided nonzero ideal of eSe. Denote by J the set of element u ∈ S
such that eue ∈ I. Thus eJe = I. Because e2 = e and I is right ideal of eSe, we have
euese = (eue)(ese) ∈ I for any u ∈ J , s ∈ S ; then ues ∈ J . On the same way on the left
eseue = (ese)(eue) ∈ I implies seu ∈ J . Hence for any s, s′ ∈ S and u ∈ J , we deduce that
seues′ = (seu)es′ with seu ∈ J from the second argument and then seues′ ∈ J from the first
one. Therefore sxs′ ∈ J for any x ∈ I = eJe. In other words SIS ⊆ J . By simplicity of S
(previous lemma), the two-sided nonzero ideal SIS of S equals to S. Finally S ⊆ J , thus J = S
and then I = eSe. We conclude that eSe is a simple ring and the proof is complete.
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This theorem, from [14], is a fundamental argument in all homological studies of invariants
of Weyl algebras (see further 2.2.2 and 2.3.1).

1.2.2 Central invariants

It is clear that the center Z(R) of any ring R is stable under the action of any subgroup
G of AutR, and that Z(R)G = Z(R)∩RG ⊂ Z(RG). Our aim here is to prove (following
[14]) that equality holds when R is simple and G outer. We need the following preliminary
results.

Lemma. Let R be a simple ring and G a finite outer subgroup of AutR. Then we have
a ring isomorphism between Z(R) and the centralizer of R in R ? G.

Proof. We denote S = R ? G. Let x =
∑

g∈G rgg be an element of S such that xr = rx
for any r ∈ R. Since xr − rx =

∑
g∈G(rgg(r) − rrg) g, we deduce that any g in the support

{g ∈ G ; rg 6= 0} of x satisfies rgg(r) = rrg for all r ∈ R. Hence rgR = Rrg is a two-sided ideal
of R. It follows by simplicity of R that rg is invertible in R and g is the inner isomorphism
r 7→ r−1

g rrg. Now the assumption on G implies g = 1G. We conclude that x = r11G with
r1 ∈ Z(R). Up to the canonical embedding of R in S, we have proved that CentS(R) = Z(R).

Lemma. Let R be a simple ring and G a finite outer subgroup of AutR. Then we
have a ring isomorphism between R ? G and EndRGR for the canonical structure of right
RG-module of R.

Proof. With our usual notation S = R ? G, we define a left S-module structure on R by:

x · r =
∑

g∈G rgg(r) for any r ∈ R, x =
∑

g∈G rgg ∈ S.

It is clear that (y · (x · r)) = (yx) · r for all x, y ∈ S, r ∈ R. For the particular element f =∑
g∈G g ∈ S, we calculate fx·r for any x ∈ S, r ∈ R. Since fS = fR (see lemma 1.1.2), the exists

r′ ∈ R such that fx = fr′. Therefore fx·r = fr′ ·r = f ·(r′ ·r) = f ·(r′r) =
∑

g∈G g(r
′r) = τ(r′r)

which is obviously an element of RG. We have finally proved that fx·r ∈ RG for all x ∈ S, r ∈ R.

We introduce for any x ∈ S the map ψx : R → R, r 7→ x · r. By an easy calculation, we
have ψx(ra) = ψx(r)a for all r ∈ R, a ∈ RG. Therefore ψx is an endomorphism of R as
a right RG-module. The map ψ : x 7→ ψx is clearly a morphism of rings S → EndRGR.
By the lemma 1.2.1, S is simple, hence ψ is injective. In order to prove the surjectivity, we
consider the two-sided ideal SfS ; using again the simplicity of S, we have SfS = S. In
particular, 1S =

∑n
i=1 uifvi for some u1, . . . , un, v1, . . . , vn in S. Since Sf = Rf (see lemma

1.1.2), any uif can be written wif with wi ∈ R, and then 1S =
∑n

i=1wifvi with wi ∈ R, vi ∈ S.
We fix any h ∈ EndRGR and associate x =

∑n
i=1 h(wi)fvi ∈ S. For r ∈ R, we compute

x · r =
(∑n

i=1 h(wi)fvi
)
· r =

∑n
i=1 h(wi)(fvi · r). We know from the beginning of the proof that

fvi · r ∈ RG, and h is a right RG-module endomorphism, hence:
n∑
i=1

h(wi)(fvi · r) = h
( n∑
i=1

wi(fvi · r)
)
= h

( n∑
i=1

(wifvi) · r)
)
= h(1S · r) = h(r).

We have proved that h = ψx, therefore ψ is an isomorphism.

Theorem. Let R be a simple ring and G a finite outer subgroup of AutG. Then
Z(RG) = Z(R)G.
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Proof. For any r ∈ R, we denote by µr : R → R the left multiplication t 7→ rt by r. It is
clear that µr is right RG-module endomorphism of R and the subset R := {µr ; r ∈ R} of
EndRGR is a subring which is isomorphic to R via µ : r 7→ µr. Moreover, by the definition of
the isomorphism ψ : S → EndRGR in the previous lemma, the image ψr of an element r ∈ R
(identified canonically with r1G ∈ S) is no more than µr. Hence ψ(R) = R and recalling the
first lemma:

CentEnd
RGR(R) ' CentS(R) = Z(R).

For any r ∈ R, we denote by νr : R → R the right multiplication t 7→ tr by r. An easy
calculation proves that, if r ∈ CentR(R

G), then νr is a right RG-module endomorphism of R;
since νr ◦ µs = µs ◦ νr for all r, s ∈ R, it follows that ν restricts into a map

ν : CentR(R
G) → CentEnd

RGR(R).

It is clearly a morphism of rings (with values in a commutative ring). The injectivity is obvious.
For the surjectivity, we fix an element h ∈ CentEnd

RGR(R). By the previous lemma, there exists
an element x ∈ S such that h = ψx ∈ EndRGR, satisfying in particular ψx ◦ µr = µr ◦ ψx
for all r ∈ R. In other words, x · (rt) − r(x · t) = 0 for all r, t ∈ R. Using the development
x =

∑
g∈G rgg, it follows that

∑
g∈G rgg(rt) −

∑
g∈G rrgg(t) =

∑
g∈G(rgg(r) − rrg) g(t) = 0;

denoting yr =
∑

g∈G(rgg(r)− rrg) g ∈ S, we obtain yr · t = 0 for all r, t ∈ R, that is ψyr = 0 in
EndRGR, or equivalently yr = 0 in S, for any r ∈ R. As seen previously in the first lemma, this
implies that x = r11G for some r1 ∈ Z(R). Therefore h = ψx = ψr11G = µr1 . Since r1 ∈ Z(R),
we have µr1 = νr1 and the proof of the surjectivity of ν is complete.

So we have proved that CentR(R
G) ' CentS(R). We conclude that Z(RG) = CentR(R

G)∩RG =
Z(R) ∩RG = Z(R)G.

1.3 Invariants of Ore extensions under finite group actions

1.3.1 Iterated Ore extensions

Let A a non necessarily commutative ring. For any σ ∈ AutA, a σ-derivation of A is an
additive map δ : A→ A such that δ(αβ) = σ(α)δ(β) + δ(α)β for all α, β ∈ A.

For any automorphism σ of A and any σ-derivation δ of A, it is a technical elementary
exercise to verify that there exists a ring R containing A as a subring and an element
x ∈ R such that R is a free left A-module with basis {xn , n ≥ 0} and:

xα = σ(α)x+ δ(α) for any α ∈ A. (2)

The ring R is called the Ore extension of A defined by σ and δ, and is denoted by R =
A[x ; σ, δ]. Any element can be written uniquely as a finite sum y =

∑
i αix

i with αi ∈ A.
The addition in R is the ordinary addition of polynomials, and the noncommutative
multiplication in R is defined inductively from the commutation law (2). For y 6= 0, the
nonnegative integer n = max{i , αi 6= 0} is called the degree of y and denoted by degx y,
and the corresponding αn is the leading coefficient of y. By convention 0 has degree
−∞ and leading coefficient 0. It is clear that, if y, z are two non zero elements of R of
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respective degrees n,m and leading coefficients α, β, then yz has degree n+m and leading
coefficient ασn(β). We deduce in particular that:

if A is a domain, then A[x ; σ, δ] is a domain.

In the particular case where δ = 0, we simply denote R = A[x ; σ]. The commutation
relation becomes:

xα = σ(α)x for any α ∈ A. (3)

In the particular case where σ = idA, the map δ is an ordinary derivation of A and we
simply denote R = A[x ; δ]. The commutation relation becomes:

xα = αx+ δ(α) for any α ∈ A. (4)

When the coefficient ring A is a field, we have as in the commutative case an euclid-
ian algorithm in A[x ; σ, δ]; the proofs of the following two results are straightforward
adaptations of their commutative analogues and left to the reader (see for instance [3]).

Proposition. Let R = K[x ; σ, δ] where K is a non necessarily commutative field, σ is
an automorphism of K, and δ is a σ-derivation of K. For any a, b ∈ R, with b 6= 0, there
exist q, r ∈ R unique such that a = qb+ r with degx r < degx b, and there exist q′, r′ ∈ R
unique such that a = bq′ + r′ with degx r

′ < degx b.

Corollary. For K a non necessarily commutative field, all right ideal and all left ideals
of R = K[x ; σ, δ] are principal.

Examples. Take A = k[y] the commutative polynomial ring in one variable over a
commutative field k.

(i) For δ = ∂y the usual derivative, k[y][x ; ∂y] is the first Weyl algebra A1(k), with
commutation law xy − yx = 1.

(ii) For δ = y∂y, k[y][x ; y∂y] is the enveloping algebra U1(k) of the non abelian two
dimensional Lie algebra, with commutation law xy−yx = y. Note that yx = (x−1)y
and then U1(k) can also be viewed as k[x][y ; σ] for σ the k-automorphism of k[x]
defined by x 7→ x− 1.

(iii) For δ = y2∂y, k[y][x ; y2∂y] is the jordanian plane, with homogeneous commutation
law xy − yx = y2.

(iv) For σ the k-automorphism of k[y] defined by y 7→ qy for some fixed scalar q ∈ k×,
k[y][x ; σ] is the quantum plane, denoted by kq[x, y], with commutation law xy =
qyx.

(v) Consider again σ the k-automorphism of k[y] defined by y 7→ qy for some fixed
scalar q ∈ k×, q 6= 1. The Jackson derivative is the additive map δ : k[y] → k[y]
defined by δ(f) = f(qy)−f(y)

qy−y ; it is a σ-derivation. The algebra k[y][x ; σ, δ] is then the

first quantum Weyl algebra, denoted by Aq1, with commutation law xy − qyx = 1.
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Starting with a commutative field k and the commutative polynomial ring R1 = k[x1],
and considering an automorphism σ2 and a σ2-derivation δ2 of R1, we can build the Ore
extension R2 = R1[x2 ; σ2, δ2]. Taking an automorphism σ3 and a σ3-derivation δ3 of R2,
we consider then R3 = R2[x3 ; σ3, δ3]. Iterating this process, we obtain a so called iterated
Ore extension:

Rm = k[x1][x2 ; σ2, δ2][x3 ; σ3, δ3] · · · [xm ; σm, δm]. (5)

It is clear from the construction that {xi11 xi22 . . . ximm }(i1,i2,...,im)∈Nm is a left k-basis of Rm,
and that Rm is a domain. We give here some elementary examples (see also 2.1.1 below).

1. The Lie algebra sl2(k) is ke ⊕ kf ⊕ kh with Lie brackets [h, e] = 2e, [h, f ] = −2f
and [e, f ] = h. By Poincaré-Birkhoff-Witt’s theorem, its enveloping algebra U(sl2)
admits (hiejfk)i,j,k∈N as a left k-basis. Then U(sl2) = k[h][e ; σ′][f ; σ, δ], where σ′

is the k-automorphism of k[h] defined by h 7→ h − 2, σ is the k-automorphism of
k[h][e ; σ′] defined by h 7→ h + 2, e 7→ e, and δ is the σ-derivation of k[h][e ; σ′]
defined by δ(h) = 0 and δ(e) = −h.

2. The Heisenberg Lie algebra sl+3 (k) is kx⊕ky⊕kz with Lie brackets [x, z] = [y, z] = 0
and [x, y] = z. Then U(sl+3 ) = k[z][y][x ; δ] for δ = z∂y. It can be proved much more
generally that the enveloping algebra of any nilpotent Lie algebra of dimension n is
an iterated Ore extension on n variables (with σ1 = id for all i’s in the formula 5).

3. Let Q = (qij) a m ×m matrix with entries in k× such that qii = 1 and qij = q−1
ji

for all i, j ’s. The quantum m-dimensional affine space parameterized by Q is the
algebra kQ[x1, . . . , xm] generated over k by m generators x1, . . . , xm satisfying the
commutation relations xixj = qijxjxi. It is the iterated Ore extension:

kQ[x1, . . . , xm] = k[x1][x2 ; σ2][x3 ; σ3] · · · [xm ; σm]

with σi the k-automorphism of k[x1][x2 ; σ2, ] · · · [xi−1 ; σi−1] defined by σi(xj) =
qijxj for any 1 ≤ j ≤ i− 1.

1.3.2 Noetherianity and finiteness of invariants

The important following theorem (from [8]) can be viewed as a noncommutative version
of Hilbert’s basis theorem (see the historical note of [8] p. 20).

Theorem. Let A a non necessarily commutative ring, σ an automorphism and δ a σ-
derivation of A. If A is right (resp. left) noetherian, then A[x ; σ, δ] is right (resp. left)
noetherian.

Proof. Assume that A is right noetherian. Let J be a non zero right ideal of R = A[x ; σ, δ].
We claim that the set L of leading coefficients of elements of J is a right ideal of A.

Take α, β ∈ L. If α + β = 0, we have α + β ∈ L obviously. So we assume
α + β 6= 0. Let y, z ∈ J of respective degrees m,n ∈ N with respective leading
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coefficients α, β. In other words, y = αxm + · · · and z = βxn + · · · . If n ≥ m,
then yxn−m + z = (α + β)xn + · · · lies in J , thus α + β ∈ L. If m > n, then
y + zxm−n = (α + β)xm + · · · lies in J and α + β ∈ L. Now take γ ∈ A such that
αγ 6= 0. We have yσ−m(γ) = αγxm + · · · . As yσ−m(γ) ∈ J , it follows that αγ ∈ L.
We conclude that L is a right ideal of A.

A being right noetherian, introduce nonzero generators α1, . . . , αk of L as a right ideal of A.
For any 1 ≤ i ≤ k, let yi be an element of J with leading coefficient αi. Denote ni the degree
of yi and n = max{n1, . . . , nk}. Each yi can be replaced by yix

n−ni . Hence there is no loss of
generality in assuming that y1, . . . , yk all have the same degree n. Set N the left A-submodule
of R generated by 1, x, x2, . . . , xn (i.e. the set of elements of R whose degree is lower or equal
than n). Using the commutation law αx = xσ−1(α)− δ(σ−1(α)) for any α ∈ A, we observe that
N is also the right A-submodule of R generated by 1, x, x2, . . . , xn. So N is a noetherian right
A-module (any right module finitely generated over a right noetherian ring is right noetherian,
see the last observation of 1.1.1). It follows that the right A-submodule J ∩N of N is finitely
generated, say generated by z1, . . . , zt. Thus we have J ∩ N = z1A + z2A + · · · + ztA. Set
I = y1R+ y2R+ · · ·+ ykR+ z1R+ z2R+ · · ·+ ztR. We will show that J = I.

The inclusion I ⊂ J is trivial (all yi and zj are in the right ideal J of R). For the converse
inclusion observe first that, A being a subring of R, we have: J ∩N = z1A+ z2A+ · · ·+ ztA ⊂
z1R + z2R + · · ·+ ztR ⊂ I. Thus I contains all elements of J with degree less than n. We will
prove by induction on m that, for any integer m ≥ n, we have: {p ∈ J ; degx p ≤ m} ⊂ I.

The assertion is right for m = n. Assume that it is satisfied up to a rank m−1 ≥ n.
Take p ∈ J with degree m and leading coefficient α. We have α ∈ L, then there
exist β1, . . . , βk ∈ A such that α = α1β1 + · · · + αkβk. Set q =

[
y1σ

−n(β1) +
y2σ

−n(β2)+ · · ·+ ykσ
−n(βk)

]
xm−n, which lies in I by definition of I. Each yi being

of degree n and leading coefficient αi, the degree of q is m and its leading coefficient
is α1β1 + · · · + αkβk = α. It follows that p − q is of degree less than m. We have
p ∈ J and q ∈ I ⊂ J , thus p− q ∈ J and we can apply the induction assumption to
deduce that p− q ∈ I, and then p ∈ I.

So we have proved that J = I. Since J was any right ideal of R and I is finitely generated as a
right ideal of R, we conclude that R is right noetherian.
Now if A is left noetherian, the opposite ring Aop is right noetherian. It is easy to observe that
A[x ; σ, δ]op is isomorphic to Aop[x ; σ−1,−δσ−1]. Then the left noetherianity of R follows from
the first part of the proof.

Corollary. Every iterated Ore extension over a commutative field k is a noetherian
domain.

Proof. We have seen in 1.3.1 that A[x ; σ, δ] is a domain when A is a domain. We apply this
argument and the previous theorem inductively starting from k.

From the previous corollary and theorem 1.1.3, we deduce immediately the following
practical result:

Theorem. Let R be an iterated Ore extension over a commutative field k. Let G be a
finite group of k-automorphisms of R. We suppose that the order of G is prime with the
characteristic of k. Then RG is a finitely generated k-algebra.
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Additional result: skew Laurent polynomials. Let A be a ring and σ ∈ AutA.
The ring S = A[x±1 ; σ] is the set of finite sums

∑p
i=m αix

i where m ≤ p in Z
and αi ∈ A, with usual addition and noncommutative multiplication defined from
relation (3) extended by x−1α = σ−1(α)x−1 for any α ∈ A.

Proposition. If A is right(left) noetherian, then A[x±1 ; σ] is right (left) netherian.

Proof. It is clear that R := A[x ; σ] is a subring of S := A[x±1 ; σ]. Consider a
right ideal I of S and denote J = I ∩ R, which is a right ideal of R. Obviously
JS ⊆ I. Any element y ∈ I may be written as y =

∑n
i=−n αix

i for some n ≥ 0 and
the αi’s in A. Then yxn ∈ J and so y = yxnx−n ∈ JS. Hence we have I = JS.
The ring A being right noetherian, then so is R be previous theorem, whence J is a
finitely generated right ideal of R, and consequently I = JS is a finitely generated
right ideal of S. We conclude that S is right noetherian.
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2 Actions and invariants for Weyl algebras

2.1 Polynomial differential operator algebras

2.1.1 Weyl algebras

We fix an integer n ≥ 1 and a commutative base field k. Let S = k[q1, q2, . . . , qn] be the
commutative polynomial algebra in n variables. We denote by EndkS the k-algebra of
k-linear endomorphisms of S. The canonical embedding µ : S → EndkS consisting in the
identification of any polynomial f with the multiplication µf by f in S is a morphism of
algebras. We consider in EndkS the k-vector space DerkS consisting of the k-derivations
of S. It is a S-module with basis (∂q1 , ∂q2 , . . . , ∂qn), where ∂qi is the usual derivative related
to qi. Then the algebra DiffS of differential operators on S is the subalgebra of EndkS
generated by µq1 , . . . , µqn , ∂q1 , . . . , ∂qn . This algebra DiffS = Diffk[q1, . . . , qn] is called the
n-th Weyl algebra over k, and is denoted by An(k). For all d ∈ DerkS and f, h ∈ S, the
ordinary rule d(fh) = d(f)h + fd(h) can be written dµf = µfd + µd(f) in EndkS or, up
to the identification mentioned above, df − fd = d(f). Denoting by pi the derivative ∂qi ,
we obtain the following formal definition of An(k):

Definition. The Weyl algebra An(k) is the algebra generated over k by 2n generators
q1, . . . , qn, p1, . . . , pn with relations:

[pi, qi] = 1, [pi, qj] = [pi, pj] = [qi, qj] = 0 for i 6= j, (6)

where [ . , . ] is the canonical commutation bracket (i.e. [a, b] = ab − ba for all a, b ∈
An(k)). The monomials (qi11 . . . q

in
n p

j1
1 . . . p

jn
n )(i1,...,in,j1,...,jn)∈N2n are a k-left basis of the

algebra An(k), which can be viewed as the iterated Ore extensions:

An(k) = An−1(k)[qn][pn ; ∂qn ], (7)

An(k) = k[q1, q2, . . . , qn][p1 ; ∂q1 ][p2 ; ∂q2 ] . . . [pn ; ∂qn ]. (8)

It follows in particular that the invertible elements of An(k) are only the nonzero scalar
in k×, and so that any nontrivial automorphism of An(k) is outer.

Proposition. If k is of characteristic zero, An(k) is a simple noetherian domain of center
k.
Proof. By 1.3.2, An(k) is a noetherian domain independently of the characteristic. Let a =∑

i,j ai,jq
i
np

j
n be any element of An(k), with ai,j ∈ An−1(k). We have:

[pn, a] =
∑
i,j

i ai,j q
i−1
n pjn and [a, qn] =

∑
i,j

j ai,j q
i
np

j−1
n (9)

If a is central in An(k), we have [pn, a] = [a, qn] = 0. Since k is of characteristic zero, we deduce
from (9) that a reduces to a0,0, and then a ∈ An−1(k). As a must be central in An−1(k), it
follows by induction that a ∈ k. Now consider a two-sided ideal I of An(k) and a a non zero
element of I. We must have aqn ∈ I and qna ∈ I, thus [a, qn] ∈ I. Similarly, [pn, a] ∈ I.
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Applying (8), we deduce after a finite number of steps that a0,0 ∈ I. We repeat the process with
the element a0,0 in An−1(k), and then inductively up to obtain 1 ∈ I. This proves that the only
two-sided ideals of An(k) are (0) and An(k).

Proposition. If k is of characteristic zero, then An(k)G is a simple noetherian domain
of center k for any finite subgroup G of AutAn(k).
Proof. An(k)G is simple by point (ii) of theorem 1.2.1 and noetherian by point (i) of theorem
1.2.1 and observation (1) of 1.1.2. Any nonzero central element of An(k)G generates a two-sided
principal ideal in An(k)G, so is invertible since An(k)G is simple, and then belongs to k.

2.1.2 Bernstein filtration

We refer for the results and proofs of this paragraph to [13] or [5]. Let us recall the
following well known preliminary notions. Let R be a k-algebra. We say that R is graded
if there exists a sequence (Gi)i≥0 of k-vector spaces satisfying the following two conditions:

(i) R =
⊕

i≥0 Gi ; (ii) GiGj ⊆ Gi+j.

Each Gi is called the homogeneous component of degree i of R. The must simple example
of commutative graded k-algebra is the commutative polynomial ring k[x1, . . . , xn] where
the monomials xk11 x

k2
2 . . . xknn such that k1 + k2 + · · · + · · · kn = i form a k-basis of the

homogeneous component of degree i. Similarly the quantum space (see example (iv) and
example 3 of 1.3.1) gives an easy noncommutative example.

A family F = (Fi)i≥0 of k-vector spaces of R is a filtration of R when the following three
conditions are satisfied:

(i) F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ R ; (ii) R =
⋃
i≥0 Fi ; (iii) FiFj ⊆ Fi+j

In this case, we consider the k-vector space grF(R) :=
⊕

i≥0(Fi/Fi−1), with convention
F−1 = 0. In order to make it into a graded algebra, it is enough to define the product on
the homogeneous component (then extend by linearity), and we do it by:

(xn + Fn−1)(xm + Fm−1) = xnxm + Fn+m−1, for any n,m ≥ 0, xn ∈ Fn, xm ∈ Fm.

A straightforward verification shows that grF(R) is a graded k-algebra whose homoge-
neous components are the Gi = Fi/Fi−1. This is called the graded algebra of R associated
to the filtration F . Our first important application of this process is for Weyl algebras.

Theorem. For any nonnegative integer m, denote by Fm the k-vector space generated
in An(k) by monomials qi11 . . . q

in
n p

j1
1 . . . p

jn
n such that i1 + · · · + in + j1 + · · · + jn ≤ m.

Then:

(i) F = (Fm)m∈N is a filtration of An(k), called the Bernstein filtration.

(ii) The associated graded algebra grF(An(k)) is the commutative polynomial algebra
in 2n variables over k.
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Proof. Point (i) is clear. For (ii), we consider the graded algebra T := grF (An(k)) =⊕
i≥0Fi/Fi−1 associated to the Bernstein filtration. For any k ≥ 0, we introduce the canonical

surjection πk : Fk → Fk/Fk−1. By definition of the product in T , we have:
πn(xn)πm(xm) = πn+m(xnxm) for any n,m ≥ 0, xn ∈ Fn, xm ∈ Fm.

In particular, for any monomial uk = qi11 . . . q
in
n p

j1
1 . . . pjnn with i1 + · · · + in + j1 + · · · + jn = k,

we have πk(uk) = π1(q1)
i1 . . . π1(qn)

inπ1(p1)
j1 . . . π1(pn)

jn . We define in T the 2n-elements
ti := π1(qi) and ti+n := π1(pi) for any 1 ≤ i ≤ n. Any element of Fk/Fk−1 can be written πk(xk)
for some xk ∈ Fk ; there exists a monomial uk of degree k as above such that xk = uk+xk−1 with
xk−1 ∈ Fk−1, then πk(xk) = πk(uk) = ti11 . . . t

in
n t

j1
n+1 . . . t

jn
2n with i1 + · · ·+ in + j1 + · · ·+ jn = k.

We conclude that T is generated by t1, . . . , t2n as k-algebra.
Since [pi, qj ] = [pi, pj ] = [qi, qj ] = 0 in An(k) for all 1 ≤ i 6= j ≤ n, it is clear that titk = tkti in
T when |k − i| 6= n. Moreover, piqi = qipi + 1 implies π2(piqi) = π2(qipi) then ti ti+n = ti+n ti
for any 1 ≤ i ≤ n. It follows that the k-algebra T is commutative.
So we can consider the surjective morphism of rings φ : S := k[z1, . . . , z2n] → T , where S
is the commutative polynomial algebra in 2n variables over k, defined by φ(zi) = ti for any
1 ≤ i ≤ 2n. In order to prove the injectivity, we consider f ∈ S such that φ(f) = 0. Because
φ maps each zi to the corresponding ti, the degrees from S to T are respected by φ (i.e. φ is a
graded morphism) and we can suppose without any restriction that f is homogeneous. We write
f =

∑
λi,j z

i1
1 . . . z

in
n z

j1
n+1 . . . z

jn
2n with i1+· · ·+in+j1+· · ·+jn = k and λi,j ∈ k for each monomial

in the sum. Defining in An(k) the corresponding element g =
∑
λi,j q

i1
1 . . . q

in
n p

j1
n . . . p

jn
n , we have:

πk(g) =
∑
λi,j t

i1
1 . . . t

in
n t

j1
n+1 . . . t

jn
2n = φ(f) = 0.

Thus g ∈ Fk−1. But by definition g is a sum of monomials of total degree k, then all the
coefficient λi,j above are zero. We conclude that f = 0 and φ is injective as required.

Although the Bernstein filtration and associated grading play a main role in many studies
about the Weyl algebras (see in particular further the important proposition and theorem
in 3.2.3), it could be sometimes usefull to consider other filtrations or graduations:

1. For any integer r ≥ 0, define Cr to be the set of elements in An(k) which can
be written as a finite sum

∑
j∈Nn fj(q1, . . . , qn) p

j1
1 . . . pjnn with j1+· · ·+jn ≤ r,

where fj ∈ k[q1, . . . , qn]. It is easy to prove that (Cr)r≥0 is a filtration of An(k).
Note that in particular C0 = k[q1, . . . , qn] is an infinite dimensional k-vector
space (any Fi is finite dimensional in the case of the Bernstein filtration). This
filtration “by the order of the differential operators” can be defined (unlike the
Bernstein filtration) for other kinds of differential operator algebras.

2. We consider here the Weyl algebra A1(k), with generators p, q and relation
[p, q] = 1. For any integer m ∈ Z, define Vm to be the set of elements in A1(k)
which can be written as a finite sum

∑
i,j∈N fi,j p

iqj with i − j = m, where

fi,j ∈ k. In particular V0 = k[pq] contains all monomials pjqj with j ≥ 0
because of the formula:

pjqj = pq(pq + 1)(pq + 2) . . . (pq + j − 1)

For i ≥ j, we have piqj = pi−j(pjqi) ∈ Vi−j , and for j ≥ i, we have piqj =
(piqi)qj−i ∈ V−(j−i). Hence

V0 = k[pq], Vm = pmk[pq] and V−m = k[pq]qm for m ≥ 0.
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Then A1(k) =
⊕

m∈Z Vm and, up to a natural extension of the definition,
V = (Vm)m∈Z is a Z-graduation of A1(k) (see further the second comment at
the end of 2.2.2 for an application of it).

2.2 Actions and invariants for A1

2.2.1 A reminder on Kleinian surfaces

We consider the group SL2(C) (briefly denoted by SL2 if there is no doubt about the
base field) and the trivial two dimensional representation ρ : SL2 → GL(V ) defined on a
complex vector space V = Ce1 ⊕ Ce2 by

∀ g =
(
α β
γ δ

)
∈ SL2, g.e1 = αe1 + γe2 and g.e2 = βe1 + δe2.

It defines on C[V ] ' S(V ∗) = C[x, y] with x = e∗1 and y = e∗2 the canonical left action :

∀ g ∈ SL2, ∀ f ∈ C[V ], ∀ v ∈ V, (g.f)(v) = f(g−1.v) = f(ρ(g−1)(v)). (10)

which is equivalent to:

∀ g =
(
α β
γ δ

)
∈ SL2, g.x = δx− βy and g.y = −γx+ αy (11)

extended by algebra automorphism to any polynomial.
The description of the algebras C[x, y]G for G a finite group of SL2 is a classical topic
in algebraic and geometric invariant theory. Let us recall that finite subgroups of SL2

are classified up to conjugation in five types, two infinite families parameterized by the
positive integers (the type An−1 corresponding of the cyclic group of order n and the type
Dn corresponding to the binary dihedral group of order 4n) and three groups E6, E7, E8

of respective orders 24, 48, 120. They can be explicitly described in the following way.
Let us denote ζn = exp(2iπ/n) ∈ C for any integer n ≥ 1 and consider in SL2 the matrices:

θn =
(
ζn 0

0 ζ−1
n

)
, µ =

(
0 i
i 0

)
, ν =

(
0 1
−1 0

)
, ϕ =

(
−ζ35 0

0 −ζ25

)
,

η = 1√
2

(
ζ78 ζ78
ζ58 ζ8

)
, ψ = 1

ζ25−ζ
−2
5

(
ζ5+ζ

−1
5 1

1 −(ζ5+ζ
−1
5 )

)
.

We define the following subgroups of SL2:

• type An−1 : the cyclic group Cn, of order n, generated by θn,

• type Dn : the binary dihedral group Dn, of order 4n, generated by θ2n and µ,

• type E6 : the binary tetrahedral group T , of order 24, generated by θ4, µ and η,

• type E7 : the binary octahedral group O, of order 48, generated by θ8, µ and η,

• type E8 : the binary icosahedral group I, of order 120, generated by ϕ, ν and ψ.

Since any finite subgroup G of SL2 is conjugate to a subgroup G′ of these types (then
C[x, y]G ' C[x, y]G′

), we can suppose without restriction in the determination of the
algebra of invariants C[x, y]G for the natural action (11) that G is Cn, Dn, T, O or I. In
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each case, one can compute (see [17]) a system of three generators f1, f2, f3 of the algebra
of invariants C[x, y]G for the natural action.

type generators of C[x, y]G equation of F

An−1 f1 = xy, f2 = xn, f3 = yn Xn − Y Z = 0

Dn f1 = x2y2, f2 = x2n + (−1)ny2n,

f3 = x2n+1y − (−1)nxy2n+1 Xn+1 +XY 2 + Z2 = 0

E6 f1 = xy5 − x5y, f2 = x8 + 14x4y4 + y8,

f3 = x12 − 33x8y4 − 33x4y8 + y12 X4 + Y 3 + Z2 = 0

E7 f1 = x8 + 14x4y4 + y8, f2 = x10y2 − 2x6y6 + x2y10

f3 = x17y − 34x13y5 + 34x5y13 − xy17 X3Y + Y 3 + Z2 = 0

E8 f1 = x11y + 11x6y6 − xy11,

f2 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20, X5 + Y 3 + Z2 = 0

f3 = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30

In all cases, the algebra C[x, y]G = C[f1, f2, f3] appears as the factor of the polynomial
algebra C[X, Y, Z] in three variables by the ideal generated by one irreducible polyno-
mial F (of degree n, n + 1, 4, 4, 5 respectively). The corresponding surfaces F of C3

are the Kleinian surfaces, which are the subject of many geometric, algebraic and ho-
mological studies. It is proved in [17] that, for G and G′ two groups among the types
An−1, Dn, E6, E7, E8, the algebras C[x, y]G and C[x, y]G′

are isomorphic if and only if
G = G′.

2.2.2 Action of SL2 on the Weyl algebra A1

We consider now a analogue of the commutative context of 2.2.1 for the first Weyl algebra.
Here we take n = 1 and k = C. We denote simply p for p1 and q for q1. Thus, A1(C) is
the algebra generated over C by p, q with the only relation [p, q] = 1.

A1(C) = C[q][p ; ∂q] = C[p][q ; −∂p]. (12)

Any element of SL2 = SL2(C) gives rise to a linear algebra automorphism on A1(C)
defined by:

∀ g =
(
α β
γ δ

)
∈ SL2, g(p) = αp+ βq and g(q) = γp+ δq. (13)

We start with some elementary examples of calculation of A1(C)G for G an infinite sub-
group of SL2.

1. For T = {
(
α 0
0 α−1

)
; α ∈ C×}, we have A1(C)T = C[pq].

Proof. Choose δ ∈ C× of infinite order and denote by g the automorphism p 7→ δp
and q 7→ δ−1q. For any monomial λi,jp

iqj with λi,j ∈ C, we have g(λi,jp
iqj) =

λi,jδ
i−jpiqj . Then a polynomial

∑
i,j λi,jp

iqj lies in A1(C)T if and only if λi,j = 0
for i 6= j.

15



2. For U = {
(
1 β
0 1

)
; β ∈ C}, we have A1(C)U = C[q].

Proof. Choose β ∈ C× and denote by g the automorphism p 7→ p + βq, q 7→ q.
Any nonzero polynomial f ∈ A1(C) can be written f = hm(q)p

m + hm−1(q)p
m−1 +

· · ·+ h0(q) with hi(q) ∈ C[q], hm 6= 0. Then g(f) = hm(q)(p+ βq)m + hm−1(q)(p+
βq)m−1+ · · ·+h0(q). It follows from (12) that (p+βq)k = pk+kβqpk−1+ · · · for any
k ≥ 1. Therefore g(f) = hm(q)p

m + [hm−1(q) +mβqhm(q)]p
m−1 + · · · . Supposing

g(f) = f , we observe by a trivial identification that mβqhm(q) = 0. We conclude
that f = h0(q) ∈ C[q].

3. We deduce in particular that (A1(C))SL2 = C.

We consider now the more interesting case of finite subgroups of G. Denoting by ι :
SL2 ↪→ AutA1(C) the canonical injection defined by (13), a subgroup of AutA1(C) is
said to be linear admissible if it is the image by ι of one of the five types An−1, Dn, E6,
E7, E8 defined in 2.2.1. We can now formulate (from [27]:

Theorem.

(i) Any finite subgroup of AutA1(C) is conjugate to a linear admissible subgroup.

(ii) If G and G′ are two linear admissible subgroups of AutA1(C), then A1(C)G '
A1(C)G

′
if and only if G = G′.

Proof. It is not possible to give here a complete self contained proof of this theorem, which is
based on many non trivial theorems from various papers. We indicate the structure of the main
arguments and refer the interested reader to the original articles for further details.

First, we can naturally introduce two kinds of automorphisms of A1(C). The linear ones
(preserving the vector space Cp⊕Cq) correspond to the action (13) of SL2. The triangular ones
are of the form: p 7→ αp + β, q 7→ α−1q + f(p) with α ∈ C×, β ∈ C, f(p) ∈ C[p], and form a
subgroup denoted by J. It is proved in [40] that AutA1(C) is generated by the subgroups J
and SL2 (in fact the image L of SL2 by the canonical injection ι). More precisely, it is shown
in [19] that AutA1(C) is the amalgamated free products of L and J over their intersection. (i.e.
if gi ∈ J \ L and hi ∈ L \ J, then g1h1g2h2 . . . gnhngn+1 /∈ L). It follows by a theorem of Serre
(see [15], théorème 8 p. 53) that any finite subgroup G of AutA1(C) is conjugate either to a
subgroup of L or to a subgroup of J.

Suppose now that G is a finite subgroup of J. It acts on Cp ⊕ C fixing C. By semi-simplicity
of G (see the lemma below), there exists p′ ∈ Cp ⊕ C such that G stabilizes Cp′ and Cp ⊕ C =
Cp′ ⊕ C. Then G acts on Cq ⊕ C[p] = Cq ⊕ C[p′] stabilizing C[p′]. Again by semi-simplicity
of G, there exists q′ ∈ Cq ⊕ C[p′] such that G stabilizes Cq′ and Cq ⊕ C[p′] = Cq′ ⊕ C[p′].
Denoting by h the triangular automorphism defined by h(p) = p′ and h(q) = q′, we conclude
that h−1Gh acts diagonally on Cp⊕ Cq. In particular, G is conjugate to a subgroup of L.

Thus any finite subgroup of J is conjugate to a subgroup of linear automorphisms. Since
the finite subgroups of SL2 are classified up to conjugation in the five types An, Dn, E6, E7, E8

(see 2.2.1), point (i) follows. The separation (ii), which cannot be obtained by the standard
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dimensional invariants, was first proved in [27] by an original method of “reduction modulo p”.
It can also be obtained from the argument of the second additional comment below.

In order to be complete, we recall in the following lemma the semi-simplicity argument
used in the proof of the proposition.

Lemma (Maschke). Let ρ : G → GL(V ) a representation of a finite group G
whose order doesn’t divide the characteristic of the base field k, with V a non
necessarily finite dimensional vector space. Suppose that V = W ⊕ W1 with W
and W1 subspaces such that W is G-stable. Then there exists a G-stable subspace
W2 'W1 such that V =W ⊕W2.

Proof. Denote by π the canonical projection π : V → W and define f : V → V
by f(v) = 1

|G|
∑

g∈G ρ(g)(π(ρ(g)
−1(v))). Because W is G-stable, we have f(v) ∈W

for all v ∈ V and f(w) = w for all w ∈ W . Then Im f = W . An easy calculation
shows that f(ρ(h)(v)) = ρ(h)(f(v)) for any h ∈ G and v ∈ V . It follows that Ker f
is G-stable. Then the lemma is proved with W2 = Ker f .

• First additional comment: finite generation of A1(C)G. By theorem 1.3.2, A1(C)G is
a finitely generated C-algebra, and we can ask for explicit generators of A1(C)G for any
type of admissible G, similarly to the commutative case in 2.2.1.

Example: consider the action p 7→ ζp, q 7→ ζ−1q of the cyclic group Cn on A1(C),
with ζ a primitive n-th root of unity in C. Each monomial piqj being an eigenvector
for the action, it is clear that A1(C)Cn is generated by invariants monomials. We
recall now the calculations of the last example of 2.1.2: for j ≥ i, we write piqj =
(piqi)qj−i and observe that piqi is invariant to deduce that j − i = kn for some
k ≥ 1, and then piqj = (piqi)qkn. Similarly, piqj = pkn(pjqj) if i > j. We conclude
with the formula pjqj = pq(pq+1)(pq+2) . . . (pq+ j−1) that A1(C)Cn is generated
by qn, pn and pq. This result is formally similar to the first case (type An−1) of
2.2.1, but we must of course take care that the generators don’t commute here.
More precisely we have: pqpn = pn(pq − n), qnpq = (pq − n)qn, and

pnqn − qnpn =
∏n
i=1(pq + i− 1)− (−1)n

∏n
i=1(−pq + i).

We refer to [38] for calculation of generators for each of the five types of admissible G.

• Second additional comment: dimension of the first Hochschild homology space of A1(C)G.
For any C-algebra A, we can consider the C-vector space HH0(A) = A/[A,A] where [A,A]
denote the subspace generated by all brackets [a, b] = ab−ba with a, b ∈ A. The paper [28]
proves (using the Morita equivalence of A1(C)G with A1(C) ?G and a general result from
[53] on Hochschild homology of crossed products) that dimCHH0(A1(C)G) = s(G) − 1,
where s(G) is the number of conjugacy classes in G. Calculating case by case, it follows:

type An−1 Dn E6 E7 E8

dimC HH0(A1(C)G) n− 1 n+ 2 6 7 8
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Example: a direct elementary proof in the cyclic case. The cyclic group Cn acts
by p 7→ ζp, q 7→ ζ−1q with ζ a primitive n-th root of unity. The invariant algebra
Rn := A1(C)Cn is generated by pq, pn, qn. This action respects the Z-graduation
A1(C) =

⊕
m∈Z Vn where V0 = C[pq], Vm = pmV0 and V−m = V0 q

m for any if m ≥ 0
(see example 2 at the end of 2.1.2). Hence Rn can be decomposed into:

Rn = · · · ⊕ V0 q
2n ⊕ V0 q

n ⊕ V0 ⊕ pnV0 ⊕ p2nV0 ⊕ · · ·

For integers i ≥ 0, k ≥ 1, we have [pkn(pq)i , pq] = kn pkn(pq)i and [pq , (pq)iqkn] =
kn (pq)iqkn, thus clearly:

(· · · ⊕ V0 q
2n ⊕ V0 q

n)⊕ (pnV0 ⊕ p2nV0 ⊕ · · · ) ⊆ [Rn, Rn].

Therefore HH0(Rn) ' V0 / ( [Rn, Rn] ∩ V0 ) and our aim is to identify [Rn, Rn] ∩ V0.
Let v(X) = (X − 1)(X − 2) . . . (X − n) ∈ C[X] and

L := {f(pq)− f(pq + n) ; f(X) ∈ v(X)C[X]} ⊆ V0.

We claim that [Rn, Rn]∩ V0 = L. Observe first that a C-basis of L is (`i)i≥0 where:

`i = (pq)iv(pq)− (pq + n)iv(pq + n).

Since qnpn = v(pq) and pnqn = v(pq + n) (see for instance [40] p. 216), it follows
that `i = (pq)iqnpn − (pq + n)ipnqn = (pq)iqnpn − pn(pq)iqn = [(pq)iqn, pn]. Hence
`i ∈ ([Rn, Rn] ∩ V0) for any i ≥ 0 and so L ⊆ [Rn, Rn] ∩ V0.
For the converse inclusion, note theta an arbitrary element of [Rn, Rn]∩V0 is a sum
of commutators of the form:

C(f, g, k) = [f(pq)qkn, pkng(pq)] with k ≥ 1 and f, g ∈ C[X].

We have: C(f, g, k) = f(pq)qknpkng(pq) − pkng(pq)f(pq)qkn = f(pq)g(pq)qknpkn −
g(pq + kn)f(pq + kn)pknqkn. By induction on k from the fundamental identities
qnpn = v(pq) and pnqn = v(pq + n), one checks easily that qknpkn = w(pq) and
pknqkn = w(pq+ kn) for w(X) =

∏k−1
i=0 v(X − in) which lies in the ideal v(X)C[X].

Hence: C(f, g, k) = f(pq)g(pq)w(pq)− g(pq + kn)f(pq + kn)w(pq + kn) ∈ L.

Finally HH0(Rn) = V0/L with V0 = C[pq] and L the subspace of V0 with basis (`i)i≥0

such that degpq`i = n+ i− 1. We conclude that a basis of V0/L is {(pq)j}0≤j≤n−2

and the dimension is n− 1.

• Third additional comment: A1(C)G as a deformation of the kleinian surfaces. The linear
action of the finite group G on the noncommutative algebra A1(C) induces canonically
a linear action on the commutative graded algebra S = gr(A1(C)) = C[x, y] associated
to the Bernstein filtration, which is the standard action considered in 2.2.1. We have
then gr(A1(C)G) = SG (see the last proposition of 2.1.1) and therefore the invariant
algebra A1(C)G can be seen as a noncommutative deformation of the algebra SG of regular
functions on the associated kleinian surface. This point of view will be developed further
in 3.2.3.
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2.3 Linear actions on An

2.3.1 Action of Sp2n on the Weyl algebra An

An automorphism g of An(k) is linear if the k-vector subspaceW = kq1⊕· · ·⊕kqn⊕kp1⊕
· · ·⊕kpn is stable under g. The restriction to W of the commutation bracket in An(k) de-
fines an alternated bilinear form and relations (6) mean that B = (p1, q1, p2, q2 . . . , pn, qn)
is a symplectic basis of W . Then it is clear that the group of linear automorphisms of
An(k) is isomorphic to the symplectic group Sp2n = Sp2n(k). The previous example 2.2.2
is just the case n = 1. For finite abelian groups of linear automorphisms and for k = C,
the following result (from [24]) simplifies the situation in a way which is used as a key
argument by many studies of this kind of actions (see [30], [29], [25], and further 5.4.2).

Proposition. Any finite abelian subgroup of linear automorphisms of An(C) is conju-
gated in Sp2n to a subgroup of diagonal automorphisms.

More precisely, with the above notations, for any finite abelian subgroup G of Sp2n,
there exist a symplectic basis C = (x1, y1, x2, y2, . . . , xn, yn) of W and complex characters
χ1, χ2, . . . , χn of G such that:

g(xj) = χj(g)xj and g(yj) = χj(g)
−1yj, for all g ∈ G.

Proof. By Schur’s lemma and total reducibility (see below), there exists U = (u1, u2, . . . , u2n)
a basis of W and complex characters ϕ1, ϕ2, . . . , ϕn of G such that g(uj) = ϕj(g)uj for any
1 ≤ j ≤ 2n. Set ωi,j = [ui, uj ] for all 1 ≤ i, j ≤ 2n. Up to permute the ui’s, one can suppose
that ω1,2 6= 0. For any 3 ≤ j ≤ 2n, let us define:

vj = ω1,2uj − ωj,2u1 + ωj,1u2.

Denote x1 = u1 and y1 = ω−1
1,2u2. Then (x1, y1, v3, v4, . . . , v2n) is a basis ofW satisfying [x1, y1] =

1 and [x1, vj ] = [y1, vj ] = 0 for any 3 ≤ j ≤ 2n. The action of G on this new basis can be
described on the following way. It is clear that g(x1) = ϕ1(g)x1 and g(y1) = ϕ2(g)y1 for any
g ∈ G. Since ω1,2 6= 0, we have ϕ2(g) = ϕ1(g)

−1. For 3 ≤ j ≤ 2n, it follows from the definition
of vj that:

g(vj) = ϕj(g)vj + ωj,2
(
ϕj(g)− ϕ1(g)

)
u1 − ωj,1

(
ϕj(g)− ϕ2(g)

)
u2.

If ωj,2 6= 0, then ϕj(g) = ϕ2(g)
−1 = ϕ1(g). Similarly ωj,1 6= 0 implies ϕj(g) = ϕ2(g). Hence

g(vj) = ϕj(g)vj for any 3 ≤ j ≤ 2n. Finally we conclude that the basis (x1, y1, v3, v4, . . . , v2n)
of W satisfies [x1, y1] = 1 and [x1, vj ] = [y1, vj ] = 0 for any 3 ≤ j ≤ 2n, and that G acts by:

g(x1) = ϕ1(g)x1, g(y1) = ϕ1(g)
−1y1, g(vj) = ϕj(g)vj for 3 ≤ j ≤ 2n.

We repeat the process with the subspace generated by v3, . . . , v2n. As W doesn’t contain any
totally isotropic subspace of dimension ≥ n + 1, we can iterate this construction n times to
obtain the basis C and the characters χ1 = ϕ1, χ2 = ϕ3, . . . , χn = ϕ2n−1 of the proposition.

In order to be complete, we recall in the following lemma two classical arguments on
representation theory used at the beginning of the proof.
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Lemma.

(i) (Total reducibility). Let ρ : G→ GL(V ) be a representation of a finite group G
whose order doesn’t divide the characteristic of k, with V a finite dimensional
vector space. Then V = V1 ⊕ · · · ⊕ Vm with Vi G-stable and irreducible (i.e.
Vi doesn’t admit proper and non zero G-stable subspace) for any 1 ≤ i ≤ m.

(ii) (Schur’s lemma). If k is algebraically closed and G is abelian, then any finite
dimensional irreducible representation of G is of dimension one.

Proof. Because V is finite dimensional, (i) just follows from Maschke’s lemma
(see 2.2.2). For (ii), consider a finite dimensional irreducible representation ρ : G→
GL(V ) of an abelian group G. Fix s ∈ G and set t = ρ(s). For any g ∈ G,
gs = sg implies ρ(g)t = tρ(g). Let λ ∈ k∗ be a eigenvalue of t and denote W =
{v ∈ V ; t(v) = λv} 6= (0). For any v ∈ W , we have: t(ρ(g)(v)) = ρ(g)(t(v)) =
ρ(g)(λv) = λ(ρ(g)(v)) so ρ(g)(v) ∈W . Hence W is G-stable and then W = V . We
have proved: for all s ∈ G, there exists λ ∈ k∗ such that ρ(s) = λ idV . In particular
any one-dimensional subspace of V is G-stable. Since V is irreducible, we conclude
that V is of dimension one.

This proposition applies in particular to the subgroup generated by one automorphism
of finite order. Under this form, it appears in [29] and [30] as an ingredient for the ho-
mological study of An(C)G when G is finite not necessarily abelian (another fundamental
ingredient is the Morita equivalence between An(C)G and An(C) ? G by theorem 1.2.1,
as An(C) doesn’t admit nontrivial inner automorphisms). We cannot develop here the
elaborate proofs of these papers leading in particular to the following theorem, which
describes very precisely the Hochschild (co)homology and Poincaré duality: for any finite
subgroup of linear automorphisms of An(C), we have for all nonnegative integer j:

dimCHHj(An(C)G) = dimCHH
2n−j(An(C)G)) = aj(G)

where aj(G) is the number of conjugacy classes of elements of G which admit the eigen-
value 1 with multiplicity j.

2.3.2 Finite triangular automorphism groups

Let g be an automorphism of An(k) and suppose that g is triangular with respect of the
iterated Ore extension:

An(k) = k[q1][p1 ; ∂q1 ][q2][p2 ; ∂q2 ] . . . [qn][pn ; ∂qn ]. (14)

By straightforward calculations from relations (6), we can check that g stabilizes in fact
any subalgebra k[qi][pi ; ∂qi ] ' A1(k), for 1 ≤ i ≤ n, acting on the generators by:

g(qi) = αiqi + γi, g(pi) = α−1
i pi + fi(qi), with αi ∈ k×, γi ∈ k, fi ∈ k[qi]. (15)

So, similarly to the semisimplicity argument used in the particular case n = 1 in the proof
of the main theorem of 2.2.2, we have:
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Lemma. Any finite subgroup of triangular automorphisms of An(k) is conjugated in
Aut (An(k)) to a finite abelian subgroup of diagonal automorphisms.

Proof. Let G be a finite subgroup of triangular automorphisms of An(k). In each subalgebra
k[qi][pi ; ∂qi ], 1 ≤ i ≤ n, consider the k-vector spaces Fi = k⊕ kqi and Ei = k[qi]⊕ kpi. By (15),
G acts on Fi fixing k and on Ei stabilizing k[qi]. By the semi-simplicity lemma 2.2.2, there exist
yi ∈ Fi with Fi = k⊕ kyi and xi ∈ Ei with Ei = k[qi]⊕ kxi such that kyi and kxi are G-stable.
By construction, yi = λiqi + µi where λi ∈ k× and µi ∈ k. Up to multiply by a nonzero scalar,
we can suppose that xi = λ−1

i pi + si(qi) with si ∈ k[qi]. Let h be the triangular automorphism
of An(k) defined by h(qi) = yi and h(pi) = xi for all 1 ≤ i ≤ n. Then h−1Gh acts diagonally on
the vectors of the basis q1, p1, . . . , qn, pn.

As seen by previous results, some favorable situations reduce to diagonal actions, i.e.
actions of subgroups of the torus (k×)n by g(qi) = αiqi and g(pi) = α−1

i pi with αi ∈ k×.
This is the most simple case of the following construction.

2.3.3 Dual action of GLn on the Weyl algebra An

We consider here the case of a linear action on An(k) which extends an action on the
polynomial functions by the following classical duality splitting process.

• We start with a vector space V of finite dimension n over k, (e1, . . . , en) a k-basis
of V , and (x1, . . . , xn) its dual basis in V ∗, S := k[V ] ' S(V ∗) ' k[x1, . . . , xn]. Let
ρ : G → GL(V ) be a representation of some group G on V, with the corresponding left
action:

∀ g ∈ G, ∀ v ∈ V, g.v = ρ(g)(v), (16)

extended canonically in an action by automorphisms on S by:

∀ g ∈ G, ∀ f ∈ S, ∀ v ∈ V, (g.f)(v) = f(g−1.v) = f(ρ(g−1)(v)). (17)

The restriction of this action to the subspace V ∗ = kx1 ⊕ kx2 ⊕ · · ·kxn just corresponds
to the dual representation of ρ [recall that ρ∗ : G→ GL(V ∗) is such that, for any f ∈ V ∗,
the linear form ρ∗(g)(f) is given by v 7→ f(ρ(g−1)(v))].

We put W = V ⊕ V ∗. Any element of W can be written uniquely w = v + x with v ∈ V
and f ∈ V ∗. Then we denote w = (v, f). Combining the action (16) of G on V and the
associated action (17) on V ∗, we define the action:

∀ g ∈ G, ∀ w = (v, f) ∈ W = V ⊕ V ∗, g.w = (g.v, g.f). (18)

We define the following bilinear form q : W → k:

∀ (v, f) ∈ W, q(v, f) = f(v). (19)

Considering the basis (e1, . . . , en, x1, . . . , xn) ofW and its dual basis (x1, . . . , xn, ζ1, . . . , ζn)
in W ∗, we claim that

q = x1ζ1 + · · ·+ xnζn ∈ k[W ]G. (20)
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Proof. From one hand, by definition of the xi’s and ζi’s, we have xi(v, f) =
xi(v, 0) = xi(v) and ζi(v, f) = ζi(0, f) = ζi(f) for all (v, f) ∈ W . It follows that
the polynomial function q′ = x1ζ1 + · · · + xnζn is a bilinear form W → k. For any
1 ≤ i, j ≤ n, we have: q′(ei, xj) =

∑n
k=1 xk(ei, xj)ζk(ei, xj). Since xk(ei, xj) = δi,k

and ζk(ei, xj) = δj,k, we obtain q′(ei, xj) = δi,j = xj(ei) = q(ei, xj). Using the
bilinearity of q and q′, this proves that q′ = q.

From the other hand, for any g ∈ G and (v, f) ∈ W , we have q(g.(v, f)) =
(g.f)

(
(g.v)

)
= f

(
ρ(g−1)(ρ(g)(v))

)
= f(v) = q(v, f). Therefore g.q = q in k[W ]

for any g ∈ G.

• We start again with a vector space V of finite dimension n over k, (q1, . . . , qn) a k-basis
of the dual V ∗, S := k[V ] ' S(V ∗) ' k[q1, . . . , qn]. As in 2.1.1, we denotes by EndkS
the k-algebra of k-linear endomorphisms of S, µ : S → EndkS the canonical embedding
defined by the multiplication, DerkS the subspace of EndkS consisting of the k-derivations
of S, and An(k) = DiffS the subalgebra of EndkS generated by µq1 , . . . , µqn , ∂q1 , . . . , ∂qn .

Let G be a subgroup of GLn(k) acting by linear automorphisms on V , via the natural
representation ρ : G → GL(V ). By (17), this action extends canonically in an action
by automorphisms on S whose restriction to the subspace V ∗ = kq1 ⊕ kq2 ⊕ · · ·kqn just
corresponds to the dual representation of ρ. Let us define the application:

G× EndkS → EndkS, (g, ϕ) 7→ g.ϕ := gϕg−1. (21)

For any f ∈ S, we have g.µf = µg(f). So we obtain an action of G on EndkS which
extends the action on S making covariant the morphism µ. We observe easily that the
subspace DerkS is stable under this action. We conclude that the restriction to DiffS
of the action of G determines an action of G on the Weyl algebra. We claim that the
restriction of this action to the vector space U = k∂q1 ⊕k∂q2 ⊕· · · k∂qn corresponds to the
initial representation ρ.

Proof. Denote by (βi,j) the matrix of g−1 in the basis (q1, . . . , qn) of V
∗. For all

1 ≤ i, j ≤ n and g ∈ G, we compute

(g.∂qi)(qj) = g∂qig
−1(qj) = g∂qi

( n∑
m=1

βm,jqm
)
= βi,j = ∂qi(g

−1(qj)) = ∂qi(g
−1.qj).

By (17), it follows that the action on U is dual to the action on V ∗, which is itself
dual of the initial action on V .

In other words, the so-defined action of G on An(k) is obtained from the linear action
of G on S applying the duality splitting process exposed above. In particular, assertion
(20) applies. We summarize this results in the following proposition, with the notation
pi = ∂qi .

Proposition. For any subgroup G of GLn(k), the action of G by linear automorphisms
on S = k[q1, . . . , qn] extends in an action by linear automorphisms on the Weyl algebra
An(k) by:

[g(pi), qj] = [pi, g
−1(qj)] for all g ∈ G, 1 ≤ i, j ≤ n, (22)
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or equivalently

g(pi) =
n∑
j=1

∂qi(g
−1(qj))pj for all g ∈ G, 1 ≤ i ≤ n. (23)

In this action, the element w = q1p1 + q2p2 + · · ·+ qnpn lies in An(k)G.

• First example: diagonal action. The most simple situation (but interesting as we have
seen before) is when G acts as a diagonal subgroup of GLn(k), and then acts on An(k) as
a subgroup of the torus (k×)n by:

g(qi) = αiqi, g(pi) = α−1
i pi, with g = (α1, . . . , αn) ∈ (k×)n. (24)

If G = (k×)n, then An(k)G = k[q1p1, q2p2, . . . , qnpn].

Proof. Any monomial y = qj11 . . . qjnn p
i1
1 . . . p

in
n is an eigenvector under the action,

and any element of An(k)G is a k-linear combination of invariant monomials. If
we choose g = (λ1, 1, . . . , 1) with λ1 of infinite order in k∗, the relation g.y = y
implies i1 = j1. Proceeding on the same way for all diagonal entries, we obtain
y = (q1p1)

i1(q2p2)
i2 . . . (qnpn)

in . The result follows.

If G is a finite subgroup of (k×)n acting so, the invariant algebra An(k)G is finitely
generated over k (by theorem 1.3.2). Since every monomial in the qi’s and pi’s is an
eigenvector under the action of G, it’s clear that we can find a finite family of k-algebra
generators ofAn(k)G constituted by invariant monomials. The case where n = 1 is detailed
in the example of the first additional comment of 2.2.2. For n > 1, the determination
of such a family becomes an arithmetical and combinatorial question depending on the
mixing between the actions on the various copies of A1(k) in An(k). We shall solve it
completely at the level of the rational functions further in 5.4.2. For the moment, we only
give the two following toy illustrations:

Example. For G = 〈g〉 the cyclic group of order 6 acting on A2(C) by:
g : p1 7→ −p1, q1 7→ −q1, p2 7→ jp2, q2 7→ j2q2,

A2(C)G is generated by p21, p1q1, q
2
1, p

3
2, p2q2, q

3
2.

Example. For G = 〈h〉 the cyclic group of order 2 acting on A2(C) by:
h : p1 7→ −p1, q1 7→ −q1, p2 7→ −p2, q2 7→ −q2,

A2(C)G is generated by p21, p1q1, p1p2, p1q2, q
2
1, q1p2, q1q2, p

2
2, p2q2, q

2
2.

• Second example: differential operators over Kleinian surfaces. We take k = C, n = 2,
G a finite subgroup of SL2 acting on A2(C) by:

∀ g =
(
α β
γ δ

)
∈ SL2,

{
g(q1) = αq1 + βq2, g(p1) = δp1 − γp2,

g(q2) = γq1 + δq2 g(p2) = −βp1 + αp2.
(25)

23



This action is the extension, following the process described at the beginning of this
paragraph, of the canonical action (11) on C[q1, q2] (don’t mistake with (13) corresponding
to the action on A1(C) described in 2.2.2). Applying theorem 5 from [52] (since G doesn’t
contain non trivial pseudo-reflections), we have Diff(S)G = A2(C)G ' Diff(SG), the
differential operator algebra over the Kleinian surface associated to G. As an application
of the main results of part 5, we will prove further in 5.4.3 that A2(C)G is rationally
equivalent to A2(C).

• Third example: dual action of the Weyl group on a Cartan subalgebra of a semi-simple
complex Lie algebra. Let g a semi-simple Lie algebra of rank ` over C and h a Cartan
subalgebra. The Weyl group acts by linear automorphisms on C[h∗] ' S(h), and then on
Diff(h∗) ' A`(C) following the process that we described above. The interested reader
could find in [30] homological results and calculations concerning this action.

2.3.4 Non linear actions and polynomial automorphisms

Of course, the classical questions about invariants under subgroups of non necessarily
linear automorphisms of a commutative polynomial algebra make sense for noncommu-
tative polynomial algebras. It is not possible to give here a complete survey of the many
papers devoted to the determination of such automorphism groups (see for instance the
bibliographies of [19], [20], [21], [23], [40], [44],...). With the contents of the following
sections in mind, we focus here on the iterated Ore extension in two variables over C, for
which we have a complete answer.

Classification lemma. Let σ be a C-automorphism of C[y] and δ a σ-derivation of
C[y]. Set R = C[y][x ; σ, δ]. Up to C-isomorphism, we have one and only one of the
following five cases.

(i) R = C[x, y] is commutative;

(ii) there exists some q ∈ C×, q 6= 1, such that R = Cq[x, y];

(iii) there exists some q ∈ C×, q 6= 1, such that R = A q
1 (C);

(iv) δ is an ordinary k-derivation such that δ(y) /∈ C and R = C[y][x ; δ];

(v) R = A1(C).

Proof. There exists q ∈ C× and s ∈ C such that σ(y) = qy + s. If q 6= 1 we set y′ =
y + s(q − 1)−1 and obtain R = C[y′][x ; σ, δ] with σ(y′) = qy′ and δ(y′) = δ(y) ∈ C[y]. In C[y′]
write δ(y′) = φ(y′)(1−q)y′+r with φ(y′) ∈ C[y′] and r ∈ C. It follows that x′ = x−φ(y′) satisfies
x′y′ − qy′x′ = r. Hence R = C[y′][x′ ; σ, δ′] with δ′(y′) = r ∈ k. If r = 0, then R = Cq[x′, y′]. If
r 6= 0, we set x′′ = r−1x′ and conclude that R = A q

1 (C). Assume now that q = 1. If s = 0 then
σ = id and R = C[y][x ; δ]; we are in case (i) when δ = 0, in case (v) when δ(y) ∈ C×, and in case
(iv) when δ 6= 0. If s 6= 0, we set first y′ = s−1y to reduce to R = k[y′][x ; σ, δ] with σ(y′) = y′+1
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and δ(y′) = s−1δ(y). Then we denote x′ = x + δ(y′), which satisfies x′y′ = (y′ + 1)x′, so that
R = C[y′][x′ ; σ] is the enveloping algebra U1(C) introduced in example (v) of 1.3.1. We write
U1(C) = C[x′][y′ ; −x′∂x′ ] and are then in case (iv).

Main observation. The group AutR is explicitly known in each of the five cases above.

• The description of the group AutR for R = C[x, y] is a classical nontrivial problem.
Its structure is very explicitly known. Papers by Jung, Van der Kulk, Rentschler, Makar-
Limanov (see [18] for more complete references) led to prove that AutR is generated
by the subgroup L(R) of linear automorphisms (corresponding to the linear action of
GL2 on Cx ⊕ Cy) and the subgroup J(R) of triangular automorphisms (of the form:
y 7→ αy + β, x 7→ λx + f with α, λ ∈ C×, β ∈ C, f ∈ C[y]). More precisely, AutR is
the amalgamated free product of L(R) and J(R) over their intersection and it follows
from a theorem of Serre and a semisimplicity argument (already cited in the proof of
theorem 2.2.2) that any finite subgroup of AutR is conjugate to a subgroup of linear
automorphisms.

• The automorphism group of A1(C) is also described from the works of [40] and [19] as
a amalgamated free product of the subgroup of linear automorphisms and the subgroup
of triangular ones (see above the proof of theorem in 2.2.2). Is structure is indeed as rich
as in the commutative case.

• This is not the case for the quantum plane Cq[x, y] (with commutation rule xy = qyx,
see example (iv) of 1.3.1), and for the quantum Weyl algebra Aq1(C) (with commutation
rule xy − qyx = 1, see example (v) of 1.3.1). Will shall prove further in 4.1.1 that
the automorphism group of the quantum plane Cq[x, y] is isomorphic to the torus (C×)2

acting by (α, β) : x 7→ αx, y 7→ βy. And the automorphism group of the quantum Weyl
algebra Aq1(C), reduces to (C×) acting by α : x 7→ αx, y 7→ α−1y, see [21]. In both cases
the automorphism group is very “small” which is an example of the general principle of
“quantum rigidity”(see further 4.1.3).

• The following proposition (from [23]) solves the remaining case.

Proposition. Suppose that δ is an ordinary derivation of C[y] satisfying δ(y) /∈ C.
Let p be the non constant polynomial in C[y] such that δ = p∂y. Any automorphism of
R = C[y][x ; δ] is triangular, of the form:

y 7→ αy + β, x 7→ λx+ f ,

with f ∈ C[y], and α ∈ C×, λ ∈ C×, β ∈ C satisfying p(αy + β) = αλp(y).

Proof. For any u ∈ C[y], we have xu = ux + p∂y(u), and then xp = p.(x + ∂y(p)). Thus
p is normal in R. It follows that the two-sided ideal I generated by the commutators [r, s] =
rs − sr with r, s ∈ R is the principal ideal generated by p = [x, y]. For any automorphism
g ∈ AutR, the element g(p) generates I. So there exists ε ∈ C× such that g(p) = εp ∈ C[y]. As
degx g(p) = n degx g(y) where n = degx p ≥ 1 (by assumption), we deduce that degx g(y) = 0,
therefore g(y) ∈ C[y]. Hence g(C[y]) ⊂ C[y], and it’s clear that there exists α ∈ C×, β ∈ C such
that g(y) = αy + β. Then, the surjectivity of g implies that degx(g(x)) = 1. So there exist
λ ∈ C×, f ∈ C[y] such that g(x) = λx+f . We have p(αy+β) = g(p) = [g(x), g(y)] = αλp(y).
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3 Deformation: Poisson structures on invariant

algebras

3.1 Poisson invariant algebras

3.1.1 Basic notions on Poisson structures

We start with the following definition.

Definition. A commutative k-algebra A is a Poisson algebra when there exists a bilinear
antisymmetric map {·, ·} : A×A → A satisfying the two conditions:

- Leibniz rule: {ab, c} = a{b, c}+ {a, c}b for all a, b, c ∈ A;

- Jacobi identity : {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 for all a, b, c ∈ A.

Then the Poisson bracket {·, ·} defines a structure of Lie algebra on A and acts as a
biderivation. It’s clear that a Poisson bracket on a finitely generated algebra A is entirely
determined by the values of {xi, xj} for i < j where x1, . . . , xN generate A.

Examples.

1. The commutative polynomial algebra in two variables S = k[x, y] is a Poisson
algebra for the bracket defined on the generators by {x, y} = 1, or equivalently for
any P,Q ∈ S :

{P,Q} = ∂P
∂x

∂Q
∂y

− ∂Q
∂x

∂P
∂y

= P ′
1Q

′
2 −Q′

1P
′
2

2. More generally, S = k[x1, . . . , xn, y1, . . . , yn] is a Poisson algebra for the symplectic
bracket defined on the generators by {xi, yj} = δi,j and {xi, xj} = {yi, yj} = 0, or
equivalently for any P,Q ∈ S :

{P,Q} =
n∑
i=1

∂P
∂xi

∂Q
∂yi

− ∂Q
∂xi

∂P
∂yi

.

3. Let F be a fixed element of the polynomial algebra in three variables S = k[x, y, z];
then there exists a Poisson bracket on S defined for any P,Q ∈ S by :

{P,Q} = Jac(P,Q, F )

= (P ′
2Q

′
3 −Q′

2P
′
3)F

′
1 + (P ′

3Q
′
1 −Q′

3P
′
1)F

′
2 + (P ′

1Q
′
2 −Q′

1P
′
2)F

′
3.

The brackets on the generators are then {x, y} = F ′
3, {y, z} = F ′

1, {z, x} = F ′
2.

4. More generally, one can prove (see [34] for complete detailed calculations) that
S = k[x1, . . . , xN ] is a Poisson algebra for the Poisson bracket defined (when N ≥ 3)
for any P,Q ∈ S by: {P,Q} = Jac(P,Q, F1, . . . , FN−2), where F1, . . . , FN−2 are
arbitrary chosen polynomials in S.
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• Poisson structure on quotient algebras. An ideal I of a Poisson algebra A is a Poisson
ideal when {a, x} ∈ I for any a ∈ A, x ∈ I ; in this case, we also have {x, a} ∈ I and
the trivial observation {a, b} − {a′, b′} = {a− a′, b}+ {a′, b− b′} for all a, b ∈ A allows to
define on the algebra A/I the induced bracket {a, b} = {a, b}.

• Poisson structure on localized algebras. Let S be a multiplicative set containing 1 in a
Poisson algebra A. Then there exists exactly one Poisson bracket {·, ·} on the localization
S−1A extending the bracket of A. It is given by:

{as−1, bt−1} = {a, b}s−1t−1 − {a, t}bs−1t−2 − {s, b}as−2t−1 + {s, t}abs−2t−2

for any a, b ∈ A, s, t ∈ S. In particular, if A is a domain, the Poisson bracket on A
extends canonically in a Poisson bracket on the field of fractions of A.

• Poisson structure on invariant algebras. Let G be a group of algebra automorphisms
of a Poisson algebra A. An element g ∈ G is said to be a Poisson automorphism when
g{a, b} = {g(a), g(b)}. If any g ∈ G is a Poisson automorphism, then the Poisson bracket
of two elements of the invariant algebra AG also lies in AG. We say that AG is a Poisson
subalgebra of A.

3.1.2 Poisson structures on Kleinian surfaces

Main results of this paragraph come from [28] (see also [34]). Let G be a finite subgroup
of SL2(C) of one of the canonical types An−1, Dn, E6, E7, E8 acting canonically by (11)
on S = C[x, y].
From one hand, since G ⊂ SL2, each element of G is a Poisson automorphism of S for
the symplectic bracket defined on S in example 1 of 3.1.1. Therefore SG is a Poisson
subagebra of S for the symplectic Poisson structure.

From the other hand, we have recalled in 2.2.1 that SG is isomorphic to C[X, Y, Z]/(F )
for some polynomial F irreducible in C[X, Y, Z] explicitly determined for each of the five
types. Let us consider on C[X, Y, Z] the jacobian Poisson bracket associated to F , in the
sense of example 3 of 3.1.1. For any polynomials P ∈ C[X,Y, Z] and QF ∈ (F ), we have
{P,QF} = {P,Q}F + {P, F}Q = {P,Q}F + Jac(P, F, F )Q = {P,Q}F + 0 ∈ (F ). Then
(F ) is a Poisson ideal and we can take the induced Poisson structure on C[X,Y, Z]/(F ).

Proposition. There exists a Poisson isomorphism between C[x, y]G for the symplectic
Poisson structure and C[X, Y, Z]/(F ) for the jacobian Poisson structure associated to F .

Proof. With the notations of 2.2.1, C[x, y]G is generated by f1, f2, f3 submitted to one relation
F (f1, f2, f3) = 0 for suitable irreducible F ∈ C[X,Y, Z]. The surjective morphism of algebras
φ : C[X,Y, Z] → C[x, y]G defined by X 7→ f1, Y 7→ f2, Z 7→ f3 induces a surjective morphism
Φ : C[X,Y, Z]/(F ) → C[x, y]G because kerφ ⊃ (F ). From classical ringtheoretical results, the
Krull dimension of C[x, y]G is 2, and the irreducibility of F implies that C[X,Y, Z]/(F ) is also
of Krull dimension 2. We conclude that Φ is a algebra isomorphism. The strategy to deduce
from Φ a Poisson isomorphism consists in the calculation of three constants a1, a2, a3 ∈ Q such
that the polynomials h1 = a1f1, h2 = a2f2 and h3 = a3f3 in C[x, y]G satisfy the relations:

{h1, h2} = F ′
3(h1, h2, h3), {h2, h3} = F ′

1(h1, h2, h3), {h3, h1} = F ′
2(h1, h2, h3) (?)
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with F (h1, h2, h3) = 0, so that the isomorphism Ψ : C[X,Y, Z]/(F ) → C[x, y]G deduced from
the map X 7→ h1, Y 7→ h2, Z 7→ h3 becomes a Poisson isomorphism.

The determination of a1, a2, a3 is case by case. For instance, for G of type An−1, we have
f1 = xy, f2 = xn and f3 = yn, with F = Xn−Y Z so F ′

1 = nXn−1, F ′
2 = −Z and F ′

3 = −Y . We
compute {f1, f2} = −nf2, {f2, f3} = n2fn−1

1 and {f3, f1} = −nf3. Setting h1 = a1f1, h2 = a2f2
and h3 = a3f3 and identifying in the above relations (?), we obtain a1 = 1

n and a2a3 = 1
nn .

Similar (but more complicated) calculations are detailed for each case in [28].

We deduce from this proposition an interesting link between the Poisson algebraic struc-
ture of the algebra C[x, y]G ' C[X, Y, Z]/(F ) and some geometrical invariant of the
hypersurface F defined by F in the three dimensional affine space. There exists for any
Poisson C-algebra A a notion of Poisson homology ; the first term of it is just the C-vector
space:

HP0(A) = A/{A,A},
where {A,A} is the subspace generated by all {a, b} for a, b ∈ A. Moreover, the Milnor
number of the surface F is defined as the codimension of the jacobian ideal (i.e. the ideal
generated by the derivative polynomials F ′

1, F
′
2, F

′
3), that is:

µ(F) = dimCC[X, Y, Z]/(F ′
1, F

′
2, F

′
3).

Then we have:

Proposition. For any finite subgroup of G, the Kleinian surface F associated to the
polynomial F ∈ C[X,Y, Z] in the Poisson algebra isomorphism C[x, y]G ' C[X, Y, Z]/(F )
satisfies the equality :

dim HP0(C[x, y]G) = µ(F).

Proof. Observe first that F is weighted homogeneous : referring to the description of each type
of Kleinian surface in 2.2.1 and denoting the total degrees of the three generators a := deg f1,
b = deg f2 and c := deg f3, there exists in each case an integer d ≥ 1 (depending on a, b, c and
F ) such that:

F (λaX,λbY, λcZ) = λdF (X,Y, Z), for any λ ∈ C. (26)

where:

type An−1 Dn E6 E7 E8

a, b, c,d 2, n, n,2n 4, 2n, 2(n+ 1),4(n+ 1) 6, 8, 12,24 8, 12, 18,36 12, 20, 30,60

It follows that :

aXF ′
1(X,Y, Z) + b Y F ′

2(X,Y, Z) + cZF ′
3(X,Y, Z) = dF (X,Y, Z) (27)

Now denote T := C[X,Y, Z] with the jacobian Poisson bracket defined from

{X,Y } = F ′
3, {Y,Z} = F ′

1, {Z,X} = F ′
2, (28)

and I = (F ′
1, F

′
2, F

′
3). Relation (27) implies (F ) ⊂ I. Hence T/I ' T/I where T := T/(F ) ' SG

from the previous proposition with notation S = C[x, y]. If we prove that {T, T} + (F ) = I,
then {T , T} = I, thus HP0(S

G) = T/{T , T} = T/I ' T/I and the proof will be complete.

Inclusion {T, T}+ (F ) ⊂ I is clear from relations (28) and (27).

28



To prove the converse inclusion, it’s sufficient to check that

XmY nZpF ′
i ∈ {T, T}+ (F ) for any integers m,n, p ≥ 0, i = 1, 2, 3. (29)

Up to permutation of i, we can take i = 1. In the case m = 0, we have from (28) (see
example 3 in 3.1.1) the identities {Y n+1Zp, Z} = Jac(Y n+1Zp, Z, F ) = (n + 1)Y nZpF ′

1 and
{Y, Y nZp+1} = Jac(Y, Y nZp+1, F ) = (p+ 1)Y nZpF ′

1. It follows that:

Y nZpF ′
1 =

1
n+1{Y

n+1Zp, Z} = 1
p+1{Y, Y

nZp+1} ∈ {S, S}.
So we suppose now m ≥ 1. Applying again the jacobian formula, we have:

{Y,XmY nZp+1} = (p+ 1)XmY nZpF ′
1 −mXm−1Y nZp+1F ′

3, (30)

{XmY n+1Zp, Z} = (n+ 1)XmY nZpF ′
1 −mXm−1Y n+1ZpF ′

2. (31)

From the other hand, Euler’s identity (27) implies

dXm−1Y nZ F = aXmY nZpF ′
1 + bXm−1Y n+1ZpF ′

2 + cXm−1Y nZp+1F ′
3. (32)

The three relations (30), (31), (32) can be interpreted as a linear system into the three vari-
ables U = XmY nZpF ′

1, V = Xm−1Y n+1ZpF ′
2 and W = Xm−1Y nZp+1F ′

3 whose determinant∣∣∣ p+1 0 −m
n+1 −m 0
a b c

∣∣∣ = −m[c(p + 1) + b(n + 1) + am] doesn’t vanish. Then each U, V,W appears as a

linear combination of {Y,XmY nZp+1}, {XmY n+1Zp, Z} and Xm−1Y nZ F , so as an element of
{T, T}+ (F ), which proves (29) and achieves the proof.

Corollary. The values of µ(F) by type of Kleinian surface are:

type An−1 Dn E6 E7 E8

dimC HP0(C[x, y]G) n− 1 n+ 2 6 7 8

Proof. For the type An−1, we have F = Xn+ Y Z, then the ideal I = (F ′
1, F

′
2, F

′
3) is generated

by Y, Z,Xn−1 ; therefore a C-basis of C[X,Y, Z]/I is {1, X,X2
, . . . , X

n−2} whose cardinality is
n−1. For the type Dn, F = Xn+1+XY 2+Z2 satisfies I = ((n+1)Xn+Y 2, XY, Z) ; therefore

a C-basis of C[X,Y, Z]/I is {1, X;X
2
, . . . , X

n
, Y } whose cardinality is n+ 2. For the type E6,

F = X4+Y 3+Z2 then I = (X3, Y 2, Z) and a C-basis of C[X,Y, Z)/I is {1, X,X2
, Y , Y X, Y X

2}
of cardinality 6. The cases E7 and E8 are similar with basis {1, X, Y ,XY,X2

, X
3
, X

4} and

{1, X, Y ,XY,X2
, X

3
, X

2
Y,X

3
Y } respectively.

3.2 Deformations of Poisson algebras

3.2.1 General deformation process

We fix a non necessary commutative k-algebra B. We suppose that there exists some
element h of B which is central in B not invertible and not a zero divisor in B, such that
A := B/hB is a commutative k-algebra.
A being commutative, any u, v ∈ B satisfy (u+hB)(v+hB) = (v+hB)(u+hB) and then
[u, v] := uv−vu ∈ hB. We denote by γ(u, v) the element of B defined by [u, v] = hγ(u, v).
We set:

{u, v} = γ(u, v) for any u, v ∈ A.

This is independent of the choice of u, v.
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If u′ = u + hw with w ∈ B, we have [u′, v] = [u, v] + h[w, v] since h is central;
thus hγ(u′, v) = hγ(u, v) + h2γ(w, v), then γ(u′, v) = γ(u, v) + hγ(w, v) and so
γ(u′, v) = γ(u, v). The result follows by antisymmetry.

This defines a Poisson bracket on A.

Jacobi identity holds for [·, ·], thus for γ(·, ·) because h is central, and then for {·, ·}.
Using again the centrality of h, the Leibniz rule for {·, ·} follows from [uv,w] =
u[v, w] + [u,w]v for all u, v, w ∈ B.

Definitions. With the previous data and notation, we say that the noncommutative
algebra B is a quantization of the Poisson algebra A, and for any λ ∈ k such that the
central element h − λ of B is non invertible in B, the algebra Aλ := B/(h − λ)B is a
deformation of the Poisson algebra A.

B

vvmmmmmmmmmmmmmmm

))SSSSSSSSSSSSSSSSS

A = B/hB

quantization
22

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o Aλ = B/(h− λ)B

Examples.

1. Let g be a complex finite dimensional Lie algebra. Let B be the homogenized
enveloping algebra Uh(g) of g, that is B is the C[h]-algebra with generators a basis
{x1, . . . , xn} of g and relations: xixj − xjxi = h [xi, xj]. It’s clear that B is a
quantization of the algebra A = C[x1, . . . , xn] ' S(g) ' O(g∗) with the so-called
Kirillov-Kostant Poisson bracket defined on the generators by {xi, xj} = [xi, xj]g,
and that the enveloping algebra U(g) ' B/(h− 1)B is a deformation of A.

Uh(g)

uukkkkkkkkkkkkkkk

''OOOOOOOOOOOOO

S(g) ' O(g∗)

quantization
33

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o U(g)

2. In particular, let g be the first Heisenberg Lie algebra h1 = sl+3 and B be the
homogenized enveloping algebra Uh(g), that is the C[h]-algebra with generators a
basis {x, y, z} of g with relations: xy − yx = h [x, y] = hz, xz − zx = zy − yz = 0.
Then B is a quantization of the commutative algebra A = C[x, y, z] ' S(g) whose
Poisson structure deduced from the brackets {x, y} = z and {x, z} = {y, z} = 0 is
of jacobian type (see example 3 of 3.1.1); the enveloping algebra U(g) ' B/(h−1)B
is a deformation of A.
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Uh(sl
+
3 )

vvmmmmmmmmmmmmm

((QQQQQQQQQQQQ

C[x, y, z]

quantization
33

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o U(sl+3 )

3. Let B = U(hn) be the enveloping algebra of the n-th Heisenberg algebra generated
by x1, . . . , xn, y1, . . . , yn, z with [xi, yi] = z and [xi, yj] = [xi, xj] = [yi, yj] = [xi, z] =
[yi, z] = 0 for i 6= j. This is a quantization of A = B/zB = C[x1, . . . , xn, y1, . . . , yn]
i.e. A ' O(C2n) with the Poisson symplectic structure (see second example in 3.1.1).
Thus the n-th Weyl algebra An(C) = B/(z − 1)B is a deformation of A.

U(hn)

uullllllllllllll

((PPPPPPPPPPPP

O(C2n)sympl

quantization
33

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o An(C)

3.2.2 Algebraic deformation process

We follow in 3.2.2 and 3.2.3 the results and writing of [34]. Let A be a commutative
Poisson k-algebra and R a non necessary commutative k-algebra. By definition, we say
that R is an algebraic deformation of A when there exists a filtration F := (Fn)n≥0 of R
with F0 = k [we also use the convention F−1 = (0)] satisfying the following two conditions:

(i) [Fn,Fm] ⊆ Fn+m−1 for all n,m ≥ 0,

(ii) the associated graded space grF(R) =
⊕

n≥0Fn/Fn−1 is isomorphic to A as a Pois-
son algebra, for the product and Poisson bracket defined in grF(R) from the product
. and commutation bracket [ · , · ] in R by:

(xn + Fn−1)(xm + Fm−1) = xn.xm + Fn+m−1,

{xn + Fn−1 , xm + Fm−1} = [xn, xm] + Fn+m−2

Recall that by definition the Rees algebra of R related to the filtration F is the subalgebra
ReesF(R) =

⊕
n≥0Fnh

n in the noncommutative algebra R[h] of polynomials in one central
indeterminate h with coefficients in R.

Theorem. Under the above hypothesis, the algebra B = ReesF(R) satisfies the Poisson
algebra isomorphism B/hB ' grF(R) ' A and the algebra isomorphism B/(h−1)B ' R.
Thus B is a quantization of A and R is a deformation of A.
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ReesF(R)

vvlllllllllllll

''PPPPPPPPPPPPPP

grF(R)

quantization 44

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o R

Proof. In B =
⊕

n≥0Fnh
n ⊂ R[h], the element h is central, non zero divisor and non

invertible. The linear map ϕ : B → grF(R) defined from xnh
n 7→ xn + Fn−1 is clearly

surjective and a morphism of algebras following the definition (ii) of the product in grF(R).
We determine kerϕ. First we have ϕ(h) = 1 + F0 = 0 in grF(R) thus hB ⊂ kerϕ. Now
consider f = x0 + x1h+ · · ·+ xnh

n ∈ B with x0, x1, . . . , xn be elements of F0,F1, . . . ,Fn

respectively such that ϕ(f) = 0. Then: x0 + F−1 = 0, x1 + F0 = 0, . . . , xn + Fn−1 = 0,
that means x0 = 0, x1 ∈ F0, . . . , xn ∈ Fn−1. Thus f = h(x1 + x2h + · · · + xnh

n−1). We
conclude that kerϕ = hB and ϕ̃ : B/hB → grF(R) is an isomorphism of algebras. By
assumption grF(R) ' A so B/hB is commutative.
Moreover for xn ∈ Fn, xm ∈ Fm we have [xnh

n, xmh
m] = [xn, xm]h

n+m = hγ(xnh
n, xmh

m)
with notation γ(xnh

n, xmh
m) = [xn, xm]h

n+m−1 = xn+m−1h
n+m−1, where xn+m−1 :=

[xn, xm] lies on Fn+m−1 because of the hypothesis (i) on the filtration. Thus the Pois-
son bracket defined on B/hB by general deformation process 3.2.1 is given by {xnhn +
hB, xmh

m + hB} = [xn, xm]h
n+m−1 + hB those image by ϕ̃ is no more than [xn, xm] +

Fn+m−2 corresponding to the Poisson bracket defined by hypothesis (ii) in grF(R). We
conclude that ϕ̃ is an Poisson isomorphism and B is a quantization of grF(R).
In order to prove that R is a deformation of A, we consider the linear map ψ : B → R
defined from xnh

n 7→ xn. It is clearly surjective and a morphism of algebras. We determine
kerψ. First we have ψ(h − 1) = 1 − 1 = 0 in R thus (h − 1)B ⊂ kerψ. Now consider
f = x0+x1h+· · ·+xnhn ∈ B with x0, x1, . . . , xn be elements of F0,F1, . . . ,Fn respectively
such that ψ(t) = 0. Then: x0+x1+ · · ·+xn = 0, that means xn = −x0−x1−· · ·−xn−1.
Therefore f = x0(1−hn)+x1h(1−hn−1)+ · · ·+xn−1h

n−1(1−h) ∈ (h−1)B. We conclude

that kerψ = (h− 1)B and ψ̃ : B/(h− 1)B → R is an isomorphism of algebras.

Example. Let An(k) be the n-th Weyl algebra and F the Bernstein filtration defined
in 2.1.2; it can be proved inductively from relations (6) on the generators that condition
[Fn,Fm] ⊆ Fn+m−1 is satisfied. Applying the algebraic deformation process, An(k) is
a deformation of the Poisson algebra A = grF(An(k)). We have seen in 2.1.2 that A '
O(k2n) ' k[x1, . . . , xn, y1, . . . , yn] as an algebra. Morever by relation (ii) the corresponding
Poisson bracket in A calculated on elements of F1 gives {xi, xj} = [pi, pj] = 0, {yi, yj} =
[qi, qj] = 0 and {xi, yj} = [pi, qj] = δi,j. Thus the Poisson structure on A is the symplectic
one (see example 2 of 3.1.1).

ReesF(An(k))

ttjjjjjjjjjjjjjjj
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O(k2n)sympl

quantization 33

deformation
///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o An(k)
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Remark. The comparison of this diagram with the third example of 3.2.1 gives rise to
the natural question asking for the equivalence or not of the two deformation processes,
that means for the isomorphism or not of the enveloping algebra U(hn) with the Rees
algebra of An(k) for the Bernstein filtration. We can prove that they are not isomorphic.

Proof. We write it for A1 for simplicity but the general case is similar. We take
R = A1(k) generated over k by p, q with pq − qp = 1. The denote by F = (Fn)n≥0

the Bernstein filtration: a k-basis of Fn being (piqj)i+j≤n, we deduce that a k-basis
of the associated Rees algebra B =

⊕
n≥0Fnhn ⊂ R[h] is (piqjhn)i+j≤n. Denoting

u := ph and v := qh, we can deduce that B is the k-algebra generated over k
by three generators u, v, h with relations [u, h] = [v, h] = 0 and [u, v] = h2. The
two-sided ideal I generated in B by the commutators is the ideal h2B and then the
abelianized algebra B/I contains the nonzero nilpotent element h. At the opposite
the enveloping algebra of the Heisenberg h1 is the k-algebra H = U(h1) generated
over k by three generators x, y, z with relations [x, z] = [y, z] = 0 and [x, y] = z.
The two-sided ideal J generated in H by the commutators is the ideal zH and then
the abelianized algebra H/J is the polynomial algebra k[x, y]. We conclude that
B 6' H since their abelianized algebras are not isomorphic.

Indeed the algebraic deformation process presents useful specific properties in particular
when we introduce some group action.

3.2.3 Deformations of invariant algebras

Let R be a non necessary commutative k-algebra with a filtration satisfying conditions (i)
and (ii) of 3.2.2. We consider the associated Poisson algebra grF(R) =

⊕
n≥0 Fn/Fn−1.

Now we suppose that some finite group G acts on R by automorphisms with respect of
the filtration, i.e.

g.xn ∈ Fn for all g ∈ G, xn ∈ Fn.

In this case, G acts naturally on Fn/Fn−1 by: g.(xn + Fn−1) = g.xn + Fn−1.

Lemma. We have the following isomorphism of vector spaces: (Fn/Fn−1)
G ' FG

n /FG
n−1.

Proof. It’s clear that 0 → Fn−1 ↪→ Fn → Fn/Fn−1 → 0 is an exact sequence of G-
modules, then the isomorphism (Fn/Fn−1)

G ' FG
n /FG

n−1 just follows from the fact that
0 → FG

n−1 ↪→ FG
n → (Fn/Fn−1)

G → 0 is an exact sequence, which is the direct application
of the following general sublemma.

Sublemma. If 0 // A
α // B

β // C // 0 is an exact sequence ofG-modules,

then 0 // AG
α′

// BG
β′

// CG // 0 is an exact sequence.

Proof. Since α and β are morphisms of G-modules, it’s clear that α(AG) ⊂ BG

and β(BG) ⊂ CG and we can consider the restrictions α′ and β′. The injectivity of
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α′ is trivial. It’s clear that Imα′ ⊂ Imα ∩BG. Conversely, if b ∈ BG and b = α(a)
for some a ∈ A, then for any g ∈ G we have: α(a) = b = g · b = g · α(a) = α(g · a)
therefore a = g · a by injectivity of α,and so a ∈ AG. We deduce that Imα′ =
Imα ∩BG = Kerβ ∩BG = Kerβ′. The last point is to check the surjectivity of β′.
Let c ∈ CG. By surjectivity of β there exists b ∈ B such that c = β(b). It is clear
that b′ := 1

|G|
∑

g∈G g · b lies in BG and we compute (using at the second equality

the fact that β is a morphism of G-module):

β(b′) = 1
|G|
∑
g∈G

β(g · b) = 1
|G|
∑
g∈G

g · β(b) = 1
|G|
∑
g∈G

g · c = c.

We conclude that c ∈ β(BG), and then β′ is surjective.

Application. Consider the commutative Poisson algebra S = k[x1, . . . , xn, y1, . . . , yn] '
O(k2n) for the symplectic Poisson bracket (example 2 of 3.1.1) as the algebraic deformation
of the Weyl algebra An(k) for the Bernstein filtration (see above in 3.2.2). Fix a finite
subgroup G of the symplectic group Sp2n(k) acting by Poisson automorphisms on S and
by automorphisms of noncommutative algebra on An(k). It’s clear that any subspace Fn

in the Bernstein filtration is stable under the action of G, then G acts on each Fm/Fm−1

and the Poisson isomorphism S ' grFAn(k) is also a G-module isomorphism. Applying
the previous lemma, we deduce:

SG '
(
grFAn(k)

)G '
(⊕

m≥0 Fm/Fm−1

)G '
⊕

m≥0

(
Fm/Fm−1

)G '
⊕

m≥0FG
m/FG

m−1.

Therefore the filtration F̃ = (FG
m)m≥0 = (Fm∩An(k)G)m≥0 of the invariant algebra An(k)G

is such that grF̃(An(k)G) ' SG as Poisson algebras. In other words, we have proved:

Proposition. For any finite subgroup of G of linear automorphisms of An(k), the action
of G induces an action on grF(An(k)), the Bernstein filtration F induces a filtration F̃ of
An(k)G, and we have:

grF̃(An(k)G) ' grF(An(k))G.

Condition (i) of 3.2.2 being obvious for F̃ , we can conclude:

Theorem. For any finite subgroup G of Sp2n(k) acting by Poisson automorphisms on
S = k[x1, . . . , xn, y1, . . . , yn] ' O(k2n) and by automorphisms of noncommutative algebra
on An(k), the invariant algebra An(k)G is an algebraic deformation of the Poisson algebra
SG for the filtration induced by the Bernstein filtration.

O(k2n)
deformation

///o/o/o/o/o/o/o/o An(k)

O(k2n)G
?�

OO

deformation
///o/o/o/o/o/o/o An(k)G

?�

OO

Remark. Suppose here that n = 1, k = C and G a finite subgroup of SL2. We consider
in the affine space V = C2 the quotient variety V |G, so that O(V |G) ' O(V )G. With
our usual notations, O(V ) = C[x, y] = S, the above deformation picture can be completed
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by homological considerations. Comparing the values of dimCHH0(A1(C)G) (see 2.2.2)
and dimCHP0(S

G) (see 3.1.2), we just observe a vector space automorphism:

HH0(A1(C)G) ' HP0(S
G).

It can be interpreted as a deformation process at the level of the homological trace groups:
considering the vector spaces Gm = FG

m/
(
FG
m∩ [A1(C)G, A1(C)G]

)
, it is proved in [28] that

HP0(S
G) = grGHH0(A1(C)G) :=

⊕
m≥0 Gm/Gm−1.

C[x, y]
deformation

///o/o/o/o/o/o/o/o/o/o/o/o A1(C)

C[x, y]G
?�

OO

��

deformation
///o/o/o/o/o/o/o/o/o/o/o A1(C)G

?�

OO

��
HP0(C[x, y]G) deformation

///o/o/o/o/o/o/o HH0(A1(C)G)

3.3 Lie structure on invariant algebras

3.3.1 Finiteness of the Lie structure on Poisson symplectic spaces

Preliminary. The results of section 3.3 come from [34]. We start with the basic situation
where S is the commutative Poisson algebra C[x, y] with the symplectic Poisson bracket
defined from {x, y} = 1. The generators x and y act on S by derivations:

{x , · } = ∂y and {−y , · } = ∂x. (33)

We consider in the homogeneous component S2 = Cx2 ⊕ Cxy ⊕ Cy2 of degree 2 in S the
three elements: e = 1

2
x2, f = −1

2
y2 and h = −xy, which act on S by Euler derivations:

{ e , · } = x ∂y, { f , · } = y ∂x and {h , · } = x ∂x − y ∂y. (34)

In particular: [e, f ] = h, [h, e] = 2e and [h, f ] = −2f ; hence S2 = Ce ⊕ Cf ⊕ Ch is a
Lie subalgebra of (S, { · , · }), isomorphic to sl2(C). We introduce V := Cx⊕ Cy and the
subspace F2 = C ⊕ V ⊕ S2 of elements of total degree ≤ 2 in S. It is clear that F2 is a
Lie subalgebra of S for the Lie structure defined by the Poisson bracket.

Proposition: The Lie algebra C[x, y] for the symplectic bracket is finitely generated,
and the Lie subalgebra F2 is maximal.

Proof. Let g be a Lie subalgebra of S containing F2 (i.e. 1, x, y, x2, xy, y2 ∈ g) and any other
element q of S of total degree ≥ 3 (ie q ∈ g and q /∈ F2). Then {x, q} ∈ g and {y, q} ∈ g ;
so applying many times the hamiltonian derivations (33), we obtain an element p ∈ g of total
degree 3. Let us denote:

p = αx3 + βx2y + γxy2 + δy3 with α, β, γ, δ ∈ C, (α, β, γ, δ) 6= (0, 0, 0, 0).

Now the elements e, f, h lie in g and then by (34): {e, p} = βx3+2γx2y+3δy2x ∈ g, {e, {e, p}} =
2γx3 + 6δx2y ∈ g, and {e, {e, {e, p}}} = 12δx3 ∈ g. We deduce that x3 ∈ g. Applying to p the
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action of {f, · } we obtain similarly y3 ∈ g. It follows that x2y = 1
3{f, x

3} and xy2 = 1
3{e, y

3}
are also elements of g. Hence g contains the homogeneous component S3 of degree 3 in S. In
particular {x3, y3} = 9x2y lies in g. By iterated application of {e, · } and {f, · }, we conclude
that x3y, x4, xy3, y4 ∈ g and so g contains the homogeneous component S4. Suppose by induction
that Sn ∈ g for some n ≥ 3. Then x2yn−1 = 1

3n{x
3, yn} ∈ g which implies by applications of

{e, · } and {f, · } that Sn+1. We conclude that g ⊇
⊕

n≥0 Sn = S and S = g is generated by

1, x, y, x2, xy, y2 and any element of degree ≥ 3 in S.

This result can be extended to the dimension 2n and precised by a reduction to only two
generators. This the purpose of the following theorem.

Theorem. The Lie algebra C[x1, . . . , xn, y1, . . . , yn] for the symplectic Poisson bracket is
generated by the two elements:

H = −
n∑
i=1

xiyi

T = x1y1x2y2 . . . xnyn +
n∑
i=1

xi +
n∑
i=1

yi +
n∑
i=1

(xi+2
i + yi+2

i )

Proof. The adjoint action of H is given by {H, · } =
∑

i=1(xi∂xi − yi∂yi). The element T
appears as a sum of eigenvectors for this action:

X :=
n∑
i=1

xi and Y :=
n∑
i=1

yi satisfy {H,X} = X and {H,Y } = −Y ,

Z := x1y1x2y2 . . . xnyn satisfies {H,Z} = 0,

Xi := xi+2
i and Yi := yi+2

i satisfy {H,Xi} = (i+ 2)Xi and {H,Yi} = −(i+ 2)Yi.

The iterated adjoint action of H on T produces a linear (2n+ 3)× (2n+ 3) system:

T = X + Y +
n∑
i=1

Xi +
n∑
i=1

Yi + Z

{H,T} = X + (−1)Y +
n∑
i=1

(i+ 2)Xi +
n∑
i=1

(−i− 2)Yi + 0

{{H,T}} = X + (−1)2Y +
n∑
i=1

(i+ 2)2Xi +
n∑
i=1

(−i− 2)2Yi + 0

· · · · · ·

(adH)2n+2(T ) = X + (−1)2n+2Y +
n∑
i=1

(i+ 2)2n+2Xi +
n∑
i=1

(−i− 2)2n+2Yi + 0

whose determinant is a nonzero Vandermonde determinant. Hence the system is invertible and
any element of the family M := {X,Y,X1, . . . , Xn, Y1, . . . , Yn, Z} can be expressed as a linear
combination of the brackets (adH)j(T ) for 0 ≤ j ≤ 2n + 2. Thus each vector of M lies in the
Lie subalgebra g of S := C[x1, . . . , xn, y1, . . . , yn] generated by H and T .

Moreover, (adX) acts as
∑n

i=1 ∂yi and (ad (−Y )) as
∑n

i=1 ∂xi then we have for 1 ≤ i ≤ n:

(ad (−Y ))i(Xi) =
1
2(i+ 2)!x2i and (adX (Y ))i(Yi) =

1
2(i+ 2)! y2i ,

which imply that x21, . . . , x
2
n, y

2
1, . . . , y

2
n ∈ g. Applying again (ad (−Y )) and (adX), we deduce

that g contains x1, . . . , xn, y1, . . . , yn. Hence g contains the homogeneous component of degree
one S1 = V = Cx1⊕· · ·⊕Cxn⊕Cy1⊕· · ·⊕Cyn. By iteration of appropriate (adxi) and (ad yi)
acting on the product Z, it follows that any monomial with factors xi and yi appearing only
with exponent one lies on g.
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In particular, g contains all monomials xixj , yiyj for 1 ≤ i 6= j ≤ n and xiyj for 1 ≤ i, j ≤ n, in
addition of the squares x2i and y

2
i . Thus, g contains the homogeneous component of degree two:

S2 =
⊕

1≤i≤n
Cx2i ⊕

⊕
1≤i≤n

Cy2i ⊕
⊕

1≤i,j≤n
Cxiyj ⊕

⊕
1≤i 6=j≤n

Cxixj ⊕
⊕

1≤i6=j≤n
Cyiyj

For degree three, g contains similarly all monomials xixjxk and yiyjyk for pairwise distinct i, j, k,
and all monomials xixjyk and xkyiyj for i 6= j. From the relations

(ad(−Y ))i−3(Xi) =
1
6(i+ 2)!x3i and (adX)i−3(Yi) =

1
6(i+ 2)! y3i

we deduce that x3i , y
3
i ∈ g for any 1 ≤ i ≤ n. The calculation of {xixj , y3j } implies xiy

2
j ∈ g

(for i 6= j or for i = j). Finally it follows from {xiyj , x3j} = −3xix
2
j that xix

2
j ∈ g for i 6= j.

Similarly x2i yj ∈ g and yiy
2
j ∈ g. We conclude that the homogeneous component S3 of degree 3

is a subspace of g.
Suppose now by induction that g contains the homogeneous component Sm−1 of S for some
m ≥ 4. Take any monomial f = xa11 · · ·xann y

b1
1 · · · ybnn ∈ Sm. If all exponents are ≤ 1, then

f can be obtained from Z ∈ g by application of appropriate ad(xi) and ad(yj) and therefore
f ∈ g. If at least one exponent is ≥ 2, we can suppose without any restriction that a1 ≥ 2, and
then f = 1

3 {x
3
1, h} = x21∂y1(h) with h = xa1−2

1 · · ·xann y
b1+1
1 · · · ybnn ∈ Sm−1. The result follows by

induction.

Remark. It follows from the description of the homogeneous component S2 detailed in
the proof above that dimCS2 = n(2n + 1). It is also obvious in this direct sum that the
Poisson bracket of two generators lies in S2. Hence S2 is a Lie subalgebra of S. It can
be proved by a straightforward verification that S2 is isomorphic to the symplectic Lie
algebra sp2n(C).

3.3.2 Finiteness of the Lie structure on Kleinian surfaces

The algebra S = C[x1, . . . , xn, y1, . . . , yn] = O(V ) of regular functions on the symplectic
space V of dimension 2n is finitely generated as a Lie algebra for the Poisson structure. It
is then a natural question (in the continuity of Noether’s theorem about the ring structure
or its noncommutative analogues) to ask whether the invariant Poisson subalgebra SG '
O(V |G) under the action of a finite subgroup of Sp2n (see theorem 3.2.3) is also finitely
generated as a Lie subalgebra, and whether it is also the case for its deformation An(C)G.
We give a positive answer in the case of Kleinian surfaces (i.e. n = 1).

We fix G a finite subgroup of SL2(C) acting linearly by automorphisms on S = C[x, y];
we consider the Poisson isomorphism SG ' C[X, Y, Z]/(F ) proved in 3.1.2, where F is an
irreducible element of C[X, Y, Z] defining the corresponding Kleinian surface, see 2.2.1.

Denoting by a, b, c the total degrees in S of the three homogeneous generators f1, f2, f3
of SG given in 2.2.1, we define the weight of a monomial by w(X iY jZk) = ai + bj + ck
and the weight of any polynomial in C[X, Y, Z] as the maximum of the weights of its
monomials. In particular the weight of each monomial appearing in the polynomial F
is the same, as observed previously in (26), and we have denoted it by d. The integer d
takes values 2n, 4n + 4, 24, 36, 60 for G of type An−1, Dn, E6, E7, E8 respectively, and we
can note that d = 2max(a, b, c).
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We have given in the last corollary in 3.1.2 a basis (P 1, . . . , Pm) of C[X,Y, Z]/(F ′
1, F

′
2, F

′
3).

The corresponding monomials P1, . . . , Pm ∈ C[X, Y, Z] satisfy :

w(Pi) ≤ d− 4 for any 1 ≤ i ≤ m, (35)

as observed in the following table:

type a, b, c F (X,Y, Z) d P1, . . . , Pm maxw(Pi)

An−1 2, n, n Xn + Y Z 2n 1, X,X2, . . . , Xn−2 2n− 4

Dn 4, 2n, 2n+ 2 Xn+1 +XY 2 + Z2 4n+ 4 1, X,X2, . . . , Xn, Y 4n

E6 6, 8, 12 X4 + Y 3 + Z2 24 1, X,X2, Y, Y X, Y X2 20

E7 8, 12, 18 X3Y + Y 3 + Z2 36 1, X,X2, X3, X4, Y,XY 32

E8 12, 20, 30 X5 + Y 3 + Z2 60 1, Y,X,XY,X2, X3, X2Y,X3Y 56

Proposition. The Lie algebra C[x, y]G ' C[X,Y, Z]/(F ) for the Poisson bracket is
finitely generated (by its elements of degree ≤ d), for any finite subgroup G of SL2.

Proof. We denote by g the Lie subalgebra of H := C[X,Y, Z]/(F ) generated by the elements
P+(F ) for P ∈ C[X,Y, Z] such that w(P ) ≤ d. Our goal is to prove that, for any P ∈ C[X,Y, Z],
we have P +(F ) ∈ g. We proceed by induction on w(P ). It is obvious when w(P ) ≤ d. Suppose
that there exists some integer e > d such that P + (F ) ∈ g for all polynomials P of weight
w(P ) < e.

Now we fix some P ∈ C[X,Y, Z] with w(P ) = e. Considering C[X,Y, Z]/(F ′
1, F

′
2, F

′
3), we can

write with the notations above:

P = α1P1 + · · ·+ αmPm +Q1F
′
1 +Q2F

′
2 +Q3F

′
3,

with α1, α2, . . . , αm ∈ C and Q1, Q2, Q3 ∈ C[X,Y, Z]. For i = 1, 2, 3, denote by Qji the homoge-
neous part of weight j in Qi. Thus

P = α1P1 + · · ·+ αmPm +
∑
j
Qj1F

′
1 +

∑
j
Qj2F

′
2 +

∑
j
Qj3F

′
3,

From different previous observations, we have w(F ′
1) = d − a,w(F ′

2) = d − b, w(F ′
3) = d − c,

w(α1P1 + · · ·+ αmPm) ≤ d− 4 < e, hence w(P ) = e implies that∑
j>e−d+a

Qj1F
′
1 +

∑
j>e−d+b

Qj2F
′
2 +

∑
j>e−d+c

Qj3F
′
3 = 0,

and then
P = α1P1 + · · ·+ αmPm +

∑
j≤e−d+a

Qj1F
′
1 +

∑
j≤e−d+b

Qj2F
′
2 +

∑
j≤e−d+c

Qj3F
′
3.

From the other hand, it follows from the induction hypothesis that:

α1P1 + · · ·+ αmPm +
∑

j<e−d+a
Qj1F

′
1 +

∑
j<e−d+b

Qj2F
′
2 +

∑
j<e−d+c

Qj3F
′
3 + (F ) ∈ g.

To sum up, it is sufficient to prove that Qe−d+a1 F ′
1 + (F ), Qe−d+b2 F ′

2 + (F ) and Qe−d+c3 F ′
3 + (F )

are elements of ∈ g. By linearity and symmetry up to permutation of Q1, Q2 and Q3, it is finally
enough to prove that:

if Q = XmY nZpF ′
1 with am+ bn+ cp = e− d+ a, then Q+ (F ) ∈ g (36)
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• First case: m,n, p > 0. We have:

{Y 2, XmY n−1Zp+1} = 2(p+ 1)XmY nZpF ′
1 − 2mXm−1Y nZp+1F ′

3,

{XmY n+1Zp−1, Z2} = 2(n+ 1)XmY nZpF ′
1 − 2mXm−1Y n+1ZpF ′

3,

and from Euler identity (27)

dXm−1Y nZpF = aXmY nZpF ′
1 + bXm−1Y n+1ZpF ′

2 + cXm−1Y nZp+1F ′
3.

These three relations form a linear system with three variables XmY nZpF ′
1, X

m−1Y n+1ZpF ′
2

and Xm−1Y nZp+1F ′
3. Its determinant is

∣∣∣∣ 2(p+1) 0 −2m
2(n+1) 0 −2m

a b c

∣∣∣∣ = −4m(ma+ (n+ 1)b+ (p+ 1)c) < 0.

Hence Q = XmY nZpF ′
1 is a linear combination of Xm−1Y nZpF , {Y 2, XmY n−1Zp+1} and

{XmY n+1Zp−1, Z2}. Therefore we only have to check that {Y 2, XmY n−1Zp+1} + (F ) ∈ g
and {XmY n+1Zp−1, Z2}+ (F ) ∈ g.

Since w(Y 2) = 2n ≤ d, we have Y 2 + (F ) ∈ g. Moreover w(XmY n−1Zp+1) =
ma+nb+pc+c−b < ma+nb+pc+d−a = w(XmY nZpF ′

1) = e and then by induction
hypothesis, XmY n−1Zp+1+(F ) ∈ g. We deduce that {Y 2, XmY n−1Zp+1}+(F ) ∈ g.
The calculations for {XmY n+1Zp−1, Z2}+ (F ) ∈ g are quite similar.

We conclude that Q+ (F ) ∈ g in this case.

• Second case: m > 0 and p = 0 (the case m > 0 and n = 0 is similar). We have:

{Xm−1Y n+1, XZ} = (n+ 1)XmY nF ′
1 − (m− 1)Xm−1Y n+1F ′

2 − (n+ 1)Xm−1Y nZF ′
3,

{XmY n, Y Z} = nXmY nF ′
1 −mXm−1Y n+1F ′

2 +mXm−1Y nZF ′
3,

and from Euler identity (27)

dXm−1Y nF = aXmY nF ′
1 + bXm−1Y n+1F ′

2 + cXm−1Y nZF ′
3.

These three relations form a linear system with three variables XmY nF ′
1, X

m−1Y n+1ZF ′
2 and

Xm−1Y nZF ′
3. Its determinant is

∣∣∣∣ n+1 −(m−1) −(n+1)
m −n n
a b c

∣∣∣∣ = −(m+ n)(ma+ (n+ 1)b+ c) < 0.

Hence Q = XmY nF ′
1 is a linear combination of the elements Xm−1Y nF , {Xm−1Y n+1, XZ} and

{XmY n, Y Z}. Similarly to the previous case, we conclude that Q+ (F ) ∈ g.

• Third case: m = 0. Then w(F ′
1) is lower than d and F ′

1 + (F ) ∈ g. Hence we suppos n > 0
(the case p > 0 is similar). We have: Q = Y nZpF ′

1 =
1

2(p+1){Y
2, Y n−1Zp+1}, and the induction

hypothesis implies that Q+ (F ) ∈ g.

In conclusion, assertion (36) us proved in all cases and the proof is complete.

Remark. Let U = (u1, . . . , um) be a family of elements of SG generating SG as a
Lie subalgebra of S. Denote by V the vector space generated by U . Then we have:
SG = V + {V, V }+ {V, {V, V }}+ · · · and then SG ⊂ V + {SG, SG}. Therefore the classes
u1, . . . , um modulo {SG, SG} generate the subspace SG/{SG, SG} ; thus its dimension is at
least m. We conclude that the cardinality of a generating family of SG as Lie subalgebra
of S for the Poisson bracket is always greater than µ = dimCHP0(S

G). So comparing
the values of d and µ given in the two tables in 3.1.2, the following proposition is a real
improvement of the previous result.
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Theorem. For any finite subgroup G of SL2, the Lie algebra C[x, y]G for the Poisson
bracket is generated by a (minimal) family whose cardinality is 2 in the trivial case where
G is cyclic of order 2, and exactly dimCHP0(C[x, y]G) in all other cases.

Proof. We only outline the general method and illustrate it by complete calculations in the
cyclic case; the four other cases are developed in [34]. We denote S = C[x, y].

• One find in any case of G a finite-dimensional subspace V0 of SG and an integer N ≥ 1, such
that the iterated adjoint action of V0 on the subspace finite-dimensional V1 of S generated by
the elements of degree ≤ N generates S as a Lie algebra. In other terms, S =

∑
k≥1 Vk where

Vk+1 = {V0, Vk} for any k ≥ 1. The Reynolds operator ρG := 1
|G|
∑

g∈G g is a projection S → SG.
Since each g is a Poisson automorphism, we have

ρG(Vk+1) = ρG({V0, Vk}) = {ρG(V0), ρG(Vk)} = {V0, ρG(Vk)}.
Hence SG = ρG(S) is generated as a Lie algebra by the subspace V0 and the subspace W1 :=
ρG(V1) of invariants of degree ≤ N . Finally one reduces case by case the number of generators
to obtain the minimal value µ = dimCHP0(S

G).

• We suppose now that is G cyclic of order n ≥ 3. As an associative algebra, SG is generated
by xn, yn, xy. We take V0 := Cx2y2 ⊕ Cxn+1y ⊕ Cxyn+1 ⊂ SG and N := 2(n− 1). Hence V1 is
the subspace of S generated by monomials xpyq of degree p+ q ≤ 2(n− 1). We have:

{x2y2, xp−1xq−1} = 2(q − p)xpyq for all p, q ≥ 1,
{xn+1y, xp−nyq} = [(n+ 1)q − p+ n]xpyq for all p ≥ n, q ≥ 1,
{xyn+1, xpyq−n} = [q − n− (n+ 1)p]xpyq for all p ≥ 1, q ≥ n.

By straightforward induction on the total degree p+ q, we check from these relations that any
monomial xpyq, p, q ≥ 1, lies in the vector space

∑
k≥1 Vk with Vk+1 = {V0, Vk} for k ≥ 1.

We conclude that S =
∑

k≥1 Vk as announced. Hence by the general above argument, SG is

generated as a Lie algebra by V0 and W1, where V0 is generated by (x2y2, xyn+1, xn+1y) and W1

is generated by: {(xy)i}0≤i≤n−1 ∪ {(xy)ixn}0≤i≤n
2
−1 ∪ {(xy)jyn}0≤j≤n

2
−1.

Let us denote by L the Lie subalgebra of SG generated by the n − 1 invariant elements: 1 +
xn+ yn, xy, (xy)2, . . . , (xy)n−2. We claim that SG = L. It’s enough to check that any generator
of V0 and W1 above lies in L.

Firstly: {1 + xn + yn, xy} = nxn − nyn hence xn − yn ∈ L,
then: {xy, xn − yn} = −nxn − nyn hence xn + yn ∈ L,
thus L contains 1, xn, yn,
and {xn, yn} = n2xn−1yn−1 implies (xy)n−1 ∈ L.

Now, L contains (xy)ixn = 1
n(i+1){x

n, (xy)i+1} and similarly (xy)iyn for any 0 ≤ i ≤ n− 2. We

conclude that SG = L is generated by n − 1 elements, with n − 1 = dimCHP0(S
G). The proof

is complete in this case.

• In the particular case n = 2, we have dimCHP0(S
G) = 1 and one invariant can of course

not generate the nonzero Lie algebra SG. In this case, one proves by direct calculations using
the same kind of arguments as above that SG is generated by the two elements (1 + xy) and
x2 + y2 + (xy)2.

Remark. We give as an illustration the minimal generating families calculated (follow-
ing the method exposed at the beginning of previous proof but with highly nontrivial
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computations) in [34]. An interesting observation is that this Lie algebra generators are
powers of the homogeneous algebra generators described in 2.2.1

type algebra generators of C[x, y]G Lie algebra generators of C[x, y]G µ

Dn f1 = x2y2, f2 = x2n + (−1)ny2n,

f3 = x2n+1y − (−1)nxy2n+1 1, f1, f
2
1 , . . . , f

n−2
1 , f2 n

E6 f1 = xy5 − x5y, f2 = x8 + 14x4y4 + y8,

f3 = x12 − 33x8y4 − 33x4y8 + y12 1, f1, f
2
1 , f2, f1f2, f

2
1 f2 6

E7 f1 = x8 + 14x4y4 + y8, f2 = x10y2 − 2x6y6 + x2y10

f3 = x17y − 34x13y5 + 34x5y13 − xy17 1, f1, f
2
1 , f2, f1f2, f

2
2 , f1f

2
2 7

E8 f1 = x11y + 11x6y6 − xy11,

f2 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20, 1, f1, f
2
1 , f

3
1 , f2, f1f2, f

2
1 f2, f

3
1 f2 8

f3 = x30 + 522x25y5 − 10005x20y10

−10005x10y20 − 522x5y25 + y30

3.3.3 Lie structures on deformations

We start with the following lemma (from [34]) related to the general context of the alge-
braic deformations studied in 3.2.2.

Lemma. Let A be a commutative Poisson algebra and R a noncommutative algebra with
a filtration F such that R is the algebraic deformation of A associated to F . Suppose
that we have a finite family a0, a1, . . . , ap generating A as a Lie algebra for the Poisson
bracket such that each ai is homogeneous (i.e. ai ∈ Fmi

/Fmi−1 for some mi) ; for any
0 ≤ i ≤ p, let us choose bi ∈ Fmi

such that ai = bi + Fmi−1. Then b0, b1, . . . , bp generate
R as a Lie algebra for the commutator bracket.

Proof. We denote by b the Lie subalgebra of R (for the commutator bracket) generated by
b0, b1, . . . , bp. Our goal is to prove that R = b.

First step. By assumption, b0, b1, . . . , bp generate grF (R) =
⊕

m≥0Fm/Fm−1 as a Lie algebra
for the Poisson bracket. It means that grF (R) =

∑
n≥1 Ln(V ) where V is the vector subspace

of grF (R) generated by the elements b0, b1, . . . , bp, and the Ln(V ) are defined inductively by
L1(V ) = V and Ln+1(V ) = {V,Ln(V )}. Any element of V = L1(V ) is a linear combination of
elements ai = bi + Fmi−1 with bi ∈ Fmi ∩ b. Suppose by induction that for some fixed n ≥ 1,
Ln(V ) is a linear subspace generated by elements of the form xm + Fm−1 with xm ∈ Fm ∩ b.
Take then x ∈ Ln+1(V ) ; it is a finite sum:

x =
∑

{ai, yi} with yi ∈ Ln(V )
=
∑

{bi + Fmi−1 , xm + Fm−1} with xm ∈ Fm ∩ b
=
∑

([bi, xm] + Fmi+m−2) with [bi, xm] ∈ Fmi+m−1 ∩ b.

We conclude that grF (R) is generated as a vector subspace by the elements of the form xm+Fm−1

with xm ∈ Fm ∩ b.

Second step. We prove now that Fm ⊆ b for any m ≥ 0. We have F−1 = (0) ⊆ b. Suppose that
Fm ⊆ b for some m ≥ −1. Take x ∈ Fm+1. Then the first step implies x + Fm = xm+1 + Fm
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with xm+1 ∈ b. Hence x ∈ b + Fm ⊂ b by induction hypothesis. We conclude that R ⊆ b and
the proof is complete.

Corollary. Let A be a commutative Poisson algebra and R a noncommutative algebra
with a filtration F such that R is the algebraic deformation of A associated to F . If A is
finitely generated as a Lie algebra for the Poisson bracket, then R is finitely generated as
a Lie algebra for the commutator bracket.

Proof. If a0, a1, . . . , ap is a generating family of grF (R) ' A, the family composed by all
homogeneous components of all elements ai is still a finite family of generators ; now the previous
lemma applies.

A direct application of this deformation results concerns the Lie structure defined from
the commutator bracket in the invariant for the Weyl algebra (in the context of 3.2.3)

Theorem. For any finite subgroup G of the Weyl algebra A1(C), the invariant algebra
A1(C)G is finitely generated as a Lie algebra for the commutator bracket.

Proof. It follows directly from the previous corollary, theorem 3.2.3, and assertion (i) of
theorem 2.2.2.

Remark. Explicit generators for the Lie algebra A1(C)G. In cases Dn, E6, E7, E8,
the generators of the Lie algebra C[x, y]G given at the end of 3.3.2 are homogeneous;
thus the previous lemma produces directly generators of the Lie algebra A1(C)G
(replacing x by p and y by q).

In the case An−1 with n ≥ 3, we have proved that C[x, y]G is generated by the
n − 1 elements 1 + xn + yn, xy, (xy)2, . . . , (xy)n−2. Thus C[x, y]G is generated
by the n homogeneous elements 1, xn + yn, xy, (xy)2, . . . , (xy)n−2. Hence apply-
ing the lemma, A1(C)G is generated as a Lie algebra by the n elements 1, pn +
qn, pq, (pq)2, . . . , (pq)n−2. Moreover, we have:

[pq, 1 + pn + qn] = n(−pn + qn) and [pq,−pn + qn] = n(pn + qn).

Hence the Lie algebra generated by 1+pn+qn, pq, (pq)2, . . . , (pq)n−2 contains pn+qn

and 1 ; therefore A1(C)G is generated by 1 + pn + qn, pq, (pq)2, . . . , (pq)n−2.

In the case A1, we have proved that C[x, y]G is generated by the two elements
1 + xy and x2 + y2 + (xy)2. Thus C[x, y]G is generated by the four homogeneous
elements 1, xy, x2 + y2, (xy)2. Hence applying the lemma, A1(C)G is generated as a
Lie algebra by the four elements 1, pq, p2 + q2, (pq)2. Moreover, we have:

[1 + pq, p2 + q2 + p2q2] = −2p2 + 2q2,

[1 + pq,−p2 + q2] = 2p2 + 2q2, and [p2, q2] = 4pq − 2.

Hence the Lie algebra generated by 1+ pq, p2 + q2 +(pq)2 contains p2, q2, 1, pq, p2q2

which generate A1(C)G. Finally A1(C)G is generated by 1+ pq and p2 + q2 + (pq)2.
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4 Quantization: automorphisms and invariants for

quantum algebras

4.1 Quantum deformations and their automorphisms

4.1.1 Quantum deformations of the plane

We fix k a commutative base field. We recall that for any q ∈ k× the quantum plane
kq[x, y] is the algebra generated over k by two elements x and y with relation

xy = qyx. (37)

Proposition (the quantum plane). Suppose that q is not a root of one.

(i) kq[x, y] is a noncommutative noetherian domain of center k.

(ii) The k-algebra kq[x, y] is not simple.

(iii) The k-automorphism group of kq[x, y] reduces to the 2-dimensional torus (k×)2
acting by x 7→ αx and y 7→ βy for any (α, β) ∈ (k×)2.

(iv) kq[x, y] is a deformation of the commutative Poisson algebra k[x, y] related to the
Poisson bracket defined from {x, y} = xy.

Proof. Noetherianity in point (i) follows from example (iv) in 1.3.1 and last corollary of 1.3.2;
because q is not a root of one, it is straightforward to observe that the centralizer of y reduces
to k[y], and then that an element of k[y] commutes with x only when it is a constant. The
non simplicity of kq[x, y] in (ii) follows from the fact that any non trivial monomial is normal
(generates a two-sided ideal).
Assertion (iii) first appeared in [20], as a particular case of more general results. We give here a
short independent proof. Let z be a normal element of kq[x, y]. We have in particular zy = uz
and zx = vz for some u, v ∈ kq[x, y]. Considering degx in the first equality, we have u ∈ k[y].
Denoting z =

∑
m fm(y)x

m, relation zy = uz implies
∑

m fm(y)(q
my − u(y))xm = 0; since q is

not a root of one, there exists one nonnegative integer i such that z = fi(y)x
i. From the second

equality fi(y)x
i+1 = vz, it is easy to deduce that z = αyjxi for some nonnegative integer j and

some α ∈ k. This proves that the normal elements of kq[x, y] are the monomials. Now let g be
a k-automorphism of kq[x, y]. It preserves the set of nonzero normal elements. Hence we have
g(x) = αyjxi and g(y) = βykxh with α, β ∈ k× and j, i, k, h nonnegative integers; because q is
not a root of one, the relation g(x)g(y) = qg(y)g(x) implies that ik − hj = 1. Writing similar
formulas for g−1 and identifying the exponents in g−1(g(x)) = x and g−1(g(y)) = y, we obtain
easily j = h = 0 and i = k = 1.
For the last point (iv), let us introduce the noncommutative algebra B generated by three
variables h, x, y with commutation relations xh = hx, yh = hy and xy − yx = hxy. It is
clear that A := B/hB is the commutative algebra k[x, y]. Moreover uv − vu = hγ(u, v) with
γ(u, v) ∈ B for all u, v ∈ B. Thus by the method described in 3.2.1, {u, v} = γ(u, v) defines
a Poisson bracket in A. In particular {x, y} = xy. For any λ ∈ k, λ 6= 0, λ 6= 1, the quotient
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B/(h − λ)B is a deformation of A. This deformation is generated by two elements X and Y
with relation Y X = (1− λ)XY , that is the quantum plane kq[X,Y ] for q = (1− λ)−1.

We define the jordanian plane kJ[x, y] as the algebra generated over k by x and y with
relation xy − yx = y2.

Proposition (the jordanian plane). Suppose that k is of characteristic zero.

(i) kJ[x, y] is a noncommutative noetherian domain of center k.

(ii) The k-algebra kJ[x, y] is not simple.

(iii) The k-automorphism group of kJ[x, y] reduces to the semi-direct product of k× by
the additive group k[y], acting by

x 7→ αx+ f(y) and y 7→ αy for any α ∈ k×, f ∈ k[y].

(iv) kJ[x, y] is a deformation of the commutative Poisson algebra k[x, y] related to the
Poisson bracket defined from {x, y} = y2.

Proof. Noetherianity in point (i) follows from example (iii) in 1.3.1 and last corollary of 1.3.2;
the determination of the center follows from easy calculations on the centralizers of x and y
using the assumption chark = 0. The non simplicity of kJ[x, y] in (ii) is clear since y is normal.
Point (iii) is a direct application of the last proposition of 2.3.4. The proof of (iv) is quite similar
to the previous proposition considering here the algebra B generated by h, x, y with hx = xh,
hy = yh and xy − yx = hy2.

Remark. We consider the quantum plane kq[x, y] with q ∈ k×. If q =
1, it is just the commutative plane k[x, y]. If q 6= 1, we set λ = 1

1−q ; the

algebra kq[x, y] is also generated by x′ = x + λy and y′ = y. We compute
x′y′ − qy′x′ = xy + λy2 − qyx − λqy2 = (1 − q)λy2 = (y′)2. In other words,
the algebra generated over k by x and y with xy − qyx = y2 is the quantum
plane in the case q 6= 1 and the jordanian plane in the case q = 1. This
property is sometimes called the contraction principle from the quantic case
to the jordanian case.

We concentrate now on the quantum case (we will return to the jordanian situation
further in 4.1.3). The quantum plane admitting non trivial quotient cannot constitute a
quantum analogue of the Weyl algebra. Moreover, its automorphism group is to small to
provide an interesting invariant theory for finite subgroups. Therefore we introduce the
localization kq[x±1, y±1] of kq[x, y] with respect of the multiplicative set generated by x
and y; this is the algebra of Laurent polynomials, with k-basis (xiyj)i,j∈Z and commutation
law xy = qyx extended in x−1y = q−1yx−1, xy−1 = q−1y−1x, or x−1y−1 = qy−1x−1.

Proposition (the quantum torus). Suppose that q is not a root of one.

(i) kq[x±1, y±1] is a noncommutative noetherian domain of center k.
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(ii) The k-algebra kq[x±1, y±1] is simple.

(iii) The k-automorphism group of kq[x±1, y±1] is isomorphic to the semi-direct product
of the 2-dimensional torus (k×)2 by SL2(Z) acting by

x 7→ αycxa and y 7→ βydxb (38)

for any (α, β) ∈ (k×)2 and ( a bc d ) ∈ SL2(Z).

(iv) kq[x±1, y±1] is a deformation of the commutative Poisson algebra k[x±1, y±1] related
to the Poisson bracket defined by localization from {x, y} = xy.

Proof. Points (i) and (iv) are clear by localization ; see last comment of 1.3.2, and 3.1.1 (or
further the proof of theorem 4.2.2). The proof following of (ii) is a multiplicative adaptation
of the argument for the Weyl algebra (see 2.1.1). For any nonzero element s ∈ kq[x±1, y±1],
denote by `(s) the length of s (i.e. the number of monomials with nonzero coefficients in the
decomposition of s related to the k-basis (xiyj)i,j∈Z). Let I be a nonzero two-sided ideal of
kq[x±1, y±1]. Let s be a nonzero element of I whose length is the minimum of the lengths of
nonzero elements of I. Choose (a, b) ∈ Z2 in the support of s; we have s = αxayb + s′ where
α ∈ k× and s′ ∈ kq[x±1, y±1]. Then u := α−1sy−bx−a = 1 + s′′ where s′′ = α−1s′y−bx−a.
Because s ∈ I and I is an ideal, we have u ∈ I. Hence u − xux−1 ∈ I. In other words
u−xux−1 = s′′−xs′′x−1 ∈ I. Since multiplying a monomial by x on the left and x−1 consists in
multiplying it by a nonzero constant, is is clear that `(s′′ − xs′′x−1) ≤ `(s′′) = `(s′) < `(s). By
minimality of `(s), we deduce that u− xux−1 = 0. We prove similarly that u = yuy−1. Finally
u ∈ I, u 6= 0, lies in the center k of kq[x±1, y±1]. So I = kq[x±1, y±1] and point (ii) is proved.

To prove (iii) let us consider θ an automorphism of kq[x±1, y±1]. It preserves the group U
of invertible elements. In particular θ(x) ∈ U and θ(y) ∈ U . It is easy to prove that U is the
set of nonzero monomials. Thus there exist α, β ∈ k× and a, b, c, d ∈ Z such that θ(x) = αycxa

and θ(y) = βydxb. By identification of coefficients in the identity θ(x)θ(y) = qθ(y)θ(x) we
deduce qad−bc = 1 and the assumption q not a root of one implies ad − bc = 1. Conversely
any a, b, c, d ∈ Z with ad − bc = 1 define an automorphism θ : x 7→ ycxa, y 7→ ydcb with
θ−1 : x 7→ qmy−cxd, y 7→ qnyac−b where the exponents m,n depend on a, b, c, d (see further
precisions in 4.2.1); point (iii) follows by computing the composition of such automorphisms
and diagonal automorphisms x 7→ αx, y 7→ βy with α, β ∈ k∗.

In conclusion, as well as the Weyl algebra is a simple noncommutative deformation of
the symplectic plane, the quantum torus is a simple noncommutative deformation of the
plane for its so called multiplicative Poisson structure.

Comment. We restrict here to dimension two but n-dimensional versions of the
quantum plane and the quantum torus (see [2]) are of course the object of many
studies. Related to the above properties, we refer to the papers [54], [59] and [61].

4.1.2 Induced Lie structures

• We consider the commutative Poisson algebra S = C[x, y] for the multiplicative Poisson
bracket, defined in point (iv) of the first proposition of 4.1.1. That is:

{x, y} = xy, (39)
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or more generally

{xayb, xcyd} = (ad− bc)xa+cyb+d for all a, b, c, d ∈ N. (40)

We claim (from [34]) that HP0(S) is not finite dimensional.

Proof. The Poisson bracket {f, g} of two polynomials f, g ∈ S is a linear combination
with coefficients in C of terms h = {xayb, xcyd} with a, b, c, d ∈ N. If a + c = 0,
then a = c = 0 thus ad − bc = 0, and therefore h = 0. With the same argument
for b + d we deduce that {f, g} is a linear combination of monomials xuyv where
the integers u = a+ c and v = b+ d are ≥ 1. Such a monomial can be obtained as
xuyv = 1

v{x, x
u−1yv}. So we have: S = C ⊕ (

⊕
u≥1Cxu) ⊕ (

⊕
v≥1Cyv) ⊕ {S, S},

and then S/{S, S} is not finite dimensional.

In particular, C[x, y] is not finitely generated as a Lie algebra for the bracket { · , · } under
consideration. Then we work in the following on the localized form.

• We consider the commutative Poisson algebra T = C[x±1, y±1] for the multiplicative
Poisson bracket, defined in point (iv) of the third proposition of 4.1.1 by localization of
the previous one. That is:

xy = {x, y}, x−1y−1 = {x−1, y−1}, x−1y = −{x−1, y}, xy−1 = −{x, y−1}, (41)

or more generally

{xayb, xcyd} = (ad− bc)xa+cyb+d for all a, b, c, d ∈ Z. (42)

Proposition. For the multiplicative Poisson bracket on the commutative algebra T =
C[x±1, y±1], the following holds:

(i) dimCHP0(T ) = 1

(ii) T is finitely generated as a Lie algebra.

(iii) The only Lie ideals of T are C, T and the vector space T+ generated by the non
constant monomials. In particular T/C is a simple Lie algebra.

Proof. We follow [35]. For any a, b ∈ Z, we have {xa+byb−a, x−bya} = (a2+ b2)xayb. Thus any
non constant monomial is an element of {T, T}. Moreover a+ c = b+ d = 0 implies ad− bc = 0
and it follows then from (42) that the constant term of any bracket {f, g} with f, g ∈ T is
necessarily zero. In conclusion T = C⊕{T, T} and point (i) is proved. Now denote by g the Lie
subalgebra of T generated by the five elements 1, x, x−1, y, y−1. We claim that any monomial
xayb with a, b ∈ Z, a 6= 0, b 6= 0 lies in g.

We proceed by induction on |a|+|b|. The case |a|+|b| = 2 follows from the identities
(41). Now suppose |a| + |b| > 2. Then |a| ≥ 2 or |b| ≥ 2. Up to permute, we can
suppose |a| ≥ 2. If a ≥ 2, then xayb = −1

b{x
a−1yb, x} with x ∈ g by definition of

g and xa−1yb ∈ g by induction hypothesis. If a ≤ −2, then xayb = 1
b{x

a+1yb, x−1}
with x−1 ∈ g by definition of g and xa+1yb ∈ g by induction hypothesis.

46



Moreover xa = − 1
a{x

ay, y−1} for a 6= 0 with xay ∈ g from the previous step, and then xa ∈ g.
Similarly yb = 1

b{xy
b, x−1} ∈ g for b 6= 0. In conclusion g contains all monomials and finally

g = T . In order to proved (iii), let us introduce a Lie ideal I of T non reduced to C. We
choose in I an element u of minimal length s among the non constant elements of I. We denote
it u := α1x

a1yb1 + · · · + αsx
asybs where the αk’s are in C. Suppose that s ≥ 2. For any

(i, j) ∈ Z2, {xiyj , u} ∈ I. Observe that {xiyj , u} =
∑s

k=1 αk(iak − jbk)x
i+akyj+bk is of length

≤ s. If there exists some (i, j) ∈ Z2, (i, j) 6= (0, 0), such that all (ak, bk) are proportional to
(i, j) [i.e. there exists λ1, . . . , λs ∈ Q such that (ak, bk) = λ(i, j) for any 1 ≤ k ≤ s], then we
consider in I the non constant element {xjy−i, u} =

∑s
k=1 2akλkij αkx

j+λkiy−i+λkj with non
proportional exponents (j + λki,−i+ λkj). So, up to this change of monomial, we can suppose
without any restriction that at least two pairs of exponents, for instance (a1, b1) and (a2, b2),
are non proportional in Q. Hence {xa1yb1 , u} is a non constant element of I whose length is
strictly lower than s. Contradiction. It follows that we necessarily have s = 1. So I contains a
monomial u = xayb with (a, b) 6= (0, 0). Without lost of generality we can assume a 6= 0. Then
−ay = {x−ay1−b, u} ∈ I. Thus I contains y and then {xy−1, y} = x. Similarly x−1 ∈ I and
y−1 ∈ I. If 1 ∈ I, then I = g = T by point (ii). Otherwise I = T+.

• We consider now the quantum deformation Cq[x±1, y±1]. We suppose that q is not a
root of one in C. The Lie structure under consideration is the commutator’s one. Hence
the bracket of two monomials is given by

[x, y] = (q − 1)yx = (1− q−1)xy, (43)

or more generally

[xayb, xcyd] = (q−bc − q−ad)xa+cyb+d for all a, b, c, d ∈ Z. (44)

The similarity between the original multiplicative Poisson bracket on T = C[x±1, y±1] and
the deformed commutator bracket on the quantum deformation Cq[x±1, y±1] appears in
particular in the main observation that (q−bc− q−ad) = 0 in (44) if and only if ad− bc = 0
in (42). So it is not surprising to obtain a quite parallel result (see [34] and [35]):

Proposition. Suppose that q is not a root of one. For the quantum torus Tq =
Cq[x±1, y±1], the following holds:

(i) dimCHH0(Tq) = 1

(ii) Tq is finitely generated as a Lie algebra for the commutator bracket.

(iii) The only Lie ideals of Tq are C, Tq and the vector space T+
q generated by the non

constant monomials.

Proof. It suffices to copy out mutatis mutandis the previous demonstration

Remark. Let I be a nonzero two-sided ideal of the associative algebra Tq. It is a fortiori
a Lie ideal and we can apply point (iii) above. If I = C, then I = Tq. If I = T+

q , then
x ∈ I and by the definition of an ideal 1 = xx−1 ∈ I, thus I = Tq. So we find again the
simplicity of the associative algebra Tq proved in (ii) of the third proposition of 4.1.1.
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4.1.3 Rigidity of quantum groups

Up to isomorphism, the search of Hopf algebras with the same representation theory as
SL2 leads to two noncommutative deformations of the Hopf algbra O(SL2) of regular
functions on SL2. There are obtained from the corresponding bialgebras of 2× 2 matrices
applying the Faddeev-Reshetihin-Takhtajan construction to one of the Hecke symmetries:

quantum: Rq =

(
q−1 0 0 0
0 0 1 0
0 1 q−1−q 0
0 0 0 q−1

)
jordanian: RJ =

(
1 −1 1 1
0 0 1 1
0 1 0 −1
0 0 0 1

,

)
(45)

where q ∈ k×. In both cases the matrix R = Rq or R = RJ viewed as an endomorphism of
V ⊗V for a 2-dimensional k-vector space V satisfies in the group of linear automorphisms
of V ⊗ V ⊗ V the Yang-Baxter relation:

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R),

and the Hecke condition in End(V ⊗ V ):

(Rq − q−1 idV⊗V )(Rq + q−1 idV⊗V ) = 0 or (RJ − idV⊗V )(R
J + idV⊗V ) = 0.

Then we consider the algebra A generated by four generators a, b, c, d with relations:

R× [( a bc d )⊗ ( a bc d )] = [( a bc d )⊗ ( a bc d )]×R ∈ End(V ⊗ V ) (46)

Comment. A is also a bialgebra for the coproduct ∆ : A → A ⊗ A and counit
ε : A→ k defined from the matrix product:(

∆(a) ∆(b)
∆(c) ∆(d)

)
=
(
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

)
=
(
a b
c d

)
⊗̇
(
a b
c d

)
and

(
ε(a) ε(b)
ε(c) ε(d)

)
= ( 1 0

0 1 ) .

It follows from relations (46) that the assignments δ(x) = a⊗ x+ b⊗ y and δ(y) =
c⊗ x+ d⊗ y satisfy δ(x)δ(y) = qδ(y)δ(x) if xy = qyx and R = Rq, and δ(x)δ(y)−
δ(y)δ(x) = δ(y)2 if xy−yx = y2 and R = RJ. Then δ defines a coaction P → A⊗P
where P is the quantum plane kq[x, y] if R = Rq, and P is the jordanian plane
kJ[x, y] if R = RJ. In both cases, there exists an analogue z of the determinant which
is central in A and we define the corresponding analogue A′ = A/(z−1)A of O(SL2);
the ideal (z − 1)A is a coideal and the bialgebra A′ is a (non commutative and non
cocommutative) Hopf algebra where the antipode S : A′ → A′ is respectively given

by
(
S(a) S(b)
S(c) S(d)

)
=
(

d −q−1b
−qc a

)
or
(
c+d −a+c−b+d
−c a−c

)
.

Definition. For q ∈ k×, the algebra Oq(M2) of quantum 2 × 2 matrices is the algebra
generated over k by four generators a, b, c, d with relations:{

ab = qba, bd = qdb, ac = qca,
cd = qdc, cb = bc, ad− da = (q − q−1)bc.

(47)

The quantum determinant is the central element zq = ad−qbc = da−qcb and the algebra
Oq(M2)/(zq − 1)Oq(M2) is the quantum deformation of O(SL2), denoted by Oq(SL2).
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Remark. In the same way than in point (iv) of the first proposition of 4.1.1 we can
observe that Oq(SL2) is a deformation of the commutative Poisson algebra O(SL2)
for the standard Poisson bracket defined from {a, b} = ab, {a, c} = ac, {b, c} = 0,
{b, d} = bd, {c, d} = cd and {a, d} = 2bc; see III.5.5 in [2] for more details.

Definition. The algebra OJ(M2) of jordanian 2 × 2 matrices is the algebra generated
over k by four generators a, b, c, d with relations:{

[a, c] = c2, [d, c] = c2, [a, d] = dc− ac,
[a, b] = ad− bc+ ac− a2, [d, b] = ad− bc+ ac− d2, [b, c] = dc+ ac− c2.

(48)

The jordanian determinant is the central element zJ = ad − bc + ac and the algebra
OJ(M2)/(z

J − 1)OJ(M2) is the jordanian deformation of O(SL2), denoted by OJ(SL2).

Theorem. For q not a root of one, the automorphism group of Oq(M2) reduces to the
semi-direct product (k×)3×〈τ〉 where τ is the involution of Oq(M2) defined by:

τ : a 7→ a, b 7→ c, c 7→ b, d 7→ d (49)

and the 3-dimensional torus (k×)3 acts by:

µα,β,γ : a 7→ αa, b 7→ βb, c 7→ γc, d 7→ α−1βγd (50)

Proof. This theorem is proved in [20] using the structure of derivations to deduce the auto-
morphisms. We give here an alternative direct demonstration.
Step 1. Denote by A the algebra Oq(M2) and U the noncommutative Laurent polynomial

algebra U = k[b, c, z][a±1 ; σ] where σ is defined by σ(b) = qb, σ(c) = qc and σ(z) = z. It follows
from relations (47) and relation d = (z + qcb)a−1 that A can be embedded in U . Using the
canonical form of any element t ∈ A as a finite development

∑
i∈Z fi(b, c, z)a

i in U with very
simple relations ab = qba, ac = qca and az = za, it is easy to see that t commutes with b and
c if and only if t ∈ k[b, c, z], and then t also commute with a if and only if t ∈ k[z]. We prove
so that the center Z(A) of A reduces to k[z]. By similar calculations, we verify that the set of
normal elements of A is N(A) =

⋃
m≥0Nm(A) where Nm(A) =

⊕
i,j,k≥0,i+j=m k bicjzk.

Step 2. Let σ be an automorphism of A. Using the natural grading of A, we can note:
σ(a) = a0+a1+a

+ with a0 ∈ k, a1 ∈ ka⊕kb⊕kc⊕kd, and deg a+ ≥ 2. With similar notations
for σ(b), σ(c) and σ(d), we apply σ to the first four relations of (47) and deduce obviously
by identifications that a0 = b0 = c0 = d0 and a1b1 = qb1a1, a1c1 = qc1a1, b1d1 = qd1b1 and
c1d1 = qd1c1. Writing each a1, b1, c1, d1 in the basis a, b, c, d, these four q-commutations imply
a1 = αa, b1 = βb + γ′c, c1 = β′b + γc and d1 = δd with α, β, β′, γ, γ′, δ ∈ k. Moreover the
restriction of σ to Z(A) = k[z] is an automorphism of k[z]. Hence there exists λ, µ ∈ k, λ 6= 0
such that σ(z) = λz + µ. Therefore a1d1 − qb1c1 = λ(ad − qbc) + µ. It follows that µ = 0,
αδ = λ, γγ′ = ββ′ = 0 and βγ + β′γ′ = λ. We conclude that, up to compose σ by τ and the
automorphism µα,β,γ described by (49) and (50), we can suppose without any restriction in the
following that a1 = a, b1 = b, c1 = c and d1 = d. In other words, σ(a) = a+ a+, σ(b) = b+ b+,
σ(c) = c+ c+ and σ(d) = d+ d+, with σ(z) = z.
Step 3. The element b is normal in A, then σ(b) is normal in A; because σ(b) = b + b+ and

b ∈ N1(A), the rest b+ must be an element of the component N1(A) of N(A). In particular
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ab+ = qb+a. Developing the relation σ(a)σ(b) = qσ(b)σ(a) into ab + a+b + ab+ + a+b+ =
qba + qb+a + qa+b + qa+b+, the simplification by ab = qba and ab+ = qb+a together with the
degree conditions deg b < deg b+ imply a+b = qba+. Thus the development of a+ in U reduces
to a+ = f(b, c, z)a with f ∈ k[b, c, z]. Applying the same argument for the automorphism
σ−1 with σ−1(a) = a + g(b, c, z)a, we obtain in the subalgebra k[b, c, z][a ; σ] of U the identity
a = σ(σ−1(a)) = (1 + σ(g))(1 + f)a. Hence f = g = 0 and then σ(a) = a. Similarly σ(d) = d.
Step 4. Since σ(ad) = ad and σ(z) = z, we have σ(bc) = bc. The element b+ ∈ N1(A) is of

the form b+ = f(z)b + g(z)c with f, g ∈ k[z]. Similarly c+ = h(z)b + `(z)c. The identification
(b+b+)(c+c+) = bc in k[z][b, c] gives then g = h = 0. Hence σ(b) = b+f(z)b and σ(c) = c+`(z)
and the argument b = σ(σ−1(b)) as above for a implies f = 0. Finally σ(b) = b, and similarly
σ(c) = c. We conclude σ = idA and the proof is complete.

We can deduce from this theorem (see also [20] and [33]) that:

- the group of algebra automorphisms of Oq(SL2) reduces to the semi-direct product
(k×)2×〈τ〉 where τ is the involution defined by: a 7→ a, b 7→ c, c 7→ b, d 7→ d and the
2-dimensional torus (k×)2 acts by a 7→ αa, b 7→ βb, c 7→ β−1c, d 7→ α−1d.

- the Hopf algebra automorphisms of Oq(SL2) are the a 7→ a, b 7→ βb, c 7→ β−1c, d 7→ d.

Remark. The corresponding result for the jordanian matrices is proved in the paper
[44]. The proof is somewhat more difficult and clearly too long to be developed here.
The description is the following. We suppose k of characteristic zero and consider
the algebra A = OJ(M2) with generators a, b, c, d and relations (48):

1. there exists τ ∈ AutA such that: τ(a) = d, τ(b) = b, τ(c) = c, τ(d) = a, and
T = {idA, τ} is a subgroup of order 2 of AutA;

2. for all α ∈ k×, there exists σα ∈ AutA such that:
σα(a) = αa, σα(b) = αb, σα(c) = αc, σα(d) = αd,

and H = {σα ; α ∈ k×} is a subgroup of AutA isomorphic to k×;
3. for all q(z) ∈ k[z], there exists ηq ∈ AutA such that:

ηq(a) = a, ηq(b) = b+ q(z)a, ηq(c) = c, ηq(d) = d+ q(z)c,

and G1 = {ηq ; q(z) ∈ k[z]} is a subgroup of AutA isomorphic to the additive
group k[z];

4. for all p(z, u, c) ∈ k[z, u, c], where u = d−a, there exists ξp ∈ AutA such that:

ξp(a) = a+ p(z, u, c)c, ξp(c) = c, ξp(d) = d+ p(z, u, c)c,
ξp(b) = b+ ap(z, u, c) + p(z, u, c)d+ p(z, u, c)2c,

and G2 = {ξp ; p(z, u, c) ∈ k[z, u, c]} is a subgroup of AutA isomorphic to the
additive group k[z, u, c].

Then the main theorem asserts that:
AutOJ(M2) = [(G2×G1)×H]×T,

and a corollary proves that:
AutOJ(SL2) = [(G′

2×G′
1)×H ′]×T.

where H ′ = {σα ∈ H ; α = ±1} of order 2, G′
1 = {ηq ∈ G1 ; q ∈ k} ' k and

G′
2 = {ξp ∈ G2 ; p(u, c) ∈ k[u, c]} ' k[u, c]
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Comment. Let us recall that the structure of the automorphism group of a commutative
algebra of polynomials in n indeterminates is known only for n ≤ 2 (see 2.3.4). For n ≥ 3,
it is the subject of many problems, studies and open questions connected with profound
topics (tameness conjecture, Dixmier conjecture, Jacobian conjecture,... see [18]) with
recent fundamental progresses (by Alexei Belov-Kanel and Maxim Kontsevich, Ivan P.
Shestakov and Ualbai U. Umirbaev). For instance the structure of the automorphism
group of C[x, y, z, t] ' O(M2) or O(SL2) is still unknown. The same problem for the
quantum algebras Oq(M2) and Oq(SL2) turns out to be trivial with a very “small” group
of automorphisms. The fact that the quantization leads to a more rigid situation is
a well known phenomenon, observed in many other cases: quantum spaces, quantum
groups, quantum enveloping algebras (see for instance references in [20], [21], [32], [46],
[61],...). The jordanian deformation gives rise to a very different picture; in some sense,
it is intermediate between the extremely rich commutative situation and the very rigid
quantum case (see [44]).

4.2 Multiplicative invariants

4.2.1 Actions for multiplicative Poisson structures and deformations

The action of the group SL2(Z) on the Poisson algebra T = C[x±1, y±] for the multiplica-
tive bracket defined by (41) and the corresponding “multiplicative invariant theory”’ (see
[12]) is deformed into an action by automorphisms on the quantum torus Tq = Cq[x±1, y±]
previously encountered in point (iii) of the third proposition of 4.1.1 and detailed in the
following. It is useful to introduce q̂ a square root of q−1. Relation (37) rewrites into

yx = q̂ 2xy (51)

We start with the description of the actions.

Proposition. We suppose that q is not a root of one.

(i) The group SL2(Z) acts by Poisson automorphisms on the commutative algebra
T = C[x±1, y±] for the multiplicative bracket. The action is defined by:

g.x = xayc and g.y = xbyd for g = ( a bc d ) ∈ SL2(Z), (52)

or more generally for any m,n ∈ Z,

g.(xmyn) = xam+bnycm+dn (53)

(ii) The group SL2(Z) acts by algebra automorphisms on the quantum torus Tq =
Cq[x±1, y±]. The action is defined by:

g.x = q̂ acxayc and g.y = q̂ bdxbyd for g = ( a bc d ) ∈ SL2(Z), (54)

or more generally for any m,n ∈ Z,

g.(xmyn) = q̂ (am+bn)(cm+dn)−mnxam+bnycm+dn (55)
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Proof. From one hand g′.(g.x) = g′.(xayc) = (xa
′
yc

′
)a(xb

′
yd

′
)c = xa

′a+b′cyc
′a+d′c = (g′g).x.

Similarly g′.(g.y) = (g′g).y. From the other hand it follows from (42) that {g.x, g.y} =
{xayc, xbyd} = (ad − bc)xa+byc+d = g.(xy) = g.{x, y} thus any g ∈ SL2(Z) defines a Poisson
automorphism. The proof of (i) is complete. For the quantum case, we have:

(g.y)(g.x) = q̂ bdxbydq̂ acxayc = q̂ bd+ac+2adxa+byc+d = q̂ ac+bd+2+2bcxa+byc+d

= q̂ 2q̂ ac+bd+2bcxa+byc+d = q̂ 2q̂ acxaycq̂ bdxbyd = q̂ 2(g.x)(g.y).

Moreover: g′.(g.x) = g′.(q̂ acxayc) = q̂ ac+a
′c′a2+2b′c′ac+b′d′c2xa

′a+b′cyc
′a+d′c,

and (g′g).x = q̂ (a′a+b′c)(c′a+d′c)xa
′a+b′cyc

′a+d′c;

the exponents of q̂ are similar because a′d′ = 1 + b′c′, hence g′.(g.x) = (g′g).x. On the same
way g′.(g.y) = (g′g).y.

4.2.2 Invariants for multiplicative Poisson stuctures and deformations

Just like the classification of finite subgroups of SL2(C) is the starting point for the in-
variant theory of symplectic Poisson commutative algebra C[x, y] (see 2.2.1) and through
deformation of the Weyl algebra A1(C) (see 2.2.2 and 3.2.3), on the same way the mul-
tiplicative invariant theory deals with the invariants of C[x±1, y±1] under the action of
classified finite subgroups of SL2(Z) and can be extended to the quantum torus by defor-
mation process; the following theorem (from [34]) is a multiplicative analogue of 3.2.3.

Theorem. For any finite subgroup G of SL2(Z) acting by Poisson automorphisms on
the commutative algebra T = C[x±1, y±1] and by algebra automorphisms on the quantum
torus Tq = Cq[x±1, y±], with q not a root of one, the noncommutative invariant algebra
TGq is a deformation of the commutative Poisson invariant algebra TG.

C[x±1, y±1]
deformation

///o/o/o/o/o/o/o/o Cq[x±1, y±1]

C[x±1, y±1]G
?�

OO

deformation
///o/o/o/o/o/o/o Cq[x±1, y±1]G

?�

OO

Proof. Let B be the noncommutative Laurent polynomial algebra generated by three gener-
ators x, y, z and their inverses x±1, y±1, z±1 with relations zx = xz, zy = yz and yx = z2xy.
The element h := 2(1 − z) is central and non invertible in B. It is clear that A := B/hB is
isomorphic to the commutative algebra T = C[x±1, y±1]. We calculate in B the commutator:

xy − yx = (1− z2)xy = 2(1− z)12(1 + z)xy = hγ(x, y) with notation γ(x, y) := 1
2(1 + z)xy.

In the algebra B/hB, we have γ(x, y) = 1
2(1+z)xy = xy. Hence the algebra isomorphism A ' T

is a Poisson isomorphism for the multiplicative Poisson bracket on T ; then B is a quantization
of A is the sense of 3.2.1 and B/(h−λ)B is a deformation of A for any λ ∈ C such that h−λ is
not invertible in B. In particular for λ = 2(1− q̂ ) where q̂ is a square root of q−1, the deformed
algebra B/(h− λ)B is isomorphic to the quantum torus Tq.
By calculations formally similar to the proof of point (ii) in the previous proposition, we easily
observe that any subgroup G of SL2(Z) acts by automorphisms on B by:

g.x = zacxayc, g.y = zbdxbyd, g.z = z for g =
(
a b
c d

)
∈ SL2(Z).
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The ideal hB being stable under this action, the action induces an action on B/hB = A and
BG/hBG ' AG by application of the sublemma of 3.2.3. The Poisson isomorphism A ' T being
clearly equivariant, it follows that AG ' TG and we finally BG/hBG ' TG as Poisson algebras.
Similarly BG/(h−λ)BG ' TGq as associative algebras where λ = 2(1− q̂ ). We conclude that BG

is a quantization and TGq is a deformation of TG. In other words, the invariants of the deformed
algebra constitute a deformation of the initial invariant algebra.

Remark. We mention here some general way to obtain invariant elements in T (or
Tq mutatis mutandis). Let G be a finite subgroup of SL2(Z). Consider the canonical
linear action of G on the lattice Z2, i.e. :

g.(m,n) = (am+ bn, cm+ dn) for (m,n) ∈ Z2, g =
(
a b
c d

)
∈ SL2(Z). (56)

Relation (53) can be rewritten g.(xmyn) = xiyj where (i, j) = g.(m,n). We intro-
duce the Reynolds operator ρG : T → TG defined by f 7→ ρG(f) = 1

|G|
∑

g∈G g.f .

For any (m,n) ∈ Z2, we consider

Rm,n := ρG(x
myn) =

1

|G|
∑

(i,j)∈G.(m,n)

xiyj ∈ TG, (57)

where G.(m,n) is the G-orbit of (m,n). By surjectivity of ρG, the (Rm,n)(m,n)∈Z2

generate TG as a C-vector space. Then Z2 being the disjoint union of its G-orbits,
a C-basis of TG is (Rm,n)(m,n)∈Ω where Ω is a set of representatives of the G-orbits.
This basis (or its adapted quantum form, see [34] p. 97) provides candidates for
generators of TG as associative algebra or Lie algebra for the Poisson bracket.

Take for instance G = {I2,−I2}, then Rm,n = R−m,−n for any (m,n) ∈ Z2; we
choose Ω = (N∗ × Z) ∪ ({0} × N). It’s an exercise to check (by induction from
identities verified by the Rm,n’s) that any Rm,n such that (m,n) ∈ Ω lies in the
subalgebra of TG generated over C by ξ1 := 2R1,0 = x+ x−1, ξ2 := 2R0,1 = y+ y−1

and θ := 2R1,1xy + x−1y−1; hence TG is generated as a C-algebra by ξ1, ξ2, θ.
Similarly, TG is generated as a Lie algebra for the bracket (42) by the five elements
R0,0 = 1, ξ1, ξ2, θ and R2,0 =

1
2(x

2 + x−2).

Comment. Previous results open the way for a wide program of systematic study of
multiplicative/quantum invariants in parallel with the more classical symplectic/Weyl
theory. This program is greatly initiated in [34]. We couldn’t think of developing it here
with details and proofs but it seems interesting to give some brief overview about the
obtained results.

• 1. The classification up to conjugation of finite subgroups of GL2(Z) is well known; the
description of the twelve types (classically denoted G1 to G12) can be found in [12]. In
particular the finite subgroups of SL2(Z) correspond to the four (all cyclic) cases:

G7 = 〈x〉 ' C6, G8 = 〈ds〉 ' C4, G9 = 〈x2〉 ' C3, G10 = 〈x3〉 ' C2,

where x = ( 1 −1
1 0 ), d = ( −1 0

0 1 ) and s = ( 0 1
1 0 ) are the three basic matrices used in the

description of any finite subgroup of GL2(Z). Explicitly:
x = ( 1 −1

1 0 ), ds = ( 0 −1
1 0 ), x2 =

(
0 −1
1 −1

)
, x3 =

( −1 0
0 −1

)
.
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Remark. It is easy to verify that the property for any finite subgroup G of SL2(Z)
to be conjugated in GL2(Z) to a Gi (i = 7, 8, 9, 10) implies that G is conjugated to
Gi in SL2(Z) (see [34] p. 73). Denoting by h an element in SL2(Z) such that G =
h−1Gih, the assignment P 7→ h.P defines a Poisson isomorphism C[x±1, y±1]G →
C[x±1, y±1]Gi . In conclusion, in the study of invariants of C[x±1, y±1] under the
action of a finite subgroup G of SL2(Z) we can suppose without restriction thet G
is one of the G7,G8,G9,G10.

• 2. Just like the Kleinian surfaces for the case of finite groups of SL2(C) acting on C[x, y],
the invariant subalgebra C[x±1, y±1]G for each type of finite subgroup of SL2(Z) acting by
(52) and (53) is generated (as an associative algebra) by three elements with one relation.
From [12], we have:

G generators of C[x±1, y±1]G and relation

G10 ' C2 ξ1 = x+ x−1, ξ2 = y + y−1, θ = xy + x−1y−1

θξ1ξ2 = θ2 + ξ21 + ξ22 − 4

G9 ' C3 η+ = x+ y + x−1y−1, η− = x−1 + y−1 + xy, ϕ = xy2 + x−2y−1 + xy−1 + 6

ϕη+η− = η3+ + η3− + ϕ2 − 9ϕ+ 27

G8 ' C4 σ1 = ξ1 + ξ2, σ2 = ξ1ξ2, ρ = xy2 + x−1y−2 + x2y−1 + x−2y + 3σ1

ρ2 = ρσ1(σ2 + 4) + 4σ2
1σ2 − σ4

1 − σ2(σ2 + 4)2

G7 ' C6 τ1 = η+ + η−, τ2 = η+η−, σ = η+ϕ+ η−(x
−1y−2 + x2y + x−1y + 6)

σ2 = τ1(τ2 + 9)σ − τ2(τ2 + 9)2 + (τ21 − 4τ2)(3τ1τ2 − τ31 − 27)

The surfaces in the 3-dimensional affine space corresponding to the algebraic relation
between the three generators in each case are studied in [34] (in particular the type of the
isolated singularities are determined).

• 3. The next step concerns the finiteness of the Lie structures on invariants. From
one hand C[x±1, y±1]G is finitely generated as a Lie algebra for the multiplicative Poisson
bracket (42); this is a multiplicative analogue of the first proposition of 3.3.2. From
the other hand the same is true after quantum deformation,i.e. Cq[x±1, y±1]G is finitely
generated as a Lie algebra for the commutator bracket; this is a multiplicative analogue
of theorem 3.3.3. Moreover the cardinality of a generating family of the Lie algebra
(C[x±1, y±1]G , { · , · }) and a generating family of the Lie algebra (Cq[x±1, y±1]G , [ · , · ])
calculated in [34] are the same (by type: 5 for G10, 7 for G9, 8 for G8, 9 for G7).

• 4. The multiplicative analogue of the last remark of 3.2.3 leads to compare the dimen-
sions of HH0(Cq[x±1, y±1]G) and HP0(C[x±1, y±1]G).
- The answer is complete for G of type G10. In this case:

dimCHH0(Cq[x±1, y±1]G) = dimCHP0(C[x±1, y±1]G) = 5.

The last equality also proves (see theorem 3.3.2 for the symplectic analogue) that the
family of five Lie algebra generators cited above is of minimal cardinality.
- In the other three cases, the determination of dimCHH0(Cq[x±1, y±1]G) can be found in
[34]; the dimension is 7 for G9, 8 for G8 and 9 for G7.
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5 Localization: actions on noncommutative ratio-

nal functions

5.1 Commutative rational invariants

Preliminary remark: extension of an action to the field of fractions. Let S be a
commutative ring. Assume that S is a domain and consider F = FracS the field of
fractions of S. Any automorphism of S extends into an automorphism of F and it’s
obvious that, for any subgroup G of AutS, we have FracSG ⊆ FG. For finite G, the
converse is true:

Proposition. If G is a finite subgroup of automorphisms of a commutative domain S
with field of fractions F , then we have: FracSG = FG.

Proof. For any x ∈ FG, there exist a, b ∈ S, b 6= 0, such that x = a
b . Define b′ =∏

g∈G,g 6=idS
g(b). Then bb′ ∈ SG and x = ab′

bb′ , with ab
′ = x(bb′) ∈ FG ∩ S = SG.

This applies in particular to a polynomial algebra S = k[x1, . . . , xn] and its field of rational
functions F = k(x1, . . . , xn), and we formulate in this case the following problem about
the structure of FG.

5.1.1 Noether’s problem

Let k be commutative field of characteristic zero. Let G be a finite subgroup of GLn(k)
acting canonically by linear automorphisms on S = k[x1, . . . , xn], and then on F =
FracS = k(x1, . . . , xn). We consider the subfield FG = FracSG of F .

Remark 1. It’s well known (by Artin’s lemma, see for instance [11] page 194) that
[F : FG] = |G|, and then trdegkF

G = trdegkF = n.

Remark 2. We know from classical invariant theory that SG is finitely generated
(say bym elements) as a k-algebra. Thus FG is finitely generated (say by p elements)
as a field extension of k, with p ≤ m. We can have p < m; example: S = k(x, y) and
G = 〈g〉 for g : x 7→ −x, y 7→ −y, then SG = k[x2, y2, xy] = k[X,Y, Z]/(Z2 −XY )
and FG = k(xy, x−1y).

Remark 3. Suppose that SG is not only finitely generated, but isomorphic to a
polynomial algebra k[y1, . . . , ym], with y1, . . . , ym algebraically independent over k.
Then we have FG = k(y1, . . . , ym). Thus m = n by remark 1.

Now we can consider the main question:

Problem (Noether’s problem) : is FG a purely transcendental extension of k ?

An abundant literature has been devoted (and is still devoted) to this question and it’s
out of the question to give here a comprehensive presentation of it. We just point out the
following facts.
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• The answer is positive if SG is a polynomial algebra. By remark 3, we have then
SG = k[x1, . . . , xn] and FG = k(x1, . . . , xn). This is in particular the case when G is the
symmetric group Sn acting by permutation of the xj’s (see for instance [10] p. 3), or more
generally when Shephard-Todd and Chevalley theorem applies.

• The answer is positive if n = 1. This is an obvious consequence of Lüroth’s theorem
(see [9] p. 520): if F = k(x) is a purely transcendental extension of degree 1 of k, then
for any intermediate subfield k  L ⊂ F , there exists some v ∈ F transcendental over k
such that F = k(v).
• The answer is positive if n = 2. This is an obvious consequence of Castelnuovo’s theorem
(see [9] p. 523): if F = k(x, y) is a purely transcendental extension of degree 2 of k, then
for any intermediate subfield k  L ⊂ F such that [F : L] < +∞, there exists some
v, w ∈ F such that F = k(v, w) is purely transcendental of degree 2.

• The answer is positive for all n ≥ 1 when G is abelian and k is algebraically closed.
This is a classical theorem by E. Fischer (1915), see [37] for a proof, or corollary 2 in 5.1.2
below.

Among other cases of positive results, we can cite the cases where G is any subgroup of
Sn for 1 ≤ n ≤ 4, the case where G = A5 for n = 5 by Sheperd-Barron or Maeda (see [50]
and [55]), the case where G is the cyclic group of order n in Sn for 1 ≤ n ≤ 7 and n = 11.
The first counterexamples (Swan 1969, Lenstra 1974) were for k = Q (and G the cyclic
group of order n in Sn for n = 47 and n = 8 respectively). D. Saltmann produced in 1984
the first counter-example for k algebraically closed (see [50], [63], [64]).

5.1.2 Miyata’s theorem

The following result concerns invariants under actions on rational functions resulting from
an action on polynomials.

Theorem (T. Miyata). Let K be a commutative field, S = K[x] the commutative ring
of polynomials in one variable over K, and F = K(x) the field of fractions of S. Let G
be a group of ring automorphisms of S such that g(K) ⊆ K for any g ∈ G.

(i) if SG ⊆ K, then FG = SG = KG.

(ii) if SG 6⊂ K, then for any u ∈ SG, u /∈ K of degree m = min{degx y ; y ∈ SG, y /∈ K}
we have SG = KG[u] and FG = KG(u).

We don’t give a proof of this theorem here, because we will prove it further (see 5.3) in
the more general context of Ore extensions; for a self-contained proof on the commutative
case, we refer the reader to [50] or [56]. Observe that the group G is not necessarily finite.

Corollary 1 (W. Burnside). The answer to Noether’s problem is positive if n = 3.

Proof. Let G be a finite subgroup of GL3(k) acting linearly on S = k[x, y, z]. We introduce in
F = k(x, y, z) the subalgebra S1 = k( yx ,

z
x)[x], which satisfies FracS1 = F . Let g ∈ G. We have:
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g(x) = αx+ βy + γz, g(y) = α′x+ β′y + γ′z, g(z) = α′′x+ β′′y + γ′′z.
Thus:

g( yx) =
α′ + β′ yx + γ′ zx
α+ β yx + γ zx

and g( zx) =
α′′ + β′′ yx + γ′′ zx
α+ β yx + γ zx

.

It follows that the subfield K = k( zx ,
y
x) is stable under the action of G, and we can apply the

theorem to the algebra S1 = K[x]. The finiteness of G implies that [F : FG] is finite and so
SG1 6⊂ K. Thus we are in the second case of the theorem. There exists u ∈ SG1 of minimal degree
≥ 1 such that SG1 = KG[u] and FG = KG(u). By Castelnuovo’s theorem (see in 5.1.1 above),
KG = k(v;w) is purely transcendental of degree two, and then FG = k(v, w)(u) = k(u, v, w).

Of course, we can prove similarly that the answer to Noether’s problem is positive if n = 2
using Lüroth’s theorem instead of Castelnuovo’s theorem.

Corollary 2 (E. Fischer). If k is algebraically closed, the answer to Noether’s prob-
lem is positive for G abelian.

Proof. Here we assume that G is a finite abelian subgroup of GLn(k). By total reducibility and
Schur’s lemma (see 2.3.1) we can suppose up to conjugation that there exist complex characters
χ1, . . . , χn of G such that g(xj) = χj(g)xj for all 1 ≤ j ≤ n and all g ∈ G. In particular, G
acts on S1 = k(x2, . . . , xn)[x1] stabilizing K1 = k(x2, . . . , xn); thus k(x1, . . . , xn)G = KG

1 (u1) for
some u1 ∈ SG1 . We apply then Miyata’s theorem inductively to conclude.

Another application due to E. B. Vinberg concerns the rational finite dimensional rep-
resentations of solvable connected linear algebraic groups and uses Lie-Kolchin theorem
about triangulability of such representations in order to apply inductively Miyata’s theo-
rem (see [68] for more details).

5.2 Noncommutative rational functions

5.2.1 Skewfields of fractions for noncommutative noetherian domains

Let A be a ring (non necessarily commutative). Assume that A is a domain; then the set
S = {a ∈ A ; a 6= 0} is multiplicative. We say that S is a (left and right) Ore set if it
satisfies the two properties:

[∀ (a, s) ∈ A× S, ∃ (b, t) ∈ A× S, at = sb]

and [∀ (a, s) ∈ A× S, ∃ (b′, t′) ∈ A× S, t′a = b′s].

In this case, we define an equivalence on A×S by (a, s) ∼ (b, t) if there exist c, d ∈ A such
that ac = bd and sc = td. The factor set D = (A× S)/ ∼ is canonically equipped with a
structure of skewfield (or noncommutative division ring), which is the smallest skewfield
containing A. We name D the skewfield of fractions of A, denoted by FracA. Concretely,
we have:

∀ q ∈ FracA, [∃ (a, s) ∈ A× S, q = as−1] and [∃ (b, t) ∈ A× S, q = t−1b], (58)

and more generally:

∀ q1, . . . , qk ∈ FracA,

{
∃ a1, . . . , ak, b1, . . . bk ∈ A,
∃ s, t ∈ S,

qi = ais
−1 = t−1bi for 1 ≤ i ≤ k. (59)
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We refer the reader to [7], [8], [13] for more details on this standard construction. An
important point is that noetherianity is a sufficient condition for A to admit such a
skewfield of fractions.

Lemma. Any noetherian domain admits a skewfield of fractions.

Proof. Let (a, s) ∈ A× S, a 6= 0, where S is the set of nonzero elements of A. For any integer
n ≥ 0, denote by In the left ideal generated by a, as, as2, . . . , asn. We have In ⊆ In+1 for all
n ≥ 0. Since A is noetherian, there exists some m ≥ 0 such that Im = Im+1. In particular,
asm+1 = c0a + c1as + · · · + cmas

m for some c0, c1, . . . , cm ∈ A. Denote by k the smallest
index such that ck 6= 0. Because A is a domain, we can simplify by sk and write asm+1−k =
cka+ ck+1as+ · · ·+ cmas

m−k. With t′ = ck ∈ S and b′ = asm−k − ck+1a− · · · − cmas
m−k−1, we

conclude that t′a = b′s. So S is a left Ore set; the proof is similar on the right.

Remark 1. Many results which are very simple for commutative fields of fractions become
more difficult for skewfields. This is the case for instance of the following noncommutative
analogue of the preliminary proposition of 5.1:

let R be a domain satisfying the left and right Ore conditions, let F be the skewfield of
fractions of R, let G be a finite subgroup of automorphisms of R such that |G| is invertible
in R, then RG satisfies the left and right Ore conditions and we have FracRG = FG.

Sketch of the proof. We start with a preliminary observation. Let I and J be two
nonzero left ideals of R. Take a ∈ I, a 6= 0, s ∈ J, s 6= 0. Since R satisfies the left
Ore condition, there exist b′, t′ nonzero in R such that t′a = b′s. This element is
nonzero (since R is a domain) and lies in I ∩ J . By induction, we prove similarly
that: the intersection of any family of nonzero left ideals of R is a nonzero left ideal
of R.

Now fix a nonzero element x ∈ FG. By (58), there exist nonzero elements b, t ∈ R
such that x = t−1b. It’s clear that I =

⋂
g∈G g(Rt) is a left ideal of R which is

stable under the action of G. Then we can apply Bergman’s and Isaacs’ theorem
(see corollary 1.5 in [14] or original paper [36] for a proof of this nontrivial result)
to deduce that I contains a nontrivial fixed point. In other words, there exists a
nonzero element v in RG ∩ I. In particular v ∈ Rt can be written v = dt for some
nonzero d ∈ R, and so x = t−1b = t−1d−1db = v−1db. Since x ∈ FG and v ∈ RG, we
have db = vx ∈ FG ∩R = RG. Denoting u = db, we have proved that: any nonzero
x ∈ FG can be written x = v−1u with v and u nonzero elements of RG.

Finally, let a, s be two nonzero elements of RG. Then x = st−1 ∈ FG. By the
second step, there exist u, v ∈ RG such that st−1 = v−1u, and then vs = ut. This
proves that RG satisfies the left Ore condition. The proof is similar on the right.
Therefore RG admits a skewfield of fractions and the equality FracRG = FG is clear
from the second step of the proof.

Remark 2. There exists a noncommutative analogue of Galois theory. We cannot develop
it here, but just mention the following version of Artin’s lemma (see remark 1 of 5.1.1):
Let D be a skewfield and G a finite group of automorphisms of D. Then [D : DG] ≤ |G|.
If moreover G doesn’t contain any non trivial inner automorphism, then [D : DG] = |G|.

We refer the reader to [4] (theorem 3.3.7) or [14] (lemma 2.18).
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5.2.2 Noncommutative rational functions

Let A a ring, σ an automorphism of A, δ a σ-derivation of A, and R = A[x ; σ, δ] the
associated Ore extension. We have seen in 1.3.1 that R is a domain when A is a domain,
and in 1.3.2 that R is noetherian when A is noetherian. So we conclude by the lemma
of 5.2.1 that, if A is a noetherian domain, then the Ore extension R = A[x ; σ, δ] admits
a skewfield of fractions. Denoting K = FracA, it’s easy to check that σ and δ extend
uniquely into an automorphism and a σ-derivation ofK, and we can then consider the Ore
extension S = K[x ; σ, δ]. It follows from (59) that any polynomial f ∈ S can be written
f = gs−1 = t−1h with s, t nonzero in A and g, h ∈ R. We deduce that FracR = FracS.
This skewfield is denoted by K(x ; σ, δ).

If FracA = K, R = A[x ; σ, δ], S = K[x ; σ, δ],
then: D = FracR = FracS = K(x ; σ, δ).

(60)

In the case of an iterated Ore extension (5) over a base field k, we have by induction: if
Rm = k[x1][x2 ; σ2, δ2] · · · [xm ; σm, δm], then FracRm = k(x1)(x2 ; σ2, δ2) · · · (xm ; σm, δm).
We simply denote D = K(x ; σ) when δ = 0 and D = K(x ; δ) when σ = idA.

Remark. It’s useful in many circumstances to observe (see proposition 8.7.1 of
[3]) that K(x ; σ, δ) can be embedded into the skewfield F = K((x−1 ; σ−1,−δσ−1))
whose elements are the Laurent series

∑
j≥m αjx

−j with m ∈ Z and αj ∈ K, with
the commutation law:

x−1α =
∑
n≥1

σ−1(−δσ−1)n−1(α)x−n = σ−1(α)x−1 − x−1δσ−1(α)x−1 for all α ∈ K.

Indeed, multiplying on the left and the right by x, we obtain the commutation law
of S = K[x ; σ, δ]; then S appears as a subring of F , and so D is a subfield of
F . In particular, for δ = 0, we denote F = K((x−1 ; σ−1)) and just have: x−1α =
σ−1(α)x−1. If σ = idK , then F = K((x−1 ; −δ)) is a pseudo-differential operator
skewfield, with commutation law:

x−1α = αx−1 − δ(α)x−2 + · · ·+ (−1)nδn(α)x−n−1 + · · · = αx−1 − x−1δ(α)x−1.

It follows from the embedding of D into K((x−1 ; σ−1,−δσ−1)) that D is canonically
equipped with the discrete valuation vx−1 , or more simply v, satisfying v(s) =
− deg s for all s ∈ S.

Lemma. Let K be a skewfield, with center Z(K).

(i) Let σ be an automorphism of K. Assume that, for all n ≥ 1, the automorphism
σn is not inner. Then the center Z(D) of D = K(x ; σ) is the subfield Z(K) ∩Kσ,
where Kσ = {a ∈ K ; σ(a) = a}.

(ii) Let δ be a derivation ofK. Assume thatK is of characteristic zero and δ is not inner.
Then the center Z(D) ofD = K(x ; δ) is Z(K)∩Kδ, whereKδ = {a ∈ K ; δ(a) = 0}.
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Proof. In the embedding of D = K(x ; σ) in F = K((x−1 ; σ−1)), any element f ∈ D can
be written f =

∑
j≥m αjx

−j with m ∈ Z and αj ∈ K for all j ≥ m. Assume that f is
central. Then xf = fx and αf = fα for any α ∈ K. This is equivalent to αj ∈ Kσ and
ααj = αjσ

−j(α) for all j ≥ m. Since σj is not inner, we necessarily have αj = 0 for j 6= 0. This
achieve the proof of (i). Under the assumptions of point (ii), let us consider now an element
f ∈ D = K(x ; δ) ⊆ F = K((x−1 ; −δ)). From the relation αf = fα for any α ∈ K, we deduce
using the fact that δ is not inner that f ∈ K, and so f ∈ Z(K). Then f ∈ Kδ follows from the
relation fx = xf .

5.2.3 Weyl skewfields

We fix a commutative base field k.

• We consider firstly as in (12) the first Weyl algebra A1(k) = k[q][p ; ∂q] = k[p][q ; −∂p].
Its skewfield of fractions is named the first Weyl skewfield, classically denoted by D1(k):

D1(k) = FracA1(k) = k(q)(p ; ∂q) = k(p)(q ; −∂p). (61)

It would be useful in many circumstances to give another presentation of D1(k). Set
w = pq; it follows from relation pq − qp = 1 that wq = qw + q and pw = (w + 1)p. Thus
the subalgebra of A1(k) generated by q and w, and the subalgebra of A1(k) generated by
p and w are both isomorphic to the enveloping algebra U1(k) defined in example (ii) of
1.3.1. It’s clear that FracA1(k) = FracU1(k). We conclude:

D1(k) = k(q)(w ; d), with d = q∂q the Euler derivation in k(q), (62)

D1(k) = k(w)(p ; σ), with σ ∈ Autk(w) defined by σ(w) = w + 1. (63)

Applying the last lemma in 5.2.2, we obtain:

if k is of characteristic zero, then Z(D1(k)) = k. (64)

The situation where k is of characteristic ` > 0 is quite different, and out of our main
interest here, since D1(k) is then of finite dimension `2 over its center k(p`, q`).

• We defined similarly the n-th Weyl skewfield Dn(k) = FracAn(k). Using (8,14), we
write:

Dn(k) = k(q1, q2, . . . , qn)(p1 ; ∂q1)(p2 ; ∂q2) . . . (pn ; ∂qn), (65)

Dn(k) = k(q1)(p1 ; ∂q1)(q2)(p2 ; ∂q2) . . . (qn)(pn ; ∂qn). (66)

Reasoning as above on the products wi = piqi for all 1 ≤ i ≤ n, which satisfy the relations

piwi − wipi = pi, wiqi − qiwi = qi, [pi, wj] = [qi, wj] = [wi, wj] = 0 si j 6= i, (67)

we obtain the alternative presentations:

Dn(k) = k(q1, q2, . . . , qn)(w1 ; d1)(w2 ; d2) . . . (wn ; dn), (68)
60



with di the Euler derivative di = qi∂qi for all 1 ≤ i ≤ n, and:

Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn ; σn), (69)

where each automorphism σi is defined on k(w1, w2, . . . , wn) by σi(wj) = wj + δi,j, and
fixes the pj’s for j < i.

• If we replace k by a purely transcendental extension K = k(z1, z2, . . . , zt) of degree t
of k, the skewfield Dn(K) is denoted by Dn,t(k). By convention, we set D0,t(k) = K. To
sum up:

Dn,t(k) = Dn(k(z1, . . . , zt)) for all t ≥ 0, n ≥ 0. (70)

One can prove using inductively the last lemma of 5.2.2 (see also [47] or [25]) that:

if k is of characteristic zero, then Z(Dn,t(k)) = k(z1, . . . , zt). (71)

Comment. The skewfields Dn,t play a fundamental role in Lie theory and are in
the center of an important conjecture (the Gelfand-Kirillov conjecture) on rational
equivalence of enveloping algebras: for “many” classes of algebraic Lie algebras g
the skewfield of fractions of the enveloping algebra U(g) is isomorphic to a Weyl
skewfield Dn,t(k) (see [47], I.2.11 of [2], [31], [25], [26], [60], and 5.4 below).

• Finally, for any q ∈ k×, the skewfield of fractions the quantum plane kq[x, y] defined in
example (iv) of 1.3.1 is sometimes called the first quantum Weyl skewfield, denoted by:

Dq
1(k) = Frackq[x, y] = kq(x, y) = k(y)(x ; σ) where σ ∈ Autk(y) with σ(y) = qy. (72)

These skewfields (or more generally their n-dimensional versions as in the last example
of 1.3.1) play for the quantum algebras a role similar to the one of Weyl skewfields in
classical Lie theory (see II.10.4 of [2], [25], [60]). It follows from last lemma in 5.2.2, that:

if q is not a root of one in k, then Z(Dq
1(k)) = k. (73)

The situation where q is of finite order ` > 0 on k× is quite different, and out of our main
interest here, since Dq

1(k) is then of finite dimension `2 over its center k(p`, q`).

Let us recall that the first quantum Weyl algebra (see example (v) of 1.3.1) is the algebra
Aq1(k) generated by x and y with commutation law xy − qyx = 1. We observe that
the element z = xy − yx = (q − 1)yx + 1 satisfies the relation zy = qyz. Since x =
(q − 1)−1y−1(z − 1), FracAq1(k) is equal to the subfield generated by z and y, which is
clearly isomorphic to Dq

1(k). Thus we have proved that:

FracAq1(k) ' Dq
1(k). (74)
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5.3 Noncommutative rational invariants

5.3.1 Noncommutative analogue of Miyata’s theorem

We can now formulate for Ore extensions an analogue of theorem 5.1.2. We start with a
technical lemma.

Lemma. Let K be a non necessarily commutative field, σ an automorphism and δ a
σ-derivation of K. We consider the Ore extension S = K[x ; σ, δ]. Take u ∈ S such that
degx(u) ≥ 1.

(i) For any non necessarily commutative subfield L of K, the family U = {ui ; i ∈ N}
is right and left free over L.

(ii) If the left free L-module T generated by U is a subring of S, then there exist an ring
endomorphism σ′ and a σ′-derivation δ′ of L such that T = L[u ; σ′, δ′]. If moreover
T is equal to the right free L-module T ′ generated by U , then σ′ is an automorphism
de L.

(iii) In the particular case where K is commutative, then σ′ is the restriction of σm to
L, with m = degx(u).

Proof. Point (i) is straightforward considering the term of highest degree in a left L-linear
sum of a finite number of elements of U . Consider now α ∈ L ⊆ T . We have degx(uα) = degx u
and uα ∈ T ; thus there exist uniquely determined α0, α1 ∈ L such that uα = α0 + α1u. So
we define two L → L maps σ′ : α 7−→ α1 and δ′ : α 7−→ α0 satisfying uα = σ′(α)u + δ′(α) for
all α ∈ L. Denoting u = λmx

m + · · · + λ1x + λ0 with m ≥ 1, λi ∈ K for any 0 ≤ i ≤ m and
λm 6= 0, then λmσ

m(α) = σ′(α)λm for all α ∈ L. We deduce that σ′ is a ring endomorphism of
L, and prove also point (iii). The associativity and distributivity in the ring T imply that δ′ is
a σ′-derivation. When T ′ = T , there exists for all β ∈ L two elements β1 and β0 in L such that
βu = uβ1 + β0 = σ′(β1)u+ δ′(β1) + β0. Thus β = σ′(β1) and σ

′ is surjective.

Theorem ([23]). Let K be a non necessarily commutative field, σ an automorphism and
δ a σ-derivation of K. We consider the Ore extension S = K[x, ; σ, δ] and its skewfield of
fractions D = FracS = K(x ; σ, δ). Let G be a group of ring automorphisms of S such
that g(K) ⊆ K for any g ∈ G.

(i) if SG ⊆ K, then DG = SG = KG.

(ii) if SG 6⊂ K, then for any u ∈ SG, u /∈ K of degree m = min{degx y ; y ∈ SG, y /∈
K}, there exist an automorphism σ′ and a σ′-derivation δ′ of KG such that SG =
KG[u ; σ′, δ′] and DG = Frac (SG) = KG(u ; σ′, δ′).

Proof. We simply denote here deg for degx. Take g ∈ G and n = deg g(x); the assumption
g(K) ⊆ K implies deg g(s) ∈ nN ∪ {−∞} for all s ∈ S and so n = 1 since g is surjective. We
deduce:

deg g(s) = deg s for all g ∈ G and s ∈ S. (*)
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If SG ⊂ K, then SG = KG. If SG 6⊆ K, let us choose in {s ∈ SG ; deg s ≥ 1} an element u of
minimal degree m. In order to apply the previous lemma for L = KG, we check that the free
left KG-module T generated by the powers of u is equal to the subring SG of S. The inclusion
T ⊆ SG is clear. For the converse, let us fix s ∈ SG. By the proposition in 1.3.1, there exist
q1 and r1 unique in S such that s = q1u + r1 and deg r1 < deg u. For any g ∈ G, we have
then: s = g(s) = g(q1)g(u) + g(r1) = g(q1)u + g(r1). Since deg g(r1) = deg r1 < deg u by
(*), it follows from the uniqueness of q1 and r1 that g(q1) = q1 and g(r1) = r1. So r1 ∈ SG;
since deg r1 < deg u and deg u is minimal, we deduce that r1 ∈ KG. Moreover, q1 ∈ SG, and
deg q1 < deg s because deg u ≥ 1. To sum up, we obtain s = q1u+ r1 with r1 ∈ KG and q1 ∈ SG

such that deg q1 < deg s. We decompose similarly q1 into q1 = q2u + r2 with r2 ∈ KG and
q2 ∈ SG such that deg q2 < deg q1. We obtain s = q2u

2 + r2u+ r1. By iteration, it follows that
s ∈ T . The same process using the right euclidian division in S proves that SG is also the right
free L-module T ′ generated by the powers of u. Then we deduce from point (ii) of the previous
lemma that there exist an automorphism σ′ of KG and a σ′-derivation δ′ of de KG such that
SG = KG[u ; σ′, δ′].

In both cases (i) and (ii), the inclusion Frac (SG) ⊆ DG is clear. For the converse (which follows
from remark 1 of 5.2.1 in the particular case where G is finite), we have to prove that:

for any a and b non-zero in S, ab−1 ∈ DG implies ab−1 ∈ Frac (SG). (**)

We proceed by induction on deg a + deg b. If deg a + deg b = 0, then a ∈ K, b ∈ K. Thus
ab−1 ∈ DG is equivalent to ab−1 ∈ KG ⊆ SG; the result follows. Assume now that (**) is
satisfied for all (a, b) such that deg a+ deg b ≤ n, for some fixed integer n ≥ 0. Suppose that a
and b are non-zero in S with ab−1 ∈ DG and deg a + deg b = n + 1. Up to replace ab−1 by its
inverse, we can without any restriction suppose that deg b ≤ deg a. By the proposition of 1.3.1,
there exist q, r ∈ S uniquely determined such that:

a = qb+ r with deg r < deg b ≤ deg a. (***)

For all g ∈ G, we have g(ab−1) = ab−1 and we can so introduce the element c = a−1g(a) =
b−1g(b) in D. Denoting by val the discrete valuation vx−1 in D (see the remark in 5.2.2), it
follows from (*) that val c = 0. Applying g to (***), we have g(a) = g(q)g(b) + g(r); in other
words, qbc+ rc = ac = g(q)bc+ g(r), or equivalently: (g(q)− q)bc = rc− g(r). The valuation of
the left member is val (g(q)− q) + val b. For the right member, we have val g(r) = −deg g(r) =
−deg r = val r = val rc, thus val (rc−g(r)) ≥ val r. Since g(q)−q, b and r are in S, we conclude
that: deg(g(q) − q) + deg(b) ≤ deg(r). The inequality deg b ≤ deg r being incompatible with
(***), it follows that g(q) = q, and then g(r) = rc. Therefore we have g(rb−1) = rc(bc)−1 = rb−1.
So we have proved that ab−1 = (qb + r)b−1 = q + rb−1 with q ∈ SG and rb−1 ∈ DG such that
deg(r) + deg(b) < 2 deg(b) ≤ deg(a) + deg(b) = n + 1. If r = 0, then ab−1 = q ∈ SG. If not,
we apply the inductive assumption to rb−1: there exist r1 and b1 non zero in SG such that que
rb−1 = r1b

−1
1 , and so ab−1 = (qb1 + r1)b

−1
1 ∈ Frac (SG).

5.3.2 Rational invariants of the first Weyl algebra

We consider here the action of finite subgroups of automorphisms of the Weyl algebra
A1(C) on its skewfield of fractions D1(C). We know from theorem 2.2.2 that the algebras
A1(C)G and A1(C)G

′
are not isomorphic when the finite subgroups G and G′ are not

isomorphic. However, these algebras are always rationally equivalent, as proved by the
following theorem from [23].
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Theorem. For any finite subgroup G of AutA1(C), we have: D1(C)G ' D1(C).

Proof. With the notations of 2.2.2 and 5.2.3, we have R = A1(C) generated by p and q with
pq − qp = 1 and D = D1(C) = FracR. The element w = pq of R satisfies pmw − wpm = mpm

for all m ≥ 1. The field of fractions of the subalgebra Um of R generated by pm and w is
Qm = C(w)(pm ; σm), where σ is the C-automorphism of C(w) defined by σ(w) = w + 1. In
particular, Q1 = C(w)(p ; σ) = D. It’s clear Qm ' D for all m ≥ 1. Let us define v = p−1q,
which satisfies wv − vw = 2v. Since wv−1 = p2, we have Q2 = C(w)(p2 ; σ2) = C(v)(w ; 2v∂v).
We denote by S the subalgebra C(v)[w ; 2v∂v].
Let G be a finite subgroup of AutR. From theorem 2.2.2, we can suppose without any restriction
that G is linear admissible. In the cyclic case of order n, the group G is generated by the
automorphism gn : p 7→ ζnp, q 7→ ζ−1

n q for ζn a primitive n-th root of one. Then we have:
gn(w) = w, therefore DG = Dgn = Qgn1 = Qn ' D. Assume now that we are in one of the
cases Dn, E6, E7, E8. Thus G necessarily contains the involution e : p 7→ −p, q 7→ −q (because
µ2 = ν2 = θ2 with the notations of 2.2.1), which satisfies De = Q2. Let g be any element of
G. By (13), there exist α, β, γ, δ ∈ C satisfying αδ − βγ = 1 such that g(p) = αp + βq and
g(q) = γp+ δq. Thus g(p) = p(α+ βv) and g(q) = p(γ + δv), and so:

g(v) =
γ + δv

α+ βv
∈ C(v). (†)

Moreover, g(w) = αγp2 + βδq2 + αδpq + βγqp. From relations qp = pq − 1, p2 = wv−1 =
v−1w − 2v−1 and q2 = v + vw = wv − v, it follows that:

g(w) =
(βδv2 + (αδ + βγ)v + αγ

v

)
w +

(βδv2 − βγv − 2αγ

v

)
. (‡)

We deduce from (†) and (‡) that the restrictions to the algebra S = C(v)[w ; 2v∂v] of the
extensions to D of the elements of G determine a subgroup G′ ' G/(e) of AutS. Since e ∈ G
and De = Q2 = FracS, we have DG = QG

′
2 .

Assertion (†) allows to apply theorem 5.3.1 for K = C(v), d = 2v∂v and S = K[w ; d]. By
remark 2 of 5.2.1, we have: [Q2 : QG

′
2 ] ≤ |G′| < +∞, therefore SG

′ 6⊆ K. From the theorem
of 5.3.1 and point (iii) of the lemma of 5.3.1, there exists u ∈ SG

′
of positive degree (related

to w) and d′ a derivation of C(v)G′
such that SG

′
= C(v)G′

[u ; d′] and QG
′

2 = C(v)G′
(u ; d′).

By Lüroth theorem (see 5.1.1), C(v)G′
is a purely transcendental extension C(z) de C. If d′

vanishes on C(z), then the subfield QG
′

2 of Q2 would be C(z, u) with transcendence degree > 1
over C, which is impossible since Q2 ' D1(C) (it’s a well known but not trivial result that D1(C)
doesn’t contain commutative subfield of transcendence degree > 1 ; see [13], corollary 6.6.18).
Therefore d′(z) 6= 0; defining t = d′(z)−1u, we obtain QG

′
2 = C(z)(t ; ∂z) ' D1(C).

Example 1. In the case where G = Cn is cyclic of order n, we have seen in the proof that
DG = Qn is generated by w = pq and pn; then a pair (pn, qn) of generators of D1(C)Cn

satisfying [pn, qn] = 1 is pn = pn et qn = (npn)−1pq.

Example 2. In the case where G = Dn is binary dihedral of order 4n (see 2.2.1),
the interested reader could find in [23] the calculation of the following pair (pn, qn) of
generators of D1(C)Dn satisfying [pn, qn] = 1 :

pn =
1

16n

(
(p−1q)−n − (p−1q)n

)((p−1q)n − 1

(p−1q)n + 1

)2
(2pq − 1), qn =

((p−1q)n + 1

(p−1q)n − 1

)2
.
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5.3.3 Rational invariants of polynomial functions in two variables

We consider R = C[y][x ; σ, δ], for σ a C-automorphism and δ a σ-derivation of C[y].

Lemma. If R = C[y][x ; δ], with δ an ordinary derivation of C[y] such that δ(y) /∈ C, then
FracRG ' D1(C) for any finite subgroup of AutR.

Proof. Let us denote K = C(y) and D = FracR = C(y)(x ; δ). Replacing x by x′ = δ(y)−1x,
we have D = C(y)(x′ ; ∂y),and so D ' D1(C). Since δ(y) /∈ C, the proposition of 2.3.4 implies
that any g ∈ AutR satisfies g(K) ⊆ K for K = C(y), and the restriction of g to S = C(y)[x ; δ]
of the extension to D = FracS determines an automorphism of S. For G a finite subgroup
of AutR we can apply the theorem of 5.3.1 and point (iii) of the lemma of 5.3.1: there exist
u ∈ SG of positive degree and δ′ a derivation of C(y)G such that SG = C(y)G[u ; δ′] and
DG = C(y)G(u ; δ′). Then we achieve the proof as in the proof of the previous theorem.

Lemma. If R is the quantum plane Cq[x, y] for q ∈ C× not a root of one, then FracRG '
Dq′

1 (C) with q′ = q|G| for any finite subgroup G of AutR.

Proof. Let G a finite group of AutR where R = Cq[x, y]. By point (iii) of the first proposition
of 4.1.1, there exists for any g ∈ G a pair (αg, βg) ∈ C× × C× such that g(y) = αgy and
g(x) = βgx. Denote by m and m′ the orders of the cyclic groups {αg ; g ∈ G} and {βg ; g ∈ G}
of C× respectively. In particular, C(y)G = C(ym). We can apply the theorem of 5.3.1 to the
extension S = C(y)[x ; σ] of R = C[y][x ; σ], where σ(y) = qy. We have SG 6= C(y)G because
xm

′ ∈ SG. Let n be the minimal degree related to x of the elements of SG of positive degree.
For any u ∈ SG of degree n, there exist σ′ and δ′ such that SG = C(ym)[u ; σ′, δ′]. By assertion
(iii) of the lemma of 5.3.1, the automorphism σ′ of C(ym) is the restriction of σn to C(ym). We
show firstly that we can choose u monomial. We develop u = an(y)x

n+ · · ·+a1(y)x+a0(y) with
n ≥ 1, ai(y) ∈ C(y) for all 0 ≤ i ≤ n and an(y) 6= 0. Denote by p ∈ Z the valuation (related
to y) of an(y) in the extension C((y)) of C(y). The action of G being diagonal on Cx⊕ Cy, the
monomial v = ypxn lies in SG. So we obtain SG = C(ym)[v ; σn] and DG = C(ym)(v ; σn) ' D q′

1

for q′ = qmn. We have to check thatmn = |G|. Let g ∈ G determining an inner automorphism of
D = FracR = FracS; there exists non-zero r ∈ D such that g(s) = rsr−1 of all s ∈ D. Denoting
by d the order of g in G, we have then rd central in D, and so rd ∈ C by (73). Embedding
D = C(y)(x ; σ) in C(y)((x−1 ; σ−1)), see remark in 5.2.2, we deduce that r ∈ C and so g = idR.
We have proved that any nontrivial automorphism in G is outer. Applying remark 2 of 5.2.1, it
follows that [D : DG] = |G|. We have:

DG = C(ym)(ypxn ; σn) ⊆ L = C(y)(ypxn ; σn) = C(y)(xn ; σn) ⊆ D = C(y)(x ; σ).

Thus [D : L] = n and [L : DG] = m. We conclude |G| = [D : DG] = mn.

Lemma. If R is the quantum Weyl algebra Aq1(C) for q ∈ C× not a root of one, then

FracRG ' Dq′

1 (C) with q′ = q|G| for any finite subgroup of AutR.

Proof. The proof is easier than in the case of the quantum plane and left to the reader as an
exercise (use assertion (74) and the description of AutAq1(C) recalled in 2.3.4, from [21]) ; see
proposition 3.5 of [23] for details.
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We are now in position to summarize in the following theorem the results on rational
invariants for Ore extensions in two variables.

Theorem. Let R = C[y][x ; σ, δ] with σ an automorphism and δ a σ-derivation of C[y].
Let D = FracR with center C. Then we are in one of the two following cases:

(i) D ' D1(C), and DG ' D1(C) for any finite subgroup G of AutR ;

(ii) there exists q ∈ C× not a root of one such that D ' D q
1 (C), and DG ' D q|G|

1 (C)
for any finite subgroup G of AutR.

Proof. We just combine the classification lemma 2.3.4 with the assertions (64) and (73) on the
centers, the main theorem of 5.3.2, and the three previous lemmas.

Remark. It could be relevant to underline here that previous results only concern actions
on FracR which extend actions on R. The question of determining DG for other types of
subgroups G of AutD is another problem, and the structure of the groups AutD1(C) and
AutDq

1(C) remains unknown (see [22]). In particular, we can define a notion of rational
triangular automorphism related to one of the presentations (61) or (63) of the Weyl
skewfield D1(C) ; the three following results are proved in [24].

1. The automorphisms of D1(C) = C(q)(p ; ∂q) which stabilizing C(q) are of the form:

θ : q 7→ θ(q) = αq+β
γq+δ

, p 7→ θ(p) = 1
∂q(θ(q))

p+ f(q),

for
(
α β
γ δ

)
∈ GL2(C) and f(q) ∈ C(q).

2. The automorphisms of D1(C) = C(pq)(p ; σ) stabilizing C(pq) are of the form:

θ : pq 7→ θ(pq) = pq + α, p 7→ θ(p) = f(pq)p,

for α ∈ C and f(pq) ∈ C(pq), or are the product of such an automorphism by the
involution pq 7→ −pq, p 7→ p−1.

3. For any finite subgroup of AutD1(C) stabilizing one of the three subfields C(p),
C(q) or C(pq), we have D1(C)G ' D1(C).

5.4 Noncommutative Noether’s problem

5.4.1 Rational invariants and the Gelfand-Kirillov conjecture

Let k be a field of characteristic zero. We have seen in 2.3.3 that any representation of
dimension n of a group G gives rise to an action of G on the commutative polynomial
algebra S = k[q1, . . . , qn], which extends canonically into an action by automorphisms
on the Weyl algebra An(k) defined from relations (22) or (23), and then to the Weyl
skewfield Dn(k). Following the philosophy of the Gelfand-Kirillov problem (see above
5.2.3) by considering the Weyl skewfields Dn,t(k) as significant classical noncommutative
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analogues of the purely transcendental extensions of k, the following question appears of
a relevant noncommutative formulation of Noether’s problem.

Question: do we have Dn(k)G ' Dm,t(k) for some nonnegative integers m and t ?

By somewhat specialized considerations on various noncommutative versions of the tran-
scendence degree (which cannot be developed here), we can give the following two preci-
sions (see [26] for the proofs):

1. if we have a positive answer to the above question, then m and t satisfy 2m+t ≤ 2n;

2. if we have a positive answer to the above question for a finite group G, then m = n
and t = 0, and so Dn(k)G ' Dn(k).

5.4.2 Rational invariants under linear actions of finite abelian groups

The main result (form [26]) is the following.

Theorem. For a representation of a group G (non necessarily finite) which is a direct
summand of n representations of dimension one, there exists a unique integer 0 ≤ s ≤ n
such that Dn(k)G ' Dn−s,s(k).

Proof. By (71), the integer s is no more than the transcendence degree over k of the center of
Dn−s,s(k) and so is unique. Now we proceed by induction on n to prove the existence of s.

1) Assume that n = 1. Then G acts on A1(k) = k[q1][p1 ; ∂q1 ] by automorphisms of the form:

g(q1) = χ1(g)q1, g(p1) = χ1(g)
−1p1, for all g ∈ G

where χ1 is a character G → k×. The element w1 = p1q1 is invariant under G. We define in
D1(k) = k(w1)(p1, σ1), see (63), the subalgebra S1 = k(w1)[p1, σ1]. We have FracS1 = D1(k).
Any g ∈ G fixes w1 and acts on p1 by g(p1) = χ1(g)p1. We can apply the theorem of 5.3.1.
If SG1 ⊆ k(w1), then D1(k)G = SG1 = k(w1)

G = k(w1); we deduce that in this case D1(k)G '
D1−s,s(k) with s = 1. If SG1 6⊆ k(w1), then SG1 is an Ore extension k(w1)[u ; σ

′, δ′] for some
automorphism σ′ and some σ′-derivation δ′ of k(w1), and some polynomial u in the variable p1
with coefficients in k(w1) such that g(u) = u for all g ∈ G and of minimal degree. Because of the
form of the action of G on p1, we can choose without any restriction u = pa1 for an integer a ≥ 1,
and so σ′ = σa1 and δ′ = 0. To sum up, D1(k)G = FracSG1 = k(w1)(p

a
1 ; σ

a
1). This skewfield

is also generated by x = pa1 and y = a−1w1p
−a
1 which satisfy xy − yx = 1. We conclude that

D1(k)G ' D1(k) = D1−s,s(k) for s = 0.

2) Now suppose that the theorem is true for any direct summand of n − 1 representations
of dimension one of any group over any field of characteristic zero. Let us consider a direct
summand of n representations of dimension one of a group G over k. Then G acts on An(k) by
automorphisms of the form:

g(qi) = χi(g)qi, g(pi) = χi(g)
−1pi, for all g ∈ G and 1 ≤ i ≤ n,

where χ1, χ2, . . . , χn are characters G→ k×. Thus, recalling the notation wi = piqi, we have:

g(wi) = wi, for any g ∈ G and any 1 ≤ i ≤ n.
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In Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)(pn ; σn), see (69), let us consider
the subfields:

L = k(wn),
K = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)

= k(wn)(w1, w2, . . . , wn−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1)
' Dn−1(L),

and the subalgebra Sn = K[pn ; σn] which satisfies FracSn = Dn(k). Applying the induction
hypothesis to the restriction of the action of G by L-automorphisms on An−1(L), there exists
an integer 0 ≤ s ≤ n − 1 such that: Dn−1(L)

G ' Dn−1−s,s(L) ' Dn−(s+1),s+1(k). Since K is
stable under the action of G, we can apply the theorem of 5.3.1 to the ring Sn = K[pn ; σn].
Two cases are possible.

First case: SGn = KG. Then we obtain:

Dn(k)G = Frac (SGn ) = KG ' Dn−1(L)
G ' Dn−(s+1),s+1(k).

Second case: there exists a polynomial u ∈ Sn with degpnu ≥ 1 such that g(u) = u for all g ∈ G.
Choosing u such that degpnu is minimal, there exist an automorphism σ′ and a σ′-derivation δ′

of KG such that SGn = KG[u ; σ′, δ′] and Dn(k)G = FracSGn = KG(u ; σ′, δ′).
Let us develop u = fmp

m
n + · · ·+ f1pn + f0 with m ≥ 1 and fi ∈ KG for all 0 ≤ i ≤ m. In view

of the action of G on pn, it’s clear that the monomial fmp
m
n is then invariant under G. Using

the embedding in skewfield of Laurent series (see 5.2.2), we can develop fm in:

K = k(w1, w2, . . . , wn)((p
−1
1 ; σ−1

1 ))((p−1
2 ; σ−1

2 )) · · · ((p−1
n−1 ; σ

−1
n−1)).

The action of G extends to K acting diagonally on the pi’s and fixing wi’s. Therefore we can
choose without any restriction a monomial u:

u = pa11 . . . pann with (a1, . . . , an) ∈ Zn, and an ≥ 1.

For any 1 ≤ j ≤ n, we have uwj = (wj + aj)u. Let us introduce the elements:

w′
1 = w1 − a−1

n a1wn, w′
2 = anw2 − a−1

n a2wn, . . ., w′
n−1 = anwn−1 − a−1

n an−1wn.

We obtain: w′
ju = uw′

j for any 1 ≤ j ≤ n− 1. Since σi(w
′
j) = w′

j + δi,j pour 1 ≤ i, j ≤ n− 1, the
skewfield Fn−1 = k(w′

1, w
′
2, . . . , w

′
n−1)(p1 ; σ1)(p2 ; σ2) · · · (pn−1 ; σn−1) is isomorphic to Dn−1(k).

More precisely, Fn−1 is the skewfield of fractions of the algebra

k[q′1, . . . , q′n−1][p1 ; ∂q′1 ] . . . [pn−1 ; ∂q′n−1
],

where q′i = wip
−1
i for any 1 ≤ i ≤ n−1. This algebra is isomorphic to the Weyl algebra An−1(k).

Applying the induction hypothesis, there exists 0 ≤ s ≤ n−1 such that FGn−1 ' Dn−1−s,s(k). It’s
clear by definition of the w′

j ’s that k(wn)(w′
1, w

′
2, . . . , w

′
n−1) = k(wn)(w1, w2, . . . , wn−1); since wn

commutes with all the elements of Fn−1, we deduce that K = Fn−1(wn). The algebra SGn =
KG[u ; σ′, δ′] can then be written SGn = FGn−1(wn)[u ; σ

′, δ′]. The generator u commutes with w′
j

for any 0 ≤ j ≤ n−1 as we have seen above, commutes with all the pi’s by definition, and satisfies
with wn the relation uwn = (wn+ an)u. Therefore the change of variables w′

n = a−1
n wn implies:

SGn = FGn−1(w
′
n)[u ; σ

′′], with σ′′ which is the identity map on FGn−1 and satisfies σ′′(w′
n) = w′

n+1.
It follows that: FracSGn ' D1(F

G
n−1) ' D1(Dn−1−s,s(k)) ' Dn−s,s(k).
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Corollary (Application to finite abelian groups). We suppose here that k is alge-
braically closed. Then, for any finite dimensional representation of a finite abelian group
G, we have Dn(k)G ' Dn(k).
Proof. By Schur’s lemma and total reducibility, any finite representation of G is a direct
summand of one dimensional representations (see 2.3.1). Then the result follows from the
previous theorem and remark 2 of 5.4.1.

This result already appears in [24]. The following corollary proves in particular that for
non necessarily finite groups G, all possible values of s can be obtained in the previous
theorem.

Corollary (Application to the canonical action of subgroups of a torus). For an integer
n ≥ 1, let Tn be the torus (k×)n acting canonically on the vector space kn. Then:

(i) for any subgroup G of Tn, there exists a unique integer 0 ≤ s ≤ n such that
Dn(k)G ' Dn−s,s(k);

(ii) for any integer 0 ≤ s ≤ n there exists at least one subgroup G of Tn such that
Dn(k)G ' Dn−s,s(k);

(iii) in particular s = n if G = Tn, and s = 0 if G is finite.

Proof. Point (i) is just the application of the previous theorem. For (ii), let us fix an integer
0 ≤ s ≤ n and consider in Tn the subgroup:

G = {Diag (α1, . . . , αs, 1, . . . , 1) ; (α1, . . . , αs) ∈ (k∗)s} ' Ts,

acting by automorphisms on An(k):

qi 7→ αiqi, pi 7→ α−1
i pi, pour tout 1 ≤ i ≤ s,

qi 7→ qi, pi 7→ pi, pour tout s+ 1 ≤ i ≤ n.

In the skewfield Dn(k) = k(w1, w2, . . . , wn)(p1 ; σ1)(p2 ; σ2) · · · (pn ; σn), we introduce the sub-
field K = k(w1, w2, . . . , wn)(ps+1 ; σs+1)(ps+2 ; σs+2) · · · (pn ; σn). Then the subalgebra S =
K[p1 ; σ1] · · · [ps ; σs] satisfies FracS = Dn(k). It’s clear that K is invariant under the action of
G. If SG 6⊂ K, we can find in particular in SG a monomial:

u = vpd11 p
d2
2 · · · pdss , v ∈ K, v 6= 0, d1, . . . , ds ∈ N, (d1, . . . , ds) 6= (0, . . . , 0),

then αd11 α
d2
2 · · ·αdss = 1 for all (α1, α2, . . . , αs) ∈ (k∗)s, and so a contradiction. We conclude with

theorem 5.3.1 that (FracS)G = SG = KG, and so Dn(k)G = K. It’s clear that K ' Dn−s,s(k);
this achieves the proof of point (ii). Point (iii) follows then from the previous corollary.

The actions of tori Tn on the Weyl algebras have been studied in particular in [58].
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5.4.3 Rational invariants for differential operators on Kleinian surfaces

Another situation where it’s possible to give a positive answer to the question of 5.4.1
is the case of a 2-dimensional representation. Using the main theorem 5.3.1 as a key
argument, one can the prove (by technical developments which cannot be detailed her;
see [26] for a complete proof) the following general result.

Theorem ([26]).

(i) For any 2-dimensional representation of a group G, there exist two nonnegative
integers m, t with 1 ≤ m+ t ≤ 2 such that D2(k)G ' Dm,t(k).

(ii) In particular, for any 2-dimensional representation of a finite group G, we have
D2(k)G ' D2(k).

As an application, let us consider again the canonical linear action of a finite subgroup
G of SL2(C) on S = C[x, y] = C[V ] for V = C2. The corresponding invariant algebra
SG is one of the Kleinian surfaces studied in 2.2.1. This action extends to the rational
functions fieldK = FracS = C(x, y) and it follows from Castelnuovo or Burnside theorems
(see 5.1.1 and 5.1.2) that KG ' K. Considering the first Weyl algebra A1(C) as a
noncommutative deformation of C[x, y], we have studied in 2.2.2 the action of G on
A1(C) and the associated deformation A1(C)G of the Kleinian surface SG. The extension
of the action to FracA1(C) = D1(C) has been considered in 5.3.2, and we have proved
that D1(C)G ' D1(C). From another point of view, we can apply to the action of G on
S the duality extension process described in 2.3.3 in order to obtain an action on A2(C).
As explained in second example 2.3.3, the invariant algebra A2(C)G = (DiffS)G is then
isomorphic to Diff (SG); in other words the invariants of differential operators on S are
isomorphic to the differential operators on the Kleinian surface SG (by theorem 5 of [52]).
Of course the action extends to D2(C) = FracA2(C) and the following corollary follows
then from point (ii) of the previous theorem (see also further the end of 5.5.2).

Corollary. Let G be a finite subgroup of SL2; for the action on A2(C) = DiffS canoni-
cally deduced from the natural action of G on S = C[x, y], we have D2(C)G ' D2(C).

The method used in [26] to prove this result allows to compute explicitly, according to
each type of G in the classification of 2.2.1, some generators P1, P2, Q1, Q2 of D2(C)G
satisfying canonical relations [P1, Q1] = [P2, Q2] = 1 and [Pi, Pj] = [Qi, Qj] = [Pi, Qj] = 0
for i 6= j. For instance, denoting A2(C) = C[q1, q2][p1 ; ∂q1 ][p1 ; ∂q2 ], a solution for the
type An−1 is:

n = 2p n = 2p+ 1

Q1 = qp1q
−p
2 Q1 = q2p+1

1 q−2p−1
2

Q2 = q1q2 Q2 = qp+1
1 q−p2

P1 =
1
2p q

1−p
1 qp2p1 − 1

2p q
−p
1 qp+1

2 p2 P1 = − p
2p+1 q

−2p
1 q2p+1

2 p1 − p+1
2p+1 q

−2p−1
1 q2p+2

2 p2

P2 =
1
2(q

−1
2 p1 + q−1

1 p2) P2 = q−p1 qp2p1 + q−p−1
1 qp+1

2 p2
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5.5 Poisson structure on invariants and localization

5.5.1 Poisson analogue of Noether’s problem

Formulation of the main question. We come back to the commutative situation
of 3.1.1 where A is a commutative Poisson algebra over a base field k. Suppose that A
is a domain and consider its field of fractions F = FracA. The Poisson bracket extends
canonically to F (see 3.1.1 with S = A \ {0}). Take now a finite group G of Poisson
automorphisms of A. We know (see 3.1.1) that in this case AG is a Poisson subalgebra.
From the preliminary proposition of 5.1, the field of fractions of AG is Frac (AG) =
(FracA)G = FG. At the intersection of problems 5.1.1 and 5.4.1, we formulate (see [34])
the following question:

Problem (Poisson-Noether’s problem) : is there a field isomorphism between FG and F
which is a Poisson isomorphism ?

Comment: a Poisson version of Gelfand-Kirillov problem. For any field K and
any integer n ≥ 1, denote by Fn(K) the field of fractions of the symplectic Poisson
algebra of dimension 2n over K (see example 2 in 3.1.1). Let g be an algebraic Lie
algebra over a base field k, S(g) the symmetric algebra, L(g) the field of fractions
of S(g). Similarly to the Gelfand-Kirillov problem (see 5.2.3), we can ask:

Question: do we have L(g) ' Fm(k(z1, . . . , zt)) for some nonegative integers m, t ?

Here L(g) ' Fm(k(z1, . . . , zt)) means that the Poisson center of L(g) is purely
transcendental of degree t over k and L(g) is isomorphic to the field of fractions of a
symplectic Poisson algebra of dimension 2m over this Poisson center. The original
geometric motivations of this problem arise from [67]. Recent algebraic results on
it can be found in [48] and [66].

The most natural question is then the following:

Problem (symplectic Poisson-Noether’s problem) : for a finite subgroup G of the sym-
plectic group Sp2n(C) acting by the linear canonical Poisson action on the symplectic
polynomial algebra of dimension 2n, do we have a Poisson isomorphism Fn(C)G ' Fn ?
[or more generally for any G, a Poisson isomorphism Fn(C)G ' Fm(C(z1, . . . , zt)) for some
nonegative integers m, t such that 2n ≥ 2m+ t].

Examples in the case of the symplectic plane. We take for A the algebra C[x, y]
with the symplectic Poisson bracket defined from {x, y} = 1. Thus F = FracA = C(x, y).
We introduce w := xy ∈ A, an the subfields Qm = C(w, xm) of F for all m ≥ 1. In
particular Q1 = C(w, x) = C(x, y) = F . The Qm are stable for the Poisson bracket since

{xm, w} = mxm for any m ≥ 1. (75)

Hence the element zm := 1
m
x−mw = 1

m
yx1−m satisfies {zm, w} = −mzm and we deduce:

Qm = C(zm, xm), with {zm, xm} = 1 for any m ≥ 1. (76)
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So each Qm is isomorphic to C(x, y) as a field and as a Poisson algebra. We also need the
element v := x−1y = 2z2 ∈ F ; because wv−1 = x2, we have

Q2 = C(w, x2) = C(v, w), with {w, v} = 2v for any m ≥ 1. (77)

• Example. Let G be the cyclic subgroup of order n in SL2 generated by the
automorphism gn acting on C[x, y] by gn(x) = ζnx and gn(y) = ζ−1

n y for ζn a n-th
primitive root of one. Then gn(w) = w. The algebra S := C(w)[x] is such that
FracS = F and gn acts on S fixing w and multiplying x by ζn. Thus it is clear
that SG = C(w)[xn] and it follows directly from (commutative) theorem 5.1.2 that
FG = C(w, xn) = Qn. Finally we have proved that:

C(x, y)G = C(pn, qn) with pn = 1
nyx

1−n and qn = xn satisfying {pn, qn} = 1,

• Example. Let G be the binary dihedral subgroup of order 4n in SL2 generated
by the automorphism g2n acting on C[x, y] by g2n(x) = ζ2nx and g2n(y) = ζ−1

2n y
for ζ2n a 2n-th primitive root of one, and the automorphism µ define by µ(x) = iy
and µ(y) = ix (see 2.2.1). We have FG = (F g2n)µ = Qµ2n. Since x2 = wv−1, we
have x2n = wnv−n ; thus Q2n = C(w, x2n) = C(w, vn), with {w, vn} = 2nvn. The
action of µ on Q2n is given by µ(w) = −w and µ(vn) = v−n. The element sn :=
1
2n(v

−n − vn)w satisfies µ(sn) = sn and Q2n = C(sn, vn), with {sn, vn} = 1 − v2n.
By a last change of variable tn := (vn + 1)(vn − 1)−1, we deduce C(vn) = C(tn) by
Lüroth’s theorem, and the action of µ reduces to µ(tn) = −tn. Because µ(sn) = sn,
we have Qµ2n = C(sn, tn)µ = C(sn, t2n). We compute:

{sn, tn} =
(
{sn, vn}(vn − 1)− (vn + 1){sn, vn}

)
(vn − 1)−2

= −2(1− v2n)(1− vn)−2 = 2tn,

and then {sn, t2n} = 2tn{sn, tn} = 4t2n. It follows that Qµ2n = C(sn, t2n), with
{sn, t2n} = 4t2n. Denoting finally pn := (2tn)

−2sn and qn := t2n, we conclude that
Qµ2n = C(pn, qn), with {pn, qn} = 1. We have proved that:

C(x, y)G = C(pn, qn) with pn and qn satisfying {pn, qn} = 1 defined by :

pn =
1

8n

(
(x−1y)−n − (x−1y)n

)((x−1y)n − 1

(x−1y)n + 1

)2
xy, and qn =

((x−1y)n + 1

(x−1y)n − 1

)2
.

Hence the answer to the Poisson-Noether’s problem is positive in both cases. More gen-
erally, we have (from [34]):

Proposition. Let A be the Poisson algebra C[x, y] for the symplectic bracket. Let
F = C(x, y) be its field of fractions. For any finite subgroup G of SL2 acting linearly on
A, there exist two elements p and q in FG such that FG = C(p, q) and {p, q} = 1.
Therefore the assignment x 7→ p and y 7→ q defines an field isomorphism from F to FG

which is also a Poisson isomorphism.

Proof. The proof is somewhat formally similar to the noncommutative case in 5.3.2. Let G
be any finite subgroup of SL2. The cyclic case being solved in the first above example, we can
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suppose that the type of G is Dn, E6, E7 or E8. Then G contains the involution e defined by
e(x) = −x and e(y) = −y, with F e = Q2 with notation (77). Take any g ∈ G. There exist
α, β, γ, ε ∈ C with αε − βγ = 1 such that g(x) = αx + βy and g(y) = γx + εy. Recall that
w := xy and v := x−1y. Since g(x) = x(α+ βv) and g(y) = x(γ + εv), we obtain

g(v) = γ+εv
α+βv ∈ k(v). (†)

Moreover, g(w) = αγx2 + βεy2 + αεxy + βγyx and then

g(w) =
(
βεv2+(αε+βγ)v+αγ

v

)
w. (‡)

It follows from (†) and (‡) that the restrictions to the algebra S = C(v)[w] of the extensions
to F of the elements of G determine a subgroup G′ ' G/(e) of Aut CS. Because e ∈ G and
F e = Q2 = FracS, we deduce that FG = QG

′
2 .

Denoting K = C(v), assertion (†) allows to apply theorem 5.1.2 with S = K[w] and Q2 =
FracS = K(w) = C(v, w). Since SG

′ 6⊆ K because [Q2 : QG
′

2 ] = |G′| < +∞, there exists
u ∈ SG

′
of degree w ≥ 1 minimal among the degrees of all elements SG

′ \ KG′
such that

SG
′
= KG′

[u] and QG
′

2 = KG′
(u). Denote u = am(v)w

m+ am−1(v)w
m−1 + · · ·+ a1(v)w+ a0(v),

with ai(v) ∈ K for any 0 ≤ i ≤ m and am(v) 6= 0. For any h(v) ∈ K we have {ai(v), h(v)} = 0
thus {ai(v)wi, h(v)} = ai(v){wi, h(v)}. Since {w, v} = 2v implies {w, h(v)} = 2v∂v(h(v)), it
follows that {wi, h(v)} = 2v∂v(h(v))w

i−1. Finally:

{u, h(v)} = 2mvam(v)∂v(h(v))w
m−1 + · · · for any h(v) ∈ K

In particular, if h(v) ∈ KG′
, then {u, h(v)} ∈ SG

′
because u ∈ SG

′
and the elements of G′ are

Poisson automorphisms of S. By minimality of the degree m of u among degrees (related to w)
of elements in SG

′ \KG′
, it is impossible that m− 1 ≥ 1 when ∂v(h(v)) 6= 0. So we have proved:

if h(v) ∈ KG′
with h(v) /∈ C, then {u, h(v)} ∈ K.

By Lüroth’s theorem, C(v)G′
is a purely transcendental extension C(z) of C. Since z ∈ K and

z /∈ C, it follows from previous calculations that m = 1 and {u, z} = 2va1(v)∂v(z(v)) 6= 0. We
introduce t := {u, z}−1u in order to obtain QG

′
2 = C(z, t) with {t, z} = 1, and the proof is

complete.

Remark. Another example of positive answer to the symplectic form of Poisson-Noether’s
problem in higher dimension can be found in [34] and concerns the action of the Weyl
group B2 of rank two on the symplectic polynomial algebra in four generators. The author
also gives a Poisson analogue of Miyata’s theorem, and the following interesting example
related to the general (non symplectic) formulation of the Poisson-Noether’s problem

Example for the multiplicative Poisson structure. We return here to the situ-
ation studied in 4.2 where a finite subgroup G of SL2(Z) acts by Poisson automorphisms
defined from (52) and (53) on the commutative Poisson algebra T = C[x±1, y±1] for the
multiplicative Poisson bracket {x, y} = xy, see (39) or (40). As an illustration of the cor-
responding Poisson-Noether’s problem that in the particular case where G is the group
G10 of order two (see 4.2.2), it is proved in [34] that:
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Claim. There exists a Poisson isomorphism FG ' F where F = C(x, y), for
the multiplicative Poisson bracket {x, y} = xy.

Proof. Here G is just {I2, e} where e := −I2 acting by (52) and (53), that is
e.x = x−1 and e.y = y−1. It is known that TG is generated by ξ1 = x + x−1,
ξ2 = y+y−1 and θ = xy+x−1y−1, submitted to the relation θξ1ξ2−θ2−ξ22−ξ22+4 = 0.

Step 1. In FG = C(ξ1, ξ2, θ), this algebraic dependence relation rewrites into:

(2θ − ξ1ξ2)
2 = ξ21ξ

2
2 − 4(ξ21 + ξ22 − 4) ⇔ (2θ − ξ1ξ2)

2 = (ξ21 − 4)(ξ22 − 4)

⇔
(2θ − ξ1ξ2
ξ2 − 2

)2
= (ξ21 − 4)

ξ2 + 2

ξ2 − 2
.

Let us introduce η :=
2θ − ξ1ξ2
ξ2 − 2

∈ FG and α :=
η2

ξ21 − 4
=
ξ2 + 2

ξ2 − 2
∈ C(η, ξ1).

We have: ξ2 =
2(α+ 1)

α− 1
∈ C(η, ξ1) and then θ = 1

2(η(ξ2 − 2) + ξ1ξ2) ∈ C(η, ξ1).

We conclude that FG = C(η, ξ1).

Step 2. Concerning the Poisson structure, we start from:

{ξ1, ξ2} = 2θ − ξ1ξ2, {ξ2, θ} = 2ξ1 − θξ2 and {θ, ξ1} = 2ξ2 − θξ1.

Thus: {η, ξ1} = {2θ−ξ1ξ2
ξ2−2 , ξ1} = −2θ+ξ1ξ2

(ξ2−2)2
{ξ2 − 2 , ξ1} + 1

ξ2−2{2θ − ξ1ξ2 , ξ1}

=
(2θ−ξ1ξ2

ξ2−2

)2
+ 1

ξ2−2

(
2(2ξ2 − θξ1) + ξ1(2θ − ξ1ξ2)

)
= η2 + ξ2

ξ2−2(4− ξ21) = η2 + 1
2(α+ 1)(4− ξ21)

= 1
2(η

2 − ξ21 + 4).

Hence: {η , η2− ξ21 +4} = −ξ1(η2− ξ21 +4) and {ξ1 , η2− ξ21 +4} = −η(η2− ξ21 +4).

Therefore: {η + ξ1 , η
2 − ξ21 + 4} = −(η + ξ1)(η

2 − ξ21 + 4) and then:

{ 1
η+ξ1

, η2 − ξ21 + 4} = 1
η+ξ1

(η2 − ξ21 + 4).

Step 3. Conclusion: we define p := 1
η+ξ1

and q := η2 − ξ21 +4 = (η+ ξ1)(η− ξ1) + 4.

From the first step, we have FG = C(η+ ξ1, η− ξ1) = C(p, q). From the second step
{p, q} = pq.

5.5.2 Invariants of symplectic Poisson enveloping algebras

Introduction. Let A be a commutative Poisson algebra over a base field k. For any
a ∈ A, the derivation {a, · } of A is called the hamiltonian derivation associated to a.
We denote it by σa. From Jacobi identity we deduce that σaσb − σbσa = σ{a,b} for any
a, b ∈ A, then the space DerHam(A) of hamiltonian derivations of A is a Lie subalgebra
of DerA. The notion of Poisson enveloping algebra UPois(A) defined in [51] can be easily
described in the particular case where the Poisson structure on A is the symplectic one.
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We fix V a C-vector space of dimension n. Let (q1, . . . , qn) be a basis of V , (qn+1, . . . , q2n)
its dual basis, and { · , · } the symplectic Poisson bracket defined on V ⊕ V ∗, and then on
O(V ⊕ V ∗) := S = C[q1, . . . , qn, qn+1, . . . , q2n] by

{qi, qj} = δn+i,j for any 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n. (78)

• For any Poisson subalgebra S ′ of S, the Poisson enveloping algebra UPois(S
′) is defined

as the subalgebra of Endk(S
′) generated by the multiplications µa by all elements a ∈ S ′

and the hamiltonian derivation σa for all s ∈ S ′. It is clear in particular for S ′ = S that
UPois(S) ⊆ DiffS = A2n(C) the Weyl algebra

A2n(C) = C[q1, . . . , q2n][p1 ; ∂1] . . . [p2n ; ∂2n].

Denoting by σ : S → A2n(C) the map a 7→ σa, and up to the usual identifications µqi = qi
and ∂qi = pi (see 2.3.3), it follows from (78) that:

σ(a) =
n∑
i=1

(∂i(a)pn+i − ∂n+i(a)pi) for any a ∈ S, (79)

In particular σ(qi) = pn+i and σ(qn+i) = −pi for any 1 ≤ i ≤ n. Thus any pj (1 ≤ j ≤ 2n)
acts as an hamiltonian derivation on S, and therefore:

UPois(S) = A2n(C) (80)

• Consider K = FracS = C(q1, . . . , q2n), and the algebra B2n(C) of differential operators
with rational coefficients:

B2n(C) = K[p1 ; ∂1] . . . [p2n ; ∂2n] = C(q1, . . . , q2n)[p1 ; ∂1] . . . [p2n ; ∂2n].

Both algebras A2n(C) ⊂ B2n(C) have the same skewfield of fractions which is the Weyl
skewfield

D2n(C) = K(p1 ; ∂1) . . . (p2n ; ∂2n) = C(q1, . . . , q2n)(p1 ; ∂1) . . . (p2n ; ∂2n).

For the Poisson structure on K extending the bracket in S, we can also extend the map
σ : K → DerK defined by c 7→ σc. For any c = a−1b with a, b ∈ S, a 6= 0, we have
σ(c) = a−1σ(b) − a−2bσ(a). Therefore the subalgebra of EndK generated by K and
σ(K) is the same that the subalgebra generated by K and σ(S). This last algebra being
generated by K and the pj’s (1 ≤ j ≤ 2n), we conclude that

UPois(K) = B2n(C). (81)

• Let G be a finite subgroup of the symplectic group Sp(V ⊕ V ∗) ' Sp2n(C), acting by
Poisson automorphisms on S. The invariant algebra is a Poisson subalgebra of S. Then
we can consider the enveloping Poisson algebra

V := UPois(S
G).
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The action of G extends canonically to K = FracS. Since G is finite, we have KG =
Frac (SG) and we can introduce:

W := UPois(K
G).

This action also extends canonically (see 2.3.3) into an action by automorphisms on
DiffS = A2n(C), and then on B2n(C) and D2n(C). We have the following inclusions:

(1) V ⊂ W , (2) V ⊂ A2n(C)G, (3) W ⊂ B2n(C)G,

or in other words:

(1) UPois(S
G) ⊂ UPois(K

G), (2) UPois(S
G) ⊂ UPois(S)

G, (3) UPois(K
G) ⊂ UPois(K)G.

Proof. Assertion (1) is clear. Take a ∈ SG and consider the hamiltonian derivation
σa ∈ A2n(C). For any g ∈ G, we apply (21) to calculate g.σa = gσag

−1. Then for any
x ∈ S, we have (g.σa)(x) = g(σa(g

−1(x))) = g({a, g−1(x)}) = {g(a), x} = {a, x}.
Thus g.σa = σa for all g ∈ G and a ∈ SG. We conclude that σ(SG) ⊂ AG2n; this is
enough to prove (2). The proof of (3) is similar.

We are now in position to summarize in the following theorem the main results concerning
this kind of invariant algebras. Another complementary result lies in [51] which proves
that UPois(S

G) and UPois(S)
G are not Morita equivalent. We emphasize here in particular

the quite different picture between the original algebras and their localized versions.

Theorem. Let G be a nontrivial finite subgroup of Sp2n(C). If G is abelian, or for any
G when n = 1, we have:

(i) UPois(S
G) 6= UPois(S)

G = A2n(C)G 6' A2n(C).

(ii) UPois(K
G) = UPois(K)G = B2n(C)G ' B2n(C).

• Proof of assertion (i). We denote N = 2n and consider on AN (C) the Z-graduation
extending the natural graduation on S by giving degree 1 to each qi and degree −1 to each pi.

AN (C) =
⊕

j∈Z Tj and S =
⊕

j∈N Sj

where Tj is spanned by monomials qa11 . . . qaNN pb11 . . . pbNN such that a1+· · ·+aN−b1−· · ·−bN = j,
and Sj by monomials qa11 . . . qaNN such that a1 + · · · + aN = j. We know by Noether’s theorem
that the subalgebra SG is finitely generated. We claim that more precisely SG is here generated
by homogeneous elements of degree ≥ 2.

This is clear from 2.2.1 when n = 1 (and so G ⊂ SL2). In the case where G is
abelian, we can suppose by total reducibility argument (exactly as in 2.3.1) that
(up to conjugation) any automorphism g ∈ G acts on the symplectic basis (78) of S
by g(qi) = χi(g)qi and g(qi+n = χi(g)

−1qi+n for some complex characters χ1, . . . , χn
of G, and the result follows.
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Let s be any element in SG. It decomposes into s = s0+s2+s3+· · ·+sk with s0 ∈ C and sj ∈ Sj
for any 2 ≤ j ≤ k. With the usual notations ∂i = ∂qi , it follows that ∂i(s0) = 0 and deg ∂i(sj) ≥ 1
for any 1 ≤ i ≤ 2n. Hence for any 1 ≤ i ≤ n, we have deg ∂i(s) ≥ 1, deg ∂n+i(s) ≥ 1 and
deg pn+i = deg pi = −1. We conclude with relation (79) that σ(s) ∈

⊕
j≥1 Tj for any s ∈ SG.

Since SG ⊂ S ⊂
⊕

j≥0 Tj and UPois(S
G) is generated by SG and σ(SG), we conclude that:

UPois(S
G) ⊂

⊕
j≥0 Tj .

The group G acts linearly on W = ⊕1≤i≤NCqi but also on W ′ = ⊕1≤i≤NCpi [this follows from
the definition of the extension of the action studied in 2.3.3, see in particular identities (21),
(22) and (23)]. Thus, applying the same argument as above to the action of G on S′ = O(W ′) =
C[p1, . . . , pN ], we know that S′G is generated by homogeneous elements of degree ≥ 2 into the
pi’s. Such an elements lies in AN (C)G but not in

⊕
j≥0 Tj . We have proved that the inclusion

UPois(S
G) ⊂ A2n(C)G is not an equality. For the non isomorphism of A2n(C)G with A2n(C), see

references at the end of section 2.3.1

• Proof of assertion (ii) in the abelian case. We fix a finite abelian subgroup G of
Sp(V ⊕V ∗). By total reducibility (and as in 2.3.1, see above), we can suppose up to change the
symplectic basis that G acts on V ⊕ V ∗ and then on S = O(V ⊕ V ∗) = C[q1, . . . , q2n] by

g(qj) = φj(g)qj and g(qj+n) = φj(g)
−1qj+n for any g ∈ G, 1 ≤ j ≤ n,

where φ1, . . . , φn are complex characters of G. Following (21), (22) and (23) defining the exten-
sion of the action to A2n(2C), and therefore to B2n(C) and D2n(C), we obtain

g(pj) = φj(g)
−1pj and g(pj+n) = φj(g)pj+n for any g ∈ G, 1 ≤ j ≤ n.

The elements w1, . . . , w2n ∈ A2n(C) defined by wj := qjpj for any 1 ≤ j ≤ 2n satisfy the
relations

[wj , qi] = δi,jqi and [wj , wi] = 0 for all 1 ≤ i, j ≤ 2n.

Then it is clear that

B2n(C) = K[w1 ; d1] . . . [w2n ; d2n] = C(q1, . . . , q2n)[w1 ; d1] . . . [w2n ; d2n],

where dj denotes the Euler derivative dj = qj∂qj . By construction, all wj ’s are G-invariants.
Hence KG is stable for each dj because if a ∈ KG, then dj(a) = wja− awj with wj ∈ A2n(C)G.
Moreover the monomials into the wj ’s being a basis of B2n(C) over K, they are also a basis of
B2n(C)G over KG. To sum up, we have:

B2n(C)G = KG[w1 ; d1] . . . [w2n ; d2n].

The first step consists in the determination of the commutative invariant field KG. Let us
introduce in S the elements y1, . . . , yn defined by yj := qjqj+n for any 1 ≤ j ≤ n. Denoting
F = C(q1, . . . , qn) ⊂ K, we have K = F (qn+1, . . . , q2n) = F (y1, . . . , yn). The yj ’s being G-
invariants by construction it follows that KG = FG(y1, . . . , yn). Now observe that G acts
diagonally on the generators q1, . . . , qn of F ; thus we can apply theorem 1 of [37] (see also
corollary 2 in 5.1.2) to describe FG as the purely transcendental extension
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FG = C(z1, . . . , zn), with zj = q
mj,1

1 q
mj,2

2 · · · qmj,j

j for any 1 ≤ j ≤ n

where the mj,i’s (for 1 ≤ i ≤ j ≤ n) are n(n+1)
2 nonnegative integer such that mj,j 6= 0 for any

1 ≤ j ≤ n. We conclude that

KG = C(y1, . . . , yn, z1, . . . , zn).

The second step consists in the determination of W = UPois(K
G). Recall that W is the subal-

gebra of B2n(C)G generated over C by KG and σ(SG). Since y1, . . . , yn, z1, . . . , zn are elements
of SG, it is clear that W contains the subalgebra W ′ generated over C by KG and the set
E = {σ(yj) , σ(zj) | 1 ≤ j ≤ n}. We calculate σ(yj) for any 1 ≤ j ≤ n:

σ(yj) = σ(qjqj+n) = qjσ(qj+n) + qj+nσ(qj) = −qjpj + qj+npj+n = −wj + wj+n.

To compute σ(zj), observe that σ(q
mj,i

i ) = mj,iq
mj,i−1
i pn+i. We deduce:

σ(

j∏
i=1

q
mj,i

i ) =

j∑
i=1

mj,iq
mj,i−1
i

[ j∏
k=1,k 6=i

q
mj,k

k

]
pn+i =

j∑
i=1

mj,izjq
−1
i pn+i =

j∑
i=1

mj,izjq
−1
i q−1

n+iwn+i.

Hence the n elements σ(z1), σ(z2), . . . , σ(zn) in E are given by the linear system
σ(z1)
σ(z2)

...
σ(zn)

 = R


wn+1

wn+2
...

w2n

,

where R is the n× n triangular matrix with entries in KGwhose general entry (on the j-th row
and i-th column) is rj,i = mj,izjq

−1
i q−1

n+i when i ≤ j, and zero if i > j. Its determinant is

detR =
( n∏
j=1

zj
)( 2n∏
i=1

q−1
i

)( n∏
j=1

mj,j

)
6= 0.

We deduce that the elements wn+1, . . . , w2n of B2n(C)G can be expressed as linear combinations
with coefficients in KG of the elements σ(z1), σ(z2), . . . , σ(zn) de E. Thus wn+1, . . . , w2n ∈ W ′.
Since wj = wn+j −σ(yj) for any 1 ≤ j ≤ n, we finally conclude that wj ∈ W ′ for all 1 ≤ j ≤ 2n.
Hence W ′ contains KG and all wj for 1 ≤ j ≤ 2n, then W ′ ⊇ B2n(C)G. Since W ′ ⊆ W ⊆
B2n(C)G, the three algebras are equal.

The third step consists in proving the isomorphism B2n(C)G ' B2n(C). We start from the
description:

B2n(C)G = C(z1, . . . , zn, y1, . . . , yn, )[w1 ; d1] . . . [w2n ; d2n],

where the generators zj = q
mj,1

1 q
mj,2

2 · · · qmj,j

j and yj = qjqj+n (for 1 ≤ j ≤ n) satisfy the
following commutation relations (for 1 ≤ k ≤ 2n)

[wk, zj ] =

{
mj,kzj if 1 ≤ k ≤ j ,

0 otherwise,
[wk, yj ] =

{
yj if k = j or k = n+ j ,
0 otherwise.
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We realize the linear change of variables ti :=
∑n

k=i αi,k(wk − wk+n) for any 1 ≤ i ≤ n where
(αi,i, αi,i+1, . . . , αi,n) is the unique solution in C of the system of n− i+ 1 following equations:{

αi,imi,i = 1,∑i+h
k=i αi,kmi+h,k = 0 pour 1 ≤ h ≤ n− i.

By construction we have for all 1 ≤ i, j ≤ n the relations [ti, tj ] = [ti, yj ] = 0 and [ti, zj ] = δi,jzj .
By the new change of notations:

vj := zj if 1 ≤ j ≤ n, and vj := yn−j if n+ 1 ≤ j ≤ 2n,
ui := ti if 1 ≤ i ≤ n and ui := wn−i if n+ 1 ≤ i ≤ 2n,

we obtain [ui, uj ] = [vi, vj ] = 0 and [ui, vj ] = δi,jvj for all 1 ≤ i, j ≤ 2n. Therefore

B2n(C)G = C(v1, . . . , v2n, )[u1 ; D1] . . . [u2n ; D2n],

where Di denotes for any 1 ≤ i ≤ 2n the Euler derivative Di = vi∂vi . Now it is enough to
replace each generator ui by v

−1
i ui to conclude B2n(C)G ' B2n(C).

Observation. This last result provides an alternative proof of the first corollary in
5.4.2. More precisely, it can be viewed as an intermediate situation between the non-
isomorphism A2n(C)G 6' A2n(C) and the isomorphism D2n(C)G 6' D2n(C), proving that
the localization only by the functions (i.e. the elements of S) is sufficient to obtain the
isomorphism.

Remark. The missing case to achieve the proof of the theorem concerns assertion (ii) in
the particular situation where n = 1. Then G is a (non necessarily abelian) subgroup of
SL2(C), acting by the canonical linear action on S = C[q1, q2], extended by duality to the
Weyl algebra A2(C), and then to the localizations B2(C) and D2(C). The proof is too
technical to take place here integrally; thus we just outline the main argumentation and
refer to [45] for a complete detailed writing.

• Sketch of the proof of assertion (ii) in the SL2 case. Here S = C[q1, q2] and
K = C(q1, q2). We know (see 2.2.1) that the subalgebra SG is generated by three homogeneous
polynomials f1, f2, f3 into the variables q1, q2. Referring to (79), we denote:

hi = σ(fi) = ∂1(fi)p2 − ∂2(fi)p1 for i = 1, 2, 3.

Thus the algebra W = UPois(K
G), which is defined as the subalgebra of B2(C)G generated

by KG and σ(SG), is equivalently generated by KG and {h1, h2, h3}. Moreover applying the
operator σ = ∂1p2 − ∂2p1 to the algebraic equation F (f1, f2, f3) = 0 of the Kleinian surface F ,
we deduce for the h1, h2, h3 a linear relation with nonzero left coefficients in KG. This relation
allows to express h3 as a linear combination of h1 and h2 with coefficients in KG. Explicitly :

G of type An−1 fn1 − f2f3 = 0 nfn−1
1 h1 − f3h2 − f2h3 = 0

G of type Dn fn+1
1 + f1f

2
2 + f23 = 0 ((n+ 1)fn1 + f22 )h1 + 2f1f2h2 + 2f3h3 = 0

G of type E6 f41 + f32 + f23 = 0 4f31h1 + 3f22h2 + 2f3h3 = 0

G of type E7 f31 f2 + f32 + f23 = 0 3f21 f2h1 + (f31 + 3f22 )h2 + 2f3h3 = 0

G of type E8 f51 + f32 + f23 = 0 5f41h1 + 3f22h2 + 2f3h3 = 0
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We deduce that W is the subalgebra of B2(C)G generated by KG and the elements h1, h2.

For each of the five cases, let us define y := 1
d1
f1h1 with d1 = deg f1. It is clear that y ∈ B2(C)G.

An important (but technical) step in the proof consists then in proving by direct calculations in
connection with the Casimir element w := q1p1+q2p2 (see the proposition in 2.3.3) that B2(C)G
can be described as a iterated Ore extension over KG :

B2(C)G = KG[y ; D][w ; D′] (82)

where the derivations D and D′ traduce the intended commutation relations between the gen-
erators. Now h2 = s1y+ s2w is a linear combination of y and w whose coefficients in KG can be
explicitly calculated: s1 = −[∂1(g2)q1+∂2(g2)q2] and s2 = − 1

d1
g1

−1[d1g1∂1(g2)−d2g2∂1(g1)]q−1
2 .

G of type An−1 d1 = 2 d2 = n h1 = −2g1y h2 = −ng2y − n
2 g2g

−1
1 w

G of type Dn d1 = 4 d2 = 2n h1 = −4g1y h2 = −2ng2y − ng3g
−1
1 w

G of type E6 d1 = 6 d2 = 8 h1 = −6g1y h2 = −8g2y +
4
3g3g

−1
1 w

G of type E7 d1 = 8 d2 = 12 h1 = −8g1y h2 = −12g2y + 2g3g
−1
1 w

G of type E8 d1 = 12 d2 = 20 h1 = −12g1y h2 = −20g2y − 5
3g3g

−1
1 w

In conclusion, B2(C)G is generated over KG by h1 and h2. In other words B2(C)G = UPois(K
G).

The isomorphism B2(C)G ' B2(C) follows then from (82) by computational iterated changes of
variables (see [45]).
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6 Completion: actions on noncommutative power

series

6.1 Actions on skew Laurent series

We have already mentioned in 5.2.2 that a standard method in study of noncommutative
fields of rational functions consists in embedding them into a field of noncommutative
power series. We develop here this approach in connection with the open question of
the structure of automorphism groups of Weyl skewfields and their quantum analogues.
Partial results about D1(C) are cited at the end of 5.3.3; we concentrate now on the Weyl
skewfield Dq

1(C).

6.1.1 Automorphisms of skew Laurent series rings

We fix R a commutative domain. For any automorphism σ of R, the skew power series
ring A = R[[x ; σ]] in one variable x over R twisted by σ is by definition the set of
infinite sums

∑
i≥0 aix

i where the ai’s are in R, with usual addition and noncommutative
multiplication defined from the law:

xa = σ(a)x for all a ∈ R. (83)

Of course A contains the ring T = R[x ; σ] in the sense of 1.3.1, the elements of T bing the
finite sums

∑
i ait

i, with usual addition and the same commutation law (83). It’s clear
that x generates a two-sided ideal in A; the localized ring of A with respect of the powers
of x is denoted by B = R((x ; δ)). The elements of B are the Laurent series

∑
i>−∞ aix

i

where the ai’s are in R, with usual addition and noncommutative multiplication defined
from (83) and

x−1a = σ−1(a)x−1 for all a ∈ R. (84)

In particular T ⊂ A ⊂ B. For any nonzero element f =
∑

i>−∞ aix
i ∈ B, the integer

m ∈ Z such that am 6= 0 and aj = 0 for all j < m is named the valuation of f , denoted
by vx(f), and the element am is the coefficient of lowest valuation of f , denoted by ϕ(f).
By convention, we set vx(0) = +∞ and ϕ(0) = 0. It’s easy to check that vx : B → Z
is a discrete valuation and that ϕ : B → R satisfies ϕ(fg) = ϕ(f)σvx(f)(ϕ(g)) for any
f, g ∈ B. It follows that A and B are domains. We have A = {f ∈ B ; vx(f) ≥ 0} and
any f ∈ B can be written f = hxm for m = vx(f) ∈ Z and h ∈ A. It is easy to prove (by
the same argument than in the commutative setting) that an element of B is invertible
in B if and only if its lowest valuation coefficient ϕ(f) is invertible in R.
We concentrate in the following on the situation where R is a field K. Then its follows
from all previous observation that in this case B is skewfield ; we will denote it by F :

if K is a field, σ ∈ AutK, and A = K[[x ; σ]], then F = K((x ; σ)) = FracA. (85)

Then it follows from the trivial inclusion T = K[x ; σ] ⊂ A = K[[x ; σ]] that the skewfield
of rational functions Q := FracT = K(x ; σ) is a subfield of F :

T = K[x ; σ] ⊂ FracT = K(x ; σ) ⊂ K((x ; σ)). (86)
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The following theorem (appearing in [22]) asserts that any automorphism of the skewfield
F is continuous for the x-adic topology, and then is an extension of an automorphism of
the ring A. We need the preliminary technical lemma.

Lemma. Let p be a prime, p 6= CharK. Then any element of A of the form
1 +

∑
i≥1 aix

i admits a p-th root in A.

Proof. Denote f =
∑

i≥0 bix
i ∈ A and fp =

∑
i≥0 bp,ix

i with bi, bp,i ∈ K. By

straightforward calculations using (83), bp,i = [
∑

0≤j≤p−1 b
p−1−j
0 σi(bj0)] bi+ ri where

the rest ri only depends on bi−1, . . . , b1, b0 (and their images by σ). Hence, for any
sequence (ai)i≥1 of elements of K, we can find inductively a sequence (bi)i≥0 with
b0 = 1 such that bp,i = ai for any i ≥ 1, and then (

∑
i≥0 bix

i)p = 1+
∑

i≥1 aix
i.

Theorem. Let σ be an automorphism of a commutative field K. Let θ be an automor-
phism of F = K((x ; σ)). Then vx(θ(f)) = vx(f) for all F . In particular θ restricts into
an automorphism of A = K[[x ; σ]].

Proof. Let θ be an automorphism of F . Suppose that there exists a ∈ K× such that vx[θ(ax)] <
0. Then θ(1+x−1a−1) = 1+θ(x−1a−1) with vx[θ(x

−1a−1)] > 0. We fix a prime p 6= CharK and
apply the lemma: there exists h ∈ A such that θ(1+x−1a−1) = hp. Hence −1 = vx(1+x

−1a−1) =
vx[θ

−1(hp)] = vx[θ
−1(h)p] ≡ 0 modulo p. This is a contradiction. Thus we have proved:

vx[θ(ax)] ≥ 0 for any a ∈ K×. (?)

In particular s := vx[θ(x)] ≥ 0. For any a ∈ K×, we have 0 ≤ vx[θ(ax)] = vx[θ(a)] + vx[θ(x)]
then vx[θ(a)] ≥ −s. Suppose that there exists a0 ∈ K× such that vx[θ(a0)] = −m for some
0 < m ≤ s. For a = as+1

0 , we deduce −s ≤ vx[θ(a
s+1
0 )] = −m(s + 1). This is a contradiction

because s ≥ 0,m ≥ 1. Thus we have proved that vx[θ(a)] ≥ 0 for any a ∈ K×, and up to taking
the inverse a−1, we conclude:

vx[θ(a)] = 0 for any a ∈ K×. (??)

Any t ∈ U(A) can be written t = a(1 + w) where a ∈ K× and vx(w) ≥ 1. Applying the
lemma for any prime p 6= charK there exists g ∈ A such that a−1t = gp. Therefore (??) implies
vx[θ(t)] = vx[θ(a

−1t)] = vx[θ(g)
p] ≡ 0 modulo p. It follows that vx[θ(t)] = 0; we have proved:

for any t ∈ U(A), we have θ(t) ∈ U(A). (? ? ?)

Since vx[θ(x)] = s ≥ 0, we have θ(x) = txs where t ∈ U(A). Then x = θ−1(t)θ−1(x)s. Using
(? ? ?) for θ−1 it follows 1 = 0 + sθ−1(x). Thus s = 1 and the proof is complete.

6.1.2 Application to completion of the first quantum Weyl skewfield

We fix the following data and notations: k is a commutative base field, K := k((y)),
q ∈ k× is not a root of one, and σ is the k-automorphism of K defined by σ(y) = qy. We
denote A = K[[x ; σ]] and F = FracA = K((x ; σ)). In particular F contains the Weyl
skewfield k(y)(x ; σ) ' Dq

1(k) defined in (72). Since q is not a root of one, the center of
F reduces to k (see the proof of the last lemma in 5.2.2). The next theorem describes the
automorphism group of F . We need the following technical lemma.
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Lemma. For any θ ∈ AutF , there exist β ∈ k× and two sequences (ai)i≥1 and
(bi)i≥1 of elements of K, with a1 6= 0, such that:

θ(x) =
∑
i≥1

aix
i and θ(y) = βy +

∑
i≥1

bix
i.

Moreover θ is an inner automorphism if and only if the two following conditions are
satisfied:

(i) β is a power of q, (ii) there exists u ∈ K× such that a1σ(u) = u.

Proof. We know from theorem 6.1.1 that there exist (ai)i≥1 and (bi)i≥1 in K,
with a1 6= 0 and b0 6= 0 such that: θ(x) =

∑
i≥1 aix

i and θ(y) =
∑

i≥0 bix
i. The

commutation relation θ(x)θ(y) = qθ(y)θ(x) implies σ(b0) = qb0. We develop in K
the series b0 =

∑
i≥n βiy

i with n ∈ Z, βi ∈ k, βn 6= 0. Since q is not a root of one,
the support of this series reduces to {1}, then b0 = βy where β1 = β ∈ k×.
Now θ is inner if and only if there exist f =

∑
i≥m x

i ∈ F , with m ∈ Z, ui ∈ K,
um 6= 0, such that fy = σ(y)f and fx = σ(x)f . By identification in F = K((x ; σ)),
the first relation is equivalent to β = qm and

um+n y (q
m+n − β) =

∑
1≤i≤n

biσ
i(um+n−i) for any n ≥ 1.

The second equality implies in particular that a1 σ(um) = um. Hence conditions (i)
and (ii) are necessary. Suppose conversely that θ satisfies assumptions (i) and (ii).
Let u ∈ K× solution of a1 σ(u) = u and m the unique integer such that β = qm.
We define a sequence (um+n)n≥0 of elements of K by: um+n = u and:

um+n = (qm+n − β)−1 y−1
∑

1≤i≤n
biσ

i(um+n−i) for any n ≥ 1.

Then the so defined element f :=
∑

i≥m uix
i satisfies θ(y) = fyf−1 and:

fxf−1 = [umx
m+1 + · · · ][σ−m(u−1

m )x−m + · · · ] = umσ(u
−1
m )x+ · · · = a1x+ · · ·

Let us denote ∆ := θ(x)− fxf−1 and s := vx(∆). We compute:

θ(y)−1∆θ(y) = θ(y−1xy)− fy−1f−1fxf−1fyf−1 = q∆.

Suppose that ∆ 6= 0. We develop ∆ =
∑

i≥swix
i where wi ∈ K, ws 6= 0. Hence:

(wsx
s+ · · · )(βy+b1x+ · · · ) = q(β+b1x+ · · · )(wsxs+ · · · ). The identification of the

terms of valuation s of each side gives wsβq
s y = qβ y ws. Contradiction, therefore

∆ = 0, then θ(x) = fxf−1 and θ is inner.

Some automorphisms of F . For any α ∈ k×, we denote by wα the k-automorphism of
K = k((y)) defined by wα(y) = αy. Let w be the injective morphism k× → AutK defined
by α 7→ wα, and k× ×w K

× the corresponding semidirect product.
For any α ∈ k× and f(y) ∈ K×, we denote by θα,f the k-automorphism of F defined by:
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θα,f (y) = αy and θα,f (x) = f(y) x.

We define in AutF the subgroup

S := { θα,f ; α ∈ k×, f ∈ K× } ' k× ×w K
×.

Up to the subgroup InnF , this particular subgroup S contains all automorphisms:

Theorem. We have: AutF/InnF ' S/(InnF ∩ S).

Proof. Let us consider θ ∈ AutF ; for β ∈ k× defined by the previous lemma,
let us denote α = β−1. We introduce φ ∈ AutF defined by φ(y) = α y and
φ(x) = wα(a

−1
1 )x. Thus φθ(y) = y + b′1x + b′2x

2 + · · · and φθ(x) = x + a′2x
2 + · · ·

where the a′i, b
′
i are in K. Hence conditions (i) and (ii) of the lemma are satisfied

and φθ ∈ InnF . We conclude that AutF = (InnF )S.

The determination of AutF is completed by the explicit description of the elements of
InnF ∩ S (see proposition 2.8 in [22]).

Comment. Let us recall here that a similar theorem on the structure of automor-
phism groups is unknown for the rational skewfield Dq

1(C). We have cited some
partial results from [24] on the classical D1(C) in the final remarks of 5.3.3. Similar
properties in the quantum case for Dq

1(C) are proved in [24] using explicitly the em-
bedding [in the sense of (86)] of Dq

1(C) in the skew Laurent series field F considered
here.

6.2 Actions on pseudo-differential operators and related invari-
ants

6.2.1 Automorphisms of pseudo-differential operators rings

We fix R a commutative domain (related to forthcoming applications, we’ll sometimes
refer to R as the “ring of functions”). For any derivation d of R, the ring of formal
operators in one variable t over R is by definition the Ore extension T = R[t ; d] in the
sense of 1.3.1. Let us recall that the elements of T are the finite sums

∑
i ait

i where the
ai’s are in R, with usual addition and noncommutative product defined from relation:

ta = at+ d(a) for all a ∈ R. (87)

For any derivation δ of R, the ring A = R[[x ; δ]] of formal power series in one variable
x over R is by definition the set of infinite sums

∑
i≥0 aix

i where the ai’s are in R, with
usual addition and noncommutative multiplication defined from the law:

xa = ax+ δ(a)x2 + δ2(a)x3 + · · · for all a ∈ R. (88)

It’s clear that x generates a two-sided ideal in A; the localized ring of A with respect of
the powers of x is named the ring of formal pseudo-differential operators in one variable x
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with coefficients in R, and is denoted B = R((x ; δ)). The elements of B are the Laurent
series

∑
i>−∞ aix

i where the ai’s are in R, with usual addition and noncommutative
multiplication defined from (88) and

x−1a = ax−1 − δ(a) for all a ∈ R. (89)

It follows from (87) and (89), and we have already observed in 5.2.2, that T = R[x−1 ; −δ]
is a subring of B = R((x ; δ)).

For any nonzero series f ∈ B, there exist an integer m ∈ Z and a sequence (ai)i≥m of
elements of R such that f =

∑
i≥m aix

i and am 6= 0. The integer m is the valuation
of f , denoted by vx(f), and the element am is the coefficient of lowest valuation of f ,
denoted by ϕ(f). By convention, we set vx(0) = +∞ and ϕ(0) = 0. It’s easy to check
that vx : B → Z is a discrete valuation and that ϕ : B → R is a multiplicative map. It
follows that A and B are domains. We have A = {f ∈ B ; vx(f) ≥ 0} and

for all f ∈ B with vx(f) = m ∈ Z, there exists h ∈ A with vx(f) = 0 s.t. f = hxm.
(90)

For any integer k ∈ Z, we denote Bk = {f ∈ B ; vx(f) ≥ k} and πk the morphism Bk → R
defined by πk(

∑
i≥k aix

i) = ak. In particular B0 = A.

Remarks

(i) Let U(A) be the group of invertible elements of A. An element f =
∑

i≥0 aix
i

of A lies in U(A) if and only if vx(f) = 0 and ϕ(f) = a0 lies in the group U(R)
of invertible elements of R (although the calculations in A are twisted by δ,
the proof is similar to the commutative case). In other words, an element of
B lies in U(B) if and only if its coefficient of lowest valuation lies in U(R).

(ii) Let f =
∑

i≥0 aix
i be an element of A with vx(f) = 0 and ϕ(f) = a0 = 1.

Then, for any positive integer p such that p.1 ∈ U(R), there exist h ∈ A
satisfying vx(h) = 0 and ϕ(h) = 1 such that f = hp (the proof is a simple
calculation by identification and is left to the reader).

Proposition. We assume here that R is a field. Then:

(i) B = R((x ; δ)) is a skewfield, and B = FracA where A = R[[x ; δ]];

(ii) R(x−1 ; −δ) = FracR[x−1 ; −δ] is a subfield of B;

(iii) for any f ∈ B, we have f ∈ A, or f 6= 0 and f−1 ∈ A.

Proof. Straightforward by remark (i) and (90).

The following x-adic continuity lemma, which will be fundamental in the following, is
an analogue of the previous theorem 6.1.1 under somewhat different assumptions: the
domain R is not supposed here to be a field but the result only applies to automorphisms
of B stabilizing R.
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Lemma. Let δ be a derivation of a commutative domain R. Let θ be an automorphism
of R((x ; δ)) such that θ(R) = R. Then vx(θ(f)) = vx(f) for all f ∈ R((x ; δ)).

Proof. It’s clear that θ(x) 6= 0. Denote s = vx(θ(x)) ∈ Z. First we prove that s ≥ 0. Suppose
that s < 0. We set u = 1+x−1 ∈ B. Since vx(θ(x)

−1) = −s > 0, we have θ(u) = 1+θ(x)−1 ∈ A.
We can apply to θ(u) the remark (ii) above. For an integer p ≥ 2 such that p.1 is invertible
in R, there exists f ∈ A such that θ(u) = fp. Applying the automorphism θ−1, we obtain
vx(u) = pvx(θ

−1(f)), so a contradiction since vx(u) = −1 by definition. We have proved that
s ≥ 0. In particular the restriction of θ to A is an automorphism of A.

We can write θ(x) = a(1 +w)xs with nonzero a ∈ R and w ∈ A such that vx(w) ≥ 1. Applying
θ−1, we obtain x = θ−1(a)θ−1(1 + w)θ−1(x)s, and then:

vx(θ
−1(a)) + vx(θ

−1(1 + w)) + svx(θ
−1(x)) = 1.

From the one hand, θ(R) = R implies θ−1(R) = R, thus θ−1(a) is a nonzero element of R, and
so vx(θ

−1(a)) = 0. From the other hand, it follows from remark (i) above that 1 + w ∈ U(A);
since U(A) is stable by θ−1 (which is an automorphism of A by the first step of the proof), we
deduce that vx(θ

−1(1 + w)) = 0. We deduce that svx(θ
−1(x)) = 1. As s ≥ 0, we conclude that

s = 1 and the result follows.

6.2.2 Extension of an action from functions to pseudo-differential operators.

We fix R a commutative domain and δ a nonzero derivation of R. We denote by U(R)
the multiplicative group of invertible elements in R. We consider a group Γ acting by
automorphisms on R.

Definitions. We say that the action of Γ on R is δ-compatible if δ is an eigenvector for
the action of Γ by conjugation on DerR, i.e. equivalently when the following condition is
satisfied:

for all θ ∈ Γ, there exists pθ ∈ U(R), such that θ ◦ δ = pθ δ ◦ θ. (91)

It’s clear that θ 7→ pθ defines then an application p : Γ → U(R) which is multiplicative
1-cocycle for the canonical action of Γ on U(R), that means which satisfies:

pθθ′ = pθθ(pθ′) for all θ, θ′ ∈ Γ. (92)

It follows that, if we set

〈 f |
k
θ 〉 := p−kθ θ(f) for all k ∈ Z, θ ∈ Γ, f ∈ R, (93)

then the map (θ, f) 7→ 〈 f |
k
θ 〉 defines a left action Γ×R → R. This action is named the

left action of weight k of Γ on R. The weight 0 action is just the canonical action. For
the weight one action, a 1-cocycle for the weight one action is a map r : Γ → R which
satisfies:

rθθ′ = rθ + p−1
θ θ(rθ′) = rθ + 〈 rθ′ |1 θ 〉 for all θ, θ′ ∈ Γ. (94)
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We denote by Z1(Γ, R) the left RΓ-module of such 1-cocycles. For all k ∈ Z, we define
the additive subgroup of R of weight k invariants:

Ik := { f ∈ R ; 〈 f |
k
θ 〉 = f for all θ ∈ Γ}. (95)

In particular, I0 = RΓ and IkI` ⊆ Ik+`.

Theorem ([43]). With the previous data and notations, the action of Γ on R ex-
tends into an action by automorphisms on B = R((x ; δ)) if and only if this action is
δ-compatible, and we have then:

θ(x−1) = pθx
−1 + pθrθ for all θ ∈ Γ, (96)

where p : Γ → U(R) is the multiplicative 1-cocycle uniquely determined by condition
(91) of δ-compatibility and r : Γ → R is a 1-cocycle for the weight one action arbitrarily
chosen in Z1(Γ, R).

Proof. Let θ be an automorphism of B such that the restriction of θ to R is an element of
Γ. In particular, we have θ(R) = R. We can apply the lemma of 6.2.1 to write θ(x−1) =
c−1x

−1 + c0 + c1x+ · · · , with ci ∈ R for any i ≥ −1 and c−1 6= 0. Moreover x−1 ∈ U(B) implies
θ(x−1) ∈ U(B) and then c−1 ∈ U(R) by remark (i) of 6.2.1. Applying θ to (89), we obtain:

θ(x−1)θ(a)− θ(a)θ(x−1) = −θ(δ(a)) for any a ∈ R.

Since θ(a) ∈ R, we can develop this identity:

[c−1x
−1θ(a)− θ(a)c−1x

−1] + [c0θ(a)− θ(a)c0] +
∑

j≥1[cjx
jθ(a)− θ(a)cjx

j ] = −θ(δ(a)).

The first term is: c−1[x
−1θ(a)− θ(a)x−1] = −c−1δ(θ(a)) ∈ R. The second is zero by commuta-

tivity of R. The third is of valuation ≥ 1. So we deduce that:

−c−1δ(θ(a)) = −θ(δ(a)) and
∑

j≥1[cjx
jθ(a)− θ(a)cjx

j ] = 0.

Denote pθ := c−1; we have pθ ∈ U(R) and the first assertion above implies that pθδ(θ(a)) =
θ(δ(a)) for all a ∈ R. Now we claim that the second assertion implies that cj = 0 for all
j ≥ 1. To see that, suppose that there exists a minimal index r ≥ 1 such that cr 6= 0; then∑

j≥r[cjx
jθ(a) − θ(a)cjx

j ] = 0 implies by identification of the coefficients of lowest valuation

that crrδ(θ(a))x
r+1 + · · · = 0. Therefore crrδ(θ(a)) = 0. If we choose a ∈ R such that δ(a) 6= 0,

then θ(δ(a)) 6= 0; hence δ(θ(a)) 6= 0 [by the condition pθδ(θ(a)) = θ(δ(a)) that we have proved
previously], and we obtain a contradiction since R is a domain and cr 6= 0. We conclude that
cj = 0 for all j ≥ 1.
We have finally checked that θ(x−1) = c−1x

−1 + c0. We have already observed that pθ = c−1

satisfies (91). Now we set rθ = (c−1)
−1c0. We have θ(x−1) = pθx

−1 + pθrθ. Relations (92) and
(94) follow then from a straightforward calculation of θ(θ′(x−1)).

Conversely, let us assume that the action of Γ on R is δ-compatible. Denote by p the map
Γ → U(R) uniquely determined by (91), which satisfies necessarily (92). Let us choose a 1-
cocycle r : Γ → R arbitrarily in Z1(Γ, R). We consider any θ ∈ Γ; denoting qθ = pθrθ, we
calculate for all a ∈ R:

87



(pθx
−1 + qθ)θ(a)− θ(a)(pθx

−1 + qθ) = pθ(x
−1θ(a)− θ(a)x−1) = −pθδ(θ(a)) = −θ(δ(a)).

Hence we can define an automorphism θr of T = R[t ; −δ] = R[x−1 ; −δ] such that the restriction
of θr to R is θ and θr(t) = pθt+pθrθ; (observe that pθ ∈ U(R) implies the bijectivity of θr). Since
pθ ∈ U(R), the element θr(x

−1) = pθx
−1 + qθ is invertible in B by remark (i) of 6.2.1. Then we

define: θr(x) = θr(x
−1)−1 = x(pθ+ qθx)

−1 with pθ+ qθx which is invertible in A = R[[x ; δ]]. So
we have built for any θ ∈ Γ an automorphism θr of B which extends θ. It follows immediately
from the assumptions (92) on p and (94) on r that (θθ′)r = θrθ

′
r for all θ, θ

′ ∈ Γ.

Remark. Computing (pθ + qθx)
−1 =

(∑
j≥0(−1)j(p−1

θ qθx)
j
)
p−1
θ ∈ A, we deduce that,

under the hypothesis of the theorem, we have:

θ(x) = x
(∑
j≥0

(−1)j(rθx)
j
)
p−1
θ = p−1

θ x+ · · · for all θ ∈ Γ (97)

In particular, the restriction to Bk of the action of Γ on B defines an action on Bk for
any k ∈ Z.

Corollary. Under the assumptions of the theorem, the action of Γ on R extends into
an action by automorphisms on B = R((x ; δ)) if and only if it extends into an action by
automorphisms on T = R[x−1 ; −δ].

Examples. We suppose that the action of Γ on R is δ-compatible; thus the map p :
Γ → U(R) defined by (91) is uniquely determined and satisfies (92), and we consider here
various examples for the choice of r ∈ Z1(Γ, R).

1. If we take r = 0, the action of Γ on B is defined by θ(x−1) = pθx
−1, and then

θ(x) = xp−1
θ =

∑
j≥0 δ

j(p−1
θ )xj+1 for any θ ∈ Γ.

2. If r is a coboundary (i.e. there exists f ∈ R such that: rθ = 〈 f |1 θ 〉−f = p−1
θ θ(f)−f

for any θ ∈ Γ), then the element y = (x−1− f)−1 satisfies B = R((x ; δ)) = R((y ; δ))
and θ(y−1) = pθy

−1 for any θ ∈ Γ. Thus we find the situation of example 1.

3. We can take for r the map Γ → R defined by: rθ = −p−1
θ δ(pθ) for any θ ∈ Γ, which

is an element of Z1(Γ, R) by (91) and (92). The corresponding action of Γ on B is
given by: θ(x−1) = pθx

−1 − δ(pθ) = x−1pθ for any θ ∈ Γ.

4. For any r ∈ Z1(Γ, G) and any f ∈ R, the map θ 7→ rθ+p
−1
θ θ(f)−f is an element of

Z1(Γ, R). The corresponding action of Γ on B is defined by θ(x−1) = pθx
−1+pθrθ+

θ(f) − pθf . As in example 2, y = (x−1 − f)−1 satisfies B = R((x ; δ)) = R((y ; δ))
and allows to express the action by θ(y−1) = pθy

−1 + pθrθ for any θ ∈ Γ.

5. Since Z1(Γ, R) is a left RΓ-module, the map κ r is an element of Z1(Γ, R) for any
r ∈ Z1(Γ, G) and any κ ∈ RΓ. The corresponding action of Γ on B is given by:
θ(x−1) = pθx

−1 + κ pθrθ for any θ ∈ Γ. If we suppose moreover that κ ∈ U(R),
then y = (κ−1x−1)−1 satisfies B = R((x ; δ)) = R((y ; κ−1δ)), and we find θ(y−1) =
pθy

−1 + pθrθ for any θ ∈ Γ.
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6.2.3 Invariant pseudo-differential operators

We fix R a commutative domain, δ a nonzero derivation of R, and Γ a group acting by
automorphisms on R. We suppose that the action of Γ is δ-compatible and so extends to
B = R((x ; δ)) by (96) where r is an arbitrarily chosen element of Z1(Γ, R). We denote
by BΓ,r (respectively AΓ,r) the subring of invariant elements of B (respectively A) under
this action.

Remarks. For any k ∈ Z, we denote BΓ,r
k = Bk ∩ BΓ,r. The following observations

precise some relations between invariant pseudo-differential operators of valuation k (i.e.
elements of BΓ,r

k ) and weight k invariant functions (i.e. elements of Ik, see (95)).

(i) If BΓ,r 6= RΓ, then there exists some nonzero integer k such that Ik 6= {0}.

Proof. Suppose that there exists y ∈ BΓ,r such that y /∈ RΓ. Set k = vx(y),
thus y ∈ BΓ,r

k . If k 6= 0, then πk(y) is a non zero element of Ik by remark (i).
If k = 0, then π0(y) ∈ I0 = RΓ, thus y′ = y − π0(y) is a nonzero element of
BΓ,r
k′ for some integer k′ > 0 and we apply the first case.

(ii) For any k ∈ Z and y ∈ B, we have: ( y ∈ BΓ,r
k ⇒ πk(y) ∈ Ik ); this is a straightfor-

ward consequence of (93), (95), (96) and (97). If we assume that

0 // BΓ,r
k+1

can

inj
// BΓ,r

k

πk // Ik // 0

is a split exact sequence, then BΓ,r 6= RΓ if and only if there exists some nonzero
integer k such that Ik 6= {0}.

Proof. Suppose that there exists a nonzero integer k and a nonzero element f
in Ik. By assumption, we can consider ψk : Ik → BΓ,r

k such that πk ◦ψk = idIk .

Then ψk(f) = fxk + · · · lies in BΓ,r
k with valuation k 6= 0. Thus ψk(f) /∈ RΓ.

The following theorem gives an explicit description of the ring BΓ,r
k when the functions

ring R is a field of characteristic zero. It can be viewed as an analogue for noncommuta-
tive power series of the theorem previously proved in 5.3.1 for noncommutative rational
functions.

Theorem ([43]). Let R be a commutative field of characteristic zero. Let δ be a nonzero
derivation of R, A = R[[x ; δ]] and B = R((x ; δ)) = FracA. For any δ-compatible action
of a group Γ on R and for any r ∈ Z1(Γ, R), we have:

(i) if AΓ,r ⊆ R, then AΓ,r = BΓ,r = RΓ;

(ii) if AΓ,r 6⊆ R and RΓ ⊂ ker δ, then there exist elements of positive valuation in AΓ,r

and, for any u ∈ AΓ,r of valuation e = min{vx(y) ; y ∈ AΓ,r, vx(y) ≥ 1}, we have
AΓ,r = RΓ[[u]] and BΓ,r = Frac (AΓ,r) = RΓ((u));
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(iii) if AΓ,r 6⊆ R and RΓ 6⊂ ker δ, then there exists an element u of valuation 1 in AΓ,r and
a nonzero derivation δ′ of RΓ such that AΓ,r = RΓ[[u ; δ′]] and BΓ,r = Frac (AΓ,r) =
RΓ((u ; δ′)).

The proof of this theorem is somewhat long and technical and cannot take place here (see
[43]). It uses in an essential way the notion of higher derivation (see [42] for a survey).

Some comments.

1. In point (iii) of the theorem, δ′ = c−1
1 δ where u = c1x+ c2x

2 + · · · with ci ∈ R,
c1 6= 0.

2. The equality Frac (AΓ,r) = (FracA)Γ,r, which can be nontrivial in some cases
(see the proof of 5.3.1 and remark 1 in 5.2.1) follows here immediately from point
(iii) of the proposition in 6.2.1.

3. Under the assumptions of the theorem, if r and r′ are two 1-cocycles in Z1(Γ, R)
such that BΓ,r 6⊆ R and BΓ,r′ 6⊆ R, then BΓ,r ' BΓ,r′ .

4. Under the assumptions of the theorem, if the exact sequence of remark (ii) is
split for r and r′ two 1-cocycles in Z1(Γ, R), then BΓ,r ' BΓ,r′ .

5. If we don’t assume that R is a field, we don’t have a general theorem, but some
particular results can be useful for further arithmetical applications. In particular it
is proved in [43] that: if there exists in BΓ,r an element w = bx−1+ c with b ∈ U(R)
and c ∈ R, then the derivation D = bδ restricts into a derivation of RΓ, and we
have then AΓ,r = RΓ[[u ; D]] and BΓ,r = RΓ((u ; D)) for u = w−1.

6.2.4 Application to completion of the first Weyl skewfield

We take here R = C(z) and δ = ∂z. We consider the ring A = R[[x ; δ]] and its skewfield
of fractions F = R((x ; δ)). Then Q = R(t ; d) where t = x−1 and d = −δ is a subfield
of F [see point (ii) of proposition 6.2.1] which is clearly isomorphic to the Weyl skewfield
D1(C) (see 5.2.3). We have:

xz − zx = x2, or equivalently zt− tz = 1.

We name F the first local skewfield. It’s well known that any C-automorphism θ of R is
of the form z 7→ az+b

cz+d
with ( a bc d ) ∈ GL(2,C). For any f(z) ∈ R, we compute:

∂z(θ(f)) = ∂z(f(
az+b
cz+d

)) = ad−bc
(cz+d)2

f ′(az+b
cz+d

) = ad−bc
(cz+d)2

θ(∂z(f)).

By (91), it follows that the action of any θ ∈ AutR is δ-compatible, with pθ = (cz+d)2

ad−bc .
We conclude with the theorem of 6.2.2 that any automorphism θ of F which restricts into
an automorphism of R is of the form:

θ : z 7→ az+b
cz+d

, x−1 7→ (cz+d)2

ad−bc x
−1 + qθ(z).

where ( a bc d ) ∈ GL(2,C) and qθ(z) ∈ C(z). Then, using remark 2 of 5.2.1, we can prove
that point (iii) of the theorem of 6.2.3 applies and it’s easy to deduce with Lüroth’s
theorem that:

Proposition. For any finite subgroup Γ of C-automorphisms of F = C(z)((x ; ∂z))
stabilizing C(z), we have F Γ ' F .
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6.3 Applications to modular actions

We give here an overview about some applications of the previous results in number theory
(see [43] for a more complete lecture).

6.3.1 Modular forms

In the following, Γ is a subgroup of SL(2,C), and R is a commutative C-algebra R of
functions in one variable z such that:

(i) Γ acts (on the right) by homographic automorphisms on R

(f |0 γ) = f(az+b
cz+d

) for all f ∈ R and γ = ( a bc d ) ∈ Γ,

(ii) the function z 7→ cz + d is invertible in R for any γ = ( a bc d ) ∈ Γ,

(iii) R is stable by the derivation ∂z.

The case where R = C(z) corresponds to the formal situation studied at the end of 6.2.3.
In many arithmetical situations, R is some particular subalgebra of Fder(∆,C) with ∆ ⊆ C
stable by the homographic action of a subgroup Γ of SL(2,Z). We denote:

(f |k γ)(z) = (cz + d)−kf(az+b
cz+d

) for all f ∈ R, γ = ( a bc d ) ∈ Γ, k ∈ Z. (98)

Let us observe that ( (f |k γ′) |k γ ) = (f |k γ′γ) for all γ, γ′ ∈ Γ and f ∈ R. For any k ∈ Z,
we define the C-vector space of weight k modular forms:

Mk(Γ, R) = { f ∈ R ; (f |k γ) = f for all γ ∈ Γ } (99)

Remarks.

1. M0(Γ, R) = RΓ.

2. If Γ 3 (−1 0
0 −1 ), then Mk(Γ, R) = (0) for any odd k.

3. If Γ contains at least one element ( a bc d ) such that (c, d) /∈ {0} × U∞, we have
Mk(Γ, R) ∩M`(Γ, R) = (0) pour k 6= `.

4. For all f ∈Mk(Γ, R) and g ∈M`(Γ, R), we have fg ∈Mk+`(Γ, R).

5. For any f ∈Mk(Γ, R), the function f
′ = ∂z(f) satisfies (f

′ |k+2 γ)(z) = f ′(z)+
k c
cz+df(z). Thus f

′ is not necessarily a modular form (unless for k = 0).

Comment: Rankin-Cohen brackets (see [39]). It follows from remark 5 above
that, for f ∈Mk(Γ, R) and g ∈M`(Γ, R), and r, s nonnegative integers, the product
f (r)g(s) is not necessarily an element ofMk+`+2r+2s(Γ, R). For any integer n ≥ 0, we
denote by [ , ]n the n-th Rankin-Cohen bracket, defined as the linear combination:

[f, g]
0
= fg,

[f, g]
1
= kfg′ − `f ′g,
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[f, g]
2
= k(k + 1)fg′′ − (k + 1)(`+ 1)f ′g′ + `(`+ 1)f ′′g,

...

[f, g]n =
n∑
r=0

(−1)r
(
k+n−1
n−r

)
( `+n−1

r ) f (r)g(n−r),

and satisfies the characteristic property:

for f ∈Mk(Γ, R) and g ∈M`(Γ, R), we have [f, g]n ∈Mk+`+2n(Γ, R).

(More precisely it is possible to prove that any linear combination of f (r)g(s) sat-
isfying this property is a scalar multiple of the n-th Rankin-Cohen bracket). It
follows from the definition that [g, f ]n = (−1)n[f, g]n , and that [ , ]

1
satisfies

Jacobi identity.

6.3.2 Associated invariant pseudo-differential operators

• Extension of the modular action.

For δ = −∂z, we compute: δ(f |0 γ )(z) = −∂z(f(az+bcz+d
)) = −f ′(az+b

cz+d
) × 1

(cz+d)2
, and

thus: ( δ(f) |0 γ )(z) = (cz + d)2δ( f |0 γ )(z). Then the homographic action of Γ on R is
δ-compatible. The associated multiplicative 1-cocycle p : Γ → U(R) defined by (91) is:

pγ = (cz + d)2 for any γ = ( a bc d ) ∈ Γ (100)

For any k ∈ Z, the weight k action in the sense of (94) corresponds to the weight 2k
action in the sense (98) of modular forms:

〈f |
k
γ〉(z) = (cz + d)−2kf(

az + b

cz + d
) = (f |

2k
γ)(z) for all γ = ( a bc d ) ∈ Γ, f ∈ R. (101)

and then Ik =M2k(Γ, R).

We know by example 3 of 6.2.2 that r′γ = −p−1
γ δ(pγ) = (cz+d)−2∂z((cz+d)

2) = 2c(cz+d)−1

defines an additive 1-cocycle r′ : Γ → R. Then by example 5 of 6.2.2, we can consider for
any κ ∈ C the additive 1-cocycle r = κ

2
r′:

rγ = κ c(cz + d)−1 for all γ = ( a bc d ) ∈ Γ. (102)

Applying the theorem of 6.2.2, the action of Γ on R extends for any κ ∈ C into an action
by automorphisms on B = R((x ; −∂z)) by

γ(x−1) = (cz + d)2x−1 + κ c(cz + d) for all γ = ( a bc d ) ∈ Γ. (103)

We denote by BΓ,κ the subalgebra of invariant elements of B under this action.

• Invariant pseudo-differential operators.

We fix κ ∈ C. For any f ∈ R and any integer k ≥ 1, we define:
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ψk(f) = fxk +
∑
n≥1

(−1)n (n+k−1)!
n! (n+2k−1)!

× k! (−κ+k+1)(−κ+k+2)···(−κ+k+n) f (n)xk+n ∈ B,

ψ0(f) = f ∈ R,

ψ−k(f) = fx−k +
k∑

n=1

(2k−n)!
n! (k−n)! ×

(κ+k−n)(κ+k−n+1)···(κ+k−1)
(k−1)!

f (n)x−k+n ∈ B,

with the notation f (n) = ∂ nz (f). The following two results by P. Cohen, Y. Manin and
Don Zagier allow to define a vector space isomorphism between the invariant pseudo-
differential operators and the product of even weight modular forms.

Lemma ([39]). For all f ∈ R, k ∈ Z, γ ∈ Γ, we have: ψk( (f |2k γ) ) = γ(ψk(f) ), thus:

( f ∈M2k(R; Γ) ) ⇔ ( ψk(f) ∈ BΓ,κ
k ),

and then:

0 // BΓ,r
k+1

can

inj
// BΓ,r

k

πk --
M2k(Γ, R)ψk

ll // 0

is a split exact sequence.

• Theorem ([39]).

(i) For any j ∈ Z, the map

Ψ2j : M2j :=
∏
k≥j

M2k(Γ, R) −→ BΓ,κ
j ; (f2k)k≥j 7−→

∑
k≥j

ψk(f2k)

is a vector space isomorphism.

(ii) The map Ψ2∗ : M2∗ :=
⋃
j∈Z

M2j −→
⋃
j∈Z

BΓ,κ
j = BΓ,κ = R((x ; −∂z))Γ,κ canonically

induced by the Ψ2j’s is vector space isomorphism.

It’s not possible to give here the proofs of these results and we can only refer the reader
to the original article [39]. In order to illustrate the construction, let us give some explicit
calculations for Ψ0 in the particular case where κ = 0.

Example.

Ψ0 : M0 =
∏
k≥0

M2k(Γ, R) −→ AΓ,0 = R[[x ; −∂z]]Γ,0 = BΓ,0
0 ; (f2k)k≥0 7−→∑

k≥0

ψk(f2k)

For any (f0, f2, f4, . . .) ∈ M0, we have:

ψ0(f0) = f0

ψ1(f2) = f2x− f ′2x
2 + f ′′2 x

3 − f ′′′2 x
4 + · · · = xf2

ψ2(f4) =
1
3f4x

2 − 1
2f

′
4x

3 + 3
5f

′′
4 x

4 + · · ·

ψ3(f6) =
1
10f6x

3 − 1
5f

′
6x

4 + · · ·
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ψ4(f8) =
1
35f8x

4 + · · ·

....

thus:
Ψ0 : M0 −→ AΓ,0 ; (f2k)k≥0 7−→

∑
n≥0

hnx
n

Ψ−1
0 : AΓ,0 −→ M0 ;

∑
n≥0

hnx
n 7−→ (f2k)k≥0,

with:
h0 = f0 f0 = h0

h1 = f2 f2 = h1

h2 =
1
3f4 − f ′2 f4 = 3h2 + 3h′1

h3 =
1
10f6 −

1
2f

′
4 + f ′′2 f6 = 10h3 + 15h′2 + 5h′′1

h4 =
1
35f8 −

1
5f

′
6 +

3
5f

′′
4 − f ′′′2 f8 = 35h4 + 70h′3 + 42h′′2 + h′′′1

.... ...

hn =
n−1∑
r=0

(−1)r n! (n−1)!
r! (2n−r−1)! f

(r)
2(n−r) f2k =

k−1∑
r=0

(2k−1) (2k−2−r)!
r! (k−r)! (k−r−1)! h

(r)
k−r

6.3.3 Non commutative structure on even weight modular forms

By transfer of structures, the vector space isomorphisms

Ψ2∗ : M2∗ → BΓ,κ et Ψ−1
2∗ : BΓ,κ → M2∗

resulting of point (ii) of the theorem of 6.3.2 allow to equip M2∗ with a structure of non
commutative C-algebra. We denote by Mκ

2∗ which depends in principle on the parameter
κ fixed in the definition of the extension of the action form R to B.

Mκ
2∗ ' BΓ,κ for any κ ∈ C.

The description given in 6.2.3 of the rings BΓ,κ allows to deduce some algebraic properties
(center, centralizers,...) of the algebras Mκ

2∗. In particular, supposing that R is a field of
characteristic zero, the corollary of the theorem on 6.2.3 given in the comment 4 applies
by the lemma of 6.3.2, and we prove so that:

Theorem. If R is a commutative field of characteristic zero, then Mκ
2∗ ' Mκ′

2∗ for all
κ, κ′ ∈ C.

Application to the noncommutative product of two modular forms. Let us fix f ∈M2k(Γ, R)
and g ∈M2`(Γ, R). With the identifications:

f ≡ (f, 0, 0, . . .) ∈ M2k and g ≡ (g, 0, 0, . . .) ∈ M2`,

the noncommutative product of f by g in Mκ
2∗, for an arbitrary choice of κ ∈ C, is given

by:

µκ(f, g) = Ψ−1
2∗
(
Ψ2∗(f).Ψ2∗(g)

)
= Ψ−1

2(k+`)

(
ψk(f).ψ`(g)

)
∈ M2(k+`).
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The authors of [39] prove then that:

µκ(f, g) =
∑
n≥0

tκn(k, `) [f, g]n ,

where [ , ]n :M2k(Γ, R)×M2`(Γ, R) →M2(k+`+n)(Γ, R) is the n-th Rankin-Cohen bracket
(see comment in 6.3.1), and tκn(k, `) ∈ Q is defined by:

tκn(k, `) =
1

(−2`
n )

∑
r+s=n

(−kr )(−k−1+κ
r )

(−2k
r )

(n+k+`−κs )(n+k+`−1
s )

( 2n+2k+2`−2
s )

These coefficients satisfy tκn(k, `) = t2−κn (k, `). In particular for κ = 1
2
or κ = 3

2
, the product

µ
1
2 (f, g) is the well known associative Eholzer product f ? g = µ

1
2 (f, g) =

∑
n≥0

[f, g]n .

Final observation. The results of 6.3.2 and 6.3.3 can be extended to general (with even
or odd weight) modular forms by a more sophisticated construction where the pseudo-
differential operator rings are replaced by more general kind of power series (see [43]).
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