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Large and Moderate Deviations for Estimators of
Quadratic Variational Processes of Diffusions

HACÈNE DJELLOUT, ARNAUD GUILLIN and LIMING WU
Laboratoire de Math´ematiques Appliqu´ees, CNRS-UMR 6620 Universit´e Blaise Pascal, 63177
Aubiere, France

Abstract. For a diffusion process dXt = σtdBt + b(t,Xt )dt with (σt ) unknown, we study the
large and moderate deviations of the estimator2̄n(t) :=∑[nt ]

k=0(Xk/n−X(k−1)/n)
2 of the quadratic

variational process2(t) = ∫ t0 σ2
s ds.

AMS Mathematics Subject Classifications (1991):60F10, 62J05, 60J05.

Key words: large deviation, moderate deviation, quadratic variational process.

Introduction

Consider the time evolution of some quantity(Xt)06 t6 1 in a random environment
modelized by the Ito’s stochastic differential equation

dXt = σtdBt + b(t, ω)dt, (0.1)

defined on some filtered space(�,F, (Ft ),P) (satisfying the usual condition),
where (b(t, ω))t > 0 is an adapted process denoting themean forward velocity,
(Bt) is a real standard Brownian motion, and 06 σt ∈ L2(R+,dt) (deterministic)
represents thestrength of the random perturbation (or noise) at timet . Assume
that(σt) is unknown and we want to estimate it from a sample(Xt)06 t 6 1, or more
exactly to estimate the unknown quadratic variational process ofX,

2(t) := [X]t =
∫ t

0
σ 2
s ds, t ∈ [0,1]. (0.2)

This question appears very naturally in mathematical finances whereσt is called
volatility. D. Florens-Zmirou [7] studied it both from the parametric and non-
parametric statistic point of view, and she obtained the consistency and the central
limit theorem of her estimators. Several further works have been realized by Aves-
ani and Bertrand [1], Bertrand [2] about various statistical questions related to this
model. See [2] for relevant references.

LDP and MDP for quadratic variational processes 3



196 HACÈNE DJELLOUT ET AL.

By Stochastic analysis and by following [7] and [2], a natural estimator of
2(·) = [X], is theempirical quadratic variational processof X

Qn
t (X) :=

[nt ]∑
k=1

(Xtnk −Xtnk−1
)2, t ∈ [0,1], n> 1, (0.3)

whereτn = {tnk := k
n
;06 k6 n} is the equi-partition of [0,1] into n parts, [x]

denotes the integer part ofx ∈ R. If the drift b(t, ω) is known, we can consider the
following variant

Qn
t (X − Y ) =

[nt ]∑
k=1

(
Xtnk −Xtnk−1

−
∫ tnk

tn
k−1

b(s, ω)ds

)2

(0.4)

whereY· :=
∫ ·

0 b(t, ω)dt .
If the drift b(t, ω) = b(t,Xt (ω)) whereb(t, x) is some deterministic function

(a current situation),(Xt) verifies

dXt = σtdBt + b(t,Xt )dt. (0.5)

Whenb(t, x) is known, and only the sample(Xtnk ; k = 0, . . . , n) is observed, we
can also consider the following estimator

Q̃n
t (X) :=

[nt ]∑
k=1

(
Xtnk −Xtnk−1

− b(tnk−1, Xtnk−1
)(tnk − tnk−1)

)2
. (0.6)

Under the mild condition that sup06 t 6 1 |b(t, ω)| < +∞,P− a.s,

Qn
t (X), Qn

t (X − Y ) , Q̃n
t (X) −→

∫ t

0
σ 2
s ds, P− a.s. (0.7)

(well known, see [12]). Thus they all are strongly consistent estimators of2(t) =
[X]t .

The purpose of this paper is to furnish some further estimations about these es-
timators, refining the already known central limit theorem [7, 1, 2]. More precisely,
we are interested in the estimations of

P
( √

n

b(n)

(
2̄n(·)−2(·)

) ∈ A) ,
where2̄n(·) denotes one of the three estimators in (0.3), (0.4) and (0.6) above,A

is a given domain of deviation,(b(n) > 0) is some sequence denoting the scale
of deviation. Whenb(n) = 1, this is exactly the estimation of the central limit
theorem. Whenb(n) = √n, it becomes thelarge deviations. And when 1�
b(n) � √n, this is the so calledmoderate deviations. The main problem studied
in this paper is:

4 LDP and MDP for quadratic variational processes



LARGE AND MODERATE DEVIATIONS FOR ESTIMATORS 197

What are the large and moderate deviations estimations of the estimators
2̄n(t) = Qn

t (X), orQn
t (X − Y ), or Q̃n

t (X)?
The above question will be investigated from two points of view : the paramet-

rical statistical one whent = 1 is fixed ; and the nonparametrical statistical one
whent varies in [0, 1]. Let us regard roughly the feature of this question.

The first point is that the question can be reduced to theno-drift (i.e., b = 0)
gaussian case by approximation technique (see Section 2). And in this simplified
case, the exact calculations could be made in principle (but one waits the explicit
results, too).

The second point of this object is thatt → Qn
t (X − Y ) has independent incre-

ments which are not homogeneous oncet → σt is not constant. So it is much like
partial sums of non-i.i.d.r.v., and we can not directly apply the powerful theory in
the i.i.d. case.

Though we have not found the studies exactly on this question in the literatures
(it is a surprise to us), but technically we are much inspired from the two lines of
the studies:

(1) the work of Lynch and Sethuraman [10] on large deviations of processes with
independent increments, and Pukhalski [11] about large deviations of stochastic
processes;

(2) the works of Bryc and Dembo [3], of Bercu, Gamboa and Rouault [4] about
the large and moderate deviations of quadratic forms of a stationary gaussian
process.

Especially we will encounter the same technical difficulties:

(1) a correction (or extra) term appears in the evaluation of the rate function in the
process-level large deviations because of theweak exponential integrability of
Qn(X), a phenomenon first discovered by Lynch and Sethuraman [10]; and

(2) the Ellis–Gärtner Theorem can not be applied in some situations, as in [3, 4].

This paper is organized as follows. In the next Section we present the main
results of this paper. They are established successively in the remaining part of the
paper. The related works are often presented in the remarks.

1. Main Results

Let us present now the main results of this paper. We follow [5] for the language
of large deviations, throughout this paper.

1.1. LARGE DEVIATIONS AT A FIXED TIME

Our first result is about the large deviations ofQn
1(X) from [X]1, with time t = 1

fixed.

THEOREM 1.1 Let (Xt) satisfy (0.1) andY. =
∫ .

0 b(t, ω)dt .

LDP and MDP for quadratic variational processes 5



198 HACÈNE DJELLOUT ET AL.

(a) For everyλ ∈ R,

lim
n→∞

1

n
logE exp

(
λnQn

1(X − Y )
) = 3(λ) :=

∫ 1

0
P(λσ 2

t )dt (1.1)

in (−∞,+∞], where

P(λ) = −1
2 log(1− 2λ) for λ < 1

2 and +∞ else. (1.2)

(b) Assume thatσ· ∈ L∞([0,1],dt) andb(·, ·) ∈ L∞(dt ⊗P). ThenP(Qn
1(X) ∈ ·)

satisfies the large deviation principle (in abridge: LDP) with speedn and with the
good rate functionI given by the Legendre transformation of3, that is,

I (x) := 3∗(x) = sup{λx −3(λ);λ ∈ R} . (1.3)

In other wordsI is inf-compact and for each Borel subsetA of R,

− inf
x∈A◦

I (x)6 lim
n→∞

(
inf
sup

)
1

n
logP

(
Qn

1(X) ∈ A
)
6 − inf

x∈Ā
I (x). (1.4)

Remarks 1.1.By the well-known Ellis–G¨artner Theorem ([6, Th.II.6.1] or [5, § 2.3]),
we can deduce the LDP (1.4) forQn

1(X−Y ) (instead ofQn
1(X)) from (1.1) once if

lim
λ↑λ0

3′(λ) = lim
λ↑λ0

∫ 1

0

σ 2
t

1− 2λσ 2
t

dt =
∫ 1

0

σ 2
t

1− 2λ0σ
2
t

dt =: A = +∞, (1.5)

whereλ0 := 1
2‖σ 2‖∞ . The main difficulty in this result resides just in the case where

λ0 < +∞ and

A =
∫ 1

0

σ 2
t

1− 2λ0σ
2
t

dt < +∞, (1.6)

in which Ellis–Gärtner’s theorem is not applicable, because3 is not steep, see
[5, § 2.3].

Notice that the rate function3∗(x) is strictly convex on(0, A), 3∗(x) = +∞,
∀x6 0 and3∗(x) = λ0x−3(λ0) (affine) for allx>A. See Proposition 1.5. below
for some explicit estimations.

Remarks 1.2.σ· ∈ L∞([0,1],dt) is a necessary condition to the LDP in (1.4). See
Corollary 2.3.

1.2. LARGE DEVIATIONS OF PROCESS-LEVEL

We now extend Theorem 1.1. to the process-level large deviations of2̄n(·) :=
Qn· (X), which is interesting from the viewpoint of non-parametric statistics.

Let D+[0,1] be the real right-continuous-left-limit non-decreasing functionsγ

with γ (0) non-negative. The spaceD+[0,1] of γ , identified in the usual way as the

6 LDP and MDP for quadratic variational processes
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space of non-negative bounded measures dγ on [0,1] with dγ [0, t ] = γ (t), will be
equipped with the weak convergence topology. The empirical quadratic processes
defined in (0.3) and (0.4) areD+([0,1])-valued random variables with respect to
theσ -fieldBs generated by the coordinates{γ (t);06 t 6 1}.
THEOREM 1.2.Given(Xt) by (0.1) withσ· ∈ L∞([0,1],dt), b(·, ·) ∈ L∞(dt ⊗
P).

(a) P
(
Qn· (X) ∈ ·

)
satisfies the LDP onD+([0,1]) w.r.t. the weak convergence

topology, with speedn and with some inf-compact convex rate functionJ (γ ).
(b) If moreovert → σt is continuous and strictly positive on[0,1], then

J (γ ) =
∫ 1

0
P ∗
(
γ̇ (t)

σ 2
t

)
dt + 1

2

∫ 1

0

1

σ 2
t

dγ ⊥(t), (1.7)

whereγ̇ (t)dt,dγ ⊥ are respectively the absolute continuous part and the singular
part of the measuredγ associated withγ ∈ D+[0,1] w.r.t. the Lebesgue measure
dt , and

P ∗(x) =
{

1
2 (x − 1− logx) if x > 0

+∞ if x6 0
(1.8)

which is the Legendre transformation ofP(λ) given in (1.2).

Remarks 1.3.In the homogenous caseσt = σ constant, this theorem is already
obtained by [4, Theorem 7].

Remarks 1.4.We emphasize that the LDP in the part (a) holds only w.r.t. the weak
convergence topology, not w.r.t. the Skorohod topology even in the simplest case
whereσt = σ is constant. In fact in this last case, Lynch and Sethuraman [10] found
thatJ (γ ) given by the right hand side (in short : RHS) of (1.7) is not inf-compact
w.r.t. the Skorohod topology. A more direct way to see this point is

lim
n→+∞

1

n
logP

(
Qn
t+1/n(X)−Qn

t (X) > x
) = − x

2σ 2
t

, ∀x > 0, t ∈ [0,1)

wheret → σ 2
t is assumed continuous andb = 0 (an easy calculation).

Remarks 1.5.In the evaluation ofJ (γ ), one finds rather naturally the first term in
the RHS of (1.7), but not so easily the second correction term usingγ ⊥. Hence
even for ‘bad’ configurations such as dγ = d[X] + δt (δt the Dirac measure at
t ∈ [0,1]),Qn· (X) can fall into any small neighborhood ofγ with a non-negligible
exponential small probability (this is clear also from the estimation in the remark
above).

Notice that this curious phenomenon (with an extra term includingγ ⊥) was at
first found by Lynch and Sethuraman [10, Th.3.2] in their investigations of large

LDP and MDP for quadratic variational processes 7
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deviations of processes with (homogeneous) independent increments. As said at
the beginning, we are much inspired by their work.

Remarks 1.6.One can weaken slightly the strong condition in (b) : ifσ·> ε > 0
is piecewisely continuous on [0,1] (i.e., has only a finite number of discontinuity
points of the first type), then the rate functionJ in Theorem 1.2.(a) will be instead
of (1.7), given by

J (γ ) =
∫ 1

0
P ∗
(
γ̇ (t)

σ 2
t

)
dt + 1

2

∫ 1

0

1

σ 2
t

dγ ⊥(t),

whereσ t = max{σt+, σt−} is the upper semi-continuous version ofσ·. This can
be established by applying Theorem 1.2.(b) to each sub-interval over whichσ·
is continuous, and using the independence of increments ofQn· (X − Y ) and the
contraction principle.

1.3. MODERATE DEVIATIONS

We discuss now the moderate deviations ofQn(X). To this purpose, let(b(n))n> 1

be a sequence of positive numbers such that

b(n) −→ +∞, b(n)√
n
−→ 0. (1.9)

Let D0([0,1]) be the Banach space of real right-continuous-left-limit functionsγ

on [0,1] with γ (0) = 0, equipped with theuniform sup norm(it is non-separable!).
The associated Borelσ -field is too large. We shall use theσ -field Bs generated by
the coordinates{γ (t);06 t 6 1}.
THEOREM 1.3.Given (Xt) by (0.1) withb(t, ω) ∈ L∞(dt ⊗ P). Assumeσ 2

t ∈
L2([0,1],dt) and

√
nb(n) max

16 k6 n

∫ k/n

(k−1)/n
σ 2
t dt −→ 0, (1.10)

or more particularly for somep > 2,

σ 2
t ∈ Lp([0,1],dt) and b(n) = O

(
n

1
2− 1

p

)
. (1.11)

Then for eachBs-measurable subsetA ⊂ D0([0,1]),

− inf
γ∈A◦ Jm(γ )6 lim

n→∞

(
inf
sup

)
1

b2(n)
×

× logP
( √

n

b(n)

(
Qn
· (X)− [X]·

) ∈ A) 6 − inf
γ∈Ā

Jm(γ ), (1.12)

8 LDP and MDP for quadratic variational processes
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whereA0, Ā are taken w.r.t. the sup norm topology, and the good rate functionJm
is given by

Jm(γ ) =


∫ 1

0

γ̇ (t)2

4σ 4
t

1[t :σt>0] dt if dγ � σ 2
t dt

+∞ otherwise

(1.13)

In particular, P
( √

n

b(n)

(
Qn

1(X)− [X]1
) ∈ ·) satisfies the LDP onR with speedb2(n)

and with the rate function given by

Im(x) = x2

4
∫ 1

0 σ
4
s ds

, ∀x ∈ R. (1.14)

Remarks 1.7.In the literature, the large deviation principles in Theorem 1.3 are of-
ten called Moderate Deviation Principles (in abridge MDP, see e.g. [5]). Notice an
essential difference between the large deviations in Theorem 1.2 and the moderate
deviation in Theorem 1.3 – the LDP in Theorem 1.3. holds even w.r.t. the sup norm
topology which is much stronger than the Skorohod topology.

We emphasize that our condition (1.11) is inspired by Bryc and Dembo [3,
Theorem 2.3].

1.4. THE UNBOUNDED DRIFT CASE

In the previous three results we have imposed the boundedness ofb(t, ω), which
allows us to reduce very easily the large and moderate deviations ofQn(X) to those
ofQn(X−Y ) (no drift case). It is very natural to ask whether they continue to hold
under theLipchitzian condition or more generallylinear growthcondition of the
drift b(t, x), rather than the boundedness. This is the object of the following.

THEOREM 1.4.Given (Xt) by (0.5) withX0 bounded. Assume that the driftb
satisfies the following uniform linear growth condition:

|b(s, x) − b(t, y)|6C [1+ |x − y| + η(|s − t|)(|x| + |y|)] ,
∀s, t ∈ [0,1], x, y ∈ R, (1.15)

where η : [0,+∞) → [0,+∞) is a continuous non-decreasing function with
η(0) = 0 andC > 0 is a constant.

(a) Assumeσ· ∈ L∞([0,1],dt). ThenQ̃n· (X) defined by (0.6) satisfies the LDPs
in Theorem 1.1 and Theorem 1.2.

(b) Assume (1.10). The MDP in Theorem 1.3. continue to hold forQ̃n· (X) (instead
ofQn(X)).

Remarks 1.8.The uniformly linear growth condition (1.15) is satisfied for example
under

LDP and MDP for quadratic variational processes 9



202 HACÈNE DJELLOUT ET AL.

(1) the usual Lipchitzian condition; or
(2) b(t, x) = g(x) whereg(x) satisfies:|g(x)− g(y)|6C (1+ |x − y|); or
(3) b(t, x) = f (t)g(x) with f continuous on [0,1] andg satisfies (2) above.

Remarks 1.9.As the reader can imagine naturally, the key is to show that the
difference betweenQn(X−Y ) andQ̃n(X) is negligible in the senses of both large
deviations and moderate deviations. This will be realized by means of three power-
ful tools: Gronwall’s inequality, L´evy’s maximal inequality and an isoperimetric
inequality for gaussian processes.

1.5. EXACT DEVIATION INEQUALITIES

The LDP in Theorem 1.2. holds only w.r.t. the weak convergence topology and then
it does not give precise estimation about deviation domains such as{
γ : supt∈[0,1] |γ (t)− [X]t |> r

}
, which are, however, of particularly practical in-

terest in statistics. The following proposition fills this gap.

PROPOSITION 1.5.Given(Xt) by (0.1), letY· :=
∫ ·

0 b(t, ω)dt . We have for every
n>1 andr > 0,

P

(
sup
t∈[0,1]

[Qn
t (X − Y )− EQn

t (X − Y )]> r
)
6 exp

(−n3∗([X]1+ r)
)

6 exp

(
−n

2

[
r

‖σ 2‖∞ − log

(
1+ r

‖σ 2‖∞
)])

(1.16)

P
(

inf
t∈[0,1]

[Qn
t (X − Y )− EQn

t (X − Y )]6 − r
)
6 exp

(−n3∗([X]1− r)
)

6 exp

(
−n r2

4
∫ 1

0 σ
4
t dt

)
(1.17)

and in particular

P

(
sup
t∈[0,1]

|Qn
t (X − Y )− EQn

t (X − Y )|> r
)

6 exp
{−n(3∗([X]1+ r) ∧3∗([X]1− r))

}
.

Moreover∀r > 0

lim
n→∞

1

n
logP

(
sup
t∈[0,1]

±(Qn
t (X − Y )− [X]t )> r

)
= −3∗([X]1± r). (1.18)

Remarks 1.10.The upper bounds in (1.16) and (1.17) hold for arbitraryn andr (not
a limit relation, unlike in the previous results), hence they are much more practical

10 LDP and MDP for quadratic variational processes
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(in statistics) and stronger than those given by the LDP in Theorem 1.2 for this
special type of deviation domains. Moreover (1.18) means that the exponents in
(1.16) and (1.17) are exact for greatn.

2. Proof of Theorem 1.1.

For the convenience of the reader, we recall the following ([5, Th. 4.2.13, p114]):

APPROXIMATION LEMMA: Let (Y n,Xn, n ∈ N) be a family of random vari-
ables valued in a Polish space S with metricd(·, ·), defined on a probability space
(�,F,P). Assume

(i) P(Y n ∈ ·) satisfies asn → +∞, the LDP with speedλ(n)(→ +∞) and the
good rate functionI (x);
(ii) For everyδ > 0,

lim sup
n→+∞

1

λ(n)
logP

(
d(Y n,Xn) > δ

) = −∞. (2.1)

ThenP(Xn ∈ ·), asn → +∞, satisfies the LDP onS with speedλ(n) and rate
functionI (x).

LEMMA 2.1. If a real r.v. ξ is of lawN(0,1),

P(λ) := logE exp(λξ2) =
{ −1

2 log(1− 2λ) if λ < 1
2

+∞, otherwise.
(2.2)

Proof.Elementary.

LEMMA 2.2. Let Y· =
∫ ·

0 b(s, ω)ds and defineQn
t (X − Y ) as in (0.4). For every

λ ∈ R,

3n(λ) := 1

n
logE exp

(
λnQn

1(X − Y )
)

6 3(λ) :=
∫ 1

0
P(λσ 2

t )dt

=


∫ 1

0
−1

2
log

(
1− 2λσ 2

t

)
dt, if λ6 1

2‖σ 2‖∞
+∞, otherwise

(2.3)

and

lim
n→∞3n(λ) = 3(λ). (2.4)

Proof. As P(λσ 2
t )> − |λ|σ 2

t , the integral
∫ 1

0 P(λσ
2
t )dt is well defined with

value in(−∞,+∞]. The last equality in (2.3) is obvious, because forλ > λ0 :=

LDP and MDP for quadratic variational processes 11



204 HACÈNE DJELLOUT ET AL.(
2‖σ 2‖∞

)−1
,
(
t : P(λσ 2

t ) = +∞
)

has positive Lebesgue measure. We prove now
the first inequality in (2.3).

Since

Qn
1(X − Y ) =

n∑
k=1

(∫ tnk

tnk−1

σs dBs

)2

=
n∑
k=1

ξ2
k ak (2.5a)

where

ξk :=
∫ tnk
tnk−1

σs dBs
√
ak

, ak :=
∫ tnk

tn
k−1

σ 2
s ds. (2.5b)

Obviously(ξk)k=1,... ,n are independent and of lawN(0,1). We get by Lemma 2.1

3n(λ) = 1

n

n∑
k=1

P(λnak) =
∫ 1

0
P(λfn(t))dt, (2.6a)

where

fn(t) :=
n∑
k=1

1(tnk−1,t
n
k ](t)

∫ tnk
tn
k−1
σ 2
s ds

tnk − tnk−1

= Edt (σ 2
· |Bτn)(t), (2.6b)

is a dt-martingale w.r.t. the partially directed filtration(Bτn := σ ((tnk−1, t
n
k ];

k = 1, . . . , n))n.
By the convexity ofP(λ) and Jensen’s inequality, we have∫ 1

0
P(λfn(t))dt 6

∫ 1

0
Edt

(
P(λσ 2

· )|Bτn
)
(t)dt =

∫ 1

0
P(λσ 2

t )dt,

which implies (2.3).
On the other hand, by the partially ordered martingale convergence theorem

(or the classical Lebesgue derivation theorem),fn(t) −→ σ 2
t , dt − a.e. on [0,1].

Consequently by the continuity ofP : R→ (−∞,+∞],

P(λfn(t)) −→ P(λσ 2
t ), dt − a.e. on [0,1].

AsP(λfn(t))>−|λ|·σ 2
t ∈ L1([0,1],dt), we can apply Fatou’s lemma to conclude

lim inf
n→∞ 3n(λ) = lim inf

n→∞

∫ 1

0
P(λfn(t))dt >

∫ 1

0
lim
n→∞P(λfn(t))dt =

∫ 1

0
P(λσ 2

t )dt,

the desired result (2.4).
Note that the lemma above does not require the boundedness ofσ·.

12 LDP and MDP for quadratic variational processes
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Proof of Theorem 1.1.

(a) It is contained in Lemma 2.2.
(b) We shall prove it by three steps.

STEP 1. (Reduction to the case whereb = 0). By the contraction principle,
P(Qn

1(X) ∈ ·) and P(Qn
1(X − Y ) ∈ ·) satisfy the same LDP if and only if

P(
√
Qn

1(X) ∈ ·) andP(
√
Qn

1(X − Y ) ∈ ·) do. Since∣∣∣√Qn
1(X)−

√
Qn

1(X − Y )
∣∣∣

6
√
Qn

1(Y ) =
√√√√ n∑

k=1

(∫ tnk

tnk−1

b(t, ω)dt

)2

6
√
n× 1

n2
· ‖b‖∞

by the approximation lemma,P(
√
Qn

1(X) ∈ ·) satisfies the same LDP as
P(
√
Qn

1(X − Y ) ∈ ·). ConsequentlyP
(
Qn

1(X) ∈ ·
)

andP
(
Qn

1(X − Y ) ∈ ·
)

satisfy
the same LDP. Hence we can assume in the following thatb = 0 and‖σ‖∞ > 0
(trivial otherwise).

STEP 2. By the part (a) and the Ellis–G¨artner theorem [6, Th. II.6.1.],
P
(
Qn

1(X) ∈ ·
)

satisfies the upper bound of large deviations (i.e. the RHS inequality
in (1.4)) with rate functionI = 3∗.

But for the lower bound, the same theorem (see e.g. [6, Lemma VII.4.2., (7.16)])
gives only

lim inf
n→∞

1

n
logP(Qn

1(X) ∈ G)> − inf
{
I (x); x ∈ G

⋂
[0, A)

}
(2.7)

for any open subsetG ⊂ R, whereA := ∫ 1
0

σ2
t

1−2λ0σ
2
t

dt (λ0 =
(
2‖σ 2‖)−1

). Hence

if A = +∞, or equivalently if3(λ) is essentially smooth (or steep in the language
of [5]), P

(
Qn

1(X) ∈ ·
)

satisfies the lower bound in (1.4).

STEP 3. We turn now to the case whereA < +∞ and where the main difficulty of
this theorem resides. Our first observation is for (1.4) it is enough to show that for
anyr ′ > r > [X]1,

lim inf
n→∞

1

n
logP

(
Qn

1(X) ∈ (r, r ′)
)
> − I (r). (2.8)

Indeed sinceI (x) is increasing on [3′(0) = [X]1,∞) and [X]1 < A, combining
(2.7) and (2.8) we get for any openG of R,

lim inf
n→∞

1

n
logP(Qn

1(X) ∈ G)

> max
{
− inf

{
I (x); x ∈ G

⋂
[0, A)

}
,

LDP and MDP for quadratic variational processes 13
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− inf
{
I (x); x ∈ G

⋂
([X]1,+∞)

}}
= − inf {I (x); x ∈ G}

the desired lower bound (1.4). We show now (2.8).
For eachε > 0 andε < ‖σ‖∞, let σ εt = σt ∧ (‖σ‖∞ − ε), andXε

t =
∫ t

0 σ
ε
t dBt

(below we add the exponentε to denote the objects associated withXε). Since[
t;σ εt = ‖σ ε‖∞ = (‖σ‖∞ − ε)

]
has positive Lebesgue measure,

Aε :=
∫ 1

0

(σ εt )
2

1− 2λε0(σ
ε
t )

2
dt = +∞, where λε0 =

(
2‖σ ε‖2∞

)−1
.

Hence by what was shown above,P(Qn
1(X

ε) ∈ ·) satifies the LDP with the rate
function given byI ε(x) = (3ε)∗(x).

Now by the decomposition (2.5a,b), for eachr >0,

P(Qn
1(X) > r) = P

(
n∑
k=1

ak(ξk)
2 > r

)

> P

(
n∑
k=1

aεk(ξ
ε
k )

2 > r

)
= P(Qn

1(X
ε) > r) (2.9)

(because 06 aεk 6 ak and (ξ εk ) as well as(ξk) are i.i.d. of N(0,1)). Therefore, for
anyε > 0,

l(r) := lim inf
n→∞

1

n
logP(Qn

1(X) > r)> − inf
x>r

I ε(x). (2.10)

Now as3ε is essentially smooth (noted previously),I ε = (3ε)∗ is strictly convex
on(0, Aε) = (0,+∞), thenI is strictly increasing and continuous forr > 3′(0) =
[X]1> [Xε]1 = (3ε)′(0). Thus

inf
x>r

I ε(x) = I ε(r) = sup
λ> 0

(λr −3ε(λ)).

But since3ε(λ) ↑ 3(λ) for all λ>0 and3ε(λ), ε > 0 are inf-compact forλ>0,
hence we can exchange the order below (an exercise in analysis)

lim
ε↓0
I ε(r) = inf

ε>0
sup
λ> 0

(λr −3ε(λ)) = sup
λ> 0

inf
ε>0
(λr −3ε(λ)).

This last quantity is exactly

sup
λ> 0

(λr −3(λ)) = 3∗(r) = I (r).

14 LDP and MDP for quadratic variational processes
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So we get from (2.10) thatl(r)> − I (r), ∀r > [X]1. Combining it with the
already shown upper bound, we get∀r > [X]1,

l(r) = lim
n→∞

1

n
logP(Qn

1(X) > r)

= lim
n→∞

1

n
logP(Qn

1(X)> r) = −I (r). (2.11)

Now for anyr ′ > r > [X]1, it is easy to see

l(r) = lim
n→∞

1

n
log

[
P(Qn

1(X)> r ′)+ P(Qn
1(X) ∈ (r, r ′))

]
6 max

{
l(r ′) ; lim inf

n→∞
1

n
logP

(
Qn

1(X) ∈ (r, r ′)
)}
. (2.12)

As l(r ′) < l(r) by (2.11) and the strict increasement ofI on [3′(0),+∞), we
obtain (2.8).

We apply now (2.9) to establish

COROLLARY 2.3.If σ /∈ L∞([0,1], dt), then for anyr > 0,

lim
n→∞

1

n
logP

(
Qn

1(X) > r
) = 0. (2.13)

In other words, thatσ ∈ L∞([0,1], dt) is a necessary condition to the LDP in
Theorem 1.1, as claimed in Remarks (1.2).

Proof.Notice that the lim sup asn→∞ in (2.13) is6 0 always. To control the
lim inf, let σ εt = σt ∧ (1/ε) and defineXε, aεk , ξ

ε
k ,3

ε corresponding to this newσ ε.
The inequality (2.9) still holds and we get hence

lim inf
n→∞

1

n
logP(Qn

1(X) > r)> lim inf
n→∞

1

n
logP(Qn

1(X
ε) > r)> − inf

x>r
(3ε)∗(x).

For r < [X]1, (2.13) is trivial by (0.7). Now fixr > [X]1. Hencer > [Xε]1 =
(3ε)′(0) and

inf
x>r
(3ε)∗(x) = (3ε)∗(r) = sup

λ> 0
(λr −3ε(λ)).

As in the proof of Theorem 1.1, we have

inf
ε>0

sup
λ> 0

(λr −3ε(λ)) = sup
λ> 0

inf
ε>0
(λr −3ε(λ)) = sup

λ> 0
(λr −3(λ)) = 0,

because3(λ) = +∞,∀λ > 0 (recalling ‖σ 2‖∞ = ∞ in (2.3) now). (2.13)
follows.

LDP and MDP for quadratic variational processes 15
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3. Proof of Theorem 1.2

Proof of Part (a).We separate its proof into three steps.

STEP 1. At first for any partitionP = {0 = s0 < s1 < · · · < sm = 1}, we shall
prove thatP

(
Qn
P(X) ∈ ·

)
, withQn

P(X) := (Qn
sk
(X))06 k6m, satisfies the LDP on

RP with speedn and with the rate function given by

IP(x0, . . . , xm) = sup
(λ1,... ,λm)∈Rm

{
m∑
k=1

(xk − xk−1)λk −
m∑
k=1

∫ sk

sk−1

P(λkσ
2
t )dt

}
(3.1)

if x0 = 0 andIP(x0, . . . , xm) = +∞ if x0 6= 0.
As in Step 1 of the proof of Theorem 1.1, we can and will assume thatb = 0.
In the above case of LDP whereb = 0, the key observation is that

1Pk Q
n(X) := Qn

sk
(X)−Qn

sk−1
(X), k = 1, . . . , m

are independent. And by Theorem 1.1, for eachk = 1, . . . , m fixed,P(1Pk Q
n(X)

∈ ·) satisfies the LDP with speedn and the rate function

IPk (yk) = sup
λ∈R

{
ykλ−

∫ sk

sk−1

P(λσ 2
t )dt

}
. (3.2)

Consequently by [10, Corollary 2.9],P
(
1PQn(X) := (1Pk Qn(X))06 k6m ∈ ·

)
sat-

isfies a LDP with the same speed and with the rate function given by

IP(y1, . . . , ym) =
m∑
k=1

IPk (yk) = sup
(λ1,... ,λm)∈Rm

{
m∑
k=1

ykλk −
m∑
k=1

∫ sk

sk−1

P(λkσ
2
t )dt

}
.

Finally the desired LDP in this step follows by the contraction principle.

STEP 2. By [13, Th.I.5.2], the finite dimensional LDP in Step 1 implies that
P
(
Qn· (X) ∈ ·

)
satisfies the LDP on the topological product spaceR[0,1] with the

speedn and with the rate function given by

I∞(γ ) = sup
P
IP(γ (P)), (3.3)

where the supremum are taken over all finite partitionsP = {0 = s0 < s1 < · · ·
< sm = 1} of [0,1]. And for each suchP,

IP(γ (P)) =
m∑
k=1

sup
λk∈R

{
λk(γ (sk)− γ (sk−1))−

∫ sk

sk−1

P(λkσ
2
t )dt

}
. (3.4)

by (3.1). Remark that

IP(γ (P)) = +∞, if γ (sk)6 γ (sk−1).

16 LDP and MDP for quadratic variational processes
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Since the spaceI0[0,1] of the non-decreasing functionsγ on [0,1] withγ (0) =
0 equipped with the pointwise convergence topology is a closed subset ofR[0,1] ,
henceP

(
Qn· (X) ∈ ·

)
satisfies the LDP onI0[0,1] with the rate function given by

(3.3).

STEP 3. For each non-decreasing functionγ ∈ I0[0,1], let γ̃ (·) = γ (·+) be its
right continuous version. We claim that the mappingγ −→ γ̃ from I0[0,1] to
D+[0,1] equipped with the weak convergence topology is continuous. To this end,
it is enough to establish that for allγ0 ∈ I0[0,1] fixed,∀ε > 0, ∀P = {0 = s0 <
s1 < · · · < sm = 1} wheresi, i = 1, . . . , m− 1 are continuous points ofγ0, there
exists a neighborhoodN(γ0) deγ0 dansI0[0,1], such that

∀γ ∈ N(γ0), ∀i = 1, . . . , m : |γ̃ (si)− γ̃0(si)| < ε. (3.5)

(It is left to the reader to see why the points0 = 0 is excluded in (3.5).) In fact, for
i = 1, . . . , m − 1, sinceγ0 is continuous atsi, we can choosesi−1 < ai < si <

bi < si+1 so that

γ0(bi)− γ0(ai) < ε/2 i = 1, . . . , m− 1.

Observe that̃γ (1) = γ (1) for all γ ∈ I0[0,1] and for eachi = 1, . . . , m− 1

γ̃ (si)− γ̃0(si)6 γ (bi)− γ0(ai)6 γ (bi)− γ0(bi)+ ε
2
;

γ̃ (si)− γ̃0(si)> γ (ai)− γ0(bi)> γ (ai)− γ0(ai)− ε
2
.

We can thus give an expression ofN(γ0) which satisfies (3.5)

N(γ0) = {γ ; |γ (ai)− γ0(ai)| < ε/2, |γ (bi)−
−γ0(bi)| < ε/2, |γ (1)− γ0(1)| < ε}.

The continuity is so shown.
Finally by the contraction principle,P

(
Qn· (X) ∈ ·

)
satisfies the LDP onD+[0,1]

with the speedn and with the rate function given by

Ĩ∞(γ ) = inf
{
I∞(f );f ∈ I0[0,1] andf̃ = γ

}
, (3.6)

which is inf-compact and convex. That is the claim of Theorem 1.2.(a).

Proof of Part (b).This part is rather delicate. LetJ (γ ) be the RHS of (1.7). We
should establishJ (γ ) = Ĩ∞(γ ) defined by (3.6).

For any finite partitionP = {0= s0 < s1 < · · · < sm = 1} of [0,1], we write

BP := σ ([0, s1], (sk−1, sk], 26 k6m) , 1P := max
16 k6m

|sk − sk−1|.

LDP and MDP for quadratic variational processes 17
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Proof of Ĩ∞(γ )6 J (γ ). It is enough to show that for anyγ ∈ D+[0,1],

lim sup
l→∞

IP
l

(γ 0(P l ))6 J (γ ), (3.7)

for any increasing sequence of finite partitions(P l) such that1P l → 0, where
γ 0(0) = 0, γ 0(t) = γ (t),∀t ∈ (0,1].

To prove (3.7), we can assumeJ (γ ) < +∞ (otherwise it is trivial). Since
P ∗(0) = +∞, the finiteness ofJ (γ ) impliesd[X] � dγ by the expression (1.7).

From (3.4) and the following consequence of Jensen’s inequality

1

sk − sk−1

∫ sk

sk−1

P(λkσ
2
t )dt >P (λkck) , where ck :=

∫ sk
sk−1

σ 2
t dt

sk − sk−1

we get

IP(γ 0(P)) =
m∑
k=1

sup
λk∈R

{
λk(γ

0(sk)− γ 0(sk−1))−
∫ sk

sk−1

P(λkσ
2
t )dt

}

6
m∑
k=1

sup
λk∈R

{
λk
γ 0(sk)− γ 0(sk−1)

sk − sk−1
− P(λkck)

}
(sk − sk−1)

=
m∑
k=1

(sk − sk−1)1[ck>0]P
∗
(
γ 0(sk)− γ 0(sk−1)

(sk − sk−1)ck

)
. (3.8)

Now introduce

g(x) := xP ∗(1/x), for x > 0 and g(0) := lim
x→0+

g(x) (3.9)

whereP ∗(λ) is given by (1.8). Obviouslyg(0) = 1
2 andg is convex.

The key remark is (1.7) can be rewritten as

J (γ ) =
∫ 1

0
g

(
d[X]

dγ

)
1

σ 2
t

dγ if d[X] � dγ and +∞ else (3.10)

and (3.8) can be rewritten similarly as

IP(γ 0(P))6
∫

[0,1]
g

(
d[X]P
dγP

)
· dtP

d[X]P
dγ. (3.11)

(in fact the RHS above coincides with the last line of (3.8)) whered[X]P
dγP

, dtP
d[X]P

are Radon–Nykodym densities restricted toBP . By (3.11) and the following con-
sequence of Jensen’s inequality

g

(
d[X]P
dγP

)
6Edγ

(
g

(
d[X]

dγ

)
| BP

)
,

18 LDP and MDP for quadratic variational processes
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we get

lim sup
P

IP(γ 0(P))6 lim sup
P

∫ 1

0
g

(
d[X]

dγ

)(
d[X]P

dtP

)−1

dγ 6 J (γ ),

where the last inequality follows from the dominated convergence and the fact that

d[X]P
dtP

> inf
t∈[0,1]

σ 2
t > 0

(consequence of our assumption aboutσ 2
t ).

Proof of J (γ )6 Ĩ∞(γ ). To this purpose it is enough to show that for any in-
creasing functionγ ∈ I0[0,1], there is an increasing sequence(P l) of partitions
of [0,1] such that

lim inf
l→∞

IP
l

(γ (P l))> J (γ̃ ) (3.12)

(because its left hand side (in short : LHS) is smaller thanI∞(γ )). Actually we
choose an (arbitrary) increasing sequence(P l) of finite partitions of [0,1] com-
posed only ofcontinuous pointsof γ except 0 and 1 such that1P l → 0.

ForP = P l = {0= s0 < s1 < · · · < sm = 1}, using the fact that

sup
λ∈R

{
λ (γ (sk)− γ (sk−1))−

∫ sk

sk−1

P(λσ 2
t )dt

}
= sup
±λ> 0

{
λ (γ (sk)− γ (sk−1))−

∫ sk

sk−1

P(λσ 2
t )dt

}
according to

± (γ (sk)− γ (sk−1)) > ±
(∫ sk

sk−1

P(λσ 2
t )dt

)′
λ=0

= ±
∫ sk

sk−1

σ 2
t dt,

we have from the first line of (3.8)

IP (γ (P)) >
m∑
k=1

sup
λ> 0

{
λ (γ (sk)− γ (sk−1))−

∫ sk

sk−1

P(λ(σ̄Pk )
2) dt

}
1[

γ (sk)−γ (sk−1)∫ sk
sk−1

σ2
t dt

>1

] +

+
m∑
k=1

sup
λ6 0

{
λ (γ (sk)− γ (sk−1))−

∫ sk

sk−1

P(λ(σPk )
2) dt

}
1[

γ (sk )−γ (sk−1)∫ sk
sk−1

σ2
t dt

<1

]

=
m∑
k=1

(sk − sk−1)P
∗
(
γ (sk)− γ (sk−1)

(σ̄Pk )2(sk − sk−1)

)
1[ [X]sk−[X]sk−1

γ (sk)−γ (sk−1)
<1

] +

+
m∑
k=1

(sk − sk−1)P
∗
(
γ (sk)− γ (sk−1)

(σPk )2(sk − sk−1)

)
1[ [X]sk−[X]sk−1

γ (sk)−γ (sk−1)
>1

]

:=
∫ 1

0
gP (t) dγ̃ (t) (3.13a)

LDP and MDP for quadratic variational processes 19
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where

σ̄Pk := sup
s∈(sk−1,sk)

σs, σPk := inf
s∈(sk−1,sk)

σs

and

gP(t) =
m∑
k=1

1(sk−1,sk](t)
1

(σ̄Pk )2
g

((
σ̄Pk
)2
(sk − sk−1)

γ (sk)− γ (sk−1)

)
1[ [X]sk−[X]sk−1

γ (sk)−γ (sk−1)
<1

] +

+
m∑
k=1

1(sk−1,sk](t)
1

(σPk )2
g

(
(σPk )

2(sk − sk−1)

γ (sk)− γ (sk−1)

)
1[ [X]sk−[X]sk−1

γ (sk)−γ (sk−1)
>1

],
(3.13b)

whereg(x) is given by (3.9).
Now if d[X] � dγ̃ , by the continuity oft → σ 2

t and the martingale conver-
gence, we have

lim inf
l→∞ gP

l

(t) > 1

σ 2
t

g

(
d[X]

dγ̃

)[
1[ d[X]

dγ̃ <1
] + 1[ d[X]

dγ̃ >1
]]

= 1

σ 2
t

g

(
d[X]

dγ̃

)
, dγ̃ − a.e.

(sinceg(1) = 0). Consequently Fatou’s lemma implies

lim inf
l→∞

IP
l

(γ (P l))>
∫ 1

0

1

σ 2
t

g

(
d[X]

dγ̃

)
dγ̃

which is exactlyJ (γ̃ ) by (3.10).
It remains to treat the case where d[X] is not absolutely continuous w.r.t. dγ̃ .

By (3.10), we have to show that liml→∞ IP
l

(γ (P l)) = +∞. By absurd, assume in
contrary that

lim
l→∞

IP
l

(γ (P l)) = sup
l> 1

IP
l

(γ (P l)) < +∞.

ForP = P l, sinceg(x) is increasing forx> 1, we get by (3.13a,b),

IP(γ (P))> 1

‖σ 2‖∞
∫ 1

0
1[ d[X]P

dγ̃P
>1
]g
(

d[X]P
dγ̃P

)
dγ̃ .

Because limx→+∞ g(x)/x = limx→+∞ P ∗(1/x) = +∞, this implies that the d̃γ -
martingale(

d[X]P l
dγ̃P l

)
l> 1

is dγ̃ -uniformly integrable. Consequently d[X] � dγ̃ , which is in contradiction
with our assumption.

The proof of Theorem 1.2. is thus completed.
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4. Proof of Theorem 1.3

The reader can read at first Lemma A.1 in Appendix before the proof below.

Proof.We treat here only the caseb = 0, and one can prove easily thatQn· (X) and
Qn· (X − Y ) satisfy the same MDP by following the proof of Theorem 1.4. in the
next section. We separate its proof into five steps. The first three steps consist to
show the finite dimensional LDP in condition (i) of Lemma A.1 in the appendix,
the fourth step consists to prove condition (ii) of Lemma A.1, and in the last step
we identify the rate function.

(1) We check at first why (1.11) implies (1.10). In fact, by H¨older’s inequality,

max
16 k6 n

∫ k/n

(k−1)/n
σ 2
t dt 6 n

1
p
−1 max

16 k6 n

(∫ k/n

(k−1)/n
σ

2p
t dt

)1/p

.

And by the condition thatσ 2 ∈ Lp in (1.11), max16 k6 n
∫ k/n
(k−1)/n σ

2p
t dt −→ 0.

Consequently (1.10) follows by the second condition in (1.11).
(2) We shall establish that under the condition (1.10), for eachλ ∈ R,

lim
n→∞

1

b2(n)
logE exp

(
λb2(n) ·

√
n

b(n)

(
Qn

1(X)− [X]1
)) = λ2

∫ 1

0
σ 4
t dt. (4.1)

Since the Legendre transformation of the RHS of (4.1) is exactlyIm(x) given in
(1.14), by Ellis–Gärtner theorem, (4.1) implies the last LDP in Theorem 1.3.

Taking the calculations in Lemma 2.2 (and the notations there), we have

Gn(λ) := 1

b2(n)
logE exp

(
λb2(n) ·

√
n

b(n)

(
Qn

1(X)− [X]1
))

= 1

b2(n)

n∑
k=1

(
P
(
λb(n)

√
nak

)− λb(n)√n[X]1
)
, (4.2)

where

ak =
∫ tnk

tn
k−1

σ 2
t dt, k = 1, . . . , n.

By our condition (1.10),

ε(n) := b(n)√n max
16 k6 n

ak −→ 0.

By Taylor formula and noting thatP(0) = 0, P ′(0), P ′′(0) = 2, we obtain once
if |λε(n)| < 1

4,

P(λb(n)
√
nak) = λb(n)√nak + (1+ η(k, n)) · λ2b2(n)na2

k , (4.3a)

whereη(k, n) satisfies

|η(k, n)|6C|λ|ε(n), (4.3b)

whereC = 1
2 sup|λ|6 1/4 |P ′′′(λ)|.
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Substituting now (4.3a) into (4.2) and noting that
∑

k ak = [X]1, we get

Gn(λ) = 1

b2(n)

[
n∑
k=1

(1+ η(k, n))λ2b2(n)na2
k

]

= λ2
n∑
k=1

(1+ η(k, n))
∫ tktnk−1

σ 2
t dt

tnk − tnk−1

2

(tnk − tnk−1). (4.4)

Now by (4.3b), to prove (4.1), it is enough to show

n∑
k=1

∫ tnktnk−1
σ 2
t dt

tnk − tnk−1

2

(tnk − tnk−1) −→
∫ 1

0
σ 4
t dt. (4.5)

It follows easily from theL2-martingale convergence (the detail is omitted).
(3) By the independence of increments oft → Qn

t (X), we can apply [10,
Corollary 2.9] as in the proof of Theorem 1.2.(a) to get the LDP of

P
( √

n

b(n)

[
Qn
P(X)− EQn

P(X)
] ∈ ·)

onRP with speedb2(n) and with the rate function given by

IPm (γ (P)) =
m∑
k=1

(γ (sk)− γ (sk−1))
2

4
∫ sk
sk−1

σ 4
t dt

, if γ (0) = 0 and +∞ else (4.6)

whereP = {0= s0 < s1 < · · · < sm} is an arbitrary partition of [0,1].
(4) In this step, we shall establish for anyδ > 0,

sup
06 s6 1

lim sup
n→∞

1

b2(n)
×

× logP

(
sup

s6 t 6 s+ε

√
n

b(n)
|1t

s

(
Qn
· (X)− EQn

· (X)
) | > δ) −→ −∞ (4.7)

as ε → 0+, where1t
sY· := Yt − Ys andQn

t (X) := Qn
1(X) for t > 1. This

estimation implies condition (ii) in Lemma A.1, then the LDP ofP
( √

n

b(n)
(Qn· (X)−

EQn· (X)) ∈ ·
)

onD0([0,1]) w.r.t. the sup norm topology, with the speedb2(n) and

with the rate function given by

I∞m (γ ) = sup
P
IPm (γ (P)), ∀γ ∈ D0([0,1]), (4.8)

where the supremum is taken over all finite partitionsP of [0,1].
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Since

√
n sup
t∈[0,1]

|EQn
t (X)− [X]t |6√n max

k6 n

∫ k/n

(k−1)/n
σ 2
s ds

6 max
k6 n

√∫ k/n

(k−1)/n
σ 4
s ds → 0,

(by Cauchy–Schwarz), the LDP above still holds withEQn
t (X) substituted by [X]·.

We turn now to show (4.7). Remark that(Qn
t (X) − EQn

t (X)) is a (F[nt ]/n)-
martingale. Then

exp
(
λ
[
Qn
t (X)− EQn

t (X)
])

is a sub-martingale. Writing1t
sM = Mt −Ms, by the maximal inequality, we have

for anyr, λ > 0,

P

(
sup

s6 t 6 s+ε
[1t

s

(
Qn
· (X)− EQn

· (X)
)
] > r

)

= P

(
exp

(
λ sup
s6 t 6 s+ε

1t
s [Q

n
· (X)− EQn

· (X)]

)
> eλr

)
6 e−λrE exp

(
λ1s+ε

s

[
Qn
· (X)− EQn

· (X)
])

(4.9a)

and similarly

P
(

inf
s6 t 6 s+ε

[1t
s

(
Qn
· (X)− EQn

· (X)
)
] < −r

)
6 e−λrE exp

(−λ1s+ε
s

[
Qn
· (X)− EQn

· (X)
])
. (4.9b)

By Step 2,

lim
n→∞

1

b2(n)
logE exp

(
cb2(n)

√
n

b(n)
1s+ε
s

[
Qn
· (X)− EQn

· (X)
])

= c2
∫ s+ε

s

σ 4
t dt, ∀c ∈ R

Therefore takingr = δ b(n)√
n
, λ = b(n)√nc ( c > 0 ) in (4.9a), we get

lim sup
n→∞

1

b2(n)
logP

( √
n

b(n)
sup

s6 t6 s+ε
1t
s [Q

n
· (X)− EQn

· (X)] > δ

)

6 inf
c>0

{
−cδ + c2

∫ s+ε

s

σ 4
t dt

}
= − δ2

4
∫ s+ε
s

σ 4
t dt
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and similarly by (4.9b),

lim sup
n→∞

1

b2(n)
logP

( √
n

b(n)
inf

s6 t 6 s+ε
1t
s [Q

n
· (X)− EQn

· (X)] < −δ
)

6 − δ2

4
∫ s+ε
s

σ 4
t dt

.

(we have used the convention thatσt = 0 for t > 1). By the integrability ofσ 4, we
have

lim
ε→0

sup
s∈[0,1]

∫ s+ε

s

σ 4
t dt = 0.

Hence (4.7) follows from the above estimations.
(5) It remains to show thatI∞m (γ ) defined in (4.8) coincides withJm(γ ) given

by (1.13). To this end, it is enough to show that

lim
l→+∞ I

P l
m (γ (P l)) = Jm(γ ), (4.10)

for any increasing sequence(P l )l> 1 of partitions of [0,1] such that1P l → 0.
Letµ(t) := ∫ t0 σ 4

s ds. We can rewrite (4.6) as

4IP (γ (P)) =
m∑
k=1

(
γ (sk)− γ (sk−1)

µ(sk)− µ(sk−1)

)2

(µ(sk)− µ(sk−1))

= Edµ

(
dγP
dµP

)2

. (4.11)

If Jm(γ ) < +∞, then dγ � dµ andJm(γ ) = 1
4Edµ

(
dγ
dµ

)2
. Hence

Ml := dγP l
dµP l

= Edµ

(
dγ

dµ
|BP l

)
.

Then (4.10) follows from theL2-martingale convergence.
Inversely if the LHS of (4.10) is finite, by the same Doob’s theorem,

Ml −→ M∞, in L2([0,1], dµ)

then inL1(dµ) too. This implies that dγ � dµ and dγ = M∞ dµ. Therefore
(4.10) follows.
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5. Proof of Theorem 1.4

We shall prove thatQ̃n(X) andQn(X − Y ) satisfy the same LDPs and MDP, by
means of the approximation lemma. By the elementary inequality|(a + b)2 −
a2|6 εa2+ (1+ 1/ε)b2 whereε > 0, a, b ∈ R, we get

sup
t∈[0,1]

|Q̃n
t (X)−Qn

t (X − Y )|6 ε(n)Qn
1(X − Y )+

(
1+ 1

ε(n)

)
Zn, (5.1)

whereε(n) > 0 will be chosen later, and

Zn :=
n∑
k=1

[∫ tnk

tnk−1

b(t,Xt )dt − b(tnk−1, Xtnk−1
)(tnk − tnk−1)

]2

.

We have to control the RHS of (5.1). AsQn
1(X − Y ) have been well estimated by

Theorem 1.1 and 1.3, it remains to controlZn. The main idea is to reduce it to the
estimations ofX0· =

∫ ·
0 σs dBs , by means of Gronwall’s inequality.

To this last end, we have at first for allt ∈ [0,1]

|Xt | 6 |X0| + C
∫ t

0
(1+ [1+ η(s)]|Xs |) ds + sup

s6 t
|X0

s |

6
(
‖X0‖∞ + C + sup

s6 1
|X0

s |
)
+ C1

∫ t

0
|Xs|ds,

whereC1 = C(1 + η(1)) (below we will useCk to denote positive constants
depending only ofC, ‖X0‖∞, η(1)). It follows by Gronwall’s inequality

|Xt |6
(
C + ‖X0‖∞ + sup

s6 1
|X0

s |
)
eC1t , ∀t ∈ [0,1]. (5.2)

Next by our condition (1.15), for anys ∈ [0,1], u > 0

sup
s6 t6 s+u

|Xt −Xs | 6 sup
s6 t6 s+u

|X0
t −X0

s | + u sup
s6 t6 s+u

|b(t,Xt )|

6 sup
s6 t6 s+u

|X0
t −X0

s | + uC2

(
sup

06 t 6 1
|Xt | + 1

)
. (5.3)
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Consequently by (1.15), Cauchy–Schwarz and (5.2), (5.3), we get[∫ tnk

tnk−1

b(t,Xt )dt − b(tnk−1, Xtnk−1
)(tnk − tnk−1)

]2

6
(

1

n
C

(
1+ sup

tn
k−16 t 6 tnk

|Xt −Xtnk−1
| + 2η

(
1

n

)
sup

06 t6 1
|Xt |

))2

6 C3

n2

[
1+ sup

tnk−16 t 6 tnk
|X0

t −X0
tnk−1
|2+ 1

n2
sup

06 t6 1
|X0

t |2+

+ 1

n2
+ η

(
1

n

)2

sup
06 t 6 1

|X0
t |2
]
. (5.4)

Having this estimation we can now prove
(a): Chooseε(n) > 0 so that

ε(n)→ 0 but
η2(1/n)+ (1/n)2

ε(n)
−→ 0. (5.5)

Henceε(n)Qn
1(X − Y ) is negligible in the sense of large deviation, by Theorem

1.1. It remains to show that the second term in (5.1) is negligible in the sense of
large deviation, that is, for anyδ > 0,

lim sup
n→∞

1

n
logP

(
1

ε(n)
Zn > δ

)
= −∞.

By (5.4) and the definition ofZn, the LHS above is majorized by the maximum of

lim sup
n→∞

1

n
logP

(
1

ε(n)n
max
k6 n

sup
tnk−16 t 6 tnk

|X0
t − X0

tnk−1
|2 > C4δ

)
(5.6a)

and

lim sup
n→∞

1

n
logP

(
1

ε(n)n

(
1

n2
+ η2

(
1

n

))
sup

06 t6 1
|X0

t |2 > C5δ

)
. (5.6b)

Since
∫ t

0 σs dBs = B ′∫ t
0 σ

2
s ds

whereB ′ is another Brownian motion, and by L´evy’s

inequality

P

(
sup

06 t6 T
|B ′t | > r

)
6 4 exp

(
− r

2

2T

)
, (5.7)

the limit (5.6a) is smaller than

lim sup
n→∞

1

n
log

[
n× P

(
1

ε(n)n
sup

06 t 6 ‖σ 2‖∞/n
|B ′t |2 > C4δ

)]
= −∞.
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The limit (5.6b) is also−∞ by (5.7) and our choice (5.5) ofε(n).
(b): This time instead of (5.5), we chooseε(n) > 0 so that

ε(n)
√
n

b(n)
−→ 0 but ε(n)

√
n→+∞, η2

(
1
n

) · b(n)
ε(n)
√
n
−→ 0. (5.8)

(e.g.ε(n) = [η(1/n) + 1/c(n)]b(n)/
√
n, wherec(n) satisfiesb(n) � c(n) →

+∞).
By the first condition in (5.8),

lim sup
n→∞

1

b2(n)
logP

(
ε(n)

√
n

b(n)
Qn

1(X − Y ) > δ
)

6 lim sup
n→∞

1

b2(n)
logP

(
ε(n)

√
n

b(n)

(
Qn

1(X − Y )− [X]1
)
>
δ

2

)
= −∞

by Theorem 1.3. By the approximation lemma and (5.1), it remains to show

lim sup
n→∞

1

b2(n)
logP

(
1

ε(n)

√
n

b(n)
Zn > δ

)
= −∞, ∀δ > 0. (5.9)

By (5.4), the LHS above is majorized by the maximum of the following three limits

lim sup
n→∞

1

b2(n)
logP

( √
n

ε(n)b(n)
· 1

n2

n∑
k=1

sup
tnk−16 t 6 tnk

|X0
t −X0

tnk−1
|2 > C5δ

)
(5.10a)

6 lim sup
n→∞

1

b2(n)
logP

(
1

ε(n)b(n)
√
n

max
16 k6 n

sup
tnk−16 t 6 tnk

|X0
t −X0

tnk−1
|2 > C5δ

)

and

lim sup
n→∞

1

b2(n)
logP

(
1

ε(n)b(n)n5/2
sup

06 t 6 1
|X0

t |2 > C6δ

)
(5.10b)

and

lim sup
n→∞

1

b2(n)
logP

(
η(1/n)2

ε(n)b(n)
√
n

sup
06 t 6 1

|X0
t |2 > C7δ

)
. (5.10c)

By Lévy’s inequality (5.7) and our choice (5.8) ofε(n), the limits (5.10b) and
(5.10c) are both−∞.

The estimation of (5.10a) is a little more difficult and we can not estimate it
roughly as in the control of (5.6a) above (see the remark below). The key is the
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following isoperimetric inequality [8, p17, (1.24)] (with a small abuse : there is no
absolute value in his formula, but the same proof works)

P

(
max
k6 n

sup
tn
k−16 t 6 tnk

|X0
t −X0

tnk−1
| > m(n)+ r

)
6 exp

(
− r2

26(n)

)
, (5.11)

wherem(n) = E maxk6 n suptnk−16 t6 tnk |X0
t − X0

tnk−1
| and

6(n) = max
k6 n

sup
tnk−16 t 6 tnk

E|X0
t − X0

tn
k−1
|2. (5.12)

At first by our condition (1.10) onσ·,√
nb(n)6(n) −→ 0. (5.13)

Next by Jensen’s inequality and Doob’s inequality

m(n) 6
(

E max
k6 n

sup
tnk−16 t 6 tnk

|X0
t −X0

tnk−1
|4
)1/4

6
(

n∑
k=1

E sup
tnk−16 t6 tnk

|X0
t −X0

tnk−1
|4
)1/4

6 4

3

(
n∑
k=1

E|X0
tnk
− X0

tnk−1
|4
)1/4

6 C8 · n1/4
√
6(n) −→ 0, (5.14)

whereC8 = 4‖ξ‖4/3 = 4
√

2/3 (ξ is of lawN(0,1)), and the last relation follows
from (5.13).

Consequently by (5.11), the limit (5.10a) is smaller than

lim sup
n→∞

− 1

b2(n)
· ε(n)b(n)

√
n

26(n)
C9δ = −C9δ · lim inf

n→∞
ε(n)n

2
√
nb(n)6(n)

which is−∞ by (5.13) and (5.8).
The proof is completed.

Remarks 5.1.If one estimates (5.10a) roughly as in the control of (5.6a), we would
get

P

(
max
k6 n

sup
tnk−16 t 6 tnk

|X0
t −X0

tnk−1
| > r

)

6 n · P
(

sup
06 t66(n)

|B ′t |2 > r

)

6 4n · exp

(
− r2

26(n)

)
, (5.15)

28 LDP and MDP for quadratic variational processes



LARGE AND MODERATE DEVIATIONS FOR ESTIMATORS 221

where the last inequality follows by L´evy’s inequality (5.7). It has an extra factor
n w.r.t. (5.11). Whenb2(n) � logn, this estimation is not enough to conclude the
negligibility of (5.10a).

6. Proof of Proposition 1.5

To prove (1.16) and (1.17), we can assume without loss of generality thatb = 0.
Remark that(Qn

t (X)− EQn
t (X)) is a(F[nt ]/n)-martingale. Then

exp
(
λ
[
Qn
t (X)− EQn

t (X)
])

is a sub-martingale for eachλ ∈ R. Let

T := inf
{
06 t 6 1 :

[
Qn
t (X)− EQn

t (X)
]
> r

}
(inf ∅ := +∞).

For all r, λ > 0, we have by Chebychev inequality and the stopping time theorem
of Doob,

P

(
sup

06 t6 1
[Qn

t (X)− EQn
t (X)]> r

)
= P (T 6 1)

6 e−λnrE1[T 6 1] exp
(
nλ
[
Qn
T (X)− EQn

T (X)
])

6 e−λnrE1[T 6 1] exp
(
λn
[
Qn

1(X)− EQn
1(X)

])
. (6.1)

But by (2.3) in Lemma 2.2, this last quantity is smaller than

exp(−n (λ(r + [X]1)−3(λ))) .
Taking the infinimum of this quantity overλ> 0, we get

exp
(−n3∗(r + [X]1)

)
which is the first inequality in (1.16). For the second explicit inequality in (1.16),
observe for eachλ ∈ [0, λ0) (recallλ0 = 1

2‖σ 2‖∞ )

3′′(λ) =
∫ 1

0

2σ 4
t(

1− 2λσ 2
t

)2 dt 6
∫ 1

0

2‖σ 2‖2∞
(1− 2λ‖σ 2‖∞)2 dt = d2

dλ2
P(λ‖σ 2‖∞).

whereP(λ) is given in Lemma 2.1. Consequently by Taylor formula:f (x) =
f (0)+ f ′(0)x + ∫ x0 f ′′(y)(x − y)dy, we have for eachλ ∈ [0, λ0),

3(λ)−3′(0)λ6P(λ‖σ 2‖∞)− P ′(0)λ‖σ 2‖∞.
It follows that (note3′(0) = [X]1, P

′(0) = 1)

3∗([X]1+ r) = sup
0<λ<λ0

{λ([X]1+ r)−3(λ)}

> sup
0<λ<λ0

{
λ(‖σ 2‖∞ + r)− P(λ‖σ 2‖∞)

}
= P ∗

(‖σ 2‖∞ + r
‖σ 2‖∞

)
,
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whereP ∗ given by (1.8) is the Legendre transformation ofP(λ). So the second
inequality in (1.16) follows.

The proof of the first inequality in (1.17) is similar to that of (1.16). We turn
now to prove the secondexplicit inequality in (1.17). To this end, we assume
σ ∈ L4(dt) (trivial otherwise). Since forλ < 0,

3′′(λ) =
∫ 1

0

2σ 4
t(

1− 2λσ 2
t

)2 dt (6.2)

is increasing inλ, then by Taylor’s formula,

3(λ)63′−(0)λ+
1

2
lim
c→0−

3′′(c)λ2 = [X]1λ+
∫ 1

0
σ 4
t dt · λ2.

Hence

3∗([X]1− r)> sup
λ<0

(
−λr −

∫ 1

0
σ 4
t dt · λ2

)
= r2

4
∫ 1

0 σ
4
s ds

,

where (1.17) follows. Finally by Theorem 1.1,

lim inf
n→∞

1

n
logP

(
sup
t∈[0,1]

±(Qn
t (X)− [X]t )> r

)

> lim inf
n→∞

1

n
logP

(±(Qn
1(X)− [X]1)> r

)
= − inf

{
3∗(x);±(x − [X]1)> r

} = −3∗ ([X]1± r) .
Combining it with the upper bounds in (1.16) and (1.17), we obtain (1.18).
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Appendix

The proof of the process-level LDP in Theorem 1.3 is based on the following:

LEMMA A.1. Let (Xn(t)06 t 6 1)n> 0 be a sequence of real right continuous left
limit processes defined on(�,F,P). Let (λ(n))n> 0 be a sequence of positive
numbers tending to infinity, andD[0,1] be the space of real right continuous left
limit functions but equipped with the uniform convergence topology and with the
σ -fieldBs. Assume

30 LDP and MDP for quadratic variational processes



LARGE AND MODERATE DEVIATIONS FOR ESTIMATORS 223

(i) For every finite partitionP of [0,1], P
(
Xn
P ∈ ·

)
satisfies the LDP onRP

with speedλ(n) and with the rate functionIP ;
(ii) ∀δ > 0,

lim
ε→0

sup
06 s6 1

lim sup
n→∞

1

λ(n)
logP

(
sup

s6 t 6 s+ε
|Xn(t)−Xn(s)| > δ

)
= −∞, (A.1)

(Convention:∀t > 1, Xn(t) := Xn(1)). ThenP (Xn ∈ ·) satisfies onD[0,1] w.r.t
the sup norm topology with the same speedλ(n) and with the rate function given
by

I (γ ) = sup
P
IP(γ (P)). (A.2)

where the supremum is taken over all finite partitions of [0,1]. Moreover[I < +∞]
is a subset of the spaceC[0,1] of continuous functions.
Remarks.In the works of Liptser and Pukhalskii [9, Th.3.1] and Pukhalskii [11],
they show that

lim
ε→0

lim sup
n→∞

1

λ(n)
log sup

τ∈T1(Fn)
P

(
sup

τ 6 t 6 τ+ε
|Xn(t)−Xn(τ)| > δ

)
= −∞, (A.3)

is sufficient to the so calledexponential tightnesson D[0,1] w.r.t. the Skorohod
topology, whereFn is a filtration w.r.t. whichXn is adapted andT1(Fn) is the
family of all Fn-stopping times less than 1. Remark that (A.1) is much weaker
than (A.3), especially the supremum overτ ∈ T1(Fn) insidethe limit of n → ∞
in (A.3) appears nowoutsidethat limit in (A.1) (this is crucial for Step 4 in our
proof of Th.1.3). Moreover the LDP onD[0,1] w.r.t. the sup norm topology in this
lemma is much stronger, and it implies the exponential tightness onD[0,1] w.r.t.
the Skorohod topology.

This lemma is taken from [13, Prop.I.5.6] and we reproduce here its proof (as
[13] is not available for many readers, and its proof is short).

Proof. At first condition (i) implies the LDP ofP(Xn ∈ ·) on R[0,1] w.r.t. the
pointwise convergence topology, with the rate functionI (γ ) given by (A.2) (see
[13] or applying [5,§4.6]). Next letPk = {i/k; i = 0, . . . , k} and consider the
applicationf k : R[0,1] → D[0,1] such that the graph off k(γ ) on [0,1] is the
polygon linking the points(i/k, γ (i/k)), i = 0,1, . . . , k.

We shall establish the following two facts :

lim sup
n→∞

1

λ(n)
logP

(
sup

06 t 6 1
|Xn(t)− f k(Xn)(t)| > δ

)
−→ −∞; (A.4)

ask tends to infinity, for anyδ > 0 ; and for eachL>0,

lim
k→∞ sup

γ∈[I 6 L]
sup

06 t6 1
|f k(γ )(t)− γ (t)| = 0. (A.5)
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To show (A.4), it is enough to notice that its LHS is smaller than

max
06 i6 k−1

lim sup
n→∞

1

λ(n)
logP

(
sup

i
k
6 t 6 i+1

k

|Xn(t)−Xn(i/k)| > δ

)
which tends to−∞ ask→∞, by (A.1).

To show (A.5), consider the set

A(k, δ) :=
{
γ ∈ R[0,1] ; sup

06 t 6 1
|γ (t)− f k(γ )(t)| > δ

}
.

whereδ > 0 fixed,k>1. It is an open subset inR[0,1] on which the lower bound
of large deviation below holds (as noted at the beginning):

lim inf
n→∞

1

λ(n)
logP

(
Xn ∈ A(k, δ)) > − inf {I (γ ) ; γ ∈ A(k, δ)} . (A.6)

But for anyδ > 0, the LHS above tends to−∞ by (A.4) ask → ∞. Therefore
[I 6L] ⊂⋂k>N A(k, δ)

c for someN large enough, by (A.6). Then (A.5) follows.
By condition (i), {γ (0); I (γ )6L} is bounded and (A.5) implies the equi-

continuity of [I 6L]. Then [I 6L] is compact inC[0,1] for any L > 0 and
[I < +∞] ⊂ C[0,1] ⊂ D[0,1]. ConsequentlyP(Xn ∈ ·) satisfies the LDP
on D[0,1] w.r.t. the pointwise convergence topology. Finally by an approximation
lemma in [5, Th.4.2.23] (with some abuse : their approximation lemma is stated
in the framework of Polish space, but it can be easily translated into the actual
context), (A.4)+(A.5) implies the LDP ofP(Xn ∈ ·) on D[0,1] w.r.t. the uniform
convergence topology.
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In this note, we consider the large andmoderate deviation principle of the estimators of the
integrated covariance of two-dimensional diffusion processeswhen they are observed only
at discrete times in a synchronous manner. The proof is extremely simple. It is essentially
an application of the contraction principle for the results given in the case of the volatility
by Djellout et al. (1999).
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1. Motivation and context

Given a filtered probability space (Ω, F , (Ft), P), let (X1,t , X2,t) be a two-dimensional diffusion process given by
dX1,t = u1,t(X1,t)dt + σ1,tdB1,t
dX2,t = u2,t(X2,t)dt + σ2,tdB2,t

(1.1)

where ((B1,t , B2,t), t ≥ 0) is a two-dimensional Gaussian process with independent increments, zero mean and covariance
matrix t

 t

0
ρsds t

0
ρsds t

 ∀t ≥ 0.

In (1.1), (u1, u2) is a progressively measurable process (possibly unknown). In what follows, we restrict our attention to
the case when σ1, σ2 and ρ are deterministic functions; the functions σi, i = 1, 2 take positive values while ρ takes values
in the interval [−1, 1]. Note that the marginal processes B1 and B2 are Brownian motions (BM). Moreover, we can define a
process B∗

t such that (B1,t , B∗
t )t≥0 is a two-dimensional BM and dB2,t = ρtdB1,t +


1 − ρ2

t dB∗
t for every t ≥ 0.
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0167-7152/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
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In this note, the parameter of interest is the (deterministic) covariance of X1 and X2

⟨X1, X2⟩t =

 t

0
σ1,tσ2,tρtdt. (1.2)

In finance,⟨X1, X2⟩· is the integrated covariance (over [0, 1]) of the logarithmic prices X1 and X2 of two securities. It is
an essential quantity to be measured for risk management purposes. The covariance for multiple price processes is of great
interest in many financial applications. The naive estimator is the realized covariance, which is the analogue of realized
variance for a single process.

Typically X1,t and X2,t are not observed in continuous time but we have only discrete time observations. Given discrete
equally spaced observation (X1,tnk

, X2,tnk
, k = 1, . . . , n) in the interval [0, 1] (with tk = k/n), a commonly used approach to

estimate is to take the sum of cross products

Cn
t :=

[nt]
k=1


X1,tnk

− X1,tnk−1

 
X2,tnk

− X2,tnk−1


, (1.3)

where [x] denotes the integer part of x ∈ R.
When the drift is known, we can also consider the following estimator:

C̄n
t :=

[nt]
k=1


X1,tnk

− X1,tnk−1
−

 tnk

tnk−1

u1,t(X1,t)dt


X2,tnk

− X2,tnk−1
−

 tnk

tnk−1

u2,t(X2,t)dt


.

In the unidimensional case and in the case that X have non-jump, this question has been well investigated—see Djellout
et al. (1999) for relevant references. In Djellout et al. (1999) and recently in Kanaya andOtsu (2012), the authors obtained the
large and moderate deviations for the realized volatility. The results of Djellout et al. (1999) are extended to jump-diffusion
processes. Mancini (2008) established the large deviation result for the threshold estimator for the constant volatility. Jiang
(2010) derived a moderate deviation result for the threshold estimator for the quadratic variational process.

In the bivariate case, Hayashi and Yoshida (2011) considered the problem of estimating the covariation of two diffusion
processes under a non-synchronous sampling scheme. They proposed an alternative estimator and they investigated the
asymptotic distributions. In Dalalyan and Yoshida (2011), the authors complement the results inHayashi and Yoshida (2011)
by establishing a second-order asymptotic expansion for the distribution of the estimator in a fairly general setup, including
random sampling schemes and (possibly random) drift terms. Several further works have been realized when data on two
securities are observed non-synchronously, see also Aït-Sahalia et al. (2010). Herewe do not consider the asynchronous case.
In the bivariate case we also mention the work of Mancini and Gobbi (2012) which deals with the problem of distinguishing
the Brownian covariation from the co-jumps using a discrete set of observations.

The purpose of this note is to furnish some further estimations about the estimator (1.3), refining the already known
central limit theorem. More precisely, we are interested in the estimations of

P
√

n
bn


Cn
t −

 t

0
σ1,tσ2,tρtdt


∈ A


,

where A is a given domain of deviation, and (bn)n>0 is some sequence denoting the scale of the deviation. When bn = 1,
this is exactly the estimation of the central limit theorem. When bn =

√
n, it becomes the large deviations. And when

1 ≪ bn ≪
√
n, this is the so-called moderate deviations. The main problem studied in this paper is the large and moderate

deviation estimations of the estimator. In this bivariate case things are not complicated.
We refer to Dembo and Zeitouni (1998) for an exposition of the general theory of large deviation and limit ourself to the

statement of the some basic definitions. Let {µT , T > 0} be a family of probability on a topological space (S, S) where S is
a σ -algebra on S and v(T ) a non-negative function on [1, ∞), such that limT→∞ v(T ) = +∞. A function I : S → [0, ∞] is
said to be a rate function if it is lower semicontinuous and it is said to be a good rate function if its level set {x ∈ S : I(x) ≤ a}
is compact for all a ≥ 0. {µT } is said to satisfy a large deviation principle (LDP) with speed v(T ) and rate function I(x) if for
any set A ∈ S

− inf
x∈A◦

I(x) ≤ lim
T→∞


inf
sup


1

v(T )
logµT (A) ≤ − inf

x∈Ā
I(x),

where A0, Ā are the interior and the closure of A respectively.
This paper is organized as follows. In the next section we present the main results of this paper. They are established in

the last section.

2. Main results

Our first result is about the LDP of P(Cn
1 ∈ ·), with time t = 1 fixed.

36 LDP and MDP for realized covoalatility



32 H. Djellout, Y. Samoura / Statistics and Probability Letters 86 (2014) 30–37

Proposition 2.1. Let (X1,t , X2,t) be given by (1.1).
(1) For every λ ∈ R

Λn(λ) :=
1
n
logE(exp(λnC̄n

1))

≤ Λ(λ) :=



 1

0
−

1
2
log(1 − λσ1,tσ2,t(1 + ρt)) −

1
2
log(1 + λσ1,tσ2,t(1 − ρt))dt

if −
1

∥σ1σ2(1 − ρ)∥
≤ λ ≤

1
∥σ1σ2(1 + ρ)∥

+∞, otherwise

and

lim
n→∞

Λn(λ) = Λ(λ).

(2) Assume that σ1,·σ2,·(1 ± ρ·) ∈ L∞([0, 1], dt) and ul,·(·) ∈ L∞(dt ⊗ P), for l = 1, 2. Then P(Cn
1 ∈ ·) satisfies the LDP on R

with speed n and with the good rate function given by the Legendre transformation of Λ, that is

Λ∗(x) = sup
λ∈R

{λx − Λ(λ)}. (2.1)

We now extend Proposition 2.1 to the process-level large deviations of P(Cn
·

∈ ·), which is interesting from the viewpoint
of the non-parametric statistics.

Let Db([0, 1]) be the real right-continuous–left-limit and bounded variation functions γ . The space Db([0, 1]) of γ , iden-
tified in the usual way as the space of bounded measures dγ on [0, 1], with dγ [0, t] = γ (t) and dγ (0) = γ (0), will be
equipped with the weak convergence topology and the σ -field Bs generated by the coordinate {γ (t), 0 ≤ t ≤ 1}. We
denote by γ̇ (t)dt and dγ ⊥ respectively the absolute continuous part and the singular part of the measure dγ associated
with γ ∈ Db[0, 1] w.r.t. the Lebesgue measure dt . The signed measure γ has a unique decomposition into a difference
γ = γ+ − γ− of two positive measures γ+ and γ−. In the paper, we denote by P∗ the function

P∗(x) =


1
2

(x − 1 − log x) if x > 0

+∞ if x ≤ 0,
(2.2)

which is the Legendre transformation of P given by

P(λ) =

−
1
2
log(1 − 2λ) if λ <

1
2

+∞, otherwise.
(2.3)

Theorem 2.2. Let (X1,t , X2,t) be given by (1.1). Assume that σ1,·σ2,·(1±ρ·) ∈ L∞([0, 1], dt) and ul,·(·) = ul(·, ·) ∈ L∞(dt⊗P),
for l = 1, 2. Then
(1) P(Cn

·
∈ ·) satisfies the LDP on Db([0, 1]) w.r.t. the weak convergence topology, with speed n and with some inf-compact

convex rate function J(γ ).
(2) If moreover t → σ1,tσ2,t(1 ± ρt) is continuous and strictly positive on [0, 1], then

J(γ ) = Jabs
+

(γ+ + β) + Jabs
−

(γ− + β) + J⊥
+

(γ+) + J⊥
−

(γ−), (2.4)

where β is absolutely continuous with respect to the Lebesgue measure and given by

·

β(t) =
σ1,tσ2,t(1 − ρ2

t ) − (
·

γ+(t) +
·

γ−(t))
2

+


[σ1,tσ2,t(1 − ρ2

t ) − (
·

γ+(t) +
·

γ−(t))]2 + (
·

γ+(t) +
·

γ−(t))σ1,tσ2,t(1 − ρ2
t )

2
,

and

J⊥
±

(γ ) =

 1

0

1
σ1,tσ2,t(1 ± ρt)

dγ ⊥,

and

Jabs
±

(γ ) =

 1

0
P∗


2

·

γ (t)
σ1,tσ2,t(1 ± ρt)


dt,

where P∗ is given in (2.2).
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We discuss now the moderate deviation principle. To this purpose, let (bn)n≥1 be a sequence of positive numbers such
that

bn → ∞ and
bn
√
n

→ 0 as n → ∞.

Let D0[0, 1] be the Banach space of real right-continuous–left-limit functions γ on [0, 1] with γ (0) = 0, equipped with the
uniform sup norm and the σ -field Bs generated by the coordinate {γ (t), 0 ≤ t ≤ 1}.

Theorem 2.3. Given (X1,t , X2,t) by (1.1) with ul,·(·) = ul(·, ·) ∈ L∞(dt ⊗ P), for l = 1, 2. Assume that σ1,·σ2,·(1 ± ρ·) ∈

L2([0, 1], dt) and

√
nbn max

1≤k≤n

 k/n

(k−1)/n
σ1,tσ2,t(1 ± ρt)dt −→ 0. (2.5)

Then P
√

n
bn


Cn

·
− ⟨X1, X2⟩·


∈ ·


satisfies the LDP on D0([0, 1]) with speed b2n and with the good rate function Jm given by

Jm(γ ) =


 1

0

γ̇ (t)2

2σ 2
1,tσ

2
2,t(1 + ρ2

t )
1[t:σ1,tσ2,t>0]dt if dγ ≪ σ1,tσ2,t


1 + ρ2

t dt

+∞ otherwise.
(2.6)

Remark 2.4. In particular, P
√

n
bn


Cn
1 − ⟨X1, X2⟩1


∈ ·


satisfies the LDP on R with speed b2n andwith the rate function given

by

Im(x) =
x2

2
 1
0 σ 2

1,sσ
2
2,s(1 + ρ2

s )ds
, ∀x ∈ R.

Remark 2.5. If for some p > 2,

σ1,·σ2,·(1 ± ρ·) ∈ Lp([0, 1], dt) and bn = O

n

1
2 −

1
p


,

we obtain (2.5).

Remark 2.6. Theorems 2.2 and 2.3 continue to hold under the linear growth condition of the drift ul (l = 1, 2) rather than
the boundedness. More precisely assume that

|ul,s(x) − ul,t(y)| ≤ αl [1 + |x − y| + ηl(|s − t|)(|x| + |y|)] , ∀s, t ∈ [0, 1], x, y ∈ R,

where ηl : [0, +∞) → [0, +∞) is a continuous nondecreasing function with ηl(0) = 0 and αl > 0 is a constant. Then the
LDP of Theorems 2.2 and 2.3 continue to hold for P(C̃n

·
∈ ·), where C̃n

·
is given by

C̃n
t :=

[nt]
k=1


X1,tnk

− X1,tnk−1
− u1,tnk−1

(X1,tnk−1
)(tnk − tnk−1)

 
X2,tnk

− X2,tnk−1
− u2,tnk−1

(X2,tnk−1
)(tnk − tnk−1)


.

We introduce the following function:

Λ∗

±
(x) = sup

λ∈R
{λx − Λ±(λ)}, (2.7)

which is the Legendre transformation of Λ± given by

Λ±(λ) :=

 1

0
P


±
λσ1,tσ2,t(1 ± ρt)

2


dt (2.8)

and we denote

α±,t =
1
2

 t

0
σ1,sσ2,s(1 ± ρs)ds. (2.9)

An easy application of deviation inequalities given in Proposition 1.5 in Djellout et al. (1999) gives the following
proposition.
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Proposition 2.7. We have for every n ≥ 1 and r > 0,

P


sup
t∈[0,1]

[C̄n
t − EC̄n

t ] ≥ r


≤ exp

−nΛ∗

+


α+ +

r
2


+ exp


−nΛ∗

−


α− −

r
2


≤ exp


−

n
2


r

∥σ1σ2(1 + ρ)∥∞

− log

1 +

r
∥σ1σ2(1 + ρ)∥∞


+ exp


−n

r2

4
 1
0 [σ1σ2(1 − ρ)]2dt


,

P


inf
t∈[0,1]

[C̄n
t − EC̄n

t ] ≤ −r


≤ exp

−nΛ∗

+


α+ −

r
2


+ exp


−nΛ∗

−


α− +

r
2


≤ exp


−n

r2

4
 1
0 [σ1σ2(1 + ρ)]2dt


+ exp


−

n
2


r

∥σ1σ2(1 − ρ)∥∞

− log

1 +

r
∥σ1σ2(1 − ρ)∥∞


,

where Λ∗
±
and α± are given in (2.7) and (2.9) respectively.

3. Proof

In this section, we will give some hints for the proof of the main results. We have

C̄n
t =

[nt]
k=1

 tnk

tnk−1

σ1,sdB1,s

 tnk

tnk−1

σ2,sdB2,s


=

[nt]
k=1

√
ak

a′

kξkξ
′

k,

where

ξk =

 tnk
tnk−1

σ1,sdB1,s
√
ak

ξ ′

k =

 tnk
tnk−1

σ2,sdB2,s
a′

k

with ak =

 tnk

tnk−1

σ 2
1,tdt a

′

k =

 tnk

tnk−1

σ 2
2,tdt.

Obviously ((ξk, ξ
′

k))k=1,...,n are independent centered Gaussian random vector with covariance

1
√
ak

a′

k


√
ak

a′

k

 tnk

tnk−1

σ1,sσ2,sρsds tnk

tnk−1

σ1,sσ2,sρsds
√
ak

a′

k

 .

Let us introduce the following notation:

Qn
±,t =

1
4

[nt]
k=1

√
ak

a′

k(ξk ± ξ ′

k)
2.

The proof relies on the following decomposition:
C̄n
t = Qn

+,t − Qn
−,t .

Proof of Proposition 2.1. By the independence of Qn
+,1 and Qn

−,1, we obtain that

Λn(λ) =
1
n
logE(exp(λnC̄n

1)) =
1
n
logE(exp(λn(Qn

+,1 − Qn
−,1)))

=
1
n
logE(exp(λnQn

+,1)) +
1
n
logE(exp(−λnQn

−,1)) := Λn,+(λ) + Λn,−(λ).

Let us deal with Λn,+. We have that

Λn,+(λ) =
1
n
logE(exp(λnQn

+,1))

=
1
n

n
k=1

P

n
λ

2


 tnk

tnk−1

σ 2
1,sds

 tnk

tnk−1

σ 2
2,sds +

 tnk

tnk−1

σ1,sσ2,sρsds


=

 1

0
P


λ

2
fn(t)


dt,
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where P is given in (2.3) and

fn(t) :=

n
k=1

1(tnk−1,t
n
k ](t)

 tnk
tnk−1

σ 2
1,sds

 tnk
tnk−1

σ 2
2,sds +

 tnk
tnk−1

σ1,sσ2,sρsds

tnk − tnk−1
.

Let us remark that we have

fn(t) =

 n
k=1

1(tnk−1,t
n
k ](t)

 tnk
tnk−1

σ 2
1,sds

 tnk
tnk−1

σ 2
2,sds

(tnk − tnk−1)
2

+

n
k=1

1(tnk−1,t
n
k ](t)

 tnk
tnk−1

σ1,sσ2,sρsds

tnk − tnk−1
.

Clearly, fn(t) is a dt martingale w.r.t. the partially directed filtration (Bτn := σ((tnk−1, t
n
k ], k = 1, . . . , n))n.

By the convexity of P and Jensen inequality, we obtain that 1

0
P


λ

2
fn(t)


dt ≤

 1

0
P


λσ1,tσ2,t(1 + ρt)

2


dt = Λ+(λ).

On the other hand, by the classical Lebesgue derivation theorem, we have that

fn(t) −→ f (t) := σ1,tσ2,t + σ1,tσ2,tρt , dt − a.e. on [0, 1].

The continuity of P : R → (−∞, +∞] gives

P


λ

2
fn(t)


−→ P


λ

2
f (t)


, dt − a.e. on [0, 1].

As P


λ
2 fn(t)


≥ −

|λ|

2 σ1,tσ2,t ∈ L1([0, 1], dt), we can apply Fatou’s lemma to conclude that

lim inf
n→∞

Λn,+(λ) = lim inf
n→∞

 1

0
P


λ

2
fn(t)


dt ≥

 1

0
lim inf
n→∞

P


λ

2
fn(t)


dt = Λ+(λ).

Doing the same calculations with Λn,−, we obtain that

Λn,−(λ) ≤

 1

0
P


−
λσ1,tσ2,t(1 − ρt)

2


dt = Λ−(λ),

and

lim inf
n→∞

Λn,−(λ) ≥ Λ−(λ).

From below, we conclude that

Λn(λ) ≤ Λ+(λ) + Λ−(λ) := Λ(λ),

and

lim inf
n→∞

Λn(λ) ≥ Λ(λ),

which implies that

lim
n→∞

Λn(λ) = lim
n→∞

(Λn,+(λ) + Λn,−(λ)) = Λ(λ),

which ends the proof of first part of Proposition 2.1.
For the second part of Proposition 2.1, first we will reduce the study to the case ul = 0 for l = 1, 2. Let β =

max(||u1||∞, ||u2||∞). Since

Cn
1 − C̄n

1

 ≤
β2

n
+

β

n

n
k=1


 tnk

tnk−1

σ1,sdB1,s

+

 tnk

tnk−1

σ2,sdB2,s




.

For l = 1, 2, we have for all λ > 0 and all δ > 0

1
n
log P


1
n

n
k=1


 tnk

tnk−1

σl,sdBl,s

 ≥ δ


≤ −δλ +

λ2

2n

 1

0
σ 2
l,sds.
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Letting n go to infinity and then λ to infinity we get that for all δ > 0

lim
n→∞

1
n
log P


1
n

n
k=1


 tnk

tnk−1

σl,sdBl,s

 ≥ δ


= −∞.

By the approximation technique (Theorem 4.2.13 in Dembo and Zeitouni (1998)), we deduce that P

Cn
1 ∈ ·


satisfies the

same LDP as P

C̄n
1 ∈ ·


. Hence we can assume that ul = 0 for l = 1, 2.

Now, by inspection of the proof of Theorem1.1 in Djellout et al. (1999), we deduce that the sequenceP

Qn

±,1 ∈ ·

satisfies

the LDP on R with speed n and rate function given by

Λ∗

±
(x) = sup

λ∈R
{λx − Λ±(λ)}.

By the independence of the sequences Qn
+,1 and Qn

−,1, and the contraction principle, see Exercise 4.2.7 in Dembo and
Zeitouni (1998), we deduce that P


C̄n
1 ∈ ·


satisfies the LDP with rate function

Λ∗(x) = inf
x=x1−x2


Λ∗

+
(x1) + Λ∗

−
(x2)


.

As we have also determined explicitly the logarithm of themoment generating functionΛ, the rate function is also given
by (2.1).

Proof of Theorem 2.2. The proof of the first part is very similar to Proposition 2.1. It is a consequence of Theorem 1.2
in Djellout et al. (1999) and the contraction principle. For the second part of Theorem 2.2, the same arguments give the
large deviation with the rate function

I(γ ) = inf
γ=γ1−γ2

{I+(γ1) + I−(γ2)} ,

where

I±(γ ) =

 1

0
P∗


2

·

γ (t)
σ1,tσ2,t(1 ± ρt)


dt +

 1

0

1
σ1,tσ2,t(1 ± ρt)

dγ ⊥.

An easy variational calculus gives the identification of the rate function in (2.4).

Proof of Theorem 2.3. As before, we treat only the case ul = 0 for l = 1, 2. We have the following decomposition:

Cn
·
− ⟨X1, X2⟩· = (Qn

+,· − α+,·) − (Qn
−,· − α−,·),

where the definition of α± is given in (2.9).
Now using Theorem 1.3 in Djellout et al. (1999), we deduce that P

√
n

bn
(Qn

±,· − α±,·) ∈ ·


satisfies the LDP on D0([0, 1])

with speed b2n and with the good rate function J±,m given by

J±,m(γ ) =


 1

0

γ̇ (t)2

σ 2
1,tσ

2
2,t(1 ± ρt)2

1[t:σ1,tσ2,t>0]dt if dγ ≪ σ1,tσ2,t(1 ± ρt)dt

+∞ otherwise.

By the same argument as before, we deduce that P
√

n
bn

(Cn
·
− ⟨X1, X2⟩·) ∈ ·


satisfies the LDP on D0([0, 1]) with speed

b2n and with the good rate function Jm given by

Jm(γ ) = inf
γ=γ1−γ2


J+,m(γ1) + J−,m(γ2)


.

An easy calculation gives the identification of the rate function in (2.6).
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LARGE DEVIATIONS OF THE REALIZED (CO-)VOLATILITY VECTOR

HACÈNE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

Abstract. Realized statistics based on high frequency returns have become very pop-
ular in financial economics. In recent years, different non-parametric estimators of the
variation of a log-price process have appeared. These were developed by many authors
and were motivated by the existence of complete records of price data. Among them are
the realized quadratic (co-)variation which is perhaps the most well known example, pro-
viding a consistent estimator of the integrated (co-)volatility when the logarithmic price
process is continuous. Limit results such as the weak law of large numbers or the central
limit theorem have been proved in different contexts. In this paper, we propose to study
the large deviation properties of realized (co-)volatility (i.e., when the number of high
frequency observations in a fixed time interval increases to infinity. More specifically, we
consider a bivariate model with synchronous observation schemes and correlated Brown-
ian motions of the following form: dXℓ,t = σℓ,tdBℓ,t + bℓ(t, ω)dt for ℓ = 1, 2, where Xℓ

denotes the log-price, we are concerned with the large deviation estimation of the vector
V n

t (X) =
(
Qn

1,t(X), Qn
2,t(X), Cn

t (X)
)

where Qn
ℓ,t(X) and Cn

t (X) represente the estima-
tor of the quadratic variational processes Qℓ,t =

∫ t

0
σ2

ℓ,sds and the integrated covariance
Ct =

∫ t

0
σ1,sσ2,sρsds respectively, with ρt = cov(B1,t, B2,t). Our main motivation is to

improve upon the existing limit theorems. Our large deviations results can be used to
evaluate and approximate tail probabilities of realized (co-)volatility. As an application we
provide the large deviation for the standard dependence measures between the two assets
returns such as the realized regression coefficients up to time t, or the realized correlation.
Our study should contribute to the recent trend of research on the (co-)variance estimation
problems, which are quite often discussed in high-frequency financial data analysis.

AMS 2000 subject classifications: 60F10, 60G42, 62M10, 62G05.

1. Introduction, Model and Notations

In the last decade there has been a considerable development of the asymptotic theory for
processes observed at a high frequency. This was mainly motivated by financial applications,
where the data, such as stock prices or currencies, are observed very frequently.

Asset returns covariance and its related statistics play a prominent role in many important
theoretical as well as practical problems in finance. Analogous to the realized volatility
approach, the idea of employing high frequency data in the computation of daily (or lower
frequency) covariance between two assets leads to the concept of realized covariance (or
covariation). The key role of quantifying integrated (co-)volatilities in portfolio optimization
and risk management has stimulated an increasing interest in estimation methods for these
models.

It is quite natural to use the asymptotic framework when the number of high frequency
observations in a fixed time interval (say, a day) increases to infinity. Thus Barndorff-Nielsen

Date: November 14, 2014.
Key words and phrases. Realised Volatility and covolatility, large deviations, diffusion, discrete-time

observation.
1
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and Shephard [6] established a law of large numbers and the corresponding fluctuations for
realized volatility, also extended to more general setups and statistics by Barndorff-Nielsen
et al. [5] and [4]. Dovonon, Gonçalves, and Meddahi [16] considered Edgeworth expansions
for the realized volatility statistic and its bootstrap analog. These results are crucial to
explore asymptotic behaviors of realized (co-)volatility, in particular around the center of its
distribution. There are also different estimation approaches for the integrated covolatility
in multidimensional models and limit theorem, and we can refer to Barndorff-Nielsen et al.
[7] and [5] where the authors present, in an unified way, a weak law of large numbers and a
central limit theorem for a general estimator, called realized generalized bipower variation.

For related work concerning bivariate case under a non-synchronous sampling scheme,
see Hayashi and Yoshida [19], Bibinger [8], Dalalyan and Yoshida [12], see also Äıt-Sahalia
et al. [1] and the references therein. Estimation of the covariance of log-price processes in
the presence of market microstructure noise, we refer to Bibinger and Reiß [9], Robert and
Rosenbaum [30], Zhang et al. [37] and [38]. See also Gloter, or Comte et al. [11] for non
parametric estimation in the case of a stochastic volatility model.

We model the evolution of an observable state variable by a stochastic process Xt =
(X1,t, X2,t), t ∈ [0, 1]. In financial applications, Xt can be thought of as the short interest
rate, a foreign exchange rate, or the logarithm of an asset price or of a stock index. Suppose
both X1,t and X2,t are defined on a filtered probability space (Ω,F , (Ft), P) and follow an
Itô process, namely, {

dX1,t = σ1,tdB1,t + b1(t, ω)dt
dX2,t = σ2,tdB2,t + b2(t, ω)dt

(1.1)

where B1 and B2 are standart Brownian motions, with correlation Corr(B1,t, B2,t) = ρt.

We can write dB2,t = ρtdB1,t +
√

1− ρ2
tdB3,t, where B1 = (B1,t)t∈[0,1] and B3 = (B3,t)t∈[0,1]

are independent Brownian processes.

We will suppose of course existence and uniqueness of strong solutions, and in what
follows, the drift coefficient b1 and b2 are assumed to satisfy an uniform linear growth
condition and we limit our attention to the case when σ1, σ2 and ρ are deterministic
functions. The functions σℓ, ℓ = 1, 2 take positive values while ρ takes values in the interval
]− 1, 1[.

In this paper, our interest is to estimate the (co-)variation vector

[V ]t = ([X1]t, [X2]t, 〈X1, X2〉t)T (1.2)

between two returns in a fixed time period [0; 1] when X1,t and X2,t are observed syn-
chronously, [Xℓ]t, ℓ = 1, 2 represente the quadratic variational process of Xℓ and 〈X1, X2〉t
the (deterministic) covariance of X1 and X2:

[Xℓ]t =

∫ t

0

σ2
ℓ,sds, 〈X1, X2〉t =

∫ t

0

σ1,sσ2,sρsds.

Inference for (1.2) is a well-understood problem if X1,t and X2,t are observed simultane-
ously. Note that X1,t and X2,t are not observed in continuous time but we have only discrete
time observations. Given discrete equally space observation (X1,tnk

, X2,tnk
, k = 1, · · · , n) in
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the interval [0, 1] (with tnk = k/n), a limit theorem in stochastic processes states that

V n
t (X) =

(
Qn

1,t(X), Qn
2,t(X), Cn

t (X)
)T

commonly called realized (co-)variance, is a consistent estimator for [V ]t, with, for ℓ = 1, 2

Qn
ℓ,t(X) =

[nt]∑

k=1

(∆n
kXℓ)

2 Cn
t (X) =

[nt]∑

k=1

(∆n
kX1) (∆n

kX2)

where [x] denote the integer part of x ∈ R and ∆n
kXℓ = Xℓ,tnk

−Xℓ,tnk−1
.

When the drift bℓ(t, ω) is known, we can consider the following variant

V n
t (X − Y ) =

(
Qn

1,t(X − Y ), Qn
2,t(X − Y ), Cn

t (X − Y )
)T

with for ℓ = 1, 2 and Yℓ,t :=
∫ t

0
bℓ(t, ω)dt,

Qn
ℓ,t(X − Y ) =

[nt]∑

k=1

(∆n
kXℓ −∆n

kYℓ)
2 ,

and

Cn
t (X − Y ) =

[nt]∑

k=1

(∆n
kX1 −∆n

kY1) (∆n
kX2 −∆n

kY2) .

If the drift bℓ(t, ω) := bℓ(t, X1,t(ω), X2,t(ω)), where bℓ(t, x1, x2) is some deterministic func-
tion (a current situation), Xt = (X1,t, X2,t) verifies

{
dX1,t = σ1,tdB1,t + b1(t, Xt)dt
dX2,t = σ2,tdB2,t + b2(t, Xt)dt.

(1.3)

When bℓ(t, x) is known, and only the sample Xtnk−1
= (X1,tnk−1

, X2,tnk−1
), k = 0 · · ·n is ob-

served, we can also consider the following estimator Ṽ n
t (X) =

(
Q̃n

1,t(X), Q̃n
2,t(X), C̃n

t (X)
)T

with for ℓ = 1, 2

Q̃n
ℓ,t(X) =

[nt]∑

k=1

(
∆n

kXℓ − bℓ,tnk−1
(Xtnk−1

)(tnk − tnk−1)
)2

,

C̃n
t (X) =

[nt]∑

k=1

(
∆n

kX1 − b1,tnk−1
(Xtnk−1

)(tnk − tnk−1)
)(

∆n
kX2 − b2,tnk−1

(Xtnk−1
)(tnk − tnk−1)

)
.

In the aforementionned papers, and under quite weak assumptions, it is proved the
following consistency

V n
1 (X), V n

1 (X − Y ), Ṽ n
1 (X) −→ [V ]1 a.s.

and the corresponding fluctuations
√

n(V n
1 (X)− [V ]1),

√
n(V n

1 (X − T )− [V ]1),
√

n(Ṽ n
1 (X)− [V ]1),

L−→ N (0, Σ).
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The purpose of this paper is to furnish some further trajectorial estimations about the
estimator V n

. , deepening the law of large numbers and central limit theorem. More precisely,
we are interested in the estimation of

P
(√

n

bn
(V n

. (X)− [V ].) ∈ A

)
,

where A is a given domain of deviation, and (bn)n>0 is some sequence denoting the scale of
the deviation.

When bn = 1, this is exactly the estimation of the central limit theorem. When bn =√
n, it becomes the large deviations. And when 1 << bn <<

√
n, it is called moderate

deviations. In other words, the moderate deviations investigate the convergence speed
between the large deviations and central limit theorem.

The large deviations and moderate deviations problems arise in the theory of statistical
inference quite naturally. For estimation of unknown parameters and functions, it is first of
all important to minimize the risk of wrong decisions implied by deviations of the observed
values of estimators from the true values of parameters or functions to be estimated. Such
important errors are precisely the subject of large deviation theory. The large deviation
and moderate deviation results of estimators can provide us with the rates of convergence
and an useful method for constructing asymptotic confidence intervals.

The aim of this paper is then to focus on the large and moderate deviation estimations
of the estimators of volatility and co-volatility. Despite the fact that these statistics are
nearly 20 years old, there has been remarkably few result in this direction, it is a surprise
to us. The answer may however be the following: the usual techniques (such as Gärtner-
Ellis method) do not work and a very particular treatment has to be considered for this
problem. Recently, however, some papers considered the unidimensional case. Djellout et
al. [14] and recently Shin and Otsu [33] obtained the large and moderate deviations for the
realized volatility. In the bivariate case Djellout and Yacouba [15], obtained the large and
moderate deviations for the realized covolatility. The large deviation for threshold estimator
for the constant volatility was established by Mancini [23] in jumps case. And the moderate
deviation for threshold estimator for the quadratic variational process was derived by Jiang
[20]. Let us mention that the problem of the large deviation for threshold estimator vector,
in the presence of jumps, will be considered in a forthcoming paper, consistency, efficience
and robustnesse were proved in Mancini and Gobbi [24]. The case of asynchronous sampling
scheme, or in the presence of micro-structure noise is also outside the scope of the present
paper but are currently under investigations.

Two economically interesting functions of the realized covariance vector are the realized
correlation and the realized regression coefficients. In particular, realized regression coef-
ficients are obtained by regressing high frequency returns for one asset on high frequency
returns for another asset. When one of the assets is the market portfolio, the result is a
realized beta coefficient. A beta coefficient measures the assets systematic risk as assessed
by its correlation with the market portfolio. Recent examples of papers that have obtained
empirical estimates of realized betas include Andersen, Bollerslev, Diebold and Wu [2],
Todorov and Bollerslev [34], Dovonon, Gonçalves and Meddahi [16], Mancini and Gobbi
[24].
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Let us stress that large deviations for the realized correlation can not be deduced from
unidimensional quantities and were thus largely ignored. As an application of our main
results, we provide a large and moderate deviation principle for the realized correlation and
the realized regression coefficients in some special cases. The realized regression coefficient

from regressing is βn
ℓ,t(X) =

Cn
t (X)

Qn
ℓ,t(X)

which consistently estimates βℓ,t = Ct

Qℓ,t
and the realized

correlation coefficient is ̺n
t (X) =

Cn
t (X)√

Qn
1,t(X)Qn

2,t(X)
which estimates ̺t = Ct√

Q1,tQ2,t
. The appli-

cation will be based essentially on an application of the delta method, developped by Gao
and Zhao ([17]).

As in Djellout et al. [14], Shin and Otsu [33], it should be noted that the proof strategy
of Gärtner and Ellis large deviation theorem can not be adapted here int he large devia-
tions case. We will encounter the same technical difficulties as in the papers of Bercu et
al. [3] and Bryc and Dembo [10] where they established the large deviation principle for
quadratic forms of Gaussian processes. Since we cannot determine the limiting behavior of
the cumulant generating function at some boundary point, we will use an other approach
based on the results of Najim [26], [27] and [25], where the steepness assumption concern-
ing the cumulant generating function is relaxed. It has to be noted that the form of the
large deviations rate function is also original: at the process level, and because of the weak
exponential integrability of V n

t , a correction (or extra) term appears in rate function, a
phenomenon first discovered by Lynch and Sethuraman [22].

To be complete, let us now recall some basic definitions of the large deviations theory (c.f
[13]). Let (λn)n≥1 be a sequence of nonnegative real number such that limn→∞ λn = +∞.
We say that a sequence of a random variables (Mn)n with topological state space (S, S),
where S is a σ − algebra on S, satisfies a large deviation principle with speed λn and rate
function I : S → [0, +∞] if, for each A ∈ S,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1

λn
log P

(
Mn ∈ A

)
≤ lim sup

n→∞

1

λn
log P

(
Mn ∈ A

)
≤ − inf

x∈Ā
I(x)

where Ao and Ā denote the interior and the closure of A, respectively.
The rate function I is lower semicontinuous, i.e. all the sub-level sets {x ∈ S | I(x) ≤ c}

are closed, for c ≥ 0. If these level sets are compact, then I is said to be a good rate function.
When the speed of the large deviation principle correspond to the regime between the central
limit theorem and the law of large numbers, we talk of moderate deviation principle.

Notations. In the whole paper, for any matrix M , MT and ‖M‖ stand for the trans-
pose and the euclidean norm of M , respectively. For any square matrix M , det(M) is
the determinant of M . Moreover, we will shorten large deviation principle by LDP and
moderate deviation principle by MDP. We denote by 〈·, ·〉 the usual scalar product. For
any process Zt, ∆n

kZ stands for the increment Ztnk
− Ztnk−1

. In addition, for a sequence of

random variables (Zn)n on Rd×p, we say that (Zn)n converges (λn)−superexponentially fast
in probability to some random variable Z if, for all δ > 0,

lim sup
n→∞

1

λn
log P

(
‖Zn − Z‖ > δ

)
= −∞.
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This exponential convergence with speed λn will be shortened as

Zn
superexp−→

λn

Z.

The article is arranged in three upcoming sections and an appendix comprising some
theorems used intensively in the paper, we have included them here for completeness.
Section 2 is devoted to our main results on the LDP and MDP for the (co-)volatility vector.
In Section 3, we deduce applications for the realized correlation and the realized regression
coefficients, when σℓ, for ℓ = 1, 2 are constants. In section 4, we give the proof of these
theorems.

2. Main results

Let Xt = (X1,t, X2,t) be given by (1.1), and Yt = (Y1,t, Y2,t) where for ℓ = 1, 2 Yℓ,t :=∫ t

0
bℓ(t, ω)dt. We introduce the following conditions

(B) for ℓ = 1, 2 b(·, ·) ∈ L∞(dt⊗ P)

(LDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2

t ) and σ1,tσ2,t(1− ρ2
t ) ∈ L∞([0, 1], dt).

• the functions t → σℓ,t and t → ρt are continuous.

(MDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2

t ) and σ1,tσ2,t(1− ρ2
t ) ∈ L2([0, 1], dt).

• Let (bn)n>1 be a sequence of positive numbers such that

bn −−−→
n→∞

∞ and
bn√
n
−−−→
n→∞

0

and for ℓ = 1, 2
√

nbn max
16k6n

∫ k/n

(k−1)/n

σ2
ℓ,tdt −−−→

n→∞
0. (2.1)

We introduce the following function, which will play a crucial role in the calculation of
the moment generating function: for −1 < c < 1 let for any λ = (λ1, λ2, λ3) ∈ R3

Pc(λ) :=





−1

2
log

(
(1− 2λ1(1− c2))(1− 2λ2(1− c2))− (λ3(1− c2) + c)2

1− c2

)

if λ ∈ D
+∞, otherwise

(2.2)

where

Dc =

{
λ ∈ R3, max

ℓ=1,2
λℓ <

1

2(1− c2)
and

2∏

ℓ=1

(
1− 2λℓ(1− c2)

)
>
(
λ3(1− c2) + c

)2
}

.

(2.3)

Let us present now the main results.
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2.1. Large deviation. Our first result is about the large deviation of V n
1 (X), i.e. at fixed

time.

Theorem 2.1. Let t = 1 be fixed.

(1) For every λ = (λ1, λ2, λ3) ∈ R3,

lim
n→∞

1

n
log E(exp(n 〈λ, V n

1 (X − Y )〉)) = Λ(λ) :=

∫ 1

0

Pρt(λ1σ
2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t)dt,

where the function Pc is given in (2.2).

(2) Under the conditions (LDP) and (B) , the sequence V n
1 (X) satisfies the LDP on

R3 with speed n and with the good rate function given by the legendre transformation
of Λ, that is

Ildp(x) = sup
λ∈R3

(〈λ, x〉 − Λ(λ)) . (2.4)

Let us consider the case where diffusion and correlation coefficients are constant, the rate
function being easier to read (see also [32] in the purely Gaussian case, i.e. b = 0). Before
that let us introduce the function P ∗

c which is the Legendre transformation of Pc given in
(2.2), for all x = (x1, x2, x3)

P ∗
c (x) :=





log

( √
1− c2

√
x1x2 − x2

3

)
− 1 +

x1 + x2 − 2cx3

2(1− c2)

if x1 > 0, x2 > 0, x1x2 > x2
3

+∞, otherwise.

(2.5)

Corollary 2.2. We assume that for ℓ = 1, 2 σℓ and ρ are constants. Under the condition
(B), we obtain that V n

1 (X) satisfies the LDP on R3 with speed n and with the good rate
function IV

ldp given by

IV
ldp(x1, x2, x3) = P ∗

ρ

(
x1

σ2
1

,
x2

σ2
2

,
x3

σ1σ2

)
, (2.6)

where P ∗
c is given in (2.5).

Now, we shall extend the Theorem 2.1 to the process-level large deviations, i.e. for tra-
jectories (V n

t (X))0≤t≤1, which is interesting from the viewpoint of non-parametric statistics.

Let BV ([0, 1], R3) (shortened in BV ) be the space of functions of bounded variation on
[0, 1]. We identify BV with M3([0, 1]), the set of vector measures with value in R3. This is
done in the usual manner: to f ∈ BV there corresponds µf caracterized by µf([0, t]) = f(t).
Up to this identification, C3([0, 1]) the set of R3-valued continuous bounded functions on
[0, 1]), is the topological dual of BV . We endow BV with the weak-* convergence topology
σ(BV, C3([0, 1])) (shortened σw) and with the associated Borel σ−field Bw. Let f ∈ BV
and µf the associated measure in M3([0, 1]). Consider the Lebesgue decomposition of µf ,
µf = µf

a + µf
s where µf

a denotes the absolutely continous part of µf with respect to dx and
µf

s its singular part. We denote by fa(t) = µf
a([0, t]) and by fs(t) = µf

s ([0, t]).
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Theorem 2.3. Under the conditions (LDP) and (B), the sequence V n
· (X) satisfies the

LDP on BV with speed n and with the rate function Jldp given for any f = (f1, f2, f3) ∈ BV
by

Jldp(f) =

∫ 1

0

P ∗
ρt

(
f
′
1,a(t)

σ2
1,t

,
f
′
2,a(t)

σ2
2,t

,
f
′
3,a(t)

σ1,tσ2,t

)
dt

+

∫ 1

0

σ2
2,tf

′
1,s(t) + σ2

1,tf
′
2,s(t)− 2ρtσ1,tσ2,tf

′
3,s(t)

2σ2
1,tσ

2
2,t(1− ρ2

t )
1[t;f

′
1,s>0,f

′
2,s>0,(f

′
3,s)2<f

′
1,sf

′
2,s]

dθ(t),

where P ∗
c is given in (2.5) and θ is any real-valued nonnegative measure with respect to

which µf
s is absolutely continuous and f ′s = dµf

s/dθ = (f
′
1,s, f

′
2,s, f

′
3,s).

Remark 2.1. Note that the definition of f ′s is θ−dependent. However, by homogeneity,
Jldp does not depend upon θ. One can choose θ = |f1,s|+ |f2,s|+ |f3,s|, with |fi,s| = f+

i,s +f−i,s,
where fi,s = f+

i,s − f−i,s by the Hahn-Jordan decomposition.

Remark 2.2. As stated above, the problem of the LDP for Qn
ℓ,·(X) and Cn

· (X) was alreay
studied by Djellout et al. [14] and [15], and the rate function is given explicitly in the last
case. This is the first time that the LDP is investigated for the vector of the (co-)volatility.

Remark 2.3. By using the contraction principle, and if σℓ is strictly positive, we may find
back the result of [14], i.e. that Qn

ℓ,· satisfies a LDP with speed n and rate function

Jσℓ
ldp(f) =

∫ 1

0

P∗
(

f ′a(t)

σ2
ℓ,t

)
dt +

1

2

∫ 1

0

1

σ2
ℓ,t

d|fs|(t)

where P∗(x) = 1
2
(x − 1 − log(x)) when x is positive and infinite if non positive, using the

same notation as in the theorem (with θ = |fs|). One may also obtain the LDP for Cn
· by

the contraction principle, recovering the result of Djellout-Yacouba [15] (see there for the
quite explicit complicated rate function).

Remark 2.4. The continuity assumptions in (LDP) of σℓ,· and ρ· is not necessary, but in
this case we have to consider another strategy of the proof, more technical and relying on
Dawson-Gärtner type theorem, which moreover does not enable to get other precision on
the rate function that the fact it is a good rate function.
However it is not hard to adapt our proof to the case where σℓ,· and ρ· have only a finite
number of discontinuity points (of the first type). This can be done by applying the previous
theorem to each subinterval where all functions are continuous and using the independence
of the increments of V n

t (X − Y ).

2.2. Moderate deviation. Let us now considered the intermediate scale between the
central limit theorem and the law of large numbers.

Theorem 2.4. For t=1 fixed. Under the conditions (MDP) and (B) , the sequence
√

n

bn
(V n

1 (X)− [V ]1)
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satisfies the LDP on R3 with speed b2
n and with the rate function given by

Imdp(x) = sup
λ∈R3

(
〈λ, x〉 − 1

2
〈λ, Σ1 · λ〉

)
=

1

2

〈
x, Σ−1

1 · x
〉

(2.7)

with

Σ1 =




∫ 1

0
σ4

1,tdt
∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ3

1,tσ2,tρtdt

∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ4

2,tdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0
σ3

1,tσ2,tρtdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt




.

Remark 2.5. If for some p > 2, σ2
1,t, σ2

2,t and σ1,tσ2,t(1−ρ2
t ) ∈ Lp([0, 1]) and bn = O(n

1
2
− 1

p ),
the condition (2.1) in (MDP) is verified.

Let H be the banach space of R3-valued right-continuous-left-limit non decreasing func-
tions γ on [0, 1] with γ(0) = 0, equipped with the uniform norm and the σ−field Bs

generated by the coordinate {γ(t), 0 6 t 6 1}.
Theorem 2.5. Under the conditions (MDP) and (B), the sequence

√
n

bn
(V n

. (X)− [V ].)

satisfies the LDP on H with speed b2
n and with the rate function given by

Jmdp(φ) =





∫ 1

0

1

2

〈
φ̇(t), Σ−1

t · φ̇(t)
〉

dt if φ ∈ AC0([0, 1])

+∞, otherwise,
(2.8)

where

Σt =




σ4
1,t σ2

1,tσ
2
2,tρ

2
t σ3

1,tσ2,tρt

σ2
1,tσ

2
2,tρ

2
t σ4

2,t σ1,tσ
3
2,tρt

σ3
1,tσ2,tρt σ1,tσ

3
2,tρt

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )




is invertible and Σ−1
t his inverse such that

Σ−1
t =

1

det(Σt)




1

2
σ2

1,tσ
6
2,t(1− ρ2

t )
1

2
σ4

1,tσ
4
2,tρ

2
t (1− ρ2

t ) −σ3
1,tσ

5
2,tρt(1− ρ2

t )

1

2
σ4

1,tσ
4
2,tρ

2
t (1− ρ2

t )
1

2
σ6

1,tσ
2
2,t(1− ρ2

t ) −σ5
1,tσ

3
2,tρt(1− ρ2

t )

−σ3
1,tσ

5
2,tρt(1− ρ2

t ) −σ5
1,tσ

3
2,tρt(1− ρ2

t ) σ4
1,tσ

4
2,t(1− ρ4

t )




,

with det(Σt) =
1

2
σ6

1,tσ
6
2,t(1− ρ2

t )
3,

and AC0 = {φ : [0, 1] → R3 is absolutely continuous with φ(0) = 0} .
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Let us note once again that it is the first time the MDP is considered for the vector of
(co)-volatility.

In the previous results, we have imposed the boundedness of b(t, ω) which allows us to
reduce quite easily the LDP and MDP of V n(X)to those of V n(X − Y ) (no drift case). It
is very natural to ask whether they continue to hold under a Lipchitzian condition or more
generally linear growth condition of the drift b(t, x), rather than the boundedness. This is
the object of the following

Theorem 2.6. Let Xt = (X1,t, X2,t) be given by (1.3), with (X1,0, X2,0) bounded. We
assume that the drift bℓ satisfies the following uniform linear growth condition: ∀s, t ∈
[0, 1], x, y ∈ R2

|bℓ(t, x)− bℓ(s, y)| 6 C[1 + ‖x− y‖+ η(|t− s|)(‖x‖+ ‖y‖)], (2.9)

where C > 0 is a constant and η : [0,∞) → [0,∞) is a continuous non-decreasing function
with η(0) = 0.

(1) Under the condition (LDP), the sequence Ṽ n
· (X) satisfies the LDPs in Theorem

2.1 and Theorem 2.3.

(2) Under the condition (MDP), the sequence

√
n

bn
(Ṽ n

· (X) − [V ]·) satisfies the MDPs

in Theorem 2.4 and Theorem 2.5.

As it can be remarked, the LDP and the MDP are established here for Ṽ n instead of V n.
If we conjecture that the MDP may still be valid in this case with V n, we do not believe
it should be the case for the LDP, and it is thus a challenging and interesting question to
establish the LDP in this case for V n. However for the statistical purpose, if the drift b is
known, the previous result is perfectly satisfactory.

3. Applications: Large deviations for the realized correlation and the
realized regression coefficients

In this section we apply our results to obtain the LDP and MDP for the standard depen-
dence measures between the two assets returns such as the realized regression coefficients
up to time 1, βℓ,1 = C1

Qℓ,1
for ℓ = 1, 2 and the realized correlation ̺1 = C1√

Q1,1Q2,1
which are

estimated by βn
ℓ,1(X) =

Cn
1 (X)

Qn
ℓ,1(X)

and ̺n
1 (X) =

Cn
1 (X)√

Qn
1,1(X)Qn

2,1(X)
respectively. To simplify the ar-

gument, we focus in the case where σℓ for ℓ = 1, 2 are constants and we denote ̺ :=
∫ 1

0
ρtdt.

The consistency and the central limit theorem for these estimators were already studied see
for example Mancini and Gobbi [24]. Up to our knowledge, however no results are known
for the large and moderate deviation principle.

3.1. Correlation coefficient.

Proposition 3.1. Let for ℓ = 1, 2, σℓ are constants and ̺ :=
∫ 1

0
ρtdt. Under the conditions

(LDP) and (B), the sequence ̺n
1 (X) satisfies the LDP on R with speed n and with the good

rate function given by
I̺
ldp(u) = inf

{(x,y,z)∈R3:u= z√
xy
}
Ildp(x, y, z)
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where Ildp is given in (2.4).

Once again, let us specify the rate function in the case of constant correlation.

Corollary 3.2. We suppose that for ℓ = 1, 2, σℓ and ρ are constant. Under the condition
(B), we obtain that ̺n

1 (X) satisfies the LDP on R with speed n and with the good rate
function given by

Iρ
ldp(u) =





log

( √
1− ρu√

1− ρ2
√

1− u2

)
− 1 +

σ4
1 + σ4

2 − 2ρσ2
1σ

2
2u

2σ2
1σ

2
2(1− ρu)

, −1 < u < 1

+∞, otherwise.

(3.1)

As the reader can imagine from the rate function expression, it is quite a simple appli-
cation of the contraction principle starting from the LDP of the realized (co)-volatility. As
will be seen from the proof, in this case, the MDP is harder to establish and requires a
more subtle technology: large deviations for the delta-method.

Proposition 3.3. Let for ℓ = 1, 2, σℓ are constants and ̺ :=
∫ 1

0
ρtdt. Under the conditions

(MDP) and (B), the sequence

√
n

bn

(̺n
1 (X)− ̺) satisfies the LDP on R with speed b2

n and

with the rate function given by

I̺
mdp(u) = inf

{(x,y,z)∈R3:u= z
σ1σ2

−̺
σ2
1y+xσ2

2
2σ2

1σ2
2
}
Imdp(x, y, z)

where Imdp is given in (2.7).

Corollary 3.4. We suppose that for ℓ = 1, 2, σℓ and ρ are constant. Under the condition

(B), we obtain that

√
n

bn
(̺n

1 (X)− ρ) satisfies the LDP on R with speed n and with the good

rate function given for all u ∈ R by

Iρ
mdp(u) =

2u2

(1− ρ2)2
. (3.2)

3.2. Regression coefficient. The strategy initiated for the correlation coefficient is even
simpler in the case of regression coefficient.

Proposition 3.5. Let for ℓ = 1, 2, σℓ are constants . Under the conditions (LDP) and
(B), for ℓ = 1 or 2, the sequence βn

l,1(X) satisfies the LDP on R with speed n and with the
good rate function given by

I
βℓ,1

ldp (u) = inf
{(x1,x2,x3)∈R3:u=

x3
xℓ
}
Ildp(x1, x2, x3)

where Ildp is given in (2.4).

Once again, this Proposition is a simple application of the contraction principle. Let us
specify the rate function in the case of constant correlation.
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Corollary 3.6. We suppose that for ℓ = 1, 2, σℓ and ρ are constant. Under the condition
(B), we obtain that βn

l,1(X) satisfies the LDP on R with speed n and with the good rate
function given for ι = 1, 2 with ℓ 6= ι and for all u ∈ R by

Iβl

ldp(u) =
1

2
log

(
1 +

(σℓu− ρσι)
2

σ2
ι (1− ρ2)

)
. (3.3)

We may also consider the MDP.

Proposition 3.7. Let for ℓ = 1, 2, σℓ are constants and ̺ :=
∫ 1

0
ρtdt. Under the conditions

(MDP) and (B) and for ℓ, ι ∈ {1, 2} with ℓ 6= ι, the sequence
√

n
bn

(βn
ℓ,1(X)− ̺σι

σℓ
) satisfies

the LDP on R with speed b2
n and with the rate function given by

I
βℓ,1

mdp(u) = inf
{(x,y,z)∈R3:u= z

σ2
ℓ

−̺ σι
σ3

ℓ

x}
Imdp(x, y, z)

where Imdp is given in (2.7).

Corollary 3.8. We suppose that for ℓ = 1, 2, σℓ and ρ are constant. Under the condition

(B) and for ℓ, ι ∈ {1, 2} with ℓ 6= ι, we obtain that
√

n
bn

(βn
ℓ,1(X)− ρσι

σℓ
) satisfies the LDP on

R with speed n and with the good rate function given for all u ∈ R by

I
βc

ℓ,1

mdp(u) =
2σ2

ℓ u
2

σ2
ι (1− ρ2)

. (3.4)

4. Proof

Let us say a few words on our strategy of proof. As the reader may have guessed, one
of the important step is first to consider the no-drift case, where we have to deal with
non homogenous quadratic forms of Gaussian processes (in the vector case). In these
non essentially smooth case (in the terminology of Gärtner-Ellis), we will use (after some
technical approximations) powerful recent results of Najim [26]. In a second step, we see
how to reduce the general case to the no-drift case.

4.1. Proof of Theorem 2.1.

Lemma 4.1. If (ξ, ξ
′
) are independent centered Gaussian random vector with covariance

(
1 c
c 1

)
,−1 < c < 1.

Then for all (λ1, λ2, λ3) ∈ R3

log E exp
(
λ1ξ

2 + λ2ξ
′2 + λ3ξξ

′
)

= Pc(λ1, λ2, λ3),

where the function Pc is given in in (2.2).

Proof : Elementary.

Lemma 4.2. Let Xt = (X1,t, X2,t) given (1.1) and Yt = (Y1,t, Y2,t) where for ℓ = 1, 2 Yℓ,t :=∫ t

0
bℓ(t, ω)dt. We have for every λ ∈ R3

Λn(λ) :=
1

n
log E (exp (n 〈λ, V n

1 (X − Y )〉)) 6 Λ(λ) :=

∫ 1

0

Pρt(λ1σ
2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t)dt,
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where the function Pc is given in in (2.2), and

lim
n→∞

Λn(λ) = Λ(λ).

Proof : For ℓ = 1, 2, we have

Qn
ℓ,t(X − Y ) =

[nt]∑

k=1

aℓ,kξ
2
ℓ,k and Cn

t (X − Y ) =

[nt]∑

k=1

√
a1,k

√
a2,kξ1,kξ2,k

where

ξℓ,k :=

∫ tk
tk−1

σℓ,sdBℓ,s

√
aℓ,k

and aℓ,k :=

∫ tnk

tnk−1

σ2
ℓ,sds. (4.1)

Obviously ((ξ1,k, ξ2,k))k=1···n are independent centered Gaussian random vector with co-
variance matrix

(
1 cn

k

cn
k 1

)

where

cn
k :=

ϑn
k√

a1,k
√

a2,k

and ϑn
k :=

∫ tnk

tnk−1

σ1,sσ2,sρsds. (4.2)

We use the lemma 4.1 and the martingale convergence theorem (or the classical Lebesgue
derivation theorem) to get the final assertions (see for example [14, p.204] for details).

Proof Theorem 2.1.

(1) It is contained in lemma 4.2.

(2) We shall prove it in three steps.

Part 1. At first, we consider that the drift bℓ = 0. In this case V n
t (X) = V n

t (X −Y ). We

recall that since B2,t = ρtdB1,t +
√

1− ρ2
t dB3,t, we may rewrite (1.1) as

{
dX1,t = σ1,tdB1,t

dX2,t = σ2,t(ρtdB1,t +
√

1− ρ2
tdB3,t)

(4.3)

Using the approximation Lemma in [13], we shall prove that

V n
1 (X − Y ) =

(
n∑

k=1

(∆n
kX1)

2 ,
n∑

k=1

(∆n
kX2)

2 ,
n∑

k=1

(∆n
kX1) (∆n

kX2)

)T
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will satisfy the same LDPs as

W n
1 :=




1

n

n∑

k=1

σ2
1, k−1

n

N2
1,k

1

n

n∑

k=1

(
σ2, k−1

n
ρk−1

n
N1,k + σ2, k−1

n

√
1− ρ2

k−1
n

N3,k

)2

1

n

n∑

k=1

σ1, k−1
n

N1,k

(
σ2, k−1

n
ρk−1

n
N1,k + σ2, k−1

n

√
1− ρ2

k−1
n

N3,k

)




,

where Nℓ,k :=
∫ tnk

tnk−1

√
ndBℓ,s, for ℓ = 1, 3.

Let us first focus on the LDP of W n
1 . We will use Najim result (see Lemma 5.1) to prove

that.
It is easy to see that W n

1 can be reritten as

W n
1 =

1

n

n∑

k=1

F

(
k − 1

n

)
Zk

where

F

(
k

n

)
=




f1(
k
n
)

f2(
k
n
)

f3(
k
n
)


 =




σ2
1, k

n

0 0

σ2
2, k

n

ρ2
k
n

σ2
2, k

n

(1− ρ2
k
n

) 2σ2
2, k

n

ρ k
n

√
1− ρ2

k
n

σ1, k
n
σ2, k

n
ρ k

n
0 σ1, k

n
σ2, k

n

√
1− ρ2

k
n




(4.4)

and

Zj =
(
N2

1,j , N2
3,j, N1,jN3,j

)T
. (4.5)

Obviously (N1,k, N3,k)k=1···n are independent centered Gaussian random vector with iden-
tity covariance matrix.

For the LDP of W n
1 we will use Lemma 5.1, in the case where X := [0, 1] and R(dx) is the

Lebesgue measure on [0, 1] and xn
i := i/n. One can check that, in this situation, Assump-

tions (N-2) hold true. The random variables (Zk)k=1,··· ,n are independent and identically
distributed. By the definition of Zk, the Assumptions (N-1) hold true also.

So W n
1 satisfies the LDP on R3 with speed n and with the good rate function given by

for all x ∈ R3

I(x) = sup
λ∈R3

(
〈λ, x〉 −

∫ 1

0

L

(
3∑

j=1

λi · fi(t)

)
dt

)
,

with

3∑

i=1

λifi(t) =




λ1σ
2
1,t + λ2σ

2
2,tρ

2
t + λ3σ1,tσ2,tρt

λ2σ
2
2,t(1− ρ2

t )

2λ2σ
2
2,tρt

√
1− ρ2

t + λ3σ1,tσ2,t

√
1− ρ2

t




T

,

and for λ ∈ R3

L(λ) := log E exp 〈λ, Z1〉 = P0(λ1, λ2, λ3),
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where P0 is given in (2.2). In this cas it takes a simpler form wich we recall here:

P0(λ1, λ2, λ3) = −1

2
log
(
(1− 2λ1)(1− 2λ2)− λ2

3

)
.

An easy calculation gives us that

∫ 1

0

P0

(
3∑

j=1

λi · fi(t)

)
dt =

∫ 1

0

Pρt

(
λ1σ

2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t

)
dt,

so

I(x) = Ildp(x),

where Ildp is given in (2.4).

Part 2. Now we shall prove that V n
1 and W n

1 satisfy the same LDPs, by means of the
approximation Lemma in [14]. We have to prove that

V n
1 (X − Y )−W n

1

superexp−→
n

0.

We do this element by element. We will only consider one element, the other terms can
be dealt with in the same way. We have to prove that for q = 1, 2, 3

Rn
q,1

superexp−→
n

0, (4.6)

where

Rn
1,t :=

[nt]∑

k=1

(∆n
kX1)

2 − 1

n

[nt]∑

k=1

σ2
1, k−1

n

N2
1,k, (4.7)

Rn
2,t :=

[nt]∑

k=1

(∆n
kX2)

2 − 1

n

[nt]∑

k=1

(
σ2, k−1

n
ρk−1

n
N1,k + σ2, k−1

n

√
1− ρ2

k−1
n

N3,k

)2

, (4.8)

and

Rn
3,t :=

[nt]∑

k=1

∆n
kX1∆

n
kX2−

1

n

[nt]∑

k=1

σ1, k−1
n

N1,k

(
σ2, k−1

n
ρk−1

n
N1,k + σ2, k−1

n

√
1− ρ2

k−1
n

N3,k

)
. (4.9)

At first, we start the negligibility (4.6) with the quantity Rn
1,1 which can be rewritten as

Rn
1,1 =

n∑

k=1

R−,kR+,k,

with R±,k :=
∫ tnk

tnk−1
(σ1,s ± σ1, k−1

n
)dB1,s, where ((R−,k, R+,k))k=1···n are independent centered

Gaussian random vector with covariance
(

εn
−,k ηn

k

ηn
k εn

+,k

)

where

εn
±,k =

∫ tnk

tnk−1

(
σ1,s ± σ1, k−1

n

)2

ds and ηn
k =

∫ tnk

tnk−1

(
σ2

1,s − σ2
1, k−1

n

)
ds (4.10)
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So by Chebyshev’s inequality, we have for all r, λ > 0,

1

n
log P

(
Rn

1,1 > r
)

6 −rλ +
1

n
log E exp

(
nλRn

1,1

)
(4.11)

A simple calculation gives us

1

n
log E exp

(
nλRn

1,1

)
=

1

n

n∑

k=1

log E exp (nλR+,kR−,k)

= − 1

2n

n∑

k=1

log

[
εn
+,kε

n
−,k −

(
nλ(εn

+,kε
n
−,k − (ηn

k )2) + ηn
k

)2

εn
+,kε

n
−,k − (ηn

k )2

]

= − 1

2n

n∑

k=1

log
[
1− n2λ2(εn

+,kε
n
−,k − (ηn

k )2)− nληn
k

]

=

∫ 1

0

K(fn(t))dt (4.12)

where K is given by

K(λ) :=





−1

2
log (1− 2λ) if λ < 1

2

+∞, otherwise,

and

fn(t) =

n∑

k=1

1(tnk−tnk−1)(t)

[
λ2

(
εn
+,k

tnk − tnk−1

εn
−,k

tnk − tnk−1

−
(

ηn
k

tnk − tnk−1

)2
)

+ 2λ

(
ηn

k

tnk − tnk−1

)]

where εn
±,k and ηn

k are given in (4.10).
By the continuity condition of the assumption (LDP) and the classical Lebesgue deriva-

tion theorem, we have that

fn(t) −→ 0 as n →∞.

By the classical Lebesgue derivation theorem we have that the right hand of the equality
(4.12) goes to 0.

Letting n goes to infinity and than λ goes to infinity in (4.11), we obtain that

lim
n→∞

1

n
log P

(
Rn

1,1 > r
)

= −∞.

Doing the same things with −Rn
1,1, we obtain (4.6) for Rn

1,1.

Now we shall prove (4.6) with Rn
2,1. We have

Rn
2,1 =

n∑

k=1

E−,kE+,k +
n∑

k=1

E−,kB+,k +
n∑

k=1

E+,kB−,k +
n∑

k=1

B−,kB+,k,

where

E±,k :=

∫ tnk

tnk−1

(σ2,sρs ± σ2, k−1
n

ρk−1
n

)dB1,s,
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and

B±,k :=

∫ tnk

tnk−1

(σ2,s

√
1− ρ2

s ± σ2, k−1
n

√
1− ρ2

k−1
n

)dB3,s.

where (E−,k, E+k),(E−,k, B+,k),(E+,k, B−,k),(B−,k, B+,k), k = 1 · · ·n are four independent
centered Gaussian random vectors with covariances respectively given by




∫ tnk
tnk−1

(σ2,sρs − σ2, k−1
n

ρk−1
n

)2ds
∫ tnk

tnk−1
(σ2

2,sρ
2
s − σ2

2, k−1
n

ρ2
k−1

n

)ds

∫ tnk
tnk−1

(σ2
2,sρ

2
s − σ2

2, k−1
n

ρ2
k−1

n

)ds
∫ tnk

tnk−1
(σ2,sρs + σ2, k−1

n
ρk−1

n
)2ds




and




∫ tnk
tnk−1

(σ2,sρs − σ2, k−1
n

ρk−1
n

)2ds 0

0
∫ tnk

tnk−1
(σ2,s

√
1− ρ2

s + σ2, k−1
n

√
1− ρ2

k−1
n

)2ds




and




∫ tnk
tnk−1

(σ2,sρs + σ2, k−1
n

ρk−1
n

)2ds 0

0
∫ tnk

tnk−1
(σ2,s

√
1− ρ2

s − σ2, k−1
n

√
1− ρ2

k−1
n

)2ds




and




∫ tnk
tnk−1

(σ2,s

√
1− ρ2

s − σ2, k−1
n

√
1− ρ2

k−1
n

)2ds
∫ tnk

tnk−1
(σ2

2,s(1− ρ2
s)− σ2

2, k−1
n

(1− ρ2
k−1

n

))ds

∫ tnk
tnk−1

(σ2
2,s(1− ρ2

s)− σ2
2, k−1

n

(1− ρ2
k−1

n

))ds
∫ tnk

tnk−1
(σ2,s

√
1− ρ2

s + σ2, k−1
n

√
1− ρ2

k−1
n

)2ds.




So (4.6) for Rn
2,1 is deduced if

n∑

k=1

E−kE+,k
superexp−→

n
0,

n∑

k=1

E−,kB+,k
superexp−→

n
0,

n∑

k=1

E+,kB−,k
superexp−→

n
0,

n∑

k=1

B−,kB+,k
superexp−→

n
0.

Each convergence is deduced by the same calculations as for (R−,k, R+,k)k=1···n.
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Now we shall prove (4.6) with Rn
3,1. We have

Rn
3,1 =

n∑

k=1

R−,kE−,k +

n∑

k=1

R−,kB−,k +

n∑

k=1

R−,k

(∫ tnk

tnk−1

σ2, k−1
n

ρk−1
n

dB1,s

)

+
n∑

k=1

R−,k

(∫ tnk

tnk−1

σ2, k−1
n

√
1− ρ2

k−1
n

dB3,s

)
+

n∑

k=1

E−,k

(∫ tnk

tnk−1

σ1, k−1
n

dB1,s

)

+
n∑

k=1

B−,k

(∫ tnk

tnk−1

σ1, k−1
n

dB1,s

)
,

where we have used the same notation as before. By the same calculations used to prove
(4.6) for Rn

1,1 and Rn
2,1, we obtain (4.6) for Rn

3,1.

Then V n
1 (X − Y ) and W n

1 satisfy the same LDP.

Part 3. We will prove that V n
1 (X) and V n

1 (X − Y ) satisfy the same LDP. We need to
prove that

‖V n
1 (X)− V n

1 (X − Y )‖ superexp−→
n

0.

This will be done element by element : for ℓ = 1, 2

Qn
ℓ,1(X)−Qn

ℓ,1(X − Y )
superexp−→

n
0 and Cn

1 (X)− Cn
1 (X − Y )

superexp−→
n

0. (4.13)

We have
∣∣Qn

ℓ,1(X)−Qn
ℓ,1(X − Y )

∣∣ ≤ ε(n)Qn
ℓ,1(X − Y ) +

(
1 +

1

ε(n)

)
Zn

ℓ ,

and

|Cn
1 (X)− Cn

1 (X − Y )| ≤ ε(n)
(
Qn

1,1(X − Y ) + Qn
2,1(X − Y )

)
+

(
1

2
+

1

ε(n)

)
(Zn

1 + Zn
2 ) .

with

Zℓ,n =

n∑

k=1

(∫ tnk

tnk−1

bℓ(t, ω)dt

)2

≤ ‖bℓ‖2
∞

n
.

We chose ε(n) such that nε(n) → ∞, so (4.13) follows from the LDP of Qℓ,1(X), Cn
1 (X)

and the estimations above.

4.2. Proof of Corollary 2.2.

From Theorem 2.1, we obtain that V n
1 (X−Y ) satisfies the LDP on R3 with speed n and

with the good rate function given by for all x ∈ R3

IV
ldp(x) = sup

λ∈R3

(
〈λ, x〉 − Pρ(σ

2
1λ1, σ

2
2λ2, σ1σ2λ3)

)
= P ∗

ρ

(
λ1

σ2
1

,
λ2

σ2
2

,
λ3

σ1σ2

)
.

where Pρ and P ∗
ρ are given in (2.2) and (2.5) respectively. So we get the expression of IV

ldp

given in (2.6).
The Legendre transformation of Pc is defined by

P ∗
ρ (x) := sup

λ∈R3

(〈λ, x〉 − Pρ(λ)) .
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The function λ → 〈λ, x〉 − Pρ(λ) reaches the supremum at the point λ∗ = (λ∗1, λ
∗
2, λ

∗
3)

such as 



λ∗1 = 1
2

x1x2 − (1− ρ2)x2 − x2
3

2(1− ρ2)(x1x2 − x2
3)

,

λ∗2 = 1
2

x1x2 − (1− ρ2)x1 − x2
3

2(1− ρ2)(x1x2 − x2
3)

,

λ∗3 =
x2

3ρ− x1x2ρ + (1− ρ2)x3

(1− ρ2)(x1x2 − x2
3)

.

So we get the expression of the Legendre transformation P ∗
ρ given in (2.5).

4.3. Proof of Theorem 2.3.

Now we shall prove the Theorem 2.3 in two steps.
Step 1. We start by proving that the LDP holds for

W n
t =

1

n

[nt]∑

k1

F

(
k − 1

n

)
Zk,

where F is given in (4.4) and Zk is given in (4.5).
This result come from an application of LDP of Lemma 5.2 derived in the case where

X := [0, 1] and R(dx) is the Lebesgue measure on [0, 1] and xn
i := i/n. One can check that,

in this situation, Assumptions (N-2) and (N-3) hold true.
The random variables (Zk)k=1,··· ,n are independent and identically distributed. And we

will apply the Lemma with the random variables Zn
k := F

(
k − 1

n

)
Zk. The law of Zn

k

depends on the position xn
i := i/n This type of model was partially examined by Najim see

section 2.4.2 in [27].
By the definition of Zn

k , the Assumptions (N-1) and (N-4) hold true.
Finally, we just need to verify that if xn

i and xn
j are close then so are L(Zn

i ) and L(Zn
j )

for the following Wasserstein type distance between probability measures:

dOW (P, Q) = inf
η∈M(P,Q)

inf

{
a > 0;

∫

R3×R3

τ

(
z − z′

a

)
η(dzdz′) 6 1

}
,

where η is a probability with given marginals P and Q and η(z) = e|z| − 1.

In fact, consider the random variables Y = F (x)Z and Ỹ = F (x′)Z, since F is continuous

Eτ

(
Y − Ỹ

ǫ

)
= Eτ

(
(F (x)− F (x′))Z

ǫ

)
≤ 1

for x′ close to x. Thus dOW (L(Zn
i ),L(Zn

j )) ≤ ǫ. This gives the Assumption (N-5).
So we deduce that the sequence W n

· satisfies the LDP on BV with speed n and with the
rate function Jldp given by

Jldp(f) =

∫ 1

0

Λ∗
t (f

′
a(t))dt +

∫ 1

0

~t(f
′
s(t))dθ(t).
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where for all z ∈ R3 and all t ∈ [0, 1]

Λ∗
t (z) = sup

λ∈R3

(〈λ, z〉 − Λt(λ)) ,

with

Λt(λ) = log

∫

R3

e〈λ,z〉P (t, dz) = Pρt(λ1σ
2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t),

so Λ∗
t coincide with P ∗

ρt
given in Theorem 2.3.

And θ is any real-valued nonnegative measure with respect to which µf
s is absolutely

continuous and f ′s = dµf
s/dθ and for all z ∈ R3 and all t ∈ [0, 1] the recession function ~t

of Λ∗
t defined by ~t(z) = sup{〈λ, z〉 , λ ∈ DΛt} with DΛt = {λ ∈ R3, Λt(λ) < ∞} = {λ ∈

R3, Pρt(λ1σ
2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t), < ∞}.

The recession function α of P ∗
c , see Theorem 13.3 in [31] is given by

α(z) := lim
h→∞

P ∗
c (hz)

h
=

z1 + z2 − 2cz3

2(1− c2)
1[z1>0,z2>0,z2

3<z1z2].

Using this expression, we obtain the rate function given in the Theorem 2.3.

Step 2. Now we have to prove that

sup
t∈[0,1]

‖V n
t (X − Y )−W n

t ‖
superexp−→

n
0.

To do that, we have to prove that for q = 1, 2, 3

sup
t∈[0,1]

∣∣Rn
q,t

∣∣ superexp−→
n

0, (4.14)

where the definition of Rn
q,t arge given in (4.7), (4.8) and (4.9) for q = 1, 2, 3 respectively.

We start by proving (4.14) for q = 1, the other terms for q = 2, 3 follow the same line of
proof.

We remark that (Rn
1,t − E(Rn

1,t)) is a (F[nt]/n)-martingale. Then

exp(λn
[
Rn

1,t − E(Rn
1,t)
]
)

is a sub-martingale. By the maximal inequality, we have for any r, λ > 0,

P

(
sup

t∈[0,1]

[
Rn

1,t − E(Rn
1,t)
]

> r

)
= P

(
exp

(
λn sup

t∈[0,1]

[
Rn

1,t − E(Rn
1,t)
]
)

> enλr

)

≤ e−nλrE
(
exp

(
λn
[
Rn

1,1 − E(Rn
1,1)
]))

and similarly

P
(

inf
t∈[0,1]

[
Rn

q,t − E(Rn
1,t)
]

< −r

)
≤ e−nλrE

(
exp

(
−λn

[
Rn

1,1 − E(Rn
1,1)
]))

.

So we get

1

n
log P

(
sup

t∈[0,1]

[
Rn

1,t − E(Rn
1,t)
]

> r

)
≤ −λr +

1

n
log E

(
eλnRn

1,1
)
− λE(Rn

1,1).
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It is easy to see that E(Rn
1,1) → 0 as n goes to infinity. We have already seen in (4.12)

that 1
n

log E
(
eλnRn

1,1
)
→ 0 as n gos to infinity. So we obtain for all λ > 0

lim sup
n→∞

1

n
log P

(
sup

t∈[0,1]

[
Rn

1,t − E(Rn
1,t)
]

> r

)
≤ −λr.

Letting λ > 0 goes to infinity, we obtain that the left term in the last inequality goes to
−∞.

And similarly, by doing the same calculations with

P
(

inf
t∈[0,1]

[
Rn

q,t − E(Rn
1,t)
]

< −r

)
,

we obtain that

sup
t∈[0,1]

∣∣Rn
1,t − E(Rn

1,t)
∣∣ superexp−→

n
0.

Since

E(Rn
1,1)

superexp−→
n

0,

we obtain (4.14) for q = 1.

4.4. Proof of Theorem 2.4.

As is usual, the proof of the MDP is somewhat simpler than the LDP, relying on the
same line of proof than the one for the CLT. Namely, a good control of the asymptotic of
the moment generating functions, and Gärtner-Ellis theorem. We shall then prove that for
all λ ∈ R3

lim
n→∞

1

b2
n

log E exp

(
b2
n

√
n

bn
〈λ, V n

1 − [V ]1〉
)

=
1

2
〈λ, Σ1 · λ〉 . (4.15)

Taking the calculation in (4.2),we have

1

b2
n

log E exp

(
b2
n

√
n

bn

〈λ, V n
1 − [V ]1〉

)
=

1

b2
n

n∑

k=1

[
Hn

k (λ)− bn

√
n 〈λ, [V ]1〉

]
,

with

Hn
k (λ) := Pcn

k

(
λ1bn

√
na1,k, λ2bn

√
na2,k, λ3bn

√
n
√

a1,k
√

a2,k

)
,

where aℓ,k are given in (4.1) and cn
k is given in (4.2).

By our condition (2.1),

ε(n) :=
√

nbn max
16k6n

max
ℓ=1,2

aℓ,k −−−→
n→∞

0.

By multidimensional Taylor formula and noting that Pcn
k
(0, 0, 0) = 0, ∇Pcn

k
(0, 0, 0) =

(1, 1, cn
k)

T and the Hessian matrix

H(Pcn
k
)(0, 0, 0) =




2 2(cn
k)2 2cn

k

2(cn
k)2 2 2cn

k

2cn
k 2cn

k 1 + (cn
k)2


 ,
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and after an easy calculations, we obtain once if ||λ|| · |ε(n)| < 1
4
, i.e. for n large enough,

Hn
k (λ) = bn

√
n 〈λ, [V ]1〉+ nb2

n

1

2
〈λ, Σn

k · λ〉+ nb2
nν(k, n),

where

Σn
k :=




a2
1,k (ϑn

k)2 a1,kϑ
n
k

(ϑn
k)2 a2

2,k a2,kϑ
n
k

a1,kϑ
n
k a2,kϑ

n
k

1

2
(a1,ka2,k + (ϑn

k)2)




,

where ϑn
k is given in (4.2), and ν(k, n) satisfies

|ν(k, n)| 6 C||λ|| · |ε(n)|,

where C = 1
6
sup||λ||≤1/4

∣∣∣∣
∂3P (λ1, λ2, λ3)

∂3λ

∣∣∣∣.
On the other hand, by the classical Lebesgue derivation theorem see [14], we have

n∑

k=1



∫ tnk

tnk−1
g(s)ds

tnk − tnk−1





∫ tnk

tnk−1
h(s)ds

tnk − tnk−1


 (tnk − tnk−1) →

∫ 1

0

g(s)h(s)ds

by taking different chosse of g and h: once g(s) = h(s) = σ2
ℓ,s or g(s) = h(s) = σ1,sσ1,sρs,

or g(s) = σ2
ℓ,s and h(s) = σ2

ℓ′,s ℓ 6= ℓ′, and g(s) = σ2
ℓ,s and h(s) = σ1,sσ1,sρs, we obtain that

n

n∑

k=1

Σn
k →n→∞ Σ1 =




∫ 1

0
σ4

1,tdt
∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ3

1,tσ2,tρtdt

∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ4

2,tdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0
σ3

1,tσ2,tρtdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt




= Σ1.

Then the (4.15) follows.
Hence (2.4) follows from the Gärtner-Ellis theorem.

4.5. Proof of Theorem 2.5.

It is well known that the LDP of finite dimensional vector
(√

n

bn

(V n
s1

(X)− [V ]s1 , · · · , V n
sk

(X)− [V ]sk
)

)
, 0 < s1 < · · · < sk 6 1, k > 1

and the following exponential tightness: for any s ∈ [0, 1] and η > 0

lim
ε↓0

lim sup
n→∞

1

b2
n

log P
(√

n

bn

sup
s6t6s+ε

‖∆t
sV

n
· (X)−∆t

s[V ]·‖ > η

)
= −∞

with ∆t
sV

n
· = V n

t − V n
s , are sufficient for the LDP of

√
n

bn

(V n
· (X)− [V ]·) for the sup-norm

topology (cf. [13],[14]).
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Under the assumption of Theorem 2.5, we have:

lim
n→∞

√
n sup

t∈[0,1]

‖EV n
t (X)− [V ]t‖ = 0. (4.16)

In fact, we have:
√

n sup
t∈[0,1]

‖EV n
t (X)− [V ]t‖

6 3
√

n max

(
max
ℓ=1,2

sup
t∈[0,1]

|EQn
ℓ,t(X)− [Xℓ]t|,

√
n sup

t∈[0,1]

|ECn
t (X)− 〈X1, X2〉t|

)

6 3 max

(
max
ℓ=1,2

max
k6n

√∫ k/n

(k−1)/n

σ4
ℓ,tdt, max

k6n

√∫ k/n

(k−1)/n

σ2
1,tσ

2
2,tρ

2
tdt

)
.

By our condition (2.1), we obtain (4.16).

Now, we show that for any partition 0 < s1 < · · · < sk 6 1, k > 1 of [0, 1]
√

n

bn

(
V n

s1
(X)− [V ]s1, · · · , V n

sk
(X)− [V ]sk

)

satisfies the LDP on Rk with speed b2
n and with the rate function given by

Is1,··· ,sk
(x1, · · · , xk) =

1

2

k∑

i=1

〈(xi − xi−1), (Σ
si
si−1

)−1 · (xi − xi−1)〉 (4.17)

where

Σu
s =




∫ u

s
σ4

1,tdt
∫ u

s
σ2

1,tσ
2
2,tρ

2
t dt

∫ u

s
σ3

1,tσ2,tρtdt
∫ u

s
σ2

1,tσ
2
2,tρ

2
t dt

∫ u

s
σ4

2,tdt
∫ u

s
σ1,tσ

3
2,tρtdt

∫ u

s
σ3

1,tσ2,tρtdt
∫ u

s
σ1,tσ

3
2,tρtdt

∫ u

s

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt




is invertible and

det(Qu
s ) =

(∫ u

s

σ4
1,tdt

)(∫ u

s

σ4
2,tdt

)(∫ u

s

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt

)

+ 2

(∫ u

s

σ2
1,tσ

2
2,tρ

2
tdt

)(∫ u

s

σ1,tσ
3
2,tρtdt

)(∫ u

s

σ3
1,tσ2,tρtdt

)

−
(∫ u

s

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt

)(∫ u

s

σ2
1,tσ

2
2,tρ

2
t dt

)2

−
(∫ u

s

σ4
1,tdt

)(∫ u

s

σ1,tσ
3
2,tρtdt

)2

−
(∫ u

s

σ4
2,tdt

)(∫ u

s

σ3
1,tσ2,tρtdt

)2

and (Σu
s )
−1 his inverse.

For n large enough we have 1 < [nt1] < · · · < [ntk] < n, so by applying the homeomor-
phism

Υ : (x1, · · · , xk) → (x1, x2 − x1, · · · , xk − xk−1)

Zn = (V n
s1

(X)− [V ]s1, · · · , V n
sk

(X)− [V ]sk
) can be mapped to Un = ΥZn with independent

components.
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Then we consider the LDP of

√
n

bn
(Un − EUn).

For any θ = (θ1, · · · , θk) ∈ (R3)k,

Λs1, · · · , sk(θ) = lim
n→∞

1

b2
n

log E exp
(
bn

√
n 〈λ, Un −EUn〉

)
=

k∑

i=1

1

2
〈λi, Σ

si
si−1

· λi〉.

By Gärtner-Ellis theorem,

√
n

bn
(Un − EUn) satifies the LDP in (R3)k with speed b2

n and

with the good rate function

Λ∗s1, · · · , sk(x) =
1

2

k∑

i=1

〈xi, (Σ
si
si−1

)−1 · xi〉.

Then by the inverse contraction principle, we have

√
n

bn
(Zn−EZn) satisfies the LDP with

speed b2
n and with the rate function Is1,··· ,sk

(x) given in (4.17).

Now, we shall prove that for any η > 0, s ∈ [0, 1]

lim
ε↓0

lim sup
n→∞

1

b2
n

log P
(√

n

bn
sup

s6t6s+ε
‖∆t

sV
n
· (X)− E∆t

sV
n
· (X)‖ > η

)
= −∞. (4.18)

For that we need to prove that for ℓ = 1, 2 and for all η > 0 and s ∈ [0, 1]

lim
ε↓0

lim sup
n→∞

1

b2
n

log P
(√

n

bn
sup

s6t6s+ε
|∆t

sQℓ,·(X)− E∆t
sQℓ,·(X)| > η

)
= −∞, (4.19)

and

lim
ε↓0

lim sup
n→∞

1

b2
n

log P
(√

n

bn
sup

s6t6s+ε
|∆t

sC·(X)− E∆t
sC·(X)| > η

)
= −∞. (4.20)

In fact (4.19) can be done in the same way than in Djellout et al.[14]. It remains to show
(4.20). This will be done following the same technique as for the proof of (4.19) and using
a result of [15]. Remark that (Cn

t (X)− ECn
t (X)) is an F[nt]/n-martingale. Then

exp(λ[∆t
s(C

n
· (X)− ECn

· (X))])

is a sub-martingale. By the maximal inequality, we have for any η, λ > 0

P
(

sup
s6t6s+ε

∆t
s [Cn

· (X)− ECn
· (X)] > η

)
= P

(
exp(λ sup

s6t6s+ε
∆t

s [Cn
· (X)− ECn

· (X)] > eλη

)

6 e−ληE exp
(
λ∆s+ε

s [Cn
· (X)− ECn

· (X)]
)
, (4.21)

and similary,

P
(

inf
s6t6s+ε

∆t
s [Cn

· (X)− ECn
· (X)] < −η

)
6 e−ληE exp

(
−λ[∆s+ε

s [Cn
· (X)− ECn

· (X)]
)
.

(4.22)
Using Remark 2.4 in [15], we have that for all c ∈ R

lim
n→∞

1

b2
n

log E exp

(
cb2

n

√
n

bn

∆s+ǫ
s [Cn

· (X)− ECn
· (X)]

)
=

1

2
c2

∫ s+ǫ

s

σ2
1,tσ

2
2,t(1 + ρ2

t )dt.
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Therefore taking η = δ
bn

n
, λ = bn

√
nc (c > 0) in (4.21), we get

lim sup
n→∞

1

b2
n

log P
(√

n

bn
sup

s6t6s+ε
∆t

s [Cn
· (X)− ECn

· (X)] > δ

)

6 inf
c>0

{
−cδ +

1

2
c2

∫ s+ǫ

s

σ2
1,tσ

2
2,t(1 + ρ2

t )dt

}
= − δ2

2
∫ s+ǫ

s
σ2

1,tσ
2
2,t(1 + ρ2

t )dt
,

and similary by (4.22),

lim sup
n→∞

1

b2
n

log P
(√

n

bn
inf

s6t6s+ε
∆t

s [Cn
· (X)− ECn

· (X)] < −δ

)
6 − δ2

2
∫ s+ǫ

s
σ2

1,tσ
2
2,t(1 + ρ2

t )dt
.

By the integrability of σ2
1,tσ

2
2,t(1 + ρ2

t ), we have

lim
ε↓0

sup
s∈[0,1]

∫ s+ǫ

s

σ2
1,tσ

2
2,t(1 + ρ2

t )dt = 0.

Hence (4.20) follows from the above estimations. So we have (4.18).

By (4.17) and (4.18),

√
n

bn
(V n

· − [V ]·) satifies the LDP with the speed b2
n and the good

rate function

Isup(x) = sup {Is1,··· ,sk
(x(s1), · · · , x(sk)); 0 < s1 < · · · < sk 6 1, k > 1} ,

where

Is1,··· ,sk
(x(s1), · · · , x(sk)) =

1

2

k∑

i=1

〈x(si)− x(si−1), (Σ
si
si−1

)−1 · (x(si)− x(si−1))〉

It remains to prove that Isup(x) = Imdp(x).
We shall prove that Isup(x) 6 Imdp(x).
For this, we treat the first element of the matrix (Σsi

si−1
)−1 which is denoted (Σsi

si−1
)−1
1,1

and we prove that

k∑

i=1

(x1(si)− x1(si−1))
2.(Σsi

si−1
)−1
1,1 6

∫ 1

0

(x′1(t))
2.(Σ−1

t )1,1dt,

where (Σ−1
t )1,1 represente the first element of the matrix Σ−1

t .
We have

(Σsi
si−1

)−1
1,1 =

1

det(Σsi
si−1)

((∫ si

si−1

σ4
2,tdt

)(∫ si

si−1

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt

)
−
(∫ si

si−1

σ1,tσ
3
2,tρtdt

)2)
.

By [20, p.1305], for x := (x1, x2, x3) ∈ H, if Isup(x) < +∞, then for 0 < s1 < · · · < sk 6 1,
Then

k∑

i=1

(x1(si)− x1(si−1))
2.(Σsi

si−1
)−1
1,1 6

∫ 1

0

(x′1(t))
2.

1

2
σ2

1,tσ
6
2,t(1 + ρ2

t )− σ2
1,tσ

6
2,tρ

2
t

det(Σt)
dt

=

∫ 1

0

(x′1(t))
2.(Σ−1

t )1,1dt,
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The same calculation with the other terms of the matrix given in the following, implies
that Isup(x) 6 Imdp(x):

(Σsi
si−1

)−1
2,2 =

1

det(Σsi
si−1)

[(∫ si

si−1

σ4
1,tdt

)(∫ si

si−1

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt

)
−
(∫ si

si−1

σ3
1,tσ2,tρtdt

)2]
,

(Σsi
si−1

)−1
3,3 =

1

det(Σsi
si−1)

[(∫ si

si−1

σ4
1,tdt

)(∫ si

si−1

σ4
2,tdt

)
−
(∫ si

si−1

σ2
1,tσ

2
2,tρ

2
t dt

)2]
,

(Σsi
si−1

)−1
1,2 = (Σsi

si−1
)−1
2,1 =

1

det(Σsi
si−1)

[(∫ si

si−1

σ3
1,tσ2,tρtdt

)(∫ si

si−1

σ1,tσ
3
2,tρtdt

)

−
(∫ si

si−1

σ2
1,tσ

2
2,tρ

2
t dt

)(∫ si

si−1

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt

)]
,

(Σsi
si−1

)−1
1,3 = (Σsi

si−1
)−1
3,1 =

1

det(Σsi
si−1)

[(∫ si

si−1

σ2
1,tσ

2
2,tρ

2
t dt

)(∫ si

si−1

σ1,tσ
3
2,tρtdt

)

−
(∫ si

si−1

σ4
2,tdt

)(∫ si

si−1

σ3
1,tσ2,tρtdt

)]
,

(Σsi
si−1

)−1
2,3 = (Σsi

si−1
)−1
3,2 =

1

det(Σsi
si−1)

[(∫ si

si−1

σ2
1,tσ

2
2,tρ

2
t dt

)(∫ si

si−1

σ3
1,tσ2,tρtdt

)

−
(∫ si

si−1

σ4
1,tdt

)(∫ si

si−1

σ1,tσ
3
2,tρtdt

)]
.

On the other hand, by the convergence of martingales and Fatou’s lemma,

Imdp(x) < +∞, and Imdp(x) 6 Isup(x).

So we have Isup(x) = Imdp(x).

4.6. Proof of Theorem 2.6.

Step 1. We shall prove that Ṽ n
· and V n

· (X − Y ) satisfy the same LDP, by means of the

approximation Lemma in [14]. So we shall prove that Q̃n
ℓ,· and Qn

ℓ,·(X−Y ) satisfy the same

LDP and idem for C̃n
· and Cn

· (X − Y ).
We have

sup
t∈[0,1]

|Q̃n
ℓ,t(X)−Qn

ℓ,t(X − Y )| 6 ε(n)Qn
ℓ,t(X − Y ) +

(
1 +

1

ε(n)

)
Zℓ,n (4.23)

and

sup
t∈[0,1]

|C̃n
1,t(X)− Cn

1,t(X − Y )| 6 ε(n)
2∑

ℓ=1

Qn
ℓ,t(X − Y ) +

(
1

2
+

1

ε(n)

) 2∑

ℓ=1

Zℓ,n, (4.24)

where the sequence ε(n) > 0 will be selected later, and Zℓ,n is given

Zℓ,n =
n∑

k=1

(∫ tnk

tnk−1

bℓ,t(Xt)dt− bℓ,tnk−1
(Xtnk−1

)(tnk − tnk−1)

)2

, (4.25)
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with Xt = (X1,t, X2,t).
For Qn

ℓ,t(X − Y ), being a Gaussian process, Theorem 1.1 in [14] may be used. It remains
to control Zℓ,n. For this we just need to prove that:

1

ε(n)
Zℓ,n

superexp−→
n

0. (4.26)

The main idea is to reduce it to estimations of Mℓ,t =
∫ t

0
σℓ,sdBℓ,s, by means of Gronwall’s

inequality. So, we have at first for all t ∈ [0, 1]

‖Xt‖ 6 ‖X0‖+ C

∫ t

0

(1 + (1 + η(s))‖Xs‖)ds + sup
s6t

‖Ms‖

6
(

C + ‖X1,0‖+ ‖X2,0‖+ sup
s61

‖Ms‖
)

+ C1

∫ t

0

‖Xs‖ds.

where C1 = C(1 + η(1)). Hence, by Gronwall’s inequality

‖Xt‖ 6
(

C + ‖X1,0‖+ ‖X2,0‖+ sup
s61

‖Ms‖
)

eC1t, ∀t ∈ [0, 1] (4.27)

For any s ∈ [0, 1], v > 0

sup
s6t6s+v

‖Xt −Xs‖ 6 sup
s6t6s+v

‖Mt −Ms‖+ v. sup
s6t6s+v

‖b(t, Xt)‖

6 sup
s6t6s+v

‖Mt −Ms‖+ vC2

(
sup

06t61
‖Xt‖+ 1

)
(4.28)

We get by (2.9), (4.27),(4.28) and Cauchy-Schwarz’s inequality

(∫ tnk

tnk−1

bℓ(t, Xt)dt− bℓ(t
n
k−1, Xtnk−1

)(tnk − tnk−1)

)2

6
(

1

n
C

(
1 + sup

tnk−16t6tnk

‖Xt −Xtnk−1
‖+ 2η

(
1

n

)
sup

06t61
‖Xt‖

))2

6 C3

n2

(
1 + sup

tnk−16t6tnk

‖Mt −Mtnk−1
‖2 +

(
1

n2
+ η

(
1

n

)2
)

sup
06t61

‖Mt‖2

)
(4.29)

Chose ε(n) > 0 so that

ε(n) → 0 but
1
n2 + η

(
1
n

)2

ε(n)
→ 0 (4.30)

By (4.29) and the definition of Zℓ,n, we have that

lim sup
n→∞

1

n
log P

(
1

ε(n)
Zℓ,n > δ

)
6 max(A, B)
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where

A = lim sup
n→∞

1

n
log P

(
1

ε(n)n
max
k6n

sup
tnk−16t6tnk

‖Mt −Mtnk−1
‖2 > C4δ

)

6 2 max
ℓ=1,2

lim sup
n→∞

1

n
log P

(
1

ε(n)n
max
k6n

sup
tnk−16t6tnk

|Mℓ,t −Mℓ,tnk−1
|2 > C4δ

)
, (4.31)

and

B = lim sup
n→∞

1

n
log P

(
1

ε(n)2n

(
1

n2
+ η

(
1

n

)2
)

sup
06t61

‖Mt‖2 > C5δ

)

6 2 max
ℓ=1,2

lim sup
n→∞

1

n
log P

(
1

ε(n)n

(
1

n2
+ η

(
1

n

)2
)

sup
06t61

|Mℓ,t|2 > C5δ

)
. (4.32)

By Lévy’s inequality for a Brownian motion and our choice (4.30) of ε(n), the limits
(4.31) and (4.32) are both −∞. Limit (4.26) follows.

Step 2. We shall prove that
√

n
bn

(Ṽ n
· − [V ]·) and

√
n

bn
(V n

· (X − Y ) − [V ]·) satisfy the same

LDP, by means of the approximation lemma in [14] and of three strong tools: Gronwall’s
inequality, Lévy’s inequality and an isoperimetric inequality for gaussian processes. By the
estimation above (4.23) and (4.24), and as Qn

ℓ,t(X − Y ) was also estimated in the proof
Theorem 1.3 in [14]. It remains to control Zℓ,n given in (4.25) . For this we just need to
prove that:

1

ε(n)

√
n

bn
Zℓ,n

superexp−→
b2n

0. (4.33)

Chose ε(n) > 0 so that

ε(n)
√

n

bn

→ 0 but

(
1
n2 + η

(
1
n

)2)
bn

ε(n)
√

n
→ 0. (4.34)

By (4.29) and the definition of Zℓ,n given in (4.25), we have that

lim sup
n→∞

1

b2
n

log P
(

1

ε(n)

√
n

bn
Zℓ,n > δ

)
6 max(A, B)

where

A = lim sup
n→∞

1

b2
n

log P

(
1

ε(n)bn

√
n

max
k6n

sup
tnk−16t6tnk

‖Mt −Mtnk−1
‖2 > C4δ

)

6 2 max
ℓ=1,2

lim sup
n→∞

1

b2
n

log P

(
1

ε(n)bn

√
n

max
k6n

sup
tnk−16t6tnk

|Mℓ,t −Mℓ,tnk−1
|2 > C4δ

)
, (4.35)

and

B = lim sup
n→∞

1

b2
n

log P

(
1

ε(n)bn

√
n

(
1

n2
+ η

(
1

n

)2
)

sup
06t61

‖Mt‖2 > C5δ

)

6 2 max
ℓ=1,2

lim sup
n→∞

1

b2
n

log P

(
1

ε(n)bn

√
n

(
1

n2
+ η

(
1

n

)2
)

sup
06t61

|Mℓ,t|2 > C5δ

)
. (4.36)
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By Lévy’s inequality for a Brownian motion and our choice (4.34) of ε(n), the limit (4.36)
are also −∞. As in [14], it’s more little difficult to estimate (4.35). By the isoperimetric
inequality [[21], p17,(1.24)] and our choice (4.34), we conclude that the limit (4.35) are both
−∞.

4.7. Proof of Corollary 3.2.

We have just to do the identification of the rate function. We knew that ̺n
1 (X) satisfies

the LDP on R with speed n and with the good rate function given by

Iρ
ldp(u) := inf

{(x1,x2,x3)∈R3:x3=u
√

x1x2,x1>0,x2>0}
IV
ldp(x1, x2, x3),

where IV
ldp is given in (2.6). So

Iρ
ldp(u) = inf

{
log

(√
σ2

1σ
2
2(1− ρ2)

√
x1x2

√
1− u2

)
− 1 +

σ2
2x1 + σ2

1x2 − 2ρσ1σ2u
√

x1x2

2σ2
1σ

2
2(1− ρ2)

, x1 > 0, x2 > 0

}
.

The above infinimum is attained at the point (x1, x2) =

(
σ2

1(1− ρ2)

1− ρu
,
σ2

2(1− ρ2)

1− ρu

)
, so we

obtain (3.1).

4.8. Proof of Proposition 3.3.

As said before, quite unusually, the MDP is here a little bit harder to prove, due to the

fact that it is not a simple transformation of the MDP of
√

n
bn

(V n
t − [V ]t). Therefore we will

use the strategy developped for the TCL: the delta-method. Fortunately, Gao and Zhao
[17] have developped such a technology at the large deviations level. However it will require
to prove quite heavy exponential negligibility to be able to do so. For simplicity we omit
X in the notations of Qn

1,t(X) and Cn
t (X).

Let introduce Ξt,n such that Ξn
t :=

√
Qn

1,t

√
Qn

2,t. Then by the Lemma 5.3 applied to the

functions g := (x, y, z) 7→ √
x
√

y and h := (x, y, z) 7→ 1√
x
√

y
, we deduce that

√
n

bn

(
Ξn

1 −

E(Ξn
1 )

)
and

√
n

bn

(
(Ξn

1 )−1 − (E(Ξn
1 ))−1

)
satisfies the LDP on R with the same speed b2

n and

with the rates functions respectively given by IΞ
mdp and IΞ−1

mdp :

IΞ
mdp(u) := inf

{(x,y,z)∈R3,u=
σ2
1

y+σ2
2

x

2σ1σ2
}
{Imdp(x, y, z)},

and

IΞ−1

mdp(u) := inf
{(x,y,z)∈R3,u=−σ2

1
y+σ2

2
x

2σ3
1σ3

2
}
{Imdp(x, y, z)},

where Imdp is given in (2.7).
By some simple calculations, we have

̺n
1 (X)− ̺ = ℵn

1 + ℵn
2 + ℵn

3 + ℵn
4 − ℵn

5 − ℵn
6 , (4.37)
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where

ℵn
1 := (Cn

1 − ECn
1 )

(
1

Ξn
1

− 1

E(Ξn
1 )

)
, ℵn

2 := (Cn
1 − ECn

1 )
1

EΞn
1

,

ℵn
3 := (ECn

1 − ̺EΞn
1 )

(
1

Ξn
1

− 1

EΞn
1

)
, ℵn

4 := (ECn
1 − ̺EΞn

1 )
1

EΞn
1

,

ℵn
5 := ̺(Ξn

1 − EΞn
1 )

(
1

Ξn
1

− 1

EΞn
1

)
, ℵn

6 := ̺(Ξn
1 − EΞn

1 )
1

EΞn
1

.

To prove the Theorem 3.3, we have to use the Lemma 5.3 and prove some negligibility
in the sence of MDP: √

n

bn
ℵn

1

superexp−→
b2n

0, (4.38)

√
n

bn
ℵn

3

superexp−→
b2n

0, (4.39)

√
n

bn
ℵn

4

superexp−→
b2n

0, (4.40)

√
n

bn

ℵn
5

superexp−→
b2n

0. (4.41)

Since ECn
1 − ̺EΞ1,n → 0 as n →∞, (4.40) follows.

We have for all δ > 0

P
(√

n

bn

|ℵn
1 | > δ

)
6 P

(√
n

bn

∣∣∣∣Cn
1 − ECn

1

∣∣∣∣ > αn

)
+ P

(√
n

bn

∣∣∣∣
1

Ξ1,n

− 1

EΞ1,n

∣∣∣∣ > αn

)
,

where αn =
√√

n
bn

δ.

So, by the Lemma 1.2.15 in [13], we have that for all δ > 0

lim sup
n→∞

1

b2
n

log P
(√

n

bn

|ℵn
1 | > δ

)

is majorized by the maximum of the following two limits

lim sup
n→∞

1

b2
n

log P
(√

n

bn

∣∣∣∣Cn
1 − ECn

1

∣∣∣∣ > αn

)
, (4.42)

lim sup
n→∞

1

b2
n

log P
(√

n

bn

∣∣∣∣
1

Ξ1,n
− 1

EΞ1,n

∣∣∣∣ > αn

)
. (4.43)

Let A > 0 be arbitrary, since αn →∞ as n →∞, so for n large enough we obtain that

1

b2
n

log P
(√

n

bn

∣∣∣∣Cn
1 − ECn

1

∣∣∣∣ > αn

)
6 1

b2
n

log P
(√

n

bn

∣∣∣∣Cn
1 − ECn

1

∣∣∣∣ > A

)
.

By the MDP of
√

n
bn

(Cn
1 − ECn

1 ) obtained in Theorem 2.3 in [15], and by letting n to
infinity, we obtain that

lim sup
n→∞

1

b2
n

log P
(√

n

bn

∣∣∣∣Cn
1 − ECn

1

∣∣∣∣ > αn

)
6 − inf

|x|>A
IC
mdp(x).

Letting A gos to the infinity, we obtain that the term in (4.42) goes to −∞.

By the MDP of
√

n
bn

( 1
Ξ1,n

− 1
E(Ξ1,n)

) stated before and in the same way we obtain that the

term in (4.43) goes to −∞. So we obtain (4.38).
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The same calculations give us (4.39) and (4.41).
So √

n

bn

(̺n
1 (X)− ̺)

and √
n

bn

(
Cn

1 − ECn
1 − ̺(Ξn

1 − EΞn
1 )

)
1

EΞn
1

satisfies the same MDP.
Since E(Ξ1,n) −→ σ1σ2, so

√
n

bn

(̺n
1 − ̺) and

√
n

bn

(
Cn

1 − ECn
1 − ̺(Ξn

1 − EΞn
1 )

)
1

σ1σ2

satisfies the same MDP.
Then by the Lemma 5.3 applied to the function φ : (x, y, z) 7→ (z − ̺

√
x
√

y)/σ1σ2, we

deduce that
√

n
bn

(̺n
1 (X)−̺) satisfies the LDP on R with speed b2

n and with the rate function
given by

I̺
mdp(u) = inf

{(x,y,z)∈R3:u= z
σ1σ2

−̺
σ2
1

y+xσ2
2

2σ2
1σ2

2
}
Imdp(x, y, z),

where Imdp is given in (2.7).

4.9. Proof of Proposition 3.7.

By the Lemma 5.3 applied to the function f : x 7→ 1
x
,
√

n
bn

( 1
Qn

1,1
− 1

E(Qn
1,1)

) satisfies the LDP

on R with the same speed b2
n and with the rate function given by

I
Q−1

1
mdp (u) := inf

{(x,y,z)∈R3:u=− x

σ4
1
}
{Imdp(x, y, z)}

By some simple calculations, we have

βn
1,1(X)− ̺

σ2

σ1

= n
1 + n

2 + n
3 + n

4 − n
5 − n

6 , (4.44)

where

n
1 := (Cn

1 − ECn
1 )

(
1

Qn
1,1

− 1

EQn
1,1

)
, n

2 := (Cn
1 − ECn

1 )
1

EQn
1,1

,

n
3 := (ECn

1 − ̺
σ2

σ1
EQn

1,1)

(
1

Qn
1,1

− 1

EQn
1,1

)
, n

4 := (ECn
1 − ̺

σ2

σ1
EQn

1,1)
1

EQn
1,1

,

n
5 := ̺

σ2

σ1

(
Qn

1,1 − EQn
1,1

)( 1

Qn
1,1

− 1

EQn
1,1

)
, n

6 := ̺
σ2

σ1

(
Qn

1,1 − EQn
1,1

) 1

EQn
1,1

.

To prove the Theorem 3.7, we have to use the Lemma 5.3 and prove some negligibility
in the sense of MDP:

√
n

bn

n
1

superexp−→
b2n

0,

√
n

bn

n
3

superexp−→
b2n

0,

√
n

bn

n
4

superexp−→
b2n

0,

√
n

bn

n
5

superexp−→
b2n

0. (4.45)

The same calculations as for the negligibility of ℵn
j works here to obtain (4.45).
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Since EQn
1,1 −→ σ2

1 , we deduce that
√

n

bn

(βn
1,1(X)− ̺

σ2

σ1

))

and √
n

bn

(

(
Cn

1 − ECn
1 − ̺

σ2

σ1

(Qn
1,1 − EQn

1,1

)
1

σ2
1

satisfies the same MDP.
Then by the Lemma 5.3 applied to the function k : (x, y, z) 7→ (z − ̺σ2

σ1
x)/σ2

1 we deduce

that
√

n
bn

(βn
1,1(X) − ̺σ2

σ1
) satisfies the LDP on R with speed b2

n and with the rate function
given by

I
β1,1

mdp(u) = inf
{(x,y,z)∈R3:u=(z−̺

σ2
σ1

x)/σ2
1}

Imdp(x, y, z)

where Imdp is given in (2.7).

5. Appendix

The proofs of the LDP in Theorems 2.1 and 2.3 are respectively based on the Lemmas
5.1 and 5.2 that we will present here for completeness.

5.1. Avoiding Gärtner-Ellis theorem by Najim [26, 25]. Let us introduce some nota-
tions and assumptions in this section.

Let X be a topological vector compact space endowed with it’s Borel σ−field B(X ). Let
BV ([0, 1], Rd), (shortened in BV ) be a space of functions of bounded variation on [0, 1]
endowed with it’s Borel σ−field Bw. Let P(X ) the set of probability measures on X .

Let τ(z) = e|z| − 1, z ∈ Rd and let us consider

Pτ (Rd) =

{
P ∈ P(Rd), ∃a > 0;

∫

Rd

τ
(z

a

)
P (dz) < ∞

}

=

{
P ∈ P(Rd), ∃α > 0;

∫

Rd

eα|z|P (dz) < ∞
}

.

Pτ is the set of probability distributions having some exponential moments.We denote
by M(P, Q) the set of all laws on Rd × Rd with given marginals P and Q. We introduce
the Orlicz-Wasserstein distance defined on Pτ (Rd) by

dOW (P, Q) = inf
η∈M(P,Q)

inf

{
a > 0;

∫

Rd×Rd

τ

(
z − z′

a

)
η(dzdz′) 6 1

}

Let (Zn
i )16i6n,n∈N be a sequence of Rd−valued independent random variables satisfying:

N-1

Eeα.||Z|| < +∞ for some α > 0.

N-2 Let (xn
i , 1 6 i 6 n, n > 1) be a X−valued sequence of elements satisfying:

1

n

n∑

j=1

δxn
j

weakly−−−−→
n→∞

R.
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Where R is Assumed to be a strictly positive probability measure, that is R(U) > 0
whenever U is a nonempty open subset of X .

N-3 X is a compact space.

N-4 There exist a family of probability measure (P (x, ·), x ∈ X ) over Rd and a sequence
(xn

i , 1 6 i 6 n, n > 1) with values in X such that the law of each Zn
i is given by:

L(Zn
i ) ∼ P (xn

i , dz).

We will equally write P (x, ·), Px or Px(dz).

N-5 Let (P (x, ·), x ∈ X ) ⊂ Pτ (Rd) be a given distribution. The application x 7→ P (x, A)
is measurable whenever the set A ⊂ Rd is borel. Morever, the function

Γ :X → Pτ (Rd)

x 7→ P (x, ·)

is continuous when Pτ (Rd) is endowed with the topology induced by the distance
dOW

Lemma 5.1. Theorem 2.2 in [26]
Assume that Zn

i are independent and identically distributed, so we denote Zn
i by Zi.

Assume that (N-1) and (N-2) hold. Let f : X → Rm×d be a (matrix-valued) bounded
continuous function, such that

f(x) · z =




f1(x) · z

...

fm(x) · z




where each fj ∈ Cd(X ) is the jth row of the matrix f .
Then the family of the weighted empirical mean

〈Ln, f〉 :=
1

n

n∑

i=1

f(xn
i ) · Zi

satisfies the LDP in (Rm,B(Rm)) with speed n and the good rate function

If(x) = sup
θ∈Rm

{〈θ, x〉 −
∫

X
Λ[

m∑

i=1

θi · fi(x)]R(dx)} ∀x ∈ Rm

where Λ denote the cumulant generating function of Z

Λ(λ) = log Eeλ·Z for λ ∈ Rd

Lemma 5.2. Theorem 4.3 in [27]
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Assume that (N-1), (N-2), (N-3), (N-4) and (N-5) hold. Then the family of random
functions

Zn(t) =
1

n

[nt]∑

k=1

Zn
k , t ∈ [0, 1]

satisfies the LDP in (BV ,Bw) with the good rate function

φ(f) =

∫

[0,1]

Λ∗(x, f
′
a(x))dx +

∫

[0,1]

ρ(x, f
′
s(x))dθ(x)

where θ is any real-valued nonnegative measure with respect to which µf
s is absolutely con-

tinuous and f
′
s = dµf

s

dθ
, where

Λ∗(x, z) = sup
λ∈Rd

{
〈λ, z〉 − Λ(x, λ)

}
, ∀z ∈ Rd

with Λ(x, λ) = log
∫

Rd e〈λ,z〉P (x, dz), ∀λ ∈ Rd and the recession function ρ(x, z) of Λ∗(x, z)

defined by: ρ(x, z) = sup{〈λ, z〉 , λ ∈ Dx} with Dx = {λ ∈ Rd, Λ(x, λ) < ∞}.

5.2. Delta method for large deviations [17]. In this section, we recall the delta method
in large deviation.

Let X and Y be two metrizable topological linear spaces. A function φ defined on a
subset Dφ of X with values on Y is called Hadamard differentiable at x if there exists a
continuous functions φ′ : X 7→ Y such that

lim
n→∞

φ(x + tnhn)− φ(x)

tn
= φ′(h) (5.1)

holds for all tn converging to 0+ and hn converging to h in X such that x + tnhn ∈ Dφ for
every n.

Lemma 5.3. Let X and Y be two metrizable topological linear spaces. Let φ : D ⊂ X 7→ Y
be a Hadamard differentiable at θ tangentially to D0, where Dφ and D0 are two subset of
X . Let {(Ωn,Fn, Pn), n > 1} be a sequence of probability space and let {Xn, n > 1} be a
sequence of maps from from Ωn to Dφ and let {rn, n > 1} be a sequence of positive real
numbers satisfying rn → +∞ and let {λ(n), n > 1} be a sequence of positive real numbers
satisfying λ(n) → +∞.
If {rn(Xn−θ), n > 1} satifies the LDP with speed λ(n) and rate function I and {I < ∞} ⊂
D0, then {rn(φ(Xn)− φ(θ)), n > 1} satifies the LDP with speed λ(n) and rate function Iφ′θ

,
where

Iφ′θ
(y) = inf{I(x); φ′θ(x) = y}, y ∈ Y (5.2)
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36 HACÈNE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

[28] Perrin, O., and Zani, M. Large deviations for sample paths of Gaussian processes quadratic vari-
ations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 328, Veroyatn. i Stat. 9
(2005), 169–181, 280.

[29] Revuz, C., and Yor, M. Continuous martingales and Brownian motion. Third edition. Springer-
Verlag, Berlin, 1999.

[30] Robert, C. Y., and Rosenbaum, M. Volatility and covariation estimation when microstructure
noise and trading times are endogenous. Mathematical Finance, 22, 1 (2012), 133–164.

[31] Rockafellar, R. T. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University
Press, Princeton, N.J., 1970.

[32] Shen, S. Large deviation for the empirical correlation coefficient of two gaussian random variables.
Acta Mathematica Scientia. Series B. English Edition, 27, 4 (2007), 821–828.

[33] Shin, K., and Otsu, T. Large deviations of realized volatility. Stochastic Processes and their Appli-
cations, 122, 2 (2012), 546–581.

[34] Todorov, V., and Bollerslev, T. Jumps and betas: a new framework for disentangling and
estimating systematic risks. Journal of Econometrics, 157, 2 (2010), 220–235.

[35] Wu, L. An introduction to large deviation. in: J. a. yan, s. peng, s. fang and l. wu (eds). Several
topics in stochastic analysis. Academic Press of China, Beijing (1997), 225–336.
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LARGE DEVIATIONS OF THE THRESHOLD ESTIMATOR OF
INTEGRATED (CO-)VOLATILITY VECTOR IN THE PRESENCE OF

JUMPS

HACÈNE DJELLOUT AND HUI JIANG

Abstract. Recently a considerable interest has been paid on the estimation problem
of the realized volatility and covolatility by using high-frequency data of financial price
processes in financial econometrics. Threshold estimation is one of the useful techniques in
the inference for jump-type stochastic processes from discrete observations. In this paper,
we adopt the threshold estimator introduced by Mancini [18] where only the variations
under a given threshold function are taken into account. The purpose of this work is to
investigate large and moderate deviations for the threshold estimator of the integrated
variance-covariance vector. This paper is an extension of the previous work in Djellout et
al [11]. where the problem has been studied in absence of the jump component. We will
use the approximation lemma to prove the LDP. As the reader can expect we obtain the
same results as in the case without jump.

AMS 2000 subject classifications: 60F10, 62J05, 60J05.

1. Motivation and context

On a filtred probability space (Ω,F , (Ft)[0,1], P), we consider X1 = (X1,t)t∈[0,1] and
X2 = (X2,t)t∈[0,1] two real processes defined by a Lévy jump-diffusion constructed via the
superposition of a Wiener process with drift and an independent compound Poisson pro-
cess. This is one of the first and simplest extensions to the classical geometric Brownian
motion underlying the famous Black-Scholes-Merton framework for option pricing.

More precisely, X1 = (X1,t)t∈[0,1] and X2 = (X2,t)t∈[0,1] are given by
{

dX1,t = b1(t, ω)dt + σ1,tdW1,t + dJ1,t

dX2,t = b2(t, ω)dt + σ2,tdW2,t + dJ2,t

(1.1)

for t ∈ [0, 1] where W1 = (W1,t)t∈[0,1] and W2 = (W2,t)t∈[0,1] are two correlated Wiener

processes, with ρt = Cov(W1,t, W2,t), t ∈ [0, 1]. We can write W2,t = ρtdW1,t+
√

1− ρ2
t dW3,t,

where W1 = (W1,t)t∈[0,1] and W3 = (W3,t)t∈[0,1] are independent Wiener processes. J1 and J2

are possibly correlated pure jump processes. We assume here that J1 and J2 have finite jump
activity, that is a.s. there are only finitely many jumps on any finite time interval. A general
Lévy model would contain also a compensated infinte activity pure jump component.

Under our assumption Jℓ is necessarily a compound Poisson processe and it can be written
as

Jℓ,s =

Nℓ,s∑

i=1

Yℓ,i, s ∈ [0, 1].

Date: May 1, 2015.
Key words and phrases. Moderate deviation principle, Large deviation principle, Diffusion, Discrete-time

observation, Quadratic variation, Realised volatility, Lévy process, Threshold estimator, Jump Poisson.
1
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Here Yℓ,i are i.i.d. real random variables having law νℓ/λℓ, where νℓ is the Lévy measure
of Xℓ normalized by the total mass λℓ = νℓ(R− {0}) < +∞, and Nℓ is a poisson process,
independent of each Yℓ,i, and with constant intensity λℓ.

Such a jump-type stochastic process is recently a standard tool, e.g., for modeling asset
values in finance and insurance. The key motivation behind jump-diffusion models is the
incorporation of market ”stocks”, which result in ”large” and sudden changes in the price
of risky security and which can hardly be modeled by the diffusive component.

In this paper we concentrate on the estimation of

[V]t =

(∫ t

0

σ2
1,sds,

∫ t

0

σ2
2,sds,

∫ t

0

σ1,sσ2,sρsds

)

Over the last decade, several estimation methods for the integrated variance-covariance
Vt have been proposed. We adopt the threshold estimator which is introduced by Mancini
[18] and also by Shimizu and Yoshida [26], independently.

In this method, only the variations under a given threshold function are taken into
account. The specific estimator excludes all terms containing jumps from the realized
co-variation while remaining consistent, efficient and robust when synchronous data are
considered.

Since the seminal work of Mancini [18], several authors have leveraged or extended the
thresholding cencept to deal with complex stochastic models, see Shimizu and Yoshida [26],
or Ogihara and Yoshida [22]. The similar idea is also used by various authors in different
contexts; see, e.g., Äıt-Sahalia et al. [1], [2] and [3], Gobbi and Mancini [15] , Cont and
Mancini [21] , among others.

So, given the synchronous and evenly-spaced observation of the process X1,t0 , X1,t1 , · · · , X1,tn ,
X2,t0 , X2,t1 · · · , X2,tn with t0 = 0, tn = 1, n ∈ N, we consider the following statistics




[nt]∑

k=1

(∆n
kX1)

2,

[nt]∑

k=1

(∆n
kX2)

2,

[nt]∑

k=1

∆n
kX1∆

n
kX2




where ∆n
kXℓ := Xℓ,tk − Xℓ,tk−1

. However this estimate can be highly biased when the
processes Xℓ contain jumps, in fact, as n →∞ such a sum approaches the global quadratic
variance-covariation

([X1]t, [X2]t, [X1, X2]t)

where

[Xℓ]t :=

∫ t

0

σ2
ℓ,sds +

∑

s≤t

(∆Jℓ,s)
2, and [X1, X2]t :=

∫ t

0

σ1,sσ2,sρsds +
∑

s≤t

∆J1,s∆J2,s.

which also contain the co-jumps, where ∆Jℓ,s = Jℓ,s − Jℓ,s−.
If we take a deterministic function r( 1

n
) at the step 1

n
between the observations, such that

lim
n→∞

r

(
1

n

)
= 0, and lim

n→∞
log n

nr
(

1
n

) = 0.

The function r(·) is a threshold such that whenever |∆n
kXℓ|2 > r( 1

n
), a jump has to occur

within ]tk−1, tk]. Hence we can recover [V]t using the following threshold estimator
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Vn
t (X) = (Qn

1,t(X),Qn
2,t(X), Cn

t (X))

where

Qn
ℓ,t(X) =

[nt]∑

k=1

(∆n
kXℓ)

21{(∆n
k Xℓ)2≤r( 1

n
)}

and

Cn
t (X) =

[nt]∑

k=1

∆n
kX1∆

n
kX21{max2

ℓ=1(∆
n
k Xℓ)2≤r( 1

n
)}

In the work [14], the authors determine what constitutes a good threshold sequence rn

and they propose an objective method for selecting such a sequence.

In the case that Xℓ have no jumps, this question has been well investigated. The problem
of the large deviation of the quadratic estimator of the integrated volatility (without jumps
and in the case of synchronous sampling scheme) is obtained in the paper by Djellout
et al. [12] and recently Djellout and Samoura [13] have studied the large deviation for
the covariance estimator. Djellout et al. [11] have also investigated the problem of the
large deviation for the realized (co-)volatility vector which allows them to provide the large
deviation for the standard dependence measures between the two assets returns such as the
realized regression coefficients, or the realized correlation.

However, the inclusion of jumps within financial models seems to be more and more
necessary for pratical applications. In this case, Mancini [21] has shown that Vn

t is a
consistent estimators of Vt and has some asymtotic normality respectively. Furthermore,
when σt = σ, she [19] studied the large deviation for the threshold estimator. Jiang [16]
obtained moderate deviations and functional moderate deviations for threshold estimator.
In our paper and by the method as in Mancini [19] and Djellout et al [11], we consider
moderate and functionnal moderate deviation for estimators V n

t and large deviation.

More precisely we are interested in the estimations of

P
(√

n

vn

(Vn
t (X)− [V]t) ∈ A

)

where A is a given domain of deviation, (vn)n>0 is some sequence denoting the scale of
deviation. When vn = 1 this is exactly the estimation of central limit theorem. When
vn =

√
n, it becomes the large deviation. Furthermore, when vn →∞ and vn = o(

√
n), this

is the so called moderate deviations. In other words, the moderate deviations investigate
the convergence speed between the large deviations and central limit theorem.

Let us recall some basic defintions in large deviations theory. Let (µt)t>0 be a family of
probability on a topological space (S,S) where S is a σ-algebra on S and λt be a nonnegative
function on [1, +∞[ such that limt→∞ λt = +∞. A function I : S → [0, +∞] is said to be
a rate function if it is lower semicontinuous and it is said to be a good rate function if its
level set {x ∈ S; I(x) ≤ a} is a compact for all a ≥ 0.

(µt) is said to satisfy a large deviation principle with speed λt and rate function I if for
any closed set F ∈ S

lim sup
t→∞

1

λt
log µt(F ) ≤ − inf

x∈F
I(x)
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and for any open set G ∈ S

lim sup
t→∞

1

λt
log µt(G) ≥ − inf

x∈G
I(x).

Notations. In the whole paper, for any matrix M , MT and ‖M‖ stand for the transpose
and the euclidean norm of M , respectively. For any square matrix M , det(M) is the deter-
minant of M . Moreover, we will shorten large deviation principle by LDP and moderate
deviation principle by MDP. We denote by 〈·, ·〉 the usual scalar product. For any process Zt,

∆t
sZ stands for the increment Zt−Zs. We use ∆n

kZ for ∆
tnk
tnk−1

Z. In addition, for a sequence

of random variables (Zn)n on Rd×p, we say that (Zn)n converges (λn)−superexponentially
fast in probability to some random variable Z if, for all δ > 0,

lim sup
n→∞

1

λn

log P
(
‖Zn − Z‖ > δ

)
= −∞.

This exponential convergence with speed λn will be shortened as

Zn
superexp−→

λn

Z.

The article is arranged in two upcoming sections. Section 2 is devoted to our main results
on the LDP and MDP for the (co-)volatility vector in the presence of jumps. In section 3,
we give the proof of these theorems.

2. Main results

Let Xt = (X1,t, X2,t) be given by (1.1). We introduce the following conditions

(B) for ℓ = 1, 2 b(·, ·) ∈ L∞(dt⊗ P)

(LDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2

t ) and σ1,tσ2,t(1− ρ2
t ) ∈ L∞([0, 1], dt).

• the functions t → σℓ,t and t → ρt are continuous.
• let r such that

r

(
1

n

)
−−−→
n→∞

0 and nr

(
1

n

)
−−−→
n→∞

∞.

(MDP) Assume that for ℓ = 1, 2

• σ2
ℓ,t(1− ρ2

t ) and σ1,tσ2,t(1− ρ2
t ) ∈ L2([0, 1], dt).

• Let (vn)n>1 be a sequence of positive numbers such that

vn −−−→
n→∞

∞ and
vn√
n
−−−→
n→∞

0 and
√

nvnr

(
1

n

)
= O(1)

and for ℓ = 1, 2

r

(
1

n

)

log

(
n

v2
n

)
n

max
k=1

∫ tk

tk−1

σ2
ℓ,sds

−→ +∞. (2.1)
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We introduce the following function, which will play a crucial role in the calculation of
the moment generating function: for −1 < c < 1 let for any λ = (λ1, λ2, λ3) ∈ R3

Pc(λ) :=





−1

2
log

(
(1− 2λ1(1− c2))(1− 2λ2(1− c2))− (λ3(1− c2) + c)2

1− c2

)

if λ ∈ D
+∞, otherwise

(2.2)

where

Dc =

{
λ ∈ R3, max

ℓ=1,2
λℓ <

1

2(1− c2)
and

2∏

ℓ=1

(
1− 2λℓ(1− c2)

)
>
(
λ3(1− c2) + c

)2
}

.

(2.3)

Let us present now the main results.

2.1. Moderate deviation. Let us now consider the intermediate scale between the central
limit theorem and the law of large numbers.

Theorem 2.1. For t=1 fixed. Under the conditions (MDP) and (B), the sequence
√

n

vn

(Vn
1 (X)− [V]1)

satisfies the LDP on R3 with speed v2
n and with rate function given by

Imdp(x) = sup
λ∈R3

(
〈λ, x〉 − 1

2
〈λ, Σ1 · λ〉

)
=

1

2

〈
x, Σ−1

1 · x
〉

(2.4)

with

Σ1 =




∫ 1

0
σ4

1,tdt
∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ3

1,tσ2,tρtdt

∫ 1

0
σ2

1,tσ
2
2,tρ

2
t dt

∫ 1

0
σ4

2,tdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0
σ3

1,tσ2,tρtdt
∫ 1

0
σ1,tσ

3
2,tρtdt

∫ 1

0

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )dt




.

Remark 2.1. Under the condition bℓ = 0, we can prove that for all θ ∈ R3

lim
n→∞

1

v2
n

log E
(
e
√

nvn〈θ,Vn
1 (X)−[V ]1〉

)
=

1

2
< θ, Σ1 · θ > .

This gives an alternative proof of the moderate deviation using Gärtner-Ellis theorem.

Remark 2.2. If for some p > 2, σ2
1,t, σ2

2,t and σ1,tσ2,t(1−ρ2
t ) ∈ Lp([0, 1]) and vn = O(n

1
2
− 1

p ),
the condition (2.1) in (MDP) is verified.

Let H be the banach space of R3-valued right-continuous-left-limit non decreasing func-
tions γ on [0, 1] with γ(0) = 0, equipped with the uniform norm and the σ−field Bs

generated by the coordinate {γ(t), 0 6 t 6 1}.
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6 HACÈNE DJELLOUT AND HUI JIANG

Theorem 2.2. Under the conditions (MDP) and (B), the sequence
√

n

vn
(Vn

. (X)− [V].)

satisfies the LDP on H with speed v2
n and with rate function given by

Jmdp(φ) =





∫ 1

0

1

2

〈
φ̇(t), Σ

−1

t · φ̇(t)
〉

dt if φ ∈ AC0([0, 1])

+∞, otherwise,
(2.5)

where

Σt =




σ4
1,t σ2

1,tσ
2
2,tρ

2
t σ3

1,tσ2,tρt

σ2
1,tσ

2
2,tρ

2
t σ4

2,t σ1,tσ
3
2,tρt

σ3
1,tσ2,tρt σ1,tσ

3
2,tρt

1

2
σ2

1,tσ
2
2,t(1 + ρ2

t )




is invertible and Σ
−1

t his inverse such that

Σ
−1

t =
1

det(Σt)




1

2
σ2

1,tσ
6
2,t(1− ρ2

t )
1

2
σ4

1,tσ
4
2,tρ

2
t (1− ρ2

t ) −σ3
1,tσ

5
2,tρt(1− ρ2

t )

1

2
σ4

1,tσ
4
2,tρ

2
t (1− ρ2

t )
1

2
σ6

1,tσ
2
2,t(1− ρ2

t ) −σ5
1,tσ

3
2,tρt(1− ρ2

t )

−σ3
1,tσ

5
2,tρt(1− ρ2

t ) −σ5
1,tσ

3
2,tρt(1− ρ2

t ) σ4
1,tσ

4
2,t(1− ρ4

t )




,

with det(Σt) =
1

2
σ6

1,tσ
6
2,t(1− ρ2

t )
3,

and AC0 = {φ : [0, 1] → R3 is absolutely continuous with φ(0) = 0} .

Remark 2.3. A similar result for the moderate deviations is obtained by Jiang [16] in the

jump case for
(√

n
vn

(
Qn

ℓ,t −
∫ t

0
σ2

ℓ,sds
))

n≥1
.

2.2. Large deviation. Our second result is about the large deviation of Vn
1 (X), i.e. at

fixed time.

Theorem 2.3. Let t = 1 be fixed. Under the conditions (LDP) and (B) , the sequence
Vn

1 (X) satisfies the LDP on R3 with speed n and with good rate function given by the legendre
transformation of Λ, that is

Ildp(x) = sup
λ∈R3

(〈λ, x〉 − Λ(λ)) , (2.6)

where Λ(λ) =
∫ 1

0
Pρt(λ1σ

2
1,t, λ2σ

2
2,t, λ3σ1,tσ2,t)dt.
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Remark 2.4. Under the condition bℓ = 0, we can calculate the moment generating function
of Vn

1 (X). We obtain that for all θ = (θ1, θ2, θ3)
T ∈ Dρt

lim
n→∞

1

n
E
(
en〈θ,Vn

1 (X)〉) =

∫ 1

0

Pρs

(
θ1σ

2
1,s, θ2σ

2
2,s, θ3σ1,sσ2,s

)
ds.

But the study of the steepness is more difficult.

Let us consider the case where diffusion and correlation coefficients are constant, the rate
function being easier to read. Before that let us introduce the function P ∗

c which is the
Legendre transformation of Pc given in (2.2), for all x = (x1, x2, x3)

P ∗
c (x) :=





log

( √
1− c2

√
x1x2 − x2

3

)
− 1 +

x1 + x2 − 2cx3

2(1− c2)

if x1 > 0, x2 > 0, x1x2 > x2
3

+∞, otherwise.

(2.7)

Corollary 2.4. We assume that for ℓ = 1, 2 σℓ and ρ are constants. Under the condition
(B), we obtain that Vn

1 (X) satisfies the LDP on R3 with speed n and with good rate function
IVldp given by

IVldp(x1, x2, x3) = P ∗
ρ

(
x1

σ2
1

,
x2

σ2
2

,
x3

σ1σ2

)
, (2.8)

where P ∗
c is given in (2.7).

Remark 2.5. In the case σℓ is constant, a similar result for the large deviations is obtained
by Mancini [19] in the jump case for

(
Qn

ℓ,1

)
n≥1

Now, we shall extend Theorem 2.3 to the process-level large deviations, i.e. for trajecto-
ries (Vn

t (X), t ∈ [0, 1]) which is interesting from the viewpoint of non-parametric statistics.

Let BV ([0, 1], R3) (shorted in BV ) be the space of functions of bounded variation on
[0, 1]. We identify BV with M3([0, 1]), the set of vector measures with value in R3. This is
done in the usual manner: to f ∈ BV , there corresponds µf by µf([0, t]) = f(t). Up to this
identification, C3([0, 1]) the set of R3-valued continuous bounded functions on [0, 1], is the
topology dual of BV . We endow BV with the weak-* convergence topology σ (BV, C3([0, 1]))
and with the associated Borel-σ-field Bω. Let f ∈ BV and µf the associated measure in
M3([0, 1]). Consider the Lebesgue decomposition of µf , µf = µf

a +µf
s where µf

a denotes the
absolutely continuous part of µf with respect to dx and µf

s its singular part. We denote by
fa(t) = µf

a([0, t]) and by fs(t) = µf
s ([0, t]).

Theorem 2.5. Under the conditions (LDP) and (B), the sequence Vn
. (X) satisfies the

LDP on BV with speed n and rate function Jldp given for any f = (f1, f2, f3) ∈ BV by

Jldp(f) =

∫ 1

0

P ∗
ρt

(
f ′1,a(t)

σ2
1,t

,
f ′2,a(t)

σ2
2,t

,
f ′3,a(t)

σ1,tσ2,t

)
(2.9)

+

∫ 1

0

σ2
2,tf

′
1,s(t) + σ2

1,tf
′
2,s(t)− 2ρtσ1,tσ2,tf

′
3,s(t)

2σ2
1,tσ

2
2,t(1− ρ2

t )
1[t:f ′1,s>0,f ′2,s>0,(f ′3,s)2<f ′1,sf ′2,s]dθ(t),

where P ∗
c is given in (2.7) and θ is any real-valued nonnegative measure with respect to

which µf
s is absolutely continuous and f ′s = dµf

s/dθ = (f ′1,s, f
′
2,s, f

′
3,s).
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3. Proofs

For the convenience of the reader, we recall the following lemma which is the key of the
proofs.

Lemma 3.1. (Approximation Lemma) Theorem 4.2.13 in [10]
Let (Y n, Xn, n ∈ N) be a family of random varibales valued in a Polish space S with

metric d(·, ·), defined on a probability space (Ω,F , P). Assume

• P(Y n ∈ ·) satisfies the large deviation principle with speed ǫn (ǫn → ∞) and the
good rate function I.

• for every δ > 0

lim sup
n→∞

1

ǫn

log P(d(Y n, Xn) > δ) = −∞.

Then P(Xn ∈ ·) satisfies the large deviation principle with speed ǫn and the good rate
function I.

Before starting the proof, we need to introduce some technical tools. In the case without
jumps, we introduce the following diffusion for ℓ = 1, 2

Dℓ,t =

∫ t

0

σℓ,sdWℓ,s,

where Wℓ,s and σℓ,s are defined as before. We introduce the correspondent estimator

V n
t = (Qn

1,t, Q
n
2,t, C

n
t )

where for ℓ = 1, 2

Qn
ℓ,t =

[nt]∑

k=1

(∆n
kDℓ)

2 and Cn
t =

[nt]∑

k=1

∆n
kD1∆

n
kD2.

We recall the following results from Djellout et al. [11]

Proposition 3.2. Under the conditions (B) and (MDP),

(1) the sequence √
n

vn

(V n
1 − [V]1)

satisfies the LDP on R3 with speed v2
n and with rate function given by (2.1).

(2) the sequence √
n

vn
(V n

· − [V]·)

satisfies the LDP on H with speed v2
n and with rate function given by (2.2).

Proposition 3.3. Under the conditions (B) and (LDP),

(1) the sequence V n
1 satisfies the LDP on R3 with speed n and with good rate function

given in (2.6).
(2) the sequence Vn

. satisfies the LDP on BV with speed n and rate function Jldp given
by (2.9).
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3.1. Proof of Theorem 2.1.

We will do the proof in two steps.

Part 1 We start with the case bℓ = 0. In this case, Vn
t (X) = Vn

t (X0) with X0
ℓ,t =

Xℓ,t −
∫ t

0
bℓ(s, ω)ds and

Qn
ℓ,1(X

0) =

n∑

k=1

(∆n
kX0

ℓ )21{(∆n
k X0

ℓ )2≤r( 1
n

)}, ℓ = 1, 2

and

Cn
1 (X0) =

n∑

k=1

∆n
kX0

1∆n
kX0

21{max2
ℓ=1(∆

n
kX0

ℓ )2≤r( 1
n

)}.

We will prove that √
n

vn

(
Vn

1 (X0)− V n
1

) superexp−→
v2

n

0.

For that, we will prove that for ℓ = 1, 2√
n

vn

(
Qn

ℓ,1(X
0)−Qn

ℓ,1

) superexp−→
v2

n

0, (3.1)

and √
n

vn

(
Cn

1 (X0)− Cn
1

) superexp−→
v2

n

0. (3.2)

We start by the proof of (3.1). Since the processes X0
ℓ and Dℓ have independent incre-

ment, by Chebyshev inequality we obtain for all θ > 0

P
(√

n

vn

(
Qn

ℓ,1(X
0)−Qn

ℓ,1

)
> δ

)
≤ e−θδv2

n

n∏

k=1

E

(
e

θ
√

nvn

[

(∆n
k X0

ℓ )21{(∆n
k

Xℓ)
2≤r( 1

n )}−(∆n
kDℓ)

2

]
)

.

We have to control each term appearing in the product

E

(
e

θ
√

nvn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
k Dℓ)

2

]
)
≤ ℜ1(k, n) + ℜ2(k, n), (3.3)

where
ℜ1(k, n) := E

(
eθ
√

nvn[(∆n
k X0

ℓ )2−(∆n
kDℓ)

2]1{(∆n
k X0

ℓ )2≤r( 1
n

)}

)

and

ℜ2(k, n) := P
(

(∆n
kX

0
ℓ )2 > r(

1

n
)

)
.

For the first term, we write

ℜ1(k, n) = E
(
eθ
√

nvn[(∆n
k X0

ℓ )2−(∆n
kDℓ)

2]1{(∆n
k X0

ℓ )2≤r( 1
n

)}|∆n
kNℓ = 0

)
P(∆n

kNℓ = 0)

+E
(
eθ
√

nvn[(∆n
k X0

ℓ )2−(∆n
k Dℓ)

2]1{(∆n
k X0

ℓ )2≤r( 1
n

),∆n
kNℓ 6=0}

)
. (3.4)

Since Nℓ is independent of Wℓ, we obtain that

ℜ1(k, n) ≤ P
(

(∆n
kDℓ)

2 ≤ r(
1

n
)

)
e−λℓ/n + e

√
nvnθr( 1

n
)(1− e−λℓ/n)

≤ 1 + e
√

nvnθr( 1
n

)(1− e−λℓ/n). (3.5)
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10 HACÈNE DJELLOUT AND HUI JIANG

Now we have to control ℜ2(k, n), by the same argument as before we have

ℜ2(k, n) = P
(

(∆n
kX

0
ℓ )2 > r(

1

n
)|∆n

kNℓ = 0

)
P(∆n

kNℓ = 0)

+P
(

∆n
kX

0
ℓ )2 > r(

1

n
), ∆n

kNℓ 6= 0

)

≤ P
(

(∆n
kDℓ)

2 > r(
1

n
)

)
e−λℓ/n + (1− e−λℓ/n).

From exponential inequality for martingales, it follows that for ℓ = 1, 2,

P
(

(∆n
kDℓ)

2 > r

(
1

n

))
≤ exp

(
− r( 1

n
)

2
∫ tk

tk−1
σ2

ℓ,sds

)
, (3.6)

which implies that

ℜ2(k, n) ≤ exp

(
− r( 1

n
)

2
∫ tk

tk−1
σ2

ℓ,sds

)
+ (1− e−λℓ/n). (3.7)

From (3.3), (3.5) and (3.7), we obtain that

E

(
e

θ
√

nvn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
k Dℓ)

2

]
)

≤ 1 + (1 + e
√

nvnθr( 1
n

))(1− e−λℓ/n)

+ exp

(
− r( 1

n
)

2
∫ tk

tk−1
σ2

ℓ,sds

)
.

Using the hypotheses (MDP), we have

lim sup
n→∞

n

v2
n

n
max
k=1

log E

(
e

θ
√

nvn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
k Dℓ)

2

]
)

= 0. (3.8)

So

lim sup
n→∞

1

v2
n

log P
(√

n

vn

(
Qn

ℓ,1(X
0)−Qn

ℓ,1

)
> δ

)
≤ −λδ.

Letting λ goes to infinity, we obtain that the right hand of the last inequality goes to
−∞. Proceeding in the same way for −(Qn

ℓ,t(X
0)−Qn

ℓ,t) we obtain (3.1).

Now we have to prove (3.2). For that we have the following decompostion

Cn
1 (X0)− Cn

1 =
1

2

[
Qn

3,1(X
0)−Qn

3,1

]
− 1

2

[
2∑

ℓ=1

Qn

ℓ,1(X
0)−Qn

ℓ,1

]
, (3.9)

where

Qn
3,1 =

n∑

k=1

(∆n
kD1 + ∆n

kD2)
2,

and for ℓ = 1, 2

Qn

ℓ,t(X
0) =

n∑

k=1

(∆n
kX

0
ℓ )21{max2

ℓ=1(∆
n
k X0

ℓ )2≤r( 1
n

)}
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and

Qn

3,1(X
0) =

n∑

k=1

(∆n
kX

0
1 + ∆n

kX0
2 )21{max2

ℓ=1(∆
n
k X0

ℓ )2≤r( 1
n

)}.

Remark that Qn

ℓ,t(X
0) is a slight modification of Qn

ℓ,t(X
0).

We know that ∆n
kD1 + ∆n

kD2 ∼ N (0, β2(k, n)) with

β2(k, n) =

∫ tk

tk−1

σ2
1,sds +

∫ tk

tk−1

σ2
2,sds + 2

∫ tk

tk−1

σ1,sσ2,sρsds.

For all δ > 0, we have

P
(√

n

vn

∣∣Cn
1 (X0)− Cn

1

∣∣ > δ

)
≤ 3

3
max
ℓ=1

P
(√

n

vn

∣∣Qn

ℓ,1(X
0)−Qn

ℓ,1

∣∣ > 2δ

3

)
.

So we obtain (3.2).

Part 2 We have to prove that
√

n

vn

(
Vn

1 (X)− Vn
1 (X0)

) superexp−→
v2

n

0.

We have that
∣∣Qn

ℓ,1(X)−Qn
ℓ,1(X

0)
∣∣ ≤ ε(n)Qn

ℓ,1(X
0) +

(
1 +

1

ε(n)

)
Zn

ℓ (3.10)

and
∣∣Cn

1 (X)− Cn
1 (X0)

∣∣ ≤ ε(n)
2

max
ℓ=1

Qn
ℓ,1(X

0) +

(
1 +

1

ε(n)

)
2

max
ℓ=1

Zn
ℓ , (3.11)

where

Zn
ℓ =

n∑

k=1

(∫ tk

tk−1

bℓ(s, ω)ds

)2

.

By the condition (B), we have that ‖Zn
ℓ ‖ ≤

1

n
. We choose ε(n) such that

√
n

vn
ε(n) → 0, vn

√
nε(n) →∞,

so by the MDP of Qn
ℓ,1(X

0), we obtain the result.

3.2. Proof of Theorem 2.2.

Since the sequence
√

n
vn

(V n
· − [V]·) satisfies the LDP on H with speed v2

n and rate func-
tion Jmdp, by Lemma 3.1, it is sufficient to show that:

√
n

vn

sup
t∈[0,1]

∥∥Vn
t (X0)− V n

t

∥∥ superexp−→
v2

n

0. (3.12)

Lemma 3.4. Under the condition (MDP), we have

lim
n→∞

√
n

vn

sup
t∈[0,1]

∥∥EVn
t (X0)− [V]t

∥∥ = 0.

LDP and MDP for realized covoalatility 91
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Proof We will prove that for ℓ = 1, 2

lim
n→∞

√
n

vn

sup
t∈[0,1]

∣∣∣∣EQn
ℓ,t(X

0)−
∫ t

0

σ2
ℓ,sds

∣∣∣∣ = 0. (3.13)

and

lim
n→∞

√
n

vn
sup

t∈[0,1]

∣∣∣∣ECn
t (X0)−

∫ t

0

σ1,sσ1,sρsds

∣∣∣∣ = 0. (3.14)

In fact, (3.13) can be done in the same way as in Jiang [16]. It remains to show (3.14).
Using (3.9), we obtain that

∣∣∣∣ECn
t (X0)−

∫ t

0

σ1,sσ1,sρsds

∣∣∣∣ ≤
1

2

∣∣EQn

3,t(X
0)− βt

∣∣+ 2
max
ℓ=1

∣∣∣∣EQ
n

ℓ,t(X
0)−

∫ t

0

σ2
ℓ,sds

∣∣∣∣ ,

where βt =
∫ t

0
σ2

1,sds +
∫ t

0
σ2

2,sds + 2
∫ t

0
σ1,sσ2,sρsds. So the proof of (3.14) is a consequence

of (3.13) and the fact that

lim
n→∞

√
n

vn
sup

t∈[0,1]

∣∣EQn

3,t(X
0)− βt

∣∣ = 0,

which is an adaptation of the proof in Jiang [16].

Proof of Theorem 2.2

For (3.12), we will prove that for ℓ = 1, 2
√

n

vn
sup

t∈[0,1]

∥∥Qn
ℓ,t(X

0)−Qn
ℓ,t

∥∥ superexp−→
v2

n

0 and

√
n

vn
sup

t∈[0,1]

∥∥Cn
t (X0)− Cn

t

∥∥ superexp−→
v2

n

0.

From Lemma 3.4, it follows that as n →∞
√

n

vn

sup
t∈[0,1]

(
E(Qn

ℓ,t(X
0)−Qn

ℓ,t) ∨ E(Cn
t (X0)− Cn

t )
)
→ 0. (3.15)

Then, we only need to prove that
√

n

vn
sup

t∈[0,1]

∥∥Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
∥∥ superexp−→

v2
n

0 (3.16)

and √
n

vn
sup

t∈[0,1]

∥∥Cn
t (X0)− Cn

t − E(Cn
t (X0)− Cn

t )
∥∥ superexp−→

v2
n

0. (3.17)

We start by the proof of (3.16). Remark that
(
Qn

ℓ,t(X
0)−Qn

ℓ,t − E(Qn
ℓ,t(X

0)−Qn
ℓ,t)
)

is
a F[nt]/n-martingale. Then

exp
(
λ
(
Qn

ℓ,t(X
0)−Qn

ℓ,t − E(Qn
ℓ,t(X

0)−Qn
ℓ,t)
))

is a submartigale. By the maximal inequality, we have for any η, λ > 0

P

(√
n

vn
sup

t∈[0,1]

(
Qn

ℓ,t(X
0)−Qn

ℓ,t − E(Qn
ℓ,t(X

0)−Qn
ℓ,t)
)

> η

)

≤ e−λv2
nηE exp

(
λ
√

nvn

(
Qn

ℓ,1(X
0)−Qn

ℓ,1 − E(Qn
ℓ,1(X

0)−Qn
ℓ,1)
))
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and

P
(√

n

vn
inf

t∈[0,1]

(
Qn

ℓ,t(X
0)−Qn

ℓ,t − E(Qn
ℓ,t(X

0)−Qn
ℓ,t)
)

< −η

)

≤ e−λv2
nηE exp

(
−λ
√

nvn

(
Qn

ℓ,1(X
0)−Qn

ℓ,1 − E(Qn
ℓ,1(X

0)−Qn
ℓ,1)
))

.

Together with (3.8) and (3.15), we have

lim sup
n→∞

1

v2
n

log P

(√
n

vn

sup
t∈[0,1]

∣∣Qn
ℓ,t(X

0)−Qn
ℓ,t − E(Qn

ℓ,t(X
0)−Qn

ℓ,t)
∣∣ > η

)
≤ −λη.

(3.16) can be obtained by letting λ goes to infinity.
Similarly, we can have (3.17) by (3.8), (3.9) and (3.15).

3.3. Proof of Theorem 2.3.
We will do the proof in two steps.

Step 1 We will prove that

Vn
1 (X0)− V n

1

superexp−→
n

0.

For that, we will prove that for ℓ = 1, 2

Qn
ℓ,1(X

0)−Qn
ℓ,1

superexp−→
n

0, (3.18)

and
Cn

1 (X0)− Cn
1

superexp−→
n

0. (3.19)

We start by the proof of (3.18). Since the processes Xℓ and Dℓ have independent incre-
ment, by Chebyshev inequality we obtain for all θ > 0

P
(
Qn

ℓ,1(X
0)−Qn

ℓ,1 > δ
)
≤ e−θnδ

n∏

k=1

E

(
e

θn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
kDℓ)

2

]
)

.

Similar to (3.3),

E

(
e

θn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
k Dℓ)

2

]
)
≤ I1(k, n) + I2(k, n),

where

I1(k, n) := E
(
eθn[(∆n

kX0
ℓ )2−(∆n

k Dℓ)
2]1{(∆n

k X0
ℓ )2≤r( 1

n
)}

)

and

I2(k, n) := P
(

(∆n
kX0

ℓ )2 > r(
1

n
)

)

From (3.4), (3.5) and (3.7), it follows that

I2(k, n) ≤ exp

(
− r( 1

n
)

2
∫ tk

tk−1
σ2

ℓ,sds

)
+ (1− e−λℓ/n).

and

I1(k, n) ≤ 1 + E
(
eθn[(∆n

k X0
ℓ )2−(∆n

kDℓ)
2]1{(∆n

k X0
ℓ )2≤r( 1

n
),∆n

kNℓ 6=0}

)
.

LDP and MDP for realized covoalatility 93
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Let (αn) be a sequence of real numbers such that αn → 0, which will be chosen latter.
We have

E
(
eθn(∆n

k X0
ℓ )21{(∆n

k X0
ℓ )2≤r( 1

n
),∆n

kNℓ 6=0}

)
= F1(k, n) + F2(k, n),

where

F1(k, n) := E
(
eθn(∆n

k X0
ℓ )21{(∆n

k X0
ℓ )2≤r( 1

n
),∆n

k Nℓ 6=0,|∆n
kJℓ|≤αn}

)

and

F2(k, n) := E
(
eθn(∆n

kX0
ℓ )21{(∆n

k X0
ℓ )2≤r( 1

n
),∆n

kNℓ 6=0,|∆n
kJℓ|>αn}

)
.

We have to prove that for ℓ = 1, 2 limn→∞ maxn
k=1 Fℓ(k, n) → 0. We start with F2(k, n).

From condition (LDP), it follows that n maxn
k=1

∫ tk
tk−1

σ2
ℓ,sds < +∞.

So for all θ > 0, we choose

αn =

(
2

√
θn

n
max
k=1

∫ tk

tk−1

σ2
ℓ,sds + 1

)
√

r(1/n).

Then it is easy to see that

F2(k, n) ≤ eθnr( 1
n

)P


|Z| ≥

2
√

θn maxn
k=1

∫ tk
tk−1

σ2
ℓ,sds

√
r( 1

n
)

√∫ tk
tk−1

σ2
ℓ,sds


 ,

where Z is a standard Gaussian random variable. As a consequence of the well-known

inequality
∫ +∞

y
e−

z2

2 dz ≤ (1/y)e−
y2

2 , for all y > 0, we obtain

F2(k, n) ≤ eθnr( 1
n

)

√
2

π

1√
θnr(1/n)

e−2θnr( 1
n

).

So for n large enough and θ > 1, we have

n
max
k=1

F2(k, n) ≤ e−θnr( 1
n

) −→ 0 as n →∞.

Now we will control F1(k, n). Using the fact that

θn(∆n
kX0

ℓ )2 ≤ θn

[
1

4θn maxn
k=1

∫ tk
tk−1

σ2
ℓ,sds

(∆n
kDℓ)

2 + 4θn
n

max
k=1

∫ tk

tk−1

σ2
ℓ,sds(∆n

kJℓ)
2

]
,

we have with the same choose of the sequence αn, by independence of ∆n
kDℓ and ∆n

kJℓ and
Cauchy-Schwarz inequality that

F1(k, n) ≤ E


e

(∆n
k Dℓ)

2

4 maxn
k=1

∫ tk
tk−1

σ2
ℓ,s

ds


E

(
e
4θ2

(

n maxn
k=1

∫ tk
tk−1

σ2
ℓ,sds

)

n(∆n
k Jℓ)

2

1{|∆n
k Jℓ|≤αn}1{∆n

kNℓ 6=0}

)

≤ E
(
e

Z2

4

)
E

1
2

(
e8θ2n(∆n

kJℓ)
2

1{|∆n
kJℓ|≤αn}

)
P

1
2 (∆n

kNℓ 6= 0) .

From Mancini [19] page 877, we conclude that

lim
n→∞

n
max
k=1

E
(
e8θ2n(∆n

kJℓ)
2

1{|∆n
kJℓ|≤αn}

)
< ∞.
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Since Z is a standard Gaussian random variable, we conclude that

E
(
e

Z2

4

)
< ∞.

So that maxn
k=1 F1(k, n) ≤ C(1− e−λℓ/n) −→ 0 as n →∞.

Therefore,

lim
n→∞

1

n
log

n∏

k=1

E

(
e

θn

[

(∆n
k X0

ℓ )21{(∆n
k

X0
ℓ
)2≤r( 1

n )}−(∆n
kDℓ)

2

]
)

= 0,

which implies that for any θ > 1

lim
n→∞

1

n
log P

(
Qn

ℓ,1(X
0)−Qn

ℓ,1 > δ
)
≤ −θδ.

Letting θ goes to infinity, we obtain that the left term in the last inequality goes to −∞.
And similarly, by doing the same calculation with

P
(
Qn

ℓ,1(X
0)−Qn

ℓ,1 < −δ
)
,

we can get (3.18).
To prove (3.19), we use the decomposition (3.9) and an adaptation of the proof of (3.18).

Step 2 We will prove that

Vn
1 (X)− Vn

1 (X0)
superexp−→

n
0.

For that we use (3.10) and (3.11) and we choose ε(n) such that nε(n) → 0 to obtain the
result.

3.4. Proof of Theorem 2.5.
We will prove that for ℓ = 1, 2

sup
t∈[0,1]

∥∥Qn
ℓ,t(X

0)−Qn
ℓ,t

∥∥ superexp−→
n

0 and sup
t∈[0,1]

∥∥Cn
t (X0)− Cn

t

∥∥ superexp−→
n

0.

To do that we use the same argument as in the proof of Theorem 2.2 and the fact that

sup
t∈[0,1]

∣∣E(Qn
ℓ,t(X

0)−Qn
ℓ,t))
∣∣ −→ 0.

References

[1] Aı̈t-Sahalia, Y. Disentangling diffusion from jumps. Journal of Financial Economics 74 (2004),
487–528.

[2] Aı̈t-Sahalia, Y., and Jacod, J. Estimating the degree of activity of jumps in high frequency data.
The Annals of Statistics 37, 5A (2009), 2202–2244.

[3] Aı̈t-Sahalia, Y., and Jacod, J. Testing for jumps in a discretely observed process. The Annals of
Statistics 37, 1 (2009), 184–222.

[4] Barndorff-Nielsen, O. E., Graversen, S., Jacod, J., Podolskij, M., and Shephard, N.
A central limit theorem for realised power and bipower variations of continuous semimartingales. In:
Y. Kabanov, R. Lispter (Eds.), Stochastic Analysis to Mathematical Finance, Frestchrift for Albert
Shiryaev, Springer. (2006), 33–68.

[5] Barndorff-Nielsen, O. E., Graversen, S., Jacod, J., and Shephard, N. Limit theorems for
bipower variation in financial econometrics. Econometric Theory, 22 (2006), 677–719.

LDP and MDP for realized covoalatility 95
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First, under a geometric ergodicity assumption, we provide some limit
theorems and some probability inequalities for the bifurcating Markov chains
(BMC). The BMC model was introduced by Guyon to detect cellular aging
from cell lineage, and our aim is thus to complete his asymptotic results. The
deviation inequalities are then applied to derive first result on the moderate
deviation principle (MDP) for a functional of the BMC with a restricted range
of speed, but with a function which can be unbounded. Next, under a uniform
geometric ergodicity assumption, we provide deviation inequalities for the
BMC and apply them to derive a second result on the MDP for a bounded
functional of the BMC with a larger range of speed. As statistical applica-
tions, we provide superexponential convergence in probability and deviation
inequalities (for either the Gaussian setting or the bounded setting), and the
MDP for least square estimators of the parameters of a first-order bifurcating
autoregressive process.

1. Introduction. Bifurcating Markov chains (BMC) are an adaptation of
(usual) Markov chains to the data of a regular binary tree; see below for a more
precise definition. In other terms, it is a Markov chain for which the index set is a
regular binary tree. They are appropriate, for example, in the modeling of cell lin-
eage data when each cell in one generation gives birth to two offspring in the next.
Recently, they have received a great deal of attention because of the experiments
of biologists on aging of Escherichia Coli; see [15, 20]. E. Coli is a rod-shaped
bacterium which reproduces by dividing in the middle, thus producing two cells,
one which already existed, that we call old pole progeny, and the other which is
new, that we call new pole progeny. The aim of their experiments was to look for
evidence of aging in E. Coli. In this section, we will introduce the model that al-
lowed the authors of [15] to study the aging of E. Coli and we refer to their works
for further motivations and insights on the data leading to the model studied here.
This model is a typical example of bifurcating Markovian dynamics, and it has
been the motivation for the rigorous mathematical study of BMC in [14]. This also
motivates Sections 2 and 3 in the sequel, where we give a rigorous asymptotic (and
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nonasymptotic) study of BMC under geometric ergodicity and uniform geometric
ergodicity assumptions.

1.1. The model. Let T be a binary regular tree in which each vertex is seen as
a positive integer different from 0; see Figure 1. For r ∈ N, let

Gr = {
2r ,2r + 1, . . . ,2r+1 − 1

}
, Tr =

r⋃
q=0

Gq,

which denote, respectively, the r th column and the first (r +1) columns of the tree.
Then, the cardinality |Gr | of Gr is 2r and that of Tr is |Tr | = 2r+1 − 1. A column
of a given integer n is Grn with rn = �log2 n�, where �x� denotes the integer part
of the real number x.

The genealogy of the cells is described by this tree. In the sequel we will thus
see T as a given population. Then the vertex n, the column Gr and the first (r + 1)

columns Tr designate, respectively, individual n, the r th generation and the first
(r + 1) generations. The initial individual is denoted 1.

FIG. 1. The binary tree T.
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Guyon et al. [14, 15] proposed the following linear Gaussian model to describe
the evolution of the growth rate of the population of cells derived from an initial
individual:

L(X1) = ν and ∀n ≥ 1
{

X2n = α0Xn + β0 + ε2n,

X2n+1 = α1Xn + β1 + ε2n+1,
(1.1)

where Xn is the growth rate of individual n, n is the mother of 2n (the new pole
progeny cell) and 2n + 1 (the old pole progeny cell), ν is a distribution probability
on R, α0, α1 ∈ (−1,1); β0, β1 ∈ R and ((ε2n, ε2n+1), n ≥ 1) forms a sequence of
i.i.d. bivariate random variables with law N2(0,�), where

� = σ 2
(

1 ρ

ρ 1

)
, σ 2 > 0, ρ ∈ (−1,1).

The processes (Xn) defined by (1.1) are typical examples of BMC which are called
the first-order bifurcating autoregressive processes [BAR(1)]. The BAR(1) pro-
cesses are an adaptation of autoregressive processes, when the data have a binary
tree structure. They were first introduced by Cowan and Staudte [6] for cell lineage
data where each individual in one generation gives rise to two offspring in the next
generation. We will not discuss here extensions to m-ary tree, which follow more
or less from the same method, or Markov chains on Galton–Watson trees that are
left for an other study.

In [14], Guyon, after establishing the first results on the theory of BMC, proves
laws of large numbers and central limit theorem for the least-square estimators
θ̂ r = (α̂r

0, β̂
r
0, α̂r

1, β̂
r
1) of the 4-dimensional parameter θ = (α0, β0, α1, β1); see Sec-

tion 4 for a more precise definition. He also gives some statistical tests which allow
to check if the model is symmetric or not (roughly α0 = α1 or not), and if the new
pole and the old pole populations are even distinct in mean, which allows him to
conclude a statistical evidence in aging in E. Coli. Let us also mention [4], where
Bercu et al., using the martingale approach, give asymptotic analysis of the least
squares estimators of the unknown parameters of a general asymmetric pth-order
BAR processes.

In this paper, we will give moderate deviation principle (MDP) for this estimator
and the statistical tests done by Guyon. We will also give deviation inequalities for
θ̂ r − θ , which are important for a rigorous (nonasymptotic) statistical study. This
will be done in two cases: the Gaussian case as described above and the case where
the noise and the initial state X1 are assumed to take values in a compact set. Note
that the latter case implies that the BAR(1) process defined by (1.1) valued in
compact set.

We are now going to give a rigorous definition of BMC. We refer to [14] for
more detail.

1.2. Definitions. For an individual n ∈ T, we are interested in the quantity Xn

(it may be the weight, the growth rate, . . .) with values in the metric space S en-
dowed with its Borel σ -field S .

Limit theorems for bifurcating Markov chains with application 101



238 S. V. BITSEKI PENDA, H. DJELLOUT AND A. GUILLIN

DEFINITION 1.1 (T-transition probability, see [14]). We call T-transition
probability any mapping P :S × S2 → [0,1] such that:

• P(·,A) is measurable for all A ∈ S2;
• P(x, ·) is a probability measure on (S2,S2) for all x ∈ S.

For a T-transition probability P on S × S2, we denote by P0, P1 and Q, re-
spectively, the first and the second marginal of P , and the mean of P0 and P1, that
is, P0(x,B) = P(x,B × S), P1(x,B) = P(x,S × B) for all x ∈ S and B ∈ S and
Q = P0+P1

2 .
For p ≥ 1, we denote by B(Sp) [resp., Bb(S

p)], the set of all Sp-measurable
(resp., Sp-measurable and bounded) mappings f :Sp → R. For f ∈ B(S3), we
denote by Pf ∈ B(S) the function

x �→ Pf (x) =
∫
S2

f (x, y, z)P (x, dy, dz) when it is defined.

DEFINITION 1.2 (Bifurcating Markov chains; see [14]). Let (Xn,n ∈ T) be
a family of S-valued random variables defined on a filtered probability space
(
,F , (Fr , r ∈ N),P). Let ν be a probability on (S,S) and P be a T-transition
probability. We say that (Xn,n ∈ T) is a (Fr )-bifurcating Markov chain with initial
distribution ν and T-transition probability P if:

• Xn is Frn -measurable for all n ∈ T;
• L(X1) = ν;
• for all r ∈ N and for all family (fn, n ∈ Gr ) ⊆ Bb(S

3)

E
[ ∏
n∈Gr

fn(Xn,X2n,X2n+1)
/

Fr

]
= ∏

n∈Gr

Pfn(Xn).

In the following, when unspecified, the filtration implicitly used will be Fr =
σ(Xi, i ∈ Tr ). We denote by (Yr , r ∈ N) the Markov chain on S with Y0 = X1 and
transition probability Q. The chain (Yr , r ∈ N) corresponds to a random lineage
taken in the population.

We denote by G the set of all permutations of N∗ that leaves each Gr invari-
ant. We draw a permutation � uniformly on G, independently of X = (Xn,n ∈
T). Drawing � “uniformly” on G means drawing the restriction of � on Gr

uniformly among the (2r )! permutations of Gr . In particular, (�(2r ),�(2r +
1), . . . ,�(2r+1 − 1)) can be viewed as a random drawing of all the elements of
Gr without replacement. Notice that � allows one to define a random order on T
which preserves the genealogical order. For example, (�(i),1 ≤ i ≤ n) denotes the
set of the “first” n individuals of T. � was introduced by Guyon in order to sample
over the “first” n individuals. As mentioned in [14], this choice of � allows one to
preserve the same asymptotic behavior for the empirical means resulting from the
sampling over (say) the r th generation, the first (r + 1) generations or the “first”
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n individuals. In general, the choice of another permutation does not preserve the
asymptotic behavior of these empirical means. We refer to [14], Section 2.2, for
more detail.

Throughout the paper, we will denote by:

• f ⊗ g the mapping (x, y) �→ f (x)g(y).
• Qp the pth iterated of Q recursively defined by the formulas Q0(x, ·) = δx and

Qp+1(x,B) = ∫
S Q(s, dy)Qp(y,B) for all B ∈ S ; Qp is a transition probabil-

ity in (S,S).
• νQ the distribution on (S,S) defined by νQ(B) = ∫

S ν(dx)Q(x,B); νQp is
the law of Yp .

• (Qf )(x) = ∫
S f (y)Q(x, dy) when it is defined.

• (νf ) or (ν, f ) the integral
∫
S f dν when it is defined.

For all i ∈ T, we set 
i = (Xi,X2i ,X2i+1). We introduce the following empirical
quantities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MGr
(f ) = 1

|Gr |
∑
i∈Gr

f (
̃i),

MTr
(f ) = 1

|Tr |
∑
i∈Tr

f (
̃i),

M�
n (f ) = 1

n

n∑
i=1

f (
̃�(i)),

(1.2)

where f (
̃i) = f (
i) = f (Xi,X2i ,X2i+1) if f ∈ B(S3) and f (
̃i) = f (Xi) if
f ∈ B(S).

Guyon in [14] studied limit theorems of the empirical means (1.2), namely the
law of large numbers (L2 and almost sure versions) and the central limit theorems
for (1.2) when f ∈ B(S3), but centered by the conditional expectation rather than
by the limit mean. An extension of the BMC has been proposed in [8], in which
the authors studied a model of BMC with missing data. To take into account the
possibility for a cell to die, the authors of [8] use Galton–Watson tree instead of a
regular tree. And they give a weak law of large numbers, an invariance principle
and the central limit result for the average over one generation or up to one gener-
ation. As previously mentioned, this setting will be considered in incoming works.
One can also mention the work of De Saporta et al. [7] dealing with bifurcating
autoregressive processes with missing data in the estimation procedure of the pa-
rameters of the asymmetric BAR process. They use a two type Galton–Watson
process to model the genealogy and give convergence and asymptotic normality
of their estimators. It is important to remark that the nonasymptotic study of de-
viation inequalities has not been considered at all in these works, despite their
practical interest.
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1.3. Objectives. Our objectives in this paper are:

• to give some limit theorems for BMC that complete those done in [14] (LLN,
LIL, . . .);

• to give probability inequalities and deviation inequalities for the empirical
means (1.2), that is, for f ∈ B(S) and all x > 0

P
(
MTr

(f ) − (μ,f ) ≥ x
) ≤ e−C(x,r),

where C(x, r) will crucially depend on our set of assumptions on f and on the
ergodic property of Q but valid for (nearly) all r ;

• to study moderate deviation principle (MDP) for BMC, that is, for some range
of speed

√
r � br � r (depending on assumptions) and for f ∈ Bb(S

3) with
Pf = 0

b2|Tr |
|Tr | log P

(
1

b|Tr |
MTr

(f ) ≥ x

)
∼ − x2

2σ 2 ;
• to obtain the MDP and deviation inequalities for the estimator of bifurcating

autoregressive process, which are important for a rigorous statistical study.

All these results will be obtained under hypothesis of geometric ergodicity or uni-
form geometric ergodicity, meaning that Qr converges (uniformly) exponentially
fast to a limiting measure.

The limit theorems, proved in this paper, include strong law of large numbers for
the empirical average M�

n (f ) with f ∈ B(S) (this case is not studied in [14]), the
law of the iterated logarithm and the almost sure functional central limit theorem.
A strong law of large numbers will be obtained via control of 4th order moments.
We thus generalize the computation of 2nd order moments made by Guyon in [14].
It will be noted that the technique we will use can be applied to compute the other
higher-order moments, but at the price of huge and tedious computations.

Deviation inequalities will be obtained in the setting of unbounded functions, by
using the classical Markov inequality and under geometric ergodicity assumption.
The results are, however, at this point quite restrictive.

Exponential deviation inequalities will be shown for bounded functions and un-
der a uniform geometric ergodicity assumption. Their proof intensively uses the
Azuma–Bennett–Hoeffding inequality [1, 3, 16], which requires bounded random
variables. Extension to unbounded functions and weaker ergodicity assumptions
will be done in a further work, using transportation inequalities in the spirit of [12].

The MDP will be mainly deduced from these inequalities and general results
on moderate deviations of martingales; see [11], recalled in the Appendix B. Their
speed will depend on whether uniform geometric ergodicity or only geometric
ergodicity is satisfied.

Before presenting the plan of our paper, let us recall the definition of a moderate
deviation principle (MDP): let (bn)n≥0 be a positive sequence such that

bn

n
−→
n→∞ 0 and

b2
n

n
−→
n→∞ ∞.
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We say that a sequence of centered random variables (Mn)n with topological state
space (S,S) satisfies a MDP with speed b2

n/n and rate function I :S → R∗+ if for
each A ∈ S ,

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

n

b2
n

log P
(

n

bn

Mn ∈ A

)
≤ lim sup

n→∞
n

b2
n

log P
(

n

bn

Mn ∈ A

)

≤ − inf
x∈A

I (x);

here Ao and A denote the interior and closure of A, respectively.
The MDP can thus be seen as an intermediate behavior between the central limit

theorem (bn = b
√

n) and large deviation (bn = bn). Usually, the MDP exhibits a
simpler rate function inherited from the approximated Gaussian process, and holds
for a larger class of dependent random variables than the large deviation principle.

Our paper is organized as follows. Section 2 states the moments control in-
equalities and their consequences. We shall state in this section a first result on
the MDP for BMC in a general framework, but with a very restricted range of
speed. Section 3 deals with the exponential inequalities and their consequences. In
this section, we shall generalize the MDP done in Section 2, allowing for a larger
range of speed, but under more stringent assumptions. In Section 4, we will fo-
cus particularly on the first order bifurcating autoregressive processes. The proofs
of some inequalities are technical so postponed in Appendix A. Appendix B is
devoted to definitions and limit theorems for martingales used intensively in the
paper, and are included here for completeness.

2. Moments control and consequences. Let F be a vector subspace of B(S)

such that:

(i) F contains the constants;
(ii) F 2 ⊂ F ;

(iii) F ⊗ F ⊂ L1(P (x, ·)) for all x ∈ S, and P(F ⊗ F) ⊂ F ;
(iv) there exists a probability μ on (S,S) such that F ⊂ L1(μ) and

lim
r→∞ Ex

[
f (Yr)

] = (μ,f )

for all x ∈ S and f ∈ F ;
(v) for all f ∈ F , there exists g ∈ F such that for all r ∈ N, |Qrf | ≤ g;

(vi) F ⊂ L1(ν),

where we have used the notation F 2 = {f 2/f ∈ F }, F ⊗ F = {f ⊗ g/f,g ∈ F }
and PE = {Pf/f ∈ E} whenever an operator P acts on a set E.

The following hypothesis is about the geometric ergodicity of Q:

(H1) Assume that for all f ∈ F such that (μ,f ) = 0, there exists g ∈ F such
that for all r ∈ N and for all x ∈ S, |Qrf (x)| ≤ αrg(x) for some α ∈ (0,1); that
is, the Markov chain (Yr , r ∈ N) is geometrically ergodic.
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Recall that under this hypothesis, Guyon [14] has shown the weak law of large
numbers for the three empirical average MGr

(f ), MTr
(f ) and M�

n (f ) (see [14],
Theorem 11 when f ∈ F and Theorem 12 when f ∈ B(S3)) and the strong law of
large numbers only for MGr

(f ), MTr
(f ); see [14], Theorem 14 and Corollary 15

when f ∈ F and Theorem 18 when f ∈ B(S3).
When f ∈ B(S3) and under the additional hypothesis Pf 2 and Pf 4 exist and

belong to F , he proved the central limit theorem for MTr
(f ) and M�

n (f ); see [14],
Theorem 19 and Corollary 21. Recall that the central limit theorem for the three
empirical means (1.2) when f ∈ B(S) is still an open question; see [8] for more
precision.

In this section, we complete these results by showing the strong law of large
numbers for M�

n (f ), when f ∈ F . We prove also the law of the iterated logarithm
(LIL) and almost sure functional central limit theorem (ASFCLT) for M�

n (f )

when f ∈ B(S3).

2.1. Control of the 4th order moments. In order to establish limit theorems
below, let us state the following:

THEOREM 2.1. Let F satisfy (i)–(vi). Let f ∈ F such that (μ,f ) = 0. We
assume hypothesis (H1). Then for all r ∈ N,

E
[(

MGr
(f )

)4] ≤

⎧⎪⎪⎨
⎪⎪⎩

c
( 1

4

)r
, if α2 < 1

2 ,

cr2( 1
4

)r
, if α2 = 1

2 ,

cα4r , if α2 > 1
2 ,

(2.1)

where the positive constant c depends on α and f (and may differ line by line).

PROOF. First note that f (Xi) ∈ L4 for all i ∈ Gr . Indeed, let (z1, . . . , zr) ∈
{0,1}r the unique path in the binary tree from the root 1 to i. Then,

E
[
f 4(Xi)

] = νPz1 · · ·Pzr f
4,

and from hypotheses (ii), (iii) and (vi) we conclude that νPz1 · · ·Pzr f
4 < ∞.

Now, the proof divides into two parts.

Part 1. Computation of E[(MGr
(f ))4]. Independently of X, let us draw four

independent indices Ir , Jr , Kr and Lr uniformly from Gr . Then

E
[(

MGr
(f )

)4] = E
[
f (XIr )f (XJr )f (XKr )f (XLr )

]
.

For all p ∈ {0, . . . , r}, let us define the following events:

• E
p
0 : The ancestors of Ir , Jr , Kr and Lr are different in Gp .

• E
p
1 : Exactly two of Ir , Jr , Kr and Lr have the same ancestor in Gp .

• E
p
2 : Ir , Jr , Kr and Lr have the same ancestor two by two in Gp .
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• E
p
3 : Exactly three of Ir , Jr , Kr and Lr have the same ancestor in Gp .

• E
p
4 : Ir , Jr , Kr and Lr have the same ancestor in Gp .

We also consider the following events whose for each fixed p ≤ r , probability
depend only on p.

• E
′p
0 : Draw uniformly four independent indices from Gp which are different.

• E
′p
1 : Draw uniformly four independent indices from Gp such that two are the

same, and the others are different.
• E

′p
2 : Draw uniformly four independent indices from Gp which are the same,

two by two.
• E

′p
3 : Draw uniformly four independent indices from Gp such that exactly three

are the same.
• E

′p
4 : Draw uniformly four independent indices from Gp which are all the same.

In the sequel we do the convention that Er+1
0 is a certain event. Then after succes-

sive conditioning by events E
p
i for p ∈ {0, . . . , r} and i ∈ {0, . . . ,4}, we have

E
[
f (XIr )f (XJr )f (XKr )f (XLr )

]
= E

[
f (XIr )f (XJr )f (XKr )f (XLr )/E

2
0

] × P
(
E2

0
)

+
r∑

p=2

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
1

] × P
(
E

p
1 ∩ E

p+1
0

)
(2.2)

+
r∑

p=2

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
2

] × P
(
E

p
2 ∩ E

p+1
0

)

+ E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
3
] × P

(
Er

3
)

+ E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
4
] × P

(
Er

4
)
.

Let us notice that

• for all i ∈ {1,2,3,4}, Er
i and E′r

i have the same probability;

• the realization of “Ep
1 ∩E

p+1
0 ” can be seen as “draw uniformly four independent

indices from Gp such that two are the same and others are different, and the two

indices which are the same take different paths at Gp+1.” Thus “Ep
1 ∩ E

p+1
0 ”

has the same probability that “E′p
1 ∩Ap,p+1,” where “Ap,p+1” is the event, “the

indices which are the same in Gp take different paths at Gp+1”;

• similarly, the realization of “Ep
2 ∩ E

p+1
0 ” may be interpreted as, “draw uni-

formly four independent indices from Gp which are the same two by two, and all

the indices take different paths at Gp+1.” Thus “Ep
2 ∩E

p+1
0 ” has the same prob-

ability that “E′p
2 ∩Ap,p+1,” where “Ap,p+1” is the event, “the indices which are

the same in Gp take different paths at Gp+1”;
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• for all p ∈ {0, . . . , r}, we have

P
(
E

′p
1

) = 6(2p − 1)(2p − 2)

23p
, P

(
E

′p
2

) = 3(2p − 1)

23p
,

P
(
E

′p
3

) = 4(2p − 1)

23p
, P

(
E

′p
4

) = 1

23p
.

We may then deduce that

P
(
E2

0
) = 3

32
, P

(
Er

3
) = 4(2r − 1)

23r
, P

(
Er

4
) = 1

23r

and for p ∈ {2, . . . , r − 1},

P
(
E

p
1 ∩ E

p+1
0

) = P
(
E

′p
1

)
P

(
Ap,p+1/E

′p
1

) = 3(2p − 1)(2p − 2)

23p

and

P
(
E

p
2 ∩ E

p+1
0

) = P
(
E

′p
2

)
P

(
Ap,p+1/E

′p
2

) = 3

4

2p − 1

23p
.

We are now going to compute each term which appears in (2.2). We have the
following convention: P(Q−1f ⊗ Q−1f ) = f 2. In the sequel, we will use inten-
sively, with a slight modification, the calculations made by Guyon [14] in order to
compute conditional expectations related to the event, “draw uniformly two inde-
pendent indices from Gp ,” for p ∈ {0, . . . , r}.

(a) We have that

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
4
] = νQrf 4.

(b) Conditionally on Er
3, we may assume that the indices Ir , Kr and Lr are the

same. We then have, using the calculations made by Guyon [14],

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
3
]

= E
[
f 3(XIr )f (XJr )/E

r
3
]

= 2r

2r − 1

{
r−1∑
p=0

2−p−2νQpP
(
Qr−p−1f 3 ⊗ Qr−p−1f

+ Qr−p−1f ⊗ Qr−p−1f 3)}
.

(c) Let p ∈ {2, . . . , r}. Conditionally on E
p
2 and E

p+1
0 we may assume that Ir

and Jr have the same ancestor at Gp , and Kr and Lr have the same ancestor at Gp .
For simplification, we will use the following notation:

Qk⊗f := Qkf ⊗ Qkf,(2.3)
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and we thus have

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
2

]
= E

[
E

[
E

[
f (XIr )f (XJr )f (XKr )f (XLr )/Fp+1

]
/Fp

]
/E

p+1
0 ,E

p
2

]
= E

[
P

(
Q

r−p−1
⊗ f

)
(XIr∧pJr )P

(
Q

r−p−1
⊗ f

)
(XKr∧pLr )/E

p+1
0 ,E

p
2

]

= 2p

2p − 1

p−1∑
l=0

2−l−1νQlP
((

Qp−l−1P
(
Q

r−p−1
⊗ f

))

⊗ (
Qp−l−1P

(
Q

r−p−1
⊗ f

)))
,

where Ir ∧p Jr (resp., Kr ∧p Lr ) denotes the common ancestor of Ir and Jr which
is in Gp (resp., the common ancestor of Kr and Lr which is in Gp).

(d) Let p ∈ {2, . . . , r}. Now conditionally on E
p
1 and E

p+1
0 we may assume

that it is Kr and Lr which have the same ancestor in Gp . We denote by p(Ir)

and p(Jr), respectively, the ancestor of Ir and Jr which are in Gp . As before, the
common ancestor of Kr and Lr , which are in Gp , is denoted by Kr ∧p Lr . At this
step, we may repeat the successive conditioning that we have done in the beginning
but this time for indices p(Ir), p(Jr) and Kr ∧p Lr . This leads us to

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
1

]
= E

[
Qr−pf (Xp(Ir ))Q

r−pf (Xp(Jr ))P
(
Q

r−p−1
⊗ f

)
(XKr∧pLr )/E

p+1
0 ,E

p
1

]

= 22p

(2p − 1)(2p − 2)

p−1∑
l=1

1

2l+1

1

2

×
l−1∑
m=0

2−m−1{
νQmP

((
Ql−m−1P

(
Qr−l−1⊗ f

)) ⊗ Qp−m−1P
(
Q

r−p−1
⊗ f

))

+ νQmP
((

Qp−m−1P
(
Q

r−p−1
⊗ f

)) ⊗ (
Ql−m−1P

(
Qr−l−1⊗ f

)))
+ νQmP

((
Ql−m−1P

(
Qr−l−1f ⊗ Qp−l−1P

(
Q

r−p−1
⊗ f

))) ⊗ (
Qr−m−1f

))
+ νQmP

(
Qr−m−1f ⊗ (

Ql−m−1P
(
Qr−l−1f ⊗ Qp−l−1P

(
Q

r−p−1
⊗ f

))))
+ νQmP

((
Ql−m−1P

(
Qp−l−1P

(
Q

r−p−1
⊗ f

) ⊗ Qr−l−1f
)) ⊗ (

Qr−m−1f
))

+ νQmP
((

Qr−m−1f
) ⊗ (

Ql−m−1P
(
Qp−l−1P

(
Q

r−p−1
⊗ f

) ⊗ Qr−l−1f
)))}

.

(e) Finally,

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

2
0

]
= E

[
E

[
E

[
f (XIr )f (XJr )f (XKr )f (XLr )/F2

]
/F1

]
/E2

0
]
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= E
[
P

(
Qr−2⊗ f

)
(X2)P

(
Qr−2⊗ f

)
(X3)/E

2
0

]
= νP

(
P

(
Qr−2⊗ f

) ⊗ P
(
Qr−2⊗ f

))
.

Gathering together all of these terms, each multiplied by their respective probabil-
ity, we obtain an explicit expression for E[(MGr

(f ))4].
Part 2. Rate. We are now going to give some rates for the different terms that

appear in the expression of E[(MGr
(f ))4].

Throughout this part, we will use intensively the following to bound quantities
which appear in the expression of E[(MGr

(f ))4]:
• Let f ∈ F such that (μ,f ) = 0. Then from (i)–(vi) and hypothesis (H1), there

exists a positive constant c such that ∀l,m,n ∈ N,

νQlP
(
Qmf ⊗ Qnf

) ≤ αm+nνQlP (g ⊗ g) ≤ cαm+n,

where g is given in hypothesis (H1).

In the sequel, c denotes a positive constant which depends on f , and c1 denotes a
positive constant which depends on α. The constants c and c1 may vary from one
line to another and from one expression to another.

(a) For the first term appearing in (2.2), we have

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

2
0

] × P
(
E2

0
) ≤ c1cα

4r .

(b) For the fifth term appearing in (2.2), we have

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
4
] × P

(
Er

4
) ≤ c

( 1
2

)3r
,

where, from (ii), (v) and (vi), c is such that νQrf 4 < c.
(c) For the fourth term appearing in (2.2), we have

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
3
] × P

(
Er

3
) ≤ cc1α

r

(
1

4

)r r−1∑
p=0

(
1

2α

)p

,

where, from (ii), (iii), (v) and (vi), c is such that for all p,q ∈ N

max
(
νQpP

(
Qqf 3 ⊗ g

)
, νQpP

(
g ⊗ Qqf 3))

< c,

and from hypothesis (H1), g is such that for all p ∈ {1, . . . , r − 1}
Qr−p−1f ≤ αr−p−1g.(2.4)

Now depending on the value of α, we obtain that

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
3
] × P

(
Er

3
)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1c

((
α

4

)r

+
(

1

23

)r)
, if α �= 1

2
,

c1cr

(
1

23

)r

, if α = 1

2
.
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(d) Let us denote the third term appearing in (2.2) by

Ar :=
r∑

p=2

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
2

] × P
(
E

p
2 ∩ E

p+1
0

)
.

So we have

Ar ≤ c1c

((
1

4

)r

+ α4r
r−1∑
p=2

(
1

4α4

)p
)
,

where, from (ii), (iii), (v) and (vi), c is such that for all p ∈ {2, . . . , r − 1}, q ∈
{0, . . . , r − 1}, l ∈ {0, . . . , p − 1}

max
(
νQqP

(
Q

r−q−1
⊗ f 2)

, νQlP
(
Q

p−l−1
⊗ P(g ⊗ g)

))
< c,

and g is defined as before (2.4) and the notation Q⊗ is given in (2.3).
Now depending on the value of α, we obtain that:

• if α2 �= 1
2 , then Ar ≤ c1c((

1
4)r + α4r );

• if α2 = 1
2 , then Ar ≤ c1c(r − 1)(1

4)r .

(e) For the second term appearing in (2.2), we have when p = r :

• if α = 1
2 , then

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
1
] × P

(
Er

1
) ≤ c1c

( 1
4

)r;
• if α �= 1

2 :
– if α2 = 1

2 , then

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
1
] × P

(
Er

1
) ≤ c1(r − 1)

( 1
4

)r;
– if α2 �= 1

2 , then

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

r
1
] × P

(
Er

1
)

≤ c1c

((
α2

2

)r

+
(

1

4

)r)
,

where, from (ii), (iii), (v) and (vi), c is such that for all l ∈ {2, . . . , r − 1}, q ∈
{0, . . . , l − 1}

max
(
νQqP

(
Ql−q−1P(g ⊗ g) ⊗ Qr−q−1f 2)

,

νQqP
(
Ql−q−1P

(
g ⊗ Qr−l−1f 2) ⊗ g

))
< c

and g is defined as before (2.4).
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(f) For the second terms appearing in (2.2), and for the remaining term in the
sum (p �= r), let us denote by

Br :=
r−1∑
p=2

E
[
f (XIr )f (XJr )f (XKr )f (XLr )/E

p+1
0 ,E

p
1

] × P
(
E

p
1 ∩ E

p+1
0

)
.

So we have:

• if α = 1
2 , then Br ≤ c1c(

1
4)r ;

• if α �= 1
2 :

– if α2 = 1
2 , then Br ≤ c1cr

2(1
4)r ;

– if α2 �= 1
2 , then Br ≤ c1c(α

4r + (α2

2 )r + (1
4)r),

where c is defined in the same way as before.
Now the results of the Theorem 2.1 follow from (a)–(f) of part 2. �

It leads us to an extension of Theorem 2.1 to the two empirical averages MTr
(f )

and M�
n (f ).

COROLLARY 2.2. Let F satisfy (i)–(vi). Let f ∈ F such that (μ,f ) = 0. We
assume that hypothesis (H1) is fulfilled. Then for all r ∈ N and n ∈ N,

E
[(

MTr
(f )

)4] ≤

⎧⎪⎪⎨
⎪⎪⎩

c
( 1

4

)r+1
, if α2 < 1

2 ,

cr2( 1
4

)r+1
, if α2 = 1

2 ,

cα4(r+1), if α2 > 1
2 ,

(2.5)

and

E
[(

M�
n (f )

)4] ≤

⎧⎪⎪⎨
⎪⎪⎩

c
( 1

4

)rn+1
, if α2 < 1

2 ,

cr2
n

( 1
4

)rn+1
, if α2 = 1

2 ,

cα4(rn+1), if α2 > 1
2 ,

(2.6)

where the positive constant c depends on α and f and may differ line by line.

PROOF. The proof follows the same steps as in the proof of parts 2 and 3 of
Theorem 2.11, and uses the results of the proof of Theorem 2.5 to get the control
of the 4th order moment in incomplete generation. See Sections 2.2 and A.1 for
more detail. �

REMARK 2.3. If f ∈ B(S3) is such that Pf 2 and Pf 4 exist and belong to F ,
with Pf = 0, then we have for all r ∈ N and for some positive constant c,

E
[(

MGr
(f )

)4] ≤ c

|Gr |2 .(2.7)
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Indeed, let MGr
(f ) = ∑

i∈Gr
f (
i). We have

E
[(

MGr
(f )

)4] = E
[
MGr

(
f 4)] + 6E

[ ∑
i �=j∈Gr

f 2(
i)f
2(
j )

]

+ 4E
[ ∑
i �=j∈Gr

f 3(
i)f (
j )

]

+ 12E
[ ∑
i �=j �=k∈Gr

f 2(
i)f (
j )f (
k)

]

+ 24E
[ ∑
i �=j �=k �=l∈Gr

f (
i)f (
j )f (
k)f (
l)

]

= E
[ ∑
i∈Gr

Pf 4(Xi)

]
+ 6E

[ ∑
i �=j∈Gr

Pf 2(Xi)Pf 2(Xj )

]
,

where the last equality was obtained after conditioning by Fr and using the fact
that Pf = 0. Now, dividing by |Gr |4 leads us to

E
[(

MGr
(f )

)4] = 6

|Gr |2 E
[

1

|Gr |2
∑

i �=j∈Gr

Pf 2(Xi)Pf 2(Xj )

]

+ 1

|Gr |3 E
[

1

|Gr |
∑
i∈Gr

Pf 4(Xi)

]

≤ 6

|Gr |2 E
[(

MGr

(
Pf 2))2]

+ 1

|Gr |3 E
[
MGr

(
Pf 4)]

,

and (2.7) then follows from the control of

(
E

[(
MGr

(
Pf 2))2])

r and
(
E

[
MGr

(
Pf 4)])

r;

see [14].

REMARK 2.4. From Remark 2.3, we deduce that if f ∈ B(S3) is such that
Pf 2 and Pf 4 exist and belong to F , with Pf = 0, then we have for all r ∈ N and
for some positive constant c,

E
[(

MTr
(f )

)4] ≤ c
( 1

4

)r+1
.(2.8)
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Indeed, from the equality

MTr
(f ) =

r∑
q=0

|Gq |
|Tr | MGq

(f ),

we deduce that

E
[(

MTr
(f )

)4] ≤
(

r∑
q=0

|Gq |
|Tr |

∥∥MGq
(f )

∥∥
4

)4

,

where ‖ · ‖4 stands for the L4-norm. We then infer from (2.7) that

E
[(

MTr
(f )

)4] ≤ c

(
r∑

q=0

(
√

2)q

2r+1

)4

for some positive constant c. (2.8) then follows from the last inequality.

2.2. Strong law of large numbers on incomplete subtree. We now turn to prove
the strong law of large numbers for M�

n (f ), completing the work of Guyon [14],
where the LLN was proved only for the two averages MTr

(f ) and MGr
(f ).

THEOREM 2.5. Let F satisfy (i)–(vi). Let f ∈ F such that (μ,f ) = 0. We

assume that hypothesis (H1) is fulfilled with α ∈ (0,
4√8
2 ). Then M�

n (f ) almost
surely converges to 0 as n goes to ∞.

PROOF. From the decomposition

M�
n (f ) =

rn−1∑
q=0

2q

n
MGq

(f ) + 1

n

n∑
i=2rn

f (X�(i)),

it is enough to check that

∞∑
n=1

E
[(

1

n

n∑
i=2rn

f (X�(i))

)4]
< ∞.

Indeed, since MGq
(f ) almost surely converges to 0 (Corollary 15 in [14]), we

deduce that the first term on the right-hand side of the previous decomposition
almost surely converges to 0 (Lemma 13 in [14]). We have

E
[(

1

n

n∑
i=2rn

f (X�(i))

)4]

= 1

n4 E
[

n∑
i=2rn

f 4(X�(i))

]
+ 6

n4 E
[

n∑
i,j=2rn ;i �=j

f 2(X�(i))f
2(X�(j))

]
(2.9)
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+ 4

n4 E
[

n∑
i,j=2rn ;i �=j

f 3(X�(i))f (X�(j))

]

+ 12

n4 E
[

n∑
i,j,k=2rn ;i �=j �=k

f 2(X�(i))f (X�(j))f (X�(k))

]

+ 24

n4 E
[

n∑
i,j,k,l=2rn ;i �=j �=k �=l

f (X�(i))f (X�(j))f (X�(k))f (X�(l))

]
.

We will control each term appearing in decomposition (2.9). For the first term
on the right-hand side of (2.9), using (ii), (v) and (vi) we have for some positive
constant c,

E
[

n∑
i=2rn

f 4(X�(i))

]
= (

n − 2rn + 1
)
νQrnf 4 ≤ c

(
n − 2rn + 1

)
,

which implies that

1

n4 E
[

n∑
i=2rn

f 4(X�(i))

]
= O

(
1

n3

)
.(2.10)

Recall the following: for i, j, k and l ∈ {2rn, . . . , n}:
• If i �= j , then rn ≥ 1. Independently on (X,�), draw two independent indices

Irn and Jrn uniformly from Grn . Then the law of (�(i),�(j)) is the conditional
law of (Irn, Jrn) given {Irn �= Jrn}.

• If i �= j �= k, then rn ≥ 2. Independently on (X,�), draw three independent in-
dices Irn, Jrn and Krn uniformly from Grn . Then the law of (�(i),�(j),�(k))

is the conditional law of (Irn, Jrn,Krn) given {Irn �= Jrn �= Krn}.
• If i �= j �= k �= l, then rn ≥ 2. Independently on (X,�), draw four inde-

pendent indices Irn, Jrn,Krn and Lrn uniformly from Grn . Then the law of
(�(i),�(j),�(k)),�(l)) is the conditional law of (Irn, Jrn,Krn,Lrn) given
{Irn �= Jrn �= Krn �= Jrn}.

Now we have to control the second and third terms of (2.9). We have to check that

1

n4 E
[

n∑
i,j=2rn ;i �=j

f 2(X�(i))f
2(X�(j))

]
= O

(
1

n2

)
(2.11)

and

1

n4 E
[

n∑
i,j=2rn ;i �=j

f 3(X�(i))f (X�(j))

]
= o

(
1

n2

)
.(2.12)
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Indeed, from the previous reminder and (i)–(vi), we have for some positive con-
stant c,

E
[

n∑
i,j=2rn ;i �=j

f 2(X�(i))f
2(X�(j))

]

= (n − 2rn)(n − 2rn + 1)

(1 − 2−rn)

×
rn−1∑
p=0

2−p−1νQpP
(
Q

rn−p−1
⊗ f 2)

≤ c
(
n − 2rn

)(
n − 2rn + 1

)
,

which implies (2.11). In the same way and using in addition hypothesis (H1), we
obtain that

E
[

n∑
i,j=2rn ;i �=j

f 3(X�(i))f (X�(j))

]

= (n − 2rn)(n − 2rn + 1)

(1 − 2−rn)

×
rn−1∑
p=0

2−p−2νQpP
(
Qrn−p−1f 3 ⊗ Qrn−p−1f

+ Qrn−p−1f ⊗ Qrn−p−1f 3)

≤

⎧⎪⎪⎨
⎪⎪⎩

c2−rn
(
n − 2rn

)(
n − 2rn + 1

)
, if α < 1

2 ,

crn2−rn
(
n − 2rn

)(
n − 2rn + 1

)
, if α = 1

2 ,

cαrn
(
n − 2rn

)(
n − 2rn + 1

)
, if α > 1

2 ,

which implies (2.12).
Let us deal with the remaining term of (2.9):

1

n4 E
[

n∑
i,j,k=2rn ;i �=j �=k

f 2(X�(i))f (X�(j))f (X�(k))

]

= (n − 2rn − 1)(n − 2rn)(n − 2rn + 1)

P(Irn �= Jrn �= Krn) × n4

× E
[
f 2(XIrn

)f (XJrn
)f (XKrn

)1{Irn �=Jrn �=Krn }
]
.

Then, we get an explicit expression for the last expectation similar to that obtained
in part (d) of the calculus of E[(MGr

(f ))4] with a slight modification of the func-
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tions. Calculating the rate of this expression, we obtain

∞∑
n=4

1

n4 E
[

n∑
i,j,k=2rn ;i �=j �=k

f 2(X�(i))f (X�(j))f (X�(k))

]

≤ c

∞∑
n=1

1

n
α2rn + c

∞∑
n=1

rn−1∑
p=2

p−1∑
l=0

1

n

1

2p

1

2l+1 α2rn−2p

+ c

∞∑
n=1

rn−1∑
p=2

p−1∑
l=0

1

n

1

2p

1

2l+1 α2rn−p−l

for some positive c. Now it is not hard to see that the right-hand side is finite.
Finally, to check that the series of general term

1

n4 E
[

n∑
i,j,k,l=2rn ;i �=j �=k �=l

f (X�(i))f (X�(j))f (X�(k))f (X�(l))

]

is finite, it is enough, according to the calculation of rates we have done in part 2
of the proof of Theorem 2.1, to check that

∑∞
n=1 α4rn < ∞, which is the case if

α ∈ (0,
4√8
2 ), and this completes the proof of Theorem 2.5. �

REMARK 2.6. Note that this theorem can be improved, but the price to pay
is enormous computations related to the calculation of higher moments. If f is
bounded, this result is true for every α ∈ (0,1), as we will see in Section 3.

2.3. Law of the iterated logarithm (LIL). Using the LIL for martingales (see
Theorem B.3 of Stout in Appendix B), we are going to prove a LIL for the BMC.
This will be done when f depends on the mother-daughters triangle (
i). We use
the notation M�

n (f ) = ∑n
i=1 f (
�(i)) and MTr

(f ) = ∑
i∈Tr

f (
i).

THEOREM 2.7. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf = 0, Pf 2

and Pf 4 exist and belong to F . We assume that hypothesis (H1) is fulfilled. Then

lim sup
n→∞

M�
n (f )√

2〈M�(f )〉n log log〈M�(f )〉n
= 1 a.s.

And in particular,

lim sup
r→∞

MTr
(f )√

2|Tr | log log |Tr | =
√(

μ,Pf 2
)

a.s.

PROOF. We will check the hypothesis of Stout Theorem’s B.3. Let f ∈
B(S3). We introduce the filtration (Hn)n≥0 defined by H0 = σ(X1) and Hn =
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σ(
�(i),�(i + 1),1 ≤ i ≤ n). Let (M�
n (f ))n≥0 defined by M�

0 (f ) = 0 and
M�

n (f ) = ∑n
i=1 f (
�(i)). Then since Pf = 0, (M�

n (f )) is a Hn-martingale with
E[M�

1 (f )] = 0. The bracket of the above martingale is given by

〈
M�(f )

〉
n =

n∑
i=0

Pf 2(X�(i)) = M�
n

(
Pf 2)

.

We have the following decomposition:

〈M�(f )〉n
n

= M�
n

(
Pf 2) =

rn−1∑
q=0

2q

n
MGq

(
Pf 2) + 1

n

n∑
i=2rn

Pf 2(X�(i)).

Since

∀q ≤ rn − 1
2q

2rn+1 ≤ 2q

n
≤ 2q

2rn
and

1

n

n∑
i=2rn

Pf 2(X�(i)) ≤ MGrn

(
Pf 2)

,

we deduce that

rn−1∑
q=0

2q

2rn+1 MGq

(
Pf 2) ≤ M�

n

(
Pf 2) ≤

rn∑
q=0

2q

2rn
MGq

(
Pf 2)

.

From the strong law of large numbers of MGq
(Pf 2) (see [14], Corollary 15) and

from Lemma 5.2 of [7], we infer that

rn−1∑
q=0

2q

2rn+1 MGq

(
Pf 2) a.s.−→ (μ,Pf 2)

2
and

rn∑
q=0

2q

2rn
MGq

(
Pf 2) a.s.−→ 2

(
μ,Pf 2)

.

Using these results, we thus deduce that 〈M�(f )〉n =O(n) and n=O(〈M�(f )〉n)
a.s. This implies in particular that 〈M�(f )〉n −→

n→∞ ∞ a.s.

Now let Kn =
√

2√
log log(n)

in Theorem B.3, and we have

R :=
∞∑

n=1

2 log log〈M�(f )〉n
K2

n〈M�(f )〉n
× E

[
f 2(
�(n))1{f 2(
�(n))>K2

n〈M�(f )〉n/(2 log log〈M�(f )〉n)}/Hn−1
]

≤
∞∑

n=1

4(log log〈M�(f )〉n)2

K4
n(〈M�(f )〉n)2 Pf 4(X�(n)) a.s.,

since 〈M�(f )〉n = O(n) a.s., so that for R < ∞ a.s., it is enough to check that

∞∑
n=1

Pf 4(X�(n))

nδ
< ∞ a.s. with any 1 < δ < 2.(2.13)
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Now, according to (v) and (vi), there exists a positive constant c such that for
all n ≥ 1, E[Pf 4(X�(n))] = νQrnPf 4 ≤ c, and (2.13) follows. Applying Theo-
rem B.3, we have

lim sup
n→∞

M�
n (f )√

2〈M�(f )〉n log log〈M�(f )〉n
= 1 a.s.

Now, for n = |Tr |, we have the following:

MTr
(f )√

2〈M�(f )〉|Tr | log log〈M�(f )〉|Tr |

=
√√√√ |Tr |〈M�(f )〉|Tr |/|Tr |

2 log log〈M�(f )〉|Tr |
× MTr

(f )

|Tr |〈M�(f )〉|Tr |/|Tr |

and since
〈M�(f )〉|Tr |

|Tr | = MTr
(Pf 2) −→

r→∞ (μ,Pf 2) a.s. (see Theorem 18 in [14]),
we get

lim sup
r→∞

MTr
(f )√

2|Tr | log log |Tr | =
√(

μ,Pf 2
)

a.s.,

which completes the proof. �

REMARK 2.8. Let us note that using Theorem 2.5, we can prove that if hy-

pothesis (H1) is fulfilled with α ∈ (0,
4√8
2 ), then

lim sup
n→∞

M�
n (f )√

2n log logn
=

√(
μ,Pf 2

)
a.s.,

and via the computation of 2kth order moments of MGr
(g), with k > 2 and g ∈

B(S), it is possible to prove the latter for all α ∈ (0,1). But, as already emphasized,
this comes at the price of enormous computations.

2.4. Almost-sure functional central limit theorem (ASFCLT). We are now go-
ing to prove an ASFCLT theorem for the BMC (Xn,n ∈ T). Here again, this will
be done when f depends on the mother-daughters triangle by using the ASFCLT
for discrete time martingale. We refer to Chaabane, Theorem B.4, Appendix B, for
the definition of an ASFCLT.

THEOREM 2.9. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf = 0, Pf 2

and Pf 4 exist and belong to F . We assume that hypothesis (H1) is fulfilled with

α ∈ (0,
4√8
2 ). Then M�

n (f ) verifies an ASFCLT, when n goes to ∞.
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PROOF. We use Theorem B.4. Let (Hn)n∈N be the filtration defined as in Sec-
tion 2.3. Then (M�

n (f )) is a Hn martingale. We have to check the hypotheses of
Theorem B.4. For all n ≥ 1, let Vn = s

√
n where s2 = (μ,Pf 2). Then according

to Theorem 2.5,

〈M�(f )〉n
V 2

n

= V −2
n M�

n

(
Pf 2) −→

n→∞ 1 a.s.

Let ε > 0. We have

∑
n≥1

1

V 2
n

E
[
f 2(
�(n))1{|f (
�(n))|>εVn}/Hn−1

]

≤ 1

ε2s4

∑
n≥1

Pf 4(X�(n))

n2 a.s.

According to (v) and (vi), there exists a positive constant c such that for all n ≥ 1,
E[Pf 4(X�(n))] = νQrnPf 4 ≤ c, and therefore, ∀ε > 0

∑
n≥1

1

V 2
n

E
[
f 2(
�(n))1{|f (
�(n))|>εVn}/Hn−1

]
< ∞ a.s.

Finally, we have

∑
n≥1

1

V 4
n

E
[
f 4(
�(n))1{|f (
�(n))|≤Vn}/Hn−1

] ≤ 1

s4

∑
n≥1

Pf 4(X�(n))

n2 a.s.,

which as before is a.s. finite, and the proof is then complete. �

REMARK 2.10. As before, let us note that this result can be extended to the
general case α ∈ (0,1), but at the price of enormous computation related to the
computation of 2k-order moments, k > 2, for MGr

(g), g ∈ B(S).

2.5. Deviation inequalities for BMC. We are now going to give some de-
viation inequalities under (i)–(vi) and (H1) for the empirical means (1.2) when
f ∈ B(S) with (μ,f ) = 0 and when f ∈ B(S3) with (μ,Pf ) = 0. This will help
us in the sequel to obtain a MDP result in a general framework, that is, for func-
tional of BMC with unbounded test functions. Let us recall that the main disad-
vantage of this “weak” set of assumptions is that the range of speed for the MDP is
very restricted. However, we still work under geometric ergodicity assumption and
general test function, which will not be the case when we would want to extend the
MDP; see Section 3. Note that we postpone to Appendix A nearly all the proofs of
this section, these proofs being quite long and technical.
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THEOREM 2.11. Let F satisfy conditions (i)–(vi). We assume that (H1) is
fulfilled. Let f ∈ F such that (μ,f ) = 0. Then we have for all δ > 0 and all r ∈ N
and all n ∈ N,

P
(∣∣MGr

(f )
∣∣ > δ

) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c

δ2

(
1

2

)r

, if α2 <
1

2
;

c

δ2 r

(
1

2

)r

, if α2 = 1

2
;

c

δ2 α2r , if α2 >
1

2
;

(2.14)

P
(∣∣M�

n (f )
∣∣ > δ

) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c

δ2

(
1

2

)rn+1

, if α2 <
1

2
;

c

δ2 rn

(
1

2

)rn+1

, if α2 = 1

2
;

c

δ2 α2(rn+1), if α2 >
1

2
;

(2.15)

and

P
(∣∣MTr

(f )
∣∣ > δ

) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c

δ2

(
1

2

)r+1

, if α2 <
1

2
;

c

δ2 r

(
1

2

)r+1

, if α2 = 1

2
;

c

δ2 α2(r+1), if α2 >
1

2
;

(2.16)

where the positive constant c depends on f and α and may differ term by term.

PROOF. See Section A.1 in Appendix A. �

We shall also need an extension of Theorem 2.11 to the case when f does not
only depend on an individual Xi , but on the mother-daughters triangle (
i).

THEOREM 2.12. Let F satisfy conditions (i)–(vi). We assume that (H1) is
fulfilled. Let f ∈ B(S3) such that Pf and Pf 2 exist and belong to F and
(μ,Pf ) = 0. Then we have the same conclusion as in Theorem 2.11 for the three
empirical averages given in (1.2): MGr

(f ), MTr
(f ) and M�

n (f ).

PROOF. See Section A.2 in Appendix A. �

We thus have the following first result on the superexponential convergence in
probability, whose definition we present now:

DEFINITION 2.13. Let (E,d) a metric space. Let (Zn) be a sequence of ran-
dom variables valued in E, Z be a random variable valued in E and (vn) be a rate.
We say that Zn converges vn-superexponentially fast in probability to Z if for all
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δ > 0,

lim sup
n→∞

1

vn

log P
(
d(Zn,Z) > δ

) = −∞.

This “exponential convergence” with speed vn will be shortened as

Zn
superexp−→

vn
Z.

We may now set:

PROPOSITION 2.14. Let F satisfy conditions (i)–(vi). Let f ∈ B(S3) such
that Pf and Pf 2 exist and belong to F and (μ,Pf ) = 0. We assume that (H1) is
fulfilled. Let (bn) be a sequence of increasing positive real numbers such that

bn√
n

−→ +∞,
bn√

n logn
−→ 0,

n

bn

is nondecreasing.(2.17)

Then

M�
n (f )

superexp−→
b2
n/n

0.

PROOF. The proof is a direct consequence of Theorem 2.12. �

2.6. Moderate deviations for BMC. Now, using the MDP for martingale (see,
e.g., [11, 24]), we are going to prove a MDP for BMC. We will use Proposition B.5,
in Appendix B.

THEOREM 2.15. Let F satisfy conditions (i)–(vi). We assume that (H1) is
satisfied. Let f ∈ B(S3) such that Pf 2 and Pf 4 exist and belong to F . Assume
that Pf = 0. Let (bn) be a sequence of increasing positive real numbers satisfying
(2.17). If

lim sup
n→∞

n

b2
n

log
(
n ess sup

1≤k≤c−1(bn+1)

P
(∣∣f (
�(k))

∣∣ > bn/Hk−1
)) = −∞,(2.18)

where c−1(bn+1) := inf{k ∈ N : k
bk

≥ bn+1}, then (M�
n (f )/bn) satisfies a MDP in

R with the speed b2
n/n and the rate function I (x) = x2

2(μ,Pf 2)
.

PROOF. First, note that under the hypothesis, M�
n (f ) is a Hn-martingale, with

H0 = σ(X1) and Hn = σ(
�(i),�(i + 1),1 ≤ i ≤ n). From Proposition B.5 in
Appendix B, we only have to check conditions (C1) and (C3).

On one hand, (2.15) applied to Pf 4 − (μ,Pf 4) implies that for all δ > 0,

lim sup
n→∞

n

b2
n

log P
(

1

n

n∑
i=1

Pf 4(X�(i)) >
(
μ,Pf 4) + δ

)
= −∞,

122 Limit theorems for bifurcating Markov chains with application



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 259

and this implies the exponential Lindeberg condition (see, e.g., [24]), that is, con-
dition (C3).

On the other hand, we have 〈M�(f )〉n = M�
n (Pf 2) and (2.15) applied to

Pf 2 − (μ,Pf 2) implies that

M�
n

(
Pf 2 − (

μ,Pf 2)) superexp−→
b2
n/n

0,

that is, condition (C1). �

REMARK 2.16. One of the main difficulties in the application of this The-
orem lies in the verification of (2.18). Note, however, that in the range of speed
considered it is sufficient to have some uniform control in Xi of some moment of
f (Xi,X2i ,X2i+1) conditionally on Xi , which leads to condition of the type P |f |k
bounded for some k ≥ 2. It is, of course, the case if f is bounded.

REMARK 2.17. In the special case of model (1.1), we have (see Section 4),
for f such that Pf = 0 and for all k,

E
[
exp

(
λ
bn

n
f (
�(k))

)/
Hk−1

]
= exp

(
b2
n

n

(
λ2Pf 2

2n

)
(X�(k))

)
.

This condition implies that a MDP is satisfied for (M�
n (f )/bn). Indeed, if this

relation is satisfied, we then have that for λ ∈ R the quantity

Gn(λ) = λ2

2n

n∑
k=1

Pf 2(X�(k)) = λ2

2
M�

n

(
Pf 2)

is an upper and lower cumulant (see, e.g., [24]), and we may apply Gärtner–Ellis-
type methodology. In addition, due to (2.15) applied to Pf 2 − (μ,Pf 2), we have
for λ ∈ R,

Gn(λ)
superexp−→

b2
n/n

λ2(μ,Pf 2)

2
,

which implies that (M�
n (f )/bn) satisfies a MDP in R with the speed b2

n/n and the

rate function I (x) = x2

2(μ,Pf 2)
.

3. Exponential deviation inequalities for BMC and consequences. We give
here stronger deviation inequalities than the one obtained in Section 2, namely ex-
ponential deviation inequalities. Of course, it requires more stringent assumptions.

3.1. Exponential deviation inequalities. Let us consider the following hypoth-
esis.

(H2) There exists a probability μ on (S,S) such that, for all f ∈ Bb(S) with
(μ,f ) = 0, there exists a positive constant c such that∣∣Qrf (x)

∣∣ ≤ cαr for some α ∈ (0,1) and for all x ∈ S.
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One can easily check that, under hypothesis (H2), Bb(S) fulfills hypothesis (i)–(vi)
of the previous section.

Under this assumption, we will prove exponential deviation inequalities for
MGr

(f ), MTr
(f ) and M�

n (f ) when f ∈ Bb(S) with (μ,f ) = 0 [resp., f ∈
Bb(S

3) with (μ,Pf ) = 0].

THEOREM 3.1. Assume that (H2) is satisfied. Let f ∈ Bb(S) such that
(μ,f ) = 0. Then we have for all δ > 0,

P
(
MGr

(f ) > δ
)

(3.1)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
c′′δ

)
exp

(−c′δ2|Gr |),
∀r ∈ N, if α ≤ 1

2
,

exp
(−c′δ2|Gr |),
∀r ∈ N such that r > r0, if

1

2
< α <

√
2

2
,

exp
(
−c′δ2 |Gr |

r

)
,

∀r ∈ N such that r > r0, if α2 = 1

2
,

exp
(
−c′δ2 1

α2r

)
,

∀r ∈ N such that r > r0, if α2 >
1

2
,

P
(
MTr

(f ) > δ
)

(3.2)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
c′′δ

)
exp

(−c′δ2|Tr |),
∀r ∈ N, if α <

1

2
,

exp
(
2c′δ(r + 1)

)
exp

(−c′δ2|Tr |),
∀r ∈ N, if α = 1

2
,

exp
(−c′δ2|Tr |),
∀r ∈ N such that r > r0 − 1, if

1

2
< α <

√
2

2
,

exp
(
−c′δ2 |Tr |

r + 1

)
,

∀r ∈ N such that r > r0 − 1, if α =
√

2

2
,

exp
(
−c′δ2 1

α2(r+1)

)
,

∀r ∈ N∗ such that r > r0 − 3, if α >

√
2

2
,
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and

P
(
M�

n (f ) > δ
)

(3.3)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
c′′δ

)
exp

(−c′δ2n
)
,

∀n ∈ N, if α <
1

2
,

exp
(
2c′δ(rn + 1)

)
exp

(−c′δ2n
)
,

∀n ∈ N, if α = 1

2
,

exp
(−c′δ2n

)
,

∀n ∈ N such that rn > r0, if
1

2
< α <

√
2

2
,

exp
(
−c′δ2 n

rn + 1

)
,

∀n ∈ N such that rn > r0, if α =
√

2

2
,

exp
(
−c′δ2 1

α2(rn+1)

)
,

∀n ∈ N∗ such that rn > r0 − 2, if α >

√
2

2
,

where r0 := log( δ
c0

)/ log(α), and c0, c′ and c′′ are positive constants which depend
on α and f , and differ line by line; see the proofs for the dependence.

PROOF. The details of the proof are in Section A.3 in Appendix A. It relies
mainly on successive conditioning, using carefully the uniform geometric ergod-
icity assumption to get rid of the conditioning. �

The condition about α less than 1/2 or greater is of course linked to the binary
structure of the tree. The extension to m-ary tree will follow from the same ideas.

THEOREM 3.2. Assume that (H2) is satisfied. Let f ∈ Bb(S
3) such that

(μ,Pf ) = 0. Then we have the same conclusions, for the three empirical aver-
ages MGr

(f ), M�
n (f ) and MTr

(f ), as in the Theorem 3.1.

PROOF. See Section A.4 in Appendix A. �

Now, using the Borel–Cantelli Theorem and (3.3), we state easily the following:

COROLLARY 3.3. Assume that (H2) is satisfied. Let f ∈ Bb(S) such that
(μ,f ) = 0 [resp., f ∈ Bb(S

3) and (μ,Pf ) = 0]. Then M�
n (f ) almost surely con-

verges to 0 as n goes to ∞.
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REMARK 3.4. Of course uniform ergodicity and bounded test functions are
surely a very strong set of assumptions, but it is not so difficult to verify if the
Markov chain’s daughters lie in a compact set. We are convinced that it is possible
to consider the geometric ergodic case and bounded test functions, but for the
price of tedious calculations that we will pursue in an other work. We will also
investigate the use of transportation inequalities, leading to deviation inequality
for Lipschitz test functions under some Wasserstein contraction property for the
kernel P , in the spirit of the Theorems 2.5 or 2.11 in [12].

3.2. Moderate deviation principle for BMC. We introduce the following as-
sumption on the speed of the MDP.

ASSUMPTION 1. Let (bn) be an increasing sequence of positive real numbers
such that

bn√
n

−→ +∞

and:

• if α2 < 1
2 , the sequence (bn) is such that bn/n −→ 0;

• if α2 = 1
2 , the sequence (bn) is such that (bn logn)/n −→ 0;

• if α2 > 1
2 , the sequence (bn) is such that (bnα

rn+1)/
√

n −→ 0.

Using the MDP for martingale with bounded jumps (see, e.g., [9, 11]), we can
now state the following:

THEOREM 3.5. Assume that (H2) is satisfied. Let f ∈ Bb(S
3) such that

Pf = 0. Let (bn) be a sequence of real numbers satisfying the Assumption 1;
then (M�

n (f )/bn) satisfies a MDP in S with the speed b2
n/n and rate function

I (x) = x2

2(μ,Pf 2)
.

PROOF. The proof easily follows from the previous exponential probability
inequalities and the MDP for martingale with bounded jumps; see, for example,
[9, 11, 24]. �

REMARK 3.6. Taking particularly n = |Tr | and (bn) as a sequence of real
numbers satisfying Assumption 1, we get that for all f ∈ Bb(S

3), (MTr
(f )/b|Tr |)

satisfies a MDP in R with the speed b2|Tr |/|Tr | and the rate function I (x) =
x2

2(μ,Pf 2)
.

126 Limit theorems for bifurcating Markov chains with application



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 263

4. Application: First order Bifurcating autoregressive processes. In this
section, we seek to apply the results of the previous sections to the following bi-
furcating autoregressive process with memory 1 defined by

L(X1) = ν and ∀n ≥ 1
{

X2n = α0Xn + β0 + ε2n,

X2n+1 = α1Xn + β1 + ε2n+1,
(4.1)

where α0, α1 ∈ (−1,1); β0, β1 ∈ R, ((ε2n, ε2n+1), n ≥ 1) forms a sequence of i.i.d.
bivariate random variables and ν a probability measure on R.

Several extensions of the model have been proposed and various estimators are
studied in the literature for the unknown parameters; see, for instance, [2, 17–19,
25, 26]. See [4] for a relevant references.

Throughout this section, we assume that the distribution ν has finite moments
of all orders.

In the sequel, we will study (4.1) in two settings:

• the Gaussian setting which corresponds to the case where ((ε2n, ε2n+1), n ≥ 1)

forms a sequence of i.i.d. bivariate random variables with law N2(0,�) with

� = σ 2
(

1 ρ

ρ 1

)
, σ 2 > 0, ρ ∈ (−1,1);(4.2)

• the bounded setting which corresponds to the case where X1 and ((ε2n, ε2n+1),
n ≥ 1), which forms a sequence of centered i.i.d. bivariate random variables,
take their values in a compact set. Let us note that in this case, (Xn,n ∈ T) takes
its values in a compact set.

Our main goal is to give deviation inequalities and MDP for the estimator of the
4-dimensional unknown parameter θ = (α0, β0, α1, β1) and for the statistical test
defined in [14].

To estimate the 4-parameter θ = (α0, β0, α1, β1), as well as σ 2 and ρ, as-
sume we observe a complete subtree Tr+1. The least square estimator θ̂ r =
(α̂r

0, β̂
r
0, α̂r

1, β̂
r
1) of θ is given by (see [14]), for η ∈ {0,1},⎧⎪⎪⎪⎨

⎪⎪⎪⎩
α̂r

η = |Tr |−1 ∑
i∈Tr

XiX2i+η − (|Tr |−1 ∑
i∈Tr

Xi)(|Tr |−1 ∑
i∈Tr

X2i+η)

|Tr |−1 ∑
i∈Tr

X2
i − (|Tr |−1 ∑

i∈Tr
Xi)2

,

β̂r
η = |Tr |−1

∑
i∈Tr

X2i+η − α̂r
η|Tr |−1

∑
i∈Tr

Xi.
(4.3)

Notice that in the Gaussian case, this least square estimator corresponds to the
maximum likelihood estimator.

We also need to introduce the estimators of the conditional variance σ 2 and the
conditional sister–sister correlation ρ. These estimators are naturally given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
σ̂ 2

r = 1

2Tr

∑
i∈Tr

(
ε̂2

2i + ε̂2
2i+1

)
,

ρ̂r = 1

σ̂ 2
r

∑
i∈Tr

ε̂2i ε̂2i+1,

(4.4)
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where the residues are defined by ε̂2i+η = X2i+η − α̂r
ηXi − β̂r

η , with η ∈ {0,1}.
Let us denote by Cpol(R) [resp., Cpol(R3)] the set of all continuous functions

f : R → R (resp., f : R3 → R) such that |f | is bounded above by a polynomial.
From [14], we know that Cpol(R) fulfills hypotheses (i)–(vi).

We will take F = C1
pol(R) the set of all C1 functions f : R → R such that

|f | + |f ′| is bounded above by a polynomial. Then, one can check that F ful-
fills hypotheses (i)–(vi). Moreover, for all f ∈ F , hypothesis (H1) holds with
α = max(|α0|, |α1|). Let μ be the unique stationary distribution of the induced
Markov chain (Yr , r ∈ N); see [14] for more details.

Let us denote by C1
pol(R

3) the set of all C1 functions f : R3 → R such that |f |+
|f ′| is bounded above by a polynomial. We shall denote by x (resp., x2, xy, y, . . .)
the element of C1

pol(R
3) defined by (x, y, z) �→ x (resp., x2, xy, y, . . .).

We define two continuous functions μ1 :� → R and μ2 :�×R∗+ → R by writ-
ing

(μ,x) = μ1(θ) and
(
μ,x2) = μ2

(
θ, σ 2)

,(4.5)

where θ = (α0, β0, α1, β1) ∈ � = (−1,1) × R × (−1,1) × R.
To segregate between H0 = {(α0, β0) = (α1, β1)} and its alternative H1 =

{(α0, β0) �= (α1, β1)}, we shall use the test statistic

χ(1)
r = |Tr |

2σ̂ 2
r (1 − ρ̂r )

{(
α̂r

0 − α̂r
1
)2(

μ̂2,r − μ̂2
1,r

) + ((
α̂r

0 − α̂r
1
)
μ̂1,r + β̂r

0 − β̂r
1

)2}
,

where we write μ̂1,r = μ1(θ̂
r ) and μ̂2,r = μ2(θ̂r , σ̂r ).

As usual the Gaussian setting has specific properties that allow easier calcula-
tions and more general assumptions.

4.1. The Gaussian setting. We introduce the following assumption on the
speed of the MDP. Let (bn) be an increasing sequence of positive real numbers
such that

bn√
n

−→ +∞ and
bn√

n logn
→ 0.(4.6)

PROPOSITION 4.1. Let (bn) be a sequence of real numbers satisfying (4.6).
Then

θ̂ r superexp−→
b2|Tr |/|Tr |

θ.

PROOF. We will treat the case of α̂r
0 given in (4.3). The others, β̂r

0, α̂r
1 and β̂r

1 ,
given in (4.3), may be treated in a similar way. Note that α̂r

0 = Cr
Br

, where

Cr = MTr
(xy) − MTr

(x)MTr
(y) and Br = MTr

(
x2) − MTr

(x)2.
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Now, using Lemma B.2 and Proposition 2.14, it follows that

α̂r
0

superexp−→
b2|Tr |/|Tr |

α0.
�

We recall that in the BAR model (4.1), we use α = max{|α0|, |α1|}, and b :=
μ2(θ, σ 2) − μ1(θ)2, where μ1 and μ2 are given in (4.5), so we have the following
deviation inequality:

PROPOSITION 4.2. For all δ > 0, for all r ∈ N and for all γ < min( c1b
1+δ

,
c1b

1+√
δ
, c1b

1+ 4√
δ
), where c1 is a positive constant which depends on μ1, we have

P
(∥∥θ̂ r − θ

∥∥ > δ
) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c

γ 4qδ4−p

(
1

4

)r+1

, if α2 <
1

2
,

c

γ 4qδ4−p
r2

(
1

4

)r+1

if α2 = 1

2
,

c

γ 4qδ4−p
α4(r+1), if α2 >

1

2
,

(4.7)

where the constant c depends on α, μ1, μ2 and differs line by line, p = p(δ) ∈
{0,2,4} and q = q(δ) ∈ {0,1}.

REMARK 4.3. The values of p and q in Proposition 4.2 depend on the order
of δ. For example, if δ is small enough, we have p = 0 and q = 0.

PROOF. See Section A.5 in Appendix A. �

REMARK 4.4. Proposition 4.2 can be improved by calculating the 2kth order
moments, with k > 2, as in the proof of Theorem 2.1. But, as we have said, this
comes at the price of enormous computation.

PROPOSITION 4.5. Let (bn) be a sequence of real numbers satisfying (4.6).
Then (

σ̂ 2
r , ρ̂r

) superexp−→
b2|Tr |/|Tr |

(
σ 2, ρ

)
.

PROOF. Let us first deal with σ 2
r given in (4.4). We have (see, e.g., [14])

σ̂ 2
r = 1

2MTr

(
f (·, θ)

) + Dr,

where f (x, y, z, θ) = (y − α0x − β0)
2 + (z − α1x − β1)

2 and

Dr = 1

2|Tr |
∑
i∈Tr

(
f

(

i, θ̂

r) − f (
i, θ)
)
.
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By the Taylor–Lagrange formula, we can find g ∈ Cpol(R3) such that (see [14])

|Dr | ≤ 1
2

∥∥θ̂ r − θ
∥∥(

1 + ‖θ‖ + ∥∥θ̂ r − θ
∥∥)

MTr
(g).

Now, Propositions 2.14 and 4.1 lead us to

σ̂ 2
r

superexp−→
b2|Tr |/|Tr |

σ 2.

The proof for ρ̂r given in (4.4) is similar. �

PROPOSITION 4.6. Let (bn) be a sequence of real numbers satisfying (4.6).
Then the sequence (|Tr |(θ̂ r − θ)/b|Tr |) satisfies the MDP on R4 with the speed
b2|Tr |/|Tr | and the rate function I given by

I (x) = 1
2xt (�′)−1

x,

where

�′ = σ 2
(

K ρK

ρK K

)
with

K = 1

μ2(θ, σ 2) − μ1(θ)2

(
1 −μ1(θ)

−μ1(θ) μ2
(
θ, σ 2) )

.

PROOF. We first observe that
|Tr |
b|Tr |

(
θ̂ r − θ

) = M(Ar,Br).
Ur(f )

b|Tr |
,

where f = (f1, f2, f3, f4)
t = (xy,y,xz, z)t , Ur(f ) = MTr

(f − Pf ), Ar =
MTr

(x), Br = MTr
(x2) − MTr

(x)2 and

M(Ar,Br) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

Br

−Ar

Br

0 0

−Ar

Br

Br + A2
r

Br

0 0

0 0
1

Br

−Ar

Br

0 0
−Ar

Br

Br + A2
r

Br

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the sake of simplicity we wrote Pf = (Pf1,Pf2,Pf3,Pf4)
t , where P denotes

the T-transition probability associated to BAR(1) process in the Gaussian case,
which is given by

P(x, dy, dz) = 1

2πσ 2(1 − ρ2)

× exp
(
−1

2

(
y − α0x − β0
z − α1x − β1

)t

�−1
(

y − α0x − β0
z − α1x − β1

))
dy dz,

130 Limit theorems for bifurcating Markov chains with application



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 267

where � is the covariance matrix defined in (4.2).
On one hand, from Proposition 2.14,

Ar
superexp−→
b2|Tr |/|Tr |

a := μ1(θ) and Br
superexp−→
b2|Tr |/|Tr |

b := μ2
(
θ, σ 2) − μ1(θ)2,

so that by Lemma B.2, we obtain

M(Ar,Br)
superexp−→
b2|Tr |/|Tr |

M(a,b) :=
(

K 0
0 K

)
.

On the other hand, let λ = (λ1, λ2, λ3, λ4)
t ∈ R4. For all x ∈ R, we have that

P exp
(
λt (f − Pf )

)
(x)

=
∫

R2
exp

( 4∑
i=1

λi(fi − Pfi)

)
(x, y, z)P (x, dy, dz)

=
∫

R2
exp

⎛
⎜⎜⎝λt

⎛
⎜⎜⎝

xy − x(α0x + β0)

y − α0x − β0
xz − x(α1x + β1)

z − α1x − β1

⎞
⎟⎟⎠

⎞
⎟⎟⎠P(x, dy, dz)

= exp
(
−

(
α0x + β0
α1x + β1

)t (
λ1x + λ2
λ3x + λ4

))

×
∫

R2
exp

((
λ1x + λ2
λ3x + λ4

)t (
y

z

))
P(x, dy, dz).

We know that ∫
R2

exp
((

λ1x + λ2
λ3x + λ4

)t (
y

z

))
P(x, dy, dz)

= exp
((

α0x + β0
α1x + β1

)t (
λ1x + λ2
λ3x + λ4

))

× exp
(

1

2

(
λ1x + λ2
λ3x + λ4

)t

�

(
λ1x + λ2
λ3x + λ4

))
.

Let �(x) denote the square matrix with entries (Pfifj − PfiPfj )(x), for 1 ≤
i, j ≤ 4. So we obtain that

P exp
(
λt (f − Pf )

)
(x) = exp

(
1

2

(
λ1x + λ2
λ3x + λ4

)t

�

(
λ1x + λ2
λ3x + λ4

))

= exp

(
1

2

4∑
i,j=1

λiλj (Pfifj − PfiPfj )(x)

)

= exp
(

1

2
λt�(x)λ

)
.
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Recall that the filtration (Hn)n≥0 is defined by H0 = σ(X1) and Hn = σ(
�(i),

�(i + 1),1 ≤ i ≤ n). Therefore, from the previous calculations, we deduce that
for all k ∈ N,

E
[
exp

(
λt (f − Pf )(
�(k))

)
/Hk−1

] = P
(
exp

(
λt (f − Pf )

))
(X�(k))

= exp
( 1

2λt�(X�(k))λ
)
.

Now, recall that (M�
n (f − Pf ))n∈N is a (Hn)-martingale and by straight-

forward calculations, its increasing process is given by 〈M�(f − Pf )〉n =∑n
k=1 �(X�(k)). From the foregoing, we infer that

(
exp

(
λtM�

n (f − Pf ) − λt 〈M�(f − Pf )〉nλ
2

))
n∈N

is a (Hn)-martingale. It then follows that for all λ ∈ R4, Gn(λ) = 1
2n

λt 〈M�(f −
Pf )〉nλ is an upper and lower cumulant. Moreover, from Proposition 2.14 and
Lemma B.2,

Gn(λ)
superexp−→
b2|Tr |/|Tr |

1
2λt�λ where � = σ 2

(
K−1 ρK−1

ρK−1 K−1

)
.

We thus deduce that (see, e.g., [24]) (M�
n (f )/bn) satisfies a MDP on R4 with

speed b2
n/n and the rate function

J (x) = 1
2xt�−1x.(4.8)

Taking n = |Tr |, it follows that (Ur(f )/b|Tr |) satisfies a MDP with speed
b2|Tr |/|Tr | and the rate function J given in (4.8). Finally, using the contraction
principle (see, e.g., [10]) as in [23], we get the result. �

Let us now consider the test statistic.

PROPOSITION 4.7. Let (bn) a sequence of real numbers satisfying (4.6). Then

under the null hypothesis H0 = {(α0, β0) = (α1, β1)}, |Tr |1/2

b|Tr | (χ
(1)
r )1/2 satisfies a

MDP on R with speed b2|Tr |/|Tr | and the rate function

I ′(y) =
⎧⎨
⎩

y2

2
, if y ∈ R+,

+∞, otherwise.

Under the alternative hypothesis H1 of H0, we have for all A > 0,

lim sup
r→∞

|Tr |
b2|Tr |

log P
(
χ(1)

r < A
) = −∞.
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PROOF. We have

H0 = {
g(θ) = 0

}
where g(θ) = (α0 − α1, β0 − β1)

t .

From Proposition 4.6, (|Tr |(θ̂ r − θ)/b|Tr |) satisfies a MDP on R4 with speed
b2|Tr |/|Tr | and the rate function I (x) = 1

2xt (�′)−1x. So that, using the delta

method for the MDP (see, e.g., [13], Theorem 3.1) we conclude that (|Tr |(g(θ̂ r )−
g(θ))/b|Tr |) satisfies a MDP on R2 with speed b2|Tr |/|Tr | and the rate function

J (y) = inf
{
I (x);y = g′(θ)x

}
.

Identification of this rate function by usual optimization argument leads us to

J (x) = 1
2xt (�′′)−1

x where �′′ = 2σ 2(1 − ρ)K.(4.9)

Under the null hypothesis H0, we have g(θ) = 0, so that (|Tr |g(θ̂ r )/b|Tr |) satisfies
a MDP on R2 with speed b2|Tr |/|Tr | and rate function J given in (4.9).

Now, since K = K(θ,σ ) is a continuous function of (θ, σ ) (see [14]), so that,
letting K̂r = K(θ̂r , σ̂r ), Lemma B.2, Propositions 4.6 and 4.5 entail that

�̂′′
r = 2σ̂ 2

r (1 − ρ̂r )K̂r
superexp−→
b2|Tr |/|Tr |

�′′.

It follows using the contraction principle (see, e.g., [23]) that(|Tr |�̂′′
r

−1/2g
(
θ̂ r)

/b|Tr |
)

satisfies a MDP on R2 with speed b2|Tr |/|Tr | and the rate function J ′(y) = ‖y‖2

2 .
In particular, ∥∥∥∥ |Tr |

b|Tr |
�̂′′

r
−1/2g

(
θ̂ r)∥∥∥∥ = |Tr |1/2

b|Tr |

√
χ

(1)
r

satisfies a MDP with speed b2|Tr |/|Tr | and the rate function I ′ given in the Propo-
sition 4.7.

Now, under the alternative hypothesis H1,

χ
(1)
r

|Tr | = g
(
θ̂ r)t

�̂′′
r

−1g
(
θ̂ r) superexp−→

b2|Tr |/|Tr |
g(θ)t

(
�′′)−1

g(θ) > 0,

so that χ
(1)
r converges

b2|Tr |
|Tr | -superexponentially fast to +∞. This concludes the

proof of the Proposition 4.7. �

4.2. Compact case: The uniformly ergodic setting. We recall that the model
under study in this section is the model (4.1) where we assume that the noise and
initial state X1 take their values in a compact set. The results will be given without
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proofs, since the proofs are similar to those done in the previous section. The
novelty here is that the range of speed is improved in comparison to the previous
section. However, we suppose that the process takes its values in a compact set,
which is not the case in the previous section.

We take F = C1
b(R) the set of all C1 functions bounded on R. Therefore, one can

easily check (as in [14], proof of Proposition 28) that hypothesis (H2) is satisfied
with α = max(|α0|, |α1|). We use the same notation as in the previous section.

Let us begin by the fact that the estimator of θ converges super exponentially
fast to the true parameter.

PROPOSITION 4.8. Let (bn) a sequence of real numbers satisfying the As-
sumption 1. Then we have

θ̂ r superexp−→
b2|Tr |/|Tr |

θ.

We may now refine this result by proving deviation inequality.

PROPOSITION 4.9. For all δ > 0 and for all γ < min( c1b
1+δ

, c1b

1+√
δ
, c1b

1+ 4√
δ
),

where c1 is a positive constant which depends on μ1, and for r0 := log(γ qδ1−p/2/c0)
logα

,
we have

P
(∥∥θ̂ r − θ

∥∥ > δ
) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 exp
(
c′′γ qδ1−p/2)

exp
(−c′γ 2qδ2−p|Tr |),

∀r ∈ N, if α <
1

2
,

c2 exp
(
c′γ qδ1−p/2(r + 1) − c′γ 2qδ2−p|Tr |),

∀r ∈ N, if α = 1

2
,

c2 exp
(−c′γ 2qδ2−p|Tr |),

∀r > r0, if
1

2
< α <

√
2

2
,

c2 exp
(
−c′γ qδ2−p |Tr |

r + 1

)
,

∀r > r0, if α =
√

2

2
,

c2 exp
(
−c′γ 2qδ2−p 1

α2(r+1)

)
,

∀r > r0, if α >

√
2

2
,

(4.10)

where c2 is a positive constant, c′ and c′′ depend on α, and c and may differ line
by line, c0 depends on α, c and γ , and may differ line by line, p ∈ {0,1,3/2} and
q ∈ {0,1}.
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We have now to consider super exponential convergence of the estimators of the
other parameters.

PROPOSITION 4.10. Let (bn) a sequence of real numbers satisfying Assump-
tion 1. Then we have (

σ̂ 2
r , ρ̂r

) superexp−→
b2|Tr |/|Tr |

(
σ 2, ρ

)
.

As previously we may now prove MDP for the estimator of θ .

PROPOSITION 4.11. Let (bn) a sequence of real numbers satisfying the As-
sumption 1. Then (|Tr |(θ̂ r − θ)/b|Tr |) satisfies the MDP on R4 with the speed
b2|Tr |/|Tr | and rate function

I (x) = 1
2xt (�′)−1

x,

where

�′ = σ 2
(

K ρK

ρK K

)

with

K = 1

μ2(θ, σ 2) − μ1(θ)2

(
1 −μ1(θ)

−μ1(θ) μ2
(
θ, σ 2) )

.

REMARK 4.12. Notice that the proof of Proposition 4.11 does not need the
cumulant method as in the proof of Proposition 4.6. Indeed, since we are in the
bounded case, from MDP of martingale with bounded jumps (see [9]), we need
only to prove the superexponential convergence of increasing process of the mar-
tingale. This convergence is easily obtained from Theorem 3.2.

Let us give us our last result by considering a MDP for the test statistic.

PROPOSITION 4.13. Let (bn) a sequence of real numbers satisfying the
Assumption 1. Then under the null hypothesis H0 = {(α0, β0) = (α1, β1)},
|Tr |1/2

b|Tr | (χ
(1)
r )1/2 satisfies a MDP on R with speed b2|Tr |/|Tr | and the rate function

I ′(y) =
⎧⎨
⎩

y2

2
, if y ∈ R+,

+∞, otherwise.

Under the alternative hypothesis H1 of H0, we have for all A > 0,

lim sup
r→∞

|Tr |
b2|Tr |

log P
(
χ(1)

r < A
) = −∞.
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APPENDIX A: PROOF OF THE EXPONENTIAL INEQUALITIES

This section is devoted to the proofs of Theorems 2.11, 2.12, 3.1, 3.2 and Propo-
sition 4.2.

A.1. Proof of Theorem 2.11. Let f ∈ F such that (μ,f ) = 0. We shall study
the three empirical averages MGr

(f ), M�
n (f ) and MTr

(f ) successively.
Part 1. Let us first deal with MGr

(f ). By the Markov inequality, we get, for all
δ > 0,

P
(∣∣MGr

(f )
∣∣ > δ

) = P
(∣∣MGr

(f )
∣∣2 > δ2) ≤ 1

δ2 E
[(

MGr
(f )

)2]
.

By Guyon (see [14]), we have

E
[(

MGr
(f )

)2] =
r∑

p=0

2−p−1p<r νQpP
(
Qr−p−1f ⊗ Qr−p−1f

)
.

Hypothesis (H1) implies that there exists g ∈ F and α ∈ (0,1) such that for all
p ∈ {0,1, . . . , r},

νQpP
(
Qr−p−1f ⊗ Qr−p−1f

) ≤ α2(r−p−1)νQpP (g ⊗ g).

Next, hypotheses (iii), (v) and (vi) imply that there is a positive constant c such
that for all p ∈ {0,1, . . . , r},

α2(r−p−1)νQpP (g ⊗ g) ≤ cα2(r−p−1).

This leads us to

E
[(

MGr
(f )

)2] ≤ c

r∑
p=0

2−p−1p<r α2(r−p−1)

(A.1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c

(
1

2

)r

+ c
α2r − (1/2)r

2α2 − 1
, if α2 �= 1

2
,

cr

(
1

2

)r

, if α2 = 1

2
,

and therefore (2.14) follows.

Part 2. Let us now consider M�
n (f ). By the Markov inequality and the triangle

inequality, we get, for all δ > 0,

P
(∣∣M�

n (f )
∣∣ > δ

)
= P

(∣∣M�
n (f )

∣∣2 > δ2) ≤ 1

δ2 E
[(

M�
n (f )

)2]
(A.2)

≤ 2

δ2 E
[(

rn−1∑
q=0

2q

n
MGq

(f )

)2]
+ 2

δ2 E
[(

1

n

n∑
i=2rn

f (X�(i))

)2]
.
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In the last inequality (A.2), we have used the decomposition

M�
n (f ) =

rn−1∑
q=0

2q

n
MGq

(f ) + 1

n

n∑
i=2rn

f (X�(i)).

In what follows, the constant c may be slightly different from that of part 1 and
may differ term by term. For the first term appearing in (A.2), we have

E
[(

rn−1∑
q=0

2q

n
MGq

(f )

)2]
=

∥∥∥∥∥
rn−1∑
q=0

2q

n
MGq

(f )

∥∥∥∥∥
2

2

≤
(

rn−1∑
q=0

2q

n

∥∥MGq
(f )

∥∥
2

)2

.

Using (A.1), we get that

rn−1∑
q=0

2q

n

∥∥MGq
(f )

∥∥
2 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

n

rn−1∑
q=0

(
√

2)q ≤ c

√
2
rn

n
, if α2 <

1

2
,

c

n

rn∑
q=0

q1/2
√

2
q ≤ c

r
1/2
n

√
2
rn

n
, if α2 = 1

2
,

c

n

rn−1∑
q=0

(2α)q ≤ cαrn, if α2 >
1

2
,

which implies that

E
[(

rn−1∑
q=0

2q

n
MGq

(f )

)2]
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c
2rn

n2 ≤ c

(
1

2

)rn+1

, if α2 <
1

2
,

c
rn

2rn+1 , if α2 = 1

2
,

cα2(rn+1), if α2 >
1

2
.

(A.3)

Now, we have to control the second term in (A.2). As in Guyon [14], we have that

E
[(

1

n

n∑
i=2rn

f (X�(i))

)2]

≤ n − 2rn + 1

n2 νQrnf 2

+ (n − 2rn)(n − 2rn + 1)

n2(1 − 2−rn)

rn−1∑
p=0

2−p−1νQpP
(
Qrn−p−1f ⊗ Qrn−p−1f

)

≤ c

n
+ c

rn−1∑
p=0

2−p−1α2rn−2p−2.
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Discussing following the value of α, we obtain that

E
[(

1

n

n∑
i=2rn

f (X�(i))

)2]
≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c
1

2rn+1 , if α2 <
1

2
,

c
rn

2rn+1 , if α2 = 1

2
,

cα2(rn+1), if α2 >
1

2
.

(A.4)

Inequality (2.15) then follows from (A.3) and (A.4).

Part 3. The case of MTr
(f ) can be deduced from the previous by taking

n = |Tr |.

A.2. Proof of Theorem 2.12. Let f ∈ B(S3) such that Pf and Pf 2 exist
and belong to F and (μ,Pf ) = 0. We shall study the three empirical averages
MGr

(f ), M�
n (f ) and MTr

(f ) successively.
Part 1. Let us first deal with MGr

(f ). By the Markov inequality, we get for all
δ > 0,

P
(∣∣MGr

(f )
∣∣ > δ

) ≤ 1

δ2 E
[(

MGr
(f )

)2]

= 1

δ2 E
[(

MGr
(Pf )

)2] + 1

δ2

1

|Gr |E
[
MGr

(
Pf 2 − (Pf )2)]

≤ 1

δ2 E
[(

MGr
(Pf )

)2] + c

δ2

(
1

2

)r

.

The last inequality follows from the convergence of the sequence (E[MGr
(Pf 2 −

(Pf )2)])r (see [14]).
Now, using part 1 of the proof of Theorem 2.11 with Pf instead of f leads us

to a similar inequality (2.14) in Theorem 2.12 for f ∈ B(S3).
Part 2. Let us now treat M�

n (f ). Using the two equalities

M�
n (f ) =

rn−1∑
q=0

|Gq |
n

MGq
(f ) + 1

n

n∑
i=2rn

f (
�(i)),

E
[(

1

n

n∑
i=2rn

f (
�(i))

)2]
= E

[(
1

n

n∑
i=2rn

Pf (X�(i))

)2]

+ 1

n
E

[
1

n

n∑
i=2rn

(
Pf 2 − (Pf )2)

(X�(i))

]
,
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and part 2 of the proof of Theorem 2.11 with Pf instead of f leads us to a similar
inequality (2.15) in Theorem 2.12 for f ∈ B.

Part 3. The case of MTr
(f ) can be deduced from the previous by taking

n = |Tr |.
A.3. Proof of Theorem 3.1. Let f ∈ Bb(S) such that (μ,f ) = 0. We shall

study the three empirical averages MGr
(f ), M�

n (f ) and MTr
(f ) successively.

Part 1. Let us first deal with MGr
(f ). We have for all λ > 0 and for all δ > 0

P
(
MGr

(f ) > δ
) ≤ exp

(−λδ|Gr |)E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
.(A.5)

By subtracting and adding terms, we get

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]

= E
[
E

[ ∏
i∈Gr−1

exp
(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))

× ∏
i∈Gr−1

exp
(
2λQf (Xi)

)
/Fr−1

]]
.

Now using the fact that conditionally to the (r − 1) first generations the sequence
{
i, i ∈ Gr−1} is a sequence of independent random variables, we have that

E
[
E

[ ∏
i∈Gr−1

exp
(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))

× ∏
i∈Gr−1

exp
(
2λQf (Xi)

)
/Fr−1

]]

= E
[ ∏
i∈Gr−1

exp
(
2λQf (Xi)

)

× ∏
i∈Gr−1

E
[
exp

(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))
/Fr−1

]]
.

Using the Azuma–Bennett–Hoeffding inequalities [1, 3, 16] (see Lemma B.1 for
more detail), we get according to (H2), for all i ∈ Gr−1,

E
[
exp

(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))
/Fr−1

] ≤ exp
(
2λ2c2(1 + α)2)

.

This leads us to

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
≤ exp

(
λ2c2(1 + α)2|Gr |)E

[ ∏
i∈Gr−1

exp
(
2λQf (Xi)

)]
.
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Doing the same thing for E[∏i∈Gr−1
exp(2λQf (Xi))] with Qf replacing f , we

get

E
[ ∏
i∈Gr−1

exp
(
2λQf (Xi)

)]

≤ exp
(
2λ2c2(

α + α2)2|Gr |)E
[ ∏
i∈Gr−2

exp
(
22λQ2f (Xi)

)]
.

Iterating this procedure, we get

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
≤ E

[
exp

(
2rλQrf (X1)

)]

×
r∏

k=1

exp
(
2k−1λ2c2(

αk−1 + αk)2|Gr |).
Once again, according to (H2), we have

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
≤ exp

(
λcαr |Gr |) × exp

(
λ2c2(1 + α)2|Gr |

r∑
k=1

(
2α2)k−1

)
.

Hence:

• if α2 �= 1
2 , then

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
≤ exp

(
λ2c2(1+α)2 1 − (2α2)r

1 − 2α2 |Gr |
)

×exp
(
λcαr |Gr |);

• if α2 = 1
2 , then

E
[
exp

(
λ

∑
i∈Gr

f (Xi)

)]
≤ exp

(
λ2c2(1 + α)2r|Gr |) × exp

(
λc

(√
2

2

)r

|Gr |
)
.

We then consider three cases:
(a) If α2 < 1

2 , then 1−(2α2)r

1−2α2 < 1
1−2α2 for all r . Taking λ = (1−2α2)δ

2c2(1+α)2 in (A.5)
leads us to

P
(
MGr

(f ) > δ
) ≤ exp

(
−

(
(1 − 2α2)δ2

4c2(1 + α)2 − αr (1 − 2α2)δ

2c(1 + α)2

)
|Gr |

)
.

• If α ≤ 1
2 , then (2α)r ≤ 1 for all r ∈ N. We then have for all r ∈ N,

P
(
MGr

(f ) > δ
) ≤ exp

(
(1 − 2α2)δ

2c(1 + α)2

)
exp

(
−(1 − 2α2)δ2|Gr |

4c2(1 + α)2

)
.
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• If 1
2 < α <

√
2

2 , then for all r ∈ N such that r > log( δ
4c

)/ logα, we have (δ −
2cαr) > δ

2 , and it then follows that

P
(
MGr

(f ) > δ
) ≤ exp

(
−(1 − 2α2)δ2|Gr |

8c2(1 + α)2

)
.

(b) If α2 = 1
2 , then for all λ > 0,

P
(
MGr

(f ) > δ
) ≤ exp

((−δλ + c2(1 + α)2rλ2)|Gr |)
× exp

(
λc

(√
2

2

)r

|Gr |
)
.

Taking λ = δ
2c2(1+α)2r

, we are led to

P
(
MGr

(f ) > δ
) ≤ exp

(
− δ|Gr |

4c2(1 + α)2r

(
δ − 2c

(√
2

2

)r))
.

For all r ∈ N such that r > log( δ
4c

)/ log(
√

2
2 ), we have (δ − 2c(

√
2

2 )r ) > δ
2 and for

such r , it follows that

P
(
MGr

(f ) > δ
) ≤ exp

(
−δ2|Gr |

18c2r

)
.

(c) If α2 > 1
2 , then for all λ > 0,

P
(
MGr

(f ) > δ
) ≤ exp

(−λδ|Gr |) × exp
(
λ2c2(1 + α)2 (2α2)r − 1

2α2 − 1
|Gr |

)

× exp
(
λcαr |Gr |)

≤ exp
(
−|Gr |

(
λδ − λ2c2(1 + α)2

2α2 − 1

(
2α2)r))

× exp
(
λcαr |Gr |).

Taking λ = (2α2−1)δ

2c2(1+α)2(2α2)r
leads us to

P
(
MGr

(f ) > δ
) ≤ exp

(
− (2α2 − 1)δ

4c2(1 + α)2α2r

(
δ − 2cαr))

.

Now for all r ∈ N such that r > log( δ
4c

)/ logα, we have

P
(
MGr

(f )
) ≤ exp

(
− (2α2 − 1)δ2

8c2(1 + α)2α2r

)
.
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Part 2. Let us now deal with MTr
(f ). We have for all λ > 0 and all δ > 0,

P
(
MTr

(f ) > δ
) ≤ exp

(−λδ|Tr |)E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]
.(A.6)

By subtracting and adding terms, we get

E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]

= E
[
E

[ ∏
i∈Gr−1

exp
(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))

× ∏
i∈Gr−1

exp
(
2λQf (Xi)

) × ∏
i∈Tr−1

exp
(
λf (Xi)

)
/Fr−1

]]

= E
[
E

[ ∏
i∈Gr−1

exp
(
λ

(
f (X2i ) + f (X2i+1) − 2Qf (Xi)

))

× ∏
i∈Gr−1

exp
(
λ(f + 2Qf )(Xi)

) × ∏
i∈Tr−2

exp
(
λf (Xi)

)
/Fr−1

]]
.

The fact that conditionally to the (r − 1) first generations the sequence {
i, i ∈
Gr−1} is a sequence of independent random variables and Azuma–Bennett–
Hoeffding inequality (see Lemma B.1) lead us according to (H2) to

E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]

≤ exp
(
2λ2c2(1 + α)2|Gr−1|)

× E
[ ∏
i∈Gr−1

exp
(
λ(f + 2Qf )(Xi)

) ∏
i∈Tr−2

exp
(
λf (Xi)

)]
.

Doing the same things for

E
[ ∏
i∈Gr−1

exp
(
λ(f + 2Qf )(Xi)

) ∏
i∈Tr−2

exp
(
λf (Xi)

)]

with f + 2Qf replacing f , we get

E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]

≤ exp
(
2λ2c2(1 + α)2|Gr−1|) × exp

(
2λ2c2(

1 + 3α + 2α2)2|Gr−2|)
× E

[ ∏
i∈Gr−2

exp
(
λ

(
f + 2Qf + 22Q2f

)
(Xi)

) ∏
i∈Tr−3

exp
(
λf (Xi)

)]
.
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Iterating this procedure leads us to

E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]

≤ exp

(
2λ2c2(1 + α)2

r∑
q=1

(q−1∑
k=0

(2α)k

)2

|Gr−q |
)

× E
[
exp

(
λ

(
f + 2Qf + 22Q2f + · · · + 2rQrf

)
(X1)

)]
.

Using (H2) we get

E
[
exp

(
λ

∑
i∈Tr

f (Xi)

)]

≤ exp

(
λc

r∑
k=0

(2α)k + 2λ2c2(1 + α)2
r∑

q=1

(q−1∑
k=0

(2α)k

)2

|Gr−q |
)
.

Now for α �= 1
2 and α2 �= 1

2 we have

P
(
MTr

(f ) > δ
)

≤ exp
(−λδ|Tr |) exp

(
2λ2c2(1 + α)2

(
2r − 1

(1 − 2α)2 − α(1 − αr)2r+1

(1 − 2α)2(1 − α)

+ 2α2(1 − (2α2)r )2r

(1 − 2α)2(1 − 2α2)

))

× exp
(
λc

1 − (2α)r+1

1 − 2α

)

≤ exp
(
−|Tr |

(
λδ − λ2c2(1 + α)2

(1 − 2α)2

(
1 + 4α2(1 − (2α2)r )

1 − 2α2

)))

× exp
(
λc

1 − (2α)r+1

1 − 2α

)
.

Taking λ = δ
(2c2(1+α)2/(1−2α)2)(1+4α2(1−(2α2)r )/(1−2α2))

leads us to

P
(
MTr

(f ) > δ
)

≤ exp
(
−|Tr | (1 − 2α)2δ2

4c2(1 + α)2(1 + 4α2(1 − (2α2)r )/(1 − 2α2))

)

× exp
(

(1 − 2α)2δ

2c(1 + α)2(1 + 4α2(1 − (2α2)r )/(1 − 2α2))

1 − (2α)r+1

1 − 2α

)
.
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• If α < 1
2 , then 1−(2α2)r

1−2α2 < 1
1−2α2 for all r ∈ N,

P
(
MTr

(f ) > δ
) ≤ exp

(
1 − 2α

2c(1 + α)2 δ

)

× exp
(
−(1 − 2α2)(1 − 2α)2δ2

4c2(1 + α)2(1 + 2α2)
|Tr |

)
.

• If 1
2 < α <

√
2

2 , then 1−(2α2)r

1−2α2 < 1
1−2α2 for all r ∈ N,

P
(
MTr

(f ) > δ
)

≤ exp
(
−(1 − 2α2)(2α − 1)2δ|Tr |

4c2(1 + α)2(1 + 2α2)

(
δ − 2c(1 − 2α2)αr+1

(2α − 1)(1 + 2α2)

))
.

Now for all r ∈ N such that r + 1 > log( (2α−1)(1+2α2)δ

4c(1−2α2)
)/ logα, we have δ −

2c(1−2α2)αr+1

(2α−1)(1+2α2)
> δ

2 so that for such r , we have

P
(
MTr

(f ) > δ
) ≤ exp

(
−(1 − 2α2)(2α − 1)2δ2|Tr |

8c2(1 + α)2(1 + 2α2)

)
.

• If α2 > 1
2 , then for all r ≥ 1, we have

P
(
MTr

(f ) > δ
)

≤ exp
(
−(2α − 1)2(2α2 − 1)δ

32c2(1 + α)2α2(r+1)

(
δ − 16α2cαr+1

(2α2 − 1)(2α − 1)

))
.

For all r ∈ N∗ such that r + 3 > log( (2α2−1)(2α−1)δ
32c

)/ logα, we have δ −
16α2cαr+1

(2α2−1)(2α−1)
> δ

2 so that

P
(
MTr

(f ) > δ
) ≤ exp

(
−(1 − 2α)2(2α2 − 1)δ2

64c2(1 + α)2

(
1

α2

)r+1)
.

Now if α = 1
2 , then

∑r
q=1

q2

2q <
∑∞

q=1
q2

2q = 6. Then for all λ > 0,

P
(
MTr

(f ) > δ
) ≤ exp

(−(
λδ − 27c2λ2)|Tr |) × exp

(
λc(r + 1)

)
.

Taking λ = δ
54c2 leads us to

P
(
MTr

(f ) > δ
) ≤ exp

(
− δ2

108c2 |Tr |
)

× exp
(

δ

54c
(r + 1)

)
.
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Finally, if α2 = 1
2 , in the same way as previously, for all r ∈ N such that r + 1 >

log( (
√

2−1)δ
4c

)/ log(
√

2
2 ), we have

P
(
MTr

(f ) > δ
) ≤ exp

(
− (

√
2 − 1)2δ2

4c2(1 + √
2)2

|Tr |
r + 1

)
.

Part 3. Eventually, let us look at M�
n (f ). We have for all δ > 0

P
(

1

n
M�

n (f ) > δ

)
≤ P

(
1

n

∑
i∈Trn−1

f (Xi) >
δ

2

)
+ P

(
1

n

n∑
i=2rn

f (X�(i)) >
δ

2

)
.

On the one hand, (3.2) leads us to

P
(

1

n

∑
i∈Trn−1

f (Xi) >
δ

2

)
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
c′′δ

)
exp

(−c′δ2n
)
,

∀n ∈ N, if α <
1

2
,

exp
(
2c′δ(rn + 1)

)
exp

(−c′δ2n
)
,

∀n ∈ N, if α = 1

2
,

exp
(−c′δ2n

)
,

∀rn > r0, if
1

2
< α <

√
2

2
,

exp
(
−c′δ2 n

rn + 1

)
,

∀rn > r0, if α =
√

2

2
,

exp
(
−c′δ2 1

α2(rn+1)

)
,

∀rn > r0 − 2, if α >

√
2

2
,

(A.7)

where r0 := log( δ
c0

)/ logα and c0, c′ and c′′ are positive constants which depend
on α, ‖f ‖∞ and c. c0, c′and c′′ differ line by line. On the other hand, for all λ > 0,

P
(

1

n

n∑
i=2rn

f (X�(i)) >
δ

2

)
≤ exp

(
−λδ

2
n

)
E

[
exp

(
λ

n∑
i=2rn

f (X�(i))

)]
.

Now let:

• Orn = {�(2rn),�(2rn + 1), . . . ,�(n)};
• O1

rn−1 the set of individuals of generation Grn−1 which are ancestors of one
individual in Orn ;

• O2
rn−1 the set of individuals of generation Grn−1 which are ancestors of two

individuals in Orn ;

Limit theorems for bifurcating Markov chains with application 145



282 S. V. BITSEKI PENDA, H. DJELLOUT AND A. GUILLIN

• O′
rn

the set of individuals of Orn whose parents belong to O1
rn−1;

• Orn−1 = O1
rn−1 ∪ O2

rn−1.

We introduce the filtration F̃r := σ(Fr ,�(i),1 ≤ i ≤ T). Then we have

E
[

exp

(
λ

n∑
i=2rn

f (X�(i))

)]

= E
[
exp

(
λ

∑
i∈O2

rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)

)

× E
[
exp

(
λ

∑
i∈O′

rn

f (Xi) − Qf (X[i/2])
)/

F̃rn−1

]

× E
[
exp

(
λ

∑
i∈O2

rn−1

f (X2i ) + f (X2i+1) − 2Qf (Xi)

)/
F̃rn−1

]]
.

Using the Azuma–Bennett–Hoeffding inequality, as in part 1, we get

E
[
exp

(
λ

∑
i∈O′

rn

f (Xi) − Qf (X[i/2])
)/

F̃rn−1

]
≤ exp

(
λ2c2(1 + α)2

2

∣∣O′
rn

∣∣)

and

E
[
exp

(
λ

∑
i∈O2

rn−1

f (X2i ) + f (X2i+1) − 2Qf (Xi)

)/
F̃rn−1

]

≤ exp
(
2λ2c2(1 + α)2∣∣O2

rn−1
∣∣).

Now, we have

exp
(

λ2c2(1 + α)2

2

∣∣O′
rn

∣∣) + exp
(
2λ2c2(1 + α)2∣∣O2

rn−1
∣∣)

= exp
(
λ2c2(1 + α)2

(
2

∣∣O2
rn−1

∣∣ + |O′
rn

|
2

))

≤ exp
(
λ2c2(1 + α)2n

)
.

This leads us to

E
[

exp

(
λ

n∑
i=2rn

f (X�(i))

)]

≤ exp
(
λ2c2(1 + α)2n

)
E

[
exp

(
λ

∑
i∈O2

rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)

)]
.

Now let:
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• O1,1
rn−2 the set of individuals of Grn−2 which are ancestors of one individual in

Orn−1 and one individual in Orn ;

• O1,2
rn−2 the set of individuals of Grn−2 which are ancestors of one individual in

Orn−1 and two individuals in Orn ;

• O2,2
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in

Orn−1 and two individuals in Orn ;

• O2,3
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in

Orn−1 and three individuals in Orn ;

• O2,4
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in

Orn−1 and four individuals in Orn ;

• O′
rn−1 the set of individuals of Orn−1 whose parents belong to O1,1

rn−2;

• O′′
rn−1 the set of individuals of Orn−1 whose parents belong to O1,2

rn−2.

Then we have

E
[
exp

(
λ

∑
i∈O2

rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)

)]

= E[I1 × I2 × I3 × I4 × I5 × I6 × I7],
where

I1 = exp
(
λ

∑
i∈O1,1

rn−2

Q2f (Xi) + λ
∑

i∈O1,2
rn−2

2Q2f (Xi) + λ
∑

i∈O2,2
rn−2

2Q2f (Xi)

+ λ
∑

i∈O2,3
rn−2

3Q2f (Xi) + λ
∑

i∈O2,4
rn−2

4Q2f (Xi)

)
,

I2 = E
[
exp

(
λ

∑
i∈O′

rn−1

Qf (Xi) − Q2f (X[i/2])
)/

F̃rn−2

]
,

I3 = E
[
exp

(
2λ

∑
i∈O′′

rn−1

Qf (Xi) − Q2f (X[i/2])
)/

F̃rn−2

]
,

I4 = E
[
exp

(
λ

∑
i∈O2,2

rn−1

Qf (X2i ) + Qf (X2i+1) − 2Q2f (Xi)

)/
F̃rn−2

]
,

I5 = E
[
exp

(
λ

2

∑
i∈O2,3

rn−1

2Qf (X2i ) + Qf (X2i+1) − 3Q2f (Xi)

)/
F̃rn−2

]
,

I6 = E
[
exp

(
λ

2

∑
i∈O2,3

rn−1

Qf (X2i ) + 2Qf (X2i+1) − 3Q2f (Xi)

)/
F̃rn−2

]
,
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I7 = E
[
exp

(
λ

∑
i∈O2,4

rn−1

2Qf (X2i ) + 2Qf (X2i+1) − 4Q2f (Xi)

)/
F̃rn−2

]
.

Using the Azuma–Bennett–Hoeffding inequality, we get

I2 × I3 × I4 × I5 × I6 × I7

≤ exp
(
λ2c2(

α + α2)2
( |O′

rn−1|
2

+ 2
∣∣O′′

rn−1
∣∣ + 2

∣∣O2,2
rn−1

∣∣

+ 9|O2,3
rn−1|
2

+ 8
∣∣O2,4

rn−1

∣∣))

≤ exp
(
2λ2c2(

α + α2)2
n

)
,

hence

E
[

exp

(
λ

n∑
i=2rn

f (X�(i))

)]
≤ exp

(
λ2c2(1 + α)2n

)
exp

(
2λ2c2(

α + α2)2
n

)
E[I1].

Now, iterating this procedure we get

E
[

exp

(
λ

n∑
i=2rn

f (X�(i))

)]
≤ exp

(
λ2c2(1 + α)2n

rn∑
p=0

(
2α2)p)

exp
(
λcαrnn

)
.

Then it follows as in part 1 that

P
(

1

n

n∑
i=2rn

f (X�(i)) >
δ

2

)

(A.8)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
c′′δ

)
exp

(−c′δ2n
)
,

∀n ∈ N, if α ≤ 1

2
,

exp
(−c′δ2n

)
,

∀n ∈ N such that rn > r0, if
1

2
< α <

√
2

2
,

exp
(
−c′δ2 n

rn

)
,

∀n ∈ N such that rn > r0, if α2 = 1

2
,

exp
(
−c′δ2

(
1

α

)2rn)
,

∀n ∈ N such that rn > r0, if α2 >
1

2
,

where r0 := log( δ
c0

)/ log(α) and the positive constants c0, c′ and c′′ depend on α,
δ, c and differ line to line. Finally (A.7) and (A.8) lead us to (3.3).
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A.4. Proof of Theorem 3.2. Let f ∈ Bb(S
3) such that (μ,Pf ) = 0.

Part 1. Let us first deal with MGr
(f ). We have for all δ > 0 and λ > 0,

P
(
MGr

(f ) > δ
) ≤ exp

(−λδ|Gr |)E
[
exp

(
λ

∑
i∈Gr

f (
i)

)]
.

Conditioning and using Bennett–Hoeffding inequality gives us

E
[
exp

(
λ

∑
i∈Gr

f (
i)

)]
≤ exp

(
2λ2‖f ‖∞|Gr |)E

[
exp

(
λ

∑
i∈Gr

Pf (Xi)

)]
.

Now, applying part 1 of the proof of the Theorem 3.1 to Pf , we get (3.1) for
f ∈ Bb(S

3).

Part 2. Let us now treat MTr
(f ). We have for all δ > 0,

P
(
MTr

(f ) > δ
) ≤ P

(
MTr

(f − Pf ) >
δ

2

)
+ P

(
MTr

(Pf ) >
δ

2

)
.(A.9)

Now, since (M�
n (f −Pf ))n≥1 is a Hn-martingale with bounded jumps, the Azuma

inequality [1] gives us for some positive constant c′,

P
(
MTr

(f − Pf ) >
δ

2

)
≤ exp

(−c′δ2|Tr |).
For the second term on the right-hand side of (A.9), we use inequalities (3.2) with
Pf instead of f . Gathering these inequalities, we get (3.2) for all r large enough.

Part 3. The proof for the case M�
n (f ) follows the same lines as the proof of

part 2.

A.5. Proof of Proposition 4.2. We will prove the deviation inequality for
|α̂r

0 − α0|. The other deviation inequalities for |β̂r
0 − β0|, |α̂r

1 − α1| and |β̂r
1 − β1|

may be treated in a similar way.
One easily checks that

α̂r
0 − α0 = (MTr

(xy) − MTr
(P (xy))) − (MTr

(x))(MTr
(y) − MTr

(P (y)))

Br

.

We then have, for all δ > 0,

P
(∣∣α̂r

0 − α0
∣∣ > δ

)
≤ P

( |MTr
(xy − P(xy))|

Br

>
δ

2

)

+ P
( |MTr

(x)||MTr
(y − P(y))|

Br

>
δ

2

)
.
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On one hand, for all γ1 > 0 we have

P
( |MTr

(xy − P(xy))|
Br

>
δ

2

)
(A.10)

≤ P(Br < γ1) + P
(∣∣MTr

(
xy − P(xy)

)∣∣ >
δγ1

2

)
.

Now, for b = μ2(θ, σ 2) − μ1(θ)2, where μ1 and μ2 are given in (4.5), we have

P(Br < γ1) ≤ P
(
−MTr

(
x2 − μ2

)
>

b − γ1

3

)

+ P
(∣∣MTr

(x − μ1)
∣∣ >

√
b − γ1√

3

)

+ P
(
MTr

(x − μ1) >
b − γ1

6|μ1|
)
.

We choose γ1 < min{ 2b
2+3δ

,
−4+

√
48bδ2+16
6δ2 , b

1+3δ|μ1| } so that δγ1
2 < max{b−γ1

3 ,√
b−γ1√

3
,

b−γ1
6|μ1| }. Then we have

P(Br < γ1) ≤ P
(
MTr

(
μ2 − x2)

>
δγ1

2

)
+ 2P

(∣∣MTr
(x − μ1)

∣∣ >
δγ1

2

)
,

and therefore we get

P
( |MTr

(xy − P(xy))|
Br

>
δ

2

)

≤ 2P
(∣∣MTr

(x − μ1)
∣∣ >

δγ1

2

)
+ P

(
MTr

(
μ2 − x2)

>
δγ1

2

)

+ P
(∣∣MTr

(
xy − P(xy)

)∣∣ >
δγ1

2

)
.

On the other hand, we have

P
( |MTr

(x)||MTr
(y − P(y))|

Br

>
δ

2

)
≤ P

( |MTr
(x − μ1)||MTr

(y − P(y))|
Br

>
δ

4

)

+ P
( |MTr

(y − P(y))|
Br

>
δ

4|μ1|
)
.

The last term of the previous inequality can be dealt with in the same way as
inequality (A.10), using γ3 > 0 such that

γ3 < min
{

4b|μ1|
4|μ1| + 3δ

,
2|μ1|(−4 +

√
24bδ2/|μ1| + 16)

3δ2 ,
2b

2 + 3δ

}
.

150 Limit theorems for bifurcating Markov chains with application



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 287

For the second term, we have

P
( |MTr

(x − μ1)||MTr
(y − P(y))|

Br

>
δ

4

)

≤ P
(∣∣MTr

(x − μ1)
∣∣ >

√
δ

2

)
+ P

( |MTr
(y − P(y))|

Br

>

√
δ

2

)
.

Let γ2 > 0 such that γ2 < min{ 2b

2+3
√

δ
, −4+√

48bδ+16
bδ

, b

1+3
√

δ|μ1| }, in such a way that

we obtain γ2
√

δ
2 < max{b−γ2

3 ,
√

b−γ2√
3

,
b−γ2
6|μ1| }. We thus have

P
( |MTr

(x − μ1)||MTr
(y − P(y))|

Br

>
δ

4

)

≤ P
(∣∣MTr

(x − μ1)
∣∣ >

√
δ

2

)

+ P
(∣∣MTr

(
x2 − μ2

)∣∣ >
γ2

√
δ

2

)
+ P

(∣∣MTr

(
y − P(y)

)∣∣ >
γ2

√
δ

2

)

+ 2P
(∣∣MTr

(x − μ1)
∣∣ >

γ2
√

δ

2

)
.

From the foregoing, we deduce that for all γ > 0 such that γ < min(γ1, γ2, γ3),

P
(∣∣α̂(r)

0 − α0
∣∣ > δ

)
≤ 2P

(∣∣MTr
(x − μ1)

∣∣ >
δγ

2

)
+ P

(
MTr

(
μ2 − x2)

>
δγ

2

)

+ P
(∣∣MTr

(
xy − P(xy)

)∣∣ >
δγ

2

)
+ P

(∣∣MTr
(x − μ1)

∣∣ >

√
δ

2

)

+ P
(∣∣MTr

(
x2 − μ2

)∣∣ >
γ
√

δ

2

)
+ P

(∣∣MTr

(
y − P(y)

)∣∣ >
γ
√

δ

2

)

+ 2P
(∣∣MTr

(x − μ1)
∣∣ >

γ
√

δ

2

)
+ 2P

(∣∣MTr
(x − μ1)

∣∣ >
δγ

4|μ1|
)

+ P
(∣∣∣∣MTr

(
μ2 − x2)

>
δγ

4|μ1|
∣∣∣∣
)

+ P
(∣∣MTr

(
y − P(y)

)∣∣ >
δγ

4|μ1|
)
.

Now, using (2.8) and Markov’s inequality we get

P
(∣∣MTr

(
xy − P(xy)

)∣∣ >
δγ

2

)
≤ c

δ4γ 4

(
1

4

)r+1

,

P
(∣∣MTr

(
y − P(y)

)∣∣ >
δγ

4|μ1|
)

≤ cμ4
1

δ4γ 4

(
1

4

)r+1
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and

P
(∣∣MTr

(
y − P(y)

)∣∣ >
γ
√

δ

2

)
≤ c

δ2γ 4

(
1

4

)r+1

,

where the constant c can be found as in Remark 2.4.
Finally, the other terms, that is, the terms related to MTr

(x2 −μ2) and MTr
(x−

μ1), can be bounded as in Corollary 2.2 and this completes the proof.

APPENDIX B

Let us gather here, for the convenience of the readers, various theorems useful
to establish LIL, ASFCLT, deviation inequalities and MDP.

First, let us enunciate the Azuma–Bennett–Hoeffding inequality [1, 3, 16].

LEMMA B.1. Let X be a real-valued and centered random variable such that
a ≤ X ≤ b a.s., with a < b. Then for all λ > 0, we have

E
[
exp(λX)

] ≤ exp
(

λ2(b − a)2

8

)
.

LEMMA B.2. Let (E,d) a metric space. Let (Zn) a sequence of random vari-
ables values in E, (vn) a rate and g :DE ⊂ E → R continuous. Let z ∈ E be a
deterministic value:

If Zn
superexp�⇒

vn
z then g(Zn)

superexp�⇒
vn

g(z).

PROOF. For all δ > 0, there exists (see, e.g., [22], proof of Theorem 2.3)
α0(δ) > 0

P
(∣∣g(Zn) − g(z)

∣∣ > δ
) ≤ P

(
d(Zn, z) > α0(δ)

)
.(B.1)

Indeed, since g is continuous, for all δ > 0, there exists α0(δ) > 0 such that∣∣g(x) − g(z)
∣∣ ≤ δ whenever d(x, z) ≤ α0(δ).

We then have{
ω :d

(
Zn(ω), z

) ≤ α0(δ)
} ⊂ {

ω :
∣∣g(

Zn(ω)
) − g(z)

∣∣ ≤ δ
}

and therefore inequality (B.1). Now, the result of the lemma follows since
Zn

superexp�⇒
vn

z. �

Let M = (Mn,Hn, n ≥ 0) be a centered square integrable martingale defined
on a probability space (
,H,P) and (〈M〉n) its bracket. We recall some limit
theorems for martingale used intensively in this paper.

We recall the following result due to W. F. Stout (Theorem 3 in [21]).
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THEOREM B.3. Let (Mn) such that M0 = 0. If 〈M〉n → ∞ a.s. and

∞∑
n=1

2 log log〈M〉n
K2

n〈M〉n E
[
(Mn − Mn−1)

21{(Mn−Mn−1)
2>K2

n〈Mn〉/(2 log log〈M〉n)}/Hn−1
]

< ∞ a.s.,

where Kn are Hn−1 measurable and Kn → 0 a.s., then lim sup Mn√
2〈M〉n log log〈M〉n =

1 a.s.

We recall the following result due to Chaabane (Corollary 2.2 in [5]).

THEOREM B.4. Let (Vn) be a (Hn)-predictable increasing process such that:

H-1 V −2
n 〈M〉n −→

n→∞ 1, a.s.;

H-2 for all ε > 0,
∑

n≥1 V −2
n E[(Mn − Mn−1)

21|Mn−Mn−1|>εVn/Hn−1] < ∞,
a.s.;

H-3 for some a > 1,
∑

n≥1 V −2a
n E[(Mn − Mn−1)

2a1|Mn−Mn−1|≤Vn/Hn−1] <

∞, a.s.

Then Mn satisfies an ASFCLT; that is, for almost all ω, the weighted random mea-
sures

WN(ω,•) = (
logV 2

N

)−1
N∑

n=1

(
1 − V 2

n

V 2
n+1

)
δ{ψn(ω)∈•}

associated to the continuous processes �n(ω) = {�n(ω, t),0 ≤ t ≤ 1} defined by

�n(ω, t) = V −1
n

{
Mk + (

V 2
k+1 − V 2

k

)−1(
tV 2

n − V 2
k

)
(Mk+1 − Mk)

}
,

when V 2
k ≤ tV 2

n < V 2
k+1, 0 ≤ k ≤ n − 1, weakly converge to the Wiener measure

on C([0,1],R).

Let us enunciate the following which corresponds to the unidimensional case of
Theorem 1 in [11].

PROPOSITION B.5. Let (bn) a sequence satisfying

bn is increasing,
bn√
n

−→ +∞,
bn

n
−→ 0,

such that c(n) := n/bn is nondecreasing, and define the reciprocal function c−1(t)

by

c−1(t) := inf
{
n ∈ N : c(n) ≥ t

}
.

Under the following conditions:
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(C1) there exists Q ∈ R∗+ such that 〈M〉n
n

superexp−→
b2
n/n

Q;

(C2) lim supn→+∞ n
b2
n

log(n ess sup1≤k≤c−1(bn+1)
P(|Mk − Mk−1| > bn/Hk−1)) =

−∞;
(C3) for all a > 0 1

n

∑n
k=1 E(|Mk − Mk−1|21{|Mk−Mk−1|≥an/bn}/Hk−1)

superexp−→
b2
n/n

0;

(Mn/bn)n∈N satisfies the MDP in R with the speed b2
n/n and the rate function

I (x) = x2

2Q
.

Acknowledgments. Let us thank two anonymous referees for their very care-
ful reading and useful suggestions, which have clearly improved both presentation
and mathematical rigor of the present paper.

REFERENCES

[1] AZUMA, K. (1967). Weighted sums of certain dependent random variables. Tôhoku Math. J.
(2) 19 357–367. MR0221571

[2] BASAWA, I. V. and ZHOU, J. (2004). Non-Gaussian bifurcating models and quasi-likelihood
estimation. J. Appl. Probab. 41A 55–64. MR2057565

[3] BENNETT, G. (1962). Probability inequalities for sum of independant random variables.
J. Amer. Statist. Assoc. 57 33–45.

[4] BERCU, B., DE SAPORTA, B. and GÉGOUT-PETIT, A. (2009). Asymptotic analysis for bifur-
cating autoregressive processes via a martingale approach. Electron. J. Probab. 14 2492–
2526. MR2563249

[5] CHAABANE, F. (1996). Version forte du théorème de la limite centrale fonctionnel pour les
martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 195–198. MR1402542

[6] COWAN, R. and STAUDTE, R. G. (1986). The bifurcating autoregressive model in cell lineage
studies. Biometrics 42 769–783.

[7] DE SAPORTA, B., GÉGOUT-PETIT, A. and MARSALLE, L. (2011). Parameters estimation for
asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5
1313–1353. MR2842907

[8] DELMAS, J.-F. and MARSALLE, L. (2010). Detection of cellular aging in a Galton–Watson
process. Stochastic Process. Appl. 120 2495–2519. MR2728175

[9] DEMBO, A. (1996). Moderate deviations for martingales with bounded jumps. Electron. Com-
mun. Probab. 1 11–17 (electronic). MR1386290

[10] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Applications of Mathematics 38. Springer, New York. MR1619036

[11] DJELLOUT, H. (2002). Moderate deviations for martingale differences and applications to φ-
mixing sequences. Stoch. Stoch. Rep. 73 37–63. MR1914978

[12] DJELLOUT, H., GUILLIN, A. and WU, L. (2004). Transportation cost-information inequalities
and applications to random dynamical systems and diffusions. Ann. Probab. 32 2702–
2732. MR2078555

[13] GAO, F. and ZHAO, X. (2011). Delta method in large deviations and moderate deviations for
estimators. Ann. Statist. 39 1211–1240. MR2816352

[14] GUYON, J. (2007). Limit theorems for bifurcating Markov chains. Application to the detection
of cellular aging. Ann. Appl. Probab. 17 1538–1569. MR2358633

154 Limit theorems for bifurcating Markov chains with application



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 291

[15] GUYON, J., BIZE, A., PAUL, G., STEWART, E., DELMAS, J.-F. and TADDÉI, F. (2005). Sta-
tistical study of cellular aging. In CEMRACS 2004—Mathematics and Applications to
Biology and Medicine. ESAIM Proceedings 14 100–114 (electronic). EDP Sci., Les Ulis.
MR2226805

[16] HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc. 58 13–30. MR0144363

[17] HUGGINS, R. M. and BASAWA, I. V. (1999). Extensions of the bifurcating autoregressive
model for cell lineage studies. J. Appl. Probab. 36 1225–1233. MR1746406

[18] HUGGINS, R. M. and BASAWA, I. V. (2000). Inference for the extended bifurcating autore-
gressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 423–432. MR1802966

[19] HWANG, S. Y., BASAWA, I. V. and YEO, I. K. (2009). Local asymptotic normality for bi-
furcating autoregressive processes and related asymptotic inference. Stat. Methodol. 6
61–69. MR2655539

[20] STEWART, E. J., MADDEN, R., PAUL, G. and TADDÉI, F. (2005). Aging and death in an
organism that reproduces by morphologically symmetric division. PLoS Biol. 3 e45.

[21] STOUT, W. F. (1970). A martingale analogue of Kolmogorov’s law of the iterated logarithm.
Z. Wahrsch. Verw. Gebiete 15 279–290. MR0293701

[22] VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. MR1652247

[23] WORMS, J. (1999). Moderate deviations for stable Markov chains and regression models. Elec-
tron. J. Probab. 4 28 pp. (electronic). MR1684149

[24] WORMS, J. (2001). Moderate deviations of some dependent variables. I. Martingales. Math.
Methods Statist. 10 38–72. MR1841808

[25] ZHOU, J. and BASAWA, I. V. (2005). Least-squares estimation for bifurcating autoregressive
processes. Statist. Probab. Lett. 74 77–88. MR2189078

[26] ZHOU, J. and BASAWA, I. V. (2005). Maximum likelihood estimation for a first-order bifur-
cating autoregressive process with exponential errors. J. Time Series Anal. 26 825–842.
MR2203513

S. V. BITSEKI PENDA

H. DJELLOUT

LABORATOIRE DE MATHÉMATIQUES

UNIVERSITÉ BLAISE PASCAL

CNRS UMR 6620
24 AVENUE DES LANDAIS

BP 80026, 63177 AUBIÈRE

FRANCE

E-MAIL: Valere.Bitsekipenda@math.univ-bpclermont.fr
Hacene.Djellout@math.univ-bpclermont.fr

A. GUILLIN

INSTITUT UNIVERSITAIRE DE FRANCE

ET LABORATOIRE DE MATHÉMATIQUES

UNIVERSITÉ BLAISE PASCAL

CNRS UMR 6620
24 AVENUE DES LANDAIS

BP 80026, 63177 AUBIÈRE

FRANCE

E-MAIL: Arnaud.Guillin@math.univ-bpclermont.fr

Limit theorems for bifurcating Markov chains with application 155





www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2014, Vol. 50, No. 3, 806–844
DOI: 10.1214/13-AIHP545
© Association des Publications de l’Institut Henri Poincaré, 2014

Deviation inequalities and moderate deviations for estimators of
parameters in bifurcating autoregressive models

S. Valère Bitseki Penda and Hacène Djellout

Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal, 24 Avenue des Landais, BP80026, 63177 Aubière, France.
E-mail: Valere.Bitsekipenda@math.univ-bpclermont.fr; Hacene.Djellout@math.univ-bpclermont.fr

Received 22 August 2012; revised 10 January 2013; accepted 31 January 2013

Abstract. The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least
squares estimators of the unknown parameters of general pth-order asymmetric bifurcating autoregressive processes, under suitable
assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

Résumé. L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estima-
teurs des moindres carrés des paramètres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre p, sous certaines
conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.

MSC: 60F10; 62F12; 60G42; 62M10; 62G05

Keywords: Deviation inequalities; Moderate deviation principle; Bifurcating autoregressive process; Martingale; Limit theorems; Least squares
estimation

1. Motivation and context

Bifurcating autoregressive processes (BAR, for short) are an adaptation of autoregressive processes, when the data
has a binary tree structure. They were first introduced by Cowan and Staudte [6] for cell lineage data where each
individual in one generation gives rise to two offspring in the next generation.

In their paper, the original BAR process is defined as follows. The initial cell is labelled 1, and the two offspring
of cell k are labelled 2k and 2k + 1. If Xk denotes an observation of some characteristic of individual k then the first
order BAR process is given, for all k ≥ 1, by{

X2k = a + bXk + ε2k,

X2k+1 = a + bXk + ε2k+1.

The noise sequence (ε2k, ε2k+1) represents environmental effects, while numbers a and b are unknown real param-
eters, with |b| < 1, related to inherited effects. The driven noise (ε2k, ε2k+1) was originally supposed to be independent
and identically distributed with normal distribution. However, since two sister cells are in the same environment at
their birth, ε2k and ε2k+1 could be correlated, inducing a correlation between sister cells, distinct from the correlation
inherited from their mother.

Several extensions of the model have been proposed and various estimators for the unknown parameters have been
studied in the literature, see for instance [2,19–21,28,29]. See [3] for relevant references (although [3] deals with the
asymmetric case unlike the above cited papers).

Recently, there have been many studies of the asymmetric BAR process, considering cases where the quantitative
characteristics of the even and odd sisters are allowed to depend on their mother’s through different sets of parameters.
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In [18], Guyon proposes an interpretation of the asymmetric BAR process as a bifurcating Markov chain. This
enables him to derive laws of large numbers and central limit theorems for the least squares estimators of the unknown
parameters of the process. This Markov chain approach was further developed by Delmas and Marsalle [10], for cells
which are allowed to die. They defined the genealogy of the cells through a Galton–Watson process, studying the same
model on the Galton–Watson tree instead of a binary tree.

Another approach based on martingales theory was proposed by Bercu, de Saporta and Gégout-Petit [3], to sharpen
the asymptotic analysis of Guyon, under weaker assumptions. It should be pointed out that missing data is not dealt
with in this work. To take it into account in the estimation procedure, de Saporta et al. [8] and [9] use a two-type
Galton–Watson process to model the genealogy.

Our objective in this paper is to go a step further by

• studying the moderate deviation principle (MDP, for short) of the least squares estimators of the unknown parame-
ters of general asymmetric pth-order bifurcating autoregressive processes (BAR(p), for short). More precisely we
are interested in the asymptotic estimations of

P
(√

n

vn

(Θn − Θ) ∈ A

)
,

where Θn denotes the estimator of the unknown parameter of interest Θ , A is a given domain of deviation, (vn > 0)

is some sequence denoting the scale of deviation. When vn = 1 this is exactly the estimation of the central limit
theorem. When vn = √

n, it becomes the large deviation. And when 1 � vn � √
n, this is the so called moderate

deviations. Usually, MDP has a simpler rate function inherited from the approximated Gaussian process, and holds
for a larger class of dependent random variables than the large deviation principle.

To prove our result on MDP, we use

(1) the work of Bercu et al. [3] on the almost sure convergence of the estimators with the quadratic strong law and
the central limit theorem;

(2) the work of Dembo [11], and Worms [26,27] on the one hand, and the papers of Puhalskii [24] and Djellout
[13] on the other hand, on the MDP for martingales.

• giving deviation inequalities for the estimator of bifurcating autoregressive processes, which are important for a
rigorous nonasymptotic statistical study. We aim at obtaining estimates such as

∀x > 0 P
(‖Θn − Θ‖ ≥ x

)≤ e−Cn(x),

where Cn(x) will crucially depend on our set of assumptions. The upper bound in this inequality hold for arbitrary
n and x (not a limit relation, unlike the MDP results), hence they are of much more practical use (in statistics). De-
viation inequalities for estimators of the parameters associated with linear regression, autoregressive and branching
processes were investigated by Bercu and Touati [4]. In the martingale case, deviation inequalities for a self nor-
malized martingale have been developed by de la Peña et al. [7]. We also refer to the work of Ledoux [22] for
precise credit and references. This type of inequalities is motivated by theoretical questions as well as numerous
applications in different fields including the analysis of algorithms, mathematical physics and empirical processes.
For some applications in nonasymptotic model selection problems we refer to Massart [23].

Let us emphasize that to our knowledge, there are no existing studies of the above questions, that is of the MDP and
deviation inequalities for the least squares estimators of the unknown parameters of the general asymmetric BAR(p)

process. These questions have been adressed recently by Bitseki Penda et al. [5], but for the BAR(1) processes.
Moreover, in the latter, the authors have obtained their results under stronger assumptions than those made in this
paper.

The main aspect of our contribution is that our results highlight the competition between the binary division and the
speed of convergence in the MDP. Our MDP holds following three regimes, depending on the value of the ergodicity
parameter of the BAR(p) compared with 1/2. This new phenomenon is not seen in the case of the previously proved
limit theorems: central limit theorem and law of large numbers. However, a similar phenomenon occurs for the central
limit theorem of a branching particle system: see [1].
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This paper is organized as follows. First of all, in Section 2, we introduce the BAR(p) model as well as the least
squares estimators for the parameters of the observed BAR(p) process and some related notation and hypotheses. In
Section 3, we state our main results on the deviation inequalities and MDP for our estimators. Section 4 is dedicated
to the superexponential convergence of the quadratic variation of the martingale; this section contains exponential
inequalities which are crucial for the proof of the deviation inequalities. The main results are proved in Section 5.

2. Notation and hypotheses

In all the sequel, let p ∈ N∗. We consider the asymmetric BAR(p) process given, for all n ≥ 2p−1, by{
X2n = a0 +∑p

k=1 akX[n/2k−1] + ε2n,

X2n+1 = b0 +∑p

k=1 bkX[n/2k−1] + ε2n+1,

where the notation [x] stands for the largest integer less than or equal to the real number x. The initial states {Xk,1 ≤
k ≤ 2p−1 − 1} are the ancestors while (ε2n, ε2n+1) is the driven noise of the process. The parameters (a0, a1, . . . , ap)

and (b0, b1, . . . , bp) are unknown real vectors.
For any matrix M the notation Mt , ‖M‖ and Tr(M) stand for the transpose, the Euclidean norm and the trace of

M respectively.
The BAR(p) process can be rewritten in the abbreviated vector form given, for all n ≥ 2p−1, by{

X2n = AXn + η2n,

X2n+1 = BXn + η2n+1,
(2.1)

where Xn = (Xn,X[n/2], . . . ,X[n/2p−1])t is the regression vector, η2n = (a0 + ε2n)e1 and η2n+1 = (b0 + ε2n+1)e1,
with e1 = (1,0, . . . ,0)t ∈ Rp . Moreover, A and B are the p × p companion matrices

A =
⎛⎜⎝

a1 a2 · · · ap

1 0 · · · 0
0 · · ·
0 · 1 ·

⎞⎟⎠ and B =
⎛⎜⎝

b1 b2 · · · bp

1 0 · · · 0
0 · · ·
0 · 1 ·

⎞⎟⎠ .

We shall assume that the matrices A and B satisfy the contraction property

β = max
(‖A‖,‖B‖)< 1. (2.2)

One can view this BAR(p) process as a pth-order autoregressive process on a binary tree, where each vertex
represents an individual or cell, vertex 1 being the original ancestor. For all n ≥ 1, denote the nth generation by
Gn = {2n,2n + 1, . . . ,2n+1 − 1}, see Figure 1.

In particular, G0 = {1} is the initial generation and G1 = {2,3} is the first generation of offspring from the first
ancestor. Let Grn be the generation of individual n, which means that rn = [log2(n)]. Recall that the two offspring of
individual n are labelled 2n and 2n + 1, or conversely, the mother of the individual n is [n/2]. More generally, the
ancestors of individual n are [n/2], [n/22], . . . , [n/2rn]. Furthermore, denote by

Tn =
n⋃

k=0

Gk

the subtree of all individuals from the original individual up to the nth generation. We denote by Tn,p = {k ∈ Tn, k ≥
2p} the subtree of all individuals between the pth and the nth generation (Tp−1 removed). One can observe that, for
all n ≥ 1, Tn,0 = Tn and for all p ≥ 1, Tp,p = Gp .

The BAR(p) process can be rewritten, for all n ≥ 2p−1, in the matrix form

Zn = θ tYn + Vn,
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Fig. 1. The binary tree T.

where

Zn =
(

X2n

X2n+1

)
, Yn =

(
1

Xn

)
, Vn =

(
ε2n

ε2n+1

)
,

and the (p + 1) × 2 matrix parameter θ is given by

θ =

⎛⎜⎜⎜⎝
a0 b0
a1 b1
· ·
· ·

ap bp

⎞⎟⎟⎟⎠ .

As in Bercu et al. [3], we introduce the least squares estimator θ̂n of θ for all n ≥ p, from the observation of all
individuals up to the nth generation (that is, the complete sub-tree Tn)

θ̂n = S−1
n−1

∑
k∈Tn−1,p−1

YkZ
t
k, (2.3)
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where the (p + 1) × (p + 1) matrix Sn is defined as

Sn =
∑

k∈Tn,p−1

YkY
t
k =

∑
k∈Tn,p−1

(
1 Xt

k

Xk XkXt
k

)
. (2.4)

We assume, without loss of generality, that for all n ≥ p − 1, Sn is invertible. From now on, we shall make a slight
abuse of notation by identifying θ and θ̂n respectively to

vec(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
·
·

ap

b0
·
·

bp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and vec(θ̂n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â0,n

·
·

âp,n

b̂0,n

·
·

b̂p,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Σn = I2 ⊗ Sn, where ⊗ stands for the matrix Kronecker product. We then deduce from (2.3) that

θ̂n = Σ−1
n−1

∑
k∈Tn−1,p−1

vec
(
YkZ

t
k

)= Σ−1
n−1

∑
k∈Tn−1,p−1

⎛⎜⎝
X2k

XkX2k

X2k+1
XkX2k+1

⎞⎟⎠ .

Consequently, (2.1) yields

θ̂n − θ = Σ−1
n−1

∑
k∈Tn−1,p−1

⎛⎜⎝
ε2k

ε2kXk

ε2k+1
ε2k+1Xk

⎞⎟⎠ . (2.5)

Denote by F = (Fn) the natural filtration associated with the BAR(p) process, which means that Fn is the σ -
algebra generated by the individuals up to the nth generation, in other words Fn = σ {Xk, k ∈ Tn}.

For the initial states, we set X1 = max{‖Xk‖, k ≤ 2p−1} with the convention that X0 = 0 and we introduce the
following hypotheses:

(Xa) For some a > 2, there exists ζ > 0 such that

E
[
exp
(
ζX

a

1

)]
< ∞.

This assumption implies the weaker Gaussian integrability condition.

(X2) There is ζ > 0 such that

E
[
exp
(
ζX

2
1

)]
< ∞.

For the noise (ε2n, ε2n+1) the assumption may be of two types.

(1) In the first case we will assume the independence of the noise which allows us to impose less restrictive conditions
on the exponential integrability of the noise.

Case 1: We shall assume that ((ε2n, ε2n+1), n ≥ 1) forms a sequence of independent and identically distributed
bi-variate centered random variables with covariance matrix Γ given by

Γ =
(

σ 2 ρ

ρ σ 2

)
, where σ 2 > 0 and |ρ| < σ 2. (2.6)
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For all n ≥ p − 1 and for all k ∈ Gn, we set

E
[
ε2
k

]= σ 2, E
[
ε4
k

]= τ 4, E[ε2kε2k+1] = ρ, E
[
ε2

2kε
2
2k+1

]= ν2, where τ 4 > 0, ν2 < τ 4.

In addition, we assume that the condition (X2) on the initial state is satisfied and that
(G2) one can find γ > 0 and c > 0 such that for all n ≥ p − 1, for all k ∈ Gn and for all |t | ≤ c

E
[
exp
(
t
(
ε2
k − σ 2))]≤ exp

(
γ t2

2

)
.

In this case, we impose the following hypotheses on the scale of the deviation
(V1) (vn) will denote an increasing sequence of positive real numbers such that

vn −→ +∞

and for β given by (2.2)
• if β ≤ 1

2 , the sequence (vn) is such that vn logn√
n

−→ 0,

• if β > 1
2 , the sequence (vn) is such that (vn

√
logn)β(rn+1)/2 −→ 0.

(2) In contrast with the first case, in the second case we will not assume that the sequence ((ε2n, ε2n+1), n ≥ 1) is
i.i.d. The price to pay for giving up this i.i.d. assumption is to assume higher exponential moments. Indeed we
need them to make use of the MDP for martingales, especially to prove the Lindeberg condition via the Lyapunov
condition.

Case 2: We shall assume that for all n ≥ p − 1 and for all j ∈ Gn+1 E[εj /Fn] = 0 and for all different
k, l ∈ Gn+1 with [ k

2 ] 
= [ l
2 ], εk and εl are conditionally independent given Fn. And we will use the same notation

as in case 1: for all n ≥ p − 1 and for all k ∈ Gn+1,

E
[
ε2
k/Fn

]= σ 2, E
[
ε4
k/Fn

]= τ 4, E[ε2kε2k+1/Fn] = ρ, E
[
ε2

2kε
2
2k+1/Fn

]= ν2 a.s.

where τ 4 > 0, ν2 < τ 4 and we use also Γ for the conditional covariance matrix associated with (ε2n, ε2n+1).
In this case, we assume that the condition (Xa) on the initial state is satisfied, and we shall make the following
hypotheses:
(Ea) for some a > 2, there exist t > 0 and E > 0 such that for all n ≥ p − 1 and for all k ∈ Gn+1,

E
[
exp
(
t |εk|2a

)
/Fn

]≤ E < ∞, a.s.

Throughout this case, we introduce the following hypotheses on the scale of the deviation
(V2) (vn) will denote an increasing sequence of positive real numbers such that

vn −→ +∞,

and for β given by (2.2)
• if β2 < 1

2 , the sequence (vn) is such that vn logn√
n

−→ 0,

• if β2 = 1
2 , the sequence (vn) is such that vn(logn)3/2√

n
−→ 0,

• if β2 > 1
2 , the sequence (vn) is such that (vn logn)βrn+1 −→ 0.

Remarks 2.1. The condition on the scale of the deviation in case 2, is less restrictive than in case 1, since we assume
a stronger integrability condition on the noise (Ea). This condition on the scale of the deviation naturally appears in
the calculations. More precisely, the log term comes from the commutation of a probability and a sum.

Remarks 2.2. From [14] or [22], we deduce with (Ea) that
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(N1) there is φ > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R,

E
[
exp(tεk)/Fn

]
< exp

(
φt2

2

)
, a.s.

We have the same conclusion in case 1, without the conditioning; i.e.

(G1) there is φ > 0 such that for all n ≥ p − 1, for all k ∈ Gn and for all t ∈ R,

E
[
exp(tεk)

]
< exp

(
φt2

2

)
.

Remarks 2.3. Armed with the recent development in the theory of transportation inequalities, exponential integrability
and functional inequalities (see Ledoux [22], Gozlan [16] and Gozlan and Leonard [17]), we can prove that a sufficient
condition for hypothesis (G2) to hold is the existence of t0 > 0 such that for all n ≥ p − 1 and for all k ∈ Gn,
E[exp(t0ε

2
k)] < ∞.

We now turn to the estimation of the parameters σ 2 and ρ. On the one hand, we propose to estimate the conditional
variance σ 2 by

σ̂ 2
n = 1

2|Tn−1|
∑

k∈Tn−1,p−1

‖V̂k‖2 = 1

2|Tn−1|
∑

k∈Tn−1,p−1

(
ε̂2

2k + ε̂2
2k+1

)
,

where for all n ≥ p − 1 and all k ∈ Gn, V̂ t
k = (ε̂2k, ε̂2k+1)

t with{
ε̂2k = X2k − â0,n −∑p

i=1 âi,nX[k/2i−1],
ε̂2k+1 = X2k+1 − b̂0,n −∑p

i=1 b̂i,nX[k/2i−1].

We also introduce

σ 2
n = 1

2|Tn−1|
∑

k∈Tn−1,p

(
ε2

2k + ε2
2k+1

)
.

On the other hand, we estimate the conditional covariance ρ by

ρ̂n = 1

|Tn−1|
∑

k∈Tn−1,p−1

ε̂2kε̂2k+1.

We also introduce

ρn = 1

|Tn−1|
∑

k∈Tn−1,p

ε2kε2k+1.

In order to establish the MDP results of our estimators, we shall make use of a martingale approach. For all n ≥ p,
set

Mn =
∑

k∈Tn−1,p−1

⎛⎜⎝
ε2k

ε2kXk

ε2k+1
ε2k+1Xk

⎞⎟⎠ ∈ R2(p+1).

We can clearly rewrite (2.5) as

θ̂n − θ = Σ−1
n−1Mn. (2.7)
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We know from Bercu et al. [3] that (Mn) is a square integrable martingale adapted to the filtration F = (Fn). Its
increasing process is given for all n ≥ p by

〈M〉n = Γ ⊗ Sn−1,

where Sn is given in (2.4) and Γ is given in (2.6).
Recall that for a sequence of random variables (Zn)n on Rd×p , we say that (Zn)n converges (v2

n)-superexponen-
tially fast in probability to some random variable Z if, for all δ > 0,

lim sup
n→∞

1

v2
n

logP
(‖Zn − Z‖ > δ

)= −∞.

This exponential convergence with speed v2
n will be abbreviated to

Zn
superexp�⇒

v2
n

Z.

Remarks 2.4. Note that for a determininistic sequence that converges to some limit �, it also converges (v2
n)-

superexponentially fast to � for any rate vn.

We follow Dembo and Zeitouni [12] for the language of the large deviations, throughout this paper. Before going
further, let us recall the definition of a MDP: let (vn) be an increasing sequence of positive real numbers such that

vn −→ ∞ and
vn√
n

−→ 0. (2.8)

We say that a sequence of centered random variables (Mn)n with topological state space (S, S) satisfies a MDP
with speed v2

n and rate function I :S → R∗+ if for each A ∈ S ,

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

v2
n

logP
(√

n

vn

Mn ∈ A

)
≤ lim sup

n→∞
1

v2
n

logP
(√

n

vn

Mn ∈ A

)
≤ − inf

x∈A

I (x),

where Ao and A denote the interior and closure of A respectively.
Before we present the main results, let us fix some more notation. Let

a = a0 + b0

2
, a2 = a2

0 + b2
0

2
, A = A + B

2
.

We set

Ξ = a(Ip − A)−1e1, (2.9)

and let Λ be the unique solution of the equation (see Lemma A.4 in [3])

Λ = T + 1

2

(
AΛAt + BΛBt

)
(2.10)

where

T = (σ 2 + a2
)
e1e

t
1 + 1

2

(
a0
(
AΞet

1 + e1Ξ
tAt
)+ b0

(
BΞet

1 + e1Ξ
tBt
))

. (2.11)

We also introduce the following matrices L and Σ given by

L =
(

1 Ξ

Ξ Λ

)
and Σ = I2 ⊗ L. (2.12)
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3. Main results

Let us present now the main results of this paper. In the following theorem, we give the deviation inequalities of the
estimator of the parameters.

Theorem 3.1.

(i) In case 1, we have for all δ > 0 and for all � > 0 such that � < ‖Σ‖/(1 + δ)

P
(‖θ̂n − θ‖ > δ

)≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 exp
(− c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β < 1

2 ,

c1(n − 1) exp
(−c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β = 1

2 ,

c1(n − 1) exp
(−c2(δ�)

2

c3+(δ�)
1

(n−1)βn

)
if β > 1

2 ,

(3.1)

where the constants c1, c2 and c3 depend on σ 2, β , γ and φ, may differ line by line and are such that c1, c2 > 0,
c3 ≥ 0.

(ii) In case 2, we have for all δ > 0 and for all � > 0 such that � < ‖Σ‖/(1 + δ)

P
(‖θ̂n − θ‖ > δ

)≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)2

)
if β <

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)3

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
1

(n−1)2β2n

)
if β >

√
2

2 ,

(3.2)

where the constants c1, c2, c3, and c4 depend on σ 2, β , γ and φ, may differ line by line and are such that
c1, c2 > 0, c3, c4 ≥ 0, (c3, c4) 
= (0,0).

Remarks 3.2. Note that the estimate (3.2) is stronger than the estimate (3.1). This is due to the fact that the integra-
bility condition (Ea) in case 2 is stronger than the integrability condition (G2) in case 1.

Remarks 3.3. Let us stress that by tedious but straightforward calculations, the constants which appear in the previous
theorem can be well estimated.

Remarks 3.4. The upper bounds in previous theorem hold for arbitrary n ≥ p − 1 (not a limit relation, unlike the
results below), hence they are very practical (in nonasymptotic statistics) when sample size does not allow the appli-
cation of limit theorems.

In the next result, we present the MDP of the estimator θ̂n.

Theorem 3.5. In case 1 or in case 2, the sequence (
√|Tn−1|(θ̂n − θ)/v|Tn−1|)n≥1 satisfies the MDP on R2(p+1) with

speed v2
|Tn−1| and rate function

Iθ (x) = sup
λ∈R2(p+1)

{
λtx − λ

(
Γ ⊗ L−1)λt

}= 1

2
xt
(
Γ ⊗ L−1)−1

x, (3.3)

where L and Γ are given in (2.12) and (2.6) respectively.

Remarks 3.6. Similar results about deviation inequalities and MDP have already been obtained in [5], in a restric-
tive case of bounded or Gaussian noise and when p = 1, but results therein also hold for general Markov models.
Moreover in [5], when the noise is Gaussian, the range of speed of MDP is very restricted in comparison to the range
of speed of MDP in case 1 of this paper. These improvements are due to the fact that in this paper, we take advantage
of the autoregressive structure of the process while in [5], only its Markovian nature is used.
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Let us also mention that in case 2, the Markovian nature of BAR(p) processes is lost and this case is not studied
in [5]. However in case 2, for p = 1, if we assume that the initial state X1 and the noise take their values in a compact
set, we can find the same results as in [5]. The results of this paper then allow to extend the results of the latter paper.

Let us consider now the estimation of the parameter in the noise process.

Theorem 3.7. Let (vn) an increasing sequence of positive real numbers such that

vn −→ ∞ and
vn√
n

−→ 0.

In case 1 or in case 2,

(1) the sequence (
√|Tn−1|(σ 2

n − σ 2)/v|Tn−1|)n≥1 satisfies the MDP on R with speed v2
|Tn−1| and rate function

Iσ 2(x) = x2

τ 4 − 2σ 4 + ν2
; (3.4)

(2) the sequence (
√|Tn−1|(ρn − ρ)/v|Tn−1|)n≥1 satisfies the MDP on R with speed v2

|Tn−1| and rate function

Iρ(x) = x2

2(ν2 − ρ2)
. (3.5)

Remarks 3.8. Note that in this case the MDP holds for all the scales (vn) verifying (2.8) without other restriction.

Remarks 3.9. It would be more interesting to prove the MDP for (
√|Tn−1|(σ̂ 2

n − σ 2)/v|Tn−1|)n≥1, which will be
the case if one proves for example that (

√|Tn−1|(σ̂ 2
n − σ 2)/v|Tn−1|)n≥1 and (

√|Tn−1|(σ 2
n − σ 2)/v|Tn−1|)n≥1 are

exponentially equivalent in the sense of the MDP. This is described by the following convergence√|Tn−1|
v|Tn−1|

(
σ̂ 2

n − σ 2
n

) superexp�⇒
v2|Tn−1|

0.

The proof is very technical and very restrictive with respect to the scale (vn) of the deviation. Actually we are only
able to prove that

σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0.

This superexponential convergence will be proved in Theorem 3.10.

In the following theorem we state the superexponential convergence.

Theorem 3.10. In case 1 or in case 2, we have

σ̂ 2
n

superexp�⇒
v2|Tn−1|

σ 2.

In case 1, if instead of (G2), we assume that

(G2′) one can find γ ′ > 0 such that for all n ≥ p − 1, for all k, l ∈ Gn+1 with [ k
2 ] = [ l

2 ] and for all t ∈]−c, c[ for
some c > 0,

E
[
exp t (εkεl − ρ)

]≤ exp

(
γ ′t2

2

)
,
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and in case 2, if instead of (Ea), we assume that

(E2′) one can find γ ′ > 0 such that for all n ≥ p − 1, for all k, l ∈ Gn+1 with [ k
2 ] = [ l

2 ] and for all t ∈ R

E
[
exp t (εkεl − ρ)/Fn

]≤ exp

(
γ ′t2

2

)
, a.s.

Then in case 1 or in case 2, we have

ρ̂n
superexp�⇒
v2|Tn−1|

ρ.

Before going into the proofs, let us gather here for the convenience of the reader two theorems useful to establish
MDP for martingales and used intensively in this paper. From these two theorems, we will be able to give a strategy
for the proof.

The following proposition corresponds to the unidimensional case of Theorem 1 in [13].

Proposition 3.11. Let M = (Mn, Hn, n ≥ 0) be a centered square real valued integrable martingale defined on a
probability space (Ω, H,P) and let (〈M〉n) be its bracket. Let (vn) be an increasing sequence of real numbers satis-
fying (2.8).

Let c(n) :=
√

n
vn

be nondecreasing, and define the reciprocal function c−1(t) by

c−1(t) := inf
{
n ∈ N: c(n) ≥ t

}
.

Under the following conditions

(D1) there exists Q ∈ R∗+ such that 〈M〉n
n

superexp�⇒
v2
n

Q;

(D2) lim supn→+∞ n

v2
n

log(n ess sup1≤k≤c−1(
√

n+1vn+1)
P(|Mk − Mk−1| > vn

√
n/Hk−1)) = −∞;

(D3) for all a > 0 1
n

∑n
k=1 E(|Mk − Mk−1|21{|Mk−Mk−1|≥a(

√
n/vn)}/Hk−1)

superexp�⇒
v2
n

0;

(Mn/vn

√
n)n≥0 satisfies the MDP in R with speed v2

n and rate function I (x) = x2

2Q
.

Let us introduce a simplified version of Puhalskii’s result [24] applied to a sequence of martingale differences.

Theorem 3.12. Let (mn
j )1≤j≤n be a triangular array of martingale differences with values in Rd , with respect to

some filtration (Hn)n≥1. Let (vn) be an increasing sequence of real numbers satisfying (2.8). Under the following
conditions

(P1) there exists a symmetric positive semi-definite matrix Q such that

1

n

n∑
k=1

E
[
mn

k

(
mn

k

)t |Hk−1
] superexp�⇒

v2
n

Q,

(P2) there exists a constant c > 0 such that, for each 1 ≤ k ≤ n, |mn
k | ≤ c

√
n

vn
a.s.,

(P3) for all a > 0, we have the exponential Lindeberg’s condition

1

n

n∑
k=1

E
[∣∣mn

k

∣∣21{|mn
k |≥a(

√
n/vn)}|Hk−1

] superexp�⇒
v2
n

0,

(
∑n

k=1 mn
k/(vn

√
n))n≥1 satisfies an MDP on Rd with speed v2

n and rate function

Λ∗(v) = sup
λ∈Rd

(
λtv − 1

2
λtQλ

)
.
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In particular, if Q is invertible, Λ∗(v) = 1
2vtQ−1v.

As the reader can imagine naturally now, the strategy of the proof of the MDP consists in the following steps:

• the superexponential convergence of the quadratic variation of the martingale (Mn). This step is very crucial and
the key for the rest of the paper. It will be realized by means of powerful exponential inequalities. This allows us to
obtain the deviation inequalities for the estimator of the parameters,

• introduce a truncated martingale which satisfies the MDP, thanks to the classical Theorem 3.12,
• the truncated martingale is an exponentially good approximation of (Mn), in the sense of the moderate deviation.

4. Superexponential convergence of the quadratic variation of the martingale

First, it is necessary to establish the superexponential convergence of the quadratic variation of the martingale (Mn),
properly normalized in order to prove the MDP of the estimators. Its proof is very technical, but crucial for the rest of
the paper. This section contains also some deviation inequalities for some quantities needed in the proof later.

Proposition 4.1. In case 1 or case 2, we have

Sn

|Tn|
superexp�⇒

v2|Tn|
L, (4.1)

where Sn is given in (2.4) and L is given in (2.12).

For the proof we focus on case 2. Proposition 4.1 will follow from Proposition 4.3 and Proposition 4.9 below,
where we assume that the sequence (vn) satisfies the condition (V2). Proposition 4.10 gives some ideas of the proof
in case 1.

Remarks 4.2. Using [14], we infer from (Ea) that

(N2) one can find γ > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R

E
[
exp t

(
ε2
k − σ 2)/Fn

]≤ exp

(
γ t2

2

)
a.s.

Proposition 4.3. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1

|Tn|
∑

k∈Tn,p

XkXt
k

superexp�⇒
v2|Tn|

Λ,

where Λ is given in (2.10).

Proof. Let

Kn =
∑

k∈Tn,p−1

XkXt
k and Ln =

∑
k∈Tn,p

ε2
k . (4.2)

Then from (2.1), and after straightforward calculations (see p. 2519 in [3] for more details), we get that

Kn

2n+1
= 1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct +

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CTn−kC
t ,
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where the notation {A;B}k means the set of all products of A and B with exactly k terms. The cardinality of {A;B}k
is obviously 2k , and

Tk = Lk

2k+1
e1e

t
1 + a2

(
2k − 2p−1

2k

)
e1e

t
1 + I

(1)
k + I

(2)
k + 1

2k+1
Uk

with a2 = (a2
0 + b2

0)/2 and

I
(1)
k = 1

2

(
a0

(
A

Hk−1

2k
et

1 + e1
Hk−1

2k
At

)
+ b0

(
B

Hk−1

2k
et

1 + e1
Hk−1

2k
Bt

))
, (4.3)

I
(2)
k =

(
1

2k

∑
l∈Tk−1,p−1

(a0ε2l + b0ε2l+1)

)
e1e

t
1, (4.4)

Uk =
∑

l∈Tk−1,p−1

ε2l

(
AXle

t
1 + e1Xt

lA
t
)+ ε2l+1

(
BXle

t
1 + e1Xt

lB
t
)
. (4.5)

Then the proposition will follow if we prove Lemmas 4.4, 4.6, 4.7, 4.8 and 4.5. �

Lemma 4.4. Assume that hypothesis (Xa) is satisfied. Then we have

1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct superexp�⇒

v2|Tn|
0, (4.6)

where Kp is given in (4.2).

Proof. We get easily∥∥∥∥ 1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct

∥∥∥∥≤ cβ2nX
2
1,

where β is given in (2.2), X1 is introduced in (Xa) and c is a positive constant which depends on p. Next, Chernoff
inequality and hypothesis (X2) lead us easily to (4.6). �

Lemma 4.5. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct superexp�⇒

v2|Tn|
0, (4.7)

where Uk is given by (4.5).

Proof. Let Vn =∑k∈Tn−1,p−1
ε2kXk . Then (Vn) is an Fn-martingale and its increasing process satisfies, for all n ≥ p,

〈V 〉n = σ 2
∑

k∈Tn−1,p

X2
k ≤ σ 2

∑
k∈Tn−1,p−1

X2
k ≤ σ 2

∑
k∈Tn−1,p−1

‖Xk‖2.

For λ > 0, we infer from hypothesis (N1) that (Yk)p≤k≤n given by

Yn = exp

(
λVn − λ2φ

2

∑
k∈Tn−1,p−1

X2
k

)
,
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is an Fk-supermartingale and moreover E[Yp] ≤ 1. For B > 0 and δ > 0, we have

P
(

Vn

|Tn| + 1
> δ

)
≤ P
(

φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ P
(

Yn > exp

(
λδ − λ2B

2

)
2n+1

)

≤ P
(

φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ exp

((
−λδ + λ2B

2

)
2n+1

)
.

Optimizing on λ, we get

P
(

Vn

|Tn| + 1
> δ

)
≤ P
(

φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ exp

(
−δ2

B
2n+1

)
.

Since the same thing works for −Vn instead of Vn and using the following inequality,∑
k∈Tn−1,p−1

X2
k ≤

∑
k∈Tn−1,p−1

‖Xk‖2,

we get

P
( |Vn|

|Tn| + 1
> δ

)
≤ P
(

φ

|Tn| + 1

∑
k∈Tn−1,p−1

‖Xk‖2 > B

)
+ exp

(
−δ2

B
2n+1

)
. (4.8)

From [3], with α = max(|a0|, |b0|), we have

∑
k∈Tn−1,p−1

‖Xk‖2 ≤ 4

1 − β
Pn−1 + 4α2

1 − β
Qn−1 + 2X

2
1Rn−1, (4.9)

where

Pn =
∑

k∈Tn,p

rk−p∑
i=0

βiε2
[k/2i ], Qn =

∑
k∈Tn,p

rk−p∑
i=0

βi, Rn =
∑

k∈Tn,p−1

β2(rk−p+1).

Now, to control the first term in the right hand side of (4.8), we will use the decomposition given by (4.9). From

the convergence of 4φ
(1−β)(|Tn|+1)

Pn and 4φα2

(1−β)(|Tn|+1)
Qn (see [3] for more details) let l1 and l2 be such that

4φPn−1

(1 − β)(|Tn| + 1)
→ l1 and ∀n ≥ p − 1

4φα2Qn−1

(1 − β)(|Tn| + 1)
< l2.

For δ > 0, we choose B = δ + l1 + l2, using (4.9), we then have

P
(

φ

|Tn| + 1

∑
k∈Tn−1,p−1

‖Xk‖2 > B

)

≤ P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
+ P
(

Qn−1

|Tn| + 1
− l′2 > δ2

)
+ P
(

Rn−1X
2
1

|Tn| + 1
> δ3

)
, (4.10)

where

δ1 = (1 − β)δ

12φ
, l′1 = (1 − β)l1

4φ
, δ2 = (1 − β)δ

12α2φ
, l′2 = (1 − β)l2

4α2φ
and δ3 = δ

6φ
.
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First, by the choice of l2, we have

P
(

Qn−1

|Tn| + 1
− l′2 > δ2

)
= 0. (4.11)

Next, from Chernoff inequality and hypothesis (X2) we get easily

P
(

Rn−1X
2
1

|Tn| + 1
> δ3

)
≤

⎧⎪⎪⎨⎪⎪⎩
c1 exp

(−c2δ2n+1
)

if β <
√

2
2 ,

c1 exp
(−c2δ

2n+1

n+1

)
if β =

√
2

2 ,

c1 exp
(−c2δ

( 1
β2

)n+1) if β >
√

2
2

(4.12)

for some positive constants c1 and c2. Let us now control the first term of the right hand side of (4.10).
First case. If β = 1

2 , from [3]

Pn−1 =
n−1∑
k=p

(n − k)
∑
i∈Gk

ε2
i and l′1 = σ 2.

We thus have

Pn−1

|Tn| + 1
− σ 2 = 1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)+ σ 2

(
n−1∑
k=p

n − k

2n+1−k
− 1

)
.

In addition, we also have

σ 2

(
n−1∑
k=p

n − k

2n+1−k
− 1

)
≤ 0.

We thus deduce that

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)> δ1

)
.

On the one hand we have

P

(
1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)> δ1

)

≤
1∑

η=0

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i+η − σ 2)> δ1/2

)
. (4.13)

On the other hand, for all λ > 0, an application of Chernoff inequality yields

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)> δ1/2

)

≤ exp

(−δ1λ2n+1

2

)
× E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))].
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From hypothesis (N2) we get

E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))]

= E

[
E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))/Fn

]]

= E

[
exp

(
λ

n−3∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)) ∏
i∈Gn−2

E
[
exp
(
λ
(
ε2

2i − σ 2))/Fn

]]

≤ exp
(
λ2γ |Gn−2|

)
E

[
exp

(
λ

n−3∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))].
Iterating this procedure, we obtain

E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))] ≤ exp

(
γ λ2

n−p+1∑
k=2

k2|Gn−k|
)

≤ exp
(
cγ λ22n+1),

where c =∑∞
k=1

k2

2k+2 = 3
4 . Optimizing on λ, we are led, for some positive constant c1 to

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)> δ1/2

)
≤ exp

(−c1δ
2|Tn|

)
.

Following the same lines, we obtain the same inequality for the second term in (4.13). It then follows that

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ c1 exp

(−c2δ
2|Tn|

)
(4.14)

for some positive constants c1 and c2.

Second case. If β 
= 1
2 , then from [3], we have l′1 = σ 2

2(1−β)
. Since

σ 2

(
n−1∑
k=p

1 − (2β)n−k

(1 − 2β)2n−k+1

)
≤ σ 2

2(1 − β)
,

we deduce that

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

1 − (2β)n−k

1 − 2β

∑
i∈Gk

(
ε2
i − σ 2)> δ1

)
.

• If β < 1
2 , then for some positive constant c, we have

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)
.
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Proceeding now as in the proof of (4.21), we get

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ c1 exp

(−c2δ
2|Tn|

)
(4.15)

for some positive constants c1 and c2.
• If β > 1

2 , then for some positive constant c, we have

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

(2β)n−k
∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)
.

Now, from Chernoff inequality, hypothesis (N2) and after several successive conditioning, we get for all λ > 0

P

(
1

|Tn| + 1

n−1∑
k=p

(2β)n−k
∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)

≤ exp
(−cδ1λ2n+1) exp

(
γ λ22n+1

n−p+1∑
k=2

(
2β2)k).

Next, optimizing over λ, we are led, for some positive constant c to

P
(

Pn−1

|Tn| + 1
− l′1 > δ1

)
≤

⎧⎪⎪⎨⎪⎪⎩
exp
(−cδ2|Tn|

)
if 1

2 < β <
√

2
2 ,

exp
(−cδ2 |Tn|

n

)
if β =

√
2

2 ,

exp
(−cδ2

( 1
β2

)n+1) if β >
√

2
2 .

(4.16)

Now combining (4.8), (4.10), (4.11), (4.12), (4.14), (4.15) and (4.16), we have thus showed that

P
(

1

|Tn| + 1
|Vn| > δ

)

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(−c2δ
22n+1

)+ c1 exp
(−c2δ2n+1

)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β <

√
2

2 ,

c1 exp
(−c2δ

2 2n+1

n+1

)+ c1 exp
(−c2δ

2n+1

n+1

)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β =

√
2

2 ,

c1 exp
(−c2δ

2
( 1

β2

)n+1)+ c1 exp
(−c2δ

( 1
β2

)n+1)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β >

√
2

2 ,

(4.17)

where the positive constants c1 and c2 may differ term by term.
One can easily check that the coefficients of the matrix Un are linear combinations of terms similar to Vn, so that

performing calculations similar to the above for each of them, we deduce the same deviation inequalities for Un as in
(4.17).

Now we have

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)
≤ P

(
n−p∑
k=0

1

2k

∑
C∈{A;B}k

1

2n−k+1

∥∥CUn−kC
t
∥∥> δ

)

≤ P

(
n∑

k=p

β2(n−k) 1

|Tk| + 1
‖Uk‖ > δ

)

≤
n∑

k=p

P
( ‖Uk‖

|Tk| + 1
>

δ

(n − p + 1)β2(n−k)

)
.
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From (4.17), we infer the following

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
∑n

k=p exp
(−c2

δ2(2β4)k+1

n2β4n

)+ c1
∑n

k=p exp
(−c2

δ(2β2)k+1

nβ2n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nlβ2(n−k−1))nβ2(n−k−1)

)
if β <

√
2

2 ,

c1
∑n

k=p exp
(−c2

δ24n

n2(k+1)2k+1

)+ c1
∑n

k=p exp
(−c2

δ2n

(k+1)n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nl2−(n−k−1))n2−(n−k−1)

)
if β =

√
2

2 ,

c1
∑n

k=p exp
(−c2

δ2(2β2)k+1

n2β4n

)+ c1
∑n

k=p exp
(−c2

δ

nβ2n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nlβ2(n−k−1))nβ2(n−k−1)

)
if β >

√
2

2 ,

where l = l1 + l2 and the positive constants c1 and c2 may differ term by term.
Now

• If β <
√

2
2 , then on the one hand,

n∑
k=p

exp

(
−c

δ2(2β4)k+1

n2β4n

)

= exp

(
−cδ2β4 2n+1

n2

)(
1 +

n−1∑
k=p

(
exp

(−cδ2

n2

))(2β4)k+1β−4n(1−(2β4)n−k)
)

≤ exp

(
−cδ2β4 2n+1

n2

)(
1 + o(1)

)
,

where the last inequality follows from the fact that for some positive constant c1,(
2β4)k+1

β−4n
(
1 − (2β4)n−k)∝ c1

(
2β4)k+1

β−4n.

On the other hand, following the same lines as before, we obtain

n∑
k=p

exp

(
− δ22k+1

(δ + nlβ2(n−k−1))nβ2(n−k−1)

)
≤

n∑
k=p

exp

(
−cδ2 2k+1

n2β2(n−k−1)

)

≤ exp

(
−c

δ22n+1

(δ + l)n2

)(
1 + o(1)

)
,

and

n∑
k=p

exp

(
−c

δ(2β2)k+1

nβ2n

)
≤

n∑
k=p

exp

(
−c

δ(2β2)k+1

n2β2n

)

≤ exp

(
−cδ

2n+1

n2

)(
1 + o(1)

)
.

We thus deduce that

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)
≤ c1 exp

(
−c2δ

2 2n+1

n2

)
+ c1 exp

(
−c2δ

2n+1

n2

)
(4.18)
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for some positive constants c1 and c2.

• If β =
√

2
2 , then following the same lines as before, we show that

n∑
k=p

exp

(
−cδ2 4n

n2(k + 1)2k+1

)
≤ exp

(
−cδ2 2n+1

n3

)(
1 + o(1)

)
,

n∑
k=p

exp

(
− δ22k+1

(δ + ln2−(n−k−1))n2−(n−k−1)

)
≤ exp

(
−c

δ22n+1

n2(δ + l)

)(
1 + o(1)

)
,

n∑
k=p

exp

(
−cδ

2n

n(k + 1)

)
≤ exp

(
−cδ

2n+1

n3

)(
1 + o(1)

)
.

It then follows that

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤ c1 exp

(
−c2δ

2 2n+1

n3

)
+ c1 exp

(
−c2

δ22n+1

n2(δ + l)

)
+ c1 exp

(
−c2δ

2n+1

n3

)
(4.19)

for some positive constants c1 and c2.

• If β >
√

2
2 , once again following the previous lines, we get

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤ c1 exp

(
−c2δ

2 1

n2β2n

)
+ c1 exp

(
−c2

δ2

(δ + l)n2β2n

)
+ c1n exp

(
−c2

δ

n2β2n

)
(4.20)

for some positive constants c1 and c2.

We infer from the inequalities (4.18), (4.19) and (4.20) that

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct superexp�⇒

v2|Tn|
0.

�

Lemma 4.6. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Ln−k

2n−k
e1e

t
1C

t superexp�⇒
v2|Tn|

l, (4.21)

where Lk is given in the second part of (4.2) and

l =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C
(
σ 2e1e

t
1

)
Ct

is the unique solution of the equation

l = σ 2e1e
t
1 + 1

2

(
AlAt + BlBt

)
.
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Proof. First, since we have for all k ≥ p the following decomposition on odd and even part∑
i∈Tk,p

(
ε2
i − σ 2)= ∑

i∈Tk−1,p−1

(
ε2

2i − σ 2)+ (ε2
2i+1 − σ 2),

we obtain for all δ > 0 that

P
(

1

|Tk| + 1

∑
i∈Tk,p

(
ε2
i − σ 2)> δ

)
≤

1∑
η=0

P
(

1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i+η − σ 2)> δ

2

)
.

We will treat only the case η = 0. Chernoff inequality gives us for all λ > 0

P
(

1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2)> δ

2

)
≤ exp

(
−λ

δ

2
2k+1

)
E
[

exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))].
We obtain from hypothesis (N2), after conditioning by Fk−1

E
[

exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))]≤ exp
(
λ2γ |Gk−1|

)
E
[

exp

(
λ

∑
i∈Tk−2,p−1

(
ε2

2i − σ 2))].
Iterating this, we deduce that

E
[

exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))]≤ exp

(
γ λ2

k−1∑
l=p−1

|Gl |
)

≤ exp
(
γ λ22k+1).

Next, optimizing on λ, we get

P
(

1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2)> δ

2

)
≤ exp

(−cδ2|Tk|
)

for some positive constant c which depends on γ . Applying the foregoing to the random variables −(ε2
i − σ 2), we

obtain

P
(

1

|Tk| + 1

∣∣∣∣ ∑
i∈Tk,p

(
ε2
i − σ 2)∣∣∣∣> δ

)
≤ 4 exp

(−cδ2|Tk|
)
. (4.22)

Now we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Ln−k

2n−k
e1e

t
1C

t − l =
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

−
∞∑

k=n−p+1

1

2k

∑
C∈{A;B}k

C
(
σ 2e1e

t
1

)
Ct

and since the second term of the right hand side of the last equality is deterministic and tends to 0, to prove Lemma 4.6,
it suffices to show that

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t superexp�⇒
v2|Tn|

0.
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From the following inequalities∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥ ≤
n−p∑
k=0

1

2k

∑
C∈{A;B}k

∣∣∣∣Ln−k

2n−k
− σ 2

∣∣∣∣∥∥Ce1e
t
1C

t
∥∥

≤
n∑

k=p

β2(n−k)

∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣
and from (4.22) applied with δ/((n − p + 1)β2(n−k)) instead of δ, we get

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)
≤ P

(
n∑

k=p

β2(n−k)

∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

)

≤
n∑

k=p

P
(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)

≤ c1

n∑
k=p

exp

(
−c2δ

2 (2β4)k+1

n2β4n

)
.

Now, following the same lines as in the proof of (4.7) we obtain

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)
≤

⎧⎪⎪⎨⎪⎪⎩
c1 exp

(−c2δ
2 2n+1

n2

)
if β4 < 1

2 ,

c1n exp
(−c2δ

2 2n+1

n2

)
if β4 = 1

2 ,

c1 exp
(−c2δ

2 1
n2β4n

)
if β4 > 1

2

(4.23)

for some positive constants c1 and c2. From (4.23), we infer that (4.21) holds. �

Lemma 4.7. Assume that hypothesis (N1) is satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CI
(2)
n−kC

t superexp�⇒
v2|Tn|

0, (4.24)

where I
(2)
k is given in (4.4).

Proof. This proof follows the same lines as that of (4.21). �

Lemma 4.8. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CI
(1)
n−kC

t superexp�⇒
v2|Tn|

Λ′, (4.25)

where

Λ′ =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C
(
T − (σ 2 + a2

)
e1e

t
1

)
Ct ,

is the unique solution of the equation

Λ′ = T − (σ 2 + a2
)
e1e

t
1 + 1

2

(
AΛ′At + BΛ′Bt

)
,
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where T is given (2.11) and I
(1)
k is given in (4.3).

Proof. Since in the definition of I
(1)
n given by (4.3) there are four terms, we focus only on the first term

a0

2
A

Hk−1

2k
et

1.

The other terms will be treated in the same way. Using (4.29), we obtain the following decomposition:

a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA
Hn−k−1

2n−k
et

1C
t = T (1)

n + T (2)
n + T (3)

n ,

where

T (1)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

{
A

n−k−p Hp−1

2p
+

n−k−1∑
l=p

A
n−k−l−1 Hp−1

2l+1

}
et

1C
t ,

T (2)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

{
n−k−1∑

l=p

A
n−k−l−1

a

(
2l − 2p−1

2l

)
e1e

t
1

}
Ct

and

T (3)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

n−k−1∑
l=p

A
n−k−l−1 Pl

2l+1
e1e

t
1C

t , with Pn =
∑

k∈Tn,p

εk.

On the one hand, we have

∥∥T (3)
n

∥∥≤ c

n∑
k=p

βn−k |Pk|
2k+1

,

where c is a positive constant such that c > |a0| 1−βn−l

1−β
for all n ≥ l, so that

P
(∥∥T (3)

n

∥∥> δ
)≤ n∑

k=p

P
( |Pk|

|Tk| + 1
>

2δ

cnβn−k

)
.

We deduce again from hypothesis (N1) and in the same way that we have obtained (4.22) that

P
(

Pk

|Tk| + 1
>

2δ

cnβn−k

)
≤ exp

(
−c1δ

2 (2β2)k+1

n2β2n

)
∀k ≥ p

for some positive constant c1. It then follows as in the proof of (4.7) that

P
(∥∥T (3)

n

∥∥> δ
)≤
⎧⎪⎪⎨⎪⎪⎩

exp
(−c1δ

2 2n+1

n2

)
if β2 < 1

2 ,

n exp
(−c1δ

2 2n+1

n2

)
if β2 = 1

2 ,

exp
(−c1δ

2 1
n2β2n

)
if β2 > 1

2 ,

so that

T (3)
n

superexp�⇒
v2|Tn|

0. (4.26)
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On the other hand, we have after tedious calculations

∥∥T (1)
n

∥∥≤

⎧⎪⎪⎨⎪⎪⎩
c

X1
2n+1 if β < 1

2 ,

c X1√|Tn|+1
if β = 1

2 ,

cβnX1 if β > 1
2 ,

where c is a positive constant which depends on p and |a0|. Next, from hypothesis (X2) and Chernoff inequality we
conclude that

T (1)
n

superexp�⇒
v2|Tn|

0. (4.27)

Furthermore, since (T
(2)
n ) is a deterministic sequence, we have (see [3], Lemma A.4)

T (2)
n

superexp�⇒
v2|Tn|

Λ′′, (4.28)

where

Λ′′ =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C

(
1

2
a0AΞet

1

)
Ct

is the unique solution of

Λ′′ = 1

2
a0AΞet

1 + 1

2

(
AΛ′′At + BΛ′′Bt

)
.

It then follows that

a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA
Hn−k−1

2n−k
et

1C
t superexp�⇒

v2|Tn|
Λ′′.

Doing the same for the three other terms of I
(1)
k , we end the proof of Lemma 4.8. �

Proposition 4.9. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1

|Tn|
∑

k∈Tn,p

Xk
superexp�⇒

v2|Tn|
Ξ,

where Ξ is given in (2.9).

Proof. Let

Hn =
∑

k∈Tn,p−1

Xk and Pn =
∑

k∈Tn,p

εk.

From p. 2517 in Bercu et al. [3], we have

Hn

2n+1
=

n∑
k=p−1

(A)n−k Hp−1

2k+1
+

n∑
k=p

a(A)n−k

(
2k − 2p−1

2k

)
e1 +

n∑
k=p

Pk

2k+1
(A)n−ke1.
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Since the second term in the right hand side of this equality is deterministic and converges to Ξ , this proposition
will be proved if we show that

n∑
k=p−1

(A)n−k

2k
Hp−1

superexp�⇒
v2|Tn|

0,

n∑
k=p

Pk

2k+1
(A)n−ke1

superexp�⇒
v2|Tn|

0, (4.29)

which follows by reasoning as in the proof of Proposition 4.3 (see the proof of Proposition 4.3 for more details). �

We now explain the modification in the last proofs in case 1.

Proposition 4.10. Within the framework of case 1, we have the same conclusions as Propositions 4.9 and 4.3 with the
sequence (vn) satisfying condition (V1).

Proof. The proof follows exactly the same lines as the proof of Propositions 4.9 and 4.3, and uses the fact that if a
superexponential convergence holds with a sequence (vn) satisfying condition (V2), then it also holds with a sequence
(vn) satisfying condition (V1). We thus obtain the first convergence of (4.29), the convergences (4.6), (4.27), (4.28)
and (4.24) within the framework of case 1 with (vn) satisfying condition (V1). Next, following the same approach as
which used to obtain (4.22), we get

P
(

1

|Tk| + 1

∣∣∣∣ ∑
i∈Tk,p

(
ε2
i − σ 2)∣∣∣∣> δ

)
≤
{

c1 exp
(−c2δ

2|Tk|
)

if δ is small enough,

c1 exp
(−c2δ|Tk|

)
if δ is large enough,

(4.30)

where c1 and c2 are positive constants which do not depend on δ. On the other hand, let n0 such that for n > n0δ/(n−
p + 1)γβ2(n−n0) is large enough. We have

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)

≤
n0−1∑
k=p

P
(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)
+

n∑
k=n0

P
(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)
.

Now, using (4.30) with δ/(n − p + 1)β2(n−k) instead of δ and following the same approach used to obtain (4.18)–
(4.20) in the two sums of the right hand side of the above inequality, we are led to

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)

≤
⎧⎨⎩c1 exp

(− c2δ
22n+1

n2

)+ c1 exp
(− c2δ2n+1

n

)
if β ≤ 1

2 ,

c1n exp
(− c2δ

2

n2β4n

)+ c1 exp
(− c2δ

nβ2n

)
if β > 1

2 ,

and we thus obtain convergence (4.21) with (vn) satisfying condition (V1). In the same way we obtain

P
(∥∥T (3)

n

∥∥> δ
)≤
⎧⎪⎪⎨⎪⎪⎩

c1 exp
(− c2δ

22n+1

n2

)+ c1 exp
(− c2δ2n+1

n

)
if β < 1

2 ,

c1n exp
(− c2δ2n+1

n

)
if β = 1

2 ,

c1 exp
(− c2δ

2

n2β2n

)+ c1 exp
(− c2δ

nβn

)
if β > 1

2 ,

so that (4.26) and then (4.25) hold for (vn) satisfying condition (V1). To reach the convergence (4.7) and the second
convergence of (4.29) with (vn) satisfying condition (V1), we follow the same procedure as before and the proof of
the proposition is then complete. �
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Remark 4.11. Let us note that we can actually prove that

1

n

n∑
k=2p

Xk
superexp�⇒

v2
n

Ξ and
1

n

n∑
k=2p

XkXt
k

superexp�⇒
v2
n

Λ.

Indeed, let Hn =∑n
k=2p−1 Xk and P

(n)
l =∑[n/2l ]

k=2rn−l εk. We have the following decomposition

Hn

n
− Ξ = 1

n

∑
k∈Trn−1,p−1

(Xk − Ξ) + 1

n

n∑
k=2rn

(Xk − Ξ) + 2p−1 − 1

n
Ξ.

On the one hand, observing that vn/v|Trn−1| < 2, we infer from Proposition 4.9 that

1

n

∑
k∈Trn−1,p−1

(Xk − Ξ)
superexp�⇒

v2
n

0.

The sequence ( 2p−1−1
n

Ξ) being deterministic and converging to 0, we deduce that

2p−1 − 1

n
Ξ

superexp�⇒
v2
n

0.

On the other hand, from (2.1) we deduce that

n∑
k=2rn

Xk = 2rn−p+1(A)rn−p+1
[n/(2rn−p+1)]∑

k=2p−1

Xk + 2a

rn−p∑
k=0

([
n

2k

]
− 2rn−k + 1

)
2k(A)ke1

+
rn−p∑
k=0

2k(A)kP
(n)
k e1 −

rn−p+1∑
k=1

sk2k−1(A)k−1(BX[n/2k] + η[n/2k−1]+1),

where

sk =
{

1 if
[

n

2k−1

]
is even,

0 if
[

n

2k−1

]
is odd.

Reasoning now as in the proof of Proposition 4.9, tedious but straightforward calculations lead us to

1

n

n∑
k=2rn

(Xk − Ξ)
superexp�⇒

v2
n

0.

It then follows that

1

n

n∑
k=2p

Xk
superexp�⇒

v2
n

Ξ.

The term 1
n

∑n
k=2p XkXt

k can be dealt with in the same way.

The rest of the paper is dedicated to the proof of our main results. We focus on the proof in case 2, and some
explanations are given on how to obtain the results in case 1.

5. Proof of the main results

We start with the proof of the deviation inequalities.
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5.1. Proof of Theorem 3.1

We begin the proof with case 2. Let δ > 0 and � > 0 such that � < ‖Σ‖/(1 + δ). We have from (2.7)

P
(‖θ̂n − θ‖ > δ

) = P
( ‖Mn‖

‖Σn−1‖ > δ,
‖Σn−1‖
|Tn−1| ≥ �

)
+ P
( ‖Mn‖

‖Σn−1‖ > δ,
‖Σn−1‖
|Tn−1| < �

)
≤ P
( ‖Mn‖

|Tn−1| > δ�

)
+ P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> ‖Σ‖ − �

)
.

Since � < ‖Σ‖/(1 + δ), then

P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> ‖Σ‖ − �

)
≤ P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)
.

It then follows that

P
(‖θ̂n − θ‖ > δ

)≤ 2 max

{
P
( ‖Mn‖

|Tn−1| > δ�

)
,P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)}
.

On the one hand, we have

P
( ‖Mn‖

|Tn−1| > δ�

)
≤

1∑
η=0

{
P
(∣∣∣∣ 1

|Tn−1|
∑

k∈Tn−1,p−1

ε2k+η

∣∣∣∣> δ�

4

)

+ P
(∥∥∥∥ 1

|Tn−1|
∑

k∈Tn−1,p−1

ε2k+ηXk

∥∥∥∥>
δ�

4

)}
.

Now, by carrying out the same calculations as those which have permitted us to obtain Lemma 4.7 and equation
(4.17), we are led to

P
( ‖Mn‖

|Tn−1| > δ�

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+c4(δ�)
2n
)

if β <
√

2
2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

n

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)

( 1
β2

)n) if β >
√

2
2 ,

(5.1)

where the positive constants c1, c2, c3 and c4 depend on σ , β , γ and φ and (c3, c4) 
= (0,0).
On the other hand, noticing that Σn−1 = I2 ⊗ Sn−1, we have

P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)
≤ 2P

(∥∥∥∥ Sn−1

|Tn−1| − L

∥∥∥∥>
δ�

2

)
.

Next, from the proofs of Propositions 4.9 and 4.3, we deduce that

P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥>
�

2

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+c4(δ�)
2n

(n−1)2

)
if β <

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)3

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)

( 1
(n−1)2β2n

))
if β >

√
2

2 ,

(5.2)

where the positive constants c1, c2, c3 and c4 depend on σ , β , γ and φ and (c3, c4) 
= (0,0). Now, (3.1) follows from
(5.1) and (5.2).
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In case 1, the proof follows exactly the same lines as before and uses the same ideas as the proof of Proposition 4.10.
In particular, we have in this case

P
(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥>
�

2

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+(δ�)
2n

(n−1)2

)
if β < 1

2 ,

c1(n − 1) exp
(− c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β = 1

2 ,

c1(n − 1) exp
(− c2(δ�)

2

c3+(δ�)

( 1
(n−1)βn

))
if β > 1

2 ,

where the positive constants c1, c2 and c3 depend on σ , β , γ and φ. (3.1) then follows in this case, and this ends the
proof of Theorem 3.1.

5.2. Proof of Theorem 3.7

First we need to prove the following

Theorem 5.1. In case 1 or in case 2, the sequence (Mn/(v|Tn−1|
√|Tn−1|))n≥1 satisfies the MDP on R2(p+1) with

speed v2
|Tn−1| and rate function

IM(x) = sup
λ∈R2(p+1)

{
λtx − λt (Γ ⊗ L)λ

}= 1

2
xt (Γ ⊗ L)−1x. (5.3)

5.2.1. Proof of Theorem 5.1
Since the size of the data doubles at each generation, we are not able to verify the Lindeberg condition. To come over
this problem, and as in Bercu et al. [3], p. 2510, we change the filtration and we will use the sister pair-wise one, that
is, (Gn)n≥1 given by Gn = σ {X1, (X2k,X2k+1),1 ≤ k ≤ n}. We introduce the following (Gn) martingale difference
sequence (Dn), given by

Dn = Vn ⊗ Yn =
⎛⎜⎝

ε2n

ε2nXn

ε2n+1
ε2n+1Xn

⎞⎟⎠ .

We clearly have

DnD
t
n = VnV

t
n ⊗ YnY

t
n.

So we obtain that the quadratic variation of the (Gn) martingale (Nn)n≥2p−1 given by

Nn =
n∑

k=2p−1

Dk

is

〈N〉n =
n∑

k=2p−1

E
(
DkD

t
k/Gk−1

)= Γ ⊗
n∑

k=2p−1

YkY
t
k .

Now we clearly have Mn = N|Tn−1| and 〈M〉n = 〈N〉|Tn−1| = Γ ⊗ Sn−1. From Proposition 4.1, and since 〈M〉n =
Γ ⊗ Sn−1, we have

〈M〉n
|Tn|

superexp�⇒
v2|Tn−1|

Γ ⊗ L. (5.4)
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Before going to the proof of the MDP results, we state the exponential Lyapounov condition for (Nn)n≥2p−1 , which
implies exponential Lindeberg condition, that is

lim sup
1

v2
n

logP

(
1

n

n∑
k=2p−1

E
[‖Dk‖21{‖Dk‖≥r(

√
n/vn)}

]≥ δ

)
= −∞

(see Remark 3, p. 10, in [25] for more details on this implication).

Remarks 5.2. By [14], we infer from the condition (Ea) that

(Na) one can find γa > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R, with μa = E(|εk|a/Fn) a.s.

E
[
exp t

(|εk|a − μa

)
/Fn

]≤ exp

(
γat

2

2

)
a.s.

Proposition 5.3. Let (vn) be a sequence satisfying assumption (V2). Assume that hypotheses (Na) and (Xa) are
satisfied. Then there exists B > 0 such that

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

E
[‖Dj‖a/Gj−1

]
> B

)
= −∞.

Proof. We are going to prove that

lim sup
n→∞

1

v2
|Tn|

logP

(
1

|Tn|
|Tn|∑
j=2p

E
[‖Dj‖a/Gj−1

]
> B

)
= −∞, (5.5)

and Proposition 5.3 will follow by proceeding as in Remark 4.11. We have∑
j∈Tn,p

E
[‖Dj‖a/Gj−1

]≤ cμa
∑

j∈Tn,p

(
1 + ‖Xj‖a

)
,

where c is a positive constant which depends on a. From (2.1), we deduce that

∑
j∈Tn,p

‖Xj‖a ≤ c2

(1 − β)a−1
Pn + c2αaQn

(1 − β)a−1
+ 2cRnX

a

1,

where

Pn =
∑

j∈Tn,p

rj −p∑
i=0

βi |ε[j/2i ]|a, Qn =
∑

j∈Tn,p

rj −p∑
i=0

βi, Rn =
∑

j∈Tn,p

βa(rj −p+1),

and c is a positive constant. Now, proceeding as in the proof of Proposition 4.3, using hypotheses (Na) and (Xa)
instead of (N2) and (X2), we get for B large enough

lim sup
n→∞

1

v2
|Tn|

logP
(

1

|Tn|
∑

j∈Tn,p

‖Xj‖a > B

)
= −∞. (5.6)

Now (5.6) leads us to (5.5) and following the same approach as in Remark 4.11, we obtain Proposition 5.3. �
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Remarks 5.4. In case 1, we clearly have that (Xn, n ∈ T·,p−1), where

T·,p−1 =
∞⋃

r=p−1

Gr ,

is a bifurcating Markov chain with initial state X2p−1 = (X2p−1,X2p−2, . . . ,X1)
t . Let ν be the law of X2p−1 . From

hypothesis (X2), we deduce that ν has finite moments of all orders. We denote by P the transition probability kernel
associated to (Xn, n ∈ T·,p−1). Let (Yr , r ∈ N) the ergodic stable Markov chain associated to (Xn, n ∈ T·,p−1). This
Markov chain is defined as follows, starting from the root Y0 = X2p−1 and if Yr = Xn then Yr+1 = X2n+ζr+1 for a
sequence of independent Bernoulli r.v. (ζq, q ∈ N∗) such that P(ζq = 0) = P(ζq = 1) = 1/2.

Let μ be the stationary distribution associated to (Yr , r ∈ N). For more details on bifurcating Markov chain and
the associated ergodic stable Markov chain, we refer to [18] (see also [5]).

From [5], we deduce that for all real bounded function f defined on (Rp)3,

1

v|Tn−1|
√|Tn−1|

∑
k∈Tn−1,p−1

f (Xk,X2k,X2k+1)

satisfies a MDP on R with speed v2
|Tn−1| and the rate function I (x) = x2

2S2(f )
, where S2(f ) = 〈μ,P (f 2) − (Pf )2〉.

Now, let f be the function defined on (Rp)3 by f (x, y, z) = ‖x‖2 + ‖y‖2 + ‖z‖2. Then, using the relation (4.1) in
Proposition 4.1, the above MDP for real bounded functionals of the bifurcating Markov chain (Xn, n ∈ T·,p−1) and
the truncation of the function f , we prove (in the same manner as the proof of Lemma 3 in Worms [25]) that for all
r > 0

lim sup
R→∞

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

(‖Xj‖2 + ‖X2j‖2 + ‖X2j+1‖2)

× 1{‖Xj ‖+‖X2j ‖+‖X2j+1‖>R} > r

)
= −∞,

which implies the following Lindeberg condition (for more details, we refer to Proposition 2 in Worms [25])

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

(‖Xj‖2 + ‖X2j‖2 + ‖X2j+1‖2)

× 1{‖Xj ‖+‖X2j ‖+‖X2j+1‖>r(
√

n/vn)} > δ

)
= −∞

for all δ > 0 and for all r > 0. Notice that the above Lindeberg condition implies in particular the Lindeberg condition
on the sequence (Xn).

Now, we come back to the proof of Theorem 5.1. We divide the proof into four steps. In the first one, we introduce a
truncation of the martingale (Mn)n≥0 and prove that the truncated martingale satisfies some MDP thanks to Puhalskii’s
Theorem 3.12. In the second part, we show that the truncated martingale is an exponentially good approximation of
(Mn), see e.g. Definition 4.2.14 in [12]. We conclude by the identification of the rate function.

Proof in case 2. Step 1. From now on, in order to apply Puhalskii’s result [24] (Puhalskii’s Theorem 3.12) for the
MDP for martingales, we introduce the following truncation of the martingale (Mn)n≥0. For r > 0 and R > 0,

M(r,R)
n =

∑
k∈Tn−1,p−1

D
(r,R)
k,n ,
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where, for all 1 ≤ k ≤ n, D
(r,R)
k,n = V

(R)
k ⊗ Y

(r)
k,n , with

V (R)
n = (ε(R)

2n , ε
(R)
2n+1

)t and Y
(r)
k,n = (1,X(r)

k,n

)t
,

where

ε
(R)
k = εk1{|εk |≤R} − E[εk1{|εk |≤R}], X(r)

k,n = Xk1{‖Xk‖≤r(
√|Tn−1|/v|Tn−1|)}.

We introduce Γ (R) the conditional covariance matrix associated with (ε
(R)
2k , ε

(R)
2k+1)

t and the truncated matrix asso-
ciated with Sn:

Γ (R) =
(

σ 2
R ρR

ρR σ 2
R

)
and S(r)

n =
∑

k∈Tn,p−1

(
1 (X(r)

k,n)
t

X(r)
k,n X(r)

k,n(X
(r)
k,n)

t

)
.

The condition (P2) in Puhalskii’s Theorem 3.12 is verified by the construction of the truncated martingale, that is
for some positive constant c, we have that for all k ∈ Tn−1

∥∥D(r,R)
k,n

∥∥≤ c

√|Tn−1|
v|Tn−1|

.

From Proposition 5.3, we also have for all r > 0,

1

|Tn−1|
∑

k∈Tn−1,p−1

Xk1{‖Xk‖>r(
√|Tn−1|/v|Tn−1|)}

superexp�⇒
v2|Tn−1|

0; (5.7)

and

1

|Tn−1|
∑

k∈Tn−1,p−1

XkXt
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)}
superexp�⇒
v2|Tn−1|

0. (5.8)

From (5.7) and (5.8), we deduce that for all r > 0

1

|Tn−1|
(
Sn−1 − S

(r)
n−1

) superexp�⇒
v2|Tn−1|

0. (5.9)

Then, we easily transfer the properties (5.4) to the truncated martingale (M
(r,R)
n )n≥0. We have for all R > 0 and all

r > 0,

〈M(r,R)〉n
|Tn−1| = Γ (R) ⊗ S

(r)
n−1

|Tn−1| = −Γ (R) ⊗
(

Sn−1 − S
(r)
n−1

|Tn−1|
)

+ Γ (R) ⊗ Sn−1

|Tn−1|
superexp�⇒
v2|Tn−1|

Γ (R) ⊗ L.

That is condition (P1) in Puhalskii’s Theorem 3.12.
Note also that Proposition 5.3 works for the truncated martingale (M

(r,R)
n )n≥0, which ensures Lindeberg’s condition

and thus condition (P3) for (M
(r,R)
n )n≥0. By Theorem 3.12, we deduce that (M

(r,R)
n /(v|Tn−1|

√|Tn−1|))n≥0 satisfies a
MDP on R2(p+1) with speed v2

|Tn−1| and good rate function given by

IR(x) = 1

2
xt
(
Γ (R) ⊗ L

)−1
x. (5.10)

Step 2. First, we infer from the hypothesis (Ea) that:
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(N1R) there is a sequence (κR)R>0 with κR −→ 0 when R goes to infinity, such that for all n ≥ p − 1, for all
k ∈ Gn+1, for all t ∈ R and for R large enough

E
[
exp t

(
εk − εR

k

)
/Fn

]≤ exp

(
κRt2

2

)
a.s.

Then, we have to prove that for all r > 0 the sequence (M
(r,R)
n )n is an exponentially good approximation of (Mn)

as R goes to infinity, see e.g. Definition 4.2.14 in [12]. This approximation in the sense of the moderate deviation, is
described by the following convergence, for all r > 0 and all δ > 0,

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP
(‖Mn − M

(r,R)
n ‖√|Tn−1|v|Tn−1|

> δ

)
= −∞.

For that, we shall prove that for η ∈ {0,1}

I1 = 1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k+η − ε

(R)
2k+η

) superexp�⇒
v2|Tn−1|

0, (5.11)

I2 = 1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k+ηXk − ε

(R)
2k+ηX(r)

k,n

) superexp�⇒
v2|Tn−1|

0. (5.12)

We need only prove (5.11) and (5.12) for η = 0, the same proof works for η = 1.

Proof of (5.11). We have, for all α > 0 and R large enough

E
(

exp

(
α

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)))

= E
[ ∏

k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))× E
[ ∏

k∈Gn−1

exp
(
α
(
ε2k − ε

(R)
2k

))/
Fn−1

]]

= E
[ ∏

k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))× ∏
k∈Gn−1

E
[
exp
(
α
(
ε2k − ε

(R)
2k

))
/Fn−1

]]

≤ E
[ ∏

k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))
exp
(|Gn−1|α2κR

)]

≤ exp
(|Tn−1|α2κR

)
,

where hypothesis (N1R) was used to get the first inequality, and the second was obtained by induction. By Chebyshev
inequality and the previous calculation applied to α = λv|Tn−1|/|Tn−1|, we obtain for all δ > 0

P
(

1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)≥ δ

)
≤ exp

(−v2
|Tn−1|

(
δλ − κRλ2)).

Optimizing on λ, we obtain

1

v2
|Tn−1|

logP
(

1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)≥ δ

)
≤ − δ2

4κR

.

Letting n go to infinity and then R go to infinity, we obtain the negligibility in (5.11).
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Proof of (5.12). Now, since we have the decomposition

ε2kXk − ε
(R)
2k X(r)

k,n = (ε2k − ε
(R)
2k

)
X(r)

k,n + ε2k

(
Xk − X(r)

k,n

)
,

we introduce the following notation

L(r)
n =

∑
k∈Tn−1,p−1

ε2k

(
Xk − X(r)

k,n

)
and F (r,R)

n =
∑

k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X(r)

k,n.

To prove (5.12), we will show that for all r > 0

L
(r)
n√|Tn−1|v|Tn−1|

superexp�⇒
v2|Tn−1|

0, (5.13)

and for all r > 0 and all δ > 0

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP
( ‖F (r,R)

n ‖
v|Tn−1|

√|Tn−1|
> δ

)
= −∞. (5.14)

Let us first deal with (L
(r)
n ). Let its first component be

L
(r)
n,1 =

∑
k∈Tn−1,p−1

ε2k

(
Xk − X

(r)
k,n

)
.

For λ ∈ R, we consider the random sequence (Z
(r)
n,1)n≥p−1 defined by

Z
(r)
n,1 = exp

(
λL

(r)
n,1 − λ2φ

2

∑
k∈Tn−1,p−1

X2
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)}

)

where φ appears in (N1). For h > 0, we introduce the following event

A
(r)
n,1(h) =

{
1

|Tn−1|
∑

k∈Tn−1,p−1

X2
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)} > h

}
.

Using (N1), we have for all δ > 0

P
(

1

v|Tn−1|
√|Tn−1|

L
(r)
n,1 > δ

)

≤ P
(
A

(r)
n,1(h)

)+ P
(

Z
(r)
n,1 > exp

(
δλv|Tn−1|

√|Tn−1| − λ2φ

2
h|Tn−1|

))

≤ P
(
A

(r)
n,1(h)

)+ exp

(
−v|Tn−1|

√|Tn−1|
(

δλ − hφ
√|Tn−1|

2v|Tn−1|
λ2
))

, (5.15)

where the second term in (5.15) is obtained by conditioning successively on (Gi )2p−1≤i≤|Tn−1|−1 and using the fact
that

E
[

exp

(
λε2p

(
X2p−1 − X

(r)

2p−1

)− λ2φ

2
X2

2p−11{‖X2p−1‖>r(
√

2p−1/v2p−1 )}

)]
≤ 1,

which follows from (N1).
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From Proposition 5.3, we have for all h > 0

lim sup
n→∞

1

v2
|Tn−1|

logP
(
A

(r)
n,1(h)

)= −∞,

so that taking λ = δv|Tn−1|/(hφ
√|Tn−1|) in (5.15), we are led to

lim sup
n→∞

1

v2
|Tn−1|

logP
(

L
(r)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
≤ − δ2

2hφ
.

Letting h → 0, we obtain that the right hand side of the last inequality goes to −∞.
Proceeding in the same way for −L

(r)
n,1, we deduce that for all r > 0

L
(r)
n,1

v|Tn−1|
√|Tn−1|

superexp�⇒
v2|Tn−1|

0.

Now, it is easy to check that the same proof works for the others components of L
(r)
n . We thus conclude the proof

of (5.13).
Let us now consider the term (F

(r,R)
n ). We follow the same approach as in the proof of (5.13). Let its first compo-

nent be

F
(r,R)
n,1 =

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X

(r)
k,n.

For λ ∈ R, we consider the random sequence (W
(r,R)
n,1 )n≥p−1 defined by

W
(r,R)
n,1 = exp

(
λ

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X

(r)
k,n − λ2κR

2

∑
k∈Tn−1,p−1

(
X

(r)
k,n

)2)
,

where κR appears in (N1R).
Let h > 0. Consider the following event B

(r)
n,1(h) = { 1

|Tn−1|
∑

k∈Tn−1,p−1
(X

(r)
k,n)

2 > h}.
We have for all δ > 0,

P
(

F
(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)

≤ P
(
B

(r)
n,1(h)

)+ P
(

W
(r,R)
n,1 > exp

(
δλv|Tn−1|

√|Tn−1| − λ2κR

2
|Tn−1|h

))

≤ P
(
B

(r)
n,1(h)

)+ exp

(
−v|Tn−1|

√|Tn−1|
(

δλ − hκR

√|Tn−1|
2v|Tn−1|

λ2
))

, (5.16)

where the second term in (5.16) is obtained by conditioning successively on (Gi )2p−1≤i≤|Tn−1|−1 and using the fact
that

E
[

exp

(
λ
(
ε2p − ε

(R)
2p

)
X

(r)

2p−1 − λ2κR

2

(
X

(r)

2p−1

)2)]≤ 1.

Since B
(r)
n,1(h) ⊂ { 1

|Tn−1|
∑

k∈Tn−1,p−1
X2

k > h}, from Proposition 4.3, we deduce that for h large enough

lim sup
n→∞

1

b2
|Tn−1|

logP
(
B

(r)
n,1(h)

)= −∞,
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so that choosing λ = δv|Tn−1|/(κRh
√|Tn−1|), we get for all δ > 0

lim sup
n→∞

1

v2
|Tn−1|

logP
(

F
(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
≤ − δ2

2κRh
.

Letting R go to infinity, we obtain that

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP
(

F
(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
= −∞.

Now it is easy to check that the same works for −F
(r,R)
n,1 and for the others components of F

(r,R)
n . We thus conclude

that (5.14) holds for all r > 0.

Step 3. By application of Theorem 4.2.16 in [12], we find that (Mn/(v|Tn−1|
√|Tn−1|)) satisfies an MDP on R2(p+1)

with speed v2
|Tn−1| and rate function

Ĩ (x) = sup
δ>0

lim inf
R→∞ inf

z∈Bx,δ

IR(z),

where IR is given in (5.10) and Bx,δ denotes the ball {z: |z − x| < δ}. The identification of the rate function Ĩ = IM ,
where IM is given in (5.3) is done easily (see for example [15]), which concludes the proof of Theorem 5.1. �

Proof in case 1. For the proof in case 1, there are no changes in Step 1, and for Step 3, instead of (5.7), (5.8), and
(N1), we use Remark 5.4 and (G1). In Step 2, the negligibility in (5.11) comes from the MDP of the i.i.d. sequences
(ε2k − ε

(R)
2k ) since it satisfies the condition, for λ > 0 and all R > 0

E
(
exp
(
λ
(
ε2k − ε

(R)
2k

)))
< ∞.

The negligibility of (L
(r)
n ) works in the same way. For (F

(r,R)
n ) we will use the MDP for martingale, see Proposi-

tion 3.11. For R large enough, we have

P
(∣∣X(r)

k,n

(
ε2k − ε

(R)
2k

)∣∣> v|Tn−1|
√|Tn−1||Fk−1

) ≤ P
(∣∣ε2k − ε

(R)
2k

∣∣> v2
|Tn−1|
r

)

= P
(∣∣ε2 − ε

(R)
2

∣∣> v2
|Tn−1|
r

)
= 0.

This implies that

lim sup
n→∞

1

v2
|Tn−1

| log
(
|Tn−1| ess sup

k≥1
P
(∣∣X(r)

k,n

(
ε2k − ε

(R)
2k

)∣∣> v|Tn−1|
√|Tn−1||Fk−1

))= −∞.

That is condition (D2) in Proposition 3.11.
For all γ > 0 and all δ > 0, we obtain from Remark 5.4, that

lim sup
n→∞

1

v2
|Tn−1|

logP
(

1

|Tn−1|
∑

k∈Tn−1,p−1

(
X

(r)
k,n

)21{|X(r)
k,n|>γ (

√|Tn−1|/v|Tn−1|)} > δ

)

≤ lim sup
n→∞

1

v2
|Tn−1|

logP
(

1

|Tn−1|
∑

k∈Tn−1,p−1

X2
k1{|Xk |>γ (

√|Tn−1|/v|Tn−1|)} > δ

)
= −∞.
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That is condition (D3) in Proposition 3.11. Finally, from Remark 5.4 and in the same way as in (5.9), it follows that

〈F (r,R)〉n,1

|Tn−1| = QR

1

|Tn−1|
∑

k∈Tn−1,p−1

(
X

(r)
k,n

)2 superexp�⇒
v2|Tn−1|

QR�

for some positive constant �, where QR = E[(ε2 − ε
(R)
2 )2]. That is condition (D1) in Proposition 3.11. Moreover,

it is clear that QR converges to 0 as R goes to infinity. In light of above, we infer from Proposition 3.11 that
(F

(r,R)
n,1 /(v|Tn−1|

√|Tn−1|)) satisfies an MDP on R of speed v2
|Tn−1| and rate function IR(x) = x2/(2QR�). In par-

ticular, this implies that for all δ > 0,

lim sup
n→∞

1

v2
|Tn−1|

logP
( |F (r,R)

n,1 |
v|Tn−1|

√|Tn−1|
> δ

)
≤ − δ2

2QR�
,

and letting R go to infinity clearly leads to the result. �

5.2.2. Proof of Theorem 3.5
The proof works in case 1 and in case 2. From (2.7), we have√|Tn−1|

v|Tn−1|
(θ̂n − θ) = |Tn−1|Σ−1

n−1
Mn

v|Tn−1||Tn−1| .

From Proposition 4.1, we obtain that

Σn

|Tn| = I2 ⊗ Sn

|Tn|
superexp�⇒

v2|Tn|
I2 ⊗ L. (5.17)

According to Lemma 4.1 of [26], together with (5.17), we deduce that

|Tn−1|Σ−1
n−1

superexp�⇒
v2|Tn−1|

I2 ⊗ L−1. (5.18)

From Theorem 5.1, (5.18) and the contraction principle [12], we deduce that the sequence (
√|Tn−1|(θ̂n −

θ)/v|Tn−1|)n≥1 satisfies the MDP with rate function Iθ given by (3.3).

5.3. Proof of Theorem 3.7

For the proof of Theorem 3.7, case 1 is an easy consequence of the classical MDP for i.i.d.r.v. applied to the sequence
(ε2

2k + ε2
2k+1). For case 2, we will use Proposition 3.11, rather than Puhalskii’s Theorem 3.12.

We will prove that the sequence(
√|Tn−1|(σ 2

n − σ 2)/v|Tn−1|) satisfies the MDP. For that, we will prove that condi-
tions (D1), (D2) and (D3) of Proposition 3.11 are verified. Let us consider the Gn-martingale (Qn)n≥2p−1 given by

Qn =
n∑

k=2p−1

νk, where νk = ε2
2k + ε2

2k+1 − 2σ 2.

It is easy to see that its predictable quadratic variation is given by

〈Q〉n =
n∑

k=2p−1

E
[
ν2
k /Gk−1

]= (n − 2p−1 + 1
)(

2τ 4 − 4σ 4 + 2ν2),
which immediately implies that

〈Q〉n
n

superexp�⇒
v2
n

2τ 4 − 4σ 4 + 2ν2,
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ensuring condition (D1) in Proposition 3.11.
Next, for B > 0 large enough, we have for a > 2 (in (Ea)), and some positive constant c

P

(
1

n

n∑
k=2p−1

|νk|a > B

)
≤ 3 max

η∈{0,1}

{
P

(
1

n

n∑
k=2p−1

|ε2k+η|2a >
B

3c

)}
.

From hypothesis (Ea) and since B is large enough, we obtain for a suitable t > 0 via the Chernoff inequality and
several successive conditionings on (Gn), for η ∈ {0,1}

P

(
1

n

n∑
k=2p−1

|ε2k+η|2a >
B

3c

)
≤ exp

(
−tn

(
B

3c
− logE

))
≤ exp

(−tc′n
)
,

where c, c′ are positive generic constants. Therefore, for B > 0 large enough, we deduce that

lim sup
n→∞

1

n
logP

(
1

n

n∑
k=2p−1

|νk|a > B

)
< 0,

and this implies (see e.g. [26]) exponential Lindeberg condition, that is for all r > 0

1

n

n∑
k=2p−1

ν2
k 1{|νk |>r(

√
n/vn)}

superexp�⇒
v2
n

0.

That is condition (D3) in Proposition 3.11.
Now, for all k ∈ N and a suitable t > 0 we have

P
(|νk| > vn

√
n/Gk−1

) ≤
1∑

η=0

P
(∣∣ε2

2k+η − σ 2
∣∣> vn

√
n

2

/
Gk−1

)

≤ exp

(−tvn

√
n

2

) 1∑
η=0

E
[
exp
(
t
∣∣ε2

2k+η − σ 2
∣∣)/Gk−1

]
≤ 2E′ exp

(−tvn

√
n

2

)
,

where from hypothesis (Na), E′ is finite and positive. We are thus led to

1

v2
n

log
(
n ess sup

k∈N∗
P
(|νk| > vn

√
n/Gk−1

))≤ log(2E′n)

v2
n

− t
√

n

vn

,

and consequently, letting n go to infinity, we get the condition (D2) in Proposition 3.11.
Now, applying Proposition 3.11, we conclude that (Qn/(vn

√
n))n≥0 satisfies the MDP with speed v2

n and rate
function

IQ(x) = x2

4(τ 4 − 2σ 4 + 2ν2)
.

Applying the above to |Tn−1| and using the contraction principle (see e.g. [12]), we deduce that the sequence√|Tn−1|
v|Tn−1|

(
σ 2

n − σ 2)= Q|Tn−1|
2v|Tn−1|

√|Tn−1|
satisfies a MDP with speed v2

|Tn−1| and rate function Iσ 2 given by (3.4).
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We obtain as in the proof of the first part, with a slight modification, that the sequence (|Tn−1|(ρn − ρ)/v|Tn−1|)
satisfies a MDP with speed v2

|Tn−1| and rate function Iρ given by (3.5).

5.4. Proof of Theorem 3.10

Here also the proof works for the two cases.
Let us first deal with σ̂n. We have

σ̂ 2
n − σ 2 = (σ̂ 2

n − σ 2
n

)+ (σ 2
n − σ 2).

From (4.22) and (4.30), we easily deduce that σ 2
n

superexp�⇒
v2|Tn−1|

σ 2 in case 1 and in case 2. Thus, it is enough to

prove that σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0. Let θ(0) = (a0, a1, . . . , ap)t , θ(1) = (b0, b1, . . . , bp)t , θ̂
(0)
n = (â0,n, â1,n, . . . , âp,n)

t ,

θ̂
(1)
n = (b̂0,n, b̂1,n, . . . , b̂p,n)

t .
Let us introduce the following function f defined for x and z in Rp+1 by

f (x, z) =
(

x1 − z1 −
p+1∑
i=2

zixi

)2

,

where xi and zi denote respectively the ith component of x and z. One can observe that

σ̂ 2
n − σ 2

n = 1

2|Tn−1|
∑

k∈Tn−1,p−1

{
f
(
X2k, θ̂

(0)
n

)− f
(
X2k, θ

(0)
)}

+ 1

2|Tn−1|
∑

k∈Tn−1,p−1

{
f
(
X2k+1, θ̂

(1)
n

)− f
(
X2k+1, θ

(1)
)}

.

By the Taylor–Lagrange formula, ∀x ∈ Rp+1 and ∀z, z′ ∈ Rp+1, one can find λ ∈ (0,1) such that

f
(
x, z′)− f (x, z) =

p+1∑
j=1

(
z′
j − zj

)
∂zj

f
(
x, z + λ

(
z′ − z

))
.

Let the function g be defined by

g(x, z) = x1 − z1 −
p+1∑
j=2

zj xj .

Observing that⎧⎨⎩
∂f
∂z1

(x, z) = −2g(x, z),

∂f
∂zj

(x, z) = −2xjg(x, z) ∀j ≥ 2,

we get easily that | ∂f
∂zj

(x, z)| ≤ 4(1 + ‖z‖)(1 + ‖x‖2) for all j ≥ 1, and this implies

∣∣f (x, z′)− f (x, z)
∣∣≤ c

∥∥z′ − z
∥∥(1 + ‖z‖ + ∥∥z′ − z

∥∥)(1 + ‖x‖2)
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for some positive constant c. Now, applying the above to f (X2k, θ̂
(0)
n ) − f (X2k, θ

(0)) and to f (X2k+1, θ̂
(1)
n ) −

f (X2k+1, θ
(1)), we deduce easily that∣∣σ̂ 2

n − σ 2
n

∣∣≤ c‖θ̂n − θ‖(1 + ‖θ‖ + ‖θ̂n − θ‖) 1

|Tn−1|
∑

k∈Tn−1,p−1

(
1 + ‖Xk‖2)

for some positive constant c. From the MDP of θ̂n − θ , we infer that

‖θ̂n − θ‖ superexp�⇒
v2|Tn−1|

0. (5.19)

Form Proposition 4.3 we deduce that

1

|Tn−1|
∑

k∈Tn−1,p−1

(
1 + ‖Xk‖2) superexp�⇒

v2|Tn−1|
1 + Tr(Λ). (5.20)

We thus conclude via (5.19) and (5.20) that

σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0.

This ends the proof for σ̂n. The proof for ρ̂n is very similar and uses hypotheses(G2′) and (N2′) to get inequalities
similar to (4.22) and (4.30).
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We first give a characterization of theL1-transportation cost-information
inequality on a metric space and next find some appropriate sufficient condi-
tion to transportation cost-information inequalities for dependent sequences.
Applications to random dynamical systems and diffusions are studied.

1. Introduction and questions. Let (E,d) be a metric space equipped with
σ -field B such thatd(·, ·) is B × B-measurable. Givenp ≥ 1 and two probability
measuresµ andν onE, we define the quantity

Wd
p(µ, ν) = inf

(∫ ∫
d(x, y)p dπ(x, y)

)1/p

,(1.1)

where the infimum is taken over all probability measuresπ on the product space
E × E with marginal distributionsµ andν [say coupling of(µ, ν)]. This infimum
is finite as soon asµ and ν have finite moments of orderp. This quantity is
commonly referred to asLp-Wasserstein distance betweenµ andν. Whend is
the trivial metric (d(x, y) = 1x �=y), 2Wd

1 (µ, ν) = ‖µ − ν‖TV , the total variation
of µ − ν.

The Kullback information (or relative entropy) ofν with respect toµ is defined
as

H(ν/µ) =



∫
log

dν

dµ
dν, if ν � µ,

+∞, otherwise.
(1.2)

We say that the probability measureµ satisfies theLp-transportation cost-
information inequality on(E,d) if there is some constantC > 0 such that for
any probability measureν,

Wd
p(µ, ν) ≤

√
2CH(ν/µ).(1.3)

To be short, we writeµ ∈ Tp(C) for this relation.
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Key words and phrases.Transportation cost-information inequalities, random dynamical sys-

tems, diffusions, Girsanov’s transformation.
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The cases “p = 1” and “p = 2” are particularly interesting. ThatT1(C) are
related to the phenomenon of measure concentration was emphasized by Marton
[10, 11], Talagrand [18], Bobkov and Götze [2] and amply explored by Ledoux
[8, 9]. TheT2(C), first established by Talagrand [18] for the Gaussian measure, has
been brought into relation with the log-Sobolev inequality, Poincaré inequality, inf-
convolution, Hamilton–Jacobi’s equations by Otto and Villani [15] and Bobkov,
Gentil and Ledoux [1]. Since those important works, a main trend in the field is to
put on relations ofTp(C) with other functional inequalities (of geometrical nature
in particular). In this paper we shall study three questions around the following
problem going somehow to the opposite direction:how to establish the“Tp(C)”
without reference to other functional inequalities in various concrete situations?

To raise our first question, let us mention the following:

THEOREM 1.1 (Bobkov and Götze [2]). µ satisfies theL1-transportation
cost-information inequality on(E,d) with constantC > 0, that is, µ ∈ T1(C),
if and only if for any Lipschitzian functionF : (E,d) → R, F is µ-integrable and∫

E
eλ(F−〈F 〉µ) dµ ≤ exp

(
λ2

2
C‖F‖2

Lip

)
∀λ ∈ R,(1.4)

where〈F 〉µ = ∫
E F dµ and

‖F‖Lip = sup
x �=y

|F(x) − F(y)|
d(x, y)

< +∞.

In that case,

µ(F − 〈F 〉µ > r) ≤ exp
(
− r2

2C‖F‖2
Lip

)
∀ r > 0.

It might be worthwhile to recall the classical Pinsker–Csizsar inequality which
is the starting point of many recent works. By the coupling characterization of the
total variation distance‖ · ‖TV, the Pinsker–Csizsar inequality

‖ν − µ‖TV ≤
√

1
2H(ν/µ)

says that w.r.t. the trivial distanced(x, y) = 1x �=y onE, any probability measureµ
satisfies theL1-transportation cost-information inequality with the sharp constant
C = 1/4. And by Theorem 1.1, the Pinsker–Csizsar inequality for the trivial
distance follows from the classical well-known inequality: for a real bounded
random variableξ with values in[a, b],

Eeξ−Eξ ≤ exp
(

(b − a)2

8

)

(and vice versa).
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We now do a simple remark. Assume thatµ ∈ T1(C) or, equivalently, (1.4). Let
γ (dλ) be the standard Gaussian lawN (0,1) on R. We have for any Lipschitzian
functionF onE with 〈F 〉µ = 0 and‖F‖Lip ≤ 1, anda ∈ R,

∫
E

exp
(

a2

2
F 2

)
dµ =

∫
E

∫
R

eaλF γ (dλ) dµ ≤
∫

R
exp

(
C

2
a2λ2

)
γ (dλ)

=



1√
1− a2C

, if
a2

2
<

1

2C
,

+∞, otherwise.

Applying it to F(x) := d(x, x0) − ∫
d(x, x0) dµ(x), we obtain∫

ecd2(x,x0) dµ(x) < +∞ ∀ c ∈
(

0,
1

2C

)
.

In particular, for allδ ∈ (0, 1
4C

) we have,∫ ∫
eδ d2(x,y) dµ(x) dµ(y) < +∞.(1.5)

That naturally leads to the following questions:

QUESTION 1. Will the Gaussian tail (1.5) be sufficient for theL1-transporta-
tion cost-information inequality ofµ?

The second question is about dependent tensorizations of theTp(C). Let, for
example,Pn

x , the law of a homogeneous Markov chain(Xk(x))1≤k≤n on En

starting fromx ∈ E, with transition kernelP (x, dy).

QUESTION 2. Assume thatP (x, ·) ∈ Tp(C) for all x ∈ E. Where is the appro-
priate condition under whichPn

x satisfies theLp-transportation cost-information
inequality w.r.t. the metric

dlp (x, y) :=
(

n∑
i=1

d(xi, yi)
p

)1/p

?

The same question can be raised for the law of an arbitrary dependent sequence
(Xk)1≤k≤n. When (Xk)1≤k≤n are independent, this question has a rapid and
affirmative answer, see [8, 9] and references therein.

In the dependent case, whend is the trivial metric, andp = 1 (anddl1 becomes
the Hamming distance onEn), Marton [10] generalized the Pinsker–Csizsar
inequality to the law of the so called “contracting” Markov chains:

1
2 sup

(xi−1,yi−1)

‖Pi(·/yi−1) − Pi(·/xi−1)‖TV ≤ r < 1.(1.6)
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Her approach is based on coupling ideas, natural by the definition of the involved
Wasserstein distance. Her results have been strengthened by Marton [11, 12] and
Dembo [4] and have been generalized to uniform mixing processes by Samson [17]
and Rio [16].

However, the trivial distance does not reflect the natural metric structure of the
state spaceE to which usual Markov processes such as random dynamical systems
or diffusions are related and that is why the uniform mixing assumption was made
in her work (and also in [17]). This is a main motivation for Question 2.

For the L2-transportation cost-information inequalityT2(C), recall that
Talagrand [18] proved that the standard Gaussian lawγ = N (0,1) satisfiesT2(C)

on R w.r.t. the Euclidean distance with the sharp constantC = 1 and found that
T2(C) is stable for product (or independent) tensorization. To our knowledge the
Markovian tensorization ofT2(C) has not been investigated in the literature.

Since the works of Otto and Villani [15] and Bobkov, Gentil and Ledoux [1],
we know thatT2(C) follows from the log-Sobolev inequality in the framework
of Riemannian manifolds. Indeed, all knownT2(C)-inequalities up to now can be
derived from the log-Sobolev inequality. An important open question in the field is
whetherT2(C) is strictly weaker than the log-Sobolev inequality. Hence, it would
be interesting to investigate the following question:

QUESTION 3. How do we establish theT2(C)-inequality in situations where
the log-Sobolev inequality is unknown?

This paper is written around those three questions and it is organized as follows.
The next section is the general theoretical part of this paper. After noticing the
stability ofTp(C) under Lipschitzian map and under weak convergence in Sections
2.1 and 2.2, in Section 2.3 we prove that condition (1.5) is, in fact, sufficient for the
L1-transportation cost-information inequality, solving Question 1. In Section 2.4
we revisit the coupling method of Marton and show that it actually works for
dependent tensorization ofTp(C) for 1 ≤ p ≤ 2, under a contraction assumption
[see (C1) in Theorem 2.5] close to Marton’s (1.6). Section 2.5 is devoted to revisit
the McDiarmid–Rio martingale method which allows us to obtain a much more
subtle condition (C1′) than (C1) for tensorization ofT1(C) in Theorem 2.11.

Sections 3 and 4 contain several applications of the general results in Section 2
to random dynamical systems and diffusions which are our main motivation for
Question 2.

In Section 5, quite independent, we present a direct approach ofT2(C) for
diffusions, by means of the Girsanov transformation, with respect to the usual
Cameron–Martin metric orL2-metric.

The reader may consult the recent monograph by Villani [19] for an extended
(analytical and geometrical) treatment on transportation.
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2. Criteria for Tp(C). Throughout this paper let(E,d) be a metric space
equipped withσ -field B such thatd(·, ·) is B × B-measurable; and when(E,d)

is separable,B will be the Borelσ -field.

2.1. Stability under push-forward by Lipschitz map.We begin with the
stability of Tp(C) under Lipschitzian map and under weak convergence, which
will be useful later.

LEMMA 2.1. Assume thatµ ∈ Tp(C) on (E,dE) and (F, dF ) is another
metric space. If � : (E,dE) → (F, dF ) is Lipschitzian,

dF

(
�(x),�(y)

) ≤ α dE(x, y) ∀x, y ∈ E,

thenµ̃ := µ ◦ �−1 ∈ Tp(Cα2) on (F, dF ).

PROOF. Let ν̃ be a probability measure such thatH(ν̃/µ̃) < +∞. The key
remark is

H(ν̃/µ̃) = inf{H(ν/µ); ν ◦ �−1 = ν̃}.(2.1)

To prove it, puttingν0(dx) := dν̃
dµ̃

(�(x))µ(dx), we see thatν0◦�−1 = ν̃. We have

for anyν so thatν ◦ �−1 = ν̃,

H(ν/µ) = H(ν0/µ) +
∫

dν̃(y)H(νy/µy),

where νy := ν(·/� = y) and µy := µ(·/� = y) are, respectively, the regular
conditional distribution ofν, µ knowing� = y. Hence, (2.1) follows.

With (2.1) in hand, the rest of the proof is easy and is omitted.�

2.2. Stability under weak convergence.

LEMMA 2.2. Let (E,d) be a metric, separable and complete space(Polish,
say) and (µn,µ)n∈N a family of probability measures onE. Assume thatµn ∈
Tp(C) for all n ∈ N andµn → µ weakly. Thenµ ∈ Tp(C).

PROOF. Recall at first two facts (see, e.g., [19]):

1. If µn → µ andνn → ν weakly, then lim infn→∞ Wp(µn, νn) ≥ Wp(µ,ν).
2. If µn → µ weakly and{d(x, x0)

p,µn(dx)} is uniformly integrable,Wp(µn,

µ) → 0.

What one needs to prove is

W2
p(fµ,µ) ≤ 2C

∫
f logf dµ
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for all f such thatfµ is a probability. By approximation (and using fact 2 above),
it is sufficient to prove the result for continuousf so that 1/N ≤ f ≤ N overE
for someN ≥ 1. Letan = ∫

f dµn and we have by “µn ∈ Tp(C),”

W2
p

(
f µn

an

,µn

)
≤ 2C

∫ (
f

an

)
log

(
f

an

)
dµn = 2C

an

∫
f logf dµn.

Sinceµn converges weakly toµ, an converges toµ(f ) = 1, and one can pass to
the limit in the right-hand side of this last inequality. For the convergence of the
left-hand side, it is enough to apply the lower semi-continuity ofWp. �

2.3. Characterization ofT1(C) by “Gaussian tail.” We present here a char-
acterization ofT1(C), based on the Bobkov and Götze [2] result, that is, some
Gaussian integrability property.

THEOREM 2.3. A given probability measureµ on (E,d) satisfies the
L1-transportation cost-information inequality with some constantC on (E,d) if
and only if (1.5)holds. In the latter case,

C ≤ 2

δ
sup
k≥1

(
(k!)2

(2k)!
)1/k

·
[∫ ∫

eδd2(x,y) dµ(x) dµ(y)

]1/k

< +∞.(2.2)

PROOF. It is enough to show the sufficiency. By Bobkov–Götze’s Theo-
rem 1.1, it is enough to show that there is some constantC = C(δ) verifying (2.2)
such that

EeλF (ξ) ≤ exp
(

Cλ2

2

)
∀λ ∈ R,(2.3)

for all F :E → R with ‖F‖Lip ≤ 1 andEF(ξ) = 0, whereξ is a random variable
valued inE with law µ, defined on some probability space(
,F ,P).

Let ξ ′ be an independent copy ofξ , defined on the same probability space
(
,F ,P). Since EF(ξ ′) = 0, by the convexity of thex → ex , we have

E(e−λF (ξ ′)) ≥ 1. Consequently, noting thatE[F(ξ) − F(ξ ′)]2k+1 = 0, we have

E
(
eλF (ξ)) ≤ E

(
eλF (ξ))E(

e−λF (ξ ′))
= Eeλ(F (ξ)−F(ξ ′))

= 1+
∞∑

k=1

λ2kE[F(ξ) − F(ξ ′)]2k

(2k)!

≤ 1+
∞∑

k=1

λ2kEd(ξ, ξ ′)2k

(2k)! .
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Hence, putting

C := 2 sup
k≥1

(
k! · Ed(ξ, ξ ′)2k

(2k)!
)1/k

,

we get

E
(
eλF (ξ)

) ≤ 1+
∞∑

k=1

λ2k

k! ·
(

C

2

)k

= exp
(

Cλ2

2

)
.

Thus, for (2.3), it remains to estimateC defined above. Since

Ed(ξ, ξ ′)2k ≤ k! ·
(

1

δ

)k

Eexp
(
δd(ξ, ξ ′)2),

we get

C ≤ 2

δ
sup
k≥1

(
(k!)2

(2k)!
)1/k

· [Eexp
(
δ
(
d(ξ, ξ ′)2))]1/k

< +∞

the desired estimate (2.2).�

REMARK 2.4. For comparison notice that the Bernoulli measureµ on {0,1}
with µ(1) ∈ (0,1) satisfiesT1(1/4) w.r.t. the trivial metric, but does not satisfy
Tp(C) for any p > 1 (see [7]). Hence, any probability measureµ which is not
a Dirac measure onE does not satisfyTp(C) for any p > 1 w.r.t. the trivial
metric. Another example for illustrating difference ofT1 and T2 inequalities is
the following.

Let µ = φ(x)2 dx on R with 0 ≤ φ ∈ C∞
0 (R) (compact support). It satisfies

always T1(C) w.r.t. the Euclideand(x, y) := |y − x| by the theorem above.
But if the support ofµ (or of φ) has two connected componentsI1, I2 with
dist(I1, I2) > 0, then the correspondingT2(C) fails. In fact, if contrary to
µ ∈ T2(C), then by [15] or [1] the following Poincaré inequality holds:

Varµ(f ) ≤ C

∫
R

f ′2dµ ∀f ∈ C∞
0 (R).

Choose nowf smooth enough and equal to 1 onI1 and 0 onI2. Then the right-
hand side in the Poincaré inequality is 0, whereas the variance off will be non
zero so that the Poincaré inequality cannot hold, neitherT2(C).

This example shows, moreover, thatT1(C) on R does not imply the Poincaré
inequality, unlikeT2(C).

The next two sections are dedicated to the tensorization ofTp(C) for dependent
sequences.
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2.4. Weakly dependent sequences: Marton’s coupling revisited. Let P be a
probability measure on the product space(En,Bn), n ≥ 2. For anyx ∈ En,
xi := (x1, . . . , xi). Let Pi(·/xi−1) denote the regular conditional law ofxi given
xi−1 for i ≥ 2 (assume its existence). By conventionP1(·/x0) is the law ofx1
underP, wherex0 = x0 is some fixed point. WhenP is Markov, thenPi(·/xi−1) =
Pi(·/xi−1) is the transition kernel at stepi − 1.

Our aim in this section is to extend transportation cost-information inequali-
ties (1.3) for a probability measureP on (En, dlp), where

dlp (x, y) :=
(

n∑
i=1

d(xi, yi)
p

)1/p

.

THEOREM 2.5. LetP be a probability measure onEn, and1≤ p ≤ 2.Assume
thatPi(·/xi−1) ∈ Tp(C) on (E,d) for all i ≥ 1, xi−1 in Ei−1 (E0 := {x0}). If

(C1) there existaj ≥ 0 with rp := ∑∞
j=1(aj )

p < 1 such that

[
Wd

p

(
Pi(·/xi−1),Pi(·/x̃i−1)

)]p ≤
i−1∑
j=1

(aj )
pdp(xi−j , x̃i−j ),(2.4)

for all i ≥ 1, xi−1, x̃i−1 in Ei−1, then for any probability measureQ onEn,

W
dlp
p (Q,P) ≤ 1

1− r

√
2Cn2/p−1H(Q/P).

PROOF. The proof is similar to the one used for the Hamming distance by
Marton [10], however, we have to use the assumptionPi(·/xi−1) ∈ Tp(C) instead
of Pinsker’s inequality. Assume thatH(Q/P) < +∞ (trivial otherwise).

Let Qi(·/xi−1) be the regular conditional law ofxi knowingxi−1 for i ≥ 2 and
Q1(·/x0) the law ofx1, both under lawQ. We shall use the Kullback information
between conditional distributions,

Hi(x̃
i−1) = H

(
Qi(·/x̃i−1)/Pi(·/x̃i−1)

)
,

and exploit the following important identity:

H(Q/P) =
n∑

i=1

∫
En

Hi(x̃
i−1) dQ(x̃).(2.5)

The key is to construct an appropriate coupling ofQ andP, that is, two random
sequences̃Xn andXn distributed according toQ and P, respectively, on some
probability space(
,F ,P).

We define a joint distributionL(X̃n,Xn) by induction as follows. Add
artificially time 0 and putX0 = X̃0 = x̃0 = x0, the fixed point. Assume that
for some i, 1 ≤ i ≤ n, L(X̃i−1,Xi−1) is already defined. We have to define
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the joint conditional distributionL(X̃i,Xi/X̃
i−1 = x̃i−1,Xi−1 = xi−1), where

(x̃i−1, xi−1) is fixed (but arbitrary).
Givenε > 0 so small thatr(1+ ε) < 1, this distribution will have marginal laws

L(X̃i/X̃
i−1 = x̃i−1,Xi−1 = xi−1) = Qi(·/x̃i−1)

and

L(Xi/X̃
i−1 = x̃i−1,Xi−1 = xi−1) = Pi(·/xi−1)

so as to satisfy

E
(
d(X̃i,Xi)

p/X̃i−1 = x̃i−1,Xi−1 = xi−1)
≤ (1+ ε)Wd

p

(
Qi(·/x̃i−1),Pi(·/xi−1)

)p
for all x̃i−1, xi−1 in Ei−1. Obviously,X̃n,Xn are of lawQ, P, respectively.

By the triangle inequality for theWd
p -distance,

E
(
d(X̃i,Xi)

p/X̃i−1 = x̃i−1,Xi−1 = xi−1)
≤ (1+ ε)

[
Wd

1
(
Qi(·/x̃i−1),Pi(·/x̃i−1)

) + Wd
1
(
Pi(·/x̃i−1),Pi(·/xi−1)

)]p
.

Using the elementary inequality that(x + y)p ≤ ap−1xp + bp−1yp (for p ≥ 1
∀x, y ≥ 0) wherea, b > 1 such that 1/a + 1/b = 1, we have by the assumptions
Pi(·/xi−1) ∈ Tp(C) and (C1)

E
(
dp(X̃i,Xi)/X̃

i−1 = x̃i−1,Xi−1 = xi−1)

≤ (1+ ε)

(√
2CHi(x̃

i−1) +
[

i−1∑
j=1

(aj )
pdp(x̃i−j , xi−j )

]1/p)p

(2.6)

≤ (1+ ε)

(
ap−1[2CHi(x̃

i−1)]p/2 + bp−1
i−1∑
j=1

(aj )
pdp(x̃i−j , xi−j )

)
.

By recurrence oni, this entails thatEdp(Xi, X̃i) < +∞ for all i = 1, . . . , n.
Taking the average with respect toL(X̃i−1,Xi−1), summing oni and using the
concavity of the functionx → xp/2 for p ∈ [1,2], we get by (2.5) and (2.6)

1

n(1+ ε)

n∑
i=1

E
(
dp(X̃i,Xi)

)

≤ ap−1

(
2C

n

n∑
i=1

EHi(X̃
i−1)

)p/2

+ bp−1

n

n∑
i=1

i−1∑
j=1

a
p
j Edp(X̃i−j ,Xi−j )

= ap−1
(

2C

n
H(Q/P)

)p/2

+ bp−1

n

n−1∑
k=1

Edp(X̃k,Xk)

n∑
i=k+1

a
p
i−k.
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Using
∑

j≥1 a
p
j = rp and lettingε → 0+, the above inequality gives us, when

rpbp−1 < 1,

W
dlp
p (Q,P) ≤

(
ap−1

1− rpbp−1

)1/p√
2Cn2/p−1H(Q/P).

Optimizing on(a, b), we get the desired inequality.�

Noting that for a real functionf on En, ‖f ‖Lip(dl1) ≤ α if and only if for every
k = 1, . . . , n,

|fk(xk) − fk(yk)| ≤ αd(xk, yk) ∀xk, yk ∈ E,(2.7)

wherefk(xk) is the functionf w.r.t. thekth variable while the others are fixed.
Then we get by Theorem 1.1,

COROLLARY 2.6. Under the assumption of Theorem2.5 for p = 1, for any
real functionf onEn satisfying(2.7),

EPeλ(f−EPf ) ≤ exp
(

Cλ2α2n

2(1− r)2

)
∀λ ∈ R.

In particular, for anyt > 0,

P(f > EPf + t) ≤ exp
(
− t2(1− r)2

2nCα2

)
.

REMARK 2.7. The conditionPi(·/xi−1) ∈ Tp(C) is our starting point for
tensorization of theTp(C) and it is verified for many interesting examples, such as
the stochastic differential equation (SDE) (4.1) or random dynamical systems or
Gibbs fields. Condition (C1), meaning that the dependence of thepresenton the
past is very weak, is a crucial condition. Indeed, whend(x, y) = 1x �=y , p = 1 and
P is Markovian, (C1) is equivalent to (1.6), and Theorem 2.5 is exactly the result
of Marton mentioned in the Introduction.

REMARK 2.8. That the constantCn for the T1-inequality of Px increases
linearly on dimensionn is natural in the point of view of the Hoeffding inequality
in Corollary 2.6. This is completely different from the case of theT2-inequality,
for which it is hoped that theT2-constant remains independent of dimensionn, as
seen for the independent tensorization ofT2(C) by Talagrand [18] or its extension
Theorem 2.5.

REMARK 2.9. UnderPi(·/xi−1) ∈ Tp(C) and (2.4) but without the contrac-
tion condition thatrp := ∑

j (aj )
p < 1, we have alwaysPx ∈ Tp(Cn) on En w.r.t.

dlp for some constantCn (but the crucial estimate ofCn in Theorem 2.5 is lost).
We give only the proof of this fact forp = 1.
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Indeed, consider the nonnegative nilpotent lower triangular matrixA = (aij ),
whereaij = ai−j if i > j and 0 otherwise. For any givenδ ∈ (0,1), there is always
a (positive) vectorz = (z1, . . . , zn) such thatzi > 0,

∑
i zi = 1 and

(zA)k =
n∑

i=k+1

ziai−k ≤ δzk ∀ k = 1, . . . , n.

Then by (2.5) forp = 1, we have by Jensen’s inequality,

E
n∑

i=1

zi d(Xi, X̃i)

≤ (1+ ε)

(
n∑

i=1

ziE
√

2CH(x̃i−1) +
n∑

i=1

zi

i−1∑
j=1

ajEd(Xi−j , X̃i−j )

)

≤ (1+ ε)

(√√√√ n∑
i=1

zi2CEH(x̃i−1) +
n−1∑
k=1

Ed(Xk, X̃k)

n∑
i=k+1

ziai−k

)

≤ (1+ ε)

(√
2C max

i
ziH(Q/P) +

n−1∑
k=1

δzkEd(Xk, X̃k)

)
,

where it follows that

W
dl1
1 (Q,P) ≤ 1

(1− δ)mini zi

√
2C max

i
ziH(Q/P).

Whenzi = 1/n, the best choice ofδ is r , and this inequality becomes Theorem 2.5.

2.5. T1(C) for weakly dependent sequences: McDiarmid–Rio’s martingale
method revisited. The last inequality in Corollary 2.6, applied toF(X1, . . . ,

Xn) = ∑n
k=1 f (Xk) and the trivial metricd , where (Xk) are independent and

‖f (Xk)‖∞ ≤ α, becomes exactly the sharp Hoeffding inequality (see [13]). But
when it is applied toF(X1, . . . ,Xn) = f (Xn), it does not furnish the good order
of n for n large. As this last question is important for theT1(C) of the the invariant
measure, we give now a very simple proof of the following:

PROPOSITION2.10. Let (E,d) be a Polish space. LetP (x, dy) be a Markov
kernel onE such that:

(a) P (x, ·) ∈ T1(C) for everyx ∈ E;
(b) Wd

1 (P (x, ·);P (x̃, ·)) ≤ rd(x, x̃), for everyx, x̃ in E and somer < 1.

Then there is a unique invariant probability measureµ ofP and it satisfiesT1(C∞)

as well asP n(x, ·) ∀n ≥ 1, whereC∞ = C(1− r2)−1.
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PROOF. When(E,d) is Polish, the spaceMp
1 (E) of probability measuresν

on E such that
∫

d(x, x0)
p dν(x) < +∞, equipped with the Wasserstein metric

Wp(·, ·) is a metric complete separable space (see [19]). Sinceν ∈ M1
1(E) ⇒ νP ∈

M1
1(E) by (a) and, condition (b) implies (in fact, equivalent to)

W1(ν1P,ν2P ) ≤ rW1(ν1, ν2) ∀ ν1, ν2 ∈ M1
1(E),

hence, by the fixed point theorem, there is one and only oneP -invariant measure
µ ∈ M

p
1 (E), and P n(x, ·) → µ in the metricW1 for any initial point x ∈ E.

The last point shows also thatµ is the unique invariant probability measure ofP

[without the restriction thatµ ∈ M1
1(E)].

Since

Wd
1 (ν,µ) = sup

f : ‖f ‖Lip≤1

∣∣∣∣
∫
E

f dν −
∫
E

f dµ

∣∣∣∣,
condition (b) is also equivalent to

‖Pf ‖Lip ≤ r‖f ‖Lip ∀f.

Thus,‖P Nf ‖Lip ≤ rN‖f ‖Lip for all N ≥ 1. Now given a Lipschitzian functionf ,
we have by (a) and Bobkov–Götze’s Theorem 1.1,

P n(ef ) ≤ P n−1
[
exp

(
Pf + C‖f ‖2

Lip

2

)]

≤ P n−2
[
exp

(
P 2f + C‖f ‖2

Lip

2
+ C‖Pf ‖2

Lip

2

)]
≤ · · ·

≤ exp
(
P nf + C‖f ‖2

Lip

2
+ C‖Pf ‖2

Lip

2
+ · · · + C‖P n−1f ‖2

Lip

2

)

≤ exp
(
P nf + C‖f ‖2

Lip

2(1− r2)

)
.

In other words, for everyx ∈ E, P n(x, ·) ∈ T1(C∞), whereC∞ is given in the
proposition. Lettingn → ∞, we obtain the desired result forµ by Lemma 2.2.

�

We now use the martingale method of McDiarmid [14] (in the independent case)
and Rio [16] (in the uniform mixing case) for extending the argument above to the
process-level lawP.

THEOREM 2.11. Let P be a probability measure onEn satisfyingPi(·/
xi−1) ∈ T1(C) (∀ i, xi−1) in Theorem2.5.Assume instead of(C1) that
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(C1′) there is some constantS > 0 such that for all real bounded Lipschitzian
functionf (xk+1, . . . , xn) with ‖f ‖Lip(dl1) ≤ 1, for all x ∈ En, yk ∈ E,∣∣EP

(
f (Xk+1, . . . ,Xn)/Xk = xk

) − EP
(
f (Xk+1, . . . ,Xn)/Xk = (xk−1, yk)

)∣∣
≤ Sd(xk, yk).

Then for all function, F onEn satisfying(2.7),

EPeλ(F−EPF) ≤ exp
(

Cλ2(1+ S)2α2n

2

)
∀λ ∈ R.(2.8)

Equivalently, P ∈ T1(Cn) on (En, dl1) with

Cn = nC(1+ S)2.

PROOF. We may assume without loss of generality thatα = 1. Let (Mk =
EP(F/Xk))k≥0, whereM0 = EPF . It is a martingale. It is enough to show that for
eachk,

EP
(
eλ(Mk−Mk−1)/Xk−1) ≤ exp

(
Cλ2(1+ S)2

2

)
.

To this end, note at first byPi(·/xi−1) ∈ T1(C) and Theorem 1.1,

EP
(
eλ(Mk−Mk−1)/Xk−1) ≤ exp

(
Cλ2b2

k

2

)
,

where

bk := sup
x,y

|Mk(x
k) − Mk(x

k−1, yk)|
d(xk, yk)

.

But Mk(x
k) = ∫

F(xk, xk+1, . . . , xn)P(dxk+1, . . . , dxn/x
k), writing xn

k+1 =
(xk+1, . . . , xn) we have

|Mk(x
k) − Mk(x

k−1, yk)|
≤

∣∣∣∣
∫ (

F(xk, xn
k+1) − F(xk−1, yk, x

n
k+1)

)
P(dxn

k+1/x
k)

∣∣∣∣
+

∣∣∣∣
∫

F(xk−1, yk, x
n
k+1)

(
P(dxn

k+1/x
k) − P(dxn

k+1/x
k−1, yk)

)∣∣∣∣
≤ d(xk, yk) + Sd(xk, yk).

Hence,bk ≤ (1+ S), the desired result.�

REMARK 2.12. Whend(x, y) = 1x �=y , Pi(·/xi−1) ∈ T1(1/4), and this result
is essentially due to Rio [16]. Using a different condition than (C1′), he essentially
proved that the constantS in condition (C1′) verifiesS ≤ 2

∑∞
j=1φj , whereφj is

the uniform mixing coefficient of the sequence(Xn). Our proof above is, in fact,
inspired by his work.
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REMARK 2.13. If the condition (C1) is viewed as abackwardtype, then (C1′)
may be seen as aforward type. Indeed (C1′) is equivalent to

W
dl1
1

(
P(dxn

k+1/xk, x
k−1),P(dxn

k+1/yk, x
k−1)

) ≤ Sd(xk, yk).

It means intuitively that the present does not influence a lot the future of the
processP. In concrete situations (C1′) is often weaker than (C1) withp = 1. For
example, let(Px) be a uniformly ergodic (Doeblin recurrent, say) Markov chain
with transitionP (x, dy) in the sense thatrn := supx∈E ‖P n(x, ·) − µ‖TV → 0. As
2φn ≤ rn, we have by Rio’s estimate above,

S ≤
∞∑

n=1

sup
x∈E

‖P n(x, ·) − µ‖TV,

which is finite. But Marton’s condition (1.6) or (C1) means(1/2)supx∈E ‖P n(x,

·) − µ‖TV ≤ rn for all n ≥ 1. See also Example 3.3.
It would be very interesting to generalize Theorem 2.11 toT2(C).

3. Application: study of T1(C) and T2(C) for random dynamical systems.

3.1. T1(C). Let E be a complete connected Riemannian manifold equipped
with the Riemannian metricd . Consider now the nonlinear random perturbed
dynamical system valued inE,

X0(x) := x ∈ E, Xn+1(x) = F
(
Xn(x),Wn+1

)
, n ≥ 0,(3.1)

where the noise(Wn)n≥0 is a sequence of i.i.d. r.v. valued in some measurable
space(G,G), defined on some probability space(
,F ,P), andF(x,w) :E ×
G → E is measurable. Denote byP (x, dy) the law of F(x,W1), and the
following:

PROPOSITION3.1. Assume that there existsδ > 0 such that

sup
x∈E

E
(
eδd(F (x,W1),F (x,W2))

2)
< +∞.(3.2)

If there exists0≤ r < 1 such that

E
(
d
(
F(x,W1),F (x̃,W1)

)) ≤ rd(x, x̃) ∀x, x̃ ∈ E,(3.3)

or more generally for some constantS ≥ 0,
∞∑

n=1

E
(
d
(
Xn(x),Xn(x̃)

)) ≤ S d(x, x̃) ∀x, x̃ ∈ E,(3.4)

then there is some constantC > 0 such that for anyn ≥ 1, for every probability
measureQn onEn,

W
dl1
1 (Qn,Pn

x) ≤ √
CnH(Qn/Pn

x),

wherePn
x is the law of(Xk(x))1≤k≤n onEn.

212 Transportation cost-information inequalties and applications



2716 H. DJELLOUT, A. GUILLIN AND L. WU

PROOF. By Theorem 2.3, condition (3.2) is equivalent to “P (x, ·) ∈ T1(C)

∀x ∈ E.” Notice that (3.3) is equivalent to (C1) (withp = 1) in Theorem 2.5, and
(3.4) implies trivially (C1′) with the same constantS in Theorem 2.11. Hence, this
proposition follows from Theorems 2.5 and 2.11.�

REMARK 3.2. If the largest Lyapunov exponent inL1 given by

λmax(L
1) := lim

n→∞

(
sup
x �=x̃

Ed(Xn(x),Xn(x̃))

d(x, x̃)

)1/n

is strictly smaller than 1, then condition (3.4) is verified.

EXAMPLE 3.3 (ARMA model). To see the difference between (C1) in
Theorem 2.5 and (C1′) in Theorem 2.11, let us consider the ARMA model

X0(x) = x, Xn+1(x) = AXn(x) + Wn+1

in E = Rd , whereA ∈ Md×d (the space ofd ×d matrices) and(Wn) is a sequence
of i.i.d. r.v. with values inG = Rd . This model is a particular case of the general
model above withF(x,w) = Ax + w. Condition (C1), equivalent to (3.3), means
that r = ‖A‖ := sup{|Ax|; |x| ≤ 1} < 1, however, (C1′) for this linear model is
equivalent to

rsp(A) := max{|λ|;λ is an eigenvalue inC of A} = λmax(L
1) < 1,

which is much weaker. This last condition is a well-known sharp sufficient
condition for the ergodicity of this linear ARMA model(Xn).

REMARK 3.4. For this model, the known results mentioned in the Introduc-
tion cannot be applied, for the uniform mixing condition is, in general, not satisfied
whenE is noncompact. For example, the ARMA model withA �= 0 andW1 un-
bounded is never uniformly mixing. See [22].

3.2. T2(C). Consider a particular case of the preceding model

X0(x) = x, Xn+1(x) = f
(
Xn(x)

) + σ
(
Xn(x)

)
Wn+1,(3.5)

(the discrete time SDE), that is,F(x,w) = f (x) + σ(x)w, where E = Rd ,
G = Rn, f :Rd → Rd , σ :Rd → Md×n (the space ofd × n matrices) and the
noise(Wn)n∈Z is a sequence of i.i.d. r.v. with values inRn such thatEW1 = 0.
Assume that:

(i) PW := P(W1 ∈ ·) ∈ T2(C) onRn w.r.t. the Euclidean metric;
(ii) |σ(x)w| ≤ K|w| ∀ (x,w) ∈ Rd × Rn;
(iii) for somer ∈ [0,1),√

|f (x) − f (x̃)|2 + E
∣∣(σ(x) − σ(x̃)

)
W1

∣∣2 ≤ r|x − x̃| ∀x, x̃ ∈ Rd .(3.6)
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Notice that conditions (i) and (ii) imply thatP (x, ·) ∈ T2(CK2) for all x ∈ Rd ,
by Lemma 2.1; and condition (iii)implies (C1) with the samer for p = 2. Hence,
by Theorem 2.5,Pn

x ∈ T2(CK2/(1 − r)2). That yields, by Bobkov, Gentil and
Ledoux [1], the following:

COROLLARY 3.5. For the model(3.5) above assume conditions(i)–(iii).
ThenPn

x ∈ T2(CK2/(1 − r)2) and for any measurable functionF(x1, . . . , xn) ∈
L1((Rd)n,Pn

x),

Eexp
(
ρQF

(
X1(x), . . . ,Xn(x)

)) ≤ exp
(
ρEF

(
X1(x), . . . ,Xn(x)

))
,

where

ρ := (1− r)2

CK2 , QF(x1, . . . , xn) := inf
y∈(Rd )n

(
F(x + y) + 1

2

n∑
k=1

|yk|2
)
.

As noted in [1], several estimates of Laplace integrals are the consequence of
the functional inequality version of theT2(C) above. For instance, Corollary 6.1
in [1] says that for any convex functionF on (Rd)n,

EPn
x

exp

(
ρ

[
F − 1

2

n∑
k=1

(∂kF )2

])
≤ exp

(
ρEPn

x
F
)
.

REMARK 3.6. Consider the Lyapunov exponent inL2,

λmax(L
2) := lim

n→∞

(
sup
x �=x̃

Ed(Xn(x),Xn(x̃))2

d(x, x̃)2

)1/n

.

Obviously, (3.6) impliesλmax(L
2) < 1. It is then natural to ask whetherP (x, ·) ∈

T2(C) ∀x plus λmax(L
2) < 1 do imply “Pn

x ∈ T2(K)” for some constantK
independent ofn (for which we have no answer unlike forT1). Notice that for
the ARMA model,λmax(L

2) = λmax(L
1) = rsp(A).

4. Application: study of T1(C) for paths of SDEs. Let us give here an
application of Theorem 2.3 to SDE. Consider the SDE inRd ,

dXt = σ(Xt) dBt + b(Xt ) dt, X0 = x ∈ Rd,(4.1)

whereσ :Rd → Md×n, b :Rd → Rd and (Bt ) is the standard Brownian motion
valued inRn defined on some well filtered probability space(
,F , (Ft ),P).

Assume thatσ,b are locally Lipschitzian and for allx, y ∈ Rd ,

sup
x∈Rd

‖σ(x)‖HS ≤ A, 〈y − x, b(y) − b(x)〉 ≤ B(1+ |y − x|2),(4.2)

where‖σ‖HS := √
trσσ t is the Hilbert–Schmidt norm,〈x, y〉 is the Euclidean

inner product and|x| := √〈x, x〉. It has a unique nonexplosive solution denoted
by (Xt (x)) whose law on the spaceC(R+,Rd) of Rd -valued continuous functions
onR+ will be denoted byPx .
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COROLLARY 4.1. Assume the conditions above. For eachT > 0, there exists
some constantC = C(T,A,B) independent of initial pointx such thatPx satisfies
theT1(C) for everyx ∈ Rd , on the spaceC([0, T ],Rd) of Rd -valued continuous
functions on[0, T ] equipped with the metric

dT (γ1, γ2) := sup
t∈[0,T ]

|γ1(t) − γ2(t)|.

PROOF. Let (Bt ), (B̃t ) be two independent Brownian motions defined on
some filtered probability(
,F , (Ft ),P) and Xt(x), X̃t (x) strong solutions
of (4.1), respectively, driven by(Bt), (B̃t ). Put

X̂t := Xt(x) − X̃t (x), b̂t := b
(
Xt(x)

) − b
(
X̃t (x)

)
a(·) := σσ t(·), āt := a

(
Xt(x)

) + a
(
X̃t (x)

)
Lt :=

∫ t

0
σ
(
Xt(x)

)
dBt −

∫ t

0
σ
(
X̃t (x)

)
dB̃t .

Then

X̂t = Lt +
∫ t

0
b̂s ds.

By Theorem 2.3, it is enough to show that there exists some positive constant
δ = δ(T ,A,B) such that

Eexp
(
δ sup

0≤t≤T

|X̂t |2
)

< +∞.(4.3)

Let f (x) := h(|x|), whereh ∈ C∞(R) is pair and such thath(r) = r for r ≥ 4 and

h(r) ≥ r, 0≤ h′(r) ≤ 1∧ r, 0 ≤ h′′(r) ≤ 1 ∀ r ∈ [0,4].
ConsiderYt := (1+ f (X̂t ))e

−βt , whereβ > 0 is a constant to be determined later.
By Ito’s formula,

dYt = e−βt

(
1

2

d∑
i,j=1

ā
ij
t ∂i∂jf (X̂t ) + 〈∇f (X̂t ), b̂t 〉

)
dt − βYt dt + dMt

= e−βt

(
1

2
h′′(|X̂t |)〈X̂t , āt X̂t 〉

|X̂t |2
+ 1

2
h′(|X̂t |)

(
tr āt

|X̂t |
− 〈X̂t , āt X̂t 〉

|X̂t |3
)

+ h′(|X̂t |)
|X̂t |

〈X̂t , b̂t〉 − β
(
1+ h(|X̂t |))

)
dt + dMt,

where(Mt) is a local martingale(Mt) with M0 = 0, whose quadratic variational
process[M] is given by

[M]t =
∫ t

0
e−2βs〈∇f (X̂s), ās∇f (X̂s)〉ds ≤ 2A2

∫ t

0
e−2βs ds ≤ A2

β
.
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Using our condition (4.2), we see thatYt ≤ 1+ h(0) + Mt once if

β > max{0,2A2 + B}.
Fix such aβ. For anyλ > 0, using the exponential martingale,

exp
(
λMt − λ2

2
[M]t

)
,

(Novikov’s condition is satisfied) and Doob’s maximal inequality [applied to the
positive submartingale exp(λMt/2)], we have

Eeλ(supt≤T Yt−1−h(0)) ≤ E sup
t≤T

eλMt ≤ 4(EeλMT )2 ≤ 4 exp
(

λ2A2

β

)
.

Hence, by Chebychev’s inequality and an optimization ofλ, we get

P
(

sup
t≤T

Yt > 1+ h(0) + r

)
≤ 4 exp

(
− βr2

4A2

)
∀ r > 0.

Consequently,

Eexp
(
a sup

t≤T

Y 2
t

)
< +∞, if 0 < a <

β

4A2
.

Hence, (4.3) is true for allδ ∈ (0, e−βT β

4A2 ), whereβ > max{0,2A2 + B}. �

REMARK 4.2. If b ∈ C2 verifies for some constantB,

∇sb := (1
2(∂ib

j + ∂jb
i)
)
1≤i,j≤d ≤ BId(4.4)

in the order of nonnegative definiteness whereId is the identity matrix, then
〈y − x, b(y) − b(x)〉 ≤ B|x − y|2 and the condition onb in (4.2) is satisfied.

REMARK 4.3. Assume‖∇b‖ ≤ K , n = d andσ(x) = σ = Id . Capitaine, Hsu
and Ledoux [3] yields the log-Sobolev inequality below:∫

C([0,T ],Rd )
F 2 log

F 2

EPxF
2

dPx ≤ 2eKT
∫
C([0,T ],Rd )

|DF|2H dPx,

whereDF be the Malliavin gradient and

H :=
{
γ (·) :=

∫ ·

0
h(s) ds; ‖γ ‖2

H =
∫ T

0
|h(s)|2 ds < +∞

}

(the Cameron–Martin space). As the result of Otto and Villani [15] suggests that
the log-Sobolev inequality implies theT2(C) inequality (that is proved on the
smooth Riemannian manifold), we should havePx ∈ T2(C) on C([0, T ]) w.r.t.
the following pseudo-metric,

dH (γ1, γ2) :=
{‖γ1 − γ2‖H , if γ1 − γ2 ∈ H,

+∞, otherwise.
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This last pseudo metric is much larger thandT used in the Corollary above. We
shall give a simple proof of this lastT2(C) inequality in Section 5.

Notice that asdH above is only a pseudo-metric and‖X·‖H = +∞, a.s.,
Theorem 1.1 cannot be applied forT1(C) associated withdH (since its sufficient
part is no longer valid) and Theorem 2.3 (whose proof is based on Theorem 1.1) is
no longer true w.r.t.dH .

REMARK 4.4. Without essential change of proof, the same result holds if the
locally Lipschitzian condition ofσ,b is replaced by the well posedness of the
martingale problem associated with(σσ t , b), in the sense of Stroock–Varadhan.

REMARK 4.5. If the condition on the driftb in (4.2) is substituted by
〈x, b(x)〉 ≤ B(1+|x|2) ∀x ∈ Rd , then with the same proof as above, we can prove
thatEexp(δ supt∈[0,T ] |Xt(x)|2) < +∞ for someδ > 0 depending on initial point.
Hence,Px satisfies theT1-inequality with a constantC = Cx depending onx.

Note the following drawback of the previous corollary: the constantC in theT1
inequality obtained through Theorem 2.3 via inequality (2.2) is of ordereβT which
is not natural in regard of the results obtained via weakly dependent sequences. We
now show how Theorem 2.5 enables us to get the correct order.

We know from Corollary 4.1 that the law of(Xt (x))t∈[0,1] satisfies theT1-
inequality with a constantC independent ofx. In other words, the transition kernel
of the Markov chainYn := X[n,n+1] valued inC([0,1],Rd) satisfiesT1(C). Let us
check (C1′) below.

Given two different initial pointsx, x̃, let

X̂t := Xt(x) − Xt(x̃),

σ̂t = σ
(
Xt(x)

) − σ
(
Xt(x̃)

)
, b̂t = b

(
Xt(x)

) − b
(
Xt(x̃)

)
.

By Ito’s formula,

|X̂t |2 = |x − x̃|2 +
∫ t

0

(
tr(σ̂s σ̂

t
s ) + 2〈X̂s, b̂s〉)ds + Mt,

where(Mt) is a local martingale withM0 = 0, whose quadratic variational process
is given by

[M]t = 4
∫ t

0
〈X̂s, (σ̂s σ̂

t
s )X̂s〉ds.

Let τ̂n := inf{t ≥ 0; |X̂t | ∨ [M]t = n}. If there isδ > 0 such that

1
2 tr

[(
σ(x) − σ(x̃)

)(
σ(x) − σ(x̃)

)t ] + 〈x − x̃, b(x) − b(x̃)〉
(4.5)

≤ −δ|x − x̃|2 ∀x, x̃ ∈ Rd,
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then

E
∣∣X̂t∧τ̂n

∣∣2 ≤ |x − x̃|2 − 2δ

∫ t

0
E
∣∣X̂s∧τ̂n

∣∣2ds.

This entails by Gronwall’s inequality and Fatou’s lemma,

E|Xt(x) − Xt(x̃)|2 = E
∣∣X̂t

∣∣2 ≤ |x − x̃|2e−2δt ∀ t ≥ 0.(4.6)

Moreover, if σ is globally Lipchitzian, then by Burkholder–Davis–Gundy’s
inequality and Gronwall’s inequality, we obtain easily from the estimate above
that

E sup
t≤s≤t+1

|Xs(x) − Xs(x̃)|2 ≤ K|x − x̃|2e−2δt

for some constantK . Thus, the Markov chainYn := X[n,n+1] valued inC([0,1],
Rd) satisfies (C1′) too. Consequently, we obtain by Theorem 2.11, the following:

PROPOSITION 4.6. Assume(4.2), (4.5)and σ is globally Lipchitzian. Then
there is some constantC > 0 such that for anyn ≥ 1 and any initial pointx, the
law Px of (Xt (x))t∈[0,n] onC([0, n],Rd) satisfies the inequalityT1(C ·n) w.r.t. the
metric

d(γ1, γ2) :=
n−1∑
k=0

sup
k≤t≤k+1

|γ1(t) − γ2(t)|.

REMARK 4.7. Let(Pt ) be the semigroup of transition probability kernels of
our diffusion(Xt ). Notice that under (4.5), we have (4.6) which entails not only
the existence and uniqueness of the invariant probability measureµ of (Pt ), but
also

Wd
2
(
Pt(x, ·),Pt (x̃, ·)) ≤ e−δt |x − x̃|,

which gives us the exponential convergence below:

Wd
2
(
Pt(x, ·),µ) ≤ e−δt

(∫
|x − x̃|2 dµ(x̃)

)1/2

∀x ∈ Rd, t > 0.

Let us present a Hoeffding type inequality for

F(γ ) :=
∫ n

0
V (γ (t)) dt,

whereV :Rd → R satisfies‖V ‖Lip ≤ α. For suchV , ‖F‖Lip ≤ α w.r.t. the metric
given in the proposition above. Hence, by Theorem 1.1, Proposition 4.6 entails

P
(∫ n

0

[
V
(
Xt(x)

) − EV
(
Xt(x)

)]
dt > r

)
≤ exp

(
− r2

2nC

)
∀ r > 0.

218 Transportation cost-information inequalties and applications



2722 H. DJELLOUT, A. GUILLIN AND L. WU

5. A direct approach to T2(C) for SDEs via stochastic calculus.

5.1. T2-inequality of the Wiener measure w.r.t. the Cameron–Martin metric.
Let us extend theT2-inequality of the Gaussian measure due to Talagrand to the
Wiener measureP onC([0, T ],Rd), by means of Girsanov formula. GivenQ � P
such thatH(Q/P) < +∞, then underQ, there exist a Brownian motion(Bt) and
a predictable process(βt) such that the coordinates system(γt ) of C([0, T ],Rd)

verifies

dγt = dBt + βt(γ ) dt, γ0 = 0.

Moreover, it is well known that [see the proof of (5.7) below in a much more
complicated case]

H(Q/P) = 1
2EQ

∫ T

0
|βt |2(γ ) dt.(5.1)

Consider the Girsanov transformation�(γ ) := γ (·) − ∫ ·
0 βt(γ ) dt . Then the law

of (γ,�(γ )) underQ is a coupling of(Q,P). Hence, w.r.t. the Cameron–Martin
metricdH given in Remark 4.2,

(
W

dH

2 (Q,P)
)2 ≤ EQ dH

(
γ,�(γ )

)2 = EQ
∫ T

0
|βt |2(γ ) dt = 2H(Q/P),(5.2)

that is,P ∈ T2(1) on (C([0, T ],Rd), dH). We see now why this is sharp. Indeed, if
βt is determinist (or, equivalently,Q is a Gaussian measure), we claim that

[WdH

2 (Q,P)]2 =
∫ T

0
|βt |2 dt = 2H(Q/P).

This follows by the following observation:

LEMMA 5.1. LetX be a random variable valued in a Banach spaceE andH

be a separable Hilbert space continuously embedded inE. Then for any element
h ∈ H ,

W
dH

2 (PX,PX+h) = ‖h‖H ,

wherePX is the law ofX, dH (x, y) := ‖x − y‖H if x − y ∈ H and+∞ otherwise.

PROOF. At first [WdH

2 (PX,PX+h)]2 ≤ E‖X − (X + h)‖2
H = ‖h‖2

H . To show
the inverse inequality, letπ be a probability measure onE2 such that its marginal
laws are, respectively, laws ofX andX + h, and

∫∫ ‖y − x‖2
Hπ(dx, dy) < +∞.

Sincey − (x + h) is centered in the sense thatEπ 〈ei, y − (x + h)〉H = 0 where
(ei) is an orthonormal basis ofH , we have by Jensen’s inequality,∫ ∫

‖y − x‖2
H π(dx, dy) =

∫ ∫ ∥∥h + (
y − (x + h)

)∥∥2
Hπ(dx, dy) ≥ ‖h‖2

H ,
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the desired result.�

Considering the mapping�(γ ) = γ (T ), which verifies

|�(γ1) − �(γ2)| ≤
√

T dH (γ1, γ2),

we get by Lemma 2.1 and (5.2) thatN (0, T Id) ∈ T2(C) onRd w.r.t. the Euclidean
metric with the sharp constantC = T (the theorem of Talagrand).

REMARK 5.2. Gentil [7] proved the dual (functional) version of the
T2-inequality of the Wiener measure w.r.t. the Cameron–Martin metric by gen-
eralizing the approach in [1]. The proof here is completely different and seems to
be simpler and direct.

REMARK 5.3. Recall the method of Talagrand for proving hisT2(C) for
N (0, Id). At first by independent tensorization, he reduces to dimension 1. And in
dimension one, he uses the optimal transportation of Fréchet putting forwardγ =
N (0,1) to f dγ , and a direct integration by parts yields miraculously hisT2(C).
The method here is completely different, we use the Girsanov transformation
which putsQ back toP instead of an (eventual) optimal transportation puttingP
forward to Q. The approach of Talagrand is generalized recently by Feyel and
Ustunel [6] who succeed to construct the optimal transportation fromP to Q on an
abstract Wiener space(W,H,P).

We learned very recently (10 monthes after our first version) from Fang that the
method of Girsanov transformation here has been used by Feyel and Ustunel [5]
in a less elementary manner. So the result of this paragraph is due to them.

5.2. T2-inequality of diffusions w.r.t. the Cameron–Martin metric.We now
generalize the preceding argument to solution of the SDE

dXt = dBt + b(Xt ) dt, X0 = x ∈ Rd,

where(Bt ) is aRd -valued Brownian motion. We assume thatb ∈ C1 and

‖∇b‖ ≤ K.

For any pathγ ∈ C([0, T ],Rd) with γ (0) = 0, let�(γ ) = η be the solution of

η(t) = x + γ (t) +
∫ t

0
b(η(s)) ds.

Then the solution of the SDE above is given byX· = �(B·). Hence, for proving
the T2-inequality of X· w.r.t. the metricdH , it is enough to show that� is
dH -Lipschitzian. To this end, consider

g(t) = d

dε
�(γ + εh)|ε=0,
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whereh ∈ H is fixed. It satisfies

g(t) = h(t) +
∫ t

0
∇b(η(s))g(s) ds.

Its solution is given by

g(t) =
∫ t

0
J (s, t)h′(s) ds,

whereJ (s, t) is the solution of the matrix differential equation

J (s, s) = Id,
d

dt
J (s, t) = ∇b(η(t))J (s, t).(5.3)

Since∇sb ≤ BId for someB ≤ K , we have|J (s, t)y| ≤ eB(t−s)|y| ∀y ∈ Rd .
Consequently,

|g(t)| ≤
∫ t

0
eB(t−s)|h′(s)|ds.

Thus, by Cauchy–Schwarz,

‖g‖2
H ≤ 2

∫ T

0
|h′(t)|2 dt + 2

∫ T

0
|∇b(η(t))g(t)|2 dt

≤ 2‖h‖2
H + 2K2

∫ T

0

[∫ t

0
eB(t−s)|h′(s)|ds

]2

dt.

Note that∫ T

0

[∫ t

0
eB(t−s)|h′(s)|ds

]2

dt =
∫ T

0

∫ T

0
|h′(u)||h′(v)|

[∫ T

u∨v
e2Bt−(u+v) dt

]
dudv

= 〈�|h′|, |h′|〉L2([0,T ]),
where

�(u, v) =

 e−B(u+v) e

2BT − e2B(u∨v)

2B
, if B �= 0,

T − u ∨ v, if B = 0

and�f (u) := ∫ T
0 �(u, v)f (v) dv. Let λmax(�) be the largest eigenvalue of� in

L2([0, T ]). We haveλmax(�) ≤ ‖�‖1, the norm of� in L1([0, T ]). It is easy to
get‖�‖1 ≤ 1

B2 if B < 0, ‖�‖1 ≤ e2BT

2B2 if B > 0, and‖�‖1 = T 2

2 if B = 0. Thus,
setting

α2 := α2(T ,K,B) =




2
(

1+ K2

B2

)
, if B < 0,

2
(

1+ K2e2BT

2B2

)
, if B > 0,

2
(

1+ K2T 2

2

)
, if B = 0;

(5.4)
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we get by the estimates above that‖g‖2
H ≤ α2‖h‖2

H , that is,‖�‖Lip(dH ) ≤ α. Thus,
Lemma 2.1 (which remains valid for the pseudo-metricdH ) together with the
T2-inequality for the Wiener measure gives us the following:

PROPOSITION5.4. Assume∇sb ≤ BId and‖∇b‖ ≤ K , then for every initial
point x, Px ∈ T2(α

2) on C([0, T ],Rd) w.r.t. the metricdH , whereα2 is given
by (5.4).

REMARK 5.5. Of course, the estimate of‖�‖Lip(dH ) ≤ α together with the
log-Sobolev inequality of Gross for the Wiener measure gives us also∫

C([0,T ],Rd )
F 2 log

F 2

EPxF
2 dPx ≤ 2α2

∫
C([0,T ],Rd )

|DF|2H dPx,

which is better than the Capitaine–Hsu–Ledoux’s estimate in Remark 4.3 when
B < 0.

It is interesting to investigate whether this proposition and the corresponding
log-Sobolev inequality continue to hold in the case where∇sb ≤ BId with B ≤ 0
without condition‖∇b‖ ≤ K .

5.3. T2-inequality of diffusions w.r.t. theL2-metric. Perhaps the most elemen-
tary metric onC([0, T ],Rd) is the followingL2[0, T ]-metric,

d2(γ1, γ2) :=
√∫ T

0
|γ1(t) − γ2(t)|2 dt.

Indeed, the argument leading to theT2-inequality of the Wiener measure will yield
the following robustT2-inequality w.r.t. the metric above:

THEOREM 5.6. Assume thatσ , b are locally Lipschitzian and satisfy(4.5)for
someδ > 0,and‖σ‖∞ := sup{|σ(x)z|; x ∈ Rd, |z| ≤ 1} < +∞. ThenPx ∈ T2(C)

on C([0, T ],Rd) w.r.t. the L2-metric d2 above for allx ∈ Rd and T > 0, where
the constantC is given by

C := ‖σ‖2∞
δ2

.

Moreover, PT (x, ·) ∈ T2(
‖σ‖2∞

2δ
) on Rd , as well as the unique invariant probability

measureµ of (Pt).

REMARK 5.7. The twoT2-inequalities in this theorem are both sharp. Indeed,
let d = 1, σ(x) = 1, b(x) = x/2, that is, (Xt ) is the standard real Ornstein–
Uhlenbeck process, whose invariant measure isN (0,1). By this proposition,
µ ∈ T2(C) with C = ‖σ‖2∞/2δ = 1, which is sharp.
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For the sharpness of theT2-inequality forPx w.r.t. d2, note that any Gaussian
measureN (m,�) on Rn satisfiesT2(C) with the sharp constantC being the
largest eigenvalueλmax(�) of the covariance matrix�. This can be extended
easily to any Gaussian measureν = N (m,�) on any separable Hilbert spaceG,
where the covariance matrix� is a Hilbert–Schmidt operator onG. Hence, if
(Xt )t≥0 is a Gaussian process with paths a.s. inL2([0, T ], dt), then its lawP
satisfies theT2(C) on L2([0, T ], dt) with the sharp constantC = λmax(�), the
largest eigenvalue of the operator

�f (s) :=
∫ T

0
Cov(Xs,Xt )f (t) dt ∀f ∈ L2([0, T ], dt).

For the Ornstein–Uhlenbeck process lawP0 above starting from 0, Cov(Xs,Xt ) =
exp(−|t − s|/2) − exp(−(s + t)/2). In that case,

λmax(�) ≥ 〈�1[0,T ],1[0,T ]〉
T

→ 4 asT → ∞.

Hence, the constantC = ‖σ‖2/δ2 = 4 in theT2-inequality for P0 given by our
theorem becomes sharp whenT → +∞.

PROOF. We shall prove that for anyε > 0, for any probability measureQ on
C([0, T ],Rd),

(
W

d2
2 (Q,Px)

)2 ≤ 2
(1− e(ε−2δ)T )‖σ‖2∞

ε(2δ − ε)
H(Q/P)(5.5)

and for any probability measureν onRn,

(
W

d2
2

(
ν,PT (x, ·)))2 ≤ 2

supt∈[0,T ] e(ε−2δ)t‖σ‖2∞
ε

H
(
ν/PT (x, ·)).(5.6)

Choosingε = δ in (5.5), we get the first claim in the theorem; lettingε ↑ 2δ, we

get PT (x, ·) ∈ T2(
‖σ‖2∞

2δ
) by (5.6) and thenµ ∈ T2(

‖σ‖2∞
2δ

) by Lemma 2.2 and the
fact thatPT (x, ·) → µ asT → ∞ (see Remark 4.7).

It is enough to prove (5.5) forQ � Px andH(Q/Px) < +∞. We divide its
proof into two steps.

Step1. We do at first some preparation of stochastic calculus. Let(
,F , P̃)

be a complete probability space on which an-dimensional Brownian motion
(Bt ) = (B

j
t )j=1,...,n is defined and letFt = F B

t = σ(Bs, s ≤ t)P̃ (completion
by P̃). Let Xt(x) be the unique solution of (4.1) starting fromx. Then the law
of X·(x) is Px . Consider

Q̃ := dQ
dPx

(X·(x)) · P̃, Mt := EP̃
(

dQ
dP

(X·(x))/Ft

)
∀ t ∈ [0, T ].
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Remark that, asQ is a probability measure and the law ofX(x) underP̃ is
exactlyPx , we have∫




dQ
dPx

(X(x)) dP̃ =
∫
C([0,T ],Rd)

dQ
dPx

(w)dPx(w) = Q
(
C([0, T ],Rd)

) = 1.

(Mt) is a martingale can and will be chosen as a continuous martingale. Let
τ := inf{t ∈ [0, T ]; Mt = 0} with the convention that inf∅ := T +, whereT +
is an artificial added element larger thanT , but smaller than anya > T . Then
Q̃(τ = T +) = 1 and

Mt = 1t<τ exp
(
Lt − 1

2[L]t ),
whereLt := ∫ t

0
dMs

Ms
∀ t < τ . (Lt ), being aP̃-local martingale on[0, τ ), can be

represented in the following way: there is a predictable process(βt) = (β
j
t )0≤t<τ

such that
∫ t
0 |βs |2ds < +∞, P̃-a.s. on[t < τ ] and

Lt =
n∑

j=1

∫ t

0
βj

s dBj
s =

∫ t

0
〈βs, dBs〉 ∀ t < τ.

Let τn = inf{t ∈ [0, τ [; [L]t = n} with the same convention that inf∅ := T +. It is
elementary thatτn ↑ τ , P̃-a.s. Hence, by martingale convergence,

H(Q/P) = H(Q̃/P̃) = EP̃MT logMT = lim
n→∞ EP̃MT ∧τn logMT ∧τn

= lim
n→∞EQ̃(

LT ∧τn − 1
2[L]T ∧τn

)
.

By Girsanov’s formula,(Lt∧τn −[L]t∧τn )t∈[0,T ] is aQ̃-local martingale, then a true
martingale since its quadratic variation process underQ̃, being again([L]t∧τn), is

bounded byn. Consequently,EQ̃(LT ∧τn − [L]T ∧τn) = 0. Substituting it into the
preceding equality and noting thatQ̃(τn ↑ τ = T +) = 1, we get by monotone
convergence,

H(Q/P) = 1
2 lim

n→∞EQ̃[L]T ∧τn = 1
2EQ̃[L]T = 1

2EQ̃
∫ T

0
|βt |2dt.(5.7)

Notice that this is an extension of (5.1).

Step2. By Girsanov’s theorem,

B̃t := Bt −
∫ t

0
βs ds

is a Q̃-local martingale with[B̃i , B̃j ]t = [Bi,Bj ]t = 1i=j t , hence, a Brownian
motion underQ̃. UnderQ̃, Xt = Xt(x) verifies

dXt = σ(Xt) dB̃t + b(Xt ) dt + σ(Xt)βt dt, X0 = x.
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We now consider the solutionYt (underQ̃) of

dYt = σ(Yt) dB̃t + b(Yt) dt, Y0 = x.

The law of(Yt )t∈[0,T ] underQ̃ is exactlyPx . In other words,(X,Y ) underQ̃ is a
coupling of(Q,Px).

Setting

X̂t := Xt − Yt , σ̂t := σ(Xt) − σ(Yt), b̂t := b(Xt ) − b(Yt),

we have

d|X̂t |2 = [2〈X̂t , b̂t + σ(Xt)βt〉 + tr(σ̂tσ
t
t )]dt + 2〈X̂t , σ̂t dB̃t〉.(5.8)

Letting τ̂n := inf{t ∈ [0, T ]; |X̂t | = n}, we have that for anyε > 0,

EQ̃∣∣X̂t∧τ̂n

∣∣2 ≤ −2δ

∫ t

0
EQ̃∣∣X̂s∧τ̂n

∣∣2 ds + 2EQ̃
∫ t∧τ̂n

0
〈X̂s, σ (Xs)βs〉ds

≤ (ε − 2δ)

∫ t

0
EQ̃∣∣X̂s∧τ̂n

∣∣2 ds + 1

ε
EQ̃

∫ t

0
‖σ‖2∞|βs |2 ds.

Gronwall’s lemma, together with Fatou’s lemma, gives us

EQ̃|X̂t |2 ≤ ‖σ‖2∞
ε

EQ̃
∫ t

0
e(ε−2δ)(t−s)|βs |2 ds ∀ t > 0.(5.9)

Thus,

(
W

d2
2 (Q,Px)

)2 ≤ EQ̃
∫ T

0
|X̂t |2 dt

≤ ‖σ‖2∞
ε

EQ̃
∫ T

0
|βs |2ds

∫ T

s
e(ε−2δ)(t−s) dt

≤ ‖σ‖2∞
ε

· 1− e(2δ−ε)T

2δ − ε
EQ̃

∫ T

0
|βs |2ds,

the desired (5.5). For (5.6), notice that by the key remark (2.1),

H
(
ν/PT (x, ·)) = inf

{
H

(
Q|C([0,T ],Rd )/Px |C([0,T ],Rd )

);QT := Q(xT ∈ ·) = ν
}
.

And for each suchQ, defineQ̃ as before, we have[
Wd

2
(
ν,PT (x, dy)

)]2 ≤ EQ̃|X̂T |2
and conclude using (5.9).�

REMARK 5.8. After the first version was submitted, we learned from M.
Ledoux the work of Wang [20] who obtained theT2(C) w.r.t. theL2-metric for
the elliptic diffusions with lower bounded�2 condition of Bakry on a Riemannian
manifold. His method consists of a continuous time tensorization of theT2(C)
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of the heat kernels (which is true by the log-Sobolev inequality due to Bakry).
Hence, the method and the result here are very different from his: the volatility
coefficientσ could be completely degenerated in Theorem 5.6, and our proof does
not rely on the log-Sobolev inequality which is unknown in our context.

REMARK 5.9. By the proof above, we see that (5.5) and (5.6) hold under (4.5)
even withδ ≤ 0, except now theT2-constant goes to infinity asT → +∞.

REMARK 5.10. The local Lipschitzian condition onσ, b in this theorem
can be substituted by their continuity together with the well-posedness of the
martingale problem associated with(σσ t , b). Indeed, one can find(σ n, bn)

tending locally uniformly to(σ, b), such that(σ n, bn) is locally Lipschitzian,
‖σn‖∞ ≤ ‖σ‖∞ and verifies condition (4.5) with the sameδ. Now the desired
result follows from Theorem 5.6 and Lemma 2.2.

As indicated in [1], many interesting consequences can be derived from this
result. For instance

COROLLARY 5.11. Under the assumptions of Theorem5.6,we have for any
T > 0,

(a) for any smooth cylindrical functionF on G := L2([0, T ], dt;Rd) ⊃
C([0, T ],Rd), that is,

F ∈ F C∞
b := {f (〈γ,h1〉, . . . , 〈γ,hn〉);n ≥ 1, hi ∈ H̃ , f ∈ C∞

b (Rn)}
[where〈γ1, γ2〉 := ∫ T

0 γ1(t)γ2(t) dt ], the following Poincaré inequality holds:

VarPx (F ) ≤ ‖σ‖2∞
δ2

∫
C([0,T ],Rd )

‖∇F(γ )‖2
G dPx(γ ),(5.10)

whereVarPx (F ) is the variance ofF under lawPx , and∇F(γ ) ∈ G is the gradiant
of F at γ .

(b) For anyg ∈ C∞
b (Rd),

VarPT (x,·)(g) ≤ ‖σ‖2∞
2δ

∫
Rd

|∇g(y)|2PT (x, dy).(5.11)

(c) (Inequality of Tsirel’son type.)For any nonempty subsetK in G such that
Z(γ ) := suph∈K〈γ,h〉 ∈ L1(Px), then

∫
exp

(
δ2

‖σ‖2∞
sup
h∈K

[
〈γ,h〉 − |h|2G

2

])
dPx ≤ exp

(
δ2

‖σ‖2∞
EPx Z

)
.(5.12)
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(d) (Inequality of Hoeffding type.)For anyV :Rd → R such that‖V ‖Lip ≤ α,

P
(

1

T

∫ T

0
V
(
Xt(x)

)
dt − E

1

T

∫ T

0
V
(
Xt(x)

)
dt > r

)

≤ exp
(
−T r2‖σ‖2∞

2α2δ2

)
∀ r > 0.

PROOF. For part (a), for anyF(γ ) = f (〈γ,h1〉, . . . , 〈γ,hn〉) ∈ F C∞
b , we

may assume without loss of generality thath1, . . . , hn are orthonormal. In such
case,

� :γ → (〈γ,h1〉, . . . , 〈γ,hn〉), G → Rn

is Lipschitzian with‖�‖Lip ≤ 1. Hence,ν := Px ◦ �−1 ∈ T2(‖σ‖2∞/δ2) onRn by
Lemma 2.1. Thus, the result of [1], Section 4.1 entails

VarPx (F ) = Varν(f ) ≤ ‖σ‖2∞
δ2

∫
Rn

|∇f |2 dν

= ‖σ‖2∞
δ2

∫
C([0,T ],Rd )

‖∇F(γ )‖2
G dPx(γ ).

Part (b) is a consequence of Theorem 5.6 by [1], Section 4.1. One can derive
part (c) from Theorem 5.6 by the same argument as in the finite-dimensional case
given in [1], Section 6.1. For part (d), note thatT2(C) ⇒ T1(C). Moreover, the
functionF(γ ) := (1/T )

∫ T
0 V (γ (t)) dt on C([0, T ],Rd) is Lipschitzian w.r.t. the

L2-metric and‖F‖Lip ≤ α/
√

T . Hence, part (d) follows from Theorem 1.1.�

REMARK 5.12. Let us compare theT2(C)-inequality onC([0, T ],Rd) w.r.t.
the L2-metric d2 or the Cameron–Martin metricdH , denoted, respectively, by
T2(C/d2), T2(C/dH ).

(a) If γ1(0) = γ2(0), then d2(γ1, γ2) ≤ 2T
π

dH(γ1, γ2) by the classical Poincaré
inequality. Hence, if the lawPx of our diffusion starting fromx verifies
T2(C/dH ) on C([0, T ],Rd), thenPx ∈ T2(C(4T 2/π2)/d2) on C([0, T ],Rd).
That orderT 2 in the lastT2-inequality is of correct order. For example, for
the real Wiener measureP, we see by Section 5.1 thatP ∈ T2(1/dH ) on
C([0, T ],Rd), but the largest eigenvalueλmax(�) of the covariance function
�(s, t) = s ∧ t in L2([0, T ]) verifies

λmax(�) ≥ 〈�1[0,T ],1[0,T ]〉
T

= T 2

3
.

Thus, by the same analysis as in Remark 5.7,P ∈ T2(CT 2/d2) with 4/π2 ≥
C = λmax(�) ≥ 1/3.
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(b) The contribution of|γ1(t) − γ2(t)| to theL2-metric is homogeneous in time
t , but not at all to the Cameron–Martin metricdH . This is the principal reason
for

(b.1) TheT2(C/dH ) is well adapted to the small time asymptotics of the
diffusions, but not for their large time asymptotics. For instance, ifPx ∈
T2(C/dH )), since forZ(γ ) = sup0≤t≤T ‖γ (t) − γ (0)‖, ‖Z‖Lip(dH ) ≤ √

T ,
then by Theorem 1.1 (its necessary part remains true fordH -Lipchitzian
functionF which is, moreover, integrable, by following the proof in [2]),

Px

(
sup

0≤t≤T

|Xt(x) − x| − Ex sup
0≤t≤T

|Xt(x) − x| > r

)
≤ exp

(
− r2

2CT

)

which is of the correct order whenT → 0+, but completely meaningless forT

large. See [21] for the nonadaptability of the log-Sobolev inequality w.r.t.dH

for the large time asymptotics of the diffusions.
(b.2) In contrary, we have seen that theT2(C/d2) is very well adapted for

the large time asymptotics of the diffusions.

REMARK 5.13. Theorem 5.6, together with Corollary 3.5, is our main new
example for whichT2(C) is true but the inequality of log-Sobolev is unknown.
They are our (very partial) answer to Question 3 in the Introduction. We believe
that in the situations of Theorem 5.6 and Corollary 3.5, the log-Sobolev inequality
may fail without further regularity assumptions on the volatility coefficientσ .
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Abstract. By direct calculus we identify explicitly the Lipschitzian norm of the solution of the Poisson equation −LG = g in
terms of various norms of g, where L is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This
allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and
some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several
illustrative examples.

Résumé. Par un calcul direct, on identifie explicitement la norme Lipschitzienne de la solution de l’équation de Poisson −LG = g

en terme de différentes normes de g, où L est l’opérateur de Sturm–Liouville ou le générateur d’une diffusion non singulière sur un
intervalle. Ainsi, nous pouvons obtenir, d’une part la meilleure constante dans l’inégalité de Poincaré L1 (une inégalité un peu plus
forte que l’inégalité isopérimétrique de Cheeger) et d’autre part certaines inégalités de transport-information et de concentration
fines pour la moyenne empirique. On conclut avec des exemples illustratifs.

MSC: 47B38; 60E15; 60J60; 34L15; 35P15

Keywords: Poisson equations; Transportation–information inequalities; Concentration and isoperimetric inequalities

1. Framework and introduction

Let I be an interval of R so that its interior I 0 = (x0, y0) where −∞ ≤ x0 < y0 ≤ +∞. Consider a Sturm–Liouville
operator on I :

L = a(x)
d2

dx2
+ b(x)

d

dx

with the Neumann boundary condition at ∂I = {x0, y0} ∩ R, where a, b : I → R are measurable and satisfy:

(A1) a, b are locally bounded (i.e., bounded on any compact subinterval of I );
(A2) a(x) > 0, dx-a.e. and 1/a is locally dx-integrable on I .

Here dx is the Lebesgue measure. On I 0, L can be rewritten as the Feller’s form

L = 1

m′(x)

d

dx

(
1

s′(x)

d

dx

)
= d

dm

d

ds
, (1.1)
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where m,s are respectively the speed and scale functions of Feller, which are absolutely continuous functions on I

such that dx-a.s.

s′(x) = exp

(
−

∫ x

c

b(u)

a(u)
du

)
and m′(x) = 1

a(x)s′(x)
, (1.2)

where c is some fixed point in I . Let C∞
0 (I ) be the space of infinitely differentiable real functions f on I with compact

support and D be the space of all functions f in C∞
0 (I ) such that f ′|∂I = 0 (i.e., satisfying the Neumann boundary

condition). The operator L defined on D is symmetric on L2(I,m), where m denotes also the measure m′(x)dx. Let
(Xt : t ≥ 0) be the diffusion on the interval I generated by L (the Neumann boundary condition corresponds to the
reflection at the boundary ∂I ). See [17] for background and precise definitions.

We will assume that:

(A3) the diffusion is non-explosive and positively recurrent, i.e., m(I) = ∫
I
m′(y)dy < +∞ and∫ y0

c

s′(x)

(∫ x

c

m′(y)dy

)
dx = +∞ if y0 /∈ I,

∫ c

x0

s′(x)

(∫ c

x

m′(y)dy

)
dx = +∞ if x0 /∈ I.

(A4) the generator L, defined on D = {f ∈ C∞
0 (I ); f ′|∂I = 0}, is essentially self-adjoint on L2(I,dm), or equiv-

alently [11,12]:

s /∈ L2((x0, c],dm
)

if x0 /∈ I ; and s /∈ L2([c, y0),dm
)

if y0 /∈ I.

Notice that when a(x) = 1 and I = R, the assumptions (A3) and (A4) are automatically satisfied once if m(I) < +∞
(see [17] for (A3), [12] for (A4)).

Throughout this paper we assume that (A1)–(A4) are satisfied. In that case (Xt )t≥0 is reversible w.r.t. the probability
measure μ(dx) = 1

m(I)
m′(x)dx. Let (Pt )t≥0 be the transition semigroup of (Xt )t≥0, L2 the generator of (Pt ) on

L2(I,μ) with domain D(L2), which is an extension of (L,D).
Consider the Poisson equation

−L2G = g, (1.3)

where g ∈ L2(I,μ) such that μ(g) := ∫
I
g dμ = 0. By the ergodicity of the diffusion, the solution G of the Poisson

equation, if exists, is unique in L2(I,μ) up to the difference of some constant. In the physical interpretation of the
heat diffusion, g represents the heat source, G is the equilibrium heat distribution.

The objective of this paper is to estimate

‖G‖Lip(ρ) := sup
x,y∈I,x<y

|G(y) − G(x)|
|ρ(y) − ρ(x)| (1.4)

in terms of various norms on the heat source g. Here ρ is some absolutely continuous function on I such that ρ′(x) > 0,
dx-a.e.

Let λ1 be the spectral gap of L2, i.e. the lowest eigenvalue or spectral point above zero of −L2. Then cP := λ−1
1 is

the best constant in the following Poincaré inequality

Varμ(f ) ≤ cP

∫
I

a(x)f ′(x)2 dμ(x), f ∈ D, (1.5)

where Varμ(f ) := μ(f 2)− (μ(f ))2 is the variance of f w.r.t. μ and μ(f ) := ∫
I
f dμ. The importance of the spectral

gap is that it describes the exponential convergence rate:∥∥Ptf − μ(f )
∥∥

2 ≤ e−λ1t
∥∥f − μ(f )

∥∥
2 ∀t ≥ 0,
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where ‖ · ‖2 is the L2(I,μ)-norm. The constant λ1 can be also interpreted by means of the Poisson equation:

∥∥G − μ(G)
∥∥

2 ≤ cP ‖g‖2 or
∫

I

a(x)G′(x)2 dμ(x) ≤ cP ‖g‖2
2.

Those physical interpretations explain why the study of λ1 or cP is of fundamental importance. Since the study on
λ1 is of a very long history, it is not possible for us to describe even the main line, the reader is referred to the books
[9,24] for bibliographies. For the stronger log-Sobolev inequality, the first characterization was due to Bobkov–Götze
[3], see [2,9] for further improvements of constant.

Our initial motivation was to understand Chen’s variational formula for λ1 [8]:

cP = inf
ρ

sup
x∈I

s′(x)

ρ′(x)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt, (1.6)

where ρ runs over all C1(I ) functions with ρ′ > 0, in L2(I,μ). Notice that no variational formula is known for
the best log-Sobolev constant on the real line. But our main motivation comes from some concentration inequalities
for the empirical mean (1/t)

∫ t

0 g(Xs)ds, which are immediate consequences of the estimate on ‖G‖Lip(ρ) via the
forward–backward martingale decomposition or transportation–information inequalities developed in [15], see also
[18].

Our method for estimate of ‖G‖Lip(ρ) is direct: the solution of the Poisson equation (1.3) can be solved explicitly
(unlike the corresponding heat equation), only some further (easy) control is needed for completing the job. Besides
those motivations, the estimation of G′ is physically meaningful: in the heat diffusion problem, in presence of the heat
source g with μ(g) = 0, G represents the equilibrium heat distribution; an estimate on |G′| allows us to control the
variation of the equilibrium heat distribution.

This paper is organized as follows. In the next section, we state the main results and present several applications in
concentration inequalities and transportation–information inequalities, L1-Poincaré inéquality (a little stronger than
the Cheeger isoperimetric inequality), and provide several examples to illustrate the results. In Section 3 the proof of
the main result is given.

2. Main results and applications

2.1. Main results

Given an absolutely continuous function ρ : I −→ R such that ρ′ > 0, dx-a.e., let dρ(x, y) = |ρ(x) − ρ(y)| be the
metric on I associated with ρ. If the Lipschitzian norm ‖f ‖Lip(ρ) of f w.r.t. dρ defined in (1.4) is finite, we say that
f is ρ-Lipschitzian. Let L2

0(I,μ) := {f ∈ L2(I,μ);μ(f ) = 0}.
Now, we can state the main result in this paper.

Theorem 2.1. Assume (A1)–(A4) and let ρ, ρ1, ρ2 be absolutely continuous functions on I such that ρ, ρk ∈ L2(I,μ),
ρ′, ρ′

k > 0, dx-a.e.

(i) If

cLip(ρ1, ρ2) := ess sup
x∈I

s′(x)

ρ′
2(x)

∫ y0

x

[
ρ1(t) − μ(ρ1)

]
m′(t)dt < +∞, (2.1)

then for any ρ1-Lipschitzian function g ∈ L2
0(I,μ), there is a unique solution G with μ(G) = 0 belonging to the

domain D(L2) of the Poisson equation (1.3). Moreover, G (or one dx-version of it) is ρ2-Lipschitzian and satisfies

‖G‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1). (2.2)

Furthermore, this inequality (2.2) becomes equality for g = ρ1 − μ(ρ1).
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(ii) Let ϕ : I → R+ be a nonnegative function in L2(I,μ). If

c(ϕ,ρ) := ess sup
x∈I

s′(x)

ρ′(x)
m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
< +∞, (2.3)

where I+
x = {y ∈ I ; y ≥ x}, I−

x = {y ∈ I ; y < x}, then for any function g ∈ L2(I,μ) such that |g| ≤ ϕ, there is
a unique solution G with μ(G) = 0 to the Poisson equation −L2G = g − μ(g). Moreover, G (or one dx-version
of it) is ρ-Lipschitzian and satisfies

sup
g:|g|≤ϕ

‖G‖Lip(ρ) = c(ϕ,ρ). (2.4)

Its proof is postponed to Section 3.

Remark 2.2. Let CLip(ρ),0 be the Banach space of all ρ-Lipschitzian functions g with μ(g) = 0 equipped with norm
‖ · ‖Lip(ρ). Part (i) above says that the Poisson operator (−L2)

−1 :CLip(ρ1),0 → CLip(ρ2),0 is bounded and∥∥(−L2)
−1

∥∥
CLip(ρ1),0→CLip(ρ2),0

= cLip(ρ1, ρ2). (2.5)

Since L2 is self-adjoint on L2
0(I,μ), a general functional analysis result (see [25], Proposition 2.9) says that∥∥(−L2)

−1
∥∥

L2
0(I,μ)

≤ ∥∥(−L2)
−1

∥∥
CLip(ρ),0→CLip(ρ),0

.

But the left-hand side is exactly the Poincaré constant cP , so we get

cP ≤ ∥∥(−L2)
−1

∥∥
CLip(ρ),0→CLip(ρ),0

= cLip(ρ,ρ)

which is exactly the ‘≤’ part in (1.6). We now outline the idea of Chen for the converse inequality in (1.6). If the
eigenfunction ρ associated with λ1 = 1/cP exists, i.e. −L2ρ = λ1ρ, it must be strictly monotone (see [9]) and then
could be assumed to be increasing, and ρ′ is given by (3.2) with C = 0 and g = λ1ρ (see Section 3 for the reason why
C = 0), i.e.

ρ ′(x) = λ1s
′(x)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt, dx-a.s.,

where the ‘≥’ part in (1.6) follows. When λ1 has no eigenfunction, Chen proved the converse inequality by using a
sequence of increasing functions ρ ∈ L2

0(I,μ) approximating this virtual eigenfunction.
That is our interpretation to Chen’s variational formula (1.6).

Remark 2.3. Let ‖g‖ϕ be the largest constant c such that |g(x)| ≤ cϕ(x) over I and bϕB be the Banach space of those
measurable functions g such that its norm ‖g‖ϕ is finite. Let Pg = g − μ(g) :L2(I,μ) → L2

0(I,μ), the orthogonal
projection. Part (ii) above means that (−L)−1P is bounded from bϕB to CLip(ρ),0 and its norm is exactly c(ϕ,ρ).

2.2. Applications to transportation–information inequalities and concentration inequalities

For any probability measure ν on I , say ν ∈ M1(I ), the Wasserstein distance between ν and μ w.r.t. a given metric d

on I is defined by

W1,d (ν,μ) = inf
π

∫ ∫
I 2

d(x, y)π(dx,dy),

where π runs over all couplings of ν,μ, i.e. all probability measures π on I 2 with the first and second mar-
ginal distributions ν,μ, respectively. When d is the trivial metric (d(x, y) = 1x �=y ), 2W1,d (μ, ν) = ‖μ − ν‖TV :=
sup|f |≤1 |(μ − ν)(f )|, the total variation of μ − ν.
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Under (A1)–(A4), the Dirichlet form (E,D(E)) associated with the transition semigroup (Pt ) of (Xt ) is given by

D(E) = D
(√−L2

) =
{
f ∈ L2(I,μ) ∩ AC(I ),

∫
I

a(x)f ′(x)2 dμ(x) < +∞
}
,

E(f,f ) :=
∫

I

a(x)f ′(x)2 dμ(x), f ∈ D(E).

For f,g ∈ D(E), let Γ (f,g) = af ′g′ be the carré-du-champs operator. The Fisher–Donsker–Varadhan information of
ν w.r.t. μ is defined by

I (ν|μ) =
{
E
(√ dν

dμ
,

√
dν
dμ

)
, if ν � μ and

√
dν
dμ

∈ D(E),

+∞, otherwise.
(2.6)

Recall that for ρ0(x) = ∫ x

c
1√
a(y)

dy the associated metric dρ0(x, y) = |ρ0(y) − ρ0(x)| is the intrinsic metric of the

diffusion (Xt ).

Corollary 2.4. Assume (A1)–(A4). Let ρ ∈ AC(I ) ∩ L2(I,μ) so that ρ′(x) > 0, dx-a.e. and

cρ = ess sup
x∈I

s′(x)
√

a(x)

∫ y0

x

[
ρ(y) − μ(ρ)

]
m′(y)dy < +∞. (2.7)

Then for all ν ∈ M1(I )(
W1,dρ (ν,μ)

)2 ≤ 4c2
ρI (ν|μ), (2.8)

or equivalently for every ρ-Lipschitzian function g on I , we have for any initial measure ν � μ and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4c2
ρ‖g‖2

Lip(ρ)

)
. (2.9)

Proof. Remark that cρ = cLip(ρ,ρ0), the constant given in (2.1). The equivalence between the transportation–
information inequality (2.8) and the Gaussian concentration inequality (2.9) is due to Guillin et al. [15], Theorem 2.4.

By Kantorovitch–Rubinstein dual equality, (2.8) is equivalent to: if ‖g‖Lip(ρ) ≤ 1,

(∫
I

g d(ν − μ)

)2

≤ 4c2
ρI (ν|μ) ∀ν ∈ M1(I ).

We may assume that I (ν|μ) < +∞, i.e., ν = h2μ with h ∈ D(E). Let G be the solution of −L2G = g − μ(g) with
μ(G) = 0 (its existence and uniqueness is assured by Theorem 2.1(i)). Notice that with f = h2 (h ≥ 0),∫

I

g d(ν − μ) = 〈−L2G,f 〉 = E(G,f ) =
∫

I

a(x)G′(x)f ′(x)dμ(x)

≤ ess sup
x∈I

[√
a(x)

∣∣G′(x)
∣∣] ∫

I

√
a(x)

∣∣f ′∣∣(x)dμ(x)

≤ 2cρ

√
μ

(
h2

)
μ

[
ah′2] = 2cρ

√
I (ν|μ), (2.10)

where the last inequality follows by Theorem 2.1(i) and Cauchy–Schwarz inequality, for ess supx∈I

√
a(x)|G′(x)| =

‖G‖Lip(ρ0). �

Remark 2.5 (Proposed by the referee). If the observable g is fixed and absolutely continuous, the best choice of ρ for
the Gaussian concentration inequality (2.9) is ρ̃ such that ρ̃′ = |g′| by Lemma 3.2 in Section 3 (though such ρ̃ is not
strictly increasing, but Theorem 2.1 is still valid as seen for its proof).

Lipschitzian norm estimate of one-dimensional Poisson equations and applications 235



Lipschitzian norm estimate of one-dimensional Poisson equations and applications 455

Remark 2.6. The second inequality in (2.10) can be read as

W1,ρ(f μ,μ) ≤ cρ

∫
I

√
Γ (f,f )dμ ≤ 2cρ

√
I (f μ|μ).

Repeating the argument above but using part (ii) of Theorem 2.1, we get (2.11) below.

Corollary 2.7. Assume (A1)–(A4). Let 0 ≤ ϕ ∈ L2(I,μ) such that c(ϕ,ρ0) < +∞. Then for all ν = f μ ∈ M1(I ),

∥∥ϕ(ν − μ)
∥∥

TV ≤ c(ϕ,ρ0)

∫
I

√
Γ (f,f )dμ ≤ 2c(ϕ,ρ0)

√
I (ν|μ). (2.11)

Or equivalently for every g : I → R such that |g(x) − g(y)| ≤ βϕ(x, y) := [ϕ(x) + ϕ(y)]1x �=y (i.e., ‖g‖Lip(βϕ) ≤ 1),
we have for any initial measure ν � μ and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4c(ϕ,ρ0)2

)
. (2.12)

The Gaussian concentration inequality (2.12) follows from (2.11) by [15], Theorem 2.4, and the fact that ‖ϕ(ν −
μ)‖TV = supg:‖g‖Lip(βϕ )≤1

∫
I
g d(ν − μ) (cf. [14]). Notice that βϕ is a metric once ϕ is positive (and a pseudo-metric

satisfying the triangular inequality in the general case).

Remark 2.8. When ϕ = 1 in (2.11), the constant c(ϕ,ρ0) becomes

cδ := 2 ess sup
x∈I

√
a(x)s′(x)m(I)μ

(
I+
x

)
μ

(
I−
x

)
, (2.13)

where I+
x , I−

x are given in Theorem 2.1; and the inequality (2.11) becomes: for every μ-probability density f ∈ AC(I )

∫
I

|f − 1|dμ ≤ cδ

∫
I

√
Γ (f,f )dμ ≤ 2cδ

√
I (f μ|μ). (2.14)

It was proved by Guillin et al. [15], Theorem 3.1, that if the Poincaré inequality holds, then∫
I

|f − 1|dμ ≤ √
2cGI (ν|μ)

with the best constant cG ≤ 2cP (the index G is referred to the equivalent Gaussian concentration inequality); and
conversely if the last inequality holds, then cP ≤ 2cG.

Remark 2.9. Gozlan [13] has established some connections between Talagrand’s transportation–entropy inequalities
and weighted Poincaré inequalities, see also [23].

The concentration inequalities (2.9) and (2.12) do not contain the asymptotic variance of g:

σ 2(g) := lim
t→∞

1

t
VarPμ

(∫ t

0
g(Xs)ds

)

which plays a fundamental role in the central limit theorem (then in statistical applications). This is provided in the
following Bernstein’s type concentration inequality.

Corollary 2.10. Assume (A1)–(A4). Suppose that the constant cδ in (2.13) is finite.
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(i) If the constant cρ in (2.7) is finite, then for every ρ-Lipschitzian function g with ‖g‖Lip(ρ) ≤ 1, we have for any
initial measure ν � μ and t, x > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) +

√(
2σ 2(g) + 4c2

ρ min
{
1, cδ

√
x
})

x

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

e−tx .

(ii) If the constant c(ϕ,ρ0) in (2.3) is finite, then for every measurable function g such that |g(x) − g(y)| ≤ ϕ(x) +
ϕ(y), the inequality in (i) holds with cρ replaced by c(ϕ,ρ0).

Proof. Our proof below follows [16].

(i) We may and will assume that ‖g‖Lip(ρ) ≤ 1. Let G be the solution of −LG = g − μ(g). Notice that σ 2(g) =
2〈G,g〉μ = 2E(G,G).

We have for ν = h2μ with I (ν|μ) < +∞,

∫
I

g d(ν − μ) = 2
∫

I

aG′hh′ dμ(x) ≤ 2

√∫
I

aG′2h2 dμ · I (ν|μ).

Since 0 ≤ aG′2 ≤ ‖G‖2
Lip(ρ0)

≤ c2
ρ by Theorem 2.1(i), using the fact that

∫
I
F d(ν −μ) ≤ 1

2‖ν −μ‖TV for F verifying
|F(x) − F(y)| ≤ 1, we have by (2.14),

∫
I

aG′2h2 dμ ≤
∫

I

aG′2 dμ + c2
ρ

2

∫
I

∣∣h2 − 1
∣∣dμ ≤ σ 2(g)

2
+ c2

ρ min
{
1, cδ

√
I (ν|μ)

}
.

Plugging it into the previous inequality (for ±g), we obtain

(∫
I

g d(ν − μ)

)2

≤ (
2σ 2(g) + 4c2

ρ min
{
1, cδ

√
I (ν|μ)

})
I (ν|μ) ∀ν.

This is equivalent to the desired concentration inequality by [15], Theorem 2.4.
(ii) The same argument as above (but using part (ii) of Theorem 2.1 instead of part (i)), we have ∀g such that

|g| ≤ ϕ

(∫
I

g d(ν − μ)

)2

≤ (
2σ 2(g) + 4c(ϕ,ρ0)

2 min
{
1, cδ

√
I (ν|μ)

})
I (ν|μ) ∀ν.

This leads to the desired concentration inequality again by [15], Theorem 2.4.
�

2.3. L1-Poincaré inequality and Cheeger’s isoperimetric inequality

The Poincaré inequality has a L1 counterpart related to Cheeger’s isoperimetric inequality. Namely, let cP,1 be the
best constant such that the following L1-Poincaré inequality holds: for any f ∈ AC(I ) ∩ L1(I,μ)∫

I

∣∣f − μ(f )
∣∣dμ ≤ cP,1

∫
I

√
a(x)

∣∣f ′∣∣dμ, (2.15)

where AC(I ) is the space of all absolutely continuous functions on I . Theorem 2.1 allows us to identify the best
constant cP,1 in the L1-Poincaré inequality (2.15).

Theorem 2.11. Assume (A1)–(A4). The best constant cP,1 in the L1-Poincaré inequality (2.15) is finite if and only if
cδ given in (2.13) is finite. In this case cP,1 = cδ .
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Proof. At first cP,1 ≤ cδ , by (2.14) (the passage from μ-density f to general f in (2.15) is easy). For the converse
inequality, we may assume that cP,1 < +∞. In that case for any g ∈ bB such that |g| ≤ 1, G = (−L2)

−1(g − μ(g))

exists (because the Poincaré inequality holds by Cheeger’s inequality). We have for any μ-probability density f ∈
AC(I ),∫

I

a(x)G′(x)f ′(x)dμ(x) = 〈−L2G,f 〉μ = 〈g,f − 1〉μ

≤
∫

I

|f − 1|dμ ≤ cP,1

∫
I

√
a(x)

∣∣f ′(x)
∣∣dμ(x).

That implies ‖G‖Lip(ρ0) = ess supx∈I

√
a(x)|G′(x)| ≤ cP,1 (however this elementary fact do no longer work in the

multi-dimensional case). Hence cδ ≤ cP,1 by Theorem 2.1(ii). �

Let us discuss now some connections between (2.15) and isoperimetric inequalities. Consider the intrinsic metric
dρ0 associated with the diffusion where ρ0(x) = ∫ x

c
1√
a(y)

dy, and the corresponding isoperimetric function

Iμ(p) := inf
{
μ∂(∂A);μ(A) = p

}
, p ∈ (0,1).

Here ∂A is the boundary of A and the surface measure μs of A is defined by μs(∂A) = lim infε→0+
μ(Aε)−μ(A)

ε
and

Aε = {x ∈ I, such that dρ0(x,A) ≤ ε}, the ε-neighborhood of A.

Remark 2.12. Let ccheeger be Cheeger’s isoperimetric constant of μ w.r.t. the intrinsic metric dρ0 , i.e. the best constant
in the following Cheeger isoperimetric inequality

min
(
μ(A),1 − μ(A)

) ≤ ccheegerμs(∂A)

for all measurable subsets A ⊂ I , or equivalently Iμ(p) ≥ 1
ccheeger

min{p,1 − p}. It is well known (cf. [4,20]) that

ccheeger is also the best constant in the functional version of Cheeger’s isoperimetric inequality below: for any f ∈
AC(I ) ∩ L1(I,μ)∫

I

∣∣f − mμ(f )
∣∣dμ ≤ ccheeger

∫
I

√
a(x)

∣∣f ′∣∣dμ, (2.16)

where mμ(f ) is a median of f w.r.t. μ (via Co-Area formula). Since

1

2
μ

(∣∣f − μ(f )
∣∣) ≤ μ

(∣∣f − mμ(f )
∣∣) ≤ μ

(∣∣f − μ(f )
∣∣)

we have

1

2
cP,1 ≤ ccheeger ≤ cP,1. (2.17)

The two inequalities above are both sharp as seen for the examples later. An important result of Bobkov–Houdré [5],
Theorem 1.3, says that

ccheeger = ess sup
x∈I

m(I)min{μ(I+
x ),μ(I−

x )}
m′(x)

√
a(x)

= ess sup
x∈I

m(I)
√

a(x)s′(x)min
{
μ

(
I+
x

)
,μ

(
I−
x

)}
(2.18)

or say roughly, the extreme set for ccheeger is a semi-interval I+
x . In recent years, the best constant ccheeger (in multi-

dimensional case) has been extensively investigated, see [1,5,7,20,22,26] and relevant references therein.
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Remark 2.13 (Proposed by the referee). By Bobkov–Houdré [4], Theorem 1.2, the L1-Poincaré inequality (2.15) is
equivalent to the following isoperimetric inequality associated with dρ0 :

2μ(A)μ
(
Ac

) ≤ cP,1μs(∂A) (2.19)

for any measurable subset A of I , or equivalently Iμ(p) ≥ 2
cP,1

p(1 − p), p ∈ (0,1). That equivalence holds on a
general metric space.

Notice that if a(x) is continuous and positive, cδ is just the best constant in (2.19) (in place of cP,1) for A varying
over I+

x , x ∈ I .
When a(x) = 1 and μ is log-concave (i.e., μ = f dx with logf concave), Bobkov–Houdré [4], Corollary 13.8,

showed that the optimal set for Iμ(p) is I+
x with μ(I+

x ) = p for every p ∈ (0,1), and then cP,1 = cδ .
The referee indicates another approach for Theorem 2.11 even for general μ not necessarily log-concave, when

a(x) = 1. The idea goes as follows. At first notice that p(1 − p) is the isoperimetric function Iν(p) of the logistic
distribution ν: ν(−∞, x] = (1 + e−x)−1. Following the proof of Bobkov–Houdré [5], proof of Theorem 1.3, if cδ <

+∞, the increasing mapping U : R → I pushing forward ν to μ must be Lipschitzian and ‖U‖Lip = 2cδ . Then one
sees that the best constant cP,1 in (2.19) for μ is just ‖U‖Lip/2 = cδ .

Let us remark finally that the L1-Poincaré inequality (2.15) is equivalent to the following concentration inequality
([4], Theorem 2.1, pp. 20–21):

μ(Aε) ≥ p

p + (1 − p) exp(−2ε/cP,1)
, μ(A) = p ∈ (0,1), ε > 0.

2.4. A qualitative description for the boundedness of the Poisson operator

For g ∈ L2
0(I,μ), the solution G with μ(G) = 0 of the Poisson equation −L2G = g, if exists, will be denoted by

(−L)−1g. One may think naturally that when ϕ is bounded but tends to zero at the boundary ∂I , the Lipschitzian
norm c(ϕ,ρ0) may be finite even if cδ = +∞. The same picture might appear in one’s mind for cLip(ρ,ρ0) when ρ′
tends to 0 at the boundary ∂I . However this is not the case.

Proposition 2.14. Assume (A1)–(A4). Let ρ,ϕ be as in Theorem 2.1, but moreover bounded and ϕ > 0. Let ρ0(x) =∫ x

c
1√
a(y)

dy. Consider the following properties:

(i) cρ = cLip(ρ,ρ0) = ‖(−L2)
−1‖CLip(ρ),0→CLip(ρ0),0 < +∞.

(ii) c(ϕ,ρ0) = supg:|g|≤ϕ ‖(−L2)
−1(g − μ(g))‖Lip(ρ0) < +∞.

(iii) cδ = sup|g|≤1 ‖(−L2)
−1(g − μ(g))‖Lip(ρ0) < +∞.

(iv) The L1-Poincaré inequality (2.15) holds, i.e., cP,1 < +∞.

(v) The transportation–information inequality below holds: there is some finite best constant cG > 0 such that for
all ν = f μ ∈ M1(I ),∫

I

|f − 1|dμ ≤ √
2cGI (ν|μ).

(vi) The Poincaré inequality (1.5) holds, i.e., cP < +∞.

Then

(a) the properties (i)–(iv) are equivalent.
(b) (iv) ⇒ (v) ⇔ (vi).
(c) If a(x) = 1 and b′ ≤ K (i.e., the Bakry–Emery curvature is bounded from below by −K), (vi) ⇒ (iv) and then

(i)–(vi) are all equivalent.

Proof. (a) Equivalence between (i), (ii) and (iii). It is enough to regard the behavior at the boundary of the functions
appearing in the definitions of cρ = cLip(ρ,ρ0), cδ and c(ϕ,ρ0). For instance, if y0 /∈ I , for x close to y0, say x ≥ z > c,

Lipschitzian norm estimate of one-dimensional Poisson equations and applications 239



Lipschitzian norm estimate of one-dimensional Poisson equations and applications 459

we have

(
ρ(z) − μ(ρ)

)
μ

(
I+
x

) ≤
∫ y0

x

(
ρ(y) − μ(ρ)

)
dμ(y) ≤ (

ρ(y0) − μ(ρ)
)
μ

(
I+
x

)
,

μ
(
I−
z

)
μ

(
I+
x

) ≤ μ
(
I+
x

)
μ

(
I−
x

) ≤ μ
(
I+
x

)
,

μ(1I−
z
ϕ)μ

(
I+
x

) ≤ μ
(
I+
x

)
μ(1I−

x
ϕ) + μ

(
I−
x

)
μ(1I+

x
ϕ) ≤ 2‖ϕ‖∞μ

(
I+
x

)
.

Hence the supremums over [c, y0) of the functions appearing in the definitions of cρ , cδ and c(ϕ,ρ0) are simultane-
ously finite or infinite. The same argument works when x0 /∈ I . That completes the proof of the equivalence between
(i), (ii) and (iii).

(iii) ⇔ (iv). That is contained in Theorem 2.11: cδ = cP,1.
(b) (iv) ⇒ (v). Since

∫
I

√
a(x)|f ′|dμ ≤ 2

√
I (f μ|μ), we have cG ≤ 2c2

P,1.
(v) ⇔ (vi). This is noticed in Remark 2.8: cP /2 ≤ cG ≤ 2cP .
(c) (vi) ⇒ (iv). This converse of the Cheeger’s inequality is known in the actual lower bounded Bakry–Emery’s

curvature case see Buser [7] and Ledoux [21], Theorem 5.2 (otherwise there are counter-examples). �

2.5. Several examples

Example 2.15 (Gaussian measure). Let I = R, a(x) = 1 and b(x) = −x/σ 2 where σ > 0. Then m′(x) = e−x2/2σ 2

and μ = N (0, σ 2), the centered Gaussian law with variance σ 2. For ρ0(x) = x, we see that

cLip(ρ0, ρ0) = cρ0 = sup
x∈R

ex2/2σ 2
∫ ∞

x

ye−y2/2σ 2
dy = σ 2.

By Remark 2.2, cP ≤ cρ0 = σ 2 which is in reality an equality as well known [20]. The transportation inequality (2.8)
becomes equality for ν = N (m,σ 2).

By calculus we identify the constant cδ in (2.13) as

cδ = 2 sup
x∈R

ex2/2σ 2√
2πσμ

([x,+∞)
)
μ

(
(−∞, x)

) =
√

π

2
σ.

On the other side, ccheeger ≥
√

π
2 σ as seen for A = R+. Then by (2.17) and Theorem 2.11, ccheeger = cδ = cP,1.

Example 2.16 (Uniform distribution). Let I = [−D/2,D/2] where D > 0, a(x) = 1 and b(x) = 0. The unique
invariant probability measure μ is the uniform measure on I . Since m′(x) = 1 = s′(x), we have

cρ0 = cLip(ρ0,ρ0) = sup
x∈[−D/2,D/2]

∫ D/2

x

y dy = D2

8

and the constant cδ = c(ϕ,ρ0) with ϕ = 1 is given by

cδ = sup
x∈[−D/2,D/2]

2Dμ
([−D/2, x])μ([x,D/2]) = D

2
.

As ccheeger ≥ D/2 (as seen for A = [0,D/2]), we have ccheeger = D/2 = cδ = cP,1 by (2.17) and Theorem 2.11.

Example 2.17 (Exponential measure on R+). Let I = R+ = [0,+∞), a(x) = 1 and b(x) = −λ where λ > 0. Then
m′(x) = e−λx = 1/s′(x), ρ0(x) = x and μ is the exponential distribution with parameter λ. It is easy to see that cρ0 =
cLip(ρ0,ρ0) = +∞: no spectral gap in the ρ0-Lipschitzian norm. In fact the transportation–information inequality (2.8)
is false for ρ = ρ0. By Theorem 2.11

cP,1 = cδ = 2 sup
x≥0

1

λ
eλxμ(0, x)μ(x,+∞) = 2 sup

x≥0

1

λ
μ(0, x) = 2

λ
.
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However ccheeger = 1
λ

by Bobkov–Houdré [5], which together with the Gaussian measure above shows that the two
inequalities in (2.17) are both sharp (as promised). We have also the transportation–information inequality (2.14),
which is read as

‖ν − μ‖TV ≤ 4

λ

√
I (ν|μ) ∀ν.

It is sharp. Indeed let ν be the exponential law with parameter λ̃ ∈ (0, λ). We have I (ν|μ) = (λ− λ̃)2/4, and the right-
hand side above is given by 2(1 − x) where x = λ̃/λ. The left-hand side above is given by 2(xx/(1−x) − x1/(1−x)).
Then the inequality above for such ν says

xx/(1−x) − x1/(1−x) ≤ 1 − x, 0 < x < 1,

which is sharp as x → 0.
For this model it is well known that cP = 4/λ2 [20]. The inequality above is same as provided by [15], Theorem 3.1

(from the Poincaré inequality).

Example 2.18 (Log-concave measure on R). Let I = R, a(x) = 1 and b(x) = −V ′(x) where V is C2, strictly
convex on R such that V (0) = 0 and

∫
R e−V dx < +∞. Then m′(x) = e−V (x) and s′(x) = eV (x) and ρ0(x) = x. Let

ρ(x) = V ′(x), which is μ-integrable and μ(ρ) = 0. We have

cρ = cLip(ρ,ρ0) = sup
x∈R

eV (x)

∫ +∞

x

V ′(y)e−V (y) dy = sup
x≥0

eV (x)e−V (x) = 1.

Thus assuming
∫

V ′2e−V dx < +∞, we have the transportation–information inequality (2.8) and the Gaussian con-
centration inequality (2.9). For instance, for any g ∈ C1(R) such that |g′| ≤ V ′′ we have for any initial measure ν � μ

and t, r > 0,

Pν

(
1

t

∫ t

0
g(Xs)ds > μ(g) + r

)
≤

∥∥∥∥ dν

dμ

∥∥∥∥
L2(I,μ)

exp

(
− tr2

4

)
. (2.20)

Furthermore, for any nonnegative ϕ ≤ M(1 + |V ′|), it is easy to see that c(ϕ,ρ0) < +∞, then the transportation–
information inequality (2.11) holds.

In comparison recall the Lyapunov function criterion in [15], Theorem 5.1, for (2.11): for some 0 ≤ U ∈ C2,
−U ′′ + V ′U ′ + |U ′|2 ≥ cϕ2 − K for some two positive constants c,K (which does not require the convexity of V ).

It will be very interesting to generalize it to log-concave measures on multi-dimensional spaces Rd . See Bobkov–
Ledoux [6] for some results in this direction.

Example 2.19 (Jacobi diffusion). Let I =]0,1[, a(x) = x(1−x) and b(x) = −x+1/2, then μ(x) = 1/(π
√

x(1 − x))

[10]. For ρ0(x) = π
2 + Arcsin(2x − 1), we see that

cLip(ρ0, ρ0) = cρ0 = sup
x∈]0,1[

(
π2

8
− 1

2
Arcsin2(2x − 1)

)
= π2

8
.

By calculus we identify the constant cδ in (2.13) as

cδ = 2

π
sup

x∈]0,1[

(
π2

4
− Arcsin2(2x − 1)

)
= π

2
.

Using (2.18), see Bobkov–Houdré [5], we obtain ccheeger = π
2 , so we have ccheeger = cP,1 = cδ = π

2 by Theorem 2.11.

Lipschitzian norm estimate of one-dimensional Poisson equations and applications 241



Lipschitzian norm estimate of one-dimensional Poisson equations and applications 461

Example 2.20 (Continuous branching process). Let I =]0,+∞[, a(x) = 2x and b(x) = −2x + 1, then μ(x) =
1√
π

e−x√
x

. This process arise as diffusion limits of discrete space branching process, see [19]. For ρ0(x) = √
2x, we see

that

cLip(ρ0, ρ0) = cρ0 = sup
x∈R+

(
1 − ex

√
π

∫ ∞

x

e−y

√
y

dy

)
= 1.

Example 2.21. See Example 1.4.2 in [24]. Let I = R+, a(x) = (1+x)α with α > 1, and b(x) = 0, then μ(x) = α−1
(1+x)α

.

For α > 2 and ρ0(x) = 2
α−2 (1 − (1 + x)−(α−2)/2), we see that

cLip(ρ0, ρ0) = cρ0 = 4

(α − 2)(3α − 4)
sup

x∈R+
(1 + x)−(α−2)/2(1 − (1 + x)−(α−2)/2) = 1

(α − 2)(3α − 4)
.

By calculus we identify the constant cδ in (2.13) as

cδ = 2

α − 1
sup

x∈R+
(1 + x)−(α−2)/2(1 − (1 + x)−(α−1)

) = 4

3α − 4

(
α − 2

3α − 4

)(α−2)/(2(α−1))

.

By Theorem 2.11, we have cP,1 = cδ . However, using (2.18), we obtain ccheeger = 1
α−1 ( 1

2 )(α−2)/(2(α−1)).

3. Proof of Theorem 2.1

3.1. Several lemmas

Let L∗ be the adjoint operator of (L,D) in L2(I,m), more precisely a function f in L2(I,m) belongs to the domain
of definition D2(L∗) of L∗ if there is g ∈ L2(I,m) such that 〈f,Lh〉m = 〈g,h〉m for all h ∈ D, in such case L∗f = g.
Here 〈·, ·〉m is the inner product on L2(I,m).

We want to understand the Poisson equation (1.3) as an ordinary differential equation. That is the purpose of the
following lemma.

Lemma 3.1. Assume (A1) and (A2). For a given f ∈ L2(I,m), f ∈ D2(L∗) if and only if

(i) f admits a dx-version f̃ such that f̃ ∈ C1(I ), f̃ ′|∂I = 0, and f̃ ′ ∈ AC(I);
(ii) af̃ ′′ + bf̃ ′ ∈ L2(I,m).

In that case L∗f = af̃ ′′ + bf̃ ′.

Proof. This follows by integration by parts argument and the distribution theory, as in [12], Appendix C, Theorem 2.7,
or [27], Lemma 4.5. So we omit the details. �

Since L2 is an extension of (L,D), then L∗ is an extension of L∗
2 = L2 (because the generator of a symmetric

strongly continuous semigroup is always self-adjoint). Of course under (A4), L∗ = L2. Then in our framework (i.e.,
(A1)–(A4) are satisfied), solving the Poisson equation (1.3) is equivalent to check G ∈ C1(I ) ∩ L2

0(I,μ) such that
G′ ∈ AC(I ) and G′|∂I = 0 and

−(
aG′′ + bG′) = g. (3.1)

This is a first-order differential equation for G′. It can be easily solved as

G′(x) = s′(x)

[
C +

∫ y0

x

g(y)m′(y)dy

]
(3.2)

for some constant C (to be determined).
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Lemma 3.2. Let ρ be as in Theorem 2.1 and g : I → R be ρ-Lipschitzian with μ(g) = 0. Then for all x ∈ I ,∫ y0

x

g(t)m′(t)dt ≤ ‖g‖Lip(ρ)

∫ y0

x

[
ρ(t) − μ(ρ)

]
m′(t)dt.

Proof. Without loss of generality, we may suppose that ‖g‖Lip(ρ) = 1 and m(I) = 1 and μ(ρ) = 0. Letting m(x) :=∫ x

x0
m′(t)dt and g̃ = g ◦ m−1, ρ̃ = ρ ◦ m−1, we have

∫ y0

x

g(t)m′(t)dt =
∫ 1

m(x)

g̃(u)du and
∫ y0

x

ρ(t)m′(t)dt =
∫ 1

m(x)

ρ̃(u)du.

As ‖g̃‖Lip(ρ̃) = ‖g‖Lip(ρ), we have only to prove that for all x ∈ [0,1]

h(x) =
∫ 1

x

ρ̃(s)ds −
∫ 1

x

g̃(s)ds ≥ 0.

Since h(0) = h(1) = 0 and h′ is absolutely continuous on [0,1] and for dx-a.s. x ∈ [0,1]

h′′(x) = −ρ̃′(x) + g̃′(x) ≤ ‖g̃‖Lip(ρ̃)ρ̃
′(x) − ρ̃′(x) ≤ 0.

So h is concave on [0,1]. Consequently h(x) ≥ 0 for all x ∈ [0,1]. �

Lemma 3.3. Let 0 ≤ ϕ ∈ L2(I,μ). Then for every x ∈ I ,

sup
g: |g|≤ϕ

∫ y0

x

[
g(t) − μ(g)

]
m′(t)dt = m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
,

where I+
x = [x, y0] ∩ I , I−

x = [x0, x) ∩ I . The supremum is attained for g = 1I+
x
ϕ − 1I−

x
ϕ.

Proof. We may assume that m(I) = 1 and then μ = m. Fix x ∈ I . The functional Φ(g) = ∫ y0
x

[g(t)−μ(g)]m′(t)dt =
Covμ(g,1I+

x
) (the covariance of g and 1I+

x
under μ) is a linear functional of g. Since the closed convex hull of

{1Aϕ,A ∈ B} (B is the Borel σ -field on I , and the closure is to be understood in L2(I,μ)) is {g; 0 ≤ g ≤ ϕ}, and
{g; |g| ≤ ϕ} = {h1 − h2;0 ≤ h1, h2 ≤ ϕ}, then

sup
g: |g|≤ϕ

Φ(g) = sup
h1: 0≤h1≤ϕ

Φ(h1) − inf
0≤h2≤ϕ

Φ(h2) = sup
A∈B

Covμ(1Aϕ,1I+
x
) + sup

A∈B
Covμ(−1Aϕ,1I+

x
).

We examine the first supremum at the right-hand side. Note that

Covμ(1Aϕ,1I+
x
) =

∫
A∩I+

x

ϕ dμ − μ
(
I+
x

)∫
A

ϕ dμ.

With A ∩ I+
x = B fixed, this functional of A attaint the maximum when A becomes the smallest B . Next for A = B

or equivalently A ⊂ I+
x , the right-hand side above equals to

∫
A

ϕ dμ
(
1 − μ

(
I+
x

))
which attaint the maximum if A = I+

x . So we have proven that

max
A∈B

Covμ(1Aϕ,1I+
x
) =

∫
I+
x

ϕ dμ
(
1 − μ

(
I+
x

)) = μ
(
I−
x

)∫
I+
x

ϕ dμ.
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Now we turn to the last supremum. Note Covμ(−1Aϕ,1I+
x
) = − ∫

A∩I+
x

ϕ dμ + μ(I+
x )

∫
A

ϕ dμ and

max
A∈B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)
= max

B⊂I+
x

max
A: A∩I+

x =B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)

= max
B⊂I+

x

(
−

∫
B

ϕ dμ + μ
(
I+
x

)∫
B∪I−

x

ϕ dμ

)

= max
B⊂I+

x

(
−μ

(
I−
x

)∫
B

ϕ dμ + μ
(
I+
x

)∫
I−
x

ϕ dμ

)
.

The last functional in B ⊂ I+
x attaints the maximum if B is the smallest empty set. Thus

max
A∈B

(
−

∫
A∩I+

x

ϕ dμ + μ
(
I+
x

)∫
A

ϕ dμ

)
= μ

(
I+
x

)∫
I−
x

ϕ dμ.

Summarizing the conclusions in two cases, we obtain the desired result. �

3.2. Proof of Theorem 2.1(i)

We separate its proof into three cases: y0 ∈ I , x0 ∈ I or I = (x0, y0):
Case 1. y0 ∈ I . Let g be ρ1-Lipschitzian such that μ(g) = 0. By Lemma 3.1, if G is a solution of the Poisson

equation (1.3), G ∈ C1(I ),G′ ∈ AC(I ), and G′ is given by (3.2). Since G′(y0) = 0, the constant C there must be
zero. Now applying Lemma 3.2, we get

∣∣G′(x)
∣∣ ≤ ‖g‖Lip(ρ1)s

′(x)

∫ y0

x

[
ρ1(t) − μ(ρ1)

]
m′(t)dt ≤ ‖g‖Lip(ρ1)cLip(ρ1, ρ2)ρ

′
2(x)

for dx-a.e. x ∈ I . This yields to (2.2).
We turn to prove the existence of solution to the Poisson equation (1.3). Let G be a primitive of

G′(x) = s′(x)

∫ y0

x

g(y)m′(y)dy.

By what shown above, ‖G‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1) < ∞, then G ∈ L2(I,μ) (for ρ2 ∈ L2(I,μ)). By
Lemma 3.1 and (A4), G ∈ D2(L∗) = D(L2). Hence G is a solution of (1.3).

Finally, for g = ρ1 − μ(ρ1), we see that G′(x) = s′(x)
∫ y0
x

[ρ1(y) − μ(ρ1)]m′(y)dy. Then (2.2) becomes equality
for that g.

Case 2. x0 ∈ I . Parallel to the case 1, for G′(x) is again given by (3.2) with C = 0.
Case 3. I = (x0, y0). By the proof in case 1, we have only to show that for any solution G of (1.3), G′ is given by

(3.2) with C = 0.
Assume in contrary that C �= 0 in (3.2). Let G0 be a fixed primitive of s′(x)

∫ y0
x

g(y)m′(y)dy. As shown above
‖G0‖Lip(ρ2) ≤ cLip(ρ1, ρ2)‖g‖Lip(ρ1) < +∞, then G0 ∈ L2(I,μ) (for ρ2 ∈ L2(I,μ)). Therefore for some constant K ,

G = Cs + G0 + K.

But s /∈ L2(I,μ) by (A4), then G /∈ L2(I,μ), contrary to the assumption that G ∈ D(L2) ⊂ L2(I,μ). Thus C = 0 as
desired.

3.3. Proof of Theorem 2.1(ii)

At first notice that by (3.2), if −L2G = g − μ(g), then G ∈ C1(I ),G′ ∈ AC(I ) and

G′(x) = s′(x)

[
C +

∫ y0

x

[
g(y) − μ(g)

]
m′(y)dy

]
. (3.3)
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We denote by G′
0 the function above when C = 0. We separate its proof into the three cases as in the proof of part (i):

Case 1. y0 ∈ I . Fix the measurable function g on I such that |g| ≤ ϕ. If G is a solution of −L2G = g − μ(g), as
G′(y0) = 0, C = 0 in (3.3), i.e., G′ = G′

0. By Lemma 3.3, we have for dx-a.e. x ∈ I ,

∣∣G′(x)
∣∣ = ∣∣G′

0(x)
∣∣ ≤ s′(x)m(I)

(
μ

(
I+
x

)∫
I−
x

ϕ dμ + μ
(
I−
x

)∫
I+
x

ϕ dμ

)
≤ c(ϕ,ρ)ρ′(x)

which gives us ‖G‖Lip(ρ) ≤ c(ϕ,ρ). Moreover, any primitive G0 of G′
0 satisfies ‖G0‖Lip(ρ) ≤ c(ϕ,ρ), then G0 ∈

L2(I,μ) (for ρ ∈ L2(I,μ)). By Lemma 3.1 and (A4), G0 is a solution of −L2G = g − μ(g).
Finally the supremum of ‖G‖Lip(ρ) over {g; |g| ≤ ϕ} equals to c(ϕ,ρ), by Lemma 3.3.
Case 2. x0 ∈ I . Same as the proof of case 1.
Case 3. x0, y0 /∈ I . As in the proof of case 3 in part (i), we have G′ is given by (3.3) with C = 0. Now one can

repeat the proof of case 1 to conclude.

Remark 3.4. For some partial extensions of the results here to multi-dimensional Riemannian manifolds case, see the
second named author [26].
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Abstract

A moderate deviation principle for non-linear functionals, with at most quadratic growth, of moving average processes (or linear
processes) is established. The main assumptions on the moving average process are a Logarithmic Sobolev Inequality for the
driving random variables and the continuity, or some (weaker) integrability condition on the spectral density (covering some cases
of long range dependence). We also obtain the moderate deviation estimate for the empirical periodogram, exhibiting an interesting
new form of the rate function, i.e. with a correction term compared to the Gaussian rate functional. As statistical applications
we provide the moderate deviation estimates of the least square and the Yule–Walker estimators of the parameter of a stationary
autoregressive process and of the Neyman–Pearson likelihood ratio test in the Gaussian case.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Un principe de déviations modérées pour des fonctionnelles non linéaires, à croissances quadratiques, des processus de moyennes
mobiles (ou processus linéaire) est établi. Les conditions imposées sur le processus de moyennes mobiles sont une inégalité de
Sobolev Logarithmique sur les variables aléatoires d’innovation et la continuité, ou une condition (plus faible) d’intégrabilité
sur la densité spectrale (couvrant certains cas de longue mémoire). On obtient aussi une estimation des déviations modérées
pour le périodogramme empirique, faisant apparaître une nouvelle forme de la fonction de taux, avec un terme correctif comparé
à la fonction de taux gaussienne. Comme applications statistiques, on donne des estimations de déviations modérées pour les
estimateurs de Yule–Walker et des moindres carrés du paramètre de processus autoregressif stationnaire, ainsi que pour le test de
Neyman–Pearson pour le rapport de vraisemblance dans le cadre gaussien.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Consider the moving average process (or the linear process)

Xn :=
+∞∑

j=−∞
aj−nξj =

+∞∑
j=−∞

aj ξn+j , ∀n ∈ Z (1.1)

where (ξn)n∈Z is a sequence of R-valued centered square integrable i.i.d.r.v., with common law L(ξ0) = μ, and
(an)n∈Z be a sequence of real numbers such that∑

n∈Z
|an|2 < +∞. (1.2)

This last condition (1.2) is necessary and sufficient for the a.s. convergence or convergence in law of the series (1.1)
(see [17, Chapter 2]). The sequence (Xk) is strictly stationary with the spectral density given by

f (θ) := Var(ξ0)
∣∣g(θ)

∣∣2
where

g(θ) :=
+∞∑

n=−∞
an einθ . (1.3)

Moving average processes (or linear processes) are of special importance in time series analysis, filtrage of noise
and they arise in a wide variety of contexts. Applications to economics, engineering and physical sciences are very
broad and a vast amount of literature is devoted to the study of the limit theorems for moving average processes under
various conditions (e.g. Brockwell and Davis [4] and references therein). A most important class of moving average
processes is the real stationary Gaussian processes (Xn) with a square integrable spectral density function f (which
can be represented as (1.1) with ξ =N (0,1) in law).

Let

In(θ) := 1

n

∣∣∣∣∣
n∑

k=1

Xk eikθ

∣∣∣∣∣
2

, (1.4)

be the so-called empirical periodogram of order n of the process (Xk). It is one of the main tools in the study of
non-parametric statistical estimation of the unknown spectral density f on the basis of the sample (X1, . . . ,Xn) from
the process (Xn). And for an observable F(x) = F(x0, . . . , xl) valued in Rm, let

1

n
Sn(F ) := 1

n

n∑
k=1

F(Xk,Xk+1, . . . ,Xk+l)

be the empirical mean of F . We begin with reviewing some known results which motivate our investigation.

(I) Linear observables F(x) = x0.
(a) The minimal condition for the central limit theorem (CLT in short) for 1

n

∑n
k=1 Xk is the continuity of g at

θ = 0 (see [17, Corollary 5.2, p. 135]).
(b) Large deviations for 1

n

∑n
k=1 Xk . See Burton and Dehling [7], Jiang, Rao and Wang [18,19], Djellout and

Guillin [12] etc.
For non-linear observables F , the limit theorems for 1

n
Sn(F ) becomes much more difficult, even in the particular

Gaussian case.
(II) Quadratic observables F(x) = (x2

0 , x0x1, . . . , x0xl) and In(θ).
By Fourier series, one can often reduce the limit theorems of the empirical periodogram In(θ) to those for
1
n
Sn(F ) where F(x) = (x2

0 , x0x1, . . . , x0xl). There exists an abundant literature on limit theorems of In(θ) and
of 1

n
Sn(F ) because of their importance in practice, especially in Gaussian case.

(a) CLT. Avram [1] and Fox and Taqqu [15] proved the CLT for In(·) and 1
n
Sn(F ) in the Gaussian case. This

CLT was generalized by Giraitis and Surgailis [16] to non-Gaussian case.
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(b) Large and moderate deviations. Bryc and Dembo [6] have considered quadratic functional F(x) = x2
0 of

Gaussian processes both at the level of large and moderate deviations, under the boundedness of f or the
Lq -integrability of f respectively. But for F(x) = x0xl with l � 1, they have assumed that f = 1 (i.e., (Xk)

are i.i.d.), an assumption excluding the dependent case.
Their result on large deviations (LDP in short) was generalized for general quadratic F by Bercu, Gamboa
and Rouault [2] under some condition on the distribution of the eigenvalues of the involved Toeplitz matrix,
always in the Gaussian case. This last “technical” condition, (wrongly) omitted in the precedent works, is
optimal but quite difficult to check in practice. In [2], they provided several concrete important statistical
examples for which their condition is fulfilled.
In [24], the third author proved the LDP of In and 1

n
Sn(F ) for general quadratic F , without the technical

condition in [2], but under the following integrability condition E eλξ2
< +∞, ∀λ > 0, which excludes

unfortunately the Gaussian case.
(III) General non-linear observables F .

(a) CLT. The literature is again abundant, we refer the reader to Rosenblatt [21] and the references therein.
(b) Large deviations. The seminal work of Donsker and Varadhan [14] established the LDP of the empirical

process Rn := 1
n

∑n
k=1 δ(Xk,Xk+1,...) for the stationary Gaussian processes such that f ∈ Cb(T) and logf ∈

L1(T). This implies the LDP of 1
n
Sn(F ) once if F is continuous and bounded. Bryc and Dembo [5] showed

that the continuity of the spectral density f cannot be weakened but the condition logf ∈ L1(T) can be
removed, for the LDP result of Donsker and Varadhan. More recently, the third author [24] generalized this
last result to all moving average processes such that E eδξ2

< +∞ for some δ > 0.

The main purpose of this paper consists to investigate the moderate deviation principle (MDP in short) for the
so-called empirical periodogram In(θ) of order n of the process (Xk) defined by (1.4) in the space Lp(T, dθ) of
p-integrable function on the torus T identified with [−π,π[ equipped with the weak convergence topology. We
establish the MDP for In(θ) under some conditions such as the Lq(T, dθ)-integrability of the spectral density of
(Xk) and a Logarithmic Sobolev Inequality (in short LSI) for the law μ of the driven random variable ξ . Moreover
our approach allows us to obtain the MDP of 1

n
Sn(F ) for non-linear Rm-valued observables F of at most quadratic

growth.
To our knowledge, it is the first time that a MDP for a general class of non-linear observables of moving average

processes is established (not only in the Gaussian case). Our investigation is a natural continuation of the known works
[14,6,2,24] etc. We also consider statistical applications such as

(1) the MDP of the least square and Yule–Walker estimators of the autoregression parameter in a stationary autore-
gressive process, complementing known CLT results and the LDP (limited to the Gaussian case) obtained by
Bercu et al. [2];

(2) the MDP in the Neyman–Pearson likelihood ratio test (largely inspired by Bercu and al. [2]) in the Gaussian case.

Besides the standard techniques in large deviations (such as approximation lemmas, projective limit etc.), our
method is mainly based on the LSI technique, as developed by Ledoux [20] and al.

This paper is structured as follows. The MDP for the empirical spectral density and non-linear functionals are
stated in next section. In Section 3, we provide statistical applications. We establish the key a priori estimations in
Section 4. The last section is devoted to the proofs of the main results.

2. Main results

2.1. MDP for the empirical periodogram

For the sake of completeness, we recall the definition of the LDP [10] and [11]. A sequence of random variables
(Yn) with values in a regular Hausdorff topological space E is said to satisfy the LDP with speed λn → ∞ and good
rate function I (·) :E → R+ if: I has compact level sets and for all measurable sets A of X:
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− inf
x∈Å

I (x) � lim inf
n→+∞

1

λn

log P(Yn ∈ A) � lim sup
n→+∞

1

λn

log P(Yn ∈ A) � − inf
x∈Ā

I (x)

where Å, Ā denote the interior and closure of A, respectively.
In the whole paper we shall study only a special type of LDP, called usually moderate deviation principle (MDP in

short, cf. [10]).
Let (ξn)n∈Z is a sequence of R-valued centered i.i.d.r.v., with common law L(ξ0) = μ, and let a := (an)n∈Z be a

sequence of real numbers satisfying (1.2), and define (Xn) by (1.1). Our basic assumption, supposed throughout this
paper, is that μ satisfies a LSI, i.e. there exists C > 0 such that

Entμ(h2) � 2CEμ

(|∇h|2) (2.1)

for every smooth h such that Eμ(h2 log+ h2) < ∞, where

Entμ(h2) = Eμ(h2 logh2) − Eμ(h2) log Eμ(h2).

See Ledoux [20] for further details on LSI. Note that it implies in particular that there exists some positive δ such that

Eμ

(
eδ|x|2) < ∞. (2.2)

Remark 2.1. First note that there exists some practical criteria ensuring the LSI. For example, consider a C2 function
W on Rd such that e−W is integrable with respect to Lebesgue measure and let

dμ(x) = Z−1 e−W(x) dx

where Z is the normalization constant, and suppose that for some c ∈ R, W ′′(x) � cI for every x and that for some
ε > 0,∫ ∫

e(c−+ε)|x−y|2 dμ(x)dμ(y) < ∞

where c− = −min(c,0). Then μ satisfies (2.1) by the criterion of Wang [20]. Obviously Gaussian variables fulfill
this criterion. See Bobkov and Götze [3] for a necessary and sufficient condition in the actual one-dimensional case,
relying on generalized Hardy’s inequalities.

We are interested in the moderate deviation principle (MDP in short) of the empirical spectral density (or peri-
odogram) of (Xn) defined by

In(θ) := 1

n

∣∣∣∣∣
n∑

k=1

Xk eikθ

∣∣∣∣∣
2

which are random elements in the space Lp(T,dθ) equipped with the weak convergence topology, where T is the
torus identified with [−π,π[ in the usual way.

We first present here the MDP for the empirical autocorrelation vector which will be our main tool for the MDP of
the empirical spectral density, and has its own interest in statistics. Let

κ4 = E(ξ4) − 3[E(ξ2)]2

E(ξ2)2
,

the cumulant of order 4 of the driven random variable ξ .

Theorem 2.1. Assume that μ satisfies the LSI (2.1). Suppose moreover that

(H1) the spectral density function f is in Lq(T,dθ), where 2 < q � +∞; and
(H2) the moderate deviation scale (bn) is a sequence of positive numbers satisfying 1 	 bn 	 √

n (i.e. bn → +∞
and bnn

−1/2 → 0, the moderate deviation scale) and

bnn
1/q−1/2 → 0,
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then for every λ ∈ Rm+1,

lim
n→∞

1

b2
n

log E exp

(
bn√
n

m∑
	=0

λl

n∑
k=1

(XkXk+	 − EXkXk+	)

)
= 1

2
λ∗Σ2λ (2.3)

where Σ2 = (Σ2
k,	)0�k,	�m is given by

Σ2
k,	 = 1

2π

∫
T

(
ei(k−	)θ + ei(k+	)θ

)
f 2(θ)dθ + κ4

(
1

2π

∫
T

f (θ) eikθ dθ

)(
1

2π

∫
T

f (θ) ei	θ dθ

)

= 1

2π

∫
T

2 cos(kθ) cos(	θ)f 2(θ)dθ + κ4

(
1

2π

∫
T

f (θ) cos(kθ)dθ

)(
1

2π

∫
T

f (θ) cos(lθ)dθ

)
. (2.4)

In particular(
1

bn

√
n

n∑
k=1

(XkXk+	 − EXkXk+	)

)
0�	�m

satisfies the LDP on Rm+1 with speed b2
n and with the rate function given by

I (z) = sup
λ∈Rm+1

{
〈λ, z〉 − 1

2
〈λ,Σ2λ〉

}
.

Remark 2.2. By Cauchy–Schwartz inequality we have [E(ξ2)]2 � E(ξ4), so κ4 � −2 and κ4 = −2 iff ξ2 = C, a.s.
Under the assumption (2.1), ξ2 cannot be constant by [13, Remark 2.4], so κ4 > −2. Consequently the matrix Σ2 is
symmetric and non-negative definite. Notice that the rate function I given above can be calculated explicitly as

I (z) =
{

1
2 〈z,Σ−2z〉, if z ∈ Ran(Σ2);
+∞, otherwise,

where Σ−2 is the inverse of Σ2 restricted to the range Ran(Σ2) of Σ2.

Remark 2.3. The assumptions (H1) and (H2) on f and the scale bn are exactly the ones imposed in Bryc and
Dembo [6, Theorem 2.3] for the MDP of 1

n

∑n
k=1 X2

k in the Gaussian case. Their large deviations result (namely
Proposition 2.5 in [6]) for the empirical autocorrelation is further restricted to the i.i.d. case.

Remark 2.4. Notice that the condition (H1) on the dependence is indeed quite weak and general. It covers not only the
short-range case (i.e.

∑ |Cov(X0,Xn)| < +∞), but also some cases of long range. To illustrate this case, consider the
following example: let {BH (t), t ∈ R} be the fractional Brownian motion with Hurst parameter 0 < H < 1. Consider
its increments

Yj = BH (j + 1) − BH (j), j ∈ Z,

which form a stationary Gaussian sequence with mean zero and variance E(B2
H (1)) = σ 2

0 . The sequence {Yj , j ∈ Z}
has the covariance function

α(j) = E(Y1Yj+1) = σ 2
0

2

(|j + 1|2H − 2|j |2H + |j − 1|2H
)
,

and the spectral density

f (λ) = σ 2
0

C2

∣∣eiλ − 1
∣∣2 +∞∑

k=−∞

1

|λ + 2πk|2H+1
, −π � λ � π,

where C is a constant depending only on H . It is known that (see [22])

α(j) ∼ σ 2
0 H(2H − 1)j2H−2, as j → ∞, for H �= 1/2,
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and f is continuous on T \ {0} and

f (λ) ∼ σ 2
0 C−2(H)|λ|1−2H , as λ → 0.

When 0 < H � 1/2, f is continuous (and then bounded) on T. So the MDP in Theorem 2.1 holds for every
moderate deviation scale (bn).

When 1/2 < H < 1, the series
∑

α(j) diverges. In this case {Yj , j ∈ Z} exhibits long range dependence. The
condition (H1) is satisfied if 1/2 < H < 1/2 + 1/(2q), (so 1/2 < H < 3/4 for q > 2), and (1.2) is thus easily verified.
In this case, we obtain the MDP of Theorem 2.1 for the sequence {Yj , j ∈ Z} with κ4 = 0 for the moderate deviation
scale (bn) verifying (H2).

The following corollary follows from Theorem 2.1 by the contraction principle

Corollary 2.2. Under the assumptions of Theorem 2.1, we have for all 	 � 0, (1/(
√

nbn)
∑n

k=1(XkXk+	−EXkXk+	))

satisfies the LDP on R with speed b2
n and rate function given by

I 	(z) = 1

2

z2

1/(2π)
∫

T 2 cos2(	θ))f 2(θ)dθ + κ4(1/(2π)
∫

T f (θ) cos(	θ)dθ)2

with the convention that a/0 = +∞ for a > 0 and 0/0 := 0.

Let us present now the main result of this paper. From Theorem 2.1 (and its proof) together with the projective
limit method, we yield the functional type’s MDP below, for

Ln(θ) =
√

n

bn

(
In(θ) − EIn(θ)

)
.

Theorem 2.3. Suppose that μ satisfies the LSI (2.1) and (H1), (H2). Let 1 � p < 2 and p′ ∈ [2,+∞] the conjugated
number, i.e., 1/p + 1/p′ = 1. Assume moreover

(H3) the moderate deviation scale bn satisfies

bnn
1/q+1/p′−1/2 → 0,

1

p′ + 1

q
<

1

2
.

Then In(θ) satisfies the MDP, i.e., (Ln)n�0 satisfies the LDP on (Lp(T, dθ), σ (Lp(T, dθ),Lp′
(T, dθ))) with speed

b2
n and with the rate function given by

J (η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2π

∫
T

η2(θ)

4f 2(θ)
dθ − κ4

2 + κ4

(
1

2π

∫
T

η(θ)

2f (θ)
dθ

)2

,

if κ4 > −2, η is even, η dθ 	 f dθ and
η

f
∈ L2(T, dθ);

+∞, otherwise.

As a consequence of Theorem 2.3 we have the following marginal MDP:

Corollary 2.4. Under the assumptions of Theorem 2.3, we have that for all h ∈ Lp′
(T, dθ),

lim sup
n→∞

1

b2
n

log E
(
eb2

n
1

2π

∫
T h(θ)Ln(θ)dθ

) = 1

2
σ 2(h),

where

σ 2(h) := 1

2π

∫
T

2h̃2(θ)f 2(θ)dθ + κ4

(
1

2π

∫
T

h(θ)f (θ)dθ

)2

and h̃(θ) = (h(θ) + h(−θ))/2. In particular 1
2π

∫
T h(θ)Ln(θ)dθ satisfies the LDP on R with speed b2

n and with the
rate function given by Ih(z) := (1/2)z2/(σ 2(h)).
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Remark 2.5. One cannot hope that the MDP in Theorem 2.3 holds w.r.t. the strong topology of Lp(T,dθ), because
the rate function I (η) is not inf-compact w.r.t. this topology.

The assumption (H3) is stronger than (H2). When p = 1 (and then p′ = +∞), (H3) becomes (H2) and thus under
the LSI for ξ and (H1) and (H2), Ln(θ) satisfies the LDP on L1(T) w.r.t. the weak convergence topology σ(L1,L∞)

in Theorem 2.3, and 1
2π

∫
T h(θ)Ln(θ)dθ satisfies the LDP in Corollary 2.4 for every h ∈ L∞(T).

Remark 2.6. Now assume that (ξn) is a sequence of real i.i.d. normal random variables, so (Xn) is a stationary
Gaussian process and inversely any real Gaussian stationary process (Xn) with a square integrable spectral density
function f can be represented as (1.1). In this case, we have E(ξ4) = 3E(ξ2)2 and thus κ4 = 0, so under the assump-
tions of Theorem 2.3 we obtain that (Ln)n�0 satisfies the LDP on Lp(T, dθ) with speed b2

n and with the rate function
given by

J (η) =

⎧⎪⎨
⎪⎩

1

2π

∫
T

η2(θ)

4f 2(θ)
dθ, if η is even, η dθ 	 f dθ and

η

f
∈ L2(T,dθ),

+∞, otherwise.
We thus give the MDP for the spectral empirical measure in the setting of Bercu and al. [2]. Note however that they

only consider the marginal LDP, i.e. LDP for In(h) for some bounded h on the torus with an extra assumption on the
eigenvalues of the Toeplitz matrix, where In(h) = 1

2π

∫
T In(θ)h(θ)dθ .

Remark 2.7. For any real and symmetric function h ∈ L1(T,dθ), let Tn(h) be the Toeplitz matrix of order n associated
with h i.e. Tn(h) = (r̂k−l (h))1�k,l�n where r̂k(h) is the kth Fourier coefficient of h given by

r̂k(h) = 1

2π

∫
T

eikθh(θ)dθ, ∀k ∈ Z. (2.5)

The matrix Tn(h) is obviously real and symmetric, is positive definite whenever h � 0.
Notice that the extra term with respect to the Gaussian case in the evaluation of the asymptotic variance has been

known for a long time (see [21]). The result of [16] about CLT for In can be summarized as below: if

lim
n→∞

1

n
tr
((

Tn(f )Tn(h)
)2) = 1

2π

∫
T

f 2(θ)h2(θ)dθ; (2.6)

(where Tn(h) is the Toeplitz matrix of h) then
√

n(In(h)−EIn(h)) converges in law (as n → ∞) to the normal distri-
bution N (0, σ 2(h)) with σ 2(h) given in Corollary 2.4. In Gaussian case this result was already proved by Avram [1]
and Fox and Taqqu [15].

In the next corollaries of Theorem 2.3, we replace EIn(θ) by f (θ) in the definition of Ln(θ), more useful in
practice, but need more assumptions. More precisely we are interested in the MDP of

L̃n(θ) =
√

n

bn

(
In(θ) − f (θ)

)
.

Corollary 2.5. Suppose that μ satisfies the LSI (2.1) and the spectral density f verifies

f ∈ L∞(T) and
∥∥f (t + ·) − f (·)∥∥

Lp(T)
= O(

√
t ) (2.7)

then for every scale 1 	 bn 	 n1/2−1/p′
, (L̃n)n�0 satisfies the LDP on Lp(T,dθ) w.r.t. the weak topology

σ(Lp(T),Lp′
(T))), with speed b2

n and with the rate function J given in Theorem 2.3.

We have also the following consequence of Corollary 2.4 for the marginals of the empirical spectral measures

Corollary 2.6. Assume (2.1) and (H1), (H2). Suppose that

h ∈ L∞(T) and
∥∥h(t + ·) − h(·)∥∥

Lq′
(T)

= O(
√

t ) (2.8)

then the conclusion of Corollary 2.4 holds for
∫
π

h(θ)L̃n(θ)dθ instead of
∫
π

h(θ)Ln(θ)dθ .
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2.2. MDP for non-linear functionals

We now present the MDP of 1
n
Sn(F ), i.e., the LDP of

Mn(F) = 1√
nbn

n∑
k=1

(
F(Xk, . . . ,Xk+l) − E

(
F(Xk, . . . ,Xk+l)

))
,

where the observable F : Rl+1 → Rm is a general non-linear differentiable function.

Theorem 2.7. Suppose that μ satisfies the LSI (2.1), and g given in (1.3) is continuous on T. Assume moreover that
∂xi

F is Lipschitz for i = 0, . . . , l. Then

Σ2
F := lim

n→+∞
1

n
Γ

(
n∑

k=1

F(Xk, . . . ,Xk+l )

)
(2.9)

exists where Γ (·) is the covariance matrix of the random vector ·, and for every moderate deviation scale 1 	 bn 	√
n, Mn(F) satisfies the LDP on Rm with speed b2

n and good rate function IF given by

IF (z) = sup
λ∈Rm

{
〈λ, z〉 − 1

2
〈λ,Σ2

F λ〉
}

=
{

1
2 〈z,Σ−2

F z〉, if z ∈ Ran(Σ2
F ),

+∞, otherwise,

where Σ−2
F : Ran(Σ2

F ) → Ran(Σ2
F ) is the inverse of the limit covariance matrix Σ2

F restricted to Ran(Σ2
F ).

Note also the following corollary in the linear case F(x0, . . . , xl) = x0 in which the assumption on g can be largely
weakened.

Corollary 2.8. Suppose that μ satisfies the integrability condition (2.2), if

f N(0) =
∑

|k|�N

(
1 − |k|

N

)
r̂k(f ) → σ 2,

then for every moderate deviation scale 1 	 bn 	 √
n, 1

bn
√

n

∑n
k=1 Xk satisfies the LDP on R with speed b2

n and rate

I (z) = 1
2

z2

σ 2 .

Remark 2.8. When f admits a version which is continuous at 0, then f N(0) → f (0) = σ 2. This corollary generalizes
Theorem 3.1 of Djellout and Guillin [12] to the case of unbounded r.v.

3. Statistical applications

We now provide two statistical applications. The first deals with the least square estimator of the parameter of the
autoregressive linear process and the second about the likelihood ratio test on spectral densities in the Gaussian case.

3.1. Autoregressive stationary process

Consider the autoregressive process (not necessarily Gaussian)

Xn+1 = θXn + σξn+1,

where the noises sequence ((ξn)n∈Z) is i.i.d. with common law μ, satisfying a LSI, and E(ξn) = 0,E(ξ2) = 1, σ > 0
and θ ∈ (−1,1) is the unknown parameter. Assume that X0 is independent of (ξn)n�1 and has the same law as∑∞

k=0 θkσξ−k . (Xn) is thus a centered stationary process of the form (1.1), with spectral density given by

f (t) = σ 2

1 + θ2 − 2θ cos t
, ∀t ∈ T.
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Let θ̂n be the least square estimator of θ , given by:

θ̂n =
∑n

i=1 XiXi−1∑n
i=1 X2

i−1

.

It is well-known that θ̂n → θ a.s. and
√

n(θ̂n − θ) satisfies the CLT. We show in the next proposition the MDP of
the least square estimator.

Proposition 3.1. For every moderate deviation scale 1 	 bn 	 √
n,

√
n

bn
(θ̂n − θ) satisfies a LDP on R with speed b2

n

and with the rate function given by

I (x) = x2

2(1 − θ2)
.

Remark 3.1. Let θ̃n be the Yule–Walker estimator of θ :

θ̃n =
∑n

i=1 XiXi−1∑n
i=0 X2

i

.

It is well-known that the Yule–Walker estimator share the same almost sure property and the same CLT. Bercu et
al. [2] showed however that the LDP of the Yule–Walker estimator is better than the one of the least-squares.

In the regime of the MDP, following the same proof as for the least square estimator we see that the Yule–Walker
estimator share the same MDP.

3.2. Likelihood ratio test in the Gaussian case

Let f0 and f1 be two spectral densities which differ on a positive Lebesgue measure subset of T. If we wish to
test H0: f = f0 against H1: f = f1, on the basis of the stationary centered Gaussian observation X1, . . . ,Xn, the
Neyman–Pearson theorem tells us that the optimal strategy is the likelihood ratio test:

Ln = 1

2n

(
log

detTn(f0)

detTn(f1)
+ 〈

X(n),
[
Tn(f0)

−1 − Tn(f1)
−1]X(n)

〉)
.

The study of the MDP properties of (Ln) under hypothesis H0 or H1 is useful to control asymptotically the threshold
or the power of the test. We now make the two following assumptions:

(A1) the spectral density f0 is in the Szegö class, i.e. log(f0) ∈ L1(T);
(A2) the ratio f0/f1 ∈ L∞(T).

Under those assumption, Bercu and al. [2] proved that Ln converges a.s. to

1

4π

(∫
T

logf0(t)dt −
∫
T

logf1(t)dt +
∫
T

(
1 − f0(t)

f1(t)

)
dt

)

and satisfies the LDP. Inspired by their work we have furthermore

Proposition 3.2. Assume that (A1) and (A2) are satisfied. Then, under the null hypothesis H0, for every moderate

deviation scale 1 	 bn 	 √
n, the sequence

√
n

bn
(Ln − E(Ln)) satisfies a LDP on R with speed b2

n and good rate
function

G(x) = x2

(1/(2π))
∫

T(1 − f0/f1)2(θ)dθ
.

4. Several lemmas

In this section we first establish the a priori estimate, next recall several facts concerning the Toeplitz matrix and
the Fejèr approximation and the MDP of m-dependent stationary sequences.
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4.1. A priori estimation

We recall the following well known elementary result

Lemma 4.1. Suppose that Y (n) = (Y1, . . . , Yn)
∗ is a standard N (0, I ) centered Gaussian vector valued in Rn and let

A be a symmetric real valued n × n-matrix. Let λ1, . . . , λn be the eigenvalues of the matrix A. Then for every z ∈ R

log E exp
(
z〈Y (n),AY (n)〉) =

⎧⎪⎨
⎪⎩

−1

2

n∑
j=1

log(1 − 2zλj ) if max
1�j�n

(zλj ) <
1

2
,

+∞, otherwise.

(4.1)

We give a crucial lemma which was first proved in Wu [24], and reproduced here for completeness.

Lemma 4.2. If the centered r.v. ξ0 satisfies (2.2), then there is some constant K > 0 such that

L(y) := E exp(yξ0) � exp

(
K2

2
y2

)
, ∀y ∈ R. (4.2)

Proof. Let δ > 0 be given in (2.2). Since

2yξ0 � 2δξ2
0 + 1

2δ
y2,

there is C1 > 0 such that (4.2) holds for all |y| > 1.
For |y| � 1, notice that logL(y) ∈ C∞(R), and

logL(0) = 0,
d

dy
logL(y)

∣∣∣∣
y=0

= Eξ0 = 0.

By Taylor’s formula of order 2, we have for all y with |y| � 1,

logL(y) � 1

2
C2

2y2,

where

C2 := sup
|y|�1

∣∣∣∣ d2

dy2
logL(y)

∣∣∣∣
1/2

.

Thus (4.2) follows with K := C1 ∨ C2. �
We now extend (4.1) from Gaussian distribution to general law μ satisfying (2.2), which is a generalization of the

preceding lemma.

Lemma 4.3. Let (Xk) be the moving average process given by (1.1) and Tn(f ) the Toeplitz matrix associated with the
spectral density function f of (Xk), given in Remark 2.7. Assume the integrability condition (2.2) (but not the stronger
LSI).

Let X(n) = (X1, . . . ,Xn)
∗, B be a real non-negative definite symmetric n × n-matrix, and μn

1, . . . ,μn
n the eigen-

values of the matrix
√

B Tn(f )
√

B . Then for all λ � 0 satisfying λmax1�j�n μn
j < 1/(2K2), we have

log E exp
(
λ〈X(n),BX(n)〉) � −1

2

n∑
j=1

log(1 − 2K2λμn
j ),

where K > 0 is given in Lemma 4.2.

258 MDP of empirical periodogram



H. Djellout et al. / Ann. I. H. Poincaré – PR 42 (2006) 393–416 403

Proof. The main difficulty resides in the non-linear property of 〈x,Bx〉. The trick consists to reduce it to an estimation
of linear type in the following way:

E
{
e

1
2 t2〈X(n),BX(n)〉} = E

{
e

1
2 t2|√BX(n)|2} =

∫
Rn

E
{
et〈√BX(n),y(n)〉}γ (dy(n))

where γ is the standard Gaussian law N (0, I ) on Rn.
Since

〈√BX(n), y(n)〉 = 〈X(n),
√

By(n)〉 =
n∑

k=1

Xk(
√

By(n))k =
∑
j∈Z

ξj

n∑
k=1

aj−k(
√

By(n))k.

We get by Lemma 4.2 and the i.i.d. property of (ξj ),

E
{
exp

[
t〈√BX(n), y(n)〉]} � exp

[
K2t2

2

∑
j∈Z

∣∣∣∣∣
n∑

k=1

aj−k(
√

By(n))k

∣∣∣∣∣
2]

.

Now observe that

∑
j∈Z

∣∣∣∣∣
n∑

k=1

aj−k(
√

By(n))k

∣∣∣∣∣
2

=
n∑

k,l=1

∑
j∈Z

aj−kaj−l (
√

By(n))k(
√

By(n))l

=
n∑

k,l=1

(
Tn(f )

)
k,l

(
√

By(n))k(
√

By(n))l

= 〈
y(n),

√
BTn(f )

√
By(n)

〉
.

Then letting μn
1, . . . ,μn

n be the eigenvalues of the matrix
√

BTn(f )
√

B (which are also the eigenvalues of
Tn(f )B), we get for all t such that K2t2 max1�j�n μn

j < 1,

E
{

exp

[
1

2
t2〈X(n),BX(n)〉

]}
�

∫
Rn

{
exp

[
K2t2

2

〈
y(n),

√
BTn(f )

√
By(n)

〉]}
γ (dy(n))

= −1

2

n∑
j=1

log(1 − K2t2μn
j )

where the last equality follows by Lemma 4.1. Finally the desired result follows with λ = t2/2. �
Remark 4.1. If we assume ‖g‖∞ = ‖g(θ)‖L∞(T,dθ) < +∞, and B = I we obtain exactly the result in Wu [24]. In
fact in this case, we have for any λ > 0 such that 2λK2‖g‖2∞ < 1,

log E eλ〈X(n),X(n)〉 � −1

2
log

(
1 − 2λK2‖g‖2∞

)n
, (4.3)

because the eigenvalues of Tn(f ) are bounded by ‖f ‖∞ = ‖g‖2∞.

Remark 4.2. Instead of Lemma 4.2, we can use the consequence of the LSI (5.3) below to prove Lemma 4.3, but (5.3)
is stronger than (2.2).

4.2. Preparating lemmas

For an n × n matrix A, we consider the usual operator norm ‖A‖ = supx∈Rn(|Ax|/|x|). Recall (cf. Remarks 2.7)
that for any real and even function h ∈ L1(T,dθ), Tn(h) is the Toeplitz matrix of order n associated with h i.e.
Tn(h) = (r̂k−l (h))1�k,l�n where r̂k(h) is the kth Fourier coefficient of h given by

r̂k(h) = 1

2π

∫
T

eikθh(θ)dθ, ∀k ∈ Z.

MDP of empirical periodogram 259



404 H. Djellout et al. / Ann. I. H. Poincaré – PR 42 (2006) 393–416

Lemma 4.4 ((Avram [1], Lemma 1)). If f ∈ Lq(T) where 1 � q � ∞, then for all n > 1 we have ‖Tn(f )‖ �
n1/q‖f ‖q .

Lemma 4.5 ((Avram [1], Theorem 1)). Let fk ∈ Lqk (T,dθ) with qk � 1 for k = 1, . . . , p and
∑p

k=1(1/qk) � 1. Then

lim
n→∞

1

n
tr

(
p∏

k=1

Tn(fk)

)
= r̂0

(
p∏

k=1

fk

)
.

Introduce now the Fejèr approximation of g:

gN(θ) =
∑
j∈Z

aN
j eijθ , ∀θ ∈ R, where aN

j = aj

(
1 − |j |

N

)
1|j |�N.

We recall the following (see [8])

Lemma 4.6. gN(θ) = ∫ π

−π
g(θ − t)KN(t)dt where KN is the Fejèr kernel of order N given by

KN(t) = 1

2πN

(
sin(Nt/2)

sin(t/2)

)2

, t ∈ T.

Furthermore for g ∈ Lp(T) where 1 � p < ∞, gN → g in Lp(T) and gN → g uniformly on T if g is continuous.
Moreover, Kn is even, non-negative and possesses the following properties for small δ:

(a)

∫
T

Kn(t)dt = 1,

(b)

∫
|t |�δ

Kn(t)dt � C

n
,

(c)

∫
|t |�δ

Kn(t)t
α dt �

⎧⎨
⎩

Cn−α, α < 1,

Cn−1 lnn, α = 1,

Cn−1, α > 1.

Let m be a given positive integer, a sequence (Zn)n�1 of strictly stationary random variables is called m-dependent
if for every k � 1 the two collections {Z1, . . . ,Zk} and {Zk+m,Zk+m+1, . . .} are independent. We have the following

Lemma 4.7 ((Chen X. [9])). Let (Zn)n�1 be a stationary sequence of m-dependent random variables taking values
in Rm, such that

E
(
eα|Z1|) < +∞, for some α > 0.

Then for all λ ∈ Rm,

lim
n→+∞

1

b2
n

log E
(
e
b2
n〈λ, 1√

nbn

∑n
k=1(Zk−EZk)) = 1

2
lim

n→∞E
〈
λ,

n∑
k=1

(Zk − EZk)

〉2

= 1

2

(
E〈λ,Z1〉2 + 2

m+1∑
k=2

E〈λ,Z1〉E〈λ,Zk〉
)

.

5. Proofs of the main results in Section 2

5.1. Proof of Theorem 2.1

The proof is divided into three steps. In the first one, we approximate the moving average process by a bilateral
moving average process of finite range 2N which satisfies the MDP. Then we will show that this approximation is
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a good one in the sense of the MDP. In third step, we will finally establish the convergence of the rate function and
the subsequent existence of the limiting variance.

Step 1 (Approximation by bilateral moving average process of finite range 2N ). Let XN
k = ∑

j∈Z aN
j ξk+j , where

aN
j = aj (1 − |j |

N
)1|j |�N , be the Fejèr approximation of Xk .

Put

QN
n = (QN,l

n ) =
(

1√
nbn

ZN,l
n

)
l=0,...,m

and Qn = (Ql
n)l=0,...,m =

(
1√
nbn

Zl
n

)
,

where

ZN,l
n =

n∑
k=1

(XN
k XN

k+l − EXN
k XN

k+l ) and Zl
n =

n∑
k=1

(XkXk+l − EXkXk+l ).

The crucial remark is that the sequence {(XN
k XN

k+l )l=0,...,m ∈ Rm+1, k ∈ Z} is a 2N -dependent stationary sequence.

By (2.2), we get for all N there is η > 0 such that E(eη|XN
k XN

k+l |) < ∞.
Then applying Lemma 4.7, we get that for each N fixed, for all λ ∈ Rm+1,

lim
n→∞

1

b2
n

log E
(
eb2

n〈λ,QN
n 〉) = 1

2
lim

n→∞
1

n
E〈λ,ZN,·

n 〉2 := 1

2
〈λ,Σ2,Nλ〉 ∈ R (5.1)

where Σ2,N is the limit covariance matrix given in Lemma 4.7, and that QN
n satisfies the MDP on Rm+1 with the

good rate function

IN(x) = sup
λ∈Rm+1

{
〈λ,x〉 − 1

2
〈λ,Σ2,Nλ〉

}
.

Furthermore, by [21], Σ
2,N
k,l can be expressed as (2.4) with f replaced by f N .

Step 2 (Exponential contiguity, see Section 4.2 in [10]). The purpose of this step will be to prove the asymptotic
negligibility of Qn − QN

n with respect to the MDP as N goes to ∞, i.e. we will establish that for all λ ∈ Rm+1,

lim sup
N→∞

lim sup
n→∞

1

b2
n

log E
(
eb2

n〈λ,Qn−QN
n 〉) = 0.

As our functional Qn − QN
n are centered, by Jensen inequality we only have to establish the upper inequality in the

equality above. By Jensen’s inequality again,

E
(
eb2

n〈λ,Qn−QN
n 〉) � 1

m + 1

m∑
l=0

E
(
e(m+1)b2

nλl(Q
l
n−Q

N,l
n )

)
,

we need only to show that for each l = 0, . . . ,m fixed and for every λ ∈ R,

lim
N→∞ lim sup

n→∞
1

b2
n

log E
(
eb2

nλ(Ql
n−Q

N,l
n )

)
� 0. (5.2)

To this end, our main tool is the following consequence of the LSI (2.1), see Ledoux [20, Theorem 2.7] (after having
extended (2.1) by tensorization to the product measure of μ): for any integrable C1 functional G of ξ = (ξk)|k|�m,

E
(
eλ(bn/

√
n )(G−EG)

)
� E

(
eλ2(b2

n/n)C|∇ξ G|2), (5.3)

with C given in (2.1), where |∇ξG|2 := ∑
k |∂ξk

G|2. This inequality can be extended to all integrable functionals
G = F(X1, . . . ,Xn) where F ∈ C1(Rn) by dominated convergence (even now Xk depends on the infinite sequence
(ξk)k∈Z, the detail is left to the reader).

Let apply it to

GN,l
n

(
(ξi)i∈Z

) =
n∑

k=1

(XkXk+l − XN
k XN

k+l ),

so that our main estimations are now transferred to the gradient of G
N,l
n .
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Clearly

∂ξi
GN,l

n =
n∑

k=1

(ai−kXk+l + ai−k−lXk − aN
i−kX

N
k+l − aN

i−k−lX
N
k );

so

|∇GN,l
n |2 � 4

∑
i∈Z

((
n∑

k=1

(ai−k − aN
i−k)Xk+l

)2

+
(

n∑
k=1

(ai−k−l − aN
i−k−l )Xk

)2

+
(

n∑
k=1

aN
i−k(Xk+l − XN

k+l )

)2

+
(

n∑
k=1

aN
i−k−l(Xk − XN

k )

)2)

= (I ) + (II) + (III) + (IV).

By Hölder inequality,

log E
(
eλ(bn/

√
n )(G

N,l
n −EG

N,l
n )

)
� log E

(
eCλ2(b2

n/n)‖∇ξ G
N,l
n ‖2)

� 1

4
log E

(
e4Cλ2(b2

n/n)(I )
) + 1

4
log E

(
e4Cλ2(b2

n/n)(II))
+ 1

4
log E

(
e4Cλ2(b2

n/n)(III)) + 1

4
log E

(
e4Cλ2(b2

n/n)(IV)
)
. (5.4)

Let us deal with the first term of this inequality. Using the definition of r̂l given in (2.5) and the fact that the spectral
density of (Xk − XN

k ) is |g − gN |2, we rewrite the expression of (I ) as

(I ) = 4
∑
i∈Z

n∑
k,k′=1

(ai−k − aN
i−k)(ai−k′ − aN

i−k′)Xk+lXk′+l = 4
n∑

k,k′=1

r̂k′−k

(|g − gN |2)Xk+lXk′+l

= 4
〈
X

(n)
·+l , Tn

(|g − gN |2)X(n)
·+l

〉
,

where X
(n)
·+l = (Xl+1, . . . ,Xl+n)

∗. Let μ
n,N
1 , . . . ,μ

n,N
n be the eigenvalues of the matrix√

Tn

(|g − gN |2)Tn(f )

√
Tn

(|g − gN |2).
Its operator norm is bounded from above by (using Lemma 4.4)∥∥Tn(f )

∥∥ · ∥∥Tn

(|g − gN |2)∥∥ � n1/q‖f ‖qn1/q
∥∥|g − gN |2∥∥

q
.

Since (bn/
√

n )n1/q → 0 by (H2) and f ∈ Lq(T,dθ) by (H1), we have for all n sufficiently large, 32CK2λ2b2
n/n

max1�j�n μ
n,N
j < 1. Applying the crucial Lemma 4.3, we get

log E
(
e4Cλ2(b2

n/n)(I )
)
� −1

2

n∑
j=1

log

(
1 − 32CK2λ2 b2

n

n
μ

n,N
j

)
. (5.5)

Similarly, for all n sufficiently large such that 32CK2λ2(b2
n/n) max

1�j�n
μ

n,N
j < 1, we have

log E
(
e4Cλ2(b2

n/n)(II)) = log E e16C(b2
n/n)λ2〈X(n)· ,Tn(|g−gN |2)X(n)· 〉 � −1

2

n∑
j=1

log

(
1 − 32CK2λ2 b2

n

n
μ

n,N
j

)
. (5.6)

Let us deal with the third term. We rewrite the expression of (III) as

(III) = 4
∑
i∈Z

n∑
k,k′=1

aN
i−ka

N
i−k′(Xk+l − XN

k+l )(Xk′+l − XN
k′+l )
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= 4
n∑

k,k′=1

r̂k′−k

(|gN |2)(Xk+l − XN
k+l)(Xk′+l − XN

k′+l )

= 4
〈
X

(n)
·+l − (XN)

(n)
·+l , Tn

(|gN |2)(X(n)
·+l − (XN)

(n)
·+l

)〉
,

where (XN)
(n)
·+l = (XN

1+l , . . . ,X
N
n+l)

∗. Let ν
n,N
1 , . . . , ν

n,N
n the eigenvalues of the matrix√

Tn

(|gN |2)Tn

(|g − gN |2)√Tn

(|gN |2).
Its operator norm is bounded from above by (using Lemma 4.4)∥∥Tn

(|gN |2)∥∥ · ∥∥Tn

(|g − gN |2)∥∥ � n1/q
∥∥|gN |2∥∥

q
n1/q

∥∥|g − gN |2∥∥
q
.

By our assumptions (H1) and (H2) on bn and f , we have for all n sufficiently large, 32CK2λ2(b2
n/n)max1�j�n ν

n,N
j

< 1. Applying the crucial Lemma 4.3, we get

log E
(
e4Cλ2(b2

n/n)(III)) � −1

2

n∑
j=1

log

(
1 − 32CK2λ2 b2

n

n
ν

n,N
j

)
. (5.7)

Similarly for all n sufficiently large such that 32CK2λ2(b2
n/n)max1�j�n ν

n,N
j < 1 and we have

log E
(
e4Cλ2(b2

n/n)(IV)
)
� −1

2

n∑
j=1

log

(
1 − 32CK2λ2 b2

n

n
ν

n,N
j

)
. (5.8)

By (5.4) and the previous estimations (5.5)–(5.8), we obtain

log E
(
eλb2

n(Ql
n−Q

N,l
n )

)
� −1

4

n∑
j=1

(
log

(
1 − 32CK2λ2 b2

n

n
μ

n,N
j

)
+ log

(
1 − 32CK2λ2 b2

n

n
ν

n,N
j

))
. (5.9)

Notice that by the Taylor’s expansion of order 1, we have for |z| < 1

log(1 − z) = −z(1 − tz)−1

where t = t (z) ∈ [0,1]. This applied here to z
n,N
j = 32CK2λ2(b2

n/n)λ
n,N
j , where λ

n,N
j = ν

n,N
j or λ

n,N
j = μ

n,N
j which

satisfies sup1�j�n |zn,N
j | → 0 as n → ∞, yields by (5.9),

lim sup
n→∞

1

b2
n

log E
(
eλb2

n(Ql
n−Q

N,l
n )

)
� 16C2λ2 lim

n→∞

(
1

n

n∑
j=1

(μ
n,N
j + ν

n,N
j )

)
.

Thanks to Lemma 4.5, we have

lim
n→∞

1

n

n∑
j=1

μ
n,N
j = lim

n→∞
1

n
tr
(
Tn(f )Tn

(|g − gN |2)) = r̂0
(|g − gN |2f )

.

Similarly

lim
n→∞

1

n

n∑
j=1

ν
n,N
j = lim

n→∞
1

n
tr
(
Tn

(|gN |2)Tn

(|g − gN |2)) = r̂0
(|gN |2|g − gN |2).

So we get

lim sup
n→∞

1

b2
n

log E
(
eλb2

n(Ql
n−Q

N,l
n )

)
� 16C2λ2[r̂0

(|g − gN |2f ) + r̂0
(|g − gN |2|gN |2)]

where the desired negligibility (5.2) follows.
Step 3. Now we establish (2.3), i.e., for all λ ∈ Rm+1,

lim
n→∞

1

b2
n

log E eb2
n〈λ,Qn〉 = 1

2
〈λ,Σ2λ〉. (5.10)
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At first we have Σ
2,N
k,l → Σ2

k,l for all k, l as N goes to infinity, by (H1) and the expression (2.4). Next for any fixed

α,β > 1 with 1
α

+ 1
β

= 1, by Hölder inequality we have that

log E eb2
n〈λ,Qn〉 � 1

α
log E eαb2

n〈λ,QN
n 〉 + 1

β
log E eβb2

n〈λ,Qn−QN
n 〉

for all λ ∈ Rm+1. From (5.1) and (5.2) it follows that

lim sup
n→∞

1

b2
n

log E eb2
n〈λ,Qn〉 � α

2
〈λ,Σ2,Nλ〉 + δN

where δN := lim supn→∞(1/βb2
n) log E eβb2

n〈λ,Qn−QN
n 〉 → 0. Letting N → ∞, we get

lim sup
n→∞

1

b2
n

log E eb2
n〈λ,Qn〉 � α

2
〈λ,Σ2λ〉. (5.11)

Similarly, by Hölder inequality, we have for every λ,

1

b2
n

log E eα−1b2
n〈λ,QN

n 〉 � 1

b2
n

(
1

α
log E eb2

n〈λ,Qn〉 + 1

β
log E e(βb2

n/α)〈λ,QN
n −Qn〉

)
.

Taking first lim infn→∞ and next limN→∞ we get from (5.1) and (5.2)

1

2α2
〈λ,Σ2λ〉 � lim inf

n→∞
1

b2
n

log E eb2
n〈λ,Qn〉. (5.12)

Letting α → 1 in (5.11) and (5.12) yields (5.10). Finally the desired MDP follows from (5.10) by Ellis–Gärtner’s
theorem ([10], Section 2.3).

5.2. Proof of Theorem 2.3

We begin with the following

Lemma 5.1. Under the hypothesis Theorem 2.3, we have that for all h ∈ Lp′
(T,dθ),

Λ(h) := lim sup
n→∞

1

b2
n

log E
(
eb2

n(1/2π)
∫
T h(θ)Ln(θ)dθ

)
� 4CK2

2π

∫
T

f 2(t)h2(t)dt. (5.13)

In particular P(Ln ∈ ·) is exponentially *-tight in (Lp(T,dθ), σ (Lp(T,dθ),Lp′
(T,dθ))), where 1/p′ + 1/p = 1.

Proof. The last claim follows from (5.13) by [23, Chapter 2, Proposition 2.5] when 1 < p < 2 and by [23, Chapter 2,
Theorem 2.1] when p = 1. So it is enough to prove (5.13). For every function h ∈ Lp′

(T,dθ), the function h̃(θ) =
1
2 [h(θ) + h(−θ)] is even and

1

2π

∫
T

h(θ)In(θ)dθ = 1

2π

∫
T

h̃(θ)In(θ)dθ,

we shall hence restrict ourselves to the case where h is even. Since
1

2π

∫
T

h(θ)Ln(θ)dθ = 1

bn

√
n

(〈
X(n)

. , Tn(h)X(n)
.

〉 − E
〈
X(n)

. , Tn(h)X(n)
.

〉)
.

Applying (2.1) to H((ξl)l∈Z) = 〈X(n)
. , Tn(h)X(n)

. 〉, we have

E
(
eb2

n(1/(2π))
∫
T h(θ)Ln(dθ)

) = E
(
e(bn/

√
n )(H−EH)

)
� E

(
e(b2

n/n)C|∇ξ H |2).
Since Tn(h) is symmetric, we have

∂ξi
H

(
(ξl)l∈Z

) =
n∑

l,k=1

ai−kXlTn(h)k,l + ai−lXkTn(h)k,l = 2
n∑

l,k=1

ai−kXlTn(h)k,l .
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Clearly

|∇ξH |2 =
∑
i∈Z

(∂ξi
H)2 =

∑
i∈Z

(
2

n∑
l,k=1

ai−kXlTn(h)k,l

)2

= 4
n∑

l,l′=1

(
n∑

k,k′=1

Tn(h)k,lTn(f )k,k′Tn(h)k′,l′

)
XlXl′

= 4
n∑

l,l′=1

(
Tn(h)Tn(f )Tn(h)

)
l,l′XlXl′ = 4

〈
X(n)

. , Tn(h)Tn(f )Tn(h)X(n)
.

〉
.

Let αn
1 , . . . , αn

n the eigenvalues of the matrix√
Tn(h)Tn(f )Tn(h)Tn(f )

√
Tn(h)Tn(f )Tn(h).

Its operator norm is bounded from above by (using Lemma 4.4)∥∥Tn(f )
∥∥ · ∥∥Tn(h)Tn(f )Tn(h)

∥∥ �
(
n1/q‖f ‖q

)2(
n1/p′ ‖h‖p′

)2
.

Since bnn
1/q+1/p′−1/2 → 0, f ∈ Lq(T,dθ) and h ∈ Lp′

(T,dθ), we have 8CK2(b2
n/n)max1�j�n αn

j < 1 for n large
enough. Applying Lemma 4.3, we get

log E
(
eb2

n(1/(2π))
∫
T h(θ)Ln(dθ)

)
� −1

2

n∑
j=1

log

(
1 − 8CK2 b2

n

n
αn

j

)
.

Thus

lim sup
n→∞

1

b2
n

log E
(
eb2

n(1/(2π))
∫
T h(θ)Ln(dθ)

)
� 4CK2 lim

n→∞
1

n

n∑
j=1

αn
j .

Since f ∈ Lq(T,dθ) and h ∈ Lp′
(T,dθ) with 1/p′ + 1/q � 1

2 , applying Lemma 4.5, we obtain

lim
n→+∞

1

n

n∑
j=1

αn
j = lim

n→+∞
1

n
tr
((

Tn(f )Tn(h)
)2) = r̂0(f

2h2) < +∞.

Hence (5.13) follows. �
We now turn to the

Proof of Theorem 2.3. Step 1. By Lemma 4.3, E eλ|X0|2 < +∞ for some λ > 0. Then by Chebychev inequality(
1

bn

√
n

n∑
k=n−	+1

(XkXk+	 − EXkXk+	)

)
0�	�m

is negligible with respect to the MDP. Using Theorem 2.1, we get the finite dimensional MDP on Rm+1 of(
1

bn

√
n

n−	∑
k=1

(XkXk+	 − EXkXk+	)

)
0�	�m

with the rate function given by

I (z) = sup
λ∈Rm+1

{
〈λ, z〉 − 1

2
〈λ,Σ2λ〉

}
,

where

〈λ,Σ2λ〉 = 1

2π

∫
T

2

(
m∑

k=0

λk cos(kθ)

)2

f 2(θ)dθ + κ4

(
1

2π

∫
T

(
m∑

k=0

λk cos(kθ)

)
f (θ)dθ

)2

.
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Now notice that Ln(θ) is even and

L̂n(	) := 1

2π

∫
T

cos(	θ)Ln(θ)dθ = 1

bn

√
n

n−	∑
k=1

(XkXk+	 − EXkXk+	), 	 � 0.

Thus (L̂n(	))0�	�m satisfies the MDP on Rm+1 with the same rate function. By Lemma 4.3 and the projective limit
Theorem [10, Theorem 4.6.9], we deduce that (Ln)n�0 satisfies the MDP on (Lp(T,dθ), σ (Lp(T,dθ),Lp′

(T,dθ)))

with the rate function given by

I (η) =

⎧⎪⎨
⎪⎩

sup
m�0

sup
λ0,...,λm∈R

{
1

2π

∫
T

(
m∑

k=0

λk cos(kθ)

)
η(θ)dθ − 1

2
Λ

(
m∑

k=0

λk cos(kθ)

)}
, if η is even,

+∞, otherwise

(5.14)

where

Λ

(
m∑

k=0

λk cos(kθ)

)
= 〈λ,Σ2λ〉.

Step 2. Identification of the rate function. Introduce L
p
even(T, ν) = {h ∈ Lp(T, ν), h even}. Remark as trigonometric

polynomials are dense in L2(T, f 2 dθ), one can find for every h ∈ L2
even(T, f 2 dθ), an approximation by some cosine

polynomials sequence hn, such that

lim
n→∞

∫
T

(hn − h)2(θ)f 2(θ)dθ = 0. (5.15)

So we can extend continuously the definition of Λ to all functions h ∈ L2
even(T, f 2 dθ),

Λ(h) = 1

2π

∫
T

2h2(θ)f 2(θ)dθ + κ4

(
1

2π

∫
T

h(θ)f (θ)dθ

)2

. (5.16)

(a) Suppose that η is even, η dθ is absolutely continuous w.r.t. f 2 dθ , and η/f ∈ L2(T,dθ). For any h ∈
L2

even(T, f 2 dθ), let hn the sequence defined in (5.15), by Cauchy–Schwartz inequality, we get(∫
T

∣∣(hn − h)(θ)η(θ)
∣∣dθ

)2

�
∫
T

∣∣hn(θ) − h(θ)
∣∣2f 2(θ)dθ

∫
T

(
η

f

)2

(θ)dθ −→
n→∞ 0.

So I (η) defined in (5.14) coincides with

I (η) = sup
h∈L2

even(T,f 2 dθ)

{
1

2π

∫
T

h(θ)η(θ)dθ − 1

2
Λ(h)

}
:= sup

h∈L2
even(T,f 2 dθ)

D(h).

Let us find explicitly the maximizer h0 of D(h). Let k ∈ L2
even(T, f 2 dθ) and ε > 0,

lim
ε→0

D(h + εk) − D(h)

ε
= 1

2π

∫
T

k(θ)η(θ)dθ − 1

2

(
2

2π

∫
T

2f 2(θ)h(θ)k(θ)dθ

+ 2κ4

(
1

2π

∫
T

f (θ)h(θ)dθ

)(
1

2π

∫
T

f (θ)k(θ)dθ

))
.

So

lim
ε→0

D(h + εk) − D(h)

ε
= 0, ∀k ∈ L2

even(T, f 2 dθ) (5.17)
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iff

η(θ) = 2f (θ)2h(θ) + κ4

(
1

2π

∫
T

f (θ)h(θ)dθ

)
f (θ). (5.18)

Dividing (5.18) by f and integrating over T, we obtain∫
T

f (θ)h(θ)dθ = 1

2 + κ4

∫
T

η(θ)

f (θ)
dθ.

Plugging this last expression in (5.18), it is then easy to verify that the only functional h0 ∈ L2
even(T, f 2 dθ) realiz-

ing (5.17) is given by

h0(θ)f (θ) = η(θ)

2f (θ)
− κ4

2 + κ4

(
1

2π

∫
T

η(u)

2f (u)
du

)
.

Calculating D(h0) gives finally the announced rate function.
(b) Now we have to treat the case where η dθ is absolutely continuous w.r.t. f 2 dθ but η

f
/∈ L2(T,dθ). So there

exists g ∈ L2
even(T,dθ) such that

∫
T g(θ)

η
f
(θ)dθ = +∞, and g

η
f

� 0. Let h := g
f

, so h ∈ L2
even(T, f 2 dθ), we choose

hn = (h ∨ (−n)) ∧ n. We get by dominated convergence

lim
n→∞

∫
T

(
hn(θ) − h(θ)

)2
f (θ)2 dθ = 0,

so it follows that

lim
n→+∞Λ(hn) = Λ(h).

By Fatou’s lemma we get

lim inf
n→∞

∫
T

hn(θ)η(θ)dθ �
∫
T

lim inf
n→∞ hn(θ)η(θ)dθ = +∞.

Since by approximation,

I (η) � 1

2π

∫
T

hn(θ)η(θ)dθ − 1

2
Λ(hn),

letting n to ∞, we obtain I (η) = ∞.

(c) Now we have to treat the case where η dθ is not absolutely continuous w.r.t. f 2 dθ , i.e. there exists a measurable
and symmetric set K ⊂ T such that

∫
K

f 2(θ)dθ = 0 while
∫
K

η(θ)dθ > 0. For any t > 0, we approximate the function
t1K by a sequence of cosine polynomials hn in L2(T, (f 2 + |η|)dθ) and get

I (η) � lim
n→+∞D(hn) � t

∫
K

η(θ)dθ.

Letting t to infinity, we get I (η) = +∞. �
5.3. Proof of the corollaries of Theorem 2.3

Proof of Corollary 2.4. It is enough to prove it for h even. When h is a cosine polynomial, this was established in the
proof of Theorem 2.3. For general h ∈ Lp′

(T, dθ), let (hN) be a sequence of cosine polynomials such that hN → h

in Lp′
(T, dθ). To get the desired result, it remains to show

lim
N→∞ lim sup

n→∞
1

b2
n

log E exp

(
λb2

n

1

2π

∫
T

(hN − h)Ln(θ)dθ

)
= 0, ∀λ ∈ R.

This follows by Lemma 5.1. �
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Proof of Corollary 2.5. To deduce MDP for (L̃n) from Theorem 2.3 (with q = +∞), we only need to prove that for
all h ∈ Lp′

(T),
√

n

bn

( ∫
T

h(t)EIn(t)dt −
∫
T

f (t)h(t)dt

)
−→
n→0

0. (5.19)

It is easy to see that∫
T

h(t)EIn(t)dt =
∫
T

∫
T

Kn(u − t)f (u)h(t)dt du = 〈Kn ∗ f,h〉

where Kn is the Fejèr kernel function given in Lemma 4.6. Since the function Kn is even, we have∫
T

h(t)EIn(t)dt = 1

2

∫
T

∫
T

Kn(t)f (u + t)h(t)dt du + 1

2

∫
T

∫
T

Kn(t)f (u)h(t + u)dt du.

Taking into account the equalities
∫

T f (u)h(u)du = ∫
T f (u + t)h(u + t)du,

∫
T Kn(t)dt = 1 we get∣∣∣∣

∫
T

h(t)EIn(t)dt −
∫
T

f (t)h(t)dt

∣∣∣∣ = 1

2

∣∣∣∣
∫
T

Kn(t)

∫
T

(
f (u) − f (u + t)

)(
h(t + u) − h(u)

)
dudt

∣∣∣∣
� 1

2

∫
T

Kn(t)
∥∥f (·) − f (· + t)

∥∥
p

∥∥h(t + ·) − h(·)∥∥
p′ dt.

By our assumption (2.7) on f , for δ > 0 small and |t | � δ we have∥∥f (·) − f (· + t)
∥∥

p
� C

√|t | and
∥∥h(t + ·) − h(·)∥∥

p′ � 2‖h‖p′ .

By Lemma 4.6, the last quantity above is smaller than

C‖h‖p′
∫

|t |�δ

Kn(t)
√|t |du + 2‖f ‖p‖h‖p′

∫
|t |�δ

Kn(t)dt = O

(
1√
n

)
.

Hence (5.19) follows. �
Proof of Corollary 2.6. By Corollary 2.4 with p = 1, we only need to prove (5.19) for all h satisfies (2.8), and the
proof of (5.19) is completely similar to that of Corollary 2.5. �
5.4. Proof of Theorem 2.7

Let us describe briefly how the preceding proof of Theorem 2.1 can be easily extended to the general non-linear
functional F . We only consider F(x0, . . . , xl) = F(x0) and it is real-valued (for simplicity).

Since F ′ is Lipschitz continuous, we get for some positive L, and for all N

∣∣F(XN
k )

∣∣ � L
(
1 + |XN

k |2) � 2L(N + 1)

(
1 +

N∑
j=−N

a2
j ξ

2
k+j

)

so that, setting δ′ = δ/(2L(N + 1)2 supj a2
j ) where δ is given in (2.2), by the assumption on the validity of the LSI,

we get

E
(
eδ′|F(XN

k )|) � eδ′L(N+1)E
(
eδξ2

0
)
< ∞.

Hence for every N fixed, by Lemma 4.7, (1/n)
∑n

k=1 F(XN
k ) satisfies the MDP as in Step 1 in the proof of Theo-

rem 2.1.
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Thus by the argument in Step 3 of Theorem 2.1, it remains to prove that ∀λ ∈ R,

lim sup
N→∞

lim sup
n→∞

1

b2
n

log E exp

(
λ

bn√
n

n∑
k=1

[
F(Xk) − F(XN

k ) − E
(
F(Xk) − F(XN

k )
)]) = 0.

We apply again (5.3) to

GN
n

(
(ξl)l∈Z

) =
n∑

k=1

(
F(Xk) − F(XN

k )
)
.

Writing F ′(X·) := (F ′(X1), . . . ,F
′(Xn))

∗ and similarly F ′(X·), we have

|∇ξG
N
n |2 =

∑
i∈Z

(
n∑

k=1

ai−kF
′(Xk) − aN

i−kF
′(XN

k )

)2

� 2
∑
i∈Z

(
n∑

k=1

(ai−k − aN
i−k)F

′(Xk)

)2

+ 2
∑
i∈Z

(
n∑

k=1

aN
i−k

(
F ′(XN

k ) − F ′(Xk)
))2

= 2
∣∣√Tn

(|g − gN |2)F ′(X.)
∣∣2 + 2

∣∣√Tn

(|gN |2) (F ′(X.) − F ′(XN
. )

)∣∣2.
By the fact that the derivative of F is Lipschitz and the spectral density is bounded, the last term above is bounded by

2L‖g − gN‖2∞

(
n +

n∑
k=1

X2
k

)
+ 2‖gN‖2∞

n∑
k=1

(XN
k − Xk)

2.

Finally as λ2(b2
n/n)‖g − gN‖2∞ can be chosen arbitrary small for large n, we have by Lemma 4.3

1

b2
n

log E exp

(
λ

bn√
n
(GN

n − EGN
n )

)
� LCλ2‖g − gN‖2∞ − n

4b2
n

log

(
1 − 4CLK2λ2 b2

n

n
‖g − gN‖2∞‖g‖2∞

)

− n

4b2
n

log

(
1 − 4CLK2λ2 b2

n

n
‖gN‖2∞‖g − gN‖2∞

)
and the r.h.s. of this last inequality is easily seen to behave as n → ∞ as

‖g − gN‖2∞
(
LCλ2 + 2CLK2λ2‖g‖2∞

)
.

By the famous Fejèr Theorem (Lemma 4.6), under the assumption of continuity of g, we get that

lim
N→∞‖g − gN‖2∞ = 0,

which yields to the desired negligibility.

5.5. Proof of Corollary 2.8

Under assumption (2.2), the crucial inequality (5.3), as a consequence of the LSI, may not be used. However, we
may encompass this difficulty by noting that integrability (2.2) is, by Djellout and al. [13, Theorem 2.3], equivalent to
a Transport inequality in L1-Wasserstein distance which is itself equivalent to the inequality (5.3) with the Lipschitz
norm instead of the gradient in the right hand side, but for this particular linear case, the gradient and Lipschitz norm
are equal so that the same proof works.

5.6. Proof of statistical results in Section 3

5.6.1. Proof of Proposition 3.1
Considering Xn/σ if necessary, we can assume without loss of generality that σ = 1. Let us introduce

rn :=
√

n

bn

(θ̂n − θ) and Rn = 1 − θ2

√
nbn

n∑
i=1

(XiXi−1 − θX2
i−1).
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By Theorem 2.1, Rn satisfies the MDP. Before identifying its rate function let us first show that rn − Rn is negligible
w.r.t. the MDP. To that end, note

rn =
√

n

bn

∑n
i=1(XiXi−1 − θX2

i−1)∑n
i=1 X2

i−1

= 1√
nbn

n∑
i=1

(XiXi−1 − θX2
i−1) × n∑n

i=1 X2
i−1

.

So

rn − Rn = 1√
nbn

n∑
i=1

(XiXi−1 − θX2
i−1) ×

1
n

∑n
i=1 X2

i−1 − (1 − θ2)−1

1
n

∑n
i=1 X2

i−1

× (1 − θ2).

For ε > 0, L > 0 and δ > 0, we have

P
(|rn − Rn| � ε

) = P

(∣∣∣∣∣
√

n

bn

n∑
i=1

(XiXi−1 − θX2
i−1)

∣∣∣∣ � 1

1 − θ2
L

√
δε

)

+ P

(∣∣∣∣∣1

n

n∑
i=1

X2
i−1 − 1

1 − θ2

∣∣∣∣∣ �
√

δε

L

)
+ P

(
1

n

n∑
i=1

X2
i−1 < δ

)
.

For δ, ε sufficiently small but fixed, the two last terms are bounded by (for n large enough)

P

(∣∣∣∣∣ 1√
nbn

n∑
i=1

(
X2

i−1 − 1

1 − θ2

)∣∣∣∣∣ �
√

n

bn

)

which is clearly negligible as n → +∞ by the MDP of

1√
nbn

n∑
i=1

(
X2

i−1 − 1

1 − θ2

)
.

The first one is negligible by the MDP of Rn by letting L → ∞. So rn satisfies the same MDP as Rn. It remains to
identify the rate function governing the MDP of Rn. By Theorem 2.1, the rate function governing the MDP of Rn is
given by

I (x) = x2

2(1 − θ2)2A2
(5.20)

with A2 := θ2Σ2
00 − 2θΣ2

01 + Σ2
11, where

Σ2
00 = 1

2π

∫
T

2f 2(u)du + κ4

(
1

2π

∫
T

f (u)du

)2

,

Σ2
01 = 1

2π

∫
T

2 cos(u)f 2(u)du + κ4

(
1

2π

∫
T

f (u)du

)(
1

2π

∫
T

f (u) cos(u)du

)
,

Σ2
11 = 1

2π

∫
T

(1 + cos 2u)f 2(u)du + κ4

(
1

2π

∫
T

f (u) cos(u)du

)2

.

Hence

A2 = 2θ2r̂0(f
2) − 2θ r̂1(f

2) + r̂0(f
2) + r̂2(f

2) + κ4

(
θ

2π

∫
T

f (u)du − 1

2π

∫
T

f (u) cosudu

)2

where r̂k(f
2) = 1

2π

∫
T f 2(u) e−iku du = 1

2π

∫
T f 2(u) cos(ku)du is the kth Fourier coefficient. The last term with co-

efficient κ4 is zero for

θ

2π

∫
T

f (u)du − 1

2π

∫
T

f (u) cosudu = θ Var(X0) − Cov(X0,X1) = 0.

270 MDP of empirical periodogram



H. Djellout et al. / Ann. I. H. Poincaré – PR 42 (2006) 393–416 415

Furthermore (recalling that σ = 1 and EX0Xn = θn(1 − θ2)−1 for n � 0),

f 2(u) = 1

(1 − θ2)2

(∑
n∈Z

θ |n| einu

)2

= 1

(1 − θ2)2

∑
k∈Z

eiku
∑
n∈Z

θ |n|+|k−n|

where it follows that r̂k(f
2) = 1

(1−θ2)2

∑
n∈Z θ |n|+|k−n|. From this last relation we deduce easily

r̂0(f
2) = 1 + θ2

(1 − θ2)3
, r̂1(f

2) = 2θ

(1 − θ2)3
, r̂2(f

2) = 3θ2 − θ4

(1 − θ2)3
.

Substituting to the expression of A2, we get

A2 = 1

1 − θ2
.

Substituting in (5.20), we obtain the claimed rate function.

5.6.2. Proof of Proposition 3.2
We need the following stronger result in the centered Gaussian case, inspired by [2]

Lemma 5.2. Assume that (ξi) are Gaussian N (0,1). Let X(n) = (X1, . . . ,Xn)
∗ and Mn be a n × n order sym-

metric matrix. Denote by (λn
j )1�j�n the eigenvalues (counting up to the multiplicity) of MnTn(f ). Assume that

supn maxj |λn
j | < +∞ and for some measurable function m on T such that f m ∈ L∞(T),

1

n

n∑
j=1

(λn
j )

2 → 1

2π

∫
T

(
f (θ)m(θ)

)2 dθ. (5.21)

Then for every moderate deviation scale 1 	 bn 	 √
n, we have for all λ,

lim
n→+∞

1

b2
n

log E exp

(
λbn√

n

(〈X(n),MnX
(n)〉 − E〈X(n),MnX

(n)〉)) = λ2

2π

∫
T

f 2(θ)m2(θ)dθ.

Proof. Denote Tn = 1√
nbn

(〈X(n),MnX
(n)〉 − E〈X(n),MnX

(n)〉) we have

log E
(
eb2

nλTn
) = −λ

bn√
n

E〈X(n),MnX
(n)〉 − 1

2

n∑
j=1

log

(
1 − 2λ

bn√
n
λn

j

)
.

Notice that by Taylor’s Theorem for |z| < 1

log(1 − z) = −z − 1

2
z2(1 − tz)−2,

where t = t (z) ∈ [0,1]. This applied here to zn
j = 2λ(bn/

√
n )λn

j , which satisfies sup1�j�n |zn
j | → 0 as n → ∞, and

hence |1 − t (zn
j )z

n
j | → 1 uniformly in 1 � j � n. Since the Gaussian process (Xk) is assumed centered we have

n∑
j=1

λn
j = tr

(
MnTn(f )

) = E〈X(n),MnX
(n)〉.

Thus

lim
n→∞

1

b2
n

log E
(
eb2

nλTn
) = λ2 lim

n→∞
1

n

n∑
j=1

(λn
j )

2.

The conclusion follows by our hypothesis. �
Proof of Proposition 3.2. We have
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√
n

bn

(
Ln − E(Ln)

) = 1

2
√

nbn

(〈
X(n),

[
Tn(f0)

−1 − Tn(f1)
−1]X(n)

〉 − E
(〈
X(n)

[
Tn(f0)

−1 − Tn(f1)
−1]X(n)

〉))
.

We want to apply Lemma 5.2 with f = f0, Mn = 1
2 (Tn(f0)

−1 −Tn(f1)
−1) and m = 1

2 (f −1
0 −f −1). The boundness

of the eigenvalues (λn
j ) of MnTn(f0), n � 1 is given by Lemma 10 in [2], and it is proved in [2, Proof of Proposition 7]

that (1/n)
∑n

j=1 δλn
j

converges weakly to the image measure of the normalized Lebesgue measure dt/(2π) by f m =
1
2 (1 − f0/f1) (the factor 1/2 is missed in [2]). Thus condition (5.21) is satisfied for (λn

j )n,j is bounded. Now the
desired MDP follows by Lemma 5.2 and Ellis–Gärtner’s theorem. �
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principle for the Durbin–Watson statistic in the case where the driven noise is normally distributed and
in the more general case where the driven noise satisfies a less restrictive Chen–Ledoux type condition.
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1. Introduction

This paper is focused on the stable first-order autoregressive process where the driven noise is also given
by a first-order autoregressive process. The purpose is to investigate moderate deviations for both the least
squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation
estimator associated with the driven noise. Our goal is to establish moderate deviations for the Durbin–Watson
statistic [11–13], in a lagged dependent random variables framework. First of all, we shall assume that the driven
noise is normally distributed. Then, we will extend our investigation to the more general framework where the
driven noise satisfies a less restrictive Chen–Ledoux type condition [5, 17]. We are inspired by the recent paper
of Bercu and Pröıa [3], where the almost sure convergence and the central limit theorem are established for
both the least squares estimators and the Durbin–Watson statistic. Our results are proved via an extensive use
of the results of Dembo [6], Dembo and Zeitouni [7] and Worms [24, 25] on the one hand, and of the paper
of Puhalskii [21] and Djellout [8] on the other hand, about moderate deviations for martingales. In order to
introduce the Durbin–Watson statistic, the first-order autoregressive process of interest is as follows, for all
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n ≥ 1, {
Xn = θXn−1 + εn

εn = ρεn−1 + Vn

(1.1)

where we shall assume that the unknown parameters |θ| < 1 and |ρ| < 1 to ensure the stability of the model.
In all the sequel, we also assume that (Vn) is a sequence of independent and identically distributed random

variables with zero mean and positive variance σ2. The square-integrable initial values X0 and ε0 may be
arbitrarily chosen. We have decided to estimate θ by the least squares estimator

θ̂n =
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

· (1.2)

Then, we also define a set of least squares residuals given, for all 1 ≤ k ≤ n, by

ε̂k = Xk − θ̂nXk−1, (1.3)

which leads to the estimator of ρ,

ρ̂n =
∑n

k=1 ε̂kε̂k−1∑n
k=1 ε̂ 2

k−1

· (1.4)

Finally, the Durbin–Watson statistic is defined, for n ≥ 1, as

D̂n =
∑n

k=1(ε̂k − ε̂k−1)2∑n
k=0 ε̂ 2

k

· (1.5)

This well-known statistic was introduced by the pioneer work of Durbin and Watson [11–13], in the middle of
last century, to test the presence of a significative first order serial correlation in the residuals of a regression
analysis. A wide range of literature is available on the asymptotic behavior of the Durbin–Watson statistic,
frequently used in Econometry. While it appeared to work pretty well in the classical independent framework,
Malinvaud [18] and Nerlove and Wallis [19] observed that, for linear regression models containing lagged de-
pendent random variables, the Durbin–Watson statistic may be asymptotically biased, potentially leading to
inadequate conclusions. Durbin [10] proposed alternative tests to prevent this misuse, such as the h-test and
the t-test, then substantial contributions were brought by Inder [15], King and Wu [16] and more recently
Stocker [22]. Lately, a set of results have been established by Bercu and Pröıa in [3] for the first-order autore-
gressive process, and by Pröıa [20] for the autoregressive process of any order, in particular a test procedure
as powerful as the h-test and more accurate than the usual portmanteau tests, and they will be summarized
thereafter as a basis for this paper in the one-dimensional case. This work can be seen as an extension of [3]
in the sense that more powerful convergences are reached and that a better precision than the central limit
theorem is provided for the same random sequences. Hence, the establishment of moderate deviations is the
natural continuation following the proof of central limit theorems and laws of iterated logarithm. We are now
interested in the asymptotic estimation of

P
(√

n

bn

(
Θn −Θ

)
∈ A

)

where Θn denotes the estimator of the unknown parameter of interest Θ, A is a given domain of deviations and
(bn) denotes the scale of deviations. When bn = 1, this is exactly the estimation of the central limit theorem
(CLT). When bn =

√
n, it becomes a large deviation principle (LDP). And when 1 � bn � √

n, this is the
so-called moderate deviation principle (MDP). Usually, an MDP has a simpler rate function inherited from the
approximated gaussian process which does not necessarily depend on the parameters under investigation and
holds for a larger class of dependent random variables than the LDP. Furthermore, an MDP can be seen as a
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refinement of the CLT in the sense that the MDP tells us that the gaussian estimation still holds up to the scale
of large deviations. For the sake of clarity, all useful definitions will be given later.

The paper is organized as follows. First of all, we recall the results recently established by Bercu and Pröıa [3].
In Section 2, we propose moderate deviation principles for the estimators of θ and ρ and for the Durbin–Watson
statistic, given by (1.2), (1.4) and (1.5), under the normality assumption on the driven noise. Section 3 deals
with the generalization of the latter results under a less restrictive Chen–Ledoux type condition on (Vn). Finally,
all technical proofs are postponed to Section 4.

Lemma 1.1. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the autoregressive estimator,

lim
n→∞

θ̂n = θ∗ a.s.

where the limiting value

θ∗ =
θ + ρ

1 + θρ
· (1.6)

In addition, as soon as E[V 4
1 ] < ∞, we also have the asymptotic normality,

√
n
(
θ̂n − θ∗

) L−→ N
(
0, σ2

θ

)

where the asymptotic variance

σ2
θ =

(1− θ2)(1 − θρ)(1− ρ2)
(1 + θρ)3

· (1.7)

Lemma 1.2. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the serial correlation estimator,

lim
n→∞

ρ̂n = ρ∗ a.s.

where the limiting value
ρ∗ = θρ θ∗. (1.8)

Moreover, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
ρ̂n − ρ∗

) L−→ N
(
0, σ2

ρ

)

with the asymptotic variance

σ2
ρ =

(1− θρ)
(1 + θρ)3

(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1 − ρ2)

)
. (1.9)

In addition, we have the joint asymptotic normality,

√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

) L−→ N
(
0, Γ

)

where the covariance matrix

Γ =
(

σ2
θ θρσ2

θ
θρσ2

θ σ2
ρ

)
. (1.10)

MDP for Durbin 275



MODERATE DEVIATIONS FOR THE DURBIN–WATSON STATISTIC 311

Lemma 1.3. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the Durbin–Watson statistic,

lim
n→∞

D̂n = D∗ a.s.

where the limiting value
D∗ = 2(1− ρ∗). (1.11)

In addition, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
D̂n −D∗

) L−→ N
(
0, σ2

D

)

where the asymptotic variance
σ2

D = 4σ2
ρ. (1.12)

Proof. The proofs of Lemma 1.1, Lemmas 1.2 and 1.3 may be found in [3]. �

Our objective is now to establish a set of moderate deviation principles on these estimates in order to get a
better asymptotic accuracy than the central limit theorem.

In the whole paper, for any matrix M , M ′ and ‖M‖ stand for the transpose and the euclidean norm of
M , respectively. In addition, for a sequence of random variables (Zn)n on Rd×p, we say that (Zn)n converges
(an)−superexponentially fast in probability to some random variable Z with an →∞ if, for all δ > 0,

lim sup
n→∞

1
an

log P
(
‖Zn − Z‖ > δ

)
= −∞.

This exponential convergence with speed an will be shortened as

Zn
superexp−→

an

Z.

The exponential equivalence with speed an between two sequences of random variables (Yn)n and (Zn)n, whose
precise definition is given in Definition 4.2.10 of [7], will be shortened as

Yn
superexp∼

an

Zn.

We start by recalling some useful definitions.

Definition 1.4 (Large Deviation Principle). We say that a sequence of random variables (Mn)n with topological
state space (S,S) satisfies an LDP with speed an and rate function I : S → R+ if an →∞ and, for each A ∈ S,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1
an

log P
(
Mn ∈ A

)
≤ lim sup

n→∞

1
an

log P
(
Mn ∈ A

)
≤ − inf

x∈Ā
I(x)

where Ao and Ā denote the interior and the closure of A, respectively. The rate function I is lower semicontin-
uous, i.e. all the sub-level sets {x ∈ S | I(x) ≤ c} are closed, for c ≥ 0.

Let (bn) be a sequence of increasing positive numbers satisfying 1 = o(b2
n) and b2

n = o(n),

bn −→∞,
bn√
n
−→ 0. (1.13)

Definition 1.5 (Moderate Deviation Principle). We say that a sequence of random variables (Mn)n with
topological state space (S,S) satisfies an MDP with speed b2

n such that (1.13) holds, and rate function I : S → R+

if the sequence (
√

nMn/bn)n satisfies an LDP with speed b2
n and rate function I.

Formally, our main results about the MDP for a sequence of random variables (Mn)n will be stated as the
LDP for the sequence (

√
nMn/bn)n.
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2. On moderate deviations under the Gaussian condition

In this first part, we focus our attention on moderate deviations for the Durbin–Watson statistic in the easy
case where the driven noise (Vn) is normally distributed. This restrictive assumption allows us to reduce the set
of hypotheses to the existence of t > 0 such that

G1
E
[
exp(tε2

0)
]

< ∞,

G2
E
[
exp(tX2

0 )
]

< ∞.

Theorem 2.1. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, the sequence

(√
n

bn

(
θ̂n − θ∗

))

n≥1

satisfies an LDP on R with speed b2
n and rate function

Iθ(x) =
x2

2σ2
θ

(2.1)

where σ2
θ is given by (1.7).

Theorem 2.2. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, as soon as θ �= −ρ, the sequence

(√
n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

))

n≥1

satisfies an LDP on R2 with speed b2
n and rate function

K(x) =
1
2
x′Γ−1x (2.2)

where Γ is given by (1.10). In particular, the sequence
(√

n

bn

(
ρ̂n − ρ∗

))

n≥1

satisfies an LDP on R with speed b2
n and rate function

Iρ(x) =
x2

2σ2
ρ

(2.3)

where σ2
ρ is given by (1.9).

Remark 2.3. The covariance matrix Γ is invertible if and only if θ �= −ρ since one can see by a straightforward
calculation that its determinant is given by

det(Γ ) =
σ2

θ(θ + ρ)2(1− θρ)
(1 + ρ2)

·
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Moreover, in the particular case where θ = −ρ, the sequences
(√

n

bn

(
θ̂n − θ∗

))

n≥1

and
(√

n

bn

(
ρ̂n − ρ∗

))

n≥1

satisfy LDP on R with speed b2
n and rate functions respectively given by

Iθ(x) =
x2(1 − θ2)
2(1 + θ2)

and Iρ(x) =
x2(1− θ2)
2θ4(1 + θ2)

·

Theorem 2.4. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, the sequence

(√
n

bn

(
D̂n −D∗

))

n≥1

satisfies an LDP on R with speed b2
n and rate function

ID(x) =
x2

2σ2
D

(2.4)

where σ2
D is given by (1.12).

Proof. Theorem 2.1, Theorems 2.2 and 2.4 are proved in Section 4. �

3. On moderate deviations under the Chen–Ledoux type condition

Via an extensive use of Puhalskii’s result, we will now focus our attention on the more general framework
where the driven noise (Vn) is assumed to satisfy the Chen–Ledoux type condition. Accordingly, one shall
introduce the following hypothesis, for any a > 0.

CL1(a) Chen–Ledoux.

lim sup
n→∞

1
b2
n

log nP
(
|V1|a > bn

√
n
)

= −∞.

CL2(a)
|ε0|a
bn
√

n

superexp−→
b2n

0.

CL3(a)
|X0|a
bn
√

n

superexp−→
b2n

0.

Remark 3.1. If the random variable V1 satisfies CL1(2), then

lim sup
n→∞

1
b2
n

log nP
( ∣∣V 2

1 − E[V 2
1 ]
∣∣ > bn

√
n
)

= −∞, (3.1)

which implies in particular that Var(V 2
1 ) < ∞. Moreover, if the random variable V 2

1 has exponential moments,
i.e. if there exists t > 0 such that

E
[
exp (tV 2

1 )
]

< ∞,
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then CL1(2) is satisfied for every increasing sequence (bn). From [1, 2, 14], condition (3.1) is equivalent to say
that the sequence (

1
bn
√

n

n∑

k=1

(
V 2

k − E[V 2
k ]
))

n≥1

satisfies an LDP on R with speed b2
n and rate function

I(x) =
x2

2Var(V 2
1 )
·

Remark 3.2. If we choose bn = nα with 0 < α < 1/2, CL1(2) is immediately satisfied if there exists t > 0
and 0 < β < 1 such that

E
[
exp (tV 2β

1 )
]

< ∞,

which is clearly a weaker assumption than the existence of t > 0 such that

E
[
exp (tV 2

1 )
]

< ∞,

imposed in the previous section.

Remark 3.3. If CL1(a) is satisfied, then CL1(b) is also satisfied for all 0 < b < a.

Remark 3.4. In the technical proofs that will follow, rather than CL1(4), the weakest assumption really
needed is summarized by the existence of a large constant C such that

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑

k=1

V 4
k > C

)
= −∞.

Theorem 3.5. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence
(√

n

bn

(
θ̂n − θ∗

))

n≥1

satisfies the LDP on R stated in Theorem 2.1.

Theorem 3.6. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, as soon as θ �= −ρ, the sequence
(√

n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

))

n≥1

satisfies the LDP on R2 stated in Theorem 2.2. In particular, the sequence
(√

n

bn

(
ρ̂n − ρ∗

))

n≥1

satisfies the LDP on R also stated in Theorem 2.2.

Remark 3.7. We have already seen in Remark 2.3 that the covariance matrix Γ is invertible if and only if
θ �= −ρ. In the particular case where θ = −ρ, the sequences

(√
n

bn

(
θ̂n − θ∗

))

n≥1

and
(√

n

bn

(
ρ̂n − ρ∗

))

n≥1

satisfy the LDP on R stated in Remark 2.3.
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Theorem 3.8. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence
(√

n

bn

(
D̂n −D∗

))

n≥1

satisfies the LDP on R stated in Theorem 2.4.

Proof. Theorem 3.5, Theorems 3.6 and 3.8 are proved in Section 4. �

4. Proof of the main results

For a matter of readability, some notations commonly used in the following proofs have to be introduced.
First, for all n ≥ 1, let

Ln =
n∑

k=1

V 2
k . (4.1)

Then, let us define Mn, for all n ≥ 1, as

Mn =
n∑

k=1

Xk−1Vk (4.2)

where M0 = 0. For all n ≥ 1, denote by Fn the σ-algebra of the events occurring up to time n, Fn =
σ(X0, ε0, V1, · · · , Vn). We infer from (4.2) that (Mn)n≥0 is a locally square-integrable real martingale with
respect to the filtration F = (Fn)n≥0 with predictable quadratic variation given by 〈M〉0 = 0 and for all n ≥ 1,
〈M〉n = σ2Sn−1, where

Sn =
n∑

k=0

X2
k . (4.3)

Moreover, (Nn)n≥0 is defined, for all n ≥ 2, as

Nn =
n∑

k=2

Xk−2Vk (4.4)

and N0 = N1 = 0. It is not hard to see that (Nn)n≥0 is also a locally square-integrable real martingale sharing the
same properties than (Mn)n≥0. More precisely, its predictable quadratic variation is given by 〈N〉n = σ2Sn−2.
To conclude, let P0 = 0 and, for all n ≥ 1,

Pn =
n∑

k=1

Xk−1Xk. (4.5)

To smooth the reading of the following proofs, we introduce some relations.

Lemma 4.1. For any η > 0,

n∑

k=0

|Xk| η ≤ (1 + α(η))|X0| η + α(η)β(η)|ε0| η + α(η)β(η)
n∑

k=1

|Vk| η

where
α(η) = (1− |θ|)−η and β(η) = (1− |ρ|)−η

.
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In addition,
max

1≤k≤n
X2

k ≤ α(1)X2
0 + α(2)β(1) ε2

0 + α(2)β(2) max
1≤k≤n

V 2
k .

Proof. The proof follows from (1.1). Details are given in the proof of Lemma A.2 in [3]. �

Lemma 4.2. For all n ≥ 2,

Sn

n
− � =

�

σ2

[(
Ln

n
− σ2

)
+ 2θ∗

Mn

n
− 2θρ

Nn

n
+

Rn

n

]
(4.6)

where Ln, Mn, Sn and Nn are respectively given by (4.1), (4.2), (4.3) and (4.4),

Rn = [2(θ + ρ)ρ∗ − (θ + ρ)2 − (θρ)2]X2
n − (θρ)2X2

n−1 + 2ρ∗XnXn−1 + ξ1,

and where the remainder term

ξ1 = (1 − 2θρ− ρ2)X2
0 + ρ2ε2

0 + 2θρX0ε0 − 2ρρ∗(ε0 −X0)X0 + 2ρ(ε0 −X0)V1.

In addition, for all n ≥ 1,

Pn

n
− θ∗

Sn

n
=

1
1 + θρ

Mn

n
+

1
1 + θρ

Rn(θ)
n

− θ∗
X2

n

n
(4.7)

with
Rn(θ) = θρXnXn−1 + ρX0(ε0 −X0).

Proof. The results follow from direct calculation. �

4.1. Proof of Theorem 2.1

Before starting the Proof of Theorem 2.1, we need to introduce some technical tools. Denote by � the almost
sure limit of Sn/n [3], given by

� =
σ2(1 + θρ)

(1− θ2)(1 − θρ)(1 − ρ2)
· (4.8)

Lemma 4.3. Under the assumptions of Theorem 2.1, we have the exponential convergence

Sn

n

superexp−→
b2n

� (4.9)

where � is given by (4.8).

Proof. First of all, (Vn) is a sequence of independent and identically distributed gaussian random variables with
zero mean and variance σ2 > 0. It immediately follows from Cramér–Chernoff’s Theorem, expounded e.g. in [7],
that for all δ ′ > 0,

lim sup
n→∞

1
n

log P
(∣∣∣∣

Ln

n
− σ2

∣∣∣∣ > δ ′
)

< 0. (4.10)

Since b2
n = o(n), the latter convergence leads to

Ln

n

superexp−→
b2n

σ2, (4.11)
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ensuring the exponential convergence of Ln/n to σ2 with speed b2
n. Moreover, for all δ > 0 and a suitable t > 0,

we clearly obtain from Markov’s inequality that

P
(

X2
0

n
> δ

)
≤ exp (−tnδ)E

[
exp(tX2

0 )
]
,

which immediately implies via G2,
X2

0

n

superexp−→
b2n

0, (4.12)

and we get the exponential convergence of X2
0/n to 0 with speed b2

n. The same is true for V 2
1 /n, ε2

0/n and more
generally for any isolated term in ξ1 given after (4.6). Let us now focus our attention on X2

n/n. The model (1.1)
can be rewritten in the vectorial form,

Φn = AΦn−1 + Wn (4.13)

where Φn =
(
Xn Xn−1

)′ stands for the lag vector of order 2, Wn =
(
Vn 0

)′ and

A =
(

θ + ρ −θρ
1 0

)
. (4.14)

It is easy to show that the spectral radius of A is given by ρ(A) = max(|θ|, |ρ|) < 1 under the stability conditions.
Then,

‖Φn‖2

n

superexp−→
b2n

0,

according to [23], which is clearly sufficient to deduce that

X2
n

n

superexp−→
b2n

0. (4.15)

The exponential convergence of Rn/n to 0 with speed b2
n is achieved following exactly the same lines. To conclude

the proof of Lemma 4.3, it remains to study the exponential asymptotic behavior of Mn/n. For all δ > 0 and a
suitable y > 0,

P
(

Mn

n
> δ

)
= P

(
Mn

n
> δ, 〈M〉n ≤ y

)
+ P

(
Mn

n
> δ, 〈M〉n > y

)
,

≤ exp
(
−n2δ2

2y

)
+ P

(
〈M〉n > y

)
, (4.16)

by application of Theorem 4.1 of [4] in the case of a gaussian martingale, and Remark 4.2 that follows. From
Lemma 4.1, one can find α and β such that, for a suitable t > 0,

P
(
〈M〉n > y

)
≤ P

(
X2

0 >
y

3ασ2

)
+ P

(
ε2
0 >

y

3βσ2

)
+ P

(
Ln−1 >

y

3βσ2

)
,

≤ 3 max
(

exp
( −yt

3ασ2

)
E
[
exp(tX2

0 )
]
, exp

( −yt

3βσ2

)
E
[
exp(tε2

0)
]
,

P
(

Ln−1 >
y

3βσ2

))
.

Let us choose y = nx, assuming x > 3βσ4. It follows that

1
b2
n

log P
(
〈M〉n > nx

)
≤ log 3

b2
n

+
1
b2
n

max
(−nxt

3ασ2
+ log E

[
exp(tX2

0 )
]
,

−nxt

3βσ2
+ log E

[
exp(tε2

0)
]
, log P

(
Ln−1 >

nx

3βσ2

))
.

282 MDP for Durbin



318 S.V. BITSEKI PENDA ET AL.

Since b2
n = o(n) and by virtue of (4.10) with δ ′ = x/(3βσ2)− σ2 > 0, we obtain that

lim sup
n→∞

1
b2
n

log P
(
〈M〉n > nx

)
= −∞. (4.17)

It enables us by (4.16) to deduce that for all δ > 0,

lim sup
n→∞

1
b2
n

log P
(

Mn

n
> δ

)
= −∞. (4.18)

The same result is also true replacing Mn by −Mn in (4.18) since Mn and −Mn share the same distribution.
Therefore, we find that

Mn

n

superexp−→
b2n

0. (4.19)

A similar reasoning leads to the exponential convergence of Nn/n to 0, with speed b2
n. Finally, we obtain (4.9)

from Lemma 4.2 together with (4.11), (4.12), (4.15) and (4.19) which achieves the proof of Lemma 4.3. �

Corollary 4.4. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Pn

n

superexp−→
b2n

�1 (4.20)

where �1 = θ∗�.

Proof. The proof is immediately derived from previous statements and Lemma 4.2. �

We are now in the position to prove Theorem 2.1. We shall make use of the following MDP for martingales
established by Worms [23].

Theorem 4.5 (Worms). Let (Yn) be an adapted sequence with values in Rp, and (Vn) a gaussian noise with
variance σ2 > 0. We suppose that (Yn) satisfies, for some invertible square matrix C of order p and a speed
sequence (b2

n) such that b2
n = o(n), the exponential convergence for any δ > 0,

lim
n→∞

1
b2
n

log P

(∥∥∥∥∥
1
n

n−1∑

k=0

YkY ′
k − C

∥∥∥∥∥ > δ

)
= −∞. (4.21)

Then, the sequence (
1

bn
√

n

n∑

k=1

Yk−1Vk

)

n≥1

satisfies an LDP on Rp of speed b2
n and rate function

I(x) =
1

2σ2
x′C−1x. (4.22)

Proof. The proof of Theorem 4.5 is contained in the one of Theorem 5 of [23] with d = 1. �

Proof of Theorem 2.1. Let us consider the decomposition
√

n

bn

(
θ̂n − θ∗

)
=

n

〈M〉n
An + Bn, (4.23)

with

An =
(

σ2

1 + θρ

)
Mn

bn
√

n
and Bn =

√
n

bn

(
1

1 + θρ

)
Rn(θ)
Sn−1

,
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that can be obtained by a straighforward calculation, where the remainder term Rn(θ) is defined after (4.7).
First, by using the same methodology as in convergence (4.12), we obtain that for all δ > 0 and for a suitable
t > 0,

lim sup
n→∞

1
b2
n

log P
(

X2
0

bn
√

n
> δ

)
≤ lim

n→∞

(
−tδ

√
n

bn

)
+ lim

n→∞
1
b2
n

log E
[
exp(tX2

0 )
]
,

= −∞, (4.24)

since bn = o(
√

n), and the same is true for any isolated term in (4.23) of order 2 whose numerator does not
depend on n. Moreover, under the gaussian assumption on the driven noise (Vn), it is not hard to see that

1
bn
√

n
max

1≤k≤n
V 2

k
superexp−→

b2n

0. (4.25)

As a matter of fact, for all δ > 0 and for all t > 0,

P
(

max
1≤k≤n

V 2
k ≥ δbn

√
n

)
= P

(
n⋃

k=1

{
V 2

k ≥ δbn

√
n
})

≤
n∑

k=1

P
(
V 2

k ≥ δbn

√
n
)
,

≤ n exp
(
−tδbn

√
n
)

E
[
exp

(
tV 2

1

) ]
.

In addition, as soon as 0 < t < 1/(2σ2), E
[
exp(tV 2

1 )
]

< ∞. Consequently,

1
b2
n

log P
(

max
1≤k≤n

V 2
k ≥ δbn

√
n

)
≤
√

n

bn

⎛
⎝ log n

bn
√

n
− tδ +

log E
[
exp

(
tV 2

1

) ]

bn
√

n

⎞
⎠

which clearly leads to (4.25). Then, we deduce from (4.24), (4.25) and Lemma 4.1 that

1
bn
√

n
max

1≤k≤n
X2

k
superexp−→

b2n

0, (4.26)

which of course imply the exponential convergence of X2
n/(bn

√
n) to 0, with speed b2

n. Therefore, we obtain that

Rn(θ)
bn
√

n

superexp−→
b2n

0. (4.27)

We infer from Lemma 4.3 and Lemma 2 of [23] that the following convergence is satisfied,

n

Sn

superexp−→
b2n

1
�

(4.28)

where � > 0 is given by (4.8). According to (4.27), the latter convergence and again Lemma 2 of [23], we deduce
that

Bn
superexp−→

b2n

0. (4.29)

Hence, we obtain from (4.28) that the same is true for

An

(
n

〈M〉n
− 1

σ2�

)
superexp−→

b2n

0, (4.30)

since Lemma 4.3 together with Theorem 4.5 with p = 1 directly show that (Mn/(bn
√

n)) satisfies an LDP with
speed b2

n and rate function given, for all x ∈ R, by

J(x) =
x2

2�σ2
· (4.31)
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As a consequence, √
n

bn

(
θ̂n − θ∗

)
superexp∼

b2n

1
�(1 + θρ)

Mn

bn
√

n
, (4.32)

and this implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. One shall now take advantage
of the contraction principle ([7], Thm. 4.2.1), to establish that (

√
n(θ̂n − θ∗)/bn) satisfies an LDP with speed

b2
n and rate function Iθ(x) = J(�(1 + θρ)x) given by (2.1), that is

Iθ(x) =
x2

2σ2
θ

,

which achieves the Proof of Theorem 2.1. �

4.2. Proof of Theorem 2.2

We need to introduce some more notations. For all n ≥ 2, let

Qn =
n∑

k=2

Xk−2Xk. (4.33)

In addition, for all n ≥ 1, denote

Tn = 1 + θ∗ρ∗ −
(
1 + ρ∗(θ̂n + θ∗)

) Sn

Sn−1
+
(
2ρ∗ + θ̂n + θ∗

) Pn

Sn−1
− Qn

Sn−1
, (4.34)

where Sn and Pn are respectively given by (4.3) and (4.5). Finally, for all n ≥ 0, let

Jn =
n∑

k=0

ε̂ 2
k (4.35)

where the residual sequence (ε̂n) is given in (1.3). A set of additional technical tools has to be expounded to
make the Proof of Theorem 2.2 more tractable.

Corollary 4.6. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Qn

n

superexp−→
b2n

�2

where �2 = ((θ + ρ)θ∗ − θρ)�.

Proof. The Proof of Corollary 4.6 immediately follows from the relation

Qn

n
− ((θ + ρ)θ∗ − θρ)

Sn

n
= θ∗

Mn

n
+

Nn

n
+

ξQ
n

n
(4.36)

where ξQ
n is a residual term made of isolated terms such that

ξQ
n

n

superexp−→
b2n

0,

see e.g. the proof of Theorem 3.2 in [3] where more details are given on ξQ
n . �
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Lemma 4.7. Under the assumptions of Theorem 2.2, we have the exponential convergence

An
superexp−→

b2n

A

where

An =
n

1 + θρ

⎛
⎜⎜⎝

1
Sn−1

0

Tn

Jn−1
− (θ + ρ)

Jn−1

⎞
⎟⎟⎠ , (4.37)

and

A =
1

�(1 + θρ)(1 − (θ∗)2)

(
1− (θ∗)2 0
θρ + (θ∗)2 −(θ + ρ)

)
. (4.38)

Proof. Via (4.28), we directly obtain the exponential convergence,

1
(1 + θρ)

n

Sn−1

superexp−→
b2n

1
�(1 + θρ)

· (4.39)

The combination of Lemma 4.3, Corollary 4.4, Corollary 4.6 and Lemma 2 of [23] shows, after a simple calcu-
lation, that

Tn
superexp−→

b2n

(θ∗)2 + θρ. (4.40)

Moreover, Jn given by (4.35) can be rewritten as

Jn = Sn − 2θ̂nPn + θ̂ 2
n Sn−1,

which leads, via Lemma 2 of [23], to
Jn

n

superexp−→
b2n

�(1− (θ∗)2). (4.41)

Convergences (4.40) and (4.41) imply
(

n

1 + θρ

)
Tn

Jn−1

superexp−→
b2n

(θ∗)2 + θρ

�(1 + θρ)(1− (θ∗)2)
, (4.42)

and consequently, (
n

1 + θρ

)
θ + ρ

Jn−1

superexp−→
b2n

θ + ρ

�(1 + θρ)(1 − (θ∗)2)
· (4.43)

Finally, (4.39) together with (4.42) and (4.43) achieve the proof of Lemma 4.7. �

Proof of Theorem 2.2. We shall make use of the decomposition
√

n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

)
=

1
bn
√

n
AnZn + Bn, (4.44)

where An is given by (4.37), (Zn)n≥0 is the 2-dimensional vector martingale given by

Zn =
(

Mn

Nn

)
, (4.45)

and where the remainder term

Bn =
1

(1 + θρ)

√
n

bn

⎛
⎜⎜⎝

Rn(θ)
Sn−1

Rn(ρ)
Jn−1

⎞
⎟⎟⎠ . (4.46)
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The first component Rn(θ) is given in (4.7) while Rn(ρ), whose definition may be found in the proof of
Theorem 3.2 in [3], is made of isolated terms. Consequently, (4.24) and (4.27) are sufficient to ensure that

Rn(θ)
bn
√

n

superexp−→
b2n

0 and
Rn(ρ)
bn
√

n

superexp−→
b2n

0.

Therefore, we obtain that
Bn

superexp−→
b2n

0. (4.47)

In addition, it follows from Lemma 4.7 and Theorem 4.5 with p = 2 that (Zn/(bn
√

n)) satisfies an LDP on R2

with speed b2
n and rate function given, for all x ∈ R2, by

J(x) =
1

2σ2
x′Λ−1x, (4.48)

where

Λ = �

(
1 θ∗

θ∗ 1

)
, (4.49)

since we have the exponential convergence

〈Z〉n
n

superexp−→
b2n

σ2Λ (4.50)

by application of Lemma 4.3 and Corollary 4.4. One observes that Λ is invertible. As a consequence,

1
bn
√

n
(An −A)Zn

superexp−→
b2n

0, (4.51)

and we deduce from (4.44) that √
n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

)
superexp∼

b2n

1
bn
√

n
AZn. (4.52)

This of course implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. The contraction principle
([7], Thm. 4.2.1) enables us to conclude that the rate function of the LDP on R2 with speed b2

n associated with
equivalence (4.52) is given, for all x ∈ R2, by K(x) = J(A−1x), that is

K(x) =
1
2
x′Γ−1x,

where Γ = σ2AΛA′ is given by (1.10), and where we shall suppose that θ �= −ρ to ensure that A is invertible.
In particular, the latter result also implies that the rate function of the LDP on R with speed b2

n associated
with (

√
n(ρ̂n − ρ∗)/bn) is given, for all x ∈ R, by

Iρ(x) =
x2

2σ2
ρ

,

where σ2
ρ is the last element of the matrix Γ . This achieves the Proof of Theorem 2.2. �

4.3. Proof of Theorem 2.4

For all n ≥ 1, denote by fn the explosion coefficient associated with Jn given by (4.35), that is

fn =
Jn − Jn−1

Jn
=

ε̂ 2
n

Jn
· (4.53)
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It follows from decomposition (C.4) in [3] that
√

n

bn

(
D̂n −D∗

)
= −2

√
n

bn

(
1− fn

)(
ρ̂n − ρ∗

)
+
√

n

bn
ζn, (4.54)

where the remainder term ζn is made of negligible terms, that is

ζn = 2(ρ∗ − 1)fn +
ε̂ 2

n − ε̂ 2
0

Jn
·

From the definition of (ε̂n) in (1.3), from (4.26), (4.41) and considering that ε̂0 = X0, we clearly have that
√

n

bn
ζn

superexp−→
b2n

0 and fn
superexp−→

b2n

0.

As a consequence, √
n

bn

(
D̂n −D∗

)
superexp∼

b2n

−2
√

n

bn

(
ρ̂n − ρ∗

)
, (4.55)

and this implies that both of them share the same LDP. The contraction principle [7] enables us to conclude
that the rate function of the LDP on R with speed b2

n associated with equivalence (4.55) is given, for all x ∈ R,
by ID(x) = Iρ(−x/2), that is

ID(x) =
x2

2σ2
D

,

which achieves the Proof of Theorem 2.4.

4.4. Proofs of Theorem 3.5, Theorems 3.6 and 3.8

We shall now propose a technical lemma ensuring that all results already proved under the gaussian assump-
tion still hold under the Chen–Ledoux type condition.

Lemma 4.8. Under CL1(4), CL2(4) and CL3(4), all exponential convergences of Lemma 4.3, Corollary 4.4,
Corollary 4.6 and Lemma 4.7 still hold.

Proof. Following the same methodology as the one used to establish (4.27), we get

P
(

max
1≤k≤n

V 2
k ≥ δbn

√
n

)
≤

n∑

k=1

P
(
V 2

k ≥ δbn

√
n
)

= n P
(
V 2

1 ≥ δbn

√
n
)
.

Via CL1(2), CL2(2), CL3(2) and the same reasoning,

X2
n

bn
√

n

superexp−→
b2n

0, (4.56)

and Cauchy–Schwarz inequality implies that this is also the case for any isolated term of order 2, such as
XnXn−1/(bn

√
n). This allows us to control each remainder term. Note that under CL2(4) and CL3(4) and

using (4.56), ε4
0/n, X4

0/n, ε2
0/n, X2

0/n and X2
n/n also exponentially converge to 0, since bn

√
n = o(n). Moreover,

it follows from Theorem 2.2 of [14] under CL1(2), that

Ln

n

superexp−→
b2n

σ2. (4.57)
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Furthermore, since (Mn) is a locally square integrable martingale, we infer from Theorem 2.1 of [4] that for all
x, y > 0,

P
(
|Mn| > x, 〈M〉n + [M ]n ≤ y

)
≤ 2 exp

(
−x2

2y

)
, (4.58)

where the predictable quadratic variation 〈M〉n = σ2Sn−1 is described in (4.3) and the total quadratic variation
is given by [M ]0 = 0 and, for all n ≥ 1, by

[M ]n =
n∑

k=1

X2
k−1V

2
k . (4.59)

According to (4.58), we have for all δ > 0 and a suitable b > 0,

P
( |Mn|

n
> δ

)
≤ P

(
|Mn| > δn, 〈M〉n + [M ]n ≤ nb

)
+ P

(
〈M〉n + [M ]n > nb

)
,

≤ 2 exp
(
−nδ2

2b

)
+ P

(
〈M〉n + [M ]n > nb

)
.

Consequently,

lim sup
n→∞

1
b2
n

log P
( |Mn|

n
> δ

)
≤ lim sup

n→∞

1
b2
n

log P
(
〈M〉n + [M ]n > nb

)
. (4.60)

Moreover, for all n ≥ 1, let us define

Tn =
n∑

k=0

X4
k and Γn =

n∑

k=1

V 4
k .

From Lemma 4.1 and for n large enough, one can find γ > 0 such that

Tn ≤ γ Γn

under CL2(4) and CL3(4). According to Theorem 2.2 of [14] under CL1(4), we also have the exponential
convergence,

Γn

n

superexp−→
b2n

τ4, (4.61)

where τ4 = E[V 4
1 ], leading, via Cauchy–Schwarz inequality, to

lim sup
n→∞

1
b2
n

log P
(

[M ]n
n

> δ

)
≤ lim sup

n→∞

1
b2
n

log P
(

Γn

n
>

δ√
γ

)
,

= −∞, (4.62)

where δ > τ4√γ. Exploiting (4.57) and again Lemma 4.1, the same result can be achieved for 〈M〉n/n under
CL1(2) and δ > σ4γ. As a consequence, it follows from (4.62) that

lim sup
n→∞

1
b2
n

log P
( 〈M〉n + [M ]n

n
> b

)
= −∞, (4.63)

as soon as b > σ4γ + τ4√γ. Therefore, the exponential convergence of Mn/n to 0 with speed b2
n is obtained

via (4.60) and (4.63), that is, for all δ > 0,

lim sup
n→∞

1
b2
n

log P
( |Mn|

n
> δ

)
= −∞. (4.64)
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Explicitly, (4.64) is equivalent of (4.19) which was the main element for the proof of Lemma 4.3, and the same
obviously holds for Nn/n. In consequence, one can proceed similarly to establish Corollary 4.4, Corollary 4.6
and Lemma 4.7. Indeed, hypotheses CL2(4) and CL3(4) together with exponential convergences (4.56), (4.57)
and (4.64) are sufficient to achieve the proof of Lemma 4.8. �

Let us introduce a simplified version of Puhalskii’s result [21] applied to a sequence of martingale differences,
and two technical lemmas that shall help us to prove our results.

Theorem 4.9 (Puhalskii). Let (mn
j )1≤j≤n be a triangular array of martingale differences with values in Rd,

with respect to a filtration (Fn)n≥1. Let (bn) be a sequence of real numbers satisfying (1.13). Suppose that there
exists a symmetric positive-semidefinite matrix Q such that

1
n

n∑

k=1

E
[
mn

k (mn
k )′

∣∣Fk−1

]
superexp−→

b2n

Q. (4.65)

Suppose that there exists a constant c > 0 such that, for each 1 ≤ k ≤ n,

|mn
k | ≤ c

√
n

bn
a.s. (4.66)

Suppose also that, for all a > 0, we have the exponential Lindeberg’s condition

1
n

n∑

k=1

E
[
|mn

k |2 I{ |mn
k |≥ a

√
n

bn

}
∣∣Fk−1

]
superexp−→

b2n

0. (4.67)

Then, the sequence (
1

bn
√

n

n∑

k=1

mn
k

)

n≥1

satisfies an LDP on Rd with speed b2
n and rate function

Λ∗(v) = sup
λ∈Rd

(
λ′v − 1

2
λ′Qλ

)
·

In particular, if Q is invertible,

Λ∗(v) =
1
2

v′Q−1v. (4.68)

Proof. The proof of Theorem 4.9 is contained e.g. in the proof of Theorem 3.1 in [21]. �

Lemma 4.10. Under CL1(a), CL2(a) and CL3(a) for any a > 2, we have for all δ > 0,

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑

k=1

X2
k I{|Xk|>R} > δ

)
= −∞.

Remark 4.11. Lemma 4.10 implies that the exponential Lindeberg’s condition given by (4.67) is satisfied.

Proof. From Lemma 4.1, for any η > 0 and n large enough, one can find γ > 0 such that

n∑

k=0

|Xk|2+η ≤ γ

n∑

k=1

|Vk|2+η (4.69)
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under CL2(2 + η) and CL3(2 + η). If we suppose that CL1(2 + η) holds, then it follows that, for R > 0,

R η
n∑

k=1

X2
k−1 I{|Xk−1|>R} ≤

n∑

k=1

|Xk−1|2+η ≤ γ

n∑

k=1

|Vk|2+η,

for n large enough and η > 0, leading to

1
b2
n

log P

(
1
n

n∑

k=1

X2
k−1 I{|Xk−1|>R} > δ

)
≤ 1

b2
n

log P

(
1
n

n∑

k=1

|Vk|2+η >
δ

γ
R η

)
.

Using Theorem 2.2 of [14] and letting R go to infinity, we immediately reach the end of the proof of
Lemma 4.10. �

Remark 4.12. The same result can be achieved under the less restrictive CL1(2) condition, via a techni-
cal proof using the empirical measure associated with the geometric ergodic Markov chain (Xn)n≥0. A same
reasoning can be found in [9].

Lemma 4.13. Under CL1(4), CL2(4) and CL3(4), the sequence
(

Mn

bn
√

n

)

n≥1

satisfies an LDP on R with speed b2
n and rate function

J(x) =
x2

2�σ2
(4.70)

where � is given by (4.8).

Proof. From now on, in order to apply Puhalskii’s result concerning MDP for martingales, we introduce the
following modification of the martingale (Mn)n≥0, for r > 0 and R > 0,

M (r,R)
n =

n∑

k=1

X
(r)
k−1V

(R)
k (4.71)

where, for all 1 ≤ k ≤ n,

X
(r)
k = Xk I{|Xk|≤ r

√
n

bn

} and V
(R)
k = Vk I{|Vk|≤R

} − E
[
Vk I{|Vk|≤R

}
]
. (4.72)

Then, we have to prove that for all r > 0 the sequence (M (r,R)
n ) is an exponentially good approximation of (Mn)

as R goes to infinity, see e.g. Definition 4.2.14 in [7]. This approximation, in the sense of the large deviations,
is described by the following convergence, for all r > 0 and all δ > 0,

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
|Mn −M

(r,R)
n |

bn
√

n
> δ

)
= −∞. (4.73)

From Lemma 4.8, and since 〈M〉n = σ2Sn−1, we have

〈M〉n
n

superexp−→
b2n

σ2�. (4.74)
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From Lemma 4.10 and Remark 4.11, we also have for all r > 0,

1
n

n∑

k=0

X2
k I{ |Xk|> r

√
n

bn

} superexp−→
b2n

0. (4.75)

We introduce the following notations,

σ2
R = E

[
(V (R)

1 )2
]

and S(r)
n =

n∑

k=0

(X(r)
k )2.

Then, we easily transfer properties (4.74) and (4.75) to the truncated martingale (M (r,R)
n )n≥0. We have for all

R > 0 and all r > 0,

〈M (r,R)〉n
n

= σ2
R

S
(r)
n−1

n
= −σ2

R

(
Sn−1

n
− S

(r)
n−1

n

)
+ σ2

R

Sn−1

n

superexp−→
b2n

σ2
R�

which ensures that (4.65) is satisfied for the martingale (M (r,R)
n )n≥0. Note also that Lemma 4.8 and Remark 4.11

work for the martinagle (M (r,R)
n )n≥0. So, for all r > 0, the exponential Lindeberg’s condition and thus (4.67)

are satisfied for (M (r,R)
n )n≥0. By Theorem 4.9, we deduce that (M (r,R)

n /bn
√

n) satisfies an LDP on R with speed
b2
n and rate function

JR(x) =
x2

2σ2
R�
· (4.76)

We intend to transfer the MDP result for the martingale (Mn)n≥0 by proving relation (4.73). For that purpose,
let us now introduce the following decomposition,

Mn −M (r,R)
n = L(r)

n + F (r,R)
n

where

L(r)
n =

n∑

k=1

(
Xk−1 −X

(r)
k−1

)
Vk and F (r,R)

n =
n∑

k=1

(
Vk − V

(R)
k

)
X

(r)
k−1.

One has to show that for all r > 0,
L

(r)
n

bn
√

n

superexp−→
b2n

0, (4.77)

and, for all r > 0 and all δ > 0, that

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
|F (r,R)

n |
bn
√

n
> δ

)
= −∞. (4.78)

Via inequality (4.69), for n large enough,

|L(r)
n |

bn
√

n
=

1
bn
√

n

∣∣∣∣∣
n∑

k=1

Xk−1 I{|Xk−1|> r
√

n
bn

}Vk

∣∣∣∣∣ ,

≤ 1
bn
√

n

(
r

√
n

bn

)−η
(

n∑

k=1

|Xk−1|2+η

)1/2 ( n∑

k=1

V 2
k |Xk−1| η

)1/2

,

≤ λ(r, η, γ)
(

bn√
n

)η−1 1
n

n∑

k=1

|Vk|2+η (4.79)
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by virtue of Hölder’s inequality, where λ(r, η, γ) > 0 can be easily evaluated. As a consequence, for all δ > 0,

lim sup
n→∞

1
b2
n

log P

(
|L(r)

n |
bn
√

n
> δ

)
≤ lim sup

n→∞

1
b2
n

log P

(
1
n

n∑

k=1

|Vk|2+η >
δ

λ(r, η, γ)

(√
n

bn

)η−1
)

,

= −∞, (4.80)

as soon as η > 1, by application of Theorem 2.2 of [14] under CL1(2 + η), since

lim
n→∞

(√
n

bn

)η−1

= ∞.

We deduce that
L

(r)
n

bn
√

n

superexp−→
b2n

0, (4.81)

which achieves the proof of (4.77), under CL1(2 + η), CL2(2 + η) and CL3(2 + η) for η > 1. On the other
hand, (F (r,R)

n )n≥0 is a locally square-integrable real martingale whose predictable quadratic variation is given
by 〈F (r,R)〉0 = 0 and, for all n ≥ 1, by

〈F (r,R)〉n = E
[(

V1 − V
(R)
1

)2
]

S
(r)
n−1.

To prove (4.78), we will use Theorem 1 of [8]. For R large enough and all k ≥ 1, we have

P

( ∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn

√
n
∣∣∣Fk−1

)
≤ P

(∣∣∣Vk − V
(R)
k

∣∣∣ >
b2
n

r

)
,

= P
(∣∣∣V1 − V

(R)
1

∣∣∣ >
b2
n

r

)
= 0.

This implies that

lim sup
n→∞

1
b2
n

log

(
n ess sup

k≥1
P

( ∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn

√
n
∣∣∣Fk−1

))
= −∞. (4.82)

For all ν > 0 and all δ > 0, we obtain from Lemma 4.10 and Remark 4.11, that

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑

k=1

(
X

(r)
k−1

)2

I{ |X(r)
k−1|> ν

√
n

bn

} > δ

)
≤

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑

k=1

X2
k−1I{|Xk−1|> ν

√
n

bn

} > δ

)
= −∞.

Finally, from Lemma 4.8, Lemma 4.10 and Remark 4.11, it follows that

〈F (r,R)〉n
n

= QR

S
(r)
n−1

n
= −QR

(
Sn−1

n
− S

(r)
n−1

n

)
+ QR

Sn−1

n

superexp−→
b2n

QR�

where

QR = E
[(

V1 − V
(R)
1

)2
]

,
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and � is given by (4.8). Moreover, it is clear that QR converges to 0 as R goes to infinity. Consequently, we infer
from Theorem 1 of [8] that (F (r,R)

n /(bn
√

n)) satisfies an LDP on R of speed b2
n and rate function

IR(x) =
x2

2QR�
·

In particular, this implies that for all δ > 0,

lim sup
n→∞

1
b2
n

log P

(
|F (r,R)

n |
bn
√

n
> δ

)
= − δ2

2QR�
, (4.83)

and letting R go to infinity clearly leads to the end of the proof of (4.78). We are able to conclude now that
(M (r,R)

n /(bn
√

n)) is an exponentially good approximation of (Mn/(bn
√

n)). By application of Theorem 4.2.16
in [7], we find that (Mn/(bn

√
n)) satisfies an LDP on R with speed b2

n and rate function

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.76) and Bx,δ denotes the ball {z : |z − x| < δ}. The identification of the rate function
J̃ = J , where J is given in (4.70) is done easily, which concludes the proof of Lemma 4.13. �

Lemma 4.14. Under CL1(4), CL2(4) and CL3(4), the sequence
(

1
bn
√

n

(
Mn

Nn

))

n≥1

satisfies an LDP on R2 with speed b2
n and rate function

J(x) =
1

2σ2
x′Λ−1x (4.84)

where Λ is given by (4.49).

Proof. We follow the same approach as in the proof of Lemma 4.13. We shall consider the 2-dimensional vector
martingale (Zn)n≥0 defined in (4.45). In order to apply Theorem 4.9, we introduce the following truncation of
the martingale (Zn)n≥0, for r > 0 and R > 0,

Z(r,R)
n =

(
M

(r,R)
n

N
(r,R)
n

)

where M
(r,R)
n is given in (4.71) and where N

(r,R)
n is defined in the same manner, that is, for all n ≥ 2,

N (r,R)
n =

n∑

k=2

X
(r)
k−2V

(R)
k (4.85)

with X
(r)
n and V

(R)
n given by (4.72). The exponential convergence (4.50) still holds, by virtue of Lemma 4.8,

which immediately implies hypothesis (4.65). In addition, Lemma 4.10 ensures that, for all r > 0,

1
n

n∑

k=0

X2
k I{ |Xk|> r

√
n

bn

} superexp−→
b2n

0, (4.86)
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justifying hypothesis (4.67). Via Theorem 4.9, (Z(r,R)
n /(bn

√
n)) satisfies an LDP on R2 with speed b2

n and rate
function JR given by

JR(x) =
1

2σ2
R

x′Λ−1x. (4.87)

Finally, it is straightforward to prove that (Z(r,R)
n /(bn

√
n)) is an exponentially good approximation of

(Zn/(bn
√

n)). By application of Theorem 4.2.16 in [7], we deduce that (Zn/(bn
√

n)) satisfies an LDP on R2

with speed b2
n and rate function given by

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.87) and Bx,δ denotes the ball {z : |z − x| < δ}. The identification of the rate function
J̃ = J is done easily, which concludes the proof of Lemma 4.14. �

Proofs of Theorem 3.5, Theorems 3.6 and 3.8. The residuals appearing in the decompositions (4.23), (4.44)
and (4.54) still converge exponentially to zero under CL1(4), CL2(4) and CL3(4), with speed b2

n, as it was
already proved. Therefore, for a better readability, we may skip the most accessible parts of these proofs whose
development merely consists in following the same lines as those in the proofs of Theorem 2.1, Theorem 2.2
and Theorem 2.4, taking advantage of Lemmas 4.13 and 4.14, and applying the contraction principle given e.g.
in [7]. �
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[14] P. Eichelsbacher and M. Löwe, Moderate deviations for i.i.d. random variables. ESAIM: PS 7 (2003) 209–218.

[15] B.A. Inder, An approximation to the null distribution of the Durbin-Watson statistic in models containing lagged dependent
variables. Econometric Theory 2 (1986) 413–428.

[16] M.L. King and P.X. Wu, Small-disturbance asymptotics and the Durbin-Watson and related tests in the dynamic regression
model. J. Econometrics 47 (1991) 145–152.
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[19] M. Nerlove and K.F. Wallis, Use of the Durbin-Watson statistic in inappropriate situations. Econometrica 34 (1966) 235–238.
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Large and moderate deviations
for moving average processes (*)

H. DJELLOUT AND A. GUILLIN (1)

Annales de la Faculté des Sciences de Toulouse Vol. X, n° 1, 2001
pp. 23-31

Soit Xn = 1, le processus ~, moyenne

mobile, étant une suite de v.a.Li.d. reelles, et soit Sn = (X 1-~ ... +
Xn ). Dans ce papier, nous établissons un principe de grandes déviations
et de deviations moderees pour Sn /n, sous les conditions suivantes : wz
sont bomees pour tout i E Z et a~,  00.

ABSTRACT. - Let Xn 1, the moving average
process, i.i.d. real random values, and Sn = (Xi + ... + Xn). .
In this note, we prove large and moderate deviations principle for Sn /n,
under the boundedness of w; and oo.

1. Introduction.

Let {Wi, i E ~~ be a doubly infinite sequence of independent and iden-
tically distributed square integrable real random variables with = 0,
defined on some probability space (SZ, ~, P). Let ~an, n E ?Z~ be a doubly
infinite sequence of real numbers such that L a2  oo.

iE~

The moving average process Xk, k > 1, is defined by

("’) > Recu le 8 avril 1999, accepte le 8 juin 2001
~ 1 ~ ) Laboratoire de Mathematiques Appliquées, Universite Blaise Pascal, 24 Avenue

des Landais, 63177 Aubiere.
email: {djellout, guillin}@math.univ-bpclermont.fr
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and let

Numerous works have been made on the problem of large and moderate
deviations of 8n/n under the strong condition [  oo. For exam-

ple, Burton and Dehling [BD90] have proved a large deviation principle for
~ rS’n /n; n > 1 } with speed ~n; n > 1 } and a good rate function depend-
ing only on the moment generating function. Their proof, like many of the
referenced papers, relies on the powerful Ellis Theorem. The moderate de-
viations of ~ ~S‘n /n; n > 1 } are obtained by Jiang and al. [JWR92] under the
condition of exponential integrability of wo . Jiang and al. [JWR95] proved
that the upper bound of large deviations for Sn in a Banach space B holds
if and only if the condition E  oo is fulfilled for some compact
K of B, where qK is the Minkowski functional of the set K. And the lower
bound of large deviations is obtained in [JWR95] without any condition,
with a rate function which may not have compact level sets, and which can
be different from the rate function of the upper bound. 

-

Remember also the famous work of Donsker and Varadhan [DV85], on
large deviations of level-3 for stationary Gaussian processes, under moving
average form, which has motivated our study.

In this note, we prove a large deviation principle and a moderate de-
viation principle for moving average processes, substituting the absolute
convergence condition by the continuity of g(0) = at 0, a well
known condition for the Central Limit Theorem of see ([HH80],
Corollary 5.2. pp 135). But we need the boundedness of w2 instead of the
exponential integrability in the works cited above.

2. A large deviation principle
for the moving average processes.

About the language of large deviations, see Dembo and Zeitouni [DZ93],
Deuschel and Stroock [DS89]. The main result of this paper is

THEOREM 2.1.2014 Let a family of IP-i.i.d. real valued random
variables. Suppose the following conditions
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(H2) The function g given by |g(03B8) |2 := |03A3n anein03B8 I2 = f (B) (the 
tral density function of Xk ) is continuous at 0 belongs to

L~ ( [-x, x] , ). .

Then H’ C ‘S-~ E ~ I satisfies a large deviation princiPle with sPeed n andn, 
the good rate function I given by

where A* is the Fenchel-Legendre transform, of the logarithmic moment gen-
erating function A(A) := log IEe03BB03C90 of the common law of 03C9i, , i E Z.

Remark 2.i.-Except the boundedness of wa, the assumption (Hl) is
minimal to define Xk.

Remark 2. ii. - Condition (H2) is the usual condition for the Central
Limit Theorem for Sn, see [HH80]. Notice also that it is much weaker than
the condition f (B) E C((-~r, ~r~) used in the pioneering work of Donsker-
Varadhan [DV85] for the level-3 large deviations of stationary gaussian pro-
cesses.

To prove Theorem 2.1 we need the following concentration inequality for
Sn, which is a translation of the well known Hoeffding inequality [Hoe63] in
our context.

LEMMA 2.2.- Under condition (Hl) , we have

Proof of Lemma 2.2. - By Hoeffding inequality [Hoe63] (or more exactly
its proof), applied to

where X Z = 03A3nk=1ai+k03C9i, we have for all 03BB  0
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Letting ~ 2014~ oo, -~ Sn in L2(p) and we get by Fatou’s lemma:

Then by Markov inequality, we have that for all t > 0

and optimizing in A, we obtain

We have obviously the same inequality for -Sn. Thus (2.2) follows.

Remark 2.iii.- Inequality (2.2) can be proved by means of logarithmic
Sobolev inequality for convex functions [Led96] (with less better constant),
in a way which is also valid for and thus give an alternate way to
establish Step 2 in the following proof.

Proof of Theorem 2.1 : we separate its proof into three steps.

n

Step 1. Let S~ = where we have for some fixed K in N
k=1

s~ B 
......

Then P ( 2014~- E ~ satisfies the large deviation principle with speed nB ~ /
and some good rate function by Sanov’s theorem and the contraction
principle, or using results of [BD90] which give I K with the same notations
as in Theorem 2.1:

Step 2. We show that for all 03B4 > 0
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By our hypothesis, we can apply Hoeffding inequality for Sn - ~S’n , and
noting that E(Sn - S’n ) = 0 we get by lemma 2.2

We have now to control the right term of this inequality. Let fK denote the

spectral density of Xn i.e. = := (1 - W) 
Let introduce Fejer’s kernel FK

An obvious property is that FK(03B8)d03B8 = 1. Moreover, we have gK =
FK * g, where "*" denotes the usual convolution product. By the well known
theorem ([IL71], Theorem 18.2.1. pp322), we have

For any e > 0, let [-b, 8~ be such that Ig(8) - g(0)  ~ for ~B~  ~. For

~B~ ~ z

where C(K,8) = s (2~rKsin2(~/4))-1 -~ 0 as K -> oo.
We can now control the right hand side of (2.4)
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We further conclude that

We then deduce (2.3). Applying the approximation lemma ([DZ93], Th.
4.2.16.), we obtain that Sn satisfies the large deviations principle with speed
n and the rate function

where B(x, b) is the ball of radius J centered at x.

Step 3. It remains to show that I (x) = I (~), where I is given by (2.1). We
will first prove that I (x). Assume that I(x)  oo (trivial otherwise).
This inequality is obvious for x = 0 (as IK(0) = 0). Now for x =1= 0, the
finiteness of I(x) implies that g(0) ~ 0. For each 6 ) 0, we have by the
convergence of gK(0) to g(0) that yg(0) E B(x, 6) implies ygK(0) E B(x, 2b)
for sufficiently large K, so that we have

which yields I(x).

We now have to prove the converse inequality. Assume at first ~(0) 7~ 0,
by the lower semi-continuity of I (inf-compact in reality), we have

Now assume g(0) = 0. (0)  1(0) (trivial). For x ~ 0,

So we have that I (x) = I (x), which ends the proof of theorem 2.1.

Remark. - Under the boundedness " ~ca2 ~  C" and the strong condition
oo, the level-3 large deviations principle for holds.
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Indeed, assume without loss of generality that is the coordinates system
on the product space no = ~-C, equipped with the product measure
P = ~Z, where  is the common law of w;. Let 0k be the shift operator
acting on He, defined by t = , E ~, and let En be the
empirical process of the i.i.d. sequence, defined on the space of all

probability measures on no:

By the results of Donsker-Vardahan [DV85], En satisfies a level-3 large
deviation principle on equipped with the weak convergence topology,
with speed n and the good rate function given by the Donsker-Varadhan
level-3 entropy H(Q), see [DV85] for some details on H(Q). Let § be the
map given by

By the absolute summability continuous from no to
both equipped with product topology. Let be the space of all

probability measures on 1R~ equipped with the weak convergence topology.
Define on the empirical measure

We obviously have Rn = En o ~-1. By the contraction principle, we conclude
that Rn satisfies a level-3 large deviation principle with speed n
and the good rate function I (Q) = inf {~f(Q); Q = Q o ~-1 . .

3. Moderate deviations.

We are now studying moderate deviations for Sn in the same way as
we have proved large deviations in the preceding section, we keep the same
conditions on ai and w2 . To this purpose, let be a sequence of positive
numbers such that
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THEOREM 3.1.- Under the conditions (Hl) and (H2),1P E .
satisfies a large deviation principle with the speed bn and the good rate func-
tion IM given by

Proof. - We separate its proof into two steps.

n

Step 1. Let Sn = as before.

Then, by [JWR92], 1P E . J satisfies a large deviation principle

with speed b2n and the good rate function IKM given by

Step 2. Since Sn - S~ satisfies assumptions of lemma 2.2, we apply the
concentration inequality (2.2) to W ~ 0,

But by the proof of Theorem 2.1 we have

where it follows

According to the approximation lemma ([DZ93], Th. 4.2.16.), we deduce
that Sn satisfies the moderate deviations principle with speed b2n and the
rate function
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The identification of the rate function is done like in Step3 of the proof of
theorem 2.1.
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Abstract

We obtain in this paper moderate deviations for functional empirical processes of general state
space valued Markov chains with atom under weak conditions: a tail condition on the 1rst time
of return to the atom, and usual conditions on the class of functions. Our proofs rely on the
regeneration method and sharp conditions issued of moderate deviations of independent random
variables. We prove our result in the nonseparable case for additive and unbounded functionals of
Markov chains, extending the work of de Acosta and Chen (J. Theoret. Probab. (1998) 75–110)
and Wu (Ann. Probab. (1995) 420–445). One may regard it as the analog for the Markov chains
of the beautiful characterization of moderate deviations for i.i.d. case of Ledoux 1992. Some
applications to Markov chains with a countable state space are considered. c© 2001 Elsevier
Science B.V. All rights reserved.

MSC: primary 60F10

Keywords: Moderate deviations; Markov chains; Regeneration chain method; Functional empiri-
cal processes; Countable state space

1. Introduction and main result

Let (E,E) be a measurable space andM(E) be the space of all 1nite signed measures
on (E,E) equipped with the total variation norm ‖ · ‖var. Let {Xj}j¿0 be an E-valued
irreducible ergodic Markov chain with transition probability P and invariant probability
measure �. Throughout the paper, we assume that the chain {Xj} has an atom, i.e.
∃� ⊂ E with �(�)¿ 0, � a probability measure such that

∀x∈ �; P(x; ·)= �(·); (1.1)

� is then called a atom. Note that, when the state space is discrete, every state charged
by � is an atom. We introduce the 1rst time of entrance of the chain in this atom
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which will play an important role in the study:

�= inf{n¿ 0; Xn ∈ �};
and we will always assume that E��2¡∞.
Given a probability measure � on (E,E), P� will be the Markovian probability

measure on (EN;E⊗N) determined by the transition probability P and the initial law
�. {Xj}j¿0 will be then the sequence of coordinates on EN.
Let Mn, n¿ 1, be random elements of M(E) de1ned by

Mn :=
1
bn

n−1∑

j=0

(�Xj − �); (1.2)

where bn is a sequence of positive numbers tending to in1nity. We are interested in
this paper in the asymptotic behaviour of P�(Mn ∈ ·).
When bn=

√
n, it is the Central Limit Theorem obtained 1rst by Nummelin (1978)

and Chen (1997) under various conditions. If bn= n, it is the large deviations case
extensively studied since the pioneering works of Donsker–Varadhan (see for instance
Deuschel and Stroock, 1989; Wu, 1993 for a survey on this topic).
Now assume,

bn√
n
↑ +∞;

bn
n
→ 0: (1.3)

The estimation of the probabilities P�(Mn ∈ ·) is usually called the moderate deviation
problem. We will suppose moreover the following: ∃A¿ 1; 0¡�¡ 1 such that

∀n; k¿ 1; bnk6Ak1−�bn: (1.4)

It is the usual condition on the speed of moderate deviations in the i.i.d. case (Ledoux,
1992), it means that bn cannot be too near of n (the scale of large deviations). Sharp
results on moderate deviation are quite recent, even for the i.i.d. case: the works of
Ledoux (1992) for the upper bound in Banach space (which are largely used in this
paper) and results of Wu (1994) for the functional empirical process (nonseparable
Banach space case). See also Djellout (2000) for the extension to the martingale dif-
ferences case and applications to mixing sequences.
The Markovian case has been studied under successively less restrictive conditions

(Mogulskii (1984), Gao (2000); Wu (1994)) and recently under weak conditions by
de Acosta (1988a,b) and Chen (1997) for the lower bound (under diGerent and non-
comparable conditions) and by de Acosta and Chen (1998), and Chen (1997) (under
same conditions but diGerent proof) for the upper bound. de Acosta and Chen (1998)
have established their results under the assumptions of geometric ergodicity and a reg-
ularity condition (de Acosta and Chen, 1998; assumption (1.5)). Very recently, Guillin
(2000) extends their results to the uniform trajectorial case, and Guillin, 2001 for
Markov processes (continuously indexed).
We will be interested here by the asymptotic behaviour of Mn uniformly over a class

of function (context of Wu, 1994).
Given a class of real measurable functions F such that ∀f∈F, �(f)= 0, f∈L2(�)

and E�(
∑�

j=1 ‖f(Xj)‖)2¡∞, let l∞(F) be the space of all bounded real functions
on F with norm ‖F‖F=supf∈F|F(f)|.
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If F is in1nite, l∞(F) is a nonseparable Banach space. Every �∈M(E) can be
regarded as an element �F ∈ l∞(F) given by �F(f)= �(f)=

∫
E f d�. We will now

establish the moderate deviations estimations of (Mn)F in l∞(F).
In the sequel, we will suppose that F is countable, or that the processes {Mn(f);

f∈F} are separable in the sense of Doob, to avoid measurability problems. Let d2
be the following metric for F: ∀f; g∈F:

d2(f; g)= �(f − g);

where

�2(f)= lim
n→∞

1
n
E
(

n−1∑

k=0

f(Xk)

)2
= �(�)E�




�∑

j=1

f(Xj)



2

is the associated variance.
For an irreducible Markov chain taking integer values which has a 1nite second

moment for the 1rst return time from some integer to itself, Levental (1990) 1nd
necessary and suHcient conditions for the uniform CLT over all subsets of the integers.
Tsai (1997) generalized this result to unbounded classes, F= {f: |f|6F}, where F
is a non-negative function, say the envelope function, on the countable state space. Tsai
(2000) gives suHcient and nearly necessary conditions (weaker than condition of the
uniform CLT) for the compact and bounded law of the iterated logarithm for Markov
chains with a countable state space.
We will 1rst give the moderate deviation principle in the general framework where

an atom is present, and then present some applications on a countable state space,
where some conditions can be more explicit.
Here is our main result:

Theorem 1. Suppose that (F; d2) is totally bounded and (Mn)F → 0 in probability
in l∞(F). Assume
(H1) lim supn→+∞ n=b2n log(nP�(�¿ bn))=−∞;
(H2) lim supn→+∞ n=b2n log(nP�(

∑�
k=0 ‖f(Xk)‖F¿ bn))=−∞:

Then for every probability measure � on (E;E) verifying

lim sup
n→+∞

n
b2n
logP�

(
�∑

k=0

‖f(Xk)‖F¿ bn

)
=−∞: (1.5)

P�((Mn)F ∈ ·) satis<es a moderate deviation principle on l∞(F) with speed b2n=n and
good rate function JF given by

JF(F)= sup{J(f1 ;:::;fm)(F(f1); : : : ; F(fm));f1; : : : ; fm ∈F; m¿ 1};

where J(f1 ;:::;fm) is given by

Jf(x)= sup
 ∈Rm

[
〈x;  〉 − 1

2
�2(〈f;  〉)

]
: (1.6)
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Suppose moreover
∑∞

k=1〈 ; f〉Pk〈f;  〉 ∈L1(�) for all  ∈Rm; then

�2(〈f;  〉)=
∫
〈f;  〉2 d�+ 2

∫ ∞∑

k=1

〈f;  〉Pk〈f;  〉 d�:

Remarks. (i) Note that when an atom is present, the geometric ergodicity condition is
equivalent to

∃�¿ 0 such that E�(e��)¡∞:

Condition (H1) is then strictly weaker than the geometric ergodicity imposed in the
work de Acosta and Chen (1998). Moreover (H1) can be more explicitly given. For
example, in the particular case bn= n1=p with 1¡p¡ 2, for which conditions (1.3)
and (1.4) are then obviously veri1ed, then (H1) is easily seen to be implied by

∃�¿ 0 such that E�(e��
2−p
)¡∞: (1.7)

Remark also that we consider here the nonseparable case of the functional empirical
process and unbounded functions, cases which are not studied by de Acosta and Chen.
To their credit, note however that they suppose neither the existence of an atom nor
the condition (1.4) on (bn) and their sole assumption is the well known geometric
ergodicity.
(ii) Still in the context bn= n1=p with 1¡p¡ 2, following Nummelin and Tweedie

(1978) and Nummelin and Tuominen (1982) (or Meyn and Tweedie, 1993 for a
complete review) one can see that condition (1.7) is equivalent to the following
sub-geometric ergodicity: there exists r ¿ 1 such that for �-a.e. x (with ‖ · ‖V de-
noting the total variation norm)

∞∑

n=1

rn
2−p‖Pn(x; ·)− �‖V ¡∞; (1.8)

which is stronger than ergodicity of degree 2 (see Chen, 1999) but weaker than geomet-
ric ergodicity. Such an assertion implies in particular that (1.7) is valid independently
of the choice of the atom and so (H1) in this context.
We have not been able to derive the independence of the recurrence condition (H1)

on atom nor its characterization by means of some type of ergodicity for general bn,
but fortunately our results are proved if (H1) and (H2) are satis1ed by some and then
any atom.
(iii) Under (H2), condition (1.5) is veri1ed, for instance, by the invariant measure

� of the Markov chain and then by the Dirac measure �x for �-a.e. x∈E, see the
appendix.

2. Applications to Markov chains with a countable state space

We will give in this section some applications where some conditions can be given
explicitly, more precisely when the total boundedness of F with respect to the pseudo-
metric d2 or (Mn)F → 0 in probability can be proved under satisfying hypotheses. We
are much inspired here by the works of Levental (1990) and Tsai (1997).
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We then consider the MDP for Markov chains with a countable state space E=
{1; 2; 3 : : :}: Here �i will be the ith hitting time of state 1, i.e.

� := �1 =min{n: n¿ 1; Xn=1} and for i¿ 1; �i=min{n: n¿�i−1; Xn=1};
and mi;j be the expected minimal number of steps from state i to state j, i.e.

mi;j = E(min{n: n¿ 1; Xn= j} |X0 = i):

Let us 1rst consider the case where F is the family of all indicator functions, i.e.
F= {1A−�(A): A ⊂ E}, related with Kolmogorov–Smirnov nonparametrical statistics.

Corollary 2. Assume that (H1) is satis<ed and
+∞∑

k=1

�(k)
√
m1; k ¡∞; (2.1)

for all orderings of E. Then for every probability measure � satisfying (1:5); the
MDP of Theorem 1 holds for the family of all indicator functions on E.

Proof. Condition (2.1) is the necessary and suHcient condition for the uniform CLT
over all subsets of the integers for Markov chains satisfying E(�2 − �1)2¡∞ by
Levental (1990). The uniform CLT implies in particular MF

n → 0 in probability and
(F; d2) totally bounded. For this family of indicator functions F, (H2) is identical to
(H1). The proof is completed by Theorem 1.
In the particular case of the law of the iterated logarithm (bn=

√
2n log log n), we

have the following:

Corollary 3. Assume that

E�(�2(log �)a)¡∞; ∀a¿ 0: (2.2)

Suppose moreover

1√
log log n

n∑

k=1

�(k)
√
m1; k → 0; (2.3)

for all orderings of E. Then for every probability measure � satisfying (1:5); the
MDP of Theorem 1 holds for the family of all indicator functions on E and for
bn=

√
2n log log n.

Proof. Remark that by Theorem 1, and by the fact that Ledoux (1992, Corollaire
2) shows that (H1) is implied by (2.2), we only have to prove that (Mn)F → 0 in
probability in l∞(F) and that (F; d2) is totally bounded. But, Tsai (2000) proves that
under the square integrability of � under � (obvious by (2.2)), the compact LIL is
implied by (2.3) and that the compact LIL is equivalent to the needed convergence in
probability. Note also that the compact LIL implies that (F; d2) is totally bounded, so
ends our proof.

We can extend Corollaries 2 and 3 to unbounded classes of functions F= {f: |f|
6F} centred with 1nite variance, where F is a nonnegative function on E (called
envelope of F).
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Corollary 4. Suppose that (H1) and (H2) hold and that (F; d2) is totally bounded.
Assume either
(a) bn= n�+1=2 with 0¡�6 1=2; and

∃�′¡� such that
1
n�′

n∑

k=1

F(k)�(k)
√
m1; k → 0 as n→∞;

or
(b) bn general and

√
n

bn

[
√
nbn]∑

k=1

F(k)�(k)
√
m1; k → 0 as n→∞; (2.4)

for all orderings of E. Then for every probability measure � on (E;E); verifying (1:5);
the MDP of Theorem 1 holds.

First remark that the particular condition of part (a) is slightly weaker than in (b).
By trivial facts, one can show that, for bn=

√
2n log log n, condition (2.4) and (2.3)

are equivalent.

Proof. Once again, by Theorem 1, we only have to prove that (Mn)F → 0 in proba-
bility in l∞(F). The conditions for cases (a) and (b) are obtained through a rewriting
of the proof of Tsai (2000) in our context.

3. Proof

3.1. The separable case

We 1rst need following lemma which gives us the moderate deviation principle when
F is 1nite, i.e. in the separable case.
Let f be a measurable mapping from E to Rd, suppose moreover that �(f)= 0 and

�2(f)¡∞.

Lemma 5. Assume that (H1) is satis<ed and
(H2′) lim supn→+∞ n=b2n log(nP�(

∑�
k=0 ‖f(Xk)‖¿ bn))=−∞:

Then for every probability measure � on (E;E) verifying

lim sup
n→+∞

n
b2n
logP�

(
�∑

k=0

‖f(Xk)‖¿ bn

)
=−∞; (3.1)

P�(Mn(f)∈ ·) veri<es a moderate deviation principle with speed b2n=n and good rate
function Jf given by (1:6).

Remark. By assumptions (1.3) and (1.4) on the speed bn, for each +¿ 0, we may
choose some l(+)¿ 0 such that +bn ¿b[l(+)n]. Then, using (1.4), it is not hard to
conclude that (H1) implies ∀+¿ 0

lim sup
n→∞

n
b2n
log(nP�(�¿ +bn))=−∞:
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The same extension can be made for (H2), (H2′), (3.1) and (1.5), which will be
referred in the sequel, with little abuse, again as (H1), (H2), (H2′), (3.1) and (1.5).

Proof of Lemma 5. The proof relies principally on a decomposition into blocks of
return to the atom, which by a regeneration argument enables us to reduce the problem
to the case of i.i.d. random variables.
We divide the proof of the Lemma into 4 steps: Step 1 is dedicated to the key

decomposition of Mn(f). We give an extended version of Ledoux (1992) moderate
deviations of i.i.d.r.v. and we apply it to our setting in Step 2. The negligibilities in
the decomposition are established in the third and fourth steps.
Step 1: First, introduce by induction the following successive times of return to �:

�(0)= �= inf{n¿ 0; Xn ∈ �};

�(k + 1)= inf{n¿�(k); Xn ∈ �}: (3.2)

Obviously, {�(k)} are stopping times w.r.t. {Xn}, and are almost surely 1nite. Note
that E��= �(�)−1.
Here is the classical decomposition of the sum Mn(f); which is again crucial here,

Mn(f) =
1
bn

n−1∑

i=0

f(Xi)

=M�∧(n−1)(f) +
1
bn

i(n)−1∑

k=1

 k(f) +
1
bn

∑

l(n)+16j6n−1
f(Xj) p:s:; (3.3)

where the random  k(f) are de1ned by

 k(f)=
�(k)∑

j=�(k−1)+1
f(Xj); (3.4)

and

i(n)=
n−1∑

k=0

I�(Xk);

and l(n)= �((i(n) − 1) ∨ 0). Note that, by Nummelin (1984), { k}(f) is a sequence
of independent random variables with common law LP�(

∑�
j=0 f(Xj)).

Let us introduce for all n, e(n)= [�(�)n], (3.3) becomes

Mn(f) =
1
bn

e(n)∑

k=1

 k(f) +M�∧(n−1)(f) +
1
bn

(i(n)−1∑

k=1

 k(f)−
e(n)∑

k=1

 k(f)

)

+
1
bn

∑

l(n)+16j6n−1
f(Xj): (3.5)

We control now each term of this decomposition, showing that only the 1rst term con-
tributes to the moderate deviations. It is the decomposition Nummelin used to establish
the Central Limit Theorem (Nummelin, 1978, Theorem 7:6).
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Step 2: We deal here with the moderate deviations of the 1rst term of (3.5). First
note the following.

Lemma 6. Let (!k) be a centred and square integrable i.i.d. sequence of Rd such
that ∃M; ∀u∈R

lim sup
n→∞

n
b2n
log(nP(‖!0‖¿ubn))6− u2

M
; (3.6)

then; if a(n) is some positive increasing sequence such that a(n)=n → a¡∞; 1=bn∑a(n)
k=1 !k satis<es a moderate deviation principle with rate function a−1I where

I(x)= sup
y∈Rd

{
〈x; y〉 − 1

2
E〈!0; y〉2

}
:

Ledoux (1992) proves only this result with a(n) substituted by n, but his proof
works in this context. So its proof is omitted.
Obviously, ( k(f)) veri1es condition (3.6) by (H2′) (regarded as its extension see

remark after Lemma 5). Then P�(1=bn
∑e(n)

k=1  k(f)∈ ·) satis1es a moderate deviation
principle with speed b2n=n and rate function Jf given by

Jf(x)= sup
0∈Rm

{
〈0; x〉 − 1

2
�2(〈0;f〉)

}
:

Let us deal now with the other terms in the summation (3.5).
Step 3: We will prove that ∀+¿ 0

lim sup
n→∞

n
b2n
logP�

(∥∥∥∥∥

�∧(n−1)∑

k=1

f(Xk)

∥∥∥∥∥¿ +bn

)
=−∞; (3.7)

lim sup
n→∞

n
b2n
logP�



∥∥∥∥∥∥

∑

l(n)+16j6n−1
f(Xj)

∥∥∥∥∥∥
¿ +bn


=−∞; (3.8)

In fact,
∥∥∥∥∥∥

�∧(n−1)∑

k=0

f(Xk)

∥∥∥∥∥∥
6

�∧(n−1)∑

j=0

∥∥∥∥∥∥
f(Xj)

∥∥∥∥∥∥

and then (3.7) follows exactly from condition (3.1):

P�



∥∥∥∥∥∥

∑

l(n)+16j6n−1
f(Xj)

∥∥∥∥∥∥
¿ +bn


6P�


 ∑

l(n)+16j6n−1
‖f(Xj)‖¿ +bn




6P�


 ∑

�(i(n)−1)+16j6�(i(n))

‖f(Xj)‖¿ +bn




6P�


 max
06k6n−1

�(k+1)∑

j=�(k)+1

‖f(Xj)‖¿ +bn


 :
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By Nummelin (1984), {∑�(k+1)
j=�(k)+1 ‖f(Xj)‖} are i.i.d. random variables under P� with

common law LP�(
∑�

k=0 ‖f(Xk)‖), so we get

P�



∥∥∥∥∥∥

∑

l(n)+16j6n−1
f(Xj)

∥∥∥∥∥∥
¿ +bn


6 nP�

(
�∑

k=0

‖f(Xk)‖¿ +bn

)
;

and (3.8) is a straightforward consequence of condition (H2′).
Step 4: We shall prove here

lim sup
n→∞

n
b2n
logP�



∥∥∥∥∥∥

i(n)−1∑

j=1

 j(f)−
e(n)∑

k=1

 k(f)

∥∥∥∥∥∥
¿ +bn


=−∞: (3.9)

This limit needs more eGort than the previous negligibilities: let 0¡�¡�(�) be 1xed
but arbitrary, and n be suHciently large in order that e(n)¿ �n. We have by stationarity

P�



∥∥∥∥∥∥

i(n)−1∑

j=1

 j(f)−
e(n)∑

k=1

 k(f)

∥∥∥∥∥∥
¿ +bn




=P�



∥∥∥∥∥∥

i(n)−1∑

j=1

 j(f)−
e(n)∑

k=1

 k(f)

∥∥∥∥∥∥
¿ +bn; |i(n)− 1− e(n)|¿�n




+P�



∥∥∥∥∥∥

i(n)−1∑

j=1

 j(f)−
e(n)∑

k=1

 k(f)

∥∥∥∥∥∥
¿ +bn; |i(n)− 1− e(n)|6 �n




6P�


 max

e(n)−[�n]6k6e(n)+[�n]

∥∥∥∥∥∥

k∑

i=e(n)−[�n]
 i(f)

∥∥∥∥∥∥
¿

+
2
bn




+P�(|i(n)− 1− e(n)|¿�)

6P�

(
max

16k62[�n]

∥∥∥∥∥
k∑

i=1

 i(f)

∥∥∥∥∥¿
+
2
bn

)

+P�(i(n)− 1− e(n)¿�n)

+P�(i(n)¡e(n)− �n+ 1): (3.10)

Let us begin with the last two terms of the right side of this last inequality.

P�(i(n)− 1− e(n)¿n�)6P�(�(e(n) + [�n])6 n− 1)

6P�(�(e(n) + [�n])− �(0)6 n− 1)

6P�

(e(n)+[�n]∑

k=1

(�(k)− �(k − 1))6 n− 1
)

6P�

(
1

bk(n)

k(n)∑

k=1

(
�(k)− �(k − 1)− 1

�(�)

)
6

n− 1− k(n)�(�)−1

bk(n)

)
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with k(n)= e(n) + [�n]. We have

n− 1− k(n)�(�)−1

bk(n)
=

k(n)
bk(n)

(
n− 1
k(n)

− 1
�(�)

)
:

Note now that for suHciently large n; (n−1)=k(n) � (�(�)+�)−1, and k(n)=bk(n) →∞.
By Ledoux (1992), condition (H1) implies the upper bound of the moderate deviations
for the i.i.d. sequence {�(k)−�(k−1)−�(�)−1} with rate function I1 such that I1(x)→
∞ when |x| → ∞. Therefore, we have ∀L¿ 0,

lim sup
n→∞

k(n)
b2k(n)

logP�(i(n)− 1− e(n)¿�)6− inf
t6−L

I1(t):

Letting L tend to in1nity and noting that k(n)=n→ �(�) + �,

lim sup
n→∞

n
b2n
logP�(i(n)¿ e(n) + [�n]− 1)=−∞:

Using the same argument, we obtain also

lim sup
n→∞

n
b2n
logP�(i(n)6 e(n)− [�n]− 1)=−∞:

We have the control of the last two terms of (3.9).
Because 1=bn

∑n
k=1  k(f) → 0 in probability (by CLT for example), we have for

suHciently large n,

max
k62�n

P�



∥∥∥∥∥∥

n∑

j=k+1

 j(f)

∥∥∥∥∥∥
¿

+
6
bn


6 1

2
:

Then, by the Ottavianii’s inequality for independent random variables, we get

P�


 max
16k62[�n]

∥∥∥∥∥∥

k∑

j=e(n)−�n

 j(f)

∥∥∥∥∥∥
¿

+
2
bn


6 2P�



∥∥∥∥∥∥

2[�n]∑

j=1

 j(f)

∥∥∥∥∥∥
¿

+
6
bn




+2P�

(
max
k62�n

‖ k(f)‖¿
+
6
bn

)
:

Obviously by the same approach as in (3.8), condition (H2′) implies

lim sup
n→∞

n
b2n
logP�

(
max
k62�n

‖ k(f)‖¿
+
6
bn

)
=−∞:

Taking F = {x; ‖x‖¿ +=6}, we have by the results of Step 2

lim sup
n→∞

n
b2n
logP�



∥∥∥∥∥∥

2[�n]∑

j=1

 j(f)

∥∥∥∥∥∥
¿

+
6
bn


6− �(�) (2�)−1 inf

‖x‖¿+=6
Jf(x):

Combining these last results, we obtain

lim sup
n→∞

n
b2n
logP�



∥∥∥∥∥∥

i(n)−1∑

j=1

 j(f)−
e(n)∑

k=1

 k(f)

∥∥∥∥∥∥
¿+bn


6− �(�)(2�)−1 inf

‖x‖¿+=6
Jf(x):
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As �2(〈x;  〉) is diGerentiable on  and @ �2(〈x;  〉)| =0 =0; Jf(x)= 0 ⇔ x=0. Thus,
by the inf-compactness of Jf, we get

inf
‖x‖¿+=6

Jf(x)¿ 0:

As � is arbitrary, letting �→ 0+, we have then the negligibility (3.9).
Using estimates (3.7)–(3.9) and the moderate deviations of Step 2, we get the result

by Dembo and Zeitouni (1993, Theorem 4:2:13).

3.2. Proof of Theorem 1

Theorem 1 is established using the line of the proof of Wu (1994) for i.i.d. case.
In fact, we reduce our proof to the use of Lemma 5 and to an exponential asymptotic
equicontinuity with respect to the pseudometric d2 associated with F.
Under our hypothesis, by Lemma 5, we have the 1nite dimensional moderate de-

viation principle, i.e. for each f1; : : : ; fm ∈F; Mn((f1; : : : ; fm)) satis1es the moderate
deviation principle with speed b2n=n and the good rate function J(f1 ;:::;fm). We introduce
the following notation ∀2¿ 0:

F2= {f − g;f; g∈F and d2(f; g)6 2}:
We have obviously that (F2; d2) is totally bounded. Moreover (Mn)F2 → 0 in prob-
ability in l∞(F2) by our assumption. By Wu (1994), for the MDP we have only to
verify the following condition: ∀+¿ 0,

lim
2→0
lim sup
n→∞

n
b2n
logP�(‖Mn‖F2 ¿ +)=−∞: (3.11)

Or equivalently, ∀+¿ 0

lim
2→0
lim sup
n→∞

n
b2n
logP�


 sup

f∈F2

∥∥∥∥∥∥

n−1∑

j=0

f(Xj)

∥∥∥∥∥∥
¿ +bn


=−∞: (3.12)

We use the same decomposition as in the proof of the preceding theorem:

P�


 sup

f∈F2

∥∥∥∥∥∥

n−1∑

j=0

f(Xj)

∥∥∥∥∥∥
¿ +bn




= P�


 sup

f∈F2

∥∥∥∥∥∥

�∧(n−1)∑

j=0

f(Xj) +
i(n)−1∑

i=1

 i(f) +
∑

l(n)+16i6n−1
f(Xi)

∥∥∥∥∥∥
¿ +bn




6P�


 sup

f∈F2

∥∥∥∥∥∥

�∧(n−1)∑

j=0

f(Xj)

∥∥∥∥∥∥
¿

+
3
bn


+ P�

(
sup
f∈F2

∥∥∥∥∥

i(n)−1∑

i=1

 i(f)

∥∥∥∥∥¿
+
3
bn

)

+P�


 sup

f∈F2

∥∥∥∥∥∥
∑

l(n)+16i6n−1
f(Xi)

∥∥∥∥∥∥
¿

+
3
bn


 :

We then have to prove the negligibility of all the terms in the right side of this
inequality.
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Using conditions (1.5) and (H2), we get as for (3.7) and (3.8)

lim
2→0
lim sup
n→∞

n
b2n
logP�


 sup

f∈F2

∥∥∥∥∥∥

�∧(n−1)∑

j=0

f(Xj)

∥∥∥∥∥∥
¿

+
3
bn


=−∞;

lim
2→0
lim sup
n→∞

n
b2n
logP�


 sup

f∈F2

∥∥∥∥∥∥
∑

l(n)+16m6n−1
f(Xm)

∥∥∥∥∥∥
¿

+
3
bn


=−∞: (3.13)

For the middle term, 1rst note

P�

(
sup
f∈F2

∥∥∥∥∥

i(n)−1∑

k=1

 k(f)

∥∥∥∥∥¿
+
3
bn

)
6P�

(
max
16i6n

sup
f∈F2

∥∥∥∥∥
i∑

k=1

 k(f)

∥∥∥∥∥¿
+
3
bn

)
:

We obviously have that (1=bn
∑n

k=1  k(f))
F2 → 0 in probability in l∞(F2) by the

assumption that (Mn)F → 0 in probability. Therefore, for suHciently large n, we have

max
k6n

P�

(
sup
f∈F2

∥∥∥∥∥
n∑

k=1

 k(f)

∥∥∥∥∥¿
+
9
bn

)
6
1
2
;

and we use again the Ottavianii’s inequality in Banach space for independent random
variables, then for suHciently large n,

P�

(
max
16i6n

sup
f∈F2

∥∥∥∥∥
i∑

k=1

 k(f)

∥∥∥∥∥¿
+
3
bn

)
6 2P�

(
sup
f∈F2

∥∥∥∥∥
n∑

k=1

 k(f)

∥∥∥∥∥¿
+bn
9

)

+2P�

(
max
k6n

sup
f∈F2

‖ k(f)‖¿
+bn
9

)
:

The negligibility of the last term is done as in the proof of Lemma 5. For the 1rst term,
we then use Lemma 3 of Wu (1994), an extension of Ledoux moderate deviations in
the nonseparable case, we get identifying B= l∞(F2) (in the notations of Wu, 1994,
Lemma 3)

lim sup
n→∞

n
b2n
logP�

(
sup
f∈F2

∥∥∥∥∥
n∑

k=1

 k(f)

∥∥∥∥∥¿
+bn
9

)
6− +2

C0�2
;

where C0 is some universal positive constant and �2 = supf∈F2
E( 1(f))2. Remark that

�26 22 and consequently

lim
2→0
lim sup
n→∞

n
b2n
logP�

(
sup
f∈F2

∥∥∥∥∥
n∑

k=1

 k(f)

∥∥∥∥∥¿
+bn
9

)
=−∞: (3.14)

Combining (3.3), (3.4), and preceding inequalities, we get (3.2) and then our theorem.
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Appendix

This section is devoted to the proof of the following lemma:

Lemma 7. Under hypothesis (H2); the invariant measure � satis<es condition (1:5).

Proof. In fact, we will prove the following strongest assertion:
(i) lim supn→∞ n=b2n logP�(

∑�
j=0 ‖f(Xj)‖F¿ bn)=−∞ is equivalent to

(ii) lim supn→∞ n=b2n logP�(
∑�

j=0 ‖f(Xj)‖F¿ bn)=−∞.

This assertion being proved, the conclusion of the lemma follows.
(ii)⇒ (i): It follows simply from

�(·) =
∫

E
�(dx)P(x; ·)

¿
∫

�
�(dx)P(x; ·)

¿
∫

�
�(dx)�(·)

= �(�)�(·):

(i)⇒ (ii): By Nummelin (1984), letting g(x)=Px(
∑�

j=0 ‖f(Xj)‖F¿ bn), we have

P�




�∑

j=0

‖f(Xj)‖F¿ bn


=

∫

E
�(dx)Px




�∑

j=0

‖f(Xj)‖F¿ bn




=
∫

E
g(x)�(dx)

= �(�)E�

(
�∑

k=1

g(Xk)

)
:

Let �k = {n¿ k;Xn ∈ �}, using the strong Markov property, we get

P�




�∑

j=0

‖f(Xj)‖F¿ bn




= �(�)E�




�∑

k=1

P�




�k∑

j=k

‖f(Xj)‖F¿ bn=Fk






= �(�)E�




∞∑

k=1

1{�¿k}P�




�k∑

j=k

‖f(Xj)‖F¿ bn=Fk




 :
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Since {�¿ k} is Fk measurable, and on {�¿ k}; �k = �, we have

P�




�∑

j=0

‖f(Xj)‖F¿ bn


 = �(�)E�

( ∞∑

k=1

1{�¿k}1{∑�k
j=k ‖f(Xj)‖F¿bn}

)

6 �(�)E�

(
�∑

k=1

1{∑�
j=0 ‖f(Xj)‖F¿bn}

)

= �(�)E�(�1{∑�
j=0 ‖f(Xj)‖F¿bn})

6 �(�)
√
E�(�2)

√√√√√P�




�∑

j=0

‖f(Xj)‖F¿ bn


;

where the last step is obtained by Cauchy–Schwartz inequality. We now easily derive
(ii) from (i).

4. For further reading

The following references are also of interest to the reader: Athreya and Ney, 1978;
Chen, 1991; de Acosta, 1990; de Acosta, 1997; Gao, 1994; Wu, 1995.
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Résumé. Nous nous intéressons dans cette Note aux déviations modérées pour le processus
empirique fonctionnel d’une chaîne de Markov à valeurs dans un espace d’état général,
possédant un atome. Ce principe est établi sous les hypothèses suivantes : une condition
sur le premier temps d’entrée dans l’atome, et des conditions sur la classe de fonctions.
Le cas général est également présenté sous des conditions sur la « split chain » associée.
Ces résultats peuvent être considérés comme l’extension aux chaînes de Markov de la
caractérisation des déviations modérées de v.a. i.i.d. de Ledoux. 2000 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Moderate deviation principle for the functional empirical process
of Markov Chains

Abstract. We obtain in this paper moderate deviations for the functional empirical processes of
general state space valued Markov chains with atom under the following conditions: an
exponential tail for the first time of entrance in the atom of the Markov chain, and usual
conditions on the class of functions for the second case. Our proofs relie on sharp conditions
issued of moderate deviations of independent random variables. One can see our results as
an extension to the Markov case of the beautiful characterization of moderate deviations for
i.i.d. case of M. Ledoux. 2000 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

1. Introduction

Soit {Xj}j>0 une chaîne de Markov irréductible sur un espace d’état mesurable(E,E), de probabilité
de transitionP , de mesure de probabilité invarianteπ. Nous supposerons de plus que cette chaîne possède
unatome, i.e.∃α ∈ E , ν une mesure de probabilité surE tels que :

∀x ∈ α, P (x, ·) = ν(·),

Note présentée par Marc YOR.

S0764-4442(00)00188-9/FLA
 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. 377
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etα est ainsi appeléatome. On remarquera que, dans le cas oùE est discret, chaque état est unatome. On
note parPµ la loi markovienne sur

(
EN,E⊗N

)
determinée uniquement par la transitionP et la loi initiale

µ. La chaîne{Xj} représente alors la suite des coordonnées surEN.
On définit les mesures empiriquesMn, n> 1, par :

Mn :=
1
bn

n−1∑

j=0

(δXj − π),

qui sont des éléments aléatoires deMb(E), l’espace des mesures finies signées sur(E,E) muni de la
norme de la variation totale‖ · ‖var, et oùbn est une suite positive telle quebn/

√
n ↑ +∞, bn/n→ 0. On

supposera en outre quebn est strictement croissante et qu’il existeA> 1, 0< δ < 1 tels que :

∀n,k> 1, bnk 6Ak1−δbn.

Cette condition technique est la condition usuelle pour la vitesse des déviations modérées dans le cas
i.i.d. [8]. Elle signifie quebn ne peut être trop près den (l’échelle des grandes déviations).

En statistique non paramétrique, on a besoin des estimations uniformes deMn(f) :=
∫
f dMn =

1
bn

∑n−1
j=0 (f(Xj)− π(f)), sur une classe de fonctionsF . C’est l’objectif de cette Note.

Notre volonté est d’étendre les résultats sur les déviations modérées de Ledoux [8] et Wu [12] établis pour
le cas i.i.d. dans un espace de Banach séparable et non séparable respectivement, aux chaînes de Markov.
Le cas markovien a été étudié de façon extensive sous des hypothèses de plus en plus générales (voir [9,
13],. . .), et très récemment par de Acosta [1] pour la borne inférieure sous la seule condition de l’ergodicité
de degré2, et de Acosta–Chen [2] pour la borne supérieure sous l’ergodicité géométrique et une condition
de régularité de la mesure initiale, dont l’objectif principal est le principe de déviations modérées pour les
fonctionnelles bornées à valeurs dans un espace de Banach séparable deMn et pour la mesure empirique
Mn. Nous améliorons et étendons ces résultats dans cette Note.

2. Résultat principal

Précisons quelques notations. Étant donné une classe de fonctions réelles et mesurablesF telle que
∀f ∈F on aπ(f) = 0, f ∈ L2(π), soit`∞(F) l’espace de toutes les fonctions réelles bornées surF , muni
de la norme‖F‖F = supf∈F |F (f)|, qui est un espace de Banach non séparable quandF est infini. À toute
mesureν ∈Mb(E) correspond un élémentνF dans̀ ∞(F) donné parνF =

∫
f dν, ∀f ∈ F .

Afin d’éviter les problèmes de mesurabilité, on suppose queF est dénombrable, ou que le processus
{Mn(f), f ∈ F} est séparable au sens de Doob pour toutn. Nous nous intéressons ici au comportement
asymptotique dePµ

(
(Mn)F ∈ ·

)
.

THÉORÈME 1. –Supposons queMFn → 0 en probabilité dans̀∞(F). Soitτ = inf{n > 0, Xn ∈ α}.
Supposons de plus que:

(A1) lim sup
n→+∞

n

b2n
log
(
nPν(τ > bn)

)
=−∞,

(A2) lim supn→+∞
n

b2n
log
(
nPν

( τ∑
k=0

‖f(Xk)‖F ≥ bn
))

=−∞,

(A3) σ2(f) = π(α)Eν
( τ∑
k=0

f(Xk)
)2

<∞, for all f ∈ F ,

et que(F , d2) est totalement bornée avecd2(f, g) = σ(f − g). Alors, pour toute mesure initiale de
probabilitéµ sur (E,E) vérifiant

lim sup
n→+∞

n

b2n
logPµ

(
τ∑

k=0

∥∥f(Xk)
∥∥
F > bn

)
=−∞, (1)

378

352 Déviations modérées pour une chaîne de Markov



Déviations modérées de chaînes de Markov

Pµ
(
(Mn)F ∈ ·

)
satisfait un principe de déviations modérées dans`∞(F) de vitesseb2n/n et de bonne

fonction de tauxJF , définie par: JF(F ) = sup
{
J(f1,...,fm)

(
F (f1), . . . , F (fm)

)
; f1, . . . , fm ∈ F , m >

1
}

, où

Jf (x) = sup
ξ∈Rm

[
〈x, ξ〉 − 1

2
σ2
(
〈f, ξ〉

)]
. (2)

Remarques. – (i) Ce cadre contient le cas de Banach séparable au sens suivant : lorsqueB est un espace
de Banach séparable, il existe(yn) ∈ B′(0,1) (boule unité du dual deB), tel que‖x‖= supn |〈x,Yn〉|. Et
donc pourF = {〈·, yn〉 ; n ∈N}, B est un espace fermé de`∞(F).

(ii) Même dans le cadre d’espace de Banach séparable et pour des classes de fonctions telles que
‖f‖F < C, où (A2) équivaut à (A1), notre condition (A1) est plus faible que la récurrence géométrique
imposée par de Acosta–Chen [2]. Dans ce dernier cas, notre condition (1) est satisfaite par toutes les mesures
de probabilité vérifiant :∃r > 1,

∑∞
k=1 r

n‖µP k − π‖var <∞.
(iii) Rappelons que les déviations modérées pour la mesure empirique (que nous obtenons également) ne

permettent pas d’obtenir de résultats sur les classes infinies (ni dans le cadre du (i)).

3. Esquisse de la démonstration

Notre preuve repose sur les travaux de Ledoux [8] et Wu [12], dans le cas i.i.d., récemment formalisé
dans un cadre général par Arcones [3]. Ainsi, on réduit la preuve du théorème au cas de dimension finie
et une équicontinuité exponentielle asymptotique par rapport à la pseudo-métriqued2 associée àF . Nous
devons donc démontrer que pour toutε > 0,

lim
η→0

lim sup
n→∞

n

b2n
logPµ

(
‖Mn‖Fη > ε

)
=−∞,

oùFη = {f − g ; f, g ∈ F , d2(f, g)< η} et le résultat en dimension finie suivant :

LEMME 2. –Sous les conditions(A1), (A2) (oùF est finie), pour toute mesureµ vérifiant(1),pour toute
fonctionf :B→Rm telle queπ(f) = 0, f ∈ L2(π) etσ2(〈f, ξ〉)<∞ pour toutξ ∈Rm, Pµ(Mn(f) ∈ ·)
satisfait un principe de déviations modérées de vitesseb2n/n et de bonne fonction de tauxJf donnée par(2).

Pour démontrer ces deux résultats, on décompose tout d’abordMn(f) en blocs de retour à l’atomeα,
puis on utilise les résultats de Ledoux [8] sur les déviations modérées de v.a. i.i.d. sur un espace de Banach
comme estimation a priori pour affaiblir l’hypothèse de l’ergodicité géométrique de la chaîne de Markov,
et de la bornitude def .

4. Extension au cas général

D’après Nummelin ([11], théorème 2.1), dans le cas général, la chaîne de Markov{Xj} possède des
ensembles petits, i.e.∃m> 1, b < 1, C ⊂E, ν une mesure de probabilité sur(E,E) tels que :

∀x ∈E, A⊂E, Pm(x,A)> bIC(x)ν(A).

On utilise ensuite la technique dite de «regeneration split chain method» systématiquement développée
dans Nummelin [10,11] (pour le théorème limite centrale dans notre contexte) et Athreya–Ney [4] : on
crée la chaîneΦn = {(Xnm, Yn)}, à partir de la chaîne initiale et d’une suite de variables aléatoires{Yk}
à valeur dans{0, 1}, avec probabilité de transitioñP (voir [11] pour de plus amples détails sur cette
construction).C ×{1} est alors unatomedeΦn.

Soit une mesure de probabilitéµ ∈Mb(E), on définit la mesure de probabilité̃µ sur (E × I,E ⊗ I)
par µ̃ = µ((1 − bIC)I(·))⊗ δ0 + µ(bICI(·))⊗ δ1. On note ensuitẽτC = inf

{
n > 0 ; Φn ∈ C × {1}

}
, et

remplaçonsσ2 parσ2
m(f) = π̃(C ×{1})Eν̃

(∑mτ̃C+m−1
k=0 f(Xk)

)2
. On a alors :
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THÉORÈME 3. –Supposons que(F , d2) est totalement bornée et queMFn → 0 en probabilité dans
`∞(F). Supposons de plus:

(A1′) lim sup
n→+∞

n

b2n
log
(
nP̃ν̃(τ̃C > bn)

)
=−∞,

(A2′) lim supn→+∞
n

b2n
log
(
nP̃ν̃

(mτ̃C+m−1∑
k=0

‖f(Xk)‖F > bn
))

=−∞,

et (A3) avecσ2
m. Alors pour toute mesure initiale de probabilitéµ sur (E,E) vérifiant

lim sup
n→+∞

n

b2n
log P̃µ̃

(
mτ̃C+m−1∑

k=0

∥∥f(Xk)
∥∥
F > bn

)
=−∞,

Pµ
(
(Mn)F ∈ ·

)
satisfait un principe de déviations modérées dans`∞(F) de vitesseb2n/n et de bonne

fonction de tauxJF .

Pour la preuve, on décompose la sommeMn(f) en blocs de retour àC × {1}, de manière à revenir
à un problème de déviations modérées de variables aléatoires1-dépendantes. On démontre ainsi une
amélioration du théorème sur les déviations modérées de v.a.1-dépendantes dans le cas Banach [6] en
utilisant les résultats de Ledoux [8]. L’équicontinuité (2) provient de l’extension de l’inégalité d’Ottavianii
au v.a.1-dépendantes [5] et des résultats de Ledoux [8].
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