Sur l'unicité de l'opérateur de Schrödinger unidimensionnel

Hacène DJELLOUT

Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 21 avenue des Landais, 63177 Aubière, France.

Courriel: djellout@ucfma.univ-bpclermont.fr

Résumé.

Des conditions nécessaires et suffisantes sont données pour que l'opérateur de Schrödinger généralisé unidimensionnel $S=(-\frac{1}{2\phi^2}\frac{\mathrm{d}}{\mathrm{d}x}(\phi^2\frac{\mathrm{d}}{\mathrm{d}x}),\mathcal{C}_0^\infty(D))$ soit un générateur essentiel dans $L^p(D;\phi^2\mathrm{d}x);\ (p\geq 1),\ (\text{ceci implique l'unicité du C_0-semi-groupe dont le générateur étend <math>-S)$, en terme des propriétés de la fonction d'onde ϕ , et pour un intervalle ouvert D de $\mathbb R$. © Académie des Sciences/Elsevier, Paris

On the uniqueness of the one-dimensional Schrödinger operator

Abstract.

Necessary and sufficient conditions are given for the one-dimensional generalized Schrödinger operator $S=\left(-\frac{1}{2\phi^2}\frac{\mathrm{d}}{\mathrm{d}x}(\phi^2\frac{\mathrm{d}}{\mathrm{d}x}),\mathcal{C}_0^\infty(D)\right)$ to be an essential generator in $L^p(D)$; $\phi^2\mathrm{d}x$; $(p\geq 1)$, in term of the properties of the wave fonction ϕ , and for an open interval D in \mathbb{R} . This implies the uniqueness of the C_0 -semigroup whose generator extends -S. © Académie des Sciences/Elsevier, Paris

Abridged English Version

Consider the generalized Schrödinger operator $S = -A = (-\frac{1}{2\phi^2} \frac{\mathrm{d}}{\mathrm{d}x} (\phi^2 \frac{\mathrm{d}}{\mathrm{d}x}), \mathcal{C}_0^{\infty}(D))$ (or generator of Nelson's diffusion according to Meyer-Zheng [2]), where ϕ is a continuous strictly positive function on an open interval D such that $\phi' \in L^2_{loc}(D, \phi^2 \mathrm{d}x) \cap L^p_{loc}(D, \phi^2 \mathrm{d}x)$ (in the distribution sense), and $\mathcal{C}_0^{\infty}(D)$ denotes the space of all infinitely differentiable real functions on D with compact support.

The essential self-adjointness of S in $L^2(D, \phi^2 dx)$, equivalent to the uniqueness of self-adjoint extension of S, or to the unique solvability of Schrödinger's equation in $L^2(D, \phi^2 dx)$, has been completely characterized in the work of Wielens [3]. This question has attracted much attention and many remarkable works, because of its importance in Quantum Mechanics, and very general results are known in the multidimensional case (see Wu [4], [5] for the relevant references).

Consequently of an intuitive probabilistic interpretation of the uniqueness, Wu [4] has introduced and studied extensively the notion of $L^1(D, \phi^2 dx)$ -uniqueness, in multidimensional case. This property has important implications on the unique solvability of PDEs: resolvent and heat diffusion equations, and the eigenvalue problem of the Schrödinger operator, etc.

Note présentée par

We say that -S (or S with some abuse) is an essential generator in $L^p(D, \phi^2 dx) = L^p$, in abridge L^p -e-gr, if its closure in L^p is the generator of a strongly continuous semigroup of bounded operators $(P_t)_{t>0}$ (or C_0 semigroup simply).

For a e-gr. A, $(P_t)_{t\geq 0}$ is the unique C_0 -semigroupe whose generator is an extension of A. This notion, introduced in Wu [4], is exactly the counterpart in L^p of the essential self-adjointness.

A complete discussion of the L^p -e-gr of A , $p \ge 1$ is given in this note. We begin with

Theorem 1. – When $D = \mathbb{R}$, the operator A is L^p -e-gr.

When $D=(r_1,r_2)$, where $(-\infty \le r_1 \le r_2 \le +\infty)$, we use the classification of Feller of the boundaries, to characterize the L^p -e-gr of A. Let r_i an entrance boundary and $c \in D$. We call r_i a q-strong entrance boundary if

$$\left| \int_{c}^{r_{i}} \left| \int_{c}^{x} \frac{\mathrm{d}y}{\phi^{2}(y)} \right|^{q} \phi^{2}(x) \, \mathrm{d}x \right| = +\infty ,$$

it is called a q-weak entrance otherwise.

Theorem 2. – For 1 , we have

- (a) If r_1 and r_2 are exit boundaries or natural boundaries or q-strong entrance boundaries (there are 9 cases), then the operator A is L^p -e-gr.
- (b) If one of the boundaries r_1 or r_2 is regular boundary, or q-weak entrance boundary, then the operator A is not L^p -e-gr.

Remark: When p=1, the operator A is L^p -e-gr iff r_1 and r_2 are inaccessible, by Wu [5].

1. Introduction

Soient $1 \leq p < \infty$ et $D = (r_1, r_2)$ un intervalle ouvert de \mathbb{R} $(-\infty \leq r_1 < r_2 \leq +\infty)$, et ϕ une fonction strictement positive, continue dont la dérivée au sens de distribution est dans $L^2_{loc}(D, \phi^2 \mathrm{d}x) \cap L^p_{loc}(D, \phi^2 \mathrm{d}x)$. On désigne par $C_0^\infty(D)$ l'espace des fonctions réelles infiniment dérivables sur D et à support compact.

Considérons l'opérateur de Schrödinger généralisé $S = -A = (-\frac{1}{2\phi^2} \frac{\mathrm{d}}{\mathrm{d}x} (\phi^2 \frac{\mathrm{d}}{\mathrm{d}x}), \mathcal{C}_0^{\infty}(D))$ (ou le générateur de la diffusion de Nelson selon Meyer-Zheng [2]).

La propriété essentiellement auto-adjointe (e.a.a) de S dans $L^2(D,\phi^2\mathrm{d}x)$ est équivalente à l'unicité de l'extension auto-adjointe de S, ou à l'unique solvabilité de l'équation de Schrödinger dans $L^2(D,\phi^2\mathrm{d}x)$. Elle a été caractérisée complétement dans le travail de Wielens [3], dans le cas unidimensionnel. Vue son importance en mécanique quantique, cette question a suscité beaucoup d'intérêt et des travaux remarquables, dans le cas multidimentionnel (voir Wu [4], [5] et les références correspondantes).

Partant d'une interprétation probabiliste intuitive de l'unicité Wu [4] a introduit et étudié la notion de $L^1(D,\phi^2\mathrm{d}x)$ -générateur essentiel, dans le cas multidimensionnel. Cette propriété a des applications importantes à l'unicité des solutions des EDP: équation de la chaleur, et celle de la résolvante, et le problème des valeurs propres de l'opérateur de Schrödinger, pour de plus amples détails voir Wu [4] section 6.

DÉFINITION 1.1. L'opérateur S est dit un générateur essentiel dans $L^p(D, \phi^2 dx) = L^p$ (en abrégé L^p -gr-e), si sa fermeture dans L^p est le générateur d'un semi-groupe $(P_t)_{t\geq 0}$ d'opérateurs bornés fortement continu sur L^p (ou un C_0 -semi-groupe simplement).

Remarques.

- (i) Si l'opérateur A est gr-e., alors $(P_t)_{t\geq 0}$ est l'unique C_0 -semi-groupe dont le générateur est une extension de A.
- (ii) Cette notion, introduite dans Wu [4] est exactement la contre-partie dans $L^p(D, \phi^2 dx)$ de la propriété e.a.a de S.
- (iii) Si $\phi^2(x)$ dx est une mesure finie, $L^p \subset L^{p'}$ pour $p' \leq p$, la propriété L^p -gr-e est plus forte que $L^{p'}$ -gr-e.
 - (iv) Eberle [1] a étudié dans sa thèse la notion de L^p -unicité.

Dans cette note, on discute la notion de L^p -gr-e pour A = -S.

Le lemme suivant montre que l'opérateur A est la restriction du générateur de la diffusion

$$dX_t = dW_t + \frac{\phi'}{\phi}(X_t)dt$$

dans L^p . Ici $(W_t)_{t\geq 0}$ désigne le processus de Wiener standard défini sur $(\Omega, \mathcal{F}, (\mathcal{F})_{t\geq 0}, \mathbb{P}_x)$ tel que $\mathbb{P}_x(W_0=x)=1$. Posons

$$L_t = \int_0^t \frac{\phi'}{\phi}(W_s) dW_s, \quad \langle L \rangle_t = \int_0^t (\frac{\phi'}{\phi})^2 (W_s) ds$$
$$\forall t < \tau_D = \inf\{s > 0; W_s \notin D\}$$

Par le Lemme 1.2 dans Wu [5] et notre hypothèse $\phi' \in L^2_{loc}(D, \phi^2 dx) \cap L^p_{loc}(D, \phi^2 dx)$, on déduit facilement

LEMME 1.2. – Le semi-groupe $T_t f(x) = \mathbb{E}^x \left[f(W_t) e^{L_t - \frac{\langle L \rangle_t}{2}} \mathbb{I}_{t < \tau_D} \right]$ est sous-markovien symétrique dans L^2 , et fortement continu dans L^p pour tout $p \in [1, \infty[$. Son générateur dans L^p est une extension de A.

On définit l'opérateur L par

$$Lf = \frac{1}{2}f'' + \frac{\phi'}{\phi} \cdot f' ,$$

 $\mathbb{D}(L) = \left\{ f \mid f \text{ est continûment differentiable sur } D, \text{ et } f' \text{ est absolument continue} \right\}.$

Par intégration par parties, on peut montrer que l'opérateur adjoint A^* est donné par

$$A^*f = Lf = \frac{1}{2}f'' + \frac{\phi'}{\phi} \cdot f' \ ,$$

$$\mathbb{D}(A^*) = \left\{ f \in \mathbb{D}(L) / \ f \in L^q \ , \ Lf \in L^q \right\}, \quad \frac{1}{p} + \frac{1}{q} = 1$$

En appliquant le lemme 2.6 dans Wu [4], et le théorème de Hahn-Banach on a :

L'opérateur A est un L^p -gr-e ssi $\left((1-L)f=0 \text{ pour } f\in L^q\Longrightarrow f=0\right)$. Ainsi la question se ramène à montrer que les seules solutions de Lf=f dans L^q sont les solutions triviales. Cette propriété est en quelque sorte un théorème de Liouville.

2. Résultats

THÉORÈME 2.1 – Quand $D = \mathbb{R}$, l'opérateur A est L^p -gr-e.

H. Djellout

Pour le cas général, on utilise la classification de Feller. On introduit la définition suivante : Définition 2.2. Soit r_i une borne d'entrée, et $c \in D$. On dit que r_i est une borne d'entrée q-forte si

$$\left| \int_{c}^{r_{i}} \left| \int_{c}^{x} \frac{\mathrm{d}y}{\phi^{2}(y)} \right|^{q} \phi^{2}(x) \, \mathrm{d}x \right| = +\infty ,$$

elle est dite d'entrée q-faible dans le cas contraire.

Théorème $2.3 - Pour \ 1 , on a$

- (a) Si r_1 et r_2 sont des bornes de sorties ou naturelles ou d'entrée q-fortes (il y a 9 cas), alors l'opérateur A est L^p -gr-e.
- (b) Si l'une des bornes r_1 , r_2 est régulière, ou une borne d'entrée q-faible, alors l'opérateur A n'est pas L^p -gr-e.

Remarques.

- (1) Une expression équivalente du théorème 2.3 est : l'opérateur A n'est pas L^p -gr-e ssi l'une des bornes r_1 ou r_2 est régulière ou d'entrée q-faible. C'est une extension naturelle de Wielens [3].
 - (2) Si p = 1, l'opérateur A est L^1 -gr-e ssi r_1 et r_2 sont inaccessibles, voir Wu [5].

3. Preuves

Les idées de la preuve (pour $1) reposent sur les techniques développées dans l'article de Wielens [3]. Soit <math>r_1 < c < r_2$, et pour tout $n \in \mathbb{N}^*$ et $x \in D$, posons $u_0(x) = 1$ et $u_{n+1}(x) = \int_c^x \left(\int_c^y u_n(t) \phi^2(t) \mathrm{d}t \right) \frac{\mathrm{d}y}{\phi^2(y)}$. Chacune de ces fonctions est continûment différentiable. Introduisons:

$$\begin{split} w(x) := \sum_{0}^{\infty} 2^{n} \ u_{n}(x) \ , \quad w_{0}(x) := w(x) \int_{c}^{x} \frac{\mathrm{d}y}{w^{2}(y) \ \phi^{2}(y)} \ , \\ w_{1}(x) := w(x) \int_{r_{1}}^{x} \frac{\mathrm{d}y}{w^{2}(y) \ \phi^{2}(y)} \ , \quad w_{2}(x) := w(x) \int_{x}^{r_{2}} \frac{\mathrm{d}y}{w^{2}(y) \ \phi^{2}(y)} \ ; \end{split}$$

Ces fonctions sont bien définies et sont des solutions de l'équation Lf = f (au sens suivant: f est continûment differentiable et f' est absolument continue et $\frac{1}{2\phi^2}(\phi^2f')' = f$ p.s. sur D). Toute solution de cette équation est de plus combinaison linéaire de deux de ces fonctions, voir théorème 2.1 dans [3]. On prouve que si f est une solution non triviale de Lf = f, alors pour tout d_1, d_2 tel que $r_1 < d_1 < c < d_2 < r_2$ il existe une constante $k = k(f, d_1, d_2)$ telle que

$$\int_{r_1}^{r_2} |f(x)|^q \phi^2(x) dx \ge k \min \left\{ \int_{d_2}^{r_2} w^q(x) \phi^2(x) dx, \int_{r_1}^{d_1} w^q(x) \phi^2(x) dx \right\}$$
(1)

Preuve du Théorème 2.1 – Soit $-\infty < d_1 < c < d_2 < +\infty$. Par l'inégalité de Schwartz, on a:

$$\infty = \int_{-\infty}^{d_1} w^q(x) \ \phi^2(x) \ dx \int_{-\infty}^{d_1} \frac{dx}{w^q(x) \ \phi^2(x)}$$

$$\infty = \int_{d_2}^{+\infty} w^q(x) \, \phi^2(x) \, dx \int_{d_2}^{+\infty} \frac{dx}{w^q(x) \, \phi^2(x)}$$

On peut vérifier que

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{w^q(x) \ \phi^2(x)} < \infty \ .$$

L'inégalité (1) permet de conclure, que la solution triviale est l'unique solution dans $L^q(\mathbb{R})$ de Lf = f. \diamondsuit

Preuve du Théorème 2.3 – Tout d'abord, on montre qu'il existe une constante $k=k(d_1,d_2)>0$ telle que

$$\int_{d_2}^{r_2} w^q(x) \ \phi^2(x) \ dx \ge k \int_{d_2}^{r_2} \left(\int_{d_2}^x \frac{\mathrm{d}y}{\phi^2(y)} \right)^q \phi^2(x) \ dx \ ,$$
$$\int_{r_1}^{d_1} w^q(x) \ \phi^2(x) \ dx \ge k \int_{r_1}^{d_1} \left(\int_{x}^{d_1} \frac{\mathrm{d}y}{\phi^2(y)} \right)^q \phi^2(x) \ dx \ .$$

L'inégalité (1) et les résultats suivants permettent de conclure la preuve du théorème 2.3. Soit $i, j \in \{1, 2\}, i \neq j$, alors :

a) Si r_i est une borne d'entrée, il existe deux constante k_1, k_2 telles que :

$$\left| \int_{c}^{r_i} w^q(x) \ \phi^2(x) \ \mathrm{d}x \right| \leq k_1 + k_2 \left| \int_{c}^{r_i} \left| \int_{c}^{x} \frac{\mathrm{d}y}{\phi^2(y)} \right|^q \phi^2(x) \ \mathrm{d}x \right|;$$

- b) $\left| \int_{c}^{r_i} w_i^q(x) \phi^2(x) dx \right| < \infty$;
- c) Si r_i est une borne régulière, alors $|\int_c^{r_i} w_j^q(x)\phi^2(x) dx| < \infty$;
- d) Si r_i est une borne sortie, alors $|\int_c^{r_i} w^q(x)\phi^2(x)dx| = \infty$;
- e) Si r_i est une borne naturelle, alors $|\int_c^{r_i} w^q(x)\phi^2(x) dx| = \infty$;
- f) Si r_i est une borne d'entrée q-faible, alors $|\int_c^{r_i} w_j^q(x) \phi^2(x) \mathrm{d}x| < \infty$;
- g) Si r_i une borne d'entrée q-forte, alors $|\int_c^{r_i} w^q(x) \phi^2(x) dx| = \infty$. \diamondsuit

4. Exemple

On considère $\phi(x) = x^{\gamma}, \gamma$ un nombre réel, et $D = (0, +\infty)$.

Le point $+\infty$ est naturel.

Le point 0 est régulier pour $\frac{-1}{2} < \gamma < \frac{1}{2}$, point de sortie pour $\gamma \leq \frac{-1}{2}$ et point d'entrée pour $\gamma \geq \frac{1}{2}$, cette entrée est : q-forte pour $\gamma \geq \frac{q+1}{2(q-1)}$, et q-faible pour $\gamma < \frac{q+1}{2(q-1)}$.

Ainsi d'après ce qui précéde on a :

- i) L'opérateur A est L^1 -gr-e ssi $\gamma \geq \frac{1}{2}$;
- ii) L'opérateur A est e.a. a pour $\gamma \geq \frac{3}{2} \ \ ou \quad \gamma \leq \frac{-1}{2}$;
- iii) L'opérateur A est L^p -gr-e ssi $\gamma \leq \frac{-1}{2} \ \ ou \ \ \gamma \geq \frac{q+1}{2(q-1)} = \frac{2p-1}{2} \ \ \text{pour} \ 1 .$

Remerciement: L'auteur remercie le professeur L. Wu de lui avoir suggéré le problème, puis d'avoir encadré ses travaux pour le résoudre.

Références bibliographiques

- [1] Eberle A., Uniqueness and non-uniqueness of singular diffusion opertors, thèse de Doctorat de l'Université de Bielefeld, Allemagne, 1997.
- [2] Meyer P. A., Zheng W. A., Construction de processus de Nelson reversible, Sem. Probab. XIX, Lect. Notes Math. 1123 (1984) 12–26.
- [3] Wielens N., The essential self adjointness of generalized Schrödinger operators, J. Funct. Anal. 61 (1985) 98–115.
- [4] Wu L., Uniqueness of Schrödinger operators restricted in a domain, J. Funct. Anal. 153 (1998) 276-319.
- [5] Wu L., Uniqueness of Nelson's diffusions, à apparaître dans Proba. Th. Rel. Fields 114 (1999).