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Large and Moderate Deviations for Estimators of
Quadratic Variational Processes of Diffusions
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Abstract. For a diffusion processX; = o:dB; + b(z, X;)dt with (o7) unknown, we study the
large and moderate deviations of the estim&igtr) := Z,[('Z]O(Xk/n — X(k_l)/n)z of the quadratic
variational proces®(¢) = fé aszds.

AMS Mathematics Subject Classifications {991): 60F10, 62J05, 60J05.
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Introduction

Consider the time evolution of some quanii®,)o< <1 in a random environment
modelized by the Ito’s stochastic differential equation

dXt :O-tdBt +b(t,a)) dt, (0.1)

defined on some filtered spac¢®, F, (F;), P) (satisfying the usual condition),
where (b(t, w)); >0 IS an adapted process denoting tnean forward velocity

(B,) is a real standard Brownian motion, ane&l@, € L?(R*, dr) (deterministic)

represents thetrength of the random perturbation (or noise) at timeéAssume

that(o;) is unknown and we want to estimate it from a sam@g)o<, < 1, Or more

exactly to estimate the unknown quadratic variational process of

Q) :=[X], = /(;taszds, t [0, 1]. (0.2)

This question appears very naturally in mathematical finances whasecalled

volatility. D. Florens-Zmirou [7] studied it both from the parametric and non-
parametric statistic point of view, and she obtained the consistency and the centrg
limit theorem of her estimators. Several further works have been realized by Aves-
ani and Bertrand [1], Bertrand [2] about various statistical questions related to this
model. See [2] for relevant references.
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By Stochastic analysis and by following [7] and [2], a natural estimator of
®(-) = [X], is theempirical quadratic variational processt X

[nt]
QrX)=> (Xp—Xp )% te0.1], n>1, (0.3)
k=1

wheret, = {t{ = 5; 0< k <n} is the equi-partition of [01] into n parts, k]
denotes the integer part ofe R. If the drift b(z, w) is known, we can consider the
following variant

[n1]
0 x-1=Y (X,k ~xg,- [

k=1 1

n

I

2
b(s, w) ds) (0.4)

whereY. := [, b(t, w) dr.
If the drift b(z, w) = b(t, X,;(w)) Whereb(t, x) is some deterministic function
(a current situation),X,) verifies

dXt :UtdBt+b(t,X[) dt. (0.5)

Whenb(t, x) is known, and only the samp[e(,;;; k=0,...,n)is observed, we
can also consider the following estimator

) [ ,
0rx)=Y" (th — Xy — by, Xy ) — t;;_1)> . (0.6)
k=1

Under the mild condition that syp, . ; |b(t, ®)| < +00, P —a.s,

Q"(X), Q'"(X-Y), Q;‘(X)—>f olds, P—a.s. (0.7)
0

(well known, see [12]). Thus they all are strongly consistent estimatoes0f =
[X]:.

The purpose of this paper is to furnish some further estimations about these es
timators, refining the already known central limit theorem [7, 1, 2]. More precisely,
we are interested in the estimations of

S -

Pl — (©,() — O Al,
( () (©.() () €

where®, (-) denotes one of the three estimators in (0.3), (0.4) and (0.6) adove,
is a given domain of deviationp(n) > 0) is some sequence denoting the scale
of deviation. Wherb(n) = 1, this is exactly the estimation of the central limit
theorem. Wherb(n) = ./n, it becomes thdarge deviations And when 1 «
b(n) < +/n, this is the so callethoderate deviationsThe main problem studied
in this paper is:
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What are the large and moderate deviations estimations of the estimators
©,() = 07(X), or Q¢ (X —Y), or O7(X)?

The above question will be investigated from two points of view : the paramet-
rical statistical one when = 1 is fixed ; and the nonparametrical statistical one
whent varies in [0, 1]. Let us regard roughly the feature of this question.

The first point is that the question can be reduced tontnerift (i.e.,» = 0)
gaussian case by approximation technique (see Section 2). And in this simplifieg
case, the exact calculations could be made in principle (but one waits the explicit
results, t00).

The second point of this object is that> Q7 (X — Y) has independent incre-
ments which are not homogeneous onee o; is not constant. So it is much like
partial sums of non-i.i.d.r.v., and we can not directly apply the powerful theory in
the i.i.d. case.

Though we have not found the studies exactly on this question in the literatures
(it is a surprise to us), but technically we are much inspired from the two lines of
the studies:

(1) the work of Lynch and Sethuraman [10] on large deviations of processes with
independent increments, and Pukhalski [11] about large deviations of stochasti
processes;

(2) the works of Bryc and Dembo [3], of Bercu, Gamboa and Rouault [4] about
the large and moderate deviations of quadratic forms of a stationary gaussiar
process.

Especially we will encounter the same technical difficulties:

(1) a correction (or extra) term appears in the evaluation of the rate function in the
process-level large deviations because ofikak exponential integrability of
0" (X), a phenomenon first discovered by Lynch and Sethuraman [10]; and
(2) the Ellis—Girtner Theorem can not be applied in some situations, as in [3, 4].

This paper is organized as follows. In the next Section we present the main
results of this paper. They are established successively in the remaining part of th
paper. The related works are often presented in the remarks.

1. Main Results

Let us present now the main results of this paper. We follow [5] for the language
of large deviations, throughout this paper.

1.1. LARGE DEVIATIONS AT A FIXED TIME

Our first result is about the large deviations@f(X) from [X],, with timer = 1
fixed.

THEOREM 1.1 Let(X,) satisfy (0.1) and’. = [ b(t, w) k.
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(a) For everyi € R,

1
lim 1 logEexp(AnQj(X —Y)) = A(A) = / P(ro?)dt (1.1)
n 0

in (—oo, +00], where
P(A)=—3log(1—21) for A< %and+ocoelse (1.2)

(b) Assume that. € L>°([0, 1], df) andb(-, -) € L*(dt @ P). ThenP(Q}(X) € )
satisfies the large deviation principle (in abridge: LDP) with spaeghd with the
good rate function! given by the Legendre transformationof that is,

1(x) := A*(x) = sup{Ax — A(A); % € R}. (1.3)

In other words/ is inf-compact and for each Borel subsebf R,

. , inf 1 n :
_x|€n/1‘o I(x) < nleoo (sup) - logP (Q7(X) € A) < — inf I(x). (1.4)

xX€eA

Remarks 1.1By the well-known Ellis—G&itner Theorem ([6, Th.11.6.1] or [5, § 2.3]),
we can deduce the LDP (1.4) f@7 (X —Y) (instead ofQ’} (X)) from (1.1) once if

L 52 L 42
lim A’(L) = lim — !  dr = ———dt =: A = 400, 1.5
) fo = fo (1.5)

AMAo Ao 1— 2no0?
whereig ;= ﬁ The main difficulty in this result resides just in the case where
Ao < +oo and
1 O.2
A:/-—J—7w<+w, (1.6)
0 1- 2)»00,

in which Ellis—Gartner's theorem is not applicable, becausas not steep see
[5, §2.3].

Notice that the rate function*(x) is strictly convex on0, A), A*(x) = +o0,
Vx <0andA*(x) = Aox — A(Xo) (affine) for allx > A. See Proposition 1.5. below
for some explicit estimations.

Remarks 1.20. € L*°([0, 1], dr) is a necessary condition to the LDP in (1.4). See
Corollary 2.3.

1.2. LARGE DEVIATIONS OF PROCESS.EVEL

We now extend Theorem 1.1. to the process-level large deviatiot, 6f =
0" (X), which is interesting from the viewpoint of non-parametric statistics.

Let D*[0, 1] be the real right-continuous-left-limit non-decreasing functigns
with y (0) non-negative. The spa€x[0, 1] of y, identified in the usual way as the
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space of non-negative bounded measugesm[0,1] with dy [0, ] = y (¢), will be
equipped with the weak convergence topology. The empirical quadratic processe
defined in (0.3) and (0.4) af@* ([0, 1])-valued random variables with respect to
theo-field B° generated by the coordinatgs(r); 0 <r < 1}.

THEOREM 1.2.Given(X,) by (0.1) witho. € L=([0, 1], d), b(-,-) € L=(dt ®
P).

(a) P(Q"(X) € -) satisfies the LDP o*([0, 1]) w.r.t. the weak convergence
topology, with speed and with some inf-compact convex rate functiby ).
(b) If moreoverr — o, is continuous and strictly positive ¢, 1], then

1 . 1
J(y):/ P*(”?) dt—i—}/ izdyL(t), (1.7)
0 2 0 Oy

O;

wherey (1) dt, dy+ are respectively the absolute continuous part and the singular
part of the measurdy associated withy € D*[0, 1] w.r.t. the Lebesgue measure
dr, and

%(x—l—logx) if x>0

P*(x) = { (1.8)

400 if x<O
which is the Legendre transformation Bf}) given in (1.2).

Remarks 1.3In the homogenous case = o constant, this theorem is already
obtained by [4, Theorem 7].

Remarks 1.4We emphasize that the LDP in the part (a) holds only w.r.t. the weak
convergence topology, not w.r.t. the Skorohod topology even in the simplest case
whereo; = o is constant. In fact in this last case, Lynch and Sethuraman [10] found
that J(y) given by the right hand side (in short : RHS) of (1.7) is not inf-compact
w.r.t. the Skorohod topology. A more direct way to see this point is

X

.1
lim =logP(Q},1,(X) — Q}(X) > x) = —5—

, Vv 0, re[0,1
n—>+oo n 20t2 * = [ )

wheret — o2 is assumed continuous ahd= 0 (an easy calculation).

Remarks 1.5ln the evaluation of/ (y), one finds rather naturally the first term in
the RHS of (1.7), but not so easily the second correction term usingHence
even for ‘bad’ configurations such ay d= d[X] + &, (8, the Dirac measure at
t € [0, 1]), Q" (X) can fall into any small neighborhood pfwith a non-negligible
exponential small probability (this is clear also from the estimation in the remark
above).

Notice that this curious phenomenon (with an extra term inclugifwas at
first found by Lynch and Sethuraman [10, Th.3.2] in their investigations of large
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deviations of processes with (homogeneous) independent increments. As said &
the beginning, we are much inspired by their work.

Remarks 1.60ne can weaken slightly the strong condition in (b) sitz¢ > 0

is piecewisely continuous on [@] (i.e., has only a finite number of discontinuity
points of the first type), then the rate functidrin Theorem 1.2.(a) will be instead
of (1.7), given by

1 . 1
_ [ pr (2D L2Lgn
J()/)_/O P (0,2>dt+2,/0 Ezdy (1),

t

whereo, = max{o,,, o,_} is the upper semi-continuous versionaf This can
be established by applying Theorem 1.2.(b) to each sub-interval over which
is continuous, and using the independence of incremen3’¢X — Y) and the
contraction principle.

1.3. MODERATE DEVIATIONS

We discuss now the moderate deviationgd3{ X). To this purpose, letb(n)), > 1
be a sequence of positive numbers such that

b(r)
NG

Let Do([O, 1]) be the Banach space of real right-continuous-left-limit functigns
on [0, 1] with ¢ (0) = 0, equipped with theniform sup norn{it is non-separable!).

The associated Borel-field is too large. We shall use tlefield B° generated by

the coordinates$y (¢); 0<r < 1}.

b(n) — +o0, — 0. (2.9)

THEOREM 1.3.Given (X,) by (0.1) withb(t, w) € L*®°(dt ® P). Assumer? ¢
L?([0, 1], dr) and
k/n

J/nb(n) max o?dt — 0, (1.10)
ISksn Jg-1)/n

or more particularly for some > 2,
2 1_1
o2 e LP(0,1,d) and b(m) =0 <n2 p). (1.11)

Then for each3*-measurable subset C Dg([0, 1]),

. . inf 1
—nf ()< Jim (sup) 2
x logP (ﬂ (Q"(X)—[X]) € A) < —inf J,(y), (1.12)
b(n) yea
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whereA®, A are taken w.r.t. the sup norm topology, and the good rate functjpn
Is given by

O a4 it dy < o2dr

a4 0> o

Jm (y) — 0 40,t4 [l. 0] y t (113)
+ o0 otherwise

In particular, P (% (01(X) —[X]1) € ) satisfies the LDP oR with speed?(n)
and with the rate function given by
2

X
Ly(x) = —5——
4 [ atds

, VxeR. (1.14)

Remarks 1.7In the literature, the large deviation principles in Theorem 1.3 are of-
ten called Moderate Deviation Principles (in abridge MDP, see e.g. [5]). Notice an
essential difference between the large deviations in Theorem 1.2 and the moderat
deviation in Theorem 1.3 —the LDP in Theorem 1.3. holds even w.r.t. the sup norm
topology which is much stronger than the Skorohod topology.

We emphasize that our condition (1.11) is inspired by Bryc and Dembo [3,
Theorem 2.3].

1.4. THE UNBOUNDED DRIFT CASE

In the previous three results we have imposed the boundednéss, 6f), which
allows us to reduce very easily the large and moderate deviatiap$(af) to those
of 0" (X —Y) (no drift case). It is very natural to ask whether they continue to hold
under thelLipchitzian condition or more generallyinear growthcondition of the
drift b(¢, x), rather than the boundedness. This is the object of the following.

THEOREM 1.4.Given (X,) by (0.5) withXy bounded. Assume that the drift
satisfies the following uniform linear growth condition:

1b(s, x) —b(t, NI <C[L+ |x =yl +n(s —tDx|+[yD],
Vs,t €[0,1],x,y € R, (1.15)

wheren: [0, +00) — [0, +00) is a continuous non-decreasing function with
n(0) = 0andC > 0Ois a constant.

(a) Assumer. € L>®([0, 1], dr). ThenQ"(X) defined by (0.6) satisfies the LDPs
in Theorem 1.1 and Theorem 1.2. 3
(b) Assume (1.10). The MDP in Theorem 1.3. continue to hol@f@X) (instead

of 0"(X)).

Remarks 1.8The uniformly linear growth condition (1.15) is satisfied for example
under
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(1) the usual Lipchitzian condition; or
(2) b(t, x) = g(x) whereg(x) satisfies]g(x) — g(y)|<C (1+ |x — y]|); or
(3) b(t,x) = f(t)g(x) with f continuous on [01] andg satisfies (2) above.

Remarks 1.9As the reader can imagine naturally, the key is to show that the
difference betwee®” (X — Y) and 0" (X) is negligible in the senses of both large
deviations and moderate deviations. This will be realized by means of three power
ful tools: Gronwall’'s inequality, Evy’'s maximal inequality and an isoperimetric
inequality for gaussian processes.

1.5. EXACT DEVIATION INEQUALITIES

The LDP in Theorem 1.2. holds only w.r.t. the weak convergence topology and then
it does not give precise estimation about deviation domains such as
{y :supcp.qy v (®) — [X]:| >r}, which are, however, of particularly practical in-
terest in statistics. The following proposition fills this gap.

PROPOSITION 1.5Given(X,) by (0.1), letY. := [, b(t, w) dr. We have for every
n>1andr > 0O,

P( sup[Q7/(X —Y) —EQ7 (X — V)] >r) < exp(—nA*([X]1+ 1))

tel0,1]
< op( 5 [z —os (1 ) )) -
o p( [u 2 Gam (1.16)

P(t!Bfll[Q7(X ERE A ) exp(—nA*([X]1 — )

;,2
<exp|l —n——m——- (2.17)
( 4folgt4dt>

and in particular

t€[0,1]

P( sup |Q"(X — Y) —EQ/(X — V)| >r>
< exp{—n(A*((X]1+ 1) A A*([X]1 — 1)}

MoreoveryYr > 0

lim EIogP ( sup (07 (X —Y) —[X],) >r) = —-A"([X]1£r). (1.18)

n—0oo n 1€[0,1]

Remarks 1.10T'he upper bounds in (1.16) and (1.17) hold for arbitragndr (not
a limit relation, unlike in the previous results), hence they are much more practical
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(in statistics) and stronger than those given by the LDP in Theorem 1.2 for this
special type of deviation domains. Moreover (1.18) means that the exponents ir
(1.16) and (1.17) are exact for great

2. Proof of Theorem 1.1.
For the convenience of the reader, we recall the following ([5, Th. 4.2.13, p114]):
APPROXIMATION LEMMA: Let (Y", X",n € N) be a family of random vari-

ables valued in a Polish space S with metfic, -), defined on a probability space
(2, F, P). Assume

() P(Y" € .) satisfies ass — +o0, the LDP with speed (n)(— +o00) and the
good rate function/ (x);
(i) For every$ > 0,

lim supﬁl) logP (d(Y", X") > §) = —oc. (2.1)

n——+00 n

ThenP(X" € -), asn — +o0, satisfies the LDP ol with speedi(n) and rate
function’ (x).

LEMMA 2.1. Ifarealr.v.& isof lawN (0, 1),

—Zlogl—24) if A<32

P(}) := logE exp(r£?) = { (2.2)

+00, otherwise.

Proof. Elementary.

LEMMA 2.2. LetY. = [, b(s, w) ds and defineQ (X — Y) as in (0.4). For every
A €ER,

1
An(4) = —logE exp(rnQi(X —Y))

1
< A :=/ P(Ao?) dt
0

11 1
—Zlog(l—2rc?) dr, if A<——
_ fo 2100 (1= 207) 21020 2.3)
+ 00, otherwise
and
lim A,(A) = AL). (2.4)

Proof. As P(ro?) > — |Alo? , the integral fol P(Lo?)dt is well defined with
value in(—o0, +00]. The last equality in (2.3) is obvious, because for Ag =
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(2||az||oo)_1, (t : P(ro?) = +00) has positive Lebesgue measure. We prove now
the first inequality in (2.3).

Since
n [;{l 2 n
QX —Y) = Z / o,dB, | = Zg,fak (2.5a)
k=1 \Y%-1 k=1
where
ftl; o, dB; o
g = ——— a = / o2 ds. 2.5b
k i k . (2.5b)

Obviously (&;)i—1 .. » are independent and of law(0, 1). We get by Lemma 2.1

.....

n 1
A, (V) = %ZP(knak) :/ P(Af, (1)) dr, (2.6a)
k=1 0
where
tk aszds
fu(®) —Zluk (D) “_t = EY(0?B,,)(1), (2.6b)
k—1

is a d-martingale w.r.t. the partially directed filtratiofB,, := o ((#]_;, #/];
k=1 ...,n),.
By the convexity ofP (1) and Jensen’s inequality, we have

1 1 1
/ P(Afo(2)) dr < / EY (P(xo?)|B,,) (1) dt = / P(ro?)dt,
0

0 0

which implies (2.3).

On the other hand, by the partially ordered martingale convergence theoren
(or the classical Lebesgue derivation theoref)f) — o2, df — a.e. on [0, 1].
Consequently by the continuity ¢f : R — (—o0, +00],

P(Af,(t)) — P(ro?), dt —a.e.on|0 1].

AS P(Lf, (1)) = —|A| -0,2 e L([0, 1], dr), we can apply Fatou’s lemma to conclude

1

1 1
liminf A, (1) = Iiminf/ P(Afu,(t))dt > / lim P(Lf,(t))dt :/ P(Xatz) dr,

the desired result (2.4). O
Note that the lemma above does not require the boundedness of
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Proof of Theorem 1.1.

(a) Itis contained in Lemma 2.2.
(b) We shall prove it by three steps.

STEP 1. (Reduction to the case whdre= 0). By the contraction principle,
P(Q7(X) € ) andP(Qj(X —Y) e ) satisfy the same LDP if and only if

P(,/0](X) € -) andP(,/Q7(X — Y) € -) do. Since
VoI - JOIX =)

; ? 1
f b(t, @) dr | <\fnx = - bl
P n

n
k-1

<W=J2ﬂ:<

k=1

by the approximation lemmaP(,/Q7(X) € ) satisfies the same LDP as
P(,/O7(X —Y) € -). Consequently (0%} (X) € -) andP (Q}(X — Y) € -) satisfy
the same LDP. Hence we can assume in the followingihat0 and|o ||, > O
(trivial otherwise).

STEP 2. By the part (a) and the Ellisafier theorem [6, Th. 1.6.1.],
P (Q}(X) € -) satisfies the upper bound of large deviations (i.e. the RHS inequality
in (1.4)) with rate function/ = A*.

But for the lower bound, the same theorem (see e.g. [6, Lemma VIl.4.2., (7.16)])
gives only

1 ) . .
liminf ~logP(Q}(X) € G) > — inf {I(x), x e GO, A)} 2.7)

for any open subséb C R, whereA := fol #foaz dt (Ao = (2||02||)_1). Hence
if A = +o0, or equivalently ifA()) is essentially smooth (or steep in the language
of [5]), P (Q%(X) € -) satisfies the lower bound in (1.4).

STEP 3. We turn now to the case whefre< oo and where the main difficulty of

this theorem resides. Our first observation is for (1.4) it is enough to show that for
anyr’ > r > [X]1,
n—oo

Iiminf%logP(Q’ll(X) e(rr)) = —10). (2.8)

Indeed sincd (x) is increasing on4’(0) = [X]1, o0) and [X]; < A, combining
(2.7) and (2.8) we get for any op&hof R,

lim inf E logP(Q](X) € G)
n—-oo n

> max{—inf {I(x);x IS Gﬂ[O, A)},
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—inf {I(x); xeG ﬂ([X]l, -l-OO)}]
—inf{I(x);x € G}

the desired lower bound (1.4). We show now (2.8).
For eache > 0 ands < |0 ||oc, letof = 0; A (o]l — &), andX; = f(; o/ dB,
(below we add the exponentto denote the objects associated with). Since
[t:07 = 16°llec = (o ]loc — &)]
has positive Lebesgue measure,

Af /1@‘—6)2dt = +oo, Wwhere A= (2llo°|? )_1
T 1m2gen? T o >

Hence by what was shown abow,Q7(X®) € -) satifies the LDP with the rate
function given by/¢(x) = (A®%)*(x).
Now by the decomposition (2.5a,b), for each 0,

P(Q1(X)>r) = P(Zak@k>2>r>
k=1

P (Z“i(&f)z > r) = P(Q1(X) > 1) (2.9)

k=1
(because & a; <a; and (&) as well as(&;) are i.i.d. of N(0,1)). Therefore, for
anye > 0,

I(r) .= I|m|nf ! Iog P(OI(X) >r)> — |nf I¢(x). (2.10)

Now asA‘ is essentially smooth (noted previouslyj,= (A®)* is strictly convex
on (0, A®) = (0, +00), thenl is strictly increasing and continuous o= A’(0) =
[X]1 2 [X]1 = (A®)(0). Thus

inf I°(x) = I°(r) = Sup(hr — A (3).

A=0

But sinceA®(1) 1 A()) for all A >0 andAf()), ¢ > 0 are inf-compact fok >0,
hence we can exchange the order below (an exercise in analysis)

Ii?g I°(r) = |nf sup(Ar — A%(X)) = supmf(kr — A% (D).

£>05 >0 »>06>0

This last quantity is exactly

SUpAr — A(L)) = A*(r) = 1(r).
A>0
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So we get from (2.10) thdtr) > — I(r), Vr > [X]1. Combining it with the
already shown upper bound, we ¢eet> [X],,

1) = lim ~1ogP(Q}(X) > 1)
= nli_)rrg()%logP(Q’{(X));f) = —1(r). (2.11)
Now for anyr’ > r > [X],, it iS easy to see
I(r) = nlLrgo%IOQ [P(Q1(X)>r") + P(Q1(X) € (r,1))]
< max{z(r/) : Iimiorgf % logP (Q1(X) € (r, r/))} . (2.12)

As I(r') < I(r) by (2.11) and the strict increasement lobn [A’(0), +00), we
obtain (2.8). O

We apply now (2.9) to establish

COROLLARY 2.3.1f o ¢ L*(]O, 1], dr), then for anyr > O,
.1
lim =logP (Q}(X) >r)=0. (2.13)
n—-oo n

In other words, that € L*>°([0, 1], dr) is a necessary condition to the LDP in
Theorem 1.1, as claimed in Remarks (1.2).

Proof. Notice that the lim sup as — oo in (2.13) is < 0 always. To control the
liminf, let 6 = o, A (1/¢) and defineX®, a;, &, A® corresponding to this new~.
The inequality (2.9) still holds and we get hence

iminf = 10gP(Q}(X) > r) > liminf = logP(Q4(X) > 1) > — inf (AY)"(x).
n—-oo n n—oo n x>r
Forr < [X]1, (2.13) is trivial by (0.7). Now fixr >[X];. Hencer > [X?]; =
(A%)'(0) and

inf (A%)*(x) = (AS)*(r) = SUp(Air — A%(L)).
xX>r A>0

As in the proof of Theorem 1.1, we have

inf sup(Ar — A®(X)) = supinf(Ar — A®(X)) = sup(Ar — A(A)) =0,

e>0; >0 r>0€e>0 120

becauseA () = +oo,VA > 0 (recalling||c?| = oo in (2.3) now). (2.13)
follows. [




16 LDP and MDP for quadratic variational processes

208 HACENE DJELLOUT ET AL.

3. Proof of Theorem 1.2

Proof of Part (a).We separate its proof into three steps.

STEP 1. At first for any partitiorP = {0 = 59 < 51 < --- < s, = 1}, we shall
prove thatP (0%, (X) € -), with Q% (X) := (Q% (X))o<k < m, satisfies the LDP on
R” with speed: and with the rate function given by

IP(xg, ..., xn)=  SUp Z(xk—xk DAx — Z/ P(,\ka,z)dt} (3.1)

(A,...;Am)eER™

if xo=0andIP(xo, ..., x,) =+ooif xg # 0.
As in Step 1 of the proof of Theorem 1.1, we can and will assumebtea0.
In the above case of LDP whebe= 0, the key observation is that

ATQ"(X) = QL(X)— QL (X), k=1....,m
are independent. And by Theorem 1.1, for edch 1, ... , m fixed, P(A] Q" (X)

€ -) satisfies the LDP with speedand the rate function

17 (50 =sup{ykx— / " POo?) dt}. (3.2)

reR Sk—1

Consequently by [10, Corollary 2.9,(A” 0" (X) 1= (AL 0"(X))o<k<m € -) Sat-
isfies a LDP with the same speed and with the rate function given by

Ip(yl,...,ym)=21,3’<yk>— sup {ka—Z/ P(xko,z)dt}.
k=1 . Am)ERM Sk—1

Finally the desired LDP in this step follows by the contraction principle.

STEP 2. By [13, Th.1.5.2], the finite dimensional LDP in Step 1 implies that
P(Q"(X) € -) satisfies the LDP on the topological product spRt&! with the
speed: and with the rate function given by

I®(y) = sgplp(m?)), (3.3)

where the supremum are taken over all finite partitiths: {0 = 5o < 51 < - -~
< s, = 1} of [0, 1]. And for each suctP,

17 (y (P)) —Zsup{xm(sk)—y(sk D)~ / P(ua?) dt}. (3.4)

k=1 reR Sk—1

by (3.1). Remark that

IP(y(P)) = +oo, i y(s0) <y (sk_n)-
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Since the spacy[0, 1] of the non-decreasing functiogson [0,1] withy (0) =
0 equipped with the pointwise convergence topology is a closed subBét Bf,
henceP (Qf’(X) € ) satisfies the LDP offy[0, 1] with the rate function given by
(3.3).

STEP 3. For each non-decreasing functjore Zg[0, 1], let y(-) = y(-+) be its
right continuous version. We claim that the mapping— y from Z[0, 1] to

D*[0, 1] equipped with the weak convergence topology is continuous. To this end,

it is enough to establish that for gl € Zo[0, 1] fixed,Ve > 0,VP = {0 = 50 <
s1<---<s, =1} wheres;,i =1,...,m — 1 are continuous points g4, there
exists a neighborhoot¥ (yp) de yy dansZ[0, 1], such that

Yy e N(yo), Vi=1l....m: 7 (si) — vo(si)| < e. (3.5)

(It is left to the reader to see why the poigt= 0 is excluded in (3.5).) In fact, for
i =1, ...,m—1,sinceyy is continuous at;, we can choosg,_; < a; < s; <
b; < s;41 SO that

vo(bi) — yo(a;) < &/2 i=1...,m—1

Observe thaf (1) = y(1) forall y € Zy[0, 1]and foreach =1,... ,m — 1

7(s:) — To(si) <y (bi) — yola)) < v (bi) — yolby) + g;

7 (s0) — Pols) = v (@) — yolbi) >y (@) — volai) — g

We can thus give an expression/éfy,) which satisfies (3.5)

N(yo) = {y; lv(a) —yola)| < e/2, |y (bi) —
—vob)| < &/2, |y (D) — yo(D)] < €}.

The continuity is so shown.
Finally by the contraction principlé (0" (X) € -) satisfies the LDP oD [0, 1]
with the speed and with the rate function given by

() =inf {1(f); f e To[0, ] and f = y | (3.6)
which is inf-compact and convex. That is the claim of Theorem 1.2.(a).

Proof of Part (b).This part is rather delicate. L&t(y) be the RHS of (1.7). We
should establisly (y) = 1*°(y) defined by (3.6).
For any finite partitiorfP = {0 =59 < 51 < -+ < s5,, = 1} 0f [0,1], we write

Bp =0 ([0,s1], (sk—1. 5], 2<k<m), AP = max [s; —si_1l.

1<k<m
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Proof of I°°(y) < J(y). It is enough to show that for any € D[0, 1],

limsup™ (yO(PY)) < I (y), 3.7)

[—o0

for any increasing sequence of finite partitiof®) such thatAP’ — 0, where
y%0) =0, y°(r) = y (1), vVt € (0, 1].
To prove (3.7), we can assumiy) < 4oo (otherwise it is trivial). Since
P*(0) = +o0, the finiteness of (y) impliesd[X] « dy by the expression (1.7).
From (3.4) and the following consequence of Jensen’s inequality
fsk o?dt

Sk—1 !

= | POwod =P (), where ¢ = %Lt
Sk — Sk—1 Sk—1 Sk — Sk—1

we get

IP@%P) = Zsup{xk(yf’(sk)—y°<sk_1)>— / P(Akof)dr}

k=1 *eER Sk—1

m 0 .0

< Z sup {)»k y () =y (Se-1) P()chk)} (Sx — Sk—1)
i1 MeR Sk — Sk—1
m 0 .0

= Z(Sk — Sk—1) [0 P* ()/ () — ¥ (Sk_l)) . (3.8)
— (Sk — Sk—1)Cx

Now introduce
g(x) :=xP*(1/x), for x>0 and g(0) := Xirr(lrg(x) (3.9)

whereP*(2.) is given by (1.8). Obviouslg (0) = 3 andg is convex.
The key remark is (1.7) can be rewritten as

Lordix] 1

J(y) :f g (M) —dy if d[X]<«dy and +oo else (3.10)
0 dy ) o

and (3.8) can be rewritten similarly as

dIXTp\  dip
g( dyr )-d[X]de. (31D)

17 (°(P)) < /

[0.1]

(in fact the RHS above coincides with the last line of (3.8)) whife, Zr-
are Radon—-Nykodym densities restricted3p. By (3.11) and the following con-

sequence of Jensen’s inequality

(o) <= () 1)
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we get
1 -1
: . dix d[x
limsup1” (y°(P)) < lim SUD/ g( [ ]> ( [ ]P) dy <J(y),
P ?  Jo dy dip

where the last inequality follows from the dominated convergence and the fact that

d[x

[X]r > inf 62>0

dip ~ ref01] !

(consequence of our assumption abagit

Proof of J(y) <I®(y). To this purpose it is enough to show that for any in-
creasing functiory e Zy[0, 1], there is an increasing sequen@) of partitions
of [0, 1] such that

liminf Py Py =I17) (3.12)

(because its left hand side (in short : LHS) is smaller thaiiy)). Actually we
choose an (arbitrary) increasing seque®é of finite partitions of [0 1] com-
posed only otontinuous pointsf y except 0 and 1 such thatP’ — 0.

ForP =P ={0=s9 <s1 < --- < sy = 1}, using the fact that

SUP{)» (v (se) — v (k1)) — / P(ro/) df}

reR Sk—1

= sup {A(y(s@—y(sk_l))— /  PGo?) dr}

+A>0 Sk—1

according to

(s — 7o) >+ ( / " PO0d) dr) = "oz,
=0 Sk—1

Sk—1

we have from the first line of (3.8)

k:]_)\ZO Sk—1

m Sk
Py @) = Z sup{k (¥ (sk) — v (sk-1)) —/ P& df} 1 Y (50— (1) 1} +

jsk—l of dt

k:lk <0 Sk—1

m Sk
+3. sup{k(y(m — y(s-1)) - f PO dz} 1[y<sk>-y<sk_1><l}

Sk 2
fsk—l of dr

@)k — sk—1)

= Z(Sk — Sk—1) P* ( V) —y k1) ) Lr g -0y, 1 +
k=1 [ - ]

y(sE)—y(sg—1)
- y (k) — ¥ (sk-1)
+ Z(Sk — sk—1) P* P - A1 x1, -1x15_4
k=1 (gk ) (Sk - sk—l) y(sp)—y(sp_1) >1

1
= fo ¢ () dy @) (3.13a)
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where
50 = sup oy, o) = inf o
SE(Sk—1,5%) S E(Sk—1,5%)
and
Py _ % 1 (D) Gk —sicn)
g (t) = kZ:; L1210 (6,{7))2g ( Y (50 — 7 (50D) ) [%A] +

(@7)2(se — Sk—l))
y(0 =y )|

" 1
+ 3 L

[X1sp —[X1s;_1 ’
AT Rk

(3.13b)

whereg(x) is given by (3.9).
Now if d[X] « dy, by the continuity off — o2 and the martingale conver-

gence, we have
o 1 (d[X]
7)1
it 70 > e (S |gog g

1 (d[X]) 47
= — — 1, —a.e.
Utzg dy Y
(sinceg(1) = 0). Consequently Fatou’s lemma implies
L1 /dx
imint 1™ P > [~ (G2 o
[—o00 0 O d)/
which is exactlyJ (y) by (3.10).
It remains to treat the case whereXd[is not absolutely continuous w.r.tyd

By (3.10), we have to show that lims, I”' (v (P')) = +oo. By absurd, assume in
contrary that

lim 7'y PY) = supI® (y(P1) < +oo.

=21

ForP = P!, sinceg(x) is increasing for > 1, we get by (3.13a,b),

1 ! d[X]»r
1"y (P) >—/ 1raix (—) dy.
R P A £ LA G
Because lim_, ;o g(x)/x = lim,_, ;o P*(1/x) = 400, this implies that the @-
martingale

<d[X]pz)
d)77>1 1>1

Is dy-uniformly integrable. Consequently X « dy, which is in contradiction
with our assumption.
The proof of Theorem 1.2. is thus completed. O
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4. Proof of Theorem 1.3

The reader can read at first Lemma A.1 in Appendix before the proof below.

Proof. We treat here only the cage= 0, and one can prove easily that (X) and
Q" (X — Y) satisfy the same MDP by following the proof of Theorem 1.4. in the
next section. We separate its proof into five steps. The first three steps consist t
show the finite dimensional LDP in condition (i) of Lemma A.1 in the appendix,
the fourth step consists to prove condition (ii) of Lemma A.1, and in the last step
we identify the rate function.

(1) We check at first why (1.11) implies (1.10). In fact, bglHér’s inequality,

k/n - N
max / o?dt<nr™t max (/ oﬁ’dt) .
1sksnJg-1/n Isksn \Jk-1)/n

And by the condition that? € L? in (1.11), makkgnf';/_"l)/n of” d — 0.
Consequently (1.10) follows by the second condition in é1.11).
(2) We shall establish that under the condition (1.10), for eaelR,

Jn 1

: 1 2 n 12 4
nleoobz—(n) IogEexp(kb (n) - 0 (Q1(X) — [X]l)) = A fo oldr.  (4.1)

Since the Legendre transformation of the RHS of (4.1) is exdgtly) given in
(1.14), by Ellis—Girtner theorem, (4.1) implies the last LDP in Theorem 1.3.
Taking the calculations in Lemma 2.2 (and the notations there), we have

- 1 2 ﬁ n
G = s 0gE exp (187 201 (400 - [X1))
1 n
= 2 2 (P (RbViaw) = 1b)alX]:) (4.2)
k=1

where

! )
ak:f ofdt, k=1 ..., n.

n
1

By our condition (1.10),
e(n) :==bm)/n m
1<k

ax a, — 0.
<k<n

By Taylor formula and noting thaP (0) = 0, P’(0), P”(0) = 2, we obtain once
if |xe(n)| < 3,

P(Ab(n)y/nay) = Ab(n)/nay, + (1 + n(k, n)) - A*b?(n)na?, (4.3a)
wheren (k, n) satisfies
In(k, n)| < Clile(n), (4.3b)

whereC = 3 sup, <14 |P" (M.
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Substituting now (4.3a) into (4.2) and noting tha} a, = [X]1, we get

G,(\) = ! [Z(l—l—n(k n)))»zbz(n)nak:|

b2(n)
ft,f o2dt ?
= AZZ(1+ n(k, n)) ,’;— (t —1¢_). (4.4)
k=1 k _tk 1

Now by (4.3b), to prove (4.1), it is enough to show

n 2
n ([F okde 1
Yl -t — f ol dr. (4.5)
0

o \ kT et

It follows easily from theL?-martingale convergence (the detail is omitted).
(3) By the independence of incrementstrof—> Q7(X), we can apply [10,
Corollary 2.9] as in the proof of Theorem 1.2.(a) to get the LDP of

(5%

onR” with speedh?(n) and with the rate function given by

[05(X) —EQR(X)] € )

S (y(s) — v ()’
Iy mP) = - , if y(0)=0 and +oc0 else (4.6)
; 4[Sk*1 ol dt

whereP = {0 =59 < 51 < --- < s,,} IS @n arbitrary partition of [01].
(4) In this step, we shall establish for afiy- 0,

sup limsup—
0<s<1 n—>o0 I’L)

X

ongP( sup iw (0"(X)-EQ"(X))| > 5) — —o00  (4.7)

s<t<s+e b( )
ase — 04, whereAlY =Y, — Y, and 0/(X) := Qj(X) fort > 1. This
estimation implies condition (i) in Lemma A.1, then the LDPR:(b( 5(QM(X) —

EQ"(X)) € ) onDq([0, 1]) w.r.t. the sup norm topology, with the speledn) and
with the rate function given by

I¥(y) = sgpl,fwa?)), Vy € Do([0, 1]), (4.8)

where the supremum is taken over all finite partitighsf [0, 1].
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Since

k/n
Vv sup [EQT(X) — [X],|<+/n maX/ ol ds

1€[0,1] ksn Jk—1)/n

k/n
< max / ofds — O,
ksn \ Jw-1/n

(by Cauchy—Schwarz), the LDP above still holds v (X) substituted by X]..
We turn now to show (4.7). Remark tha@}(X) — EQ} (X)) is a (Fyu/n)-
martingale. Then

exp(1 [ 07 (X) —EQ!(X)])
is a sub-martingale. Writind! M = M, — M;, by the maximal inequality, we have

foranyr, A > 0,

P( sup [AL(Q"(X)—EQ"(X))] > r)

s<t< s+e

=P (exp(k sup  A{[Q"(X) - EQTL(X)]) > e“)
s<tr<s+e

<e MEexp(A AT [Q"(X) — EQ'(X)]) (4.9a)

and similarly

P( inf [A!(Q"(X) —EQ"(X))] < —r)

s<tr<s+e
<e MEexp(—AAIT[QM(X) — EQM(X)]). (4.9b)
By Step 2,
. 2 ﬂ s+e n _ n
n'L"So 20 log E exp<cb (n) b At [0"(X) —EQ (X)])

s+¢
= 62/ O’t4dl, Ve e R
)

Therefore taking = 8’3(—’,’3, A = b(n)s/nc (c > 0)in (4.9a), we get

limsu
n—00 pbz(n)

I09P<ﬁ sup AE[QT’(X)—EQ’?(X)]>5>

b(”)sétés—l—s
) s+e 4 32
<inf{—cé dty = ————
et [ et =y
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and similarly by (4.9b),

1 l \/ﬁ 1 t n n
52
<——
4f:+8 ol dt

(we have used the convention that= 0 for ¢ > 1). By the integrability ob*, we
have

s+é&
lim sup oldr =0.
8_>Os€[0,l] s
Hence (4.7) follows from the above estimations.
(5) It remains to show that°°(y) defined in (4.8) coincides withi,, () given
by (1.13). To this end, it is enough to show that

Jim 17 (PY) = Ju (). (4.10)

for any increasing sequen¢®’); - 1 of partitions of [Q 1] such thatAP! — 0.
Let u(t) := [, o ds. We can rewrite (4.6) as

m . 2
APy = Y (Zgg - Zﬁi‘g) (1(s) — p(si-1))
k=1 -

dyp \°
_ g (_) | (4.11)
dup

2
If J,.(v) < +o0, then d « du andJ,, (y) = E¥ (g—/’:> . Hence
d d
M, = ZYpl _ pdu (_Vugp,) _
dupr du

Then (4.10) follows from th&.?>-martingale convergence.
Inversely if the LHS of (4.10) is finite, by the same Doob’s theorem,

M, — M., in L?*(]0,1], duw)

then in L1(dw) too. This implies that d « du and &/ = M, du. Therefore
(4.10) follows. O
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5. Proof of Theorem 1.4

We shall prove thaD”"(X) and Q" (X — Y) satisfy the same LDPs and MDP, by
means of the approximation lemma. By the elementary inequglity- 5)? —
a’| <ea’®+ (14 1/¢)b?> wheree > 0, a, b € R, we get

- 1
wp@HD—QHX—DmewﬂX—D+(L+——>a, (5.1)
1€[0,1] e(n)

wheree(n) > 0 will be chosen later, and

2
n []:l

Zy=)_ [/ b(t, X)) dt — b(t_y, X )t} — :g_l)} .

fE1

We have to control the RHS of (5.1). A3 (X — Y) have been well estimated by

Theorem 1.1 and 1.3, it remains to cont#)l. The main idea is to reduce it to the

estimations ofX° = fo o, dBg, by means of Gronwall’s inequality.

To this last end, we have at first for alE [0, 1]

t
1X:| < |X0|+C/ (L4 [1 + n()]IX,]) ds + sup| X?|
0

s<t

t
< <||XO||oo +C+ Supngl) + le | X| ds,
0

s<1

whereC; = C(1 + n(1)) (below we will useC, to denote positive constants
depending only ot’, || Xoll«0, n(1)). It follows by Gronwall’s inequality

| X | < (C + | Xolloo + sup|X§’|) eV, Vrel0,1]. (5.2)

s<1
Next by our condition (1.15), for any e [0, 1], u > O

sup |X,— X, < sup [X°—X°4+u sup |b(t, X))

st s+u st s+u st s+u

< sup |X?—X§’|+uC2< sup |X,|-|—1> . (6.3)

s<t< stu 0<r<1
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Consequently by (1.15), Cauchy—Schwarz and (5.2), (5.3), we get

2
A
[/ b(t, X;)dt — b(t]_4, th_l)(t,’: — t,'f_l)j|
t

n
k-1

2
1 1
<|=C|1+ sup [|X:— X [+2n (—) sup | X;]|
n o <<l njJo<r<1

Cs 0 0 |2 1 0,2
gﬁ |:1+w sup |X, —th71| +— sup | X+
k—1

<ty n-og<rg1

1 1\? 012
+—=+n| - sup | X/ |7 |. (5.4)
n n/ o<r<1
Having this estimation we can now prove
(a): Choose (n) > 0 so that

2 2
ey -0 put THMWTAWT (5.5)

e(n)
Hencee (n) Q7(X — Y) is negligible in the sense of large deviation, by Theorem
1.1. It remains to show that the second term in (5.1) is negligible in the sense of
large deviation, that is, for any > 0,

n—oo N

: 1 1
limsup— logP (—Zn > 8) = —00.
e€(n)

By (5.4) and the definition of,,, the LHS above is majorized by the maximum of

_ 1
limsup=logP max sup [X°— X0 |?> C4d (5.6a)
n—oo N G(nnként£71<t<t£ k-1
and
: 1 1 1 1
limsup=logP — 4+ = sup |X°12 > Cs6 ). (5.6b)
nooo N e(n)n \ n? n))o<i<1
Sincefé o,dB; = B/f, 24 where B’ is another Brownian motion, and byelzy’s
0 05 Us
inequality
2
Pl sup |B/|>r <4exp<——>, (5.7)
0<t<T 2T

the limit (5.6a) is smaller than

_ 1
limsup— log |:n x P (

n—oo N

sup  |B/* > C48):| = —00.

€N 0< 1 <02/
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The limit (5.6b) is alsc-o0 by (5.7) and our choice (5.5) ein).
(b): This time instead of (5.5), we choos@:) > 0 so that

e(m)yn n?(3) - b
) — 0 but e(n)/n— +oo, <7 0. (5.8)
(e.g.€(n) = [n(1/n) + 1/c(n)]b(n)//n, wherec(n) satisfiesb(n) > c(n) —
+00).
By the first condition in (5.8),
i sup <e(n)%Q1(X Y) > 5)
)
msup (e(n)% (Q4(X —¥) — [X]1) > 5)
= —00

by Theorem 1.3. By the approximation lemma and (5.1), it remains to show

logP (iiZ >5) —o00, V8>0. (5.9
e€(n) b(n)

lim sup 2( )

By (5.4), the LHS above is majorized by the maximum of the following three limits

. 1 Jn 1 <
| —~_logP : X% — x5 |2 8
imsup - log (e(n)b(n) = > sup X o 12> Cs )

n— 00 k= 1zk 1<t<tl’:
(5.10a)
< lim sup log P ! max sup |X°—X% 2> Cs8
n—soo b*(n) e(m)b(n)/n I<k<ng i< -1
and
Ilmsup logP 1 sup |X%? > Ces (5.10b)
n—00 2( ) E(”)b(n)n5/20<t<1 : .
and
n(1/n)? 02
limsu logP| —————= sup |X Ci]. 5.10c
n—>oop 2( ) g (e(n)b(n)ﬁ 0<t£1| tl - ( )

By Levy’s inequality (5.7) and our choice (5.8) efn), the limits (5.10b) and
(5.10c) are both-oc.

The estimation of (5.10a) is a little more difficult and we can not estimate it
roughly as in the control of (5.6a) above (see the remark below). The key is the
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following isoperimetric inequality [8, p17, (1.24)] (with a small abuse : there is no
absolute value in his formula, but the same proof works)

0 0 r?
P{max sup |[X, —th,;1|>m(n)—|—r < expl — , (5.11)

k<nt]?71<,<,;: 22(”)
wherem(n) = EMaX <, SUps <, < |X) — Xp | and
BN k—1

Y(n)=max sup E[X°— X% |2 (5.12)

k<np i< i1
At first by our condition (1.10) o,
Vnb(n)x (n) — 0. (5.13)
Next by Jensen’s inequality and Doob’s inequality

1/4
m(n) < (Emax sup  [X° — x9 |4>

tn
< i1
ksnmn  <e<yp

; 1/4
< (e, s wrox )
k=1

G STy
4 n 1/4
0 o 4
< § (; E|Xl‘]? - Xt]:l_]_| )
< Cg-nv*/x(n) — 0, (5.14)
whereCg = 4||€||4/3 = 4v/2/3 (¢ is of law N (0, 1)), and the last relation follows
from (5.13).
Consequently by (5.11), the limit (5.10a) is smaller than
: €(n)b(n)/n o e(n)n
lim sup— . Cgod = —Cgé - liminf
el B2 2%(m) PR 2 /mb(m) T (n)
which is—oo by (5.13) and (5.8).
The proof is completed. O

Remarks 5.1If one estimates (5.10a) roughly as in the control of (5.6a), we would
get

P (max sup |x°— X22171| > r)

kSmg<i<y

<n-P( sup |B/)? >r>

0<t< =)

r2
<. exp(— - (n)) , (5.15)
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where the last inequality follows byedvy’s inequality (5.7). It has an extra factor
n wW.r.t. (5.11). Wherb?(n) « logn, this estimation is not enough to conclude the
negligibility of (5.10a).

6. Proof of Proposition 1.5

To prove (1.16) and (1.17), we can assume without loss of generality tha0.
Remark that Q) (X) — EQ7 (X)) is a(Fp.,,)-martingale. Then

exp(r [ 0] (X) — EQ](X)])
IS a sub-martingale for eache R. Let
T:=inf{0<r<1:[Q/(X) —EQ/(X)] >r} (inf¥:=+00).

For allr, . > 0, we have by Chebychev inequality and the stopping time theorem
of Doob,

P( sup [0 (X) —EQ/(X)] >r>

0<r«1
=P((T <1
<e " ELr <y exp(ni [0 (X) — EQT(X)])
<e ™Elr<yexp(in[07(X) — EQT(X)]). (6.1)

But by (2.3) in Lemma 2.2, this last quantity is smaller than
exp(—n (A(r + [X]1) — AR)).

Taking the infinimum of this quantity over> 0, we get
exp(—nA*(r +[X]1)

which is the first inequality in (1.16). For the second explicit inequality in (1.16),
observe for each € [0, Ag) (recallrg = ﬁ)

woy= [ g [ F e
S (1-202)° o =202 T da? =
— Ut) 0 00

where P (1) is given in Lemma 2.1. Consequently by Taylor formujax) =
fO) + f/Ox + [5 f"(y)(x — y)dy, we have for each € [0, Ao),

AQ) — N OAL P(M0?]l00) — P'(OA]|02]| oo
It follows that (noteA’(0) = [X]1, P'(0) = 1)

A([X]1+7r) = 0sup A([X]1+71)— AR}
<A<Mo
> sup {A(lo%]lo +7) — P(Al0?]lo0)}
O<i<Xo

_ (noznoo +r)
EE A
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where P* given by (1.8) is the Legendre transformation fr). So the second
inequality in (1.16) follows.

The proof of the first inequality in (1.17) is similar to that of (1.16). We turn
now to prove the seconexplicit inequality in (1.17). To this end, we assume
o € L4(dt) (trivial otherwise). Since fok < O,

1 2 4
A'(L) = / 2 dr (6.2)
0 (1 — ZAUIZ)
Is increasing in, then by Taylor’s formula,
/ 1 " 2 ! 4 2
AQ) <A (0O + 5 I|r51 AN'(@)r=[Xlar+ [ o dr- A%
c—>0— 0
Hence
Y 2 r?
AN ([X]1—r) > sup(—Ar —/ o dt- A ) =,
' %<0 o 4[5 otds
where (1.17) follows. Finally by Theorem 1.1,

.1
liminf — IogP( sup £(Q7(X) — [X],) >r)

n—00 n 1€[0,1]

> liminf }IogP(ﬁ:(Q'i(X) —[X]) >r)

n—o00 n

= —inf {A*(x); £(x — [X]D) =7} = —A" ([(X]1 £ 7).
Combining it with the upper bounds in (1.16) and (1.17), we obtain (1.18).00
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Appendix

The proof of the process-level LDP in Theorem 1.3 is based on the following:

LEMMA A.1. Let (X"(#)o<:<1)n»>0 be a sequence of real right continuous left
limit processes defined off2, F, P). Let ((n)),>0 be a sequence of positive
numbers tending to infinity, and[0, 1] be the space of real right continuous left
limit functions but equipped with the uniform convergence topology and with the
o-field B°. Assume
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(i) For every finite partition of [0, 1], P (X}, € -) satisfies the LDP ofR”
with speed (n) and with the rate functiod”;
(i) V8 > 0,

lim sup lim supﬁ IogP( sup | X"(t) — X"(s)| > 6) =—o00, (A.l)

e=>00<s<1 nooo s<t< ste

(Conventionvt > 1, X"(t) := X"(1)). ThenP (X" € .) satisfies orD[O, 1] w.r.t
the sup norm topology with the same speéa) and with the rate function given
by

1(y) = sgplp(yw)). (A.2)

where the supremum is taken over all finite partitions of [0,1]. Moregvet +oc]

is a subset of the spag0, 1] of continuous functions.

Remarksln the works of Liptser and Pukhalskii [9, Th.3.1] and Pukhalskii [11],
they show that

1
lim Iimsup(—log sup P( sup | X"(t) — X" ()| > 8) =—00, (A.3)

=0 00 AN) ey (Fm) << t4e

is sufficient to the so calledxponential tightnesen DJ[O, 1] w.r.t. the Skorohod
topology, whereF” is a filtration w.r.t. whichX” is adapted andi(F") is the
family of all 7"-stopping times less than 1. Remark that (A.1) is much weaker
than (A.3), especially the supremum owee T1(F") insidethe limit of n — oo

in (A.3) appears novoutsidethat limit in (A.1) (this is crucial for Step 4 in our
proof of Th.1.3). Moreover the LDP dp[0, 1] w.r.t. the sup norm topology in this
lemma is much stronger, and it implies the exponential tightned3[0n1] w.r.t.

the Skorohod topology.

This lemma is taken from [13, Prop.l.5.6] and we reproduce here its proof (as
[13] is not available for many readers, and its proof is short).

Proof. At first condition (i) implies the LDP oP(X" € -) on R w.r.t. the
pointwise convergence topology, with the rate functiagm) given by (A.2) (see
[13] or applying [5,84.6]). Next leP* = {i/k;i = O, ..., k} and consider the
application f*: RI%1 — DJ0, 1] such that the graph of*(y) on [0, 1] is the
polygon linking the pointsi/k, y (i/k)),i = 0,1, ... , k.

We shall establish the following two facts :

IimsupilogP sup |X"(t) — fAX"M @) > 8| — —o0; (A.4)
n—oo A1) o<1

ask tends to infinity, for any > 0 ; and for each. >0,

lim sup sup |f*()(1) —y@)|=0. (A.5)

k=00 clr<Ljo<r<1
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To show (A.4), it is enough to notice that its LHS is smaller than

max limsup
0<i<k—1 pooo A(n)

logP ( sup  |X"(t) — X"(i/k)| > 5)

<<
which tends to-oco ask — oo, by (A.1).

To show (A.5), consider the set

Ak, 8) = {y e RO sup |y@) — ffo) @) > 8} :

0<r<1

wheres > 0 fixed,k > 1. It is an open subset R[> on which the lower bound
of large deviation below holds (as noted at the beginning):

n—oo

lim inf Tl) logP (X" € A(k,8)) > —inf{l(y);y € Ak, 5)}. (A.6)
n

But for any§ > 0, the LHS above tends teco by (A.4) ask — oo. Therefore
[I <L] C sy Ak, 8) for someN large enough, by (A.6). Then (A.5) follows.

By condition (i), {y(0); I(y)<L} is bounded and (A.5) implies the equi-
continuity of [ <L]. Then [I < L] is compact inC[0, 1] for any L > 0 and
[l < 4+o0] C C[0,1] c DI[O0, 1]. ConsequenthP(X" e -) satisfies the LDP
on D[0, 1] w.r.t. the pointwise convergence topology. Finally by an approximation
lemma in [5, Th.4.2.23] (with some abuse : their approximation lemma is stated
in the framework of Polish space, but it can be easily translated into the actual
context), (A.4}(A.5) implies the LDP ofP(X" € -) onDJO0, 1] w.r.t. the uniform
convergence topology. O
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1. Motivation and context

Given a filtered probability space (2, F, (), P), let (Xi ¢, X2.+) be a two-dimensional diffusion process given by

dX1 = uy, (Xq,0)dt + o1,dBy (1.1)
dXa,e = Uy ¢ (Xp,r)dt + 02,¢dBy ¢ :

where ((B1, B2t), t > 0) is a two-dimensional Gaussian process with independent increments, zero mean and covariance
matrix

t
t / psds
0 vVt > 0.

t
/ psds t
0

In (1.1), (uy, up) is a progressively measurable process (possibly unknown). In what follows, we restrict our attention to
the case when o1, 0, and p are deterministic functions; the functions o;,i = 1, 2 take positive values while p takes values
in the interval [—1, 1]. Note that the marginal processes By and B, are Brownian motions (BM). Moreover, we can define a

process By such that (By ¢, Bf);>o is a two-dimensional BM and dB, ; = p;dB;; + /1 — ,ode;k for every t > 0.
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In this note, the parameter of interest is the (deterministic) covariance of X; and X,

t
(X1, Xa)e Z/ 01,t02,t rdt. (1.2)
0

In finance,(X1, X3). is the integrated covariance (over [0, 1]) of the logarithmic prices X; and X, of two securities. It is
an essential quantity to be measured for risk management purposes. The covariance for multiple price processes is of great
interest in many financial applications. The naive estimator is the realized covariance, which is the analogue of realized
variance for a single process.

Typically X; ; and X, ; are not observed in continuous time but we have only discrete time observations. Given discrete
equally spaced observation (XME,XZ_tE, k =1,...,n)in the interval [0, 1] (with t, = k/n), a commonly used approach to
estimate is to take the sum of cross products

[nt]

= (g —Xg,) (g —%q,) (13)

k=1

where [x] denotes the integer part of x € R.
When the drift is known, we can also consider the following estimator:

_ [nt] tr o
C = Z (Xl.tk — X — /ﬂ ul,t(xl,t)dt> (Xz.tk —Xoun | — /n uz,r(xz,t)df) .
t

k=1 fk—1 k=1

In the unidimensional case and in the case that X have non-jump, this question has been well investigated—see Djellout
etal. (1999) for relevant references. In Djellout et al. (1999) and recently in Kanaya and Otsu (2012), the authors obtained the
large and moderate deviations for the realized volatility. The results of Djellout et al. (1999) are extended to jump-diffusion
processes. Mancini (2008) established the large deviation result for the threshold estimator for the constant volatility. Jiang
(2010) derived a moderate deviation result for the threshold estimator for the quadratic variational process.

In the bivariate case, Hayashi and Yoshida (2011) considered the problem of estimating the covariation of two diffusion
processes under a non-synchronous sampling scheme. They proposed an alternative estimator and they investigated the
asymptotic distributions. In Dalalyan and Yoshida (2011), the authors complement the results in Hayashi and Yoshida (2011)
by establishing a second-order asymptotic expansion for the distribution of the estimator in a fairly general setup, including
random sampling schemes and (possibly random) drift terms. Several further works have been realized when data on two
securities are observed non-synchronously, see also Ait-Sahalia et al. (2010). Here we do not consider the asynchronous case.
In the bivariate case we also mention the work of Mancini and Gobbi (2012) which deals with the problem of distinguishing
the Brownian covariation from the co-jumps using a discrete set of observations.

The purpose of this note is to furnish some further estimations about the estimator (1.3), refining the already known
central limit theorem. More precisely, we are interested in the estimations of

n t
P (b£ (C? — / O-]Y[O-ZY[ptdt) € A) s
n 0

where A is a given domain of deviation, and (b)), is some sequence denoting the scale of the deviation. When b, = 1,
this is exactly the estimation of the central limit theorem. When b, = ./n, it becomes the large deviations. And when
1 « b, < +/n, this is the so-called moderate deviations. The main problem studied in this paper is the large and moderate
deviation estimations of the estimator. In this bivariate case things are not complicated.

We refer to Dembo and Zeitouni (1998) for an exposition of the general theory of large deviation and limit ourself to the
statement of the some basic definitions. Let {¢tr, T > 0} be a family of probability on a topological space (S, $) where § is
a o-algebraon S and v(T) a non-negative function on [1, 00), such that limy_, o, v(T) = 4oc0. A function] : S — [0, oo] is
said to be a rate function if it is lower semicontinuous and it is said to be a good rate function if its level set {x € S : I(x) < a}
is compact for all a > 0. {ur} is said to satisfy a large deviation principle (LDP) with speed v(T) and rate function I(x) if for
any setAe 4§

. . inf 1 .
U’Qﬁ I(x) < Tan;o (sup) o log ur (A) < — )1(161/{ I(x),

where A%, A are the interior and the closure of A respectively.

This paper is organized as follows. In the next section we present the main results of this paper. They are established in
the last section.

2. Main results

Our first result is about the LDP of P(C] € -), with time t = 1 fixed.
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Proposition 2.1. Let (Xi, Xz¢) be given by (1.1).
(1) Forevery A € R

1 _

Ap(L) = HlogE(exp(knC'{))
LS| 1
-3 log(1 — Ao1,:02,:(1+ o)) — 3 log(1 + Ao1,:02,:(1 — pr))dt
0
AA) = i 1 << 1
loo2(1=p)Il = 7 llowo2(1+ p)ll
+o00, otherwise

IA

and
lim A,(A) = A(Q).
n—oo

(2) Assume that 01,.0,.(1 % p.) € L*°([0, 1], dt) and u;.(-) € L*°(dt ® P), for | = 1, 2. Then P(C] € -) satisfies the LDP on R
with speed n and with the good rate function given by the Legendre transformation of A, that is

A*(x) = sup{ix — A(M)}. (2.1)
LeR

We now extend Proposition 2.1 to the process-level large deviations of P(C" € -), which is interesting from the viewpoint
of the non-parametric statistics.

Let Dy ([0, 1]) be the real right-continuous-left-limit and bounded variation functions y. The space D, ([0, 1]) of y, iden-
tified in the usual way as the space of bounded measures dy on [0, 1], with dy [0, t] = y(t) and dy (0) = y(0), will be
equipped with the weak convergence topology and the o-field 8° generated by the coordinate {y(t),0 < t < 1}. We
denote by y (t)dt and dy ' respectively the absolute continuous part and the singular part of the measure dy associated
with y € Dy[0, 1] w.r.t. the Lebesgue measure dt. The signed measure y has a unique decomposition into a difference
y = y4+ — y_ of two positive measures y, and y_. In the paper, we denote by P* the function

1
i(x—l—logx) ifx>0

P*(x) = (2.2)
400 ifx <0,
which is the Legendre transformation of P given by
—1 log(1—2x) ifA < 1
P =14 2 2 (2.3)

+00, otherwise.

Theorem 2.2. Let (X1, X5,) be given by (1.1). Assume that o1,.02.(1£p.) € L*°([0, 1], dt) and u;.(-) = u(-, -) € L*(dtQP),
forl=1, 2. Then

(1) P(C" € -) satisfies the LDP on Dy ([0, 1]) w.r.t. the weak convergence topology, with speed n and with some inf-compact
convex rate function J (y).
(2) If moreover t — 01,:02,(1 % p;) is continuous and strictly positive on [0, 1], then

JO) =IL s+ B) I (= + B) + 15 () +J2 (), (24)
where B is absolutely continuous with respect to the Lebesgue measure and given by

By = Q=) — a0 +y- ()

2
N V1010201 = 62) = (5o (©) + y- O + G ©) + - ©)0102,(1 — p2)
. ,
and
e
FVE ) oot p)
and

1 27(0)
abs — p* dt,
L) ./0 <0Lr024,t(1 + Pt))

where P* is given in (2.2).
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We discuss now the moderate deviation principle. To this purpose, let (b,),>1 be a sequence of positive numbers such
that

bll
b, > 00 and — — 0 asn— oo.
n

Let Dy[0, 1] be the Banach space of real right-continuous-left-limit functions y on [0, 1] with y(0) = 0, equipped with the
uniform sup norm and the o -field 8° generated by the coordinate {y (t),0 <t < 1}.

Theorem 2.3. Given (Xi¢,Xa¢) by (1.1) with u;.(-) = (-, -) € L*(dt ® P), for | = 1, 2. Assume that 01,.0,.(1 £ p.) €
[%([0, 11, dt) and

k/n
/nb, max / 01,02..(1% p)dt —> 0. (2.5)
I=k=n Jg—1y/n

Then P (bi,,n (C,” - (X1,X2).) € ) satisfies the LDP on Dy([0, 1]) with speed b2 and with the good rate function J, given by
1 5 )2
y(®) : 2
— 1t ~oidt if dy K 01024/ 1+ pidt
In(y) = _/(; zaﬁtait(l + ptz) [t:01,¢02,¢>0] t02,t t
400 otherwise.

(2.6)

Remark 2.4. In particular, P (‘b/—"ﬁ (€1 — (X1, X2)1) € ) satisfies the LDP on R with speed b2 and with the rate function given
by
) X Vx € R
n(x) = , VxeR.
2 /) 0r07,(14 p2)ds

Remark 2.5. If for some p > 2,

Nol—

01.0,.(1£p) € ([0, 1], dt) and b, = O (n

_1
4 b

we obtain (2.5).

Remark 2.6. Theorems 2.2 and 2.3 continue to hold under the linear growth condition of the drift u; (I = 1, 2) rather than
the boundedness. More precisely assume that

[u s —ueM| < [T+ x =yl +m(s — DXl + lyD], Vs, t €[0,1], x,y €R,

where 7; : [0, +00) — [0, +00) is a continuous nondecreasing function with 7;(0) = 0 and «; > 0 is a constant. Then the
LDP of Theorems 2.2 and 2.3 continue to hold for P(C" € -), where C" is given by

[nt]
G = Z (Xl,r]j —Xpgp, — e K (G — f,?,])) (Xz,r;; —Xoup, g o )G — t]iL])) -
k=1
We introduce the following function:

AL(X) = iullg{kx — AV}, (2.7)

which is the Legendre transformation of A, given by

1
AL(h) ;=f p (17)‘0““’2‘;1 im) dt (2.8)
0

and we denote

1 t
At = 5/ 0-1‘50-2,5(1 =+ ps)ds. (2.9)
0

An easy application of deviation inequalities given in Proposition 1.5 in Djellout et al. (1999) gives the following
proposition.
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Proposition 2.7. We have foreveryn > 1andr > 0,

C - * r * r
]P’( sup [C] — EC}] > r) < exp (—nA+ <a+ —+ 5)) + exp <—nA_ <ot, - 5))

tef0,1]
)
2 [ llo102(1 4+ p)lloo llo1o2(1 + p)lloo

TZ
4 Moo (1 — p)2dt )

exp <an*+ <a+ - %)) T exp <ani (a_ + %))

2
exp (—n - d )
4 [y [o102(1 4+ p)2dt
n

r Tr
g (1 —r——) ).
+exp( 2[||oloz(1—p>||oo °g< * ||am<1—p)||oo>D

where A’ and a4 are given in (2.7) and (2.9) respectively.

+exp|—n

IA

IP’( inf [C" — EC'] < 7r>

tel0,1]

IA

3. Proof

In this section, we will give some hints for the proof of the main results. We have

B [nt] o t [nt]
C? = ; ./t" Ul,sdBl,s /[.n UZ,SdBZ.s = kZ] x/CTk\/ a;ﬁké/:a
K= k— —1 =

1 k-

where
& ty
ft,:' . Ul,sdBl.s ftl? . O’z’sde’s t{: 5 r,? X
— / — . /
Go= T g =T T ithe = / ol dt @, = / o2 dt.
vk a te—1 ti1

Obviously ((&, &,))k=1,....» are independent centered Gaussian random vector with covariance

[n
V iy / Gy 01,502,50sdS
1 t 1

n
Ja/a; i
v / Ul,sgz,spsds A/ Ak a;<

n
tk—1

Let us introduce the following notation:
[nt]

1
Q=5 ) Va6
k=1
The proof relies on the following decomposition:
é? = Q—n#.t - Qri,r
Proof of Proposition 2.1. By the independence of Q) ; and Q" ;, we obtain that
1 - 1
An(X) = - log E(exp(AnCY)) = - log E(exp(An(Q} ; — Q" ;)))
1 1
= log E(exp(AnQ} ;)) + - log E(exp(—AnQ" ,)) = An+(A) + Ap—(1).

Let us deal with A, . We have that

1
Ap (V) = E IOgE(EXP(annH))

1 A t tr t
- Z P n> / o7 ds / 03 ds + / 01,502,505ds
k=1 t t

n
k=1 lk—1 k=1

T/
:/O P(Efn“)) dt,
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where P is given in (2.3) and

I ! o
k 2 k 2 k
\/ffﬂq a]_sds\'/ftl:L1 o3 ds + ff:’fq 01.502,505ds

F© =Y 1a
k=1

e — i
Let us remark that we have
n l’” tﬂ
n o ords [4 o3 ds Jir 015025 05ds
k—1 > k—1 ’ k—1 )
RO =D g a® ) g O
k=1 (tk - tk—l) k=1 tk - tk—l

Clearly, f,(t) is a dt martingale w.r.t. the partially directed filtration (8., = o ((t;_;, {1, k=1,...,m)n.
By the convexity of P and Jensen inequality, we obtain that

1 1
/P<&fn(t))dt§/ P(M>dt:A+m_
0 2 0 2

On the other hand, by the classical Lebesgue derivation theorem, we have that
fo®) — f(t) := 01,02, + 01,t02,c0:, dt —a.e.on ][0, 1].

The continuity of P : R — (—00, +00] gives
A A
P (Ef"(t)> — P <5f(t)> , dt —a.e.on|0,1].

AsP (3 (D) = _%Ul,to'z,t e L1([0, 1], dt), we can apply Fatou’s lemma to conclude that

(A ! A
liminf A, (1) = lim inf/ P <ffn(t)> dt > / liminfP (ffn(t)) dt = AL ().
n—00 ’ n—oo Jq 2 o n—oo 2
Doing the same calculations with A, _, we obtain that

1 p—
Ap—() < / P (—W) dt = A_(V),
0

and
liminf A, (X)) > A_(}X).
n—oo
From below, we conclude that
Ap(A) = AL (M) + A-() = AR,
and
liminf A,(A) > A(RX),
n—oo
which implies that
lim A;(A) = lim (Ay (1) + A - (1)) = A(A),
n—oo n—oo

which ends the proof of first part of Proposition 2.1.
For the second part of Proposition 2.1, first we will reduce the study to the case uy = Ofor! = 1,2. Let 8 =

max(||u1|eo, [[U2]|0)- Since
n n
_ ,32 ,3 n t o
G -CGl=—+=%" o1.5Bu s a25dBys| ) .
n n = o ¢
k=1 k=1 k—1

Forl =1, 2,wehaveforall A > 0andallé > 0

1 1 t )\2 1 X
ElogIP’ HZ /[.n 01sdBis| > & 5—8)»—!—%/.; G,sts.

k=1 k—1

+




LDP and MDRP for realized covoalatility

36 H. Djellout, Y. Samoura / Statistics and Probability Letters 86 (2014) 30-37

Letting n go to infinity and then A to infinity we get that forall § > 0

lim 711 P 1 En g 01sdB ) =—oc0
>
nl n 0og n /t" IsUDls| — .

k=1 k—1
By the approximation technique (Theorem 4.2.13 in Dembo and Zeitouni (1998)), we deduce that P (CQ’ € ) satisfies the
same LDP as P (C" € -). Hence we can assume thatu; = 0 for [ = 1, 2.

Now, by inspection of the proof of Theorem 1.1 in Djellout et al. (1999), we deduce that the sequence P (Q”i] € ) satisfies
the LDP on R with speed n and rate function given by

A% (x) = sup{ix — AL (M)}

LeR

By the independence of the sequences Q' ; and Q" ;, and the contraction principle, see Exercise 4.2.7 in Dembo and
Zeitouni (1998), we deduce that P ((_2'11 € ) satisfies the LDP with rate function

A*(x) = inf {A% (1) 4+ A% (x2)}.
X=X1—X2
As we have also determined explicitly the logarithm of the moment generating function A, the rate function is also given
by (2.1).

Proof of Theorem 2.2. The proof of the first part is very similar to Proposition 2.1. It is a consequence of Theorem 1.2
in Djellout et al. (1999) and the contraction principle. For the second part of Theorem 2.2, the same arguments give the
large deviation with the rate function

I(y)y=__inf {Li(y1) +1-(»2)},
Y=vY1—72

where

1 27(t) 1 1
1():/13* 7&—1—/ —dy*.
= 0 (Ul,tUZ,t(] =+ or) o 01,02,((1% p) 4

An easy variational calculus gives the identification of the rate function in (2.4).
Proof of Theorem 2.3. As before, we treat only the case u; = 0 for | = 1, 2. We have the following decomposition:
C'— (X1, X). =Q}. —a; ) — QL. —a_),
where the definition of 4 is given in (2.9).
Now using Theorem 1.3 in Djellout et al. (1999), we deduce that P (bin”(Q”i, —a4.) € ) satisfies the LDP on Dg ([0, 1])
with speed b? and with the good rate function J », given by

1 . 2

y(t) .

Jem() = f 702 (1 % ppp enenzandt HHdy oo (1 podt
> 1,tY2,t t

400 otherwise.

By the same argument as before, we deduce that P (bi:(cf‘ — (X1,X3).) € ) satisfies the LDP on Dy ([0, 1]) with speed

bﬁ and with the good rate function J,;, given by
Iny) = inf {JimOn) +]-m(2)}.
r=r-r

An easy calculation gives the identification of the rate function in (2.6).
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LARGE DEVIATIONS OF THE REALIZED (CO-)VOLATILITY VECTOR

HACENE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

ABSTRACT. Realized statistics based on high frequency returns have become very pop-
ular in financial economics. In recent years, different non-parametric estimators of the
variation of a log-price process have appeared. These were developed by many authors
and were motivated by the existence of complete records of price data. Among them are
the realized quadratic (co-)variation which is perhaps the most well known example, pro-
viding a consistent estimator of the integrated (co-)volatility when the logarithmic price
process is continuous. Limit results such as the weak law of large numbers or the central
limit theorem have been proved in different contexts. In this paper, we propose to study
the large deviation properties of realized (co-)volatility (i.e., when the number of high
frequency observations in a fixed time interval increases to infinity. More specifically, we
consider a bivariate model with synchronous observation schemes and correlated Brown-
ian motions of the following form: dXy; = 0¢,:dB + be(t,w)dt for £ = 1,2, where X,
denotes the log-price, we are concerned with the large deviation estimation of the vector
ViMX) = (QF4(X),Q5,(X),C(X)) where Q7,(X) and CJ'(X) represente the estima-
tor of the quadratic variational processes Q¢+ = fof Ufysds and the integrated covariance
Cy = fot 01,502,5psds respectively, with p; = cov(B1y, Ba,). Our main motivation is to
improve upon the existing limit theorems. Our large deviations results can be used to
evaluate and approximate tail probabilities of realized (co-)volatility. As an application we
provide the large deviation for the standard dependence measures between the two assets
returns such as the realized regression coefficients up to time ¢, or the realized correlation.
Our study should contribute to the recent trend of research on the (co-)variance estimation
problems, which are quite often discussed in high-frequency financial data analysis.

AMS 2000 subject classifications: 60F10, 60G42, 62M10, 62G05.

1. INTRODUCTION, MODEL AND NOTATIONS

In the last decade there has been a considerable development of the asymptotic theory for
processes observed at a high frequency. This was mainly motivated by financial applications,
where the data, such as stock prices or currencies, are observed very frequently.

Asset returns covariance and its related statistics play a prominent role in many important
theoretical as well as practical problems in finance. Analogous to the realized volatility
approach, the idea of employing high frequency data in the computation of daily (or lower
frequency) covariance between two assets leads to the concept of realized covariance (or
covariation). The key role of quantifying integrated (co-)volatilities in portfolio optimization
and risk management has stimulated an increasing interest in estimation methods for these
models.

It is quite natural to use the asymptotic framework when the number of high frequency
observations in a fixed time interval (say, a day) increases to infinity. Thus Barndorff-Nielsen

Date: November 14, 2014.
Key words and phrases. Realised Volatility and covolatility, large deviations, diffusion, discrete-time
observation.
1
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and Shephard [6] established a law of large numbers and the corresponding fluctuations for
realized volatility, also extended to more general setups and statistics by Barndorff-Nielsen
et al. [5] and [4]. Dovonon, Gongalves, and Meddahi [16] considered Edgeworth expansions
for the realized volatility statistic and its bootstrap analog. These results are crucial to
explore asymptotic behaviors of realized (co-)volatility, in particular around the center of its
distribution. There are also different estimation approaches for the integrated covolatility
in multidimensional models and limit theorem, and we can refer to Barndorff-Nielsen et al.
[7] and [5] where the authors present, in an unified way, a weak law of large numbers and a
central limit theorem for a general estimator, called realized generalized bipower variation.

For related work concerning bivariate case under a non-synchronous sampling scheme,
see Hayashi and Yoshida [19], Bibinger [8], Dalalyan and Yoshida [12], see also Ait-Sahalia
et al. [1] and the references therein. Estimation of the covariance of log-price processes in
the presence of market microstructure noise, we refer to Bibinger and Reif} [9], Robert and
Rosenbaum [30], Zhang et al. [37] and [38]. See also Gloter, or Comte et al. [11] for non
parametric estimation in the case of a stochastic volatility model.

We model the evolution of an observable state variable by a stochastic process X; =
(X14, Xa4),t € [0,1]. In financial applications, X; can be thought of as the short interest
rate, a foreign exchange rate, or the logarithm of an asset price or of a stock index. Suppose
both X ; and X5, are defined on a filtered probability space (2, F, (F;),P) and follow an
1t6 process, namely,

{dXLt = 014dB1y + bi(t,w)dt (1)

ngﬂg = 0-27tdBQ7t + bg(t,w)dt

where B; and B are standart Brownian motions, with correlation Corr(Biy, Bay) = pr.
We can Write dBQ’t = ptdBl,t + \/ 1-— p%dB&,h Where Bl = (Bl,t)tE[O,l] and Bg = (BB,t)tG[O,l]
are independent Brownian processes.

We will suppose of course existence and uniqueness of strong solutions, and in what
follows, the drift coefficient b; and by are assumed to satisfy an uniform linear growth
condition and we limit our attention to the case when oy, oy and p are deterministic
functions. The functions o, £ = 1, 2 take positive values while p takes values in the interval
]—1,1].

In this paper, our interest is to estimate the (co-)variation vector
V] = ([(Xi)e, [Xae, (X1, Xo),)" (1.2)

between two returns in a fixed time period [0;1] when X, and X5, are observed syn-
chronously, [X];, ¢ = 1,2 represente the quadratic variational process of X, and (X, X5),
the (deterministic) covariance of X; and Xo:

¢ ¢
[Xele :/ Ugﬁsds, (X1, X)), :/ 01,502,spsds.
0 0

Inference for (1.2) is a well-understood problem if X;; and X, are observed simultane-
ously. Note that X, and Xy, are not observed in continuous time but we have only discrete
time observations. Given discrete equally space observation (Xl,t,’;’ Xogn kb =1,-- ,n) in
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the interval [0, 1] (with ¢} = k/n), a limit theorem in stochastic processes states that
T
th(X) = ( T,t(X)7 g,t(X)7 C?(X))

commonly called realized (co-)variance, is a consistent estimator for [V];, with, for £ = 1,2

[nt] [nt]
Qp(X) =D (ARX)?  CM(X) = (A}X1) (AFXa)
k=1 k=1

where [z] denote the integer part of x € R and A}X, = Xon — Xor

—1°
When the drift by(¢,w) is known, we can consider the following variant
n 7 n n T
VX —Y) = (Q1 (X —Y),Q5,(X —Y),C}(X —Y))
with for £ = 1,2 and Yy, := [ be(t,w)dt,

[nt]
QL (X =Y) = (AFX, — ALY,
k=1
and
[nt]
CHX =Y) = (ARXy — ARYY) (ApXy — ALYy).
k=1

If the drift by(t,w) := be(t, X1 (w), Xo4(w)), where by(t, x1, z2) is some deterministic func-
tion (a current situation), Xy = (X4, Xa¢) verifies

{ Xm,t = Ul,tdBl,t + bl(t,Xt)dt

dXs; = 094dBoy + bo(t, Xy)dl. (1.3)

When by(t, x) is known, and only the sample Xip = (letﬁ;ﬂ Xogm ),k=0---nis ob-

1 k—1

N N N . T
served, we can also consider the following estimator V;*(X) = ( 14(X), Q5 (X)), CP(X ))
with for £ =1,2

[nt]

~ 2
T = 3 (AR = begg (X )05~ 60))

k=1

[nt]

Cr(X) =3 (81X = bug, (X )6 = 170)) (A1X = bog (X )8 = 1))

k=1

In the aforementionned papers, and under quite weak assumptions, it is proved the
following consistency

VX)), VX = Y), VX)) — [V as.

and the corresponding fluctuations

Va(VP(X) = [V]L), VAV (X = T) = [V]1), vVa(V(X) — [V]1), -5 N(0,%).
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The purpose of this paper is to furnish some further trajectorial estimations about the
estimator V", deepening the law of large numbers and central limit theorem. More precisely,
we are interested in the estimation of

P (Y2000 - ) € 4).

where A is a given domain of deviation, and (b, ), is some sequence denoting the scale of
the deviation.

When b, = 1, this is exactly the estimation of the central limit theorem. When b, =
\/n, it becomes the large deviations. And when 1 << b, << /n, it is called moderate
deviations. In other words, the moderate deviations investigate the convergence speed
between the large deviations and central limit theorem.

The large deviations and moderate deviations problems arise in the theory of statistical
inference quite naturally. For estimation of unknown parameters and functions, it is first of
all important to minimize the risk of wrong decisions implied by deviations of the observed
values of estimators from the true values of parameters or functions to be estimated. Such
important errors are precisely the subject of large deviation theory. The large deviation
and moderate deviation results of estimators can provide us with the rates of convergence
and an useful method for constructing asymptotic confidence intervals.

The aim of this paper is then to focus on the large and moderate deviation estimations
of the estimators of volatility and co-volatility. Despite the fact that these statistics are
nearly 20 years old, there has been remarkably few result in this direction, it is a surprise
to us. The answer may however be the following: the usual techniques (such as Gértner-
Ellis method) do not work and a very particular treatment has to be considered for this
problem. Recently, however, some papers considered the unidimensional case. Djellout et
al. [14] and recently Shin and Otsu [33] obtained the large and moderate deviations for the
realized volatility. In the bivariate case Djellout and Yacouba [15], obtained the large and
moderate deviations for the realized covolatility. The large deviation for threshold estimator
for the constant volatility was established by Mancini [23] in jumps case. And the moderate
deviation for threshold estimator for the quadratic variational process was derived by Jiang
[20]. Let us mention that the problem of the large deviation for threshold estimator vector,
in the presence of jumps, will be considered in a forthcoming paper, consistency, efficience
and robustnesse were proved in Mancini and Gobbi [24]. The case of asynchronous sampling
scheme, or in the presence of micro-structure noise is also outside the scope of the present
paper but are currently under investigations.

Two economically interesting functions of the realized covariance vector are the realized
correlation and the realized regression coefficients. In particular, realized regression coef-
ficients are obtained by regressing high frequency returns for one asset on high frequency
returns for another asset. When one of the assets is the market portfolio, the result is a
realized beta coefficient. A beta coefficient measures the assets systematic risk as assessed
by its correlation with the market portfolio. Recent examples of papers that have obtained
empirical estimates of realized betas include Andersen, Bollerslev, Diebold and Wu [2],
Todorov and Bollerslev [34], Dovonon, Gongalves and Meddahi [16], Mancini and Gobbi
[24].
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Let us stress that large deviations for the realized correlation can not be deduced from
unidimensional quantities and were thus largely ignored. As an application of our main
results, we provide a large and moderate deviation principle for the realized correlation and
the realized regression coefficients in some special cases. The realized regression coefficient

from regressing is 57,(X) = gf(())(()) which consistently estimates 3;;, = % and the realized
’ 0.t ,
Cr(X)

. . . n o . . _ Ch i
correlation coefficient is o' (X) = NI which estimates g, T The appli

cation will be based essentially on an application of the delta method, developped by Gao
and Zhao ([17]).

As in Djellout et al. [14], Shin and Otsu [33], it should be noted that the proof strategy
of Gértner and Ellis large deviation theorem can not be adapted here int he large devia-
tions case. We will encounter the same technical difficulties as in the papers of Bercu et
al. [3] and Bryc and Dembo [10] where they established the large deviation principle for
quadratic forms of Gaussian processes. Since we cannot determine the limiting behavior of
the cumulant generating function at some boundary point, we will use an other approach
based on the results of Najim [26], [27] and [25], where the steepness assumption concern-
ing the cumulant generating function is relaxed. It has to be noted that the form of the
large deviations rate function is also original: at the process level, and because of the weak
exponential integrability of V;”, a correction (or extra) term appears in rate function, a
phenomenon first discovered by Lynch and Sethuraman [22].

To be complete, let us now recall some basic definitions of the large deviations theory (c.f
[13]). Let (A,)n>1 be a sequence of nonnegative real number such that lim,, .., A, = +oc.
We say that a sequence of a random variables (M,,),, with topological state space (S,S),
where S is a ¢ — algebra on S, satisfies a large deviation principle with speed ), and rate
function I : S — [0, 4+00] if, for each A € S,

1 1
— inf I(x) < liminf ~ logIP’(Mn € A) < lim sup x log]P’(]V[n € A) < —inf I(x)

rEA° n—00 n Nn—00 n T€EA

where A° and A denote the interior and the closure of A, respectively.

The rate function I is lower semicontinuous, i.e. all the sub-level sets {z € S | I(x) < ¢}
are closed, for ¢ > 0. If these level sets are compact, then [ is said to be a good rate function.
When the speed of the large deviation principle correspond to the regime between the central
limit theorem and the law of large numbers, we talk of moderate deviation principle.

Notations. In the whole paper, for any matriz M, MT and | M| stand for the trans-
pose and the euclidean norm of M, respectively. For any square matriz M, det(M) is
the determinant of M. Moreover, we will shorten large deviation principle by LDP and
moderate deviation principle by MDP. We denote by (-,-) the usual scalar product. For
any process Zy, Ay Z stands for the increment Zy — Zy» . In addition, for a sequence of
random variables (Z,), on R>P we say that (Z,), converges (\,)—superezponentially fast
in probability to some random variable Z if, for all 6 > 0,

1
limsup/\—logP(HZn —Z|| > 6) = — 0.

n—oo n
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This exponential convergence with speed \, will be shortened as

superexp
Zn — Z.
An

The article is arranged in three upcoming sections and an appendix comprising some
theorems used intensively in the paper, we have included them here for completeness.
Section 2 is devoted to our main results on the LDP and MDP for the (co-)volatility vector.
In Section 3, we deduce applications for the realized correlation and the realized regression
coefficients, when oy, for £ = 1,2 are constants. In section 4, we give the proof of these
theorems.

2. MAIN RESULTS
Let X; = (X1, Xo4) be given by (1.1), and Y; = (Y14, Yas) where for £ = 1,2 Yy, =
fot by(t,w)dt. We introduce the following conditions
(B) for £ =1,2 b(-,-) € L™(dt ® P)

(LDP) Assume that for £ = 1,2

o 0;,(1 = pf) and o1409,(1 — pi) € L>([0, 1], dt).
e the functions ¢ — oy, and ¢ — p, are continuous.

(MDP) Assume that for £ = 1,2
. Uf’t(l — p?) and 01,094(1 — p?) € L*([0, 1], dt).
e Let (b,)n>1 be a sequence of positive numbers such that

b, —— oo and b—"—»O

n—o00 \/ﬁ n—oo
k/n
and for ¢=1,2 +/nb, max / op,dt —— 0. (2.1)
(

1<k<n k—1)/n n—00

We introduce the following function, which will play a crucial role in the calculation of
the moment generating function: for —1 < ¢ < 1 let for any A = (A1, Ao, A3) € R?

L, ((1=2X(1=2))(1—2x(1 — ) — (M3(1 — ) +¢)?
‘ilog( )

1—¢2

P()) = i#  AeD (2.2)

400, otherwise
where

and H (I=2X01—=c)) > (N1 =)+ 0)2

D.= {/\ € R3, 5112%)5/\@ <
o =1

1
21— %)
(2.3)

Let us present now the main results.
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2.1. Large deviation. Our first result is about the large deviation of V{*(X), i.e. at fixed
time.

Theorem 2.1. Lett =1 be fized.
(1) For every X = (A1, A, \3) € R3,

.1 !
lim —logE(exp(n (\, V(X = Y)))) = A()) = / Ppt()\lait, )\20’37t7)\30'1’t0'27t)dt,
0

n—oo N,

where the function P, is given in (2.2).

(2) Under the conditions (LDP) and (B) , the sequence Vi*(X) satisfies the LDP on
R3 with speed n and with the good rate function given by the legendre transformation
of A, that is
Tiap(x) = sup ((A, ) — A(X)). (2.4)
AER3

Let us consider the case where diffusion and correlation coefficients are constant, the rate
function being easier to read (see also [32] in the purely Gaussian case, i.e. b = 0). Before
that let us introduce the function P} which is the Legendre transformation of P, given in

(2.2), for all x = (21, xq, x3)

log V1—c2 71+x1+x2—20x3
/&1y — 13 2(1 — ?)

P (z) = (2.5)
if 21 >0, 29 >0, 1115 > 23

400, otherwise.

Corollary 2.2. We assume that for £ = 1,2 o, and p are constants. Under the condition
(B), we obtain that V*(X) satisfies the LDP on R3 with speed n and with the good rate
function I,Zp given by
A ) I3
1Y =P 5,5, = 2.6
ldp(ml’x%‘rg) p <O’%7 0_37 0_10_2> ) ( )
where P is given in (2.5).

Now, we shall extend the Theorem 2.1 to the process-level large deviations, i.e. for tra-
jectories (V;*(X))o<t<1, which is interesting from the viewpoint of non-parametric statistics.

Let BV ([0,1],R3) (shortened in BV') be the space of functions of bounded variation on
[0,1]. We identify BV with M3([0,1]), the set of vector measures with value in R®. This is
done in the usual manner: to f € BV there corresponds p/ caracterized by uf([0,t]) = ().
Up to this identification, Cs([0, 1]) the set of R3-valued continuous bounded functions on
[0,1]), is the topological dual of BV. We endow BV with the weak-* convergence topology
o(BV,C5(]0,1])) (shortened o,,) and with the associated Borel o—field B,. Let f € BV
and pf the associated measure in M;([0, 1]). Consider the Lebesgue decomposition of u/,
p! = p! + pf where i denotes the absolutely continous part of ;i with respect to dz and
p! its singular part. We denote by f.(t) = pf([0,#]) and by f.(t) = 1 ([0,1]).
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Theorem 2.3. Under the conditions (LDP) and (B), the sequence V(X)) satisfies the
LDP on BV with speed n and with the rate function Jia, given for any f = (f1, f2, f3) € BV
by

1 4 ! ’
Jup(f) = /OP;; <f1au2(t)7f2,a(t) f3,a(t)>dt

2 )
01t 02+ O1,t02¢

N /1 03 f14(t) + 07 [ (1) — 2Pt01¢02,tf§,s(t)1
0 20—%,150%,15(1 _ pg) [t:f1,6>0,f5 s>0,(f3 )2 <f1 s f2s

| dae),

where PF is given in (2.5) and 6 is any real-valued nonnegative measure with respect to

which p! is absolutely continuous and f! = duf/df = (]‘1/787 fé’s, f;s)

Remark 2.1. Note that the definition of f. is 6—dependent. However, by homogeneity,

Jiap does not depend upon 0. One can choose 6 = | fi |+ | fos|+]|fssl, with | fis| = fi5+

where f; s = fi,

1,87

— [is by the Hahn-Jordan decomposition.

Remark 2.2. As stated above, the problem of the LDP for Q} (X) and C™(X) was alreay
studied by Djellout et al. [14] and [15], and the rate function is given explicitly in the last
case. This is the first time that the LDP is investigated for the vector of the (co-)volatility.

Remark 2.3. By using the contraction principle, and if o, is strictly positive, we may find
back the result of [14], i.e. that Q} . satisfies a LDP with speed n and rate function

1 / 1 /1
Jl‘;’;(f):/o P ({;{g?) dt+§/0 %d\fsl(t)

where P*(x) = %(x — 1 —log(z)) when x is positive and infinite if non positive, using the
same notation as in the theorem (with 0 = |fs|). One may also obtain the LDP for C™ by
the contraction principle, recovering the result of Djellout-Yacouba [15] (see there for the
quite explicit complicated rate function).

Remark 2.4. The continuity assumptions in (LDP) of o,. and p. is not necessary, but in
this case we have to consider another strategy of the proof, more technical and relying on
Dawson-Gartner type theorem, which moreover does not enable to get other precision on
the rate function that the fact it is a good rate function.

However it is not hard to adapt our proof to the case where oy. and p. have only a finite
number of discontinuity points (of the first type). This can be done by applying the previous
theorem to each subinterval where all functions are continuous and using the independence
of the increments of V(X —Y).

2.2. Moderate deviation. Let us now considered the intermediate scale between the
central limit theorem and the law of large numbers.

Theorem 2.4. For t=1 fized. Under the conditions (MDP) and (B) , the sequence

S (x) - V)
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satisfies the LDP on R? with speed b? and with the rate function given by

1 1
Inap() = sup (<A,x> o A>) e g (27)
AER?
with
1 1 1

fo Uitdt fo U%,tgg,tp?dt fo Uit@,tﬂtdt
1 1 1 .

Y= fo Uitag,tl’%dt fo Ug,tdt fo 017t037tptdt

1
fol Uitaltptdt fol Ul,tUg,tptdt fol igitgg,t(l + P%)dt

Remark 2.5. If for somep > 2, 0}, 03, and 01,402,(1—p}) € LP([0,1]) and b, = O(n?7),
the condition (2.1) in (MDP) is verified.

Let H be the banach space of R3-valued right-continuous-left-limit non decreasing func-
tions v on [0,1] with y(0) = 0, equipped with the uniform norm and the o—field B*
generated by the coordinate {~y(¢),0 < ¢ < 1}.

Theorem 2.5. Under the conditions (MDP) and (B), the sequence
VI n

VI () - [V])

satisfies the LDP on H with speed b2 and with the rate function given by

[ [ em)a i oe Ao

2
Iinap(9) = (2.8)
400, otherwise,
where
4 2 2 2 3

O1¢ 01102 +P% 01,t02,tPt
2 2 2 4 3

Y, = 01,02,y Ot 01,t02,1Pt

1
3 3 2 9 2
01,402,tPt 01,105t 501,t02,t(1 +07)

is invertible and X, " his inverse such that
1 X 1 )
5‘7%,t‘73,t(1 - pf) 5‘7%,#73,#?(1 - P?) _Of,tag,tpt(l - P?)
2_12#1442 2 L s o 2 5 3 2
¢ det (%)) §Ul,t02,tﬂt(1 —07) 501,t02,t(1 —pf) =001 —pf) |
*Uf,tog,tpt(l - p?) *Uir),tgg,tpt(l - P?) Uftait(l - pf)

1 6 &6 .
with det(2) = 5‘7?,t03,t(1 - )

and ACy = {¢ : [0,1] — R? is absolutely continuous with $(0) = 0} .
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Let us note once again that it is the first time the MDP is considered for the vector of
(co)-volatility.

In the previous results, we have imposed the boundedness of b(t,w) which allows us to
reduce quite easily the LDP and MDP of V"(X)to those of V(X —Y) (no drift case). It
is very natural to ask whether they continue to hold under a Lipchitzian condition or more
generally linear growth condition of the drift b(¢, z), rather than the boundedness. This is
the object of the following

Theorem 2.6. Let X; = (X1, Xat) be given by (1.3), with (X109, X20) bounded. We
assume that the drift by satisfies the following uniform linear growth condition: Vs,t €
[0,1],z,y € R?

[be(t, ) = be(s, )| < O+ [l =yl + 0|t = sDll=]] + ly[D], (2.9)
where C' > 0 is a constant and 1 : [0,00) — [0,00) is a continuous non-decreasing function
with n(0) = 0.

(1) Under the condition (LDP), the sequence V™(X) satisfies the LDPs in Theorem
2.1 and Theorem 2.3.

(2) Under the condition (MDP), the sequence g(f/"(X) — [V].) satisfies the MDPs
in Theorem 2.4 and Theorem 2.5. !

As it can be remarked, the LDP and the MDP are established here for V" instead of V™.
If we conjecture that the MDP may still be valid in this case with V", we do not believe
it should be the case for the LDP, and it is thus a challenging and interesting question to
establish the LDP in this case for V. However for the statistical purpose, if the drift b is
known, the previous result is perfectly satisfactory.

3. APPLICATIONS: LARGE DEVIATIONS FOR THE REALIZED CORRELATION AND THE
REALIZED REGRESSION COEFFICIENTS

In this section we apply our results to obtain the LDP and MDP for the standard depen-
dence measures between the two assets returns such as the realized regression coefficients

up to time 1, Gy = % for / = 1,2 and the realized correlation ¢; = \/ﬁ which are
estimated by 37, (X) = % and o}(X) = % respectively. To simplify the ar-

gument, we focus in the case where o, for £ = 1, 2 are constants and we denote p := fol prdt.
The consistency and the central limit theorem for these estimators were already studied see
for example Mancini and Gobbi [24]. Up to our knowledge, however no results are known
for the large and moderate deviation principle.

3.1. Correlation coefficient.

Proposition 3.1. Let for { = 1,2, o, are constants and o = fol prdt. Under the conditions
(LDP) and (B), the sequence ¢} (X) satisfies the LDP on R with speed n and with the good

rate function given by

Ligy(u) = inf I (.~
ldp( ) {(xvyyz)GRazu:\/%} ldp( ' Ys )




o4

LDP and MDP for realized covoalatility

LDP OF THE REALIZED (CO-)VOLATILITY 11

where I, is given in (2.4).

Once again, let us specify the rate function in the case of constant correlation.

Corollary 3.2. We suppose that for { = 1,2, o4 and p are constant. Under the condition
(B), we obtain that o} (X) satisfies the LDP on R with speed n and with the good rate
function given by

, —l<u<l1

log v1—pu 14 ot + o3 — 2poiodu
15 () = V1= V1= 2 207035 (1 — pu)

400, otherwise.

(3.1)

As the reader can imagine from the rate function expression, it is quite a simple appli-
cation of the contraction principle starting from the LDP of the realized (co)-volatility. As
will be seen from the proof, in this case, the MDP is harder to establish and requires a
more subtle technology: large deviations for the delta-method.

Proposition 3.3. Let for { = 1,2, o, are constants and o = fol pedt. Under the conditions
(MDP) and (B), the sequence g (0(X) — o) satisfies the LDP on R with speed b2 and

with the rate function given by

g p— .
Imdp(u) — inf 2002 Imdp(xaywz)
oTytxo
{(%y’Z)GH@:u:ﬁfg 1 32}

20%0
where Lyap is given in (2.7).

Corollary 3.4. We suppose that for { = 1,2, o, and p are constant. Under the condition
(B), we obtain that g(g’f(X) — p) satisfies the LDP on R with speed n and with the good
rate function given fm?‘l allu e R by

7 2u?

mdp(u‘) = (1 _ p2)2- (32)

3.2. Regression coefficient. The strategy initiated for the correlation coefficient is even

simpler in the case of regression coeflicient.

Proposition 3.5. Let for { = 1,2, o, are constants . Under the conditions (LDP) and
(B), for £ =1 or2, the sequence 3"/ (X) satisfies the LDP on R with speed n and with the
good rate function given by

Be .
Ly (u) = inf Lap(1, 72, 3)
{(@1,22,23)ER%u=22}

where I, is given in (2.4).

Once again, this Proposition is a simple application of the contraction principle. Let us
specify the rate function in the case of constant correlation.
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Corollary 3.6. We suppose that for £ = 1,2, a4 and p are constant. Under the condition
(B), we obtain that B\ (X) satisfies the LDP on R with speed n and with the good rate
function given for v = 1,2 with £ # 1 and for all u € R by

1 (opu — po,)?
By, o )4 PO,
Ligp(u) = 5 log (1 =T ) : (3.3)
We may also consider the MDP.

Proposition 3.7. Let for { = 1,2, o, are constants and o := fol pedt. Under the conditions
(MDP) and (B) and for £, € {1,2} with £ # 1, the sequence {—f(ﬁ?l(X) — 02) satisfies
the LDP on R with speed b2 and with the rate function given by

B - s
[mdp(u) - {(I,y,z)GR"}:Hi%—g%z} Imdp(xa Y, Z)
7 %

where Lyap is given in (2.7).

Corollary 3.8. We suppose that for { = 1,2, o, and p are constant. Under the condition
(B) and for £,0 € {1,2} with £ # ¢, we obtain that #(ﬂ?l(X) — pZ) satisfies the LDP on
R with speed n and with the good rate function given for all u € R by

8 20242
L) = =575 @ = 7 (3.4)

4. PROOF

Let us say a few words on our strategy of proof. As the reader may have guessed, one
of the important step is first to consider the no-drift case, where we have to deal with
non homogenous quadratic forms of Gaussian processes (in the vector case). In these
non essentially smooth case (in the terminology of Gértner-Ellis), we will use (after some
technical approximations) powerful recent results of Najim [26]. In a second step, we see
how to reduce the general case to the no-drift case.

4.1. Proof of Theorem 2.1.

Lemma 4.1. If (¢,¢') are independent centered Gaussian random vector with covariance

(i i) ,—l<e< 1.
Then for all (A1, Mo, A3) € R3
log Eexp (M&? + 2 + Aag€) = PO, Ao, M),
where the function P, is given in in (2.2).
Proof : Elementary.

Lemma 4.2. Let X; = (X1, Xo4) given (1.1) and Y, = (Y14, Ya,) where ford =1,2 Y, :=
fot be(t,w)dt. We have for every A € R3

1 1
A(N) = ElogE (exp (n (M V(X =Y)))) < A(N) = /0 Ppt(/\lait., /\20;25, A30714094)dt,
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where the function P, is given in in (2.2), and

lim A, (A) = A(N).

Proof : For ¢ = 1,2, we have

[nt] [nt]

QL (X -Y) Zamfpk and CMX —Y) Z\/Ch V2,681 k&2 k
where

ﬁt:_l Ué,sdBZ,s ty 9
Erjp =——— and ay; = oy sds. (4.1)
t

n
k—1

Obviously ((£1.k,&2.%))k=1..n are independent centered Gaussian random vector with co-
variance matrix

where

o
A=k and 9] = / 01,5025 psds. (4.2)
VaA1,k+/A2 k o,

We use the lemma 4.1 and the martingale convergence theorem (or the classical Lebesgue
derivation theorem) to get the final assertions (see for example [14, p.204] for details).

Proof Theorem 2.1.
(1) It is contained in lemma 4.2.
(2) We shall prove it in three steps.

Part 1. At first, we consider that the drift b, = 0. In this case V*(X) = V(X —Y). We
recall that since By, = pydByy + /1 — p?dBs,, we may rewrite (1.1) as

{dXLt = Ul,tdBLt (4 3)
dXsy = o94(pedBry + \/1—P?dB3,t) .

Using the approximation Lemma in [13], we shall prove that

n n n

VX -Y) = (Z (ARX1)2,)D T (ARX0)2, ) (AFXY) (AZX2>>

k=1 k=1 k=1
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will satisfy the same LDPs as

1 n
~D 0N
k=1
n 1 -
I/V1 = —Z 0271%;1pk; N1k+0’2k 11/ PklN‘ik ,
"= -
_Zalk 1N1k<02k 1Pk=1 1N1k+02k 1,/ p,c 1N37]€>

k=1

where Ny, := fttnz VndBy, for £ =1,3.
k—1
Let us first focus on the LDP of W*. We will use Najim result (see Lemma 5.1) to prove

that.
1
) z

It is easy to see that W' can be reritten as

1 & k
_! F(

where
o? 0 0
Ak L
F<k> — | )| =] oert o5 (l=pi) 205.px, /1= i (4.4)
n n non n n nm
k
f3(ﬁ) 0,605 kP 0 Oy k0y k /1—/)2&
and
T
Z; = (Nt;, N3i;, NijNsj) . (4.5)

Obviously (Nyx, N3 k) g=1..n are independent centered Gaussian random vector with iden-
tity covariance matrix.

For the LDP of W} we will use Lemma 5.1, in the case where X’ := [0, 1] and R(dx) is the
Lebesgue measure on [0, 1] and «7 :=i/n. One can check that, in this situation, Assump-
tions (N-2) hold true. The random variables (Z)g=1..n are independent and identically
distributed. By the definition of Zj, the Assumptions (N-1) hold true also.

So W7 satisfies the LDP on R? with speed n and with the good rate function given by

for all z € R?
I(x)z/\ssﬂg(()\m / <Z/\ filt > >,

5 )\10’%t + /\Qag’tp? + )‘301,t02,tpt
S AL = Mo, (1 2 7
i=

20003 ,pe\/ 1 — p} 4 A3014024/1 — p}

L(A) = 1OgEeXp <A> Zl> = PO()‘ly A27 )‘3)7

with

and for \ € R?
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where Py is given in (2.2). In this cas it takes a simpler form wich we recall here:
1
P()(Al, AQ, )\3) = —5 IOg ((1 — 2)\1)(1 — 2/\2) — )\:2))) .

An easy calculation gives us that

1 3 1
/ PO (Z Az . fz(t)> dt = / Ppt, ()\10’%t7 )\20’%7“ A3G’17t0'2_’t) dt7
0 j=1 0

SO
I(x) = liap(),
where I, is given in (2.4).

Part 2. Now we shall prove that V;* and W] satisfy the same LDPs, by means of the
approximation Lemma in [14]. We have to prove that

superexp

V(X —Y)— W 0.

We do this element by element. We will only consider one element, the other terms can
be dealt with in the same way. We have to prove that for ¢ =1,2,3

ZJ superexp 0’ (46)
where
[nt] 1 nt)
Ry, = Z le T Z 1ka (4.7)
k=1 -1
[nt] 1 [nt] 2
Rg,t = Z(AZXQ)Q — E Z(O’Q’knlpknlNLk + 0'27%, /1— piTlN&k) 5 (48)
k=1 k=1
and
[nt] 1 [nt]
Ry, =Y AFXiARX, — ~ > oy Ny (02,5;1;)21\117,6 oy /11— pilNg,k) (4.9)
k=1 k=1 "

At first, we start the negligibility (4.6) with the quantity R}, which can be rewritten as

n
n
1= Z R_iRy ks
=1

with Ry := ftz (01,6 £ 0y 1-1)dBy 5, where ((R_y, Ry k))k=1..n are independent centered
k—1 T n ’

Gaussian random vector with covariance

n n
(5—,k U )
n n
M €1k
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So by Chebyshev’s inequality, we have for all r, A > 0,
1 1
—logP (R}, >r) < —rA+ —logEexp (nARY,) (4.11)
n k n K

A simple calculation gives us

1 1 n
- logEexp (nARY};) = - ; logEexp (AR} R_ )

n n n n n n n 2
1 EL Rk — (”)\(&,k&,k —()?) + Wk)
g n n n\2
Sl (/Y

)

1 n n n n
= o Zlog [1 - nz)‘2(5+,k57,k —(m)?) - Mnk]

— [ K@) (1.12)
where K is given by

1
—§log(1 —2)\) if A< %
K(\) =
400, otherwise,

and

n n n n 2 n

Z ik €k A Mk
f”(t) = 1<w—tn )(t) )\2 n +7n n ’n - < n n > + 2A <nn
— e =ttty =t th =ty e =t

where €} ; and 7} are given in (4.10).
By the continuity condition of the assumption (LDP) and the classical Lebesgue deriva-
tion theorem, we have that

falt) — 0 as m — oo.

By the classical Lebesgue derivation theorem we have that the right hand of the equality
(4.12) goes to 0.
Letting n goes to infinity and than A goes to infinity in (4.11), we obtain that

lim llogIP’( Ty > r) = —o0.

n—oo N,

Doing the same things with —R7};, we obtain (4.6) for RY,.
Now we shall prove (4.6) with R% ;. We have

Ry = B yBip+ Y E yBiw+ Y EowBoj+ Y BBy,
k=1 k=1 k=1 k=1

where

t
Eyy = / (09,sps £ Ty k1 Pr-1 )d B s,
t n

n n
k—1
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and

t
Bi,k = / (0'2’5\/ 1— pg + 0'2’b1 /1 — p%,l)ng’s.
G o

where (E_ i, Evr),(E— g, By k),(E+ g, B—k),(B— g, B+ i), k = 1---n are four independent
centered Gaussian random vectors with covariances respectively given by

j;%%:l(ag,sps O'lepkl)QdS ftn (0307 — ; P31 )ds

tn tn
Jit (208 = 0g e Pl )ds fuf (02005 + Uz,%P%)zdS
and
ftg (O’ — Og k—1 71)2d8 0
tn_, \O2sPs e
0 tté“_l(az’s«/l *pZ‘I’O'an;l /1 fpi%)st
and
ft%,l 09,505 + 0y Lp%)st 0
0 t%il(az*“/l —pE = Oy 1 - pi%l)Qdé
and

f 2/ 1= 7 = 0y [U= s [ (03,00 = p2) = 2s (1= pha))ds
ftn l—ps) _1(1—pi;1))d8 ftg&,l(‘T?’s\/l_—pg—*_Ul%\/@)zds'

k—1

So (4.6) for Ry, is deduced if

n n
superexp superexp
E E by —0, E E_xBypy — 0,
n

n
k=1

n n
superexp superexp
g E+,ka,k — 0, E B*,kB+,k 7 0.

n
k=1

Each convergence is deduced by the same calculations as for (R_ x, Ry k)k=1..n-




LDP and MDRP for realized covoalatility

61

18 HACENE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

Now we shall prove (4.6) with R%,. We have

tn
k

n n n i
Riy = Y RyE_x+Y RyuBy+y Ry ( /t 02%/)%013175)
k=1 k=1 k=1

—1
n 7 n %

+> Ry / Oyro J1—p2dBs, |+ B / 0y 51dBy
s G g o, "

k=1
n £y
+ZB—,k /t" Ulﬁ%dBl,s )
k=1 ;

k—1
where we have used the same notation as before. By the same calculations used to prove
(4.6) for R}, and Rj,, we obtain (4.6) for Ry .

Then V(X —Y) and W} satisfy the same LDP.

Part 3. We will prove that V{"(X) and V*(X —Y) satisfy the same LDP. We need to
prove that
V) -vr(x =y)| "=,

n

This will be done element by element : for £ = 1,2

P(X) — Qi (X —Y) PTJ’ 0 and CP(X)—-CPX —Y) pr 0.  (4.13)
We have
01,(%) - Q1 (X - )] = Qi - ¥ + (14 =) 28
and

CEHX) = R0 = V)] £ 200) (@LX ~ V) + QX V) + (34 ) @+ 23).

s L
Zin=> / bi(t,w)dt | <=
;

k=1 k—1
We chose (n) such that ne(n) — oo, so (4.13) follows from the LDP of Q,1(X), C7(X)
and the estimations above.

with

4.2. Proof of Corollary 2.2.

From Theorem 2.1, we obtain that V*(X —Y) satisfies the LDP on R?® with speed n and
with the good rate function given by for all z € R?

Al A2 A
Il‘gp(x> = sup (<)\,x> - PP(U%/\hUSAQa(ﬁUZ)\B)) = P; <—;7 —27 —3) .

AER3 0'1 0'2 0102
where P, and P are given in (2.2) and (2.5) respectively. So we get the expression of Il‘ép
given in (2.6).
The Legendre transformation of P, is defined by

Pi(x) = sup (A, ) = Bp(N)).
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The function A — (A, ) — P,()) reaches the supremum at the point \* = (A}, A, Aj)

such as
= 1T1%2 — (1 = p*)wy — a3
P2 21— p)(wymy —aB)
e 1Tz = (L= pt)zy — a3
22 21— p)(wywy — a3)
A= T?ip — T1T2p + (1 B pQ)'Tf)'
’ (1= p?) (@122 — 23)

So we get the expression of the Legendre transformation P given in (2.5).

4.3. Proof of Theorem 2.3.

Now we shall prove the Theorem 2.3 in two steps.
Step 1. We start by proving that the LDP holds for
[nt]

1 k—1
th:EZF( n )Zk’
k1

where F is given in (4.4) and Zj is given in (4.5).

This result come from an application of LDP of Lemma 5.2 derived in the case where
X :=0,1] and R(dz) is the Lebesgue measure on [0, 1] and = := i/n. One can check that,
in this situation, Assumptions (N-2) and (N-3) hold true.

The random variables (Zy)g=1.... » are independent and identically distributed. And we

F - ! Zy. The law of Z}!
depends on the position z? :=i/n This type of model was partially examined by Najim see
section 2.4.2 in [27].

By the definition of Z}, the Assumptions (N-1) and (N-4) hold true.

Finally, we just need to verify that if 27 and 7 are close then so are £(Z}') and L(Z})

j
for the following Wasserstein type distance between probability measures:

dow(P,Q) = inf inf{a>0;/ T(Z_Z>n(dzdzl) < 1},
R3xR3

neM(P,Q) a

will apply the Lemma with the random variables Z}' := F

where 7 is a probability with given marginals P and @ and n(z) = el*l — 1.
In fact, consider the random variables Y = F(2)Z and Y = F(a)Z, since F' is continuous

- (y - ?) n ((F(x) - F(a:’))Z) o

€ €

for 2’ close to x. Thus dow (L(Z}'), L(Z})) < e. This gives the Assumption (N-5).
So we deduce that the sequence W™ satisfies the LDP on BV with speed n and with the
rate function Jig, given by

T f) = / A (FL (0t + / Ro(F (1) d0(1).
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where for all z € R? and all ¢ € [0, 1]
Aj(2) = sup ((A, 2) — Ae(N)

AER3
with
A(N) = log/ eMIP(t, dz) = Ppt()\lait, /\203¢7 A301,4094),
R3
so A} coincide with P given in Theorem 2.3.

And 6§ is any real-valued nonnegative measure with respect to which pf is absolutely
continuous and f! = du!/df and for all z € R? and all ¢ € [0,1] the recession function h
of A} defined by fiy(2) = sup{(\,z), A € Dy, } with Dy, = {} € R} A;(\) < oo} = {\ €
R37 pr,()‘lo-itv AQJ%“ )\301,t02,t)7 < OO}

The recession function a of P* | see Theorem 13.3 in [31] is given by

. . Pp*(hz) 21+ 29 — 2623
Oé(Z) = hILH;o h = 2(1 — 02) [21>O,zz>0,z§<zlzg]'

Using this expression, we obtain the rate function given in the Theorem 2.3.

Step 2. Now we have to prove that

sup [[Vi'(X —Y) Wy TEST

te[0,1] n

0.

To do that, we have to prove that for ¢ =1,2,3

sup |R2t SRR, (4.14)
te[0,1] ’ n

where the definition of R}, arge given in (4.7), (4.8) and (4.9) for ¢ = 1,2, 3 respectively.

We start by proving (4.14) for ¢ = 1, the other terms for ¢ = 2, 3 follow the same line of
proof.
We remark that (R}, — E(RY,)) is a (Fjug/n)-martingale. Then

exp()\n [R;lt - E(erlt)])

is a sub-martingale. By the maximal inequality, we have for any r, A > 0,

P (exp </\n sup [RY, — IE(RTQ]) > e”“)
te[0,1]

) (exp ()\TL [R?,l — E(R;’l)]))

P ( sup [RY, —E(R},)] > r>

t€[0,1]

IN

and similarly

P < inf [R, — E(R},)] < 7-) < e E (exp (=An [R, — E(R)])).

te€[0,1]

So we get

1 1 n
—logP <sup [T\’{Lt — E(R?t)] > 7‘) < —=Ar+ —logE (GMR“) — AE(RY ).
n t€[0,1] ’ ’ n '
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It is easy to see that E(R};) — 0 as n goes to infinity. We have already seen in (4.12)
that %log]E (e’\”Rfl) — 0 as n gos to infinity. So we obtain for all A > 0

1
lim sup — log P (Sup [RT, —E(RY,)] > r) < =Ar
n—oo T te[0,1] ’ ’

Letting A > 0 goes to infinity, we obtain that the left term in the last inequality goes to
—00.
And similarly, by doing the same calculations with

P ( inf [Ry, —E(R},)] < —r) ,

te€[0,1]

we obtain that

superexp
sup |R7ft - ]E(R?t)| — 0.
te[0,1] n
Since
n superexp
]E( 1,1) 07

we obtain (4.14) for ¢ = 1.

4.4. Proof of Theorem 2.4.

As is usual, the proof of the MDP is somewhat simpler than the LDP, relying on the
same line of proof than the one for the CLT. Namely, a good control of the asymptotic of
the moment generating functions, and Gértner-Ellis theorem. We shall then prove that for
all A € R3

1 1
lim — log E exp (big VP — [vh)) =SSN, (4.15)

n—o0

Taking the calculation in (4.2),we have

2V

1
n bn

o e (B3O V1 ) = 3 (HEO) - v O, V1),

with
Hl?()\) = ch (Albn\/ﬁal,lw )\an\/ﬁazka )\Sbnﬁx/al,k\/azk) >
where agy, are given in (4.1) and ¢} is given in (4.2).

By our condition (2.1),

e(n) := v/nb, max maxa,j — 0.
1<k<n ¢=12 =~ n—oo

By multidimensional Taylor formula and noting that P (0,0,0) = 0, VFPx(0,0,0) =
(1,1,¢)T and the Hessian matrix
2 2?2
H(PFZ)<07030) = 2(62)2 2 2(‘;; )

2cr 2dr 1+ (cf)?
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and after an easy calculations, we obtain once if |[A|| - [e(n)| < 1, i.e. for n large enough,

H(X) = bov/n (X [V]1) + nbfé()\, YA + nb2v(k,n),

where
2 n\2 n
ay i (%) a kU

o= (07 a3, as ;I3
a1 0% ag k Uy %(a1,ka2,k+(192)2)
where 97 is given in (4.2), and v(k,n) satisfies
lv(k,n)| < C[IA]] - [e(n)],

PP (A1, A2, A3)
B
On the other hand, by the classical Lebesgue derivation theorem see [14], we have

n ft" g(s)ds fttf h(s)ds 1
3 (et el VST IR PO TN
ket E tpo1 0

k=1

where C = 5 bupH)\HSlM

by taking different chosse of g and h: once g(s) = h(s) = o7, or g(s) = h(s) = 01,015,
or g(s) = o7, and h(s) = op , £ # €', and g(s) = o7, and h(s) = 01,401,sps, We obtain that
1 1
f o dt fo o1 ,05,p7dt Jo ot o2pidt
o 1 1
nz YF oo D1 = fo ot tU2 o7d fo Ug,tdt fo Ul,tag,tptdt =Y.
1
1 1 1
Jo 0% o0epedt  [) 01403, ppdt ] 50%,#7%,75(1 + p7)dt

Then the (4.15) follows.
Hence (2.4) follows from the Gartner-Ellis theorem.

4.5. Proof of Theorem 2.5.

It is well known that the LDP of finite dimensional vector

(ﬁ<vg<x>—[v151,--- VI (X) - msk>>,o<sl<~~~<sk<1,k>1

s Vs
bn

and the following exponential tightness: for any s € [0,1] and n > 0
VI sup ALV - ALV ) = o0

bn s<t<s+e
with ALV =V — V| are sufficient for the LDP of \b/_

topology (cf. [13],[14]).

eld pooco

lim lim sup — 2 logIF’ <

(V™(X) — [V].) for the sup-norm

n
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Under the assumption of Theorem 2.5, we have:

lim /n 5up] IEV*(X) — [V]:]| = 0. (4.16)

n—oo tE
In fact, we have:

v sup [[EV"(X) — [V]|

t€[0,1]

< 3v/nmax (ymx sup [EQ7,(X) — [Xelil, v/n sup |EC}(X) — (X17X2>t|>

te[0,1] t€[0,1]

< 3max | maxma dt, ma: 2 g2, p2dt | .
x | max max k o Cedtmaxy [ | otk

By our condition (2.1), we obtain (4.16).

Now, we show that for any partition 0 < s; < --- < s < 1,k > 1 of [0, 1]
ﬁ n n
E(Vsl(x)_[v]ﬁf" >ka( ) [V]Sk)
satisfies the LDP on R* with speed b? and with the rate function given by

Loy s, me) = =Y (@ — 2i1), (53 ) 71 (@ — 251)) (4.17)

i=1
where
u w 2 2 92 u 3
f a1, tdt fs 01402,P7dt fs o1 02, pedt

N — fu 01 tJZ tPt Zdt fu Ugtdt fu Jl,tgg,tptdt

f U1t‘72tl)tdt f UltUQtPtdt fs Ulta2t(1+pt)d

is invertible and

(@) = ([ ataar) ([ oeae) ([ gotiatia s phae)
+ 2</u aitag,tptzdt> (/u Jlﬁtag’,tptdt> (/u O'itO'Q’tptdt>
Y1, 0, 2 “ ?
- </S §Ul,t02,t(1 + Pt)dt> </8 JltOQtptdt>
u u 2 u u 2
— </ Uitdt> (/ ol,tagytptdt> — (/ U;tdt> </ Uitag,tptdt)

and (X%)~! his inverse.
For n large enough we have 1 < [nt1] < --- < [nt;] < n, so by applying the homeomor-
phism
T:(zy, 0 ,x,) — (X1,02 — X1, -+, T — Tp—1)
= (VH(X) = [V]s,- -, VI(X) = [V]s,) can be mapped to U, = TZ, with independent

components.
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Then we consider the LDP of g(Un —EU,).

For any 0 = (61,--- ,6;) € (R3)k7j

k
1 1
Asy, -+ si(0) = lim - logEexp (boy/n (N, U, — EU,)) = > §<Ai,2€g ).

n—o0 b%

By Gartner-Ellis theorem, g(Un — EU,) satifies the LDP in (R?)* with speed b2 and

with the good rate function
k

1 oo
A*S17 - 75k($) = 5 Z(l’z (Eizil) 1. $Z>

i=1
. . - Vn : .
Then by the inverse contraction principle, we have b_(Z" —[EZ,) satisfies the LDP with
speed b2 and with the rate function I, .. ,, () given inn(4.17).

Now, we shall prove that for any n > 0, s € [0, 1]

—00. (4.18)

bn s<t<s+e

lim lim sup ! log P (@ sup [JALV(X) — EALVH(X)| > n)

el pooo a
For that we need to prove that for £ = 1,2 and for all n > 0 and s € [0, 1]
1
lim lim sup — log P (@ sup |ALQp.(X) —EALQ..(X)| > 77) = —00, (4.19)

€l0 poco b% bn s<t<s+e
and
1
lim lim sup — log P <@

el0 pooo U2

sup |ALC(X) —EALC(X)] > 7)) = —00. (4.20)

bn s<i<s+e

In fact (4.19) can be done in the same way than in Djellout et al.[14]. It remains to show
(4.20). This will be done following the same technique as for the proof of (4.19) and using
a result of [15]. Remark that (C7/(X) — EC]'(X)) is an Fj,y/n-martingale. Then

exp(A[A{(CT(X) — EC™(X))])

is a sub-martingale. By the maximal inequality, we have for any n, A > 0

P( sw AL - ECX] ) = P (ewh sup ALICHOY) — BCMX) > )

s<t<ste s<t<s+e
< e MEexp (A [CM(X) —ECM(X)]), (4.21)

and similary,

P ( inf AL [C"(X) — EC™(X)] < _n> < e MEexp (—A[ATF [C(X) — EC™ (X)) .

s<t<s+¢e
(4.22)
Using Remark 2.4 in [15], we have that for all c € R

1 1 s+e
lim w2 log E exp <cbi\g—ﬁAj+‘ [CM(X) — EC’,”(X)]) = 502/ o7 05,(1+ p})dt.
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bn .
Therefore taking n = d—, A = byy/nc (¢ > 0) in (4.21), we get
n

lim sup ! log P (ﬁ sup AL[CM(X)—-EC™(X)] > 5)

n—oo bi bn s<t<s+e

1 ste 52
<inf < —cd + —62/ o2 .02, (1 + p? dt} = ,
c>0{ 3¢ ), cuonllte) 2 [*702,03,(1+ pR)dt

and similary by (4.22),

1 67
limsup — logP (\/ﬁ inf AL[CMX)-EC"X)] < —5) S "o et 2 PN
b, s<i<s+e 2 [T 07,05 ,(1+ pf)dt

By the integrability of 07,03 ,(1 4 p}), we have

s+e
lim sup / 01,03 (14 pH)dt = 0.
€10 sef0,1] /s T

Hence (4.20) follows from the above estimations. So we have (4.18).

By (4.17) and (4.18), g(‘/" — [V].) satifies the LDP with the speed b2 and the good

n
rate function

Top(x) = sup {Ls, ... s, (x(51), -+, 2(s1));0 <81 <--- <8, <Lk =1},
where
[sl,.A%Sk(I(sl), - 7I(5k)) = %Z(I(SZ) — £C(Si,1)7 (Z‘Z:_l)*l . (x(sl) — x(81‘71>>>

It remains to prove that I, () = Ing(x).
We shall prove that I, () < Lnap(x).
For this, we treat the first element of the matrix (X% )~' which is denoted (ij)f%
and we prove that
k 1
(oo = a2 )ik € [ @S,
i=1 0

where (X;!)1 1 represente the first element of the matrix 3, .
We have

o _ 1 S Si 1 S; 2
(ZF )= W((/bl Ug,tdt) </Sl 50%,1505,7:(1 + ptZ)dt) - (/31 Ul,tag’,t,ﬂtdt> >

By [20, p.1305], for « := (1, 29, 23) € H, if Leyp(x) < +o0, thenfor0 < s; <--- < s, < 1,

Then
1
k 202 0% (1 2 2 6 2
(o) = sl 2k < [ e 27T Tk
i1 ' R . det (%)

- / (&4 ()25t
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The same calculation with the other terms of the matrix given in the following, implies
that I, (x) < Lngp(x):

. 1 si si ] si 2
5= g () etar) ([ gt aan) - ([ ationimat) |
1 S; S; S 2
(Ei;l);ﬁ = m {(/811 Uzll,tdt> (/Si1 U;,tdt) - (/SL1 ‘71 fUQ tPt dt) ]

W e 1 y s
(E3 D=2 a1 = det ) K/ Oitg2,tptdt> (/ U1,t<7§,tptdt>
Si—1 Si—1 Si—1
Si 4 1
([ ctuotatar)([ Gotota )]
Si—1 Si—1

1 S S .
YE) T IS Pt 24t 3 opdt
( Si 1)1 = ( Sie .)3,1 det(Eizi,l) [</S¢_1 01 t02 1Pt ) (/Si_l 01,105 1Pt )

- (/ U;tdt> </ UitO'gytptdt):|,
Si—1 Si—1

S — s — 1 * o
(B3 ez = (B3 )3 = = Je () [(/5 1 o} ,0% tptdt> (/81 Uitﬂz,t/)tdt>
— (/ Jitdt> </ alﬁtagﬁtptdt)} .
Si—1 Si—1

On the other hand, by the convergence of martingales and Fatou’s lemma,
Lnap(x) < 400, and Tnap(2) < Tgup(x).
So we have Iy, (z) = Iy (z).
4.6. Proof of Theorem 2.6.
Step 1. We shall prove that V™ and V(X —Y) satisfy the same LDP, by means of the

approximation Lemma in [14]. So we shall prove that Q? and Q7 (X —Y) satisfy the same
LDP and idem for C™ and C"(X -Y).

We have
s [01,(0) = QX = )| < ()@ (X =) + (1+5) 2 am
and
sup |C7,(X) — CT,(X —Y)| ZQ“ (X —Y) (1 1) ZQ: Zom,  (4.24)
€1 2 () H~
where the sequence ¢(n) > 0 will be selected later, and Z,,, is given
n tn 2
Zpn = Z (/tn bes(Xe)dt — bpgn (Xip )(t — t2—1)> . (4.25)
k=1 k-1




70 LDP and MDP for realized covoalatility

LDP OF THE REALIZED (CO-)VOLATILITY 27

with Xt = (Xl,tu Xg’t).
For Q7 (X —Y), being a Gaussian process, Theorem 1.1 in [14] may be used. It remains
to control Zy,,. For this we just need to prove that:

1 superexp
—Zin — 0. 4.26
€(n) L, " ( )

The main idea is to reduce it to estimations of M,, = fot 00,58y s, by means of Gronwall’s
inequality. So, we have at first for all ¢ € [0, 1]

Xl < 1%l + € [ 1+ (Ut () IXlds +sup 0L
< (c + 1610l + [ Xaoll + sup ||Ms||) o f ..
where C) = C(1 4+ n(1)). Hence, by Gronwall’s inequality
1XJ < (c + 1%l + [ Xaal + sup ||Ms||) O weel1]  (a27)

For any s € [0,1], v > 0

sup [ Xy = Xofl < sup [|My — M|+ sup [|b(£, Xy

s<t<s+v s<t<st+v s<t<s+v
< sup || My — M| 4+ vCq <sup | X + 1) (4.28)
s<t<s+v 0<t<1

We get by (2.9), (4.27),(4.28) and Cauchy-Schwarz’s inequality

n
k—1

2
1 1
< (—c(1+ sup ||Xt—xf,;l||+2n(—) sup ||Xt||>>
n <R n ) o<t<1

C 1 1\ 2
< —§<1+ sup ||Mt—Mt;1||2+<—2+n(—)>sup ||Mﬁ> (4.29)
n < n n 0<t<1

2
i
( / be(t, X)dt — be(t] 1, Xep )(E] — zn)
t

k-1

Chose €(n) > 0 so that

L4 (d)’
e(n) — 0 but mtnla) (4.30)

By (4.29) and the definition of Z;,, we have that

1 1
lim sup — log P <—Zln > 6) < max(A, B)
n—oo T e(n)




LDP and MDRP for realized covoalatility

28 HACENE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

where

1
A = limsup— logP ——max sup ||M, — My ||* > C4d
g(n) k-1

<
n—oo T n k<n 1 <ty

N

=12 pooo M noksnogn <<t

1 1 1\
B = limsup— logIP’ —— | 5 +n () sup || My|)* > C56
oo g(n)?n \ n? n 0<t<1
1 1 1\? )
< 2maxlimsup — log]P’ —+n( - sup |Mg:|* > Cs0 | . (4.32)
=12 oo e(n)n \ n? n ost<1l

By Lévy’s inequality for a Brownian motion and our choice (4.30) of e(n), the limits
(4.31) and (4.32) are both —oo. Limit (4.26) follows.

1
2mathsup log P (5( ] max sup |Mp; — M 1|2 > C45> , (4.31)
n _

and

Step 2. We shall prove that %(‘7” —[V].) and \b/—f(V,"(X —Y) — [V].) satisfy the same
LDP, by means of the approximation lemma in [14] and of three strong tools: Gronwall’s
inequality, Lévy’s inequality and an isoperimetric inequality for gaussian processes. By the
estimation above (4.23) and (4.24), and as Q,(X —Y') was also estimated in the proof
Theorem 1.3 in [14]. It remains to control Zy,, given in (4.25) . For this we just need to

prove that:
1 \/ﬁ superexp
- Nz pere
e(n) b, " B2

0. (4.33)

Chose (n) > 0 so that

2
e(n)vn (Z+n(2)?) b
- =0 but ~—8+——-—
by e(n)y/n
By (4.29) and the definition of Z;,, given in (4.25), we have that

limsup — 0 logIP’ ( (1”) \b/_ZM > 5) max(A, B)

— 0. (4.34)

n—oo

where

1 2
A g (g 8> o)

1 2
2522%)511?*5;? 2 log P ( OING r}??f . Slill?ét;f | My: — ]\/[g’t2;1| > C'45> ,  (4.35)

and

1 1 1\?
B= hgl—?ogp B log]P’ (W (ﬁ +1n <E> ) Sup M2 > Cs6 )

1 1 1 1\?
< i = — | = - 2 50 | - .
< 2?:1211’55 hin_)sotip 0 logP (5(n)bn\/ﬁ (n2 +n (n) ) 08551 | M|* > CO5> (4.36)
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By Lévy’s inequality for a Brownian motion and our choice (4.34) of (n), the limit (4.36)
are also —oo. As in [14], it’s more little difficult to estimate (4.35). By the isoperimetric
inequality [[21], p17,(1.24)] and our choice (4.34), we conclude that the limit (4.35) are both
—00.

4.7. Proof of Corollary 3.2.

We have just to do the identification of the rate function. We knew that o7 (X) satisfies
the LDP on R with speed n and with the good rate function given by

P - ; v
I, (u) = inf Ly (1, 02, 233),
{(z1,z2,73)ER3:x3=0/T1Z2,71>0,22>0}

where I}y, is given in (2.6). So

2 2 1 — 2 2 2 )
1¢, (u) = inf {log (%) 14 ZOEO Z(Ipalzjuv U2 > 0,25 > 0} .
129V 1 —u oios(1—p

AL A=) o

The above infinimum is attained at the point (21, 29) = ( . .
- pu - pu

obtain (3.1).

4.8. Proof of Proposition 3.3.

As said before, quite unusually, the MDP is here a little bit harder to prove, due to the
fact that it is not a simple transformation of the MDP of b—‘/f(‘/;" — [V]¢). Therefore we will
use the strategy developped for the TCL: the delta-method. Fortunately, Gao and Zhao
[17] have developped such a technology at the large deviations level. However it will require
to prove quite heavy exponential negligibility to be able to do so. For simplicity we omit
X in the notations of QF,(X) and Cf'(X).

Let introduce Z¢,, such that Zf := | /Q},,/Q%,;. Then by the Lemma 5.3 applied to the
functions g = (z,y,2) — Va/y and h = (2,y,2) — \/_%\/g, we deduce that ‘b/f(E’f -

E(E’f)) and ‘b/—f ((E?)l - (E(E?))1> satisfies the LDP on R with the same speed b2 and

with the rates functions respectively given by 15, and IS, :
Iidp(u) = inf . {Imap(x, 9, 2)},
. 3 =21V tos®
{(z,y,2)ER3 ,u= oo }
and
=-1 .
I;ldp(u) = inf . {Inap(z,y, 2)},
{(z,y,2)€R3 u=—"T1"772%

where I,q, is given in (2.7).
By some simple calculations, we have

o7 (X) — 0= N} + N} + NJ + R} — R — Ng, (4.37)
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where
1 1
N} = (CT — ECY) <_— - = >, Ny = (CT — ECY) =—,
= EED E=

—n’
—1

NI = (ECT — gﬂ-zzl)<E - ]E:n), N} = (ECT — gE=})—
—1 —1

n —-n 1 1 n —-n 1
N2 = o(2Y IE_l)(:n — ), NG = o(Z} — EE]) =

= E=}
1 1
To prove the Theorem 3.3, we have to use the Lemma 5.3 and prove some negligibility
in the sence of MDP:
\/ﬁNn superexp

‘—‘1

T B 0, (4.38)
‘b/—fw "b—>x" 0, (4.39)
‘Z—ENZ pb—?‘p 0, (4.40)
Ewg S“%i‘?‘p 0. (4.41)

Since ECY — gEE; ,, — 0 as n — oo, (4.40) follows.

We have for all § > 0
P(V s 6) <p (V0 >an) 4P (V7
by by bn
where «,, = \/%5.
So, by the Lemma 1.2.15 in [13], we have that for all § > 0

lim sup b—Q logP (ﬁ [N} > 5)

n—o0 bn

is majorized by the maximum of the following two limits

Vi

1 1

Sln E:Ln

cr — ECT

-a)

limsup — 2 logIP’ < 2 Ccy — ECY an> , (4.42)
1 1
hilnf;P 2 logP (\b/f i — o= > an> . (4.43)
Let A > 0 be arbitrary, since «;,, — 00 as n — 00, so for n large enough we obtain that
\/ﬁ n n \/ﬁ n n
1)2 lOg]:P)(E Cl—ECl 2 bzl Ecl—]Ecl >A .

By the MDP of %(C? — ECY7) obtained in Theorem 2.3 in [15], and by letting n to
infinity, we obtain that
Vn
by
Letting A gos to the infinity, we obtain that the term in (4.42) goes to —

By the MDP of ‘f( 171 - m) stated before and in the same way we obtaln that the
term in (4.43) goes to —oo. So we obtain (4.38).

1
limsup - log P ( Cy — ECY

n—o0 n

a7L) X T inf ]mdp( )

|z|>A
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The same calculations give us (4.39) and (4.41).

So
Vn

b (01(X) — o)

and

e

—n 1
<Cn ECP — o(Z7 ]EH1)> =
—1

satisfies the same MDP.

Since E(E,,) — 0109, s0

n n —n 1
Vg —g) and Y2 (cp—BCy - o(z; - E2p)
by, b, 0102
satisfies the same MDP.

Then by the Lemma 5.3 applied to the function ¢ : (z,y, 2) — (2 — oy/z\/y) /0102, We
deduce that ‘{—f(g’l”(X ) — o) satisfies the LDP on R with speed b? and with the rate function
given by

Irgzdp( ): lnf 5 ]'rndp('rvyvz)v

+
{(z,y,2)eR3:u= oiv o2}

510'2 2(7 o5

where I,,4, is given in (2.7).

4.9. Proof of Proposition 3.7.

By the Lemma 5.3 applied to the function f : z — 1, \b/ﬁ( ! E(@n 5gr) satisties the LDP
n 1 1

on R with the same speed b2 and with the rate function given by

Qfl
It = inf Im s
mdp (u) (@, 2)61]R3 e { dp(x Y,z )}

By some simple calculations, we have

o
5&@%ﬂﬁ:ﬂ+ﬁ+ﬁ+ﬁ*ﬁ*ﬁ (4.44)
where
cr ECW)< L1 ) D (7 — BTy
= - o n ) J2 = n
! ! 11 EQu ’ EQ
09 1 1 09 1
= (ECT — p—=EQ7 - "= (ECT — p—=EQ7,)——
J3 (ECT Qal Q1,1)< 711’1 EQ%)’ J4 (ECT Qol QI,I)EQ?,J
() 1 1 09 1
Py = 02 no_ E n - , N = 90— noo_ ]E n -
Js5 le ( 1,1 Q1,1) ( v EQ}‘,1> J6 Qal ( 1,1 1,1) EQ’il

To prove the Theorem 3.7, we have to use the Lemma 5.3 and prove some negligibility
in the sense of MDP:

\/ﬁ superexp \/’ﬁ superexp \/ﬁ
e R

superexp n superexp
: P goteerg, Vi swesw g g
b " b, ” b, " b "

The same calculations as for the negligibility of X works here to obtain (4.45).




LDP and MDRP for realized covoalatility 75

32 HACENE DJELLOUT, ARNAUD GUILLIN, AND YACOUBA SAMOURA

Since EQ}, — o7, we deduce that

Vi o 02
E(ﬁm(X) - QU—1>)
and
\/ﬁ n mn G- n n 1
E( Cr —ECY - Qa_j( 1,1 —]EQm a_f

satisfies the same MDP.

Then by the Lemma 5.3 applied to the function k : (2,y, 2) = (z — 0%x)/0} we deduce
that b—‘{?(ﬁﬁl(){) — 0%) satisfies the LDP on R with speed b}, and with the rate function
given by

7 (0) = inf Lpan(z,y, 2
mdp( ) {(z,y,z)E]R-'i:u=(z—g§—fz)/a’%} dp( 4 )

where I,q, is given in (2.7).

5. APPENDIX

The proofs of the LDP in Theorems 2.1 and 2.3 are respectively based on the Lemmas
5.1 and 5.2 that we will present here for completeness.

5.1. Avoiding Gartner-Ellis theorem by Najim [26, 25]. Let us introduce some nota-
tions and assumptions in this section.

Let X be a topological vector compact space endowed with it’s Borel o—field B(X). Let
BV ([0,1],R?), (shortened in BV) be a space of functions of bounded variation on [0, 1]
endowed with it’s Borel o—field B,,. Let P(X) the set of probability measures on X'.

Let 7(2) = €l*l — 1,2 € R? and let us consider

P.(RY) = {PeP(Rd),3a>O;/RdT(Z)P(dz)<oo}

{P € P(RY), Ja > O;/ e?*lP(dz) < oo} .
Rd
P, is the set of probability distributions having some exponential moments.We denote
by M(P,Q) the set of all laws on R? x R? with given marginals P and @. We introduce

the Orlicz-Wasserstein distance defined on P, (R%) by

dow(P,Q) = inf inf{a > 0;/ T <Z —c ) n(dzdz') < 1}
R4 xR4

neM(P,Q) a

Let (Z1)1<i<nnen be a sequence of R?—valued independent random variables satisfying:
N-1
Ee* Ml < 400 for some « > 0.

N-2 Let (z,1 <i < n,n > 1) be a X—valued sequence of elements satisfying:

1 n
weakly
—g 0yn —— R,
n 7 n—oo
j=1
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Where R is Assumed to be a strictly positive probability measure, that is R(U) > 0
whenever U is a nonempty open subset of X.

N-3 X is a compact space.

N-4 There exist a family of probability measure (P(z,-),z € X) over R? and a sequence
(2,1 < i< m,n > 1) with values in X such that the law of each Z!" is given by:

L(Z]) ~ P(z},dz).
We will equally write P(x,-), B, or P.(dz).
N-5 Let (P(x,-),z € X) C P,(R?) be a given distribution. The application z +— P(z, A)
is measurable whenever the set A C R? is borel. Morever, the function
X — P.(RY
x+— P(x,-)

is continuous when P, (R?) is endowed with the topology induced by the distance
dow

Lemma 5.1. Theorem 2.2 in [26]
Assume that Z! are independent and identically distributed, so we denote ZI by Z;.
Assume that (N-1) and (N-2) hold. Let f : X — R™ be a (matriz-valued) bounded
continuous function, such that

fi(z) -z

fm('r) Tz

where each f; € Cy(X) is the j™ row of the matriz f.
Then the family of the weighted empirical mean

Lnaf Zf n.

satisfies the LDP in (R™, B(R™)) with speed n and the good rate function

If(z) = sup {(0,z) — / ZH fi()]R(dz)} Yz e R™

geR™
where A denote the cumulant generating function of Z

A(N) = log EeM for XeRY

Lemma 5.2. Theorem 4.5 in [27]
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Assume that (N-1), (N-2), (N-8), (N-4) and (N-5) hold. Then the family of random

functions
[nt]

— 1
7.0 =-S5z telo1
O=32 2 teb
satisfies the LDP in (BV, B,,) with the good rate function

o= [ N finde s [ o fi@)o()
[0,1] [0,1]
where 0 is any real-valued nonnegative measure with respect to which puf is absolutely con-

. ' dud
tinuous and f, = -, where

AN (z,2) = sup{</\,z> - A(:L",)\)}, vz € R?
AeRd

with A(z, \) = log [p, e™* P(z,dz), VA € R? and the recession function p(x, z) of A*(z, 2)

defined by: p(z,z) = sup{(\,2),\ € D,} with D, = {\ € R, A(x,\) < oo}

5.2. Delta method for large deviations [17]. In this section, we recall the delta method
in large deviation.

Let X and )Y be two metrizable topological linear spaces. A function ¢ defined on a
subset Dy of X with values on ) is called Hadamard differentiable at x if there exists a
continuous functions ¢’ : X +— Y such that

(;5(17 + tnhn) - ¢($)

lim ; = ¢'(h) (5.1)
holds for all ¢,, converging to 0+ and h,, converging to h in X" such that = + t,,h,, € D, for

every n.

Lemma 5.3. Let X and Y be two metrizable topological linear spaces. Let ¢ : D C X — Y
be a Hadamard differentiable at 0 tangentially to Dy, where Dy and Dy are two subset of
X. Let {(Q,, Fn,Pn),n = 1} be a sequence of probability space and let {X,,n > 1} be a
sequence of maps from from Q, to Dy and let {r,,n > 1} be a sequence of positive real
numbers satisfying r, — +oo and let {A(n),n = 1} be a sequence of positive real numbers
satisfying A(n) — +o0.

If {r,(X,,—0),n > 1} satifies the LDP with speed A\(n) and rate function I and {I < co} C
Dy, then {r,(¢(X,) — ¢(0)),n = 1} satifies the LDP with speed A(n) and rate function Iy,
where

Iy (y) = inf{l(z);¢y(x) =y}, y€Y (5.2)
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LARGE DEVIATIONS OF THE THRESHOLD ESTIMATOR OF
INTEGRATED (CO-)VOLATILITY VECTOR IN THE PRESENCE OF
JUMPS

HACENE DJELLOUT AND HUI JIANG

ABSTRACT. Recently a considerable interest has been paid on the estimation problem
of the realized volatility and covolatility by using high-frequency data of financial price
processes in financial econometrics. Threshold estimation is one of the useful techniques in
the inference for jump-type stochastic processes from discrete observations. In this paper,
we adopt the threshold estimator introduced by Mancini [18] where only the variations
under a given threshold function are taken into account. The purpose of this work is to
investigate large and moderate deviations for the threshold estimator of the integrated
variance-covariance vector. This paper is an extension of the previous work in Djellout et
al [11]. where the problem has been studied in absence of the jump component. We will
use the approximation lemma to prove the LDP. As the reader can expect we obtain the
same results as in the case without jump.

AMS 2000 subject classifications: 60F10, 62J05, 60J05.

1. MOTIVATION AND CONTEXT

On a filtred probability space (€, F, (F)jo,1,P), we consider X; = (Xj,)icp, and
Xy = (Xa,t)iejo,1) two real processes defined by a Lévy jump-diffusion constructed via the
superposition of a Wiener process with drift and an independent compound Poisson pro-
cess. This is one of the first and simplest extensions to the classical geometric Brownian
motion underlying the famous Black-Scholes-Merton framework for option pricing.

More precisely, X1 = (X1,¢)iejo,1) and Xy = (Xa,4)1ejo,1] are given by
dXLt = bl(t, (.L))dt =+ ol,tdwl,t —+ dJl,t (1 1)
dXQyt = bg(t, w)dt + aQ,tdWZ,t + dJQ,t ’

for t € [0,1] where Wy = (Wi )i and Wo = (Way)icpa) are two correlated Wiener
processes, with p; = Cov(Wy 4, Way), t € [0,1]. We can write Wa, = ppdWi 44+/1 — pZdWsy,
where Wy = (Wy4)iejo,1) and Wy = (W) c(o,1) are independent Wiener processes. J; and J,
are possibly correlated pure jump processes. We assume here that J; and J, have finite jump
activity, that is a.s. there are only finitely many jumps on any finite time interval. A general
Lévy model would contain also a compensated infinte activity pure jump component.

Under our assumption J; is necessarily a compound Poisson processe and it can be written

as
Ni,s

Jos=» Y,  s€[0,1].
i=1

Date: May 1, 2015.
Key words and phrases. Moderate deviation principle, Large deviation principle, Diffusion, Discrete-time
observation, Quadratic variation, Realised volatility, Lévy process, Threshold estimator, Jump Poisson.
1




LDP and MDP for realized covoalatility

2 HACENE DJELLOUT AND HUI JIANG

Here Yy; are i.i.d. real random variables having law v,/),, where v, is the Lévy measure
of X, normalized by the total mass A\, = v,(R — {0}) < 400, and N, is a poisson process,
independent of each Y;;, and with constant intensity A,.

Such a jump-type stochastic process is recently a standard tool, e.g., for modeling asset
values in finance and insurance. The key motivation behind jump-diffusion models is the
incorporation of market ”stocks”, which result in "large” and sudden changes in the price
of risky security and which can hardly be modeled by the diffusive component.

In this paper we concentrate on the estimation of

t t t
[V]t = </ O'ist,/ Ugisd&/ ULSO-QsSdeS)
o o 0

Over the last decade, several estimation methods for the integrated variance-covariance
V, have been proposed. We adopt the threshold estimator which is introduced by Mancini
[18] and also by Shimizu and Yoshida [26], independently.

In this method, only the variations under a given threshold function are taken into
account. The specific estimator excludes all terms containing jumps from the realized
co-variation while remaining consistent, efficient and robust when synchronous data are
considered.

Since the seminal work of Mancini [18], several authors have leveraged or extended the
thresholding cencept to deal with complex stochastic models, see Shimizu and Yoshida [26],
or Ogihara and Yoshida [22]. The similar idea is also used by various authors in different
contexts; see, e.g., Ait-Sahalia et al. [1], [2] and [3], Gobbi and Mancini [15] , Cont and
Mancini [21] , among others.

So, given the synchronous and evenly-spaced observation of the process Xy 4, Xi14,, -+, Xi4,,
KXoty Xog, -+, Xog, with ¢ =0,t, = 1,n € N, we consider the following statistics
[nt] [nt] [nt]
S (AN Y (AL Y AL ALY
k=1 k=1 k=1

where A?X, = X4, — X4, ,- However this estimate can be highly biased when the
processes X, contain jumps, in fact, as n — oo such a sum approaches the global quadratic
variance-covariation

([Xl}ta [X2]t7 [Xla XQ]t)

where

¢ ¢
(Xt := / a?,sds + Z(AJM)Q, and  [X1, Xo); := / 01,502,5P5dS + ZAJLSAJQ’S.
0

s<t 0 s<t

which also contain the co-jumps, where AJy s = Jys — Jo5--
If we take a deterministic function r(%) at the step % between the observations, such that
1 1
lim r (—) =0, and  lim L? =0.
SR M (3
The function r(-) is a threshold such that whenever |[A7X,> > r(), a jump has to occur
within ¢;_1,t;]. Hence we can recover [V]; using the following threshold estimator
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Vi(X) = (Q1(X), ©5,(X), ¢ (X))

where
[nt]

QLX) = Y (ARX) Lapxenty
k=1

and
[nt]

Ctn(X) = Z AZXIAZXQ1{11133([%:1(A;€1X2)2§r<%)}
k=1
In the work [14], the authors determine what constitutes a good threshold sequence 7,
and they propose an objective method for selecting such a sequence.

In the case that X, have no jumps, this question has been well investigated. The problem
of the large deviation of the quadratic estimator of the integrated volatility (without jumps
and in the case of synchronous sampling scheme) is obtained in the paper by Djellout
et al. [12] and recently Djellout and Samoura [13] have studied the large deviation for
the covariance estimator. Djellout et al. [11] have also investigated the problem of the
large deviation for the realized (co-)volatility vector which allows them to provide the large
deviation for the standard dependence measures between the two assets returns such as the
realized regression coefficients, or the realized correlation.

However, the inclusion of jumps within financial models seems to be more and more
necessary for pratical applications. In this case, Mancini [21] has shown that V' is a
consistent estimators of V; and has some asymtotic normality respectively. Furthermore,
when o; = o, she [19] studied the large deviation for the threshold estimator. Jiang [16]
obtained moderate deviations and functional moderate deviations for threshold estimator.
In our paper and by the method as in Mancini [19] and Djellout et al [11], we consider
moderate and functionnal moderate deviation for estimators V;* and large deviation.

More precisely we are interested in the estimations of

P (L opx) - M e a)
UTL

where A is a given domain of deviation, (v,),=0 is some sequence denoting the scale of

deviation. When v, = 1 this is exactly the estimation of central limit theorem. When

v, = /1, it becomes the large deviation. Furthermore, when v,, — oo and v,, = o(y/n), this

is the so called moderate deviations. In other words, the moderate deviations investigate

the convergence speed between the large deviations and central limit theorem.

Let us recall some basic defintions in large deviations theory. Let (u;)i~0 be a family of
probability on a topological space (S, S) where S is a o-algebra on S and A, be a nonnegative
function on [1, +o0[ such that lim; o A, = +00. A function I : S — [0, 400] is said to be
a rate function if it is lower semicontinuous and it is said to be a good rate function if its
level set {x € S;1(x) < a} is a compact for all a > 0.

(11¢) s said to satisfy a large deviation principle with speed A, and rate function I if for
any closed set F' € S

1
o1 < _j
h?lilolp N log 1, (F) < ;rellfwl(x)
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and for any open set G € §
1
o1 . .
fim sup - log pu(G) 2 — inf I(z)

Notations. In the whole paper, for any matriz M, MT and ||M|| stand for the transpose
and the euclidean norm of M, respectively. For any square matriz M, det(M) is the deter-
minant of M. Moreover, we will shorten large deviation principle by LDP and moderate
deviation principle by MDP. We denote by (-, -) the usual scalar product. For any process Z;,

ALZ stands for the increment Zy— Z,. We use A Z for AigilZ. In addition, for a sequence

of random variables (Z,), on R¥P we say that (Z,), converges (\,)—superezponentially
fast in probability to some random variable Z if, for all § > 0,

1
limsup/\—logP( 1z, — Z]| > 5) = —00.

n—oo n

This exponential convergence with speed A, will be shortened as

superexp
Zn — 7.
An

The article is arranged in two upcoming sections. Section 2 is devoted to our main results
on the LDP and MDP for the (co-)volatility vector in the presence of jumps. In section 3,
we give the proof of these theorems.

2. MAIN RESULTS
Let X; = (X1,4, Xo4) be given by (1.1). We introduce the following conditions
(B) for £ =1,2b(-,-) € L**(dt @ P)
(LDP) Assume that for £ =1,2

e 0;,(1—p}) and 01,02,(1 — p7) € L>([0,1], dt).
e the functions ¢ — o4, and ¢t — p; are continuous.
e let r such that

1 1
r <—> —— 0 and nr (—) — 0.
n n—oo n n—oo
(MDP) Assume that for £ = 1,2

d U[it(l - p?) and 017t0-2,t(1 - p?) € L2([07 1}7 dt)
e Let (vn)n>1 be a sequence of positive numbers such that

n—00 \/ﬁ n—00

(4
rl =
and for £ =1,2 n

n 1
vp —— 00 and 0 and aver (—) =0(1)
n

— +00. (2.1)
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We introduce the following function, which will play a crucial role in the calculation of
the moment generating function: for —1 < ¢ < 1 let for any A = (A1, Ay, A3) € R3

1 (1=20(1 =)L —2X(1 = ) — (A3(1 = ¢2) + ¢)?
-5 log ( T i )

Fed) = if  AeD (2:2)

400, otherwise
where

D, = {/\ e R?, H’l?}g/\g <

m ﬁ and [T (1 - 2001 - @) > (Aa(1 - &) “)2}'

=1
(2.3)

Let us present now the main results.

2.1. Moderate deviation. Let us now consider the intermediate scale between the central
limit theorem and the law of large numbers.

Theorem 2.1. For t=1 fized. Under the conditions (MDP) and (B), the sequence

VI () — )

Un

satisfies the LDP on R® with speed v and with rate function given by

1 1
Imdp(x) = sup <<A$> Y <)‘/ - )‘>) =5 <ZL‘, 2;1 : .Z'> (24)
AER? 2 2
with , ) )
fo (rft(lt fo (ritagytpfdt fo Uitffz,t[)tdt
1 1 1 :
Y= fo U%,tgg,tpf?dt fo Ug,f,dt fo Ul,tgg,t/)tdt

1 - 1 . 11
fo Uf,t02,tptdt fo Ulﬁtaitl)tdt fo 5‘7%%7%,1&(1 er%)dt

Remark 2.1. Under the condition by, = 0, we can prove that for all § € R?

1 n 1
lim — logE (e‘/ﬁ”"w’vl (X)f[vm) =3 <6,%-60>.

n—oo U'n,
This gives an alternative proof of the moderate deviation using Gdartner-Ellis theorem.

Remark 2.2. If for somep > 2, 07, 03, and 01,02,(1—p7) € L*([0,1]) and v, = O(néf%),
the condition (2.1) in (MDP) is verified.

Let H be the banach space of R?-valued right-continuous-left-limit non decreasing func-
tions v on [0,1] with v(0) = 0, equipped with the uniform norm and the o—field B*
generated by the coordinate {v(t),0 <t < 1}.
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Theorem 2.2. Under the conditions (MDP) and (B), the sequence

VI om0y — )

Un

satisfies the LDP on H with speed v2 and with rate function given by

[ 305" dwya i oeAcon)

2
Tmdp(®) = (25)
+o0, otherwise,
where
4 2 2 2 3

Ot 01,492,4P; 01,402,tPt

_ 2 2 2 4 3

¥, = 07 105+t 09 ¢ 01,109+t

1
3 3 2 2 2
0140240t O1i05,0r 501,05 ,(1+ pf)

2
is invertible and i;l his inverse such that

1 . 1 .
iaizgg,t(l - p,%) 50%,#7%,1&/%2(1 - P?) *Jitog,tpt(l - P?)
i—l 1

‘ det(X;) §Uil,t03,tpf(1 ) 5‘7?,t03,t(1 —pi)  —o,05,o(1=pf) |

—0},05,0(1 = p7) —ab,03,p(1—pf)  of,05,(1—p})

= 1 X
with det (%) = ng,tgg,t(l - p§)37

and ACy = {¢ : [0, 1] — R® is absolutely continuous with $(0) = 0} .

Remark 2.3. A similar result for the moderate deviations is obtained by Jiang [16] in the

Jump case for (U@ (ta — fg azsds))

n>1

2.2. Large deviation. Our second result is about the large deviation of Vj'(X), i.e. at
fixed time.

Theorem 2.3. Let t = 1 be fized. Under the conditions (LDP) and (B) , the sequence
V(X)) satisfies the LDP on R? with speed n and with good rate function given by the legendre
transformation of A, that is

Lap() = sup ((A,z) — A(N)), (2.6)

AER3

where A(X) = fl

0 Ppt(Ala%,H )\20’%7,5, )\30’17,50'2,0(175.




LDP and MDRP for realized covoalatility

87

LDP OF THRESHOLD ESTIMATOR 7

Remark 2.4. Under the condition by = 0, we can calculate the moment generating function
of VI(X). We obtain that for all § = (61,6,,05)" € D,,

1 . !
lim —E (6n<97V1 (X)>> = / PI,,‘5 (910%,37 920-%37 930’1750'2,3) ds.
0

n—oo N
But the study of the steepness is more difficult.
Let us consider the case where diffusion and correlation coefficients are constant, the rate

function being easier to read. Before that let us introduce the function P which is the
Legendre transformation of P, given in (2.2), for all z = (21, x2, 23)

log. 1—¢c2 1+x1+x2720x3
oo | Y- "% | _ 1T be T A8
V1w — 73 2(1—¢?)
P(x) := (2.7)
if 1 >0, 9 >0, 1175 > T3

+00, otherwise.

Corollary 2.4. We assume that for £ = 1,2 o4 and p are constants. Under the condition
(B), we obtain that VI*(X) satisfies the LDP on R® with speed n. and with good rate function
1, given by

x x i
Lo (@1, 2, 03) = P; (%,% ’ ) (2.8)

0% 2’ 7109
e ‘
where P* is given in (2.7).

Remark 2.5. In the case o, is constant, a similar result for the large deviations is obtained
by Mancini [19] in the jump case for (Qzl)nx

Now, we shall extend Theorem 2.3 to the process-level large deviations, i.e. for trajecto-
ries (VP(X),t € [0, 1]) which is interesting from the viewpoint of non-parametric statistics.

Let BV([0,1],R?) (shorted in BV) be the space of functions of bounded variation on
[0, 1]. We identify BV with M3([0,1]), the set of vector measures with value in R3. This is
done in the usual manner: to f € BV, there corresponds p/ by i/ ([0,¢]) = f(¢). Up to this
identification, C3([0,1]) the set of R3-valued continuous bounded functions on [0, 1], is the
topology dual of BV. We endow BV with the weak-* convergence topology o (BV, C3([0, 1]))
and with the associated Borel-o-field B,. Let f € BV and u/ the associated measure in
M3([0,1]). Consider the Lebesgue decomposition of uf, uf = puf + pf where pf denotes the
absolutely continuous part of uf with respect to dz and uf its singular part. We denote by
fa(t) = 1l ((0,¢]) and by fi(t) = u([0,1)).

Theorem 2.5. Under the conditions (LDP) and (B), the sequence V" (X) satisfies the
LDP on BV with speed n and rate function Jia, given for any f = (f1, fa, f3) € BV by

k) = [ (el £ Sl 00)

2 )
Oit 03¢ 01,02t

N / Yol Sl + ol fs (1) = 201000 f3 ()
0

| Y i i r e 1dO(t 5
20%#7%715(1 — P?) [t:f],6>0.65 >0,(f35 )2<fi o f5 ] ( )

where P¥ is given in (2.7) and 0 is any real-valued nonnegative measure with respect to

which pd is absolutely continuous and f, = dul/d0 = (f],, f},, [4)-
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3. PROOFS

For the convenience of the reader, we recall the following lemma which is the key of the
proofs.

Lemma 3.1. (Approzimation Lemma) Theorem 4.2.13 in [10]
Let (Y™, X™ n € N) be a family of random wvaribales valued in a Polish space S with
metric d(-,-), defined on a probability space (Q, F,P). Assume
o P(Y™ € ) satisfies the large deviation principle with speed €, (¢, — o) and the
good rate function I.
e for every 6 >0

1
limsup — log P(d(Y™", X™) > §) = —o0.
n—oo €En
Then P(X™ € -) satisfies the large deviation principle with speed €, and the good rate

function I.

Before starting the proof, we need to introduce some technical tools. In the case without
jumps, we introduce the following diffusion for ¢ = 1,2

¢
Dz,z = / Uz,dez,S7
0
where Wy s and o, ; are defined as before. We introduce the correspondent estimator

V;n ( 1,t» QZ R Cm)
where for £ =1,2
[nt] [nt]
Qi =Y (ApD)? and Cf = ALDiALD,.
k=1 k=1

We recall the following results from Djellout et al. [11]

Proposition 3.2. Under the conditions (B) and (MDP),

(1) the sequence

SN

n

satisfies the LDP on R? with speed v2 and with rate function given by (2.1).
(2) the sequence
VI g

- V]
IVARY
satisfies the LDP on H with speed v2 and with rate function given by (2.2).

Proposition 3.3. Under the conditions (B) and (LDP),
(1) the sequence V" satisfies the LDP on R® with speed n and with good rate function
given in (2.6).
(2) the sequence V™ satisfies the LDP on BV with speed n and rate function Jyg, given
by (2.9).
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3.1. Proof of Theorem 2.1.
We will do the proof in two steps.
Part 1 We start with the case by = 0. In this case, V(X) = V/(X°) with X7, =
Xy — fot be(s,w)ds and
Q7 1(X°) = Z(AZX(?)Q]-{(AEX?)QST(%)}v (=12
k=1
and N
Cr(X°) = Z AZX?AZXS1{max§:1<Agxg>2gr(%)}~
We will prove that -
T vp) vy e
For that, we will prove that for ¢ = 1,2
g0 - Qr) ", 1)
and
(3:2)

vn (X% —cp) TSP,

Un v2
We start by the proof of (3.1). Since the processes X and D, have independent incre-
ment, by Chebyshev inequality we obtain for all § > 0
P (@ (Q?l(XO) - le) - 5) < 6_06v’2’ H]E (eﬂx/ﬁvn [(AEXg)gl{mgxe)?gT(}1>}<AZDZ)2]> .
' Y k=1

n

We have to control each term appearing in the product

Tom | (AT X0)2 N _(A"D,)2
E <6€\f {(AkX() 1{(Akxf/])2§r(%)} (A% Dy) ]) < %1(/6,11) + §R2(k,n), (33)

where - ,
Falk,n) = E (eaﬁvn[(%xﬂ S }1{<A';X2>29<%>})

and
Ro(k,n) = P ((AZXE)Z > r(%)) .

For the first term, we write
R ny0\2_ (AN 2 n n
E (ee\f [(ARXP)2—~(ARDY) ]1{(%){?)29(%)”%]\/@ = 0) P(AYN, = 0)

Ri(k,n) =
iR (eemn [erxer—ezoly oo, (LA, #)}) , (3.4)
Since N is independent of W,, we obtain that
Ri(k,n) < P ((AZDZ)Q < r(%)) e eVInbr() (1 — oM/
(3.5)

1+ eﬁ’u,,b’r(%)(l _ ef)\g/n).

IN
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Now we have to control Ry(k,n), by the same argument as before we have

Ralln) = P ((AEXD? > r()IARNT = 0) ARG = 0)

1
+P <AZX,9)2 > T(ﬁ)’ AN, # 0>
< P ((AZDZ)Q > 7‘(%)) e*Az/n n (1 o e—/\g/n).

From exponential inequality for martingales, it follows that for £ = 1,2,

P ((A;‘DZF >r (%)) < exp <_2f;(1o)fds> ., (3.6)

which implies that

(3
Ro(k,n) < exp| ——2— | +(1— e M/, 3.7
2(k,n) p< 2 a;{sds> ( ) (3.7)

From (3.3), (3.5) and (3.7), we obtain that

E (eeﬁ“" {(AZX?>21<(A2X2’>2<T<EL>}MDOQ]) < 1o (14 VI (1 = el

. @)

exp | ———2—|.
P 2 f:fl o7 ds

Using the hypotheses (MDP), we have

n 0v/nu, | (AT X921, ., N — (A" D,)?
hmsup%I}clilf(logE <€ vn {( RXO L anx0y2<r(dyy ~(AE z)}) —o (3.8)

n—oo Uy

1
limsup — log P (ﬁ
v2 v

n—oo n

(9 (X%) —Qr) > 5) <

Letting A goes to infinity, we obtain that the right hand of the last inequality goes to
—o0. Proceeding in the same way for —(Qp,(X°) — Q},) we obtain (3.1).

Now we have to prove (3.2). For that we have the following decompostion

2
CHX°) —C = ; [Q5,(X") — Q3] - % [Z Qp1(X%) - zl] 7 (3.9)
(=1
where .
Q51 =Y (ALDy + ALDy),
and for £ = 1,2 -

n

(X = Z(AZXIEJ)Z1{maxg:1(A?X?)2§r(%)}
=1
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and
n

Q. (X0) = (Arxy + ALXD) L maz_ (anx0)2<r(L)}-
k=1
Remark that Q,(X°) is a slight modification of Qf,(X?).
We know that A?D; + ARDy ~ N(0, 3%(k,n)) with

23 23 23
2(k,n) = / O’ist +/ U;sds + 2/ 01,502,5Psd5.
th_1 th—1 te—1

For all § > 0, we have
P (L2l -t > ) < s (Y2 |05 (%) - Qb > T ).
So we obtain (3.2).
Part 2 We have to prove that

VI (prx) - Vi(x®) ISP,

U v3
We have that
1
01,00 - 91X < () + (14 ) (3.10)
and
n _rn 0 ? n 0 L 2 n
|CH(X) = C1(X?)| < e(n) max Q1 (X7) + <1 + 8(7L)> I;lzaleé , (3.11)
where
n the 2
Zr =3 / be(s,w)ds |
k=1 \7th-1

By the condition (B), we have that ||Z}| < —. We choose £(n) such that

@5@) =0, wvv/ne(n) — oo,
Uy,

so by the MDP of Q7 (X"), we obtain the result.

3.2. Proof of Theorem 2.2.

Since the sequence %(V” — [V].) satisfies the LDP on H with speed v2 and rate func-
tion Jy,4p, by Lemma 3.1, it is sufficient to show that:

vr

Un te0,1]

Lemma 3.4. Under the condition (MDP), we have

sup [ V(X0 = v TSR (3.12)

lim vn sup ||EV;(X°) — V]| =0.

n=00 Un tel0,1]
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Proof We will prove that for ¢ = 1,2

f n 0 ! 2 _
lim ~— sup |EQ;,(X") — [ o7.ds| =0. (3.13)
n=00 Un telo,1] 0o
and ,
lim " sup IECZ‘(XO) —/ 01,501,spsds| = 0. (3.14)
n=00 Un o tefo,1] 0

In fact, (3.13) can be done in the same way as in Jiang [16]. It remains to show (3.14).
Using (3.9), we obtain that

t 1, e t
e (x) = [ ovuonpds| < 1B, 00) - i + b T - [ o,
0 - 0

where (3; = fot of Jds + fot 05 s + 2 fot 01.502,5psds. So the proof of (3.14) is a consequence
of (3.13) and the fact that

lim £ sup |EQM —@t| =0,

n=00 Un tel0,1]

which is an adaptation of the proof in Jiang [16].
Proof of Theorem 2.2

For (3.12), we will prove that for £ = 1,2

n superex n superex|
vn bup HQ“ _QZtH PEEP0  and £ sup ”C" (X% — Cth p—2>p
Un telo v3 Un tefo,1] Un
From Lemma 3.4, it follows that as n — oo
\/ﬁ 3 n n n
—— Ssup (]E( e,t(Xo) - l,t) \ E(Cz (XO) - Ct )) — 0. (3~15)
Un tef0,1]
Then, we only need to prove that
\/ﬁ n n n superex
o zs%p1 ||Qu XO) Qz,t - E(Qe,t(XO) - e,z)” p—z’p 0 (3.16)
n tefl Un
and
? s ler(X°) — ¢y —E(ep(X°) - ¢ ST o, (3.17)
n te Un

We start by the proof of (3.16). Remark that (Qp,(X°) — Qp, — E(Q7,(X°) — Q7)) is
a Fuym-martingale. Then

exp (A (Q7,(X°) — Qp, — B(Q,(X°) — Q7))

is a submartigale. By the maximal inequality, we have for any n, A > 0

P (\/ﬁ Sup (Qét(XO) QZt - IE(QZ,/(X% - 71‘)) > 77)

Un tefo,1]

<e MR exXp ()\\/ﬁUn (QN(XO) 1 E(Q?J (XO) - Q?l)))
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and

\/ﬁ . n n n ”
P (V" i (OR(X°) - QL ~ B(GL(X) - Q1) < =1
< e ME exp (—Avnv, (Q4(X°) — Q1 —E(Q)(X%) — Q1)) .
Together with (3.8) and (3.15), we have
M 1 n 7 n n n
limsup — log P <v£ SFP] | Q4 (X?) — Q, — E(Q2,(X°) — Q)| > 7/) < =
n—oo n n tel0,1

(3.16) can be obtained by letting A goes to infinity.
Similarly, we can have (3.17) by (3.8), (3.9) and (3.15).

3.3. Proof of Theorem 2.3.
We will do the proof in two steps.

Step 1 We will prove that

VIXO) v ST,
For that, we will prove that for £ =1, 2 '
QLX) - TEST0, (3.18)
and
CrX0) —Cp ST, (3.19)

We start by the proof of (3.18). Since the processes X, and D, have independent incre-
ment, by Chebyshev inequality we obtain for all § > 0

P(Q!, (X — Qp, > 0) < e’G"BﬁE <€9"{(AQX?)ZI{(AELX?)2<T(},,)}(AZDe)2}> |
k=1

Similar to (3.3),
n | (an x0y2 ] _(ARD )2
E (ee [(AkXZ) 1{(Agx?)2§r(%)} (AR Dy) ]) < Il(k,n) + [2(16,7),),

where
on A”XO 2_ A" D, 2
Ii(k,n) ::E(e [agxer—azpo h{m;;xf)ﬁg(%)})

and
i) =P (427 > (1))

From (3.4), (3.5) and (3.7), it follows that
)

Lk,n) <exp| ———2 | 4+ (1 — e /7).
2(k,n) p( thtfl‘f?,sds) ( )

and

on ATLXO 2_ A"D 2
Li(k,n) <1+E (6 [arxey-(appo ]1{(AZX}J)2§T(%),AEN[¢O}) :
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Let (o) be a sequence of real numbers such that a,, — 0, which will be chosen latter.

We have
E (eenmgxm (AEXOP<r( ) ATNY 7&0}) = Fy(k,n) + Fy(k,n),
where
Fi(k,n) =E (69”(A?X?)21{@;;)(3)2gr(%),A;;N,¢o,|A;;Jg|gan})
and

. n(A7X9)2
Fy(k,n) :=E (ee (apx?) 1{(%,@0)2ST&)’A;C,,N#OMM>%}).
We have to prove that for ¢ = 1,2 lim,,_., max}_; Fy(k,n) — 0. We start with Fy(k,n).
From condition (LDP), it follows that n max}_, ftt:;l 07 ds < fo0.

So for all 6 > 0, we choose

123
a, = (2\/071%1%1)(/ o?.ds + 1) Vr(l/n).
= the1

Then it is easy to see that

n [t
Fyem) < P [ 121 2\/9nmaxk:1fz:,l g[?,sds\/r(%)
H(k,n) <™ > ’

i 2
e 07 4ds

where Z is a standard Gaussian random variable. As a consequence of the well-known
z2 2
inequality f;m e~ zdz < (1/y)e 'z, for all y > 0, we obtain

6_207”(%).

FQ(

kon) < eoml)\/?;
T T /Onr(1/n)
So for n large enough and 6 > 1, we have

1
Iil%,lXFg(k,n) <e G 0 as n— 0.

Now we will control F(k,n). Using the fact that

On(ATX)? < On

)

1 N te
AlDy)? +49nmax/ of ds(ALJy)?
46n max}_, f;’il g‘Zl‘dS( kDe) =G (AL )

s

we have with the same choose of the sequence «,,, by independence of A} D, and A}.J, and
Cauchy-Schwarz inequality that

(A7 Dy)?

T 5 t 5 b
amaxp_, [k o2 ds 40% (nmax}_, [F o2 ds)n(ApJ,)?
Fi(k,n) < E|e ™=ttt E(e (e il oo )i Liapsi<an Liagnezo}

N———

2
< E (6%) ]E% (eSQQR(AZJ[)?1{‘AEJA§QH}) ]P)é (AZNZ # 0) .
From Mancini [19] page 877, we conclude that

: n 802n (A" Jp)?
i e (O s ) <00
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Since Z is a standard Gaussian random variable, we conclude that
2
E (eZT) < 0.

So that max}_, Fi(k,n) < O(1 —e /™) — 0 as n — oc.
Therefore,

lim 1 log[JE (66" [(AEX3>21{<AZX?>2<"%>}<A2DZ)Z]> —0,
k=1

n—oo N
which implies that for any 6 > 1

1
lim —logP (Q},(X?) — Q1 > §) < —60.
n— n ’ ’

o0

Letting 6 goes to infinity, we obtain that the left term in the last inequality goes to —oo.
And similarly, by doing the same calculation with

P(Q},(X%) — Q< —4),

we can get (3.18).
To prove (3.19), we use the decomposition (3.9) and an adaptation of the proof of (3.18).

Step 2 We will prove that
VIX) - V(X% TEST.

For that we use (3.10) and (3.11) and we choose £(n) such that ne(n) — 0 to obtain the
result.

3.4. Proof of Theorem 2.5.
We will prove that for £ = 1,2

sup [|Q7,(X%) — Q] "0 and  sup [|ep(X0) —Cpl| Mo,
<o " te[0,1] n

To do that we use the same argument as in the proof of Theorem 2.2 and the fact that

sup |E(Q7,(X°) — Q)| — 0.
te[0,1]
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First, under a geometric ergodicity assumption, we provide some limit
theorems and some probability inequalities for the bifurcating Markov chains
(BMC). The BMC model was introduced by Guyon to detect cellular aging
from cell lineage, and our aim is thus to complete his asymptotic results. The
deviation inequalities are then applied to derive first result on the moderate
deviation principle (MDP) for a functional of the BMC with a restricted range
of speed, but with a function which can be unbounded. Next, under a uniform
geometric ergodicity assumption, we provide deviation inequalities for the
BMC and apply them to derive a second result on the MDP for a bounded
functional of the BMC with a larger range of speed. As statistical applica-
tions, we provide superexponential convergence in probability and deviation
inequalities (for either the Gaussian setting or the bounded setting), and the
MDP for least square estimators of the parameters of a first-order bifurcating
autoregressive process.

1. Introduction. Bifurcating Markov chains (BMC) are an adaptation of
(usual) Markov chains to the data of a regular binary tree; see below for a more
precise definition. In other terms, it is a Markov chain for which the index set is a
regular binary tree. They are appropriate, for example, in the modeling of cell lin-
eage data when each cell in one generation gives birth to two offspring in the next.
Recently, they have received a great deal of attention because of the experiments
of biologists on aging of Escherichia Coli; see [15, 20]. E. Coli is a rod-shaped
bacterium which reproduces by dividing in the middle, thus producing two cells,
one which already existed, that we call old pole progeny, and the other which is
new, that we call new pole progeny. The aim of their experiments was to look for
evidence of aging in E. Coli. In this section, we will introduce the model that al-
lowed the authors of [15] to study the aging of E. Coli and we refer to their works
for further motivations and insights on the data leading to the model studied here.
This model is a typical example of bifurcating Markovian dynamics, and it has
been the motivation for the rigorous mathematical study of BMC in [14]. This also
motivates Sections 2 and 3 in the sequel, where we give a rigorous asymptotic (and

Received November 2011; revised January 2013.
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nonasymptotic) study of BMC under geometric ergodicity and uniform geometric
ergodicity assumptions.

1.1. The model. Let T be a binary regular tree in which each vertex is seen as
a positive integer different from 0; see Figure 1. For r € N, let

.
G,={2",2"+1,....27" —1}, T, = | Gy,
q=0

which denote, respectively, the rth column and the first (» + 1) columns of the tree.
Then, the cardinality |G, | of G, is 2" and that of T, is |T,| =2"t! — 1. A column
of a given integer n is G,, with r, = |log, n], where | x| denotes the integer part
of the real number x.

The genealogy of the cells is described by this tree. In the sequel we will thus
see T as a given population. Then the vertex n, the column G, and the first (r + 1)
columns T, designate, respectively, individual n, the rth generation and the first
(r + 1) generations. The initial individual is denoted 1.
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Guyon et al. [14, 15] proposed the following linear Gaussian model to describe
the evolution of the growth rate of the population of cells derived from an initial

individual:
(11) E(Xl):]) and V}’lZI {X2n :(XOXn+ﬂ0+82n,

X2n+1 =1 X, +p1+ En+1,

where X, is the growth rate of individual n, n is the mother of 2n (the new pole
progeny cell) and 2n + 1 (the old pole progeny cell), v is a distribution probability
on R, ap, @1 € (—1,1); Bo, B1 € R and ((e24, €2n+1), n > 1) forms a sequence of
1.1.d. bivariate random variables with law A5 (0, I'), where

F:a2(1 ”), 0250, pe(=1,1).
p 1

The processes (X)) defined by (1.1) are typical examples of BMC which are called
the first-order bifurcating autoregressive processes [BAR(1)]. The BAR(1) pro-
cesses are an adaptation of autoregressive processes, when the data have a binary
tree structure. They were first introduced by Cowan and Staudte [6] for cell lineage
data where each individual in one generation gives rise to two offspring in the next
generation. We will not discuss here extensions to m-ary tree, which follow more
or less from the same method, or Markov chains on Galton—Watson trees that are
left for an other study.

In [14], Guyon, after establishing the first results on the theory of BMC, proves
laws of large numbers and central limit theorem for the least-square estimators
o" = 79 ,36 af, ,31’) of the 4-dimensional parameter 6 = («, Bo, &1, B1); see Sec-
tion 4 for a more precise definition. He also gives some statistical tests which allow
to check if the model is symmetric or not (roughly «gp = 1 or not), and if the new
pole and the old pole populations are even distinct in mean, which allows him to
conclude a statistical evidence in aging in E. Coli. Let us also mention [4], where
Bercu et al., using the martingale approach, give asymptotic analysis of the least
squares estimators of the unknown parameters of a general asymmetric pth-order
BAR processes.

In this paper, we will give moderate deviation principle (MDP) for this estimator
and the statistical tests done by Guyon. We will also give deviation inequalities for
6" — 0, which are important for a rigorous (nonasymptotic) statistical study. This
will be done in two cases: the Gaussian case as described above and the case where
the noise and the initial state X| are assumed to take values in a compact set. Note
that the latter case implies that the BAR(1) process defined by (1.1) valued in
compact set.

We are now going to give a rigorous definition of BMC. We refer to [14] for
more detail.

1.2. Definitions. For an individual n € T, we are interested in the quantity X,
(it may be the weight, the growth rate, ...) with values in the metric space S en-
dowed with its Borel o-field S.
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DEFINITION 1.1 (T-transition probability, see [14]). We call T-transition
probability any mapping P : S x S — [0, 1] such that:

e P(-, A) is measurable for all A € S?;
e P(x,-) is a probability measure on (5%, S?) forall x € S.

For a T-transition probability P on § x S2, we denote by Py, P; and Q, re-
spectively, the first and the second marginal of P, and the mean of Py and P, that
is, Po(x, B) = P(x,B x S), Pi1(x,B) = P(x,S x B) forall x € Sand B € § and
0 =35

For p > 1, we denote by B(S?) [resp., By (SP)], the set of all SP-measurable
(resp., SP-measurable and bounded) mappings f:S? — R. For f € B(S3), we
denote by Pf € B(S) the function

x— Pf(x)= /2 f(x,y,2)P(x,dy,dz) when it is defined.
s

DEFINITION 1.2 (Bifurcating Markov chains; see [14]). Let (X,,n € T) be
a family of S-valued random variables defined on a filtered probability space
(R, F, (Fr,r e N),P). Let v be a probability on (S,S) and P be a T-transition
probability. We say that (X,,, n € T) is a (F,)-bifurcating Markov chain with initial
distribution v and T-transition probability P if:

e X, is F, -measurable for all n € T;
o L(X1)=v;
e for all 7 € N and for all family (f,, n € G,) C By(S?)

E[ l_[ Jn(Xn, Xon, X2n+1)/~¢ri| = 1_[ Pfn(Xy).

neG, neG,

In the following, when unspecified, the filtration implicitly used will be F, =
o(X;,i € T,). We denote by (Y, r € N) the Markov chain on § with Yp = X and
transition probability Q. The chain (Y,,r € N) corresponds to a random lineage
taken in the population.

We denote by & the set of all permutations of N* that leaves each G, invari-
ant. We draw a permutation IT uniformly on &, independently of X = (X,,,n €
T). Drawing IT “uniformly” on & means drawing the restriction of IT on G,
uniformly among the (2")! permutations of G,. In particular, (IT(2"), [T(2" +
1),..., 12"t = 1)) can be viewed as a random drawing of all the elements of
G, without replacement. Notice that IT allows one to define a random order on T
which preserves the genealogical order. For example, (I1(i), 1 <i < n) denotes the
set of the “first” n individuals of T. IT was introduced by Guyon in order to sample
over the “first” n individuals. As mentioned in [14], this choice of IT allows one to
preserve the same asymptotic behavior for the empirical means resulting from the
sampling over (say) the rth generation, the first ( + 1) generations or the “first”
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n individuals. In general, the choice of another permutation does not preserve the
asymptotic behavior of these empirical means. We refer to [14], Section 2.2, for
more detail.

Throughout the paper, we will denote by:

e [ ® g the mapping (x, y) = f(x)g(y).

e QP the pthiterated of Q recursively defined by the formulas Q°(x, -) = 8, and
0P*tl(x,B) = [ Q(s,dy)QP(y, B) for all B € S; Q7 is a transition probabil-
ity in (S, S).

e v Q the distribution on (S, S) defined by vQ(B) = [(v(dx)Q(x, B); vQ? is
the law of Y,.

e (Of)(x)=[g f(y)Q(x,dy) when it is defined.
e (vf)or (v, f) the integral [ f dv when it is defined.

Forall i € T, we set A; = (X;, X»i, X2i+1). We introduce the following empirical

quantities:
_ 1 -
Me, ()= 15~ > FAD,
"ieG,
_ 1 -
(1.2) M1, (f)=——>_ f(A),
|Tf| ie']rr
—n 1 -
M, (f)= . > f(Ang).
i=1

where f(Aj) = f(A) = f(Xi, Xai, Xoi1) if £ € B(S?) and f(A;) = f(X;) if
feB(S).

Guyon in [14] studied limit theorems of the empirical means (1.2), namely the
law of large numbers (L? and almost sure versions) and the central limit theorems
for (1.2) when f € B(S 3), but centered by the conditional expectation rather than
by the limit mean. An extension of the BMC has been proposed in [8], in which
the authors studied a model of BMC with missing data. To take into account the
possibility for a cell to die, the authors of [8] use Galton—Watson tree instead of a
regular tree. And they give a weak law of large numbers, an invariance principle
and the central limit result for the average over one generation or up to one gener-
ation. As previously mentioned, this setting will be considered in incoming works.
One can also mention the work of De Saporta et al. [7] dealing with bifurcating
autoregressive processes with missing data in the estimation procedure of the pa-
rameters of the asymmetric BAR process. They use a two type Galton—Watson
process to model the genealogy and give convergence and asymptotic normality
of their estimators. It is important to remark that the nonasymptotic study of de-
viation inequalities has not been considered at all in these works, despite their
practical interest.
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1.3. Objectives. Our objectives in this paper are:

e to give some limit theorems for BMC that complete those done in [14] (LLN,
LIL,...);

e to give probability inequalities and deviation inequalities for the empirical
means (1.2), that is, for f € B(S) and all x > 0

P(Mr, (f) = (1, f) 2 x) <e” &,
where C (x, r) will crucially depend on our set of assumptions on f and on the
ergodic property of Q but valid for (nearly) all r;

e to study moderate deviation principle (MDP) for BMC, that is, for some range
of speed \/r < b, < r (depending on assumptions) and for f € Bj(S?) with
Pf=0

2
bi,, ’

1 X
Ty, P(— T,(f>zx)~——;
T, 8 b, 202

to obtain the MDP and deviation inequalities for the estimator of bifurcating
autoregressive process, which are important for a rigorous statistical study.

All these results will be obtained under hypothesis of geometric ergodicity or uni-
form geometric ergodicity, meaning that Q" converges (uniformly) exponentially
fast to a limiting measure.

The limit theorems, proved in this paper, include strong law of large numbers for
the empirical average M}? (f) with f € B(S) (this case is not studied in [14]), the
law of the iterated logarithm and the almost sure functional central limit theorem.
A strong law of large numbers will be obtained via control of 4th order moments.
We thus generalize the computation of 2nd order moments made by Guyon in [14].
It will be noted that the technique we will use can be applied to compute the other
higher-order moments, but at the price of huge and tedious computations.

Deviation inequalities will be obtained in the setting of unbounded functions, by
using the classical Markov inequality and under geometric ergodicity assumption.
The results are, however, at this point quite restrictive.

Exponential deviation inequalities will be shown for bounded functions and un-
der a uniform geometric ergodicity assumption. Their proof intensively uses the
Azuma—Bennett—Hoeffding inequality [1, 3, 16], which requires bounded random
variables. Extension to unbounded functions and weaker ergodicity assumptions
will be done in a further work, using transportation inequalities in the spirit of [12].

The MDP will be mainly deduced from these inequalities and general results
on moderate deviations of martingales; see [11], recalled in the Appendix B. Their
speed will depend on whether uniform geometric ergodicity or only geometric
ergodicity is satisfied.

Before presenting the plan of our paper, let us recall the definition of a moderate
deviation principle (MDP): let (b,),>0 be a positive sequence such that

b b?
250 and 2 — .

n n—>oo n n—>oo
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We say that a sequence of centered random variables (M},),, with topological state
space (S, S) satisfies a MDP with speed b,zl /n and rate function /: § — RZ if for
each A € S,

_xlen/;fo I(x) < lhrggéfg log]P’(EMn € A) < hnnl)solép E log]P’(EMn € A)
< —inf I(x);
xeA
here A and A denote the interior and closure of A, respectively.

The MDP can thus be seen as an intermediate behavior between the central limit
theorem (b, = b4/n) and large deviation (b, = bn). Usually, the MDP exhibits a
simpler rate function inherited from the approximated Gaussian process, and holds
for a larger class of dependent random variables than the large deviation principle.

Our paper is organized as follows. Section 2 states the moments control in-
equalities and their consequences. We shall state in this section a first result on
the MDP for BMC in a general framework, but with a very restricted range of
speed. Section 3 deals with the exponential inequalities and their consequences. In
this section, we shall generalize the MDP done in Section 2, allowing for a larger
range of speed, but under more stringent assumptions. In Section 4, we will fo-
cus particularly on the first order bifurcating autoregressive processes. The proofs
of some inequalities are technical so postponed in Appendix A. Appendix B is
devoted to definitions and limit theorems for martingales used intensively in the
paper, and are included here for completeness.

2. Moments control and consequences. Let F' be a vector subspace of B(S)
such that:

(i) F contains the constants;
(i) F2C F;
(ili) F FC LY(P(x,-)) forallx € S,and P(FQ® F) C F;
(iv) there exists a probability © on (S, S) such that F C L'(w) and

Jim Ee[f (V)] = (. f)

forallx e Sand f € F;
(v) forall f € F, there exists g € F such that forall r e N, |Q" f| < g;
(vi) F C L'(v),

where we have used the notation F2 = {f?/f e F}, FQF ={f Q g/f,g € F)}
and PE = {Pf/f € E} whenever an operator P acts on a set E.
The following hypothesis is about the geometric ergodicity of Q:

(H1) Assume that for all f € F such that (u, f) =0, there exists g € F' such
that for all r e N and for all x € S, |Q” f(x)| < a"g(x) for some « € (0, 1); that
is, the Markov chain (Y,, r € N) is geometrically ergodic.
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Recall that under this hypothesis, Guyon [14] has shown the weak law of large
numbers for the three empirical average Mg, (f), M, (f) and MI(f) (see [14],
Theorem 11 when f € F and Theorem 12 when f € B(S 3)) and the strong law of
large numbers only for Mg, (f), M, (f); see [14], Theorem 14 and Corollary 15
when f € F and Theorem 18 when f € B(S%).

When f € B(S?) and under the additional hypothesis Pf> and Pf* exist and
belong to F, he proved the central limit theorem for M, (f) and M1(f); see [14],
Theorem 19 and Corollary 21. Recall that the central limit theorem for the three
empirical means (1.2) when f € B(S) is still an open question; see [8] for more
precision.

In this section, we complete these results by showing the strong law of large
numbers for ﬁ}? (f), when f € F. We prove also the law of the iterated logarithm
(LIL) and almost sure functional central limit theorem (ASFCLT) for M,l;[( )
when f € B(S%).

2.1. Control of the 4th order moments. In order to establish limit theorems
below, let us state the following:

THEOREM 2.1. Let F satisfy (1)—(vi). Let f € F such that (i, f) =0. We
assume hypothesis (H1). Then for all r € N,

c(i)r, ifoa? < %,
2.1) E[(Mg, () <), ife?=1,
ca™, ifo? > %,

where the positive constant ¢ depends on a and f (and may differ line by line).

PROOF. First note that f(X;) € L* for all i € G,. Indeed, let (z1,...,z,) €
{0, 1}" the unique path in the binary tree from the root 1 to i. Then,

E[f4(Xi)] =VP; "'Pzrf4,

and from hypotheses (ii), (ii1) and (vi) we conclude that vP; --- P, f 4 < 0.
Now, the proof divides into two parts.

Part 1. Computation of E[(M(gr( f N*. Independently of X, let us draw four
independent indices I, J,, K, and L, uniformly from G,. Then
— 4
E[(Mg, () ] =E[f(X1,)f(Xs5)f(Xk,)f(XL,)]
Forall p €{0, ..., r}, let us define the following events:

° Eg : The ancestors of I, J», K, and L, are differentin G,.
° Ef: Exactly two of I, J-, K, and L, have the same ancestor in G .
° Eéj: I, Jr, K, and L, have the same ancestor two by two in G ,.
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° Ef : Exactly three of I, J,, K, and L, have the same ancestor in G ,.
° Ef: I+, Jr, K, and L, have the same ancestor in G .

We also consider the following events whose for each fixed p < r, probability
depend only on p.

o E (/)p : Draw uniformly four independent indices from G, which are different.

o F ip : Draw uniformly four independent indices from G, such that two are the
same, and the others are different.

° Eép : Draw uniformly four independent indices from G, which are the same,
two by two.

° Egp : Draw uniformly four independent indices from G, such that exactly three
are the same.

° E:lp : Draw uniformly four independent indices from G, which are all the same.

In the sequel we do the convention that E6+1 is a certain event. Then after succes-
sive conditioning by events Eip for pe{0,...,r}andi €{0,...,4}, we have

E[f(X1,)f(X5)f(Xk,)f(X1,)]
=E[f(X1,) f(Xs)f(Xx,)f(XL,)/EZ] x P(E)

+ Y E[f (X)) (X)) f(Xk) (XL EST EP) < P(EP N EFTY)

2.2) ? rzz
+ S E[f (X)) fX0) f(Xx)f XL ESH ED] x P(EL n EFYY)

p=2

+E[f(X1,) f(Xy,)f(Xk,) f(X1,)/E5] x P(E})
+E[f(X1,) f(X5)f(Xk,)f(XL,)/E}] x P(EY).
Let us notice that

o foralli €{l1,2,3,4}, E] and Elf’ have the same probability;

e the realization of “FE {) N Eg 1> can be seen as “draw uniformly four independent

indices from G, such that two are the same and others are different, and the two

indices which are the same take different paths at G, ;.” Thus “E {’ N E(’; +1x

has the same probability that “E ip NAp pt1, where “A, , 117 1s the event, “the

indices which are the same in G, take different paths at G4 1”;

e similarly, the realization of “Eg N Eg o may be interpreted as, “draw uni-
formly four independent indices from G, which are the same two by two, and all
the indices take different paths at G .” Thus “Ef N Eg 1 has the same prob-

ability that “Eép NAp pt1, where “A, ;117 1s the event, “the indices which are
the same in G, take different paths at G 47;
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e forall pe{0,...,r}, we have
627 —1)(2P = 2) / 327 —1)
Py _ Py _
P(E[") = XD o B(E) =g
/ 4(2P = 1) / 1
P(EY) ==y PBE])=;.

We may then deduce that

3 A -1 .
5 PEY=—Fg—  PB(EY)=

andfor pe{2,...,r — 1},

23r

3(2P — 1)(2P — 2)

+1
P(EY 0B = BB B (Ap i /E) = 2

and

327 —1

T4 230

We are now going to compute each term which appears in (2.2). We have the
following convention: P(Q~' f ® Q™! f) = f2. In the sequel, we will use inten-
sively, with a slight modification, the calculations made by Guyon [14] in order to
compute conditional expectations related to the event, “draw uniformly two inde-

pendent indices from G,,” for p € {0, ..., r}.
(a) We have that

E[f(X1,)f(X))f(Xk,)f(X1,)/E}]=vQ" f*.

(b) Conditionally on E%, we may assume that the indices /,, K, and L, are the
same. We then have, using the calculations made by Guyon [14],

E[f(X1,) f(X5) f(Xk,) f(X1,)/E5]
=E[f’(X;,) f(X,,)/E5]

r r—1

= L2 e P e
=0

1
P(Ey NE") =P(EY)P(Ap p+1/EY)

v rire o,

(c) Let p € {2,...,r}. Conditionally on Ef and Eé7Jr1 we may assume that /,
and J, have the same ancestor at G, and K, and L, have the same ancestor at G .
For simplification, we will use the following notation:

(2.3) oL f =0 f® 0",
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and we thus have
E[f(X1) f(Xs)f(Xk)f(X1,)/EST ES]
= E[E[E[f(X1,) f (X5 f X&) [ (X1,)/Fpei )/ Fp ) EST L ED)

= E[P(Q " ) K1) P05 "™ )X, B B

L o
“o 1 Y27 P((eP T P(0E T )
1=0

® (01 P(05 "7 ),

where I, A, J (resp., K, A L,) denotes the common ancestor of /. and J, which
is in G, (resp., the common ancestor of K, and L, whichisin G).

(d) Let p e {2,...,r}. Now conditionally on Ef’ and Eé7 e may assume
that it is K, and L, which have the same ancestor in G,. We denote by p(I,)
and p(J,), respectively, the ancestor of I, and J, which are in G . As before, the
common ancestor of K, and L,, which are in G, is denoted by K, A}, L,. At this
step, we may repeat the successive conditioning that we have done in the beginning
but this time for indices p(I;), p(J;) and K, A, L,. This leads us to

ELf(X1,) f(X5) f(Xk,)f(XL,)/E} " E]]
=E[Q" " f(Xpu) Q" FXpu)P(Q "~ F)Xkon,r, ) ES T EY]

2% s
T Qr—12r-2) ; 20+1 )

-1

x 327w P((Q I P(QE T ) @ 0P (0 T )

m=0
+vQ" (0P P(Q " ) @ (0 P25 )
+UQ P((Ql m— IP( r—I— lf@Qp —I— IP(Qr p— lf)))®(Qr—m—1f))
+vQ"P(Q" f@ (0 P(Q T F @ 07T P(0E )
+vQ"P((QT (P P(0 T N e 0T ) e (@)
+vQ"P((Q @ (@ PP P(0E T N @ QT ).
(e) Finally,

E[f(X1,) f(X5,)f(XK,) f(XL,)/E])

= E[E[E[f(X1,) f(X;,) f (X&) f(X1,)/F2)/Fi]/ E3)
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=E[P(Q572f)(X2) P(Q > f)(X3)/E]]
=vP(P(Q%52f) ® P(Q2S)).

Gathering together all of these terms, each multiplied by their respective probabil-

ity, we obtain an explicit expression for E[(M(Gr (f N4.

Part 2. Rate. We are now going to give some rates for the different terms that
appear in the expression of IE[(MGr (f N*.

Throughout this part, we will use intensively the following to bound quantities
which appear in the expression of E[(Mg, (f))*]:

e Let f € F such that (i, f) = 0. Then from (i)—(vi) and hypothesis (H1), there
exists a positive constant ¢ such that VI, m,n € N,

vO'P(Q"f® Q" f) <a""vQ'P(g®g) < ca™™",
where g is given in hypothesis (H1).

In the sequel, ¢ denotes a positive constant which depends on f, and c¢; denotes a
positive constant which depends on «. The constants ¢ and ¢; may vary from one
line to another and from one expression to another.

(a) For the first term appearing in (2.2), we have

E[f(X1,) f(X5,) f(Xk,) f(X1,)/E§] x P(EG) < crea™.
(b) For the fifth term appearing in (2.2), we have
E[f(X1) f(X5) f (Xk) f (X£,)/E5] x P(E]) < e(3)”,

where, from (ii), (v) and (vi), ¢ is such that vQ" f 4 <c.
(c) For the fourth term appearing in (2.2), we have

N1y
E[f(xmf(XJ,>f<XK,>f<xL,>/E§]xP(Eg)sccw’(g) Z(—) »

=0 200
where, from (i1), (iii), (v) and (vi), ¢ is such that for all p,g € N
max(vQP P(Q1 > ®¢),vQPP(g® Q7 f%)) <c,
and from hypothesis (H1), g is such that for all p € {1,...,r — 1}
(2.4) Q" P f <o’ TP g
Now depending on the value of o, we obtain that

E[f(X1,)f(X1)f(Xk,)f(XL,)/E5] x P(E})
cw((%)r—i- (2—13>r>, ifoe;é%,

- 1\ . 1
clcr(§> , fa= 7
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(d) Let us denote the third term appearing in (2.2) by
Ap = Z E[f(X1,) f(X5) f (Xk,) f(X2,)/E§T E] < P(EY N EJ™).
p=2
So we have
A, < cw((%)r + a g(f;)p)

where, from (ii), (iii), (v) and (vi), ¢ is such that for all p € {2,...,r — 1}, g €
{0,....,r—1},1€{0,...,p—1}

max(vQ"P(ng_lfz), leP(Qé_l_lP(g ®g))) <c,

and g is defined as before (2.4) and the notation Qg is given in (2.3).
Now depending on the value of «, we obtain that:

if 0 % 1, then A, < cie((1)" +a*);
o ifa?=1 then A, <cic(r — )(3)".

(e) For the second term appearing in (2.2), we have when p =r:

o ifaa= %, then
E[f(X1,)f(Xs)f(Xk,)f(X1,)/E}] x P(E}) <cre(L);

ifoz;é%:

— ifa® =1, then

E[f (X1,)f(X5)f (Xk) f(XL,)/ET] x P(E]) < c1(r = D)(3)"
~ if & # 1, then
E[f (X1,) f(Xs5) f (Xk,) f(X1,)/ET] x P(ET)
ol (3) - 3)
= Cc 3 4 ,
where, from (ii), (iii), (v) and (vi), ¢ is such that forall [ € {2,...,r — 1}, g €
{0,...,1—1}

max(vQ!P(Q' 1 P(g® ) ® 0TI f2),
quP(Ql—q—lp(g ® Qr—l—le) ®g)) <c
and g is defined as before (2.4).
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(f) For the second terms appearing in (2.2), and for the remaining term in the
sum (p # r), let us denote by

r—I1

By i= S E[£(X0) f ) F(Xk) FXL)/ELT EP] < P(EP A ELT),
p=2

So we have:
o ifa =1, then B, <cic(3);
. 1.
° lfO{ # bR
—ifa?= %, then B, < clcrz(i)r;
— ifa? # 4, then B, < cje(a® + (“72)r + ("),

where c is defined in the same way as before.
Now the results of the Theorem 2.1 follow from (a)—(f) of part 2. [

It leads us to an extension of Theorem 2.1 to the two empirical averages M, (f)
and M(f).

COROLLARY 2.2. Let F satisfy (1)—(vi). Let f € F such that (i, f) =0. We
assume that hypothesis (H1) is fulfilled. Then for all r e N and n € N,

c(p) ifa? <3,
(2.5) E[(M1, ()= (), ife?=1,

e+ ifa? > %
and

)" e’ <3,
2.6) E[(MI )T ez, ife?=1,

cattnth) ifa® > %,

where the positive constant ¢ depends on a and [ and may differ line by line.

PROOF. The proof follows the same steps as in the proof of parts 2 and 3 of
Theorem 2.11, and uses the results of the proof of Theorem 2.5 to get the control
of the 4th order moment in incomplete generation. See Sections 2.2 and A.1 for
more detail. []

REMARK 2.3. If f € B(S?) is such that Pf? and Pf* exist and belong to F,
with Pf =0, then we have for all » € N and for some positive constant c,

@.7) E[(Mg, (f)*] <

G, |*
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Indeed, let Mg, (f) = ici, f(Ai). We have
E[(Mg, ()] = E[Mg, ()] + 6JE[ Y f2anfia ,-)}
i#jeG,

+4E[ ) f3(A,->f(Aj>]

i#jeGy

+1I2E] Y L@ F@0)]
i%jAkeGy

FUE Y SADSANSB0FAD]
i j£k£leG,

:E[Z Pf4(Xi)]+6E[ > sz(Xl-)sz(Xj)],

1€G, i#jeG,

where the last equality was obtained after conditioning by F, and using the fact
that Pf = 0. Now, dividing by |G, |* leads us to

. 6 1
E[(Mg, (f))"] = WE[W .7&.2@ sz(Xi)sz(Xj)]
i#jel,

1 1
+—E[— pft Xi]
Gl 2 P

and (2.7) then follows from the control of

(E[(Mg, (Pf?)?]), and (E[Mg,(Pf4)]),;

see [14].

REMARK 2.4. From Remark 2.3, we deduce that if f € B(S?) is such that
Pf? and Pf* exist and belong to F, with Pf =0, then we have for all » € N and
for some positive constant c,

(2.8) E[(Mr, ()] <e()™".
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Indeed, from the equality

_ "G, —
M, (f) =Y 'qul' e, (f).

q=0

we deduce that

r

B0, = (X el iote, L)

q=0

where || - ||4 stands for the L*-norm. We then infer from (2.7) that

. 4
E[(M1, ()] < c<Z (ﬁiq)

q=0

for some positive constant c. (2.8) then follows from the last inequality.

2.2. Strong law of large numbers on incomplete subtree. 'We now turn to prove
the strong law of large numbers for M(f), completing the work of Guyon [14],
where the LLN was proved only for the two averages M, (f) and Mg, (f).

THEOREM 2.5. Let F satisfy (1)—(vi). Let f € F such that (i, f) =0. We

4 _
assume that hypothesis (H1) is fulfilled with o € (0, g). Then M ,1;[ (f) almost
surely converges to 0 as n goes to 0o.

PROOF. From the decomposition

. rp—1 2q_ 1 n
M) (f)= > —Mg,(f)+ - > fXngy,
g=0 " M —om

it is enough to check that

(£ o)

i=2n

Indeed, since HGQ (f) almost surely converges to O (Corollary 15 in [14]), we
deduce that the first term on the right-hand side of the previous decomposition
almost surely converges to 0 (Lemma 13 in [14]). We have

; 4
EKl > f(XI'[(i))) }
i Zom

1 " 6 -
2.9 = 4E[Z f4(X1'[(i)):|+ﬁE|: > fz(Xna))fz(Xn(j))}

i =om i, j=2rmi#j
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4 [ & 3
+EE N Z .f (X)) f (X))
Li, j=2"n;i#j
12_[ i 5
+—E Y A Xni) fXng)f Xnw)
oL j k=2 it j£k
24 [ L
+E > FXna) fXng) fXnw) f Xne) |-
L=t jkA

We will control each term appearing in decomposition (2.9). For the first term
on the right-hand side of (2.9), using (ii), (v) and (vi) we have for some positive
constant c,

E[ > f4(Xn(i>>} =(n—2"+1)vQ" f* <c(n—2"+1),

j=2"n

which implies that

1 1 1
(2.10) FE[ 3 f“(xn(l-))} =0(5)

i=2rn
Recall the following: for i, j,k and [ € {2', ..., n}:

e If i # j, then r, > 1. Independently on (X, IT), draw two independent indices
I, and J,, uniformly from G,, . Then the law of (I1(i), I1(;j)) is the conditional
law of (1, J,,) given {I,, # J,, }.

e Ifi £ j # k, then r,, > 2. Independently on (X, IT), draw three independent in-
dices I, , J,, and K, uniformly from G,, . Then the law of (I1(7), I1(j), I1(k))
is the conditional law of (1, J.,, K,) given {1, # J,, # K, }.

o If i £ j # k # 1, then r, > 2. Independently on (X, I1), draw four inde-
pendent indices I, J;,, K, and L, uniformly from G,,. Then the law of
(IT@@), I1(j), I1(k)), I1(l)) is the conditional law of (I, , J.,, K, , L) given
Un, # Iy, # K, # J1,).

Now we have to control the second and third terms of (2.9). We have to check that

1 " 1
@.11) —4E[ 3 f2<Xn(,~)>f2(Xn(j>)] =0(5)
" L=z "
and
1 " 1
(2.12) _41@{ ) f3(Xl'I(i))f(X1'I(j)):| - 0(_2).
" L=z .
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Indeed, from the previous reminder and (i)—(vi), we have for some positive con-

stant c,

E[ > fz(Xn(i))fz(XH(j))}

i,j=2mn3i#]
(n=2""Yy(n—-2"+1)
T a-2
rp—1
< rrhore(er )
p=0

<c(n=2")(n—-2"+1),

which implies (2.11). In the same way and using in addition hypothesis (H1), we
obtain that

E[ Z f3(X1'[(i))f(XH(j)):|

i j=2msi
(n—2")y(n—-2"+1)
T -2y
ra—1
x ) 2P P(QM T PR QT f
p=0

+ Qr,,—p—lf ® Qr,,—p—lf3)

27 (n —2")(n — 2" + 1), ifa <3,
<{crn27"(n—2")(n—-2"+1), ifoz:%,
ca(n—=2")(n—2"+1), ifa > 7,

which implies (2.12).
Let us deal with the remaining term of (2.9):

1 n
n—4E[ > fz(Xl‘I(i))f(XH(j))f(XH(k))j|
i,j k=2"n;i#j+k
_ n=2"—1Dm—=2""Yy(n—-2"4+1)
N P(Irn #Jrn #Krn) Xl’l4

< B[ f2(X1,) £ (X5,) f Xk A1y, 0y £ Ky}

Then, we get an explicit expression for the last expectation similar to that obtained
in part (d) of the calculus of E[(M@r (f ))*] with a slight modification of the func-
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tions. Calculating the rate of this expression, we obtain

3 1IE ; 2(x X X
Zg > f*Xna) fXngy) fXne))
n=a"" Lijk=2msistj#k

oo rp—1p— 1

<CZ az’"+cZ ) an[)ZH—I o?n 20

n=1 p=2 [=0

00 rp— lpl11

+CZ Z anpzl—i—l o -

n=1 p=2 =0

for some positive c. Now it is not hard to see that the right-hand side is finite.
Finally, to check that the series of general term

1 n
4E[ 2. f X f (X j>>f<xn<k>>f(xna>>}

Lk i=0m i k2l

is finite, it is enough, according to the calculation of rates we have done in part 2

of the proof of Theorem 2.1, to check that ) 72, a* < 0o, which is the case if
4
o € (0, #), and this completes the proof of Theorem 2.5. [

REMARK 2.6. Note that this theorem can be improved, but the price to pay
is enormous computations related to the calculation of higher moments. If f is
bounded, this result is true for every « € (0, 1), as we will see in Section 3.

2.3. Law of the iterated logarithm (LIL). Using the LIL for martingales (see
Theorem B.3 of Stout in Appendix B), we are going to prove a LIL for the BMC.
This will be done when f depends on the mother-daughters triangle (A;). We use

the notation M1 (f) = Y"1, f(An)) and M, (f) =Y ;ct, f(A).

THEOREM 2.7. Let F satisfy (i)-(vi). Let f € B(S>) such that Pf =0, Pf?
and Pf* exist and belong to F. We assume that hypothesis (H1) is fulfilled. Then
M,'(f)

lim sup =1 a5
n—>00 [2(MT( ), loglog(MT(f)),

And in particular,

lim sup Mr, (/) (n, Pf?) a.s.

r—oo +/2|T,|loglog|T, |

PROOF. We will check the hypothesis of Stout Theorem’s B.3. Let f €
B(S?). We introduce the filtration (Hp)n>0 defined by Ho = o(X1) and 'H, =
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o(Ang), TG + 1), 1 <i <n). Let (MII(f))n>0 defined by M{I(f) =0 and
MI(f)=3"_, f(Ang))- Thensince Pf =0, (MI(f)) is a H,-martingale with
E[M 11‘[ (f)] = 0. The bracket of the above martingale is given by

(M), ZPf (Xn@) = M (Pf?).

=0

We have the following decomposition:

(M (f))n o)
n__MH Pf?) Z ng Pf?) + Z P2 (Xna))-
q=0 i=2n
Since
24 24 24 1 & —
Vg <r,—1 WS;SE and - Z sz(Xl‘I(i))SMGrn(sz),

j=2rn
we deduce that

Vn—l 2q

erm G, (Pf?) <M (Pf? 52 M g, (Pf?).

q=0

From the strong law of large numbers of Mq;,q (Pf 2) (see [14], Corollary 15) and
from Lemma 5.2 of [7], we infer that

rm—1 24 , 2 29 __
ZO orn+l Gq (Pf ) (M 2f ) and ZO MGq (Pf ) _) 2( sz)'
q= q

Using these results, we thus deduce that (M (f)), = O(n) andn = O (M (f)),)
a.s. This implies in particular that (M (f)), 2, 00as.

Now let K, = % in Theorem B.3, and we have
2 2loglog(M™ (1)),

R::Z

n=1

K2(MT(f)),
X ELf2(Anm) 1 r2(an) > K247 (1)) QloglogT( £/ Hn—1]
_ & 4dloglog(MT()),)?
- KH(MT(f))n)?

n=1

Pf4(Xn(n)) a.s.,

since (M'I(f)), = O(n) a.s., so that for R < oo a.s., it is enough to check that

i P4 (Xnm)

(2.13) g

<00 a.s. withany 1 <46 <2.

n=1
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Now, according to (v) and (vi), there exists a positive constant ¢ such that for
alln > 1, E[Pf4(X1-[(n))] =pQ'™ Pf4 < ¢, and (2.13) follows. Applying Theo-
rem B.3, we have

. M, (f) B
im sup =1 a.s.
neo J2AMT(f))n loglog(MM(f))n
Now, for n = |T,|, we have the following:
Mr, (f)
J2UMT(f)) i, loglogtMT(f)),|
_ T, (M ())T,/ 1T | y Mr, (f)
2loglog(MT(f))ir,; — IT-(MT())m, /T

I R
and since w = MTr(sz) =2 (u, sz) a.s. (see Theorem 18 in [14]),
we get

I M, (f)
imsup

= , Pf? a.s.,
oo /2T, [Toglog T, | (. P1?)

which completes the proof. [

REMARK 2.8. Let us note that using Theorem 2.5, we can prove that if hy-
4
pothesis (H1) is fulfilled with « € (0, *2), then

lim sup —M’I‘] (/) =
n—oo +/2nloglogn
and via the computation of 2kth order moments of MG, (g),withk >2 and g €

B(S), it is possible to prove the latter for all « € (0, 1). But, as already emphasized,
this comes at the price of enormous computations.

(w, Pf2) a.s.,

2.4. Almost-sure functional central limit theorem (ASFCLT). We are now go-
ing to prove an ASFCLT theorem for the BMC (X,,,n € T). Here again, this will
be done when f depends on the mother-daughters triangle by using the ASFCLT
for discrete time martingale. We refer to Chaabane, Theorem B.4, Appendix B, for
the definition of an ASFCLT.

THEOREM 2.9. Let F satisfy (i)-(vi). Let f € B(S>) such that Pf =0, Pf?
and Pf* exist and belong to F. We assume that hypothesis (H1) is fulfilled with

4
a € (0, @). Then M,ll_I (f) verifies an ASFCLT, when n goes to oo.
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PROOF. We use Theorem B.4. Let (H},),,en be the filtration defined as in Sec-
tion 2.3. Then (M,ll_[ (f)) is a 'H, martingale. We have to check the hypotheses of
Theorem B.4. For all n > 1, let V,, = s/n where s = (u, sz). Then according
to Theorem 2.5,

I1
WDy aynipy 1 s

2
Vn n— 00

Let ¢ > 0. We have

1 2
ZWE[JC (AL (Angy)>eVa)/ Hn—1]

n>1 'n

1
=<
g2s

P4 (Xngwy)
4 2} 2
n>

According to (v) and (vi), there exists a positive constant ¢ such that for all n > 1,
E[Pf4*(Xnm)]=vQ™Pf* < c, and therefore, Ve > 0

1 2
> B (Ane)lysana=evi/Ha1] <00 as.

n>1 'n

Finally, we have

P4 (Xnm))

S.
n2 '

1 4 1
> WE[f (A f(An)I=va)/ Hn-1] = e X}
n>

n>1 'n

which as before is a.s. finite, and the proof is then complete. [J

REMARK 2.10. As before, let us note that this result can be extended to the
general case « € (0, 1), but at the price of enormous computation related to the
computation of 2k-order moments, k > 2, for Mg, (g), g € B(S).

2.5. Deviation inequalities for BMC. We are now going to give some de-
viation inequalities under (i)—(vi) and (H1) for the empirical means (1.2) when
f € B(S) with (i, f) =0 and when f € B(S?) with (u, Pf) = 0. This will help
us in the sequel to obtain a MDP result in a general framework, that is, for func-
tional of BMC with unbounded test functions. Let us recall that the main disad-
vantage of this “weak” set of assumptions is that the range of speed for the MDP is
very restricted. However, we still work under geometric ergodicity assumption and
general test function, which will not be the case when we would want to extend the
MDP; see Section 3. Note that we postpone to Appendix A nearly all the proofs of
this section, these proofs being quite long and technical.
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THEOREM 2.11. Let F satisfy conditions (1)—(vi). We assume that (H1) is
fulfilled. Let f € F such that (u, f) =0. Then we have for all § > 0 and allr ¢ N
andalln € N,

c (1\" » 1
8_2<5> ) fa® < 5,
— c [1\ .o 1
(2.14) P(|Mg, (f)] > 8) < 8—2r<§> el=
1
5£2a2r’ ifoz2 - 5;
< 1 rn+1 ifaz _ l
2\2) 2’
_ rn+1
(2.15) P(M ()| > 8) < 5%”(%) ’ ifaz:%;
1
8%a2(711+1)’ l.fOlz - 5,
and
c /1 r+1 ) 1
5—2(5> - ey
— r+1
(2.16) P(Mr,(Hl>8) <1 S (1Y ezl
52°\2 2
S%Olzwn’ ifa? > 5

where the positive constant ¢ depends on f and o and may differ term by term.
PROOF. See Section A.1 in Appendix A. [

We shall also need an extension of Theorem 2.11 to the case when f does not
only depend on an individual X;, but on the mother-daughters triangle (A;).

THEOREM 2.12. Let F satisfy conditions (1)—(vi). We assume that (H1) is
fulfilled. Let f € B(S3) such that Pf and Pf?* exist and belong to F and
(u, Pf) =0. Then we have the same conclusion as in Theorem 2.11 for the three
empirical averages given in (1.2): MG, f, HT,_ (f) and M,l:[ .

PROOF. See Section A.2 in Appendix A. [J

We thus have the following first result on the superexponential convergence in
probability, whose definition we present now:

DEFINITION 2.13. Let (E, d) a metric space. Let (Z,) be a sequence of ran-
dom variables valued in E, Z be a random variable valued in E and (v,,) be a rate.
We say that Z,, converges v,-superexponentially fast in probability to Z if for all




122 Limit theorems for bifurcating Markov chains with application

258 S. V. BITSEKI PENDA, H. DJELLOUT AND A. GUILLIN
6>0,

1
limsup — logP(d(Z,, Z) > §) = —o0.
n—oo Up

This “exponential convergence” with speed v, will be shortened as

superexp

Zn Z.

Un
We may now set:

PROPOSITION 2.14. Let F satisfy conditions (1)—(vi). Let f € B(S?) such
that Pf and Pf? exist and belong to F and (w, Pf) = 0. We assume that (H1) is
fulfilled. Let (by) be a sequence of increasing positive real numbers such that

b}’l bn n
2.17 — —> +o00, — — 0, — 1 d ing.
( ) Jn Jilogn by is nondecreasing
Then
— superexp
M)(f) =" 0.
b%/n

PROOF. The proof is a direct consequence of Theorem 2.12. [

2.6. Moderate deviations for BMC. Now, using the MDP for martingale (see,
e.g., [11,24]), we are going to prove a MDP for BMC. We will use Proposition B.5,
in Appendix B.

THEOREM 2.15. Let F satisfy conditions (i)—(vi). We assume that (H1) is
satisfied. Let f € B(S?) such that Pf* and Pf* exist and belong to F. Assume
that Pf = 0. Let (b,) be a sequence of increasing positive real numbers satisfying
.17). If

, n
(2.18)  limsup 2 log(n  esssup  P(|f(Anw))| > bn/Hi-1)) = —00,
n—oo n

I<k<c™V(bpt1)
where c_l(bn+1) = inf{lk e N: % > bpy1}, then (M,ll_l(f)/bn) satisfies a MDP in

. 2 . _ 2
R with the speed b;; /n and the rate function I (x) = W

PROOF. First, note that under the hypothesis, M ,P (f) is a H,-martingale, with
Ho =o0(X1) and H, =0 (Ang), 1@ +1),1 <i <n). From Proposition B.5 in
Appendix B, we only have to check conditions (C1) and (C3).

On one hand, (2.15) applied to Pf* — (u, Pf*) implies that for all § > 0,

, n 1<
hmsup—zlog]P’ — ZPf4(Xn(i)) > (1, Pf4) +46) =—o0,
n—o00 bn n i=1




Limit theorems for bifurcating Markov chains with application 123

DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 259

and this implies the exponential Lindeberg condition (see, e.g., [24]), that is, con-
dition (C3).
On the other hand, we have (M'(f)), = MT(Pf?) and (2.15) applied to
Pf? — (u, Pf?) implies that
WP — (. P2) ST o
b;/n

il

that is, condition (C1). [

REMARK 2.16. One of the main difficulties in the application of this The-
orem lies in the verification of (2.18). Note, however, that in the range of speed
considered it is sufficient to have some uniform control in X; of some moment of
f(X;, X2i, X2i+1) conditionally on X;, which leads to condition of the type P| f |k
bounded for some k > 2. It is, of course, the case if f is bounded.

REMARK 2.17. In the special case of model (1.1), we have (see Section 4),
for f such that Pf =0 and for all £,

by, b2 (A2Pf?
E[GXPQ;f(An(k)))/Hk—l}=eXp< ( 2nf )(Xn(k>))-

n

This condition implies that a MDP is satisfied for (M,f[ (f)/by). Indeed, if this
relation is satisfied, we then have that for A € R the quantity

G,(A) = - > Pf*(Xnw) =—=M, (Pf?)
ni- 2

is an upper and lower cumulant (see, e.g., [24]), and we may apply Gértner—Ellis-
type methodology. In addition, due to (2.15) applied to Pf% — (u, Pf?), we have
for L e R,

superexp A2 (, Pf?)

Gn(2 —_—,

which implies that (M,{I( f)/by) satisfies a MDP in R with the speed b,% /n and the
2

rate function 7 (x) = W.

3. Exponential deviation inequalities for BMC and consequences. We give
here stronger deviation inequalities than the one obtained in Section 2, namely ex-
ponential deviation inequalities. Of course, it requires more stringent assumptions.

3.1. Exponential deviation inequalities. Let us consider the following hypoth-
esis.

(H2) There exists a probability @ on (S, S) such that, for all f € B,(S) with
(u, f) =0, there exists a positive constant ¢ such that

10" f(x)| <ca” for some o € (0, 1) and for all x € S.
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One can easily check that, under hypothesis (H2), B (S) fulfills hypothesis (i)—(vi)
of the previous section.
Under this assumption, we will prove exponential deviation inequalities for

Mg, (f), M1,(f) and MI'(f) when f € By(S) with (i, f) =0 [resp., f €
By (S3) with (u, Pf) =0].

THEOREM 3.1. Assume that (H2) is satisfied. Let f € Bp(S) such that
(i, f) =0. Then we have for all § > 0,

P(Mg, (f) > )
3.1) )
exp(c”8) exp(—c'8°|G,|),
Vr e N, ifa <
exp(—c'8%Gy ),

Vr € N such that r > rg, if§<a<
G
exp(—c/ézu)
,

Vr € N such that r > ro, ifoa? =

1
/g2
eXp(—CB ﬁ)’

Vr € N such that r > rg, ifoz2> -,

IA

P(Mr,(f) > 8)
exp(c”8) exp(—c'8%|T; ),

Vr eN, ifa <=,
exp(2¢'8(r + 1)) exp(—c'8%|T,|),

Vr e N, ifa= %,
exp(—c'8*|T,|),

Vr € N such thatr >ro— 1, if-<a<

exp(—c%‘zﬁ)
r+1)

IA
o
&}

Vr € Nsuch thatr >rg— 1, ifa = 7

1
3V
CXP(—C ’ m)

Vr € N* such that r > rg — 3, ifoa>—,
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and
P(M, () > 3)
(3.3) 5
exp(c”8) exp(—c'8°n),
1

Vl’l € N, #a < z’

exp(2¢/8(rn + 1)) exp(—c/32n),
1

Vn e N, ifa = o

exp(—c'8%n),
1 V2
< Vn € N such that r,, > ro, zf§<a<7,
n
_ /62—> ,
2
Vn € N such that r,, > ry, ifaz%,
1
/o2

GXP<—C g m)

Vn € N* such that ry, > ro — 2, ifo>—,

2

where r(y ;= log(c%) /log(a), and cg, ¢’ and ¢ are positive constants which depend
on o and f, and differ line by line; see the proofs for the dependence.

PROOF. The details of the proof are in Section A.3 in Appendix A. It relies
mainly on successive conditioning, using carefully the uniform geometric ergod-
icity assumption to get rid of the conditioning. [

The condition about « less than 1/2 or greater is of course linked to the binary
structure of the tree. The extension to m-ary tree will follow from the same ideas.

THEOREM 3.2. Assume that (H2) is satisfied. Let f € By(S3) such that
(u, P i ) =0. YEen we have_the same conclusions, for the three empirical aver-
ages Mg, (f), M,I;I(f) and M, (f), as in the Theorem 3.1.

PROOF. See Section A.4 in Appendix A. [
Now, using the Borel-Cantelli Theorem and (3.3), we state easily the following:
COROLLARY 3.3. Assume that (H2) is satisfied. Let f € Bp(S) such that

(n, f)=0{[resp., f € By (S?) and (i, Pf)=0]. Then M}? (f) almost surely con-
verges to 0 as n goes to 00.
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REMARK 3.4. Of course uniform ergodicity and bounded test functions are
surely a very strong set of assumptions, but it is not so difficult to verify if the
Markov chain’s daughters lie in a compact set. We are convinced that it is possible
to consider the geometric ergodic case and bounded test functions, but for the
price of tedious calculations that we will pursue in an other work. We will also
investigate the use of transportation inequalities, leading to deviation inequality
for Lipschitz test functions under some Wasserstein contraction property for the
kernel P, in the spirit of the Theorems 2.5 or 2.11 in [12].

3.2. Moderate deviation principle for BMC. We introduce the following as-
sumption on the speed of the MDP.

ASSUMPTION 1. Let (b,) be an increasing sequence of positive real numbers
such that

bn
— — 400

Jn
and:

o ifa? < %, the sequence (b,) is such that b, /n — 0;
o ifa?= %, the sequence (b,,) is such that (b, logn)/n — 0;
o ifa? > %, the sequence (b,,) is such that (bnozr"H)/ﬁ — 0.

Using the MDP for martingale with bounded jumps (see, e.g., [9, 11]), we can
now state the following:

THEOREM 3.5. Assume that (H2) is satisfied. Let f € By(S?) such that
Pf =0. Let (b,) be a sequence of real numbers satisfying the Assumption 1;
then (M,{I( f)/by) satisfies a MDP in S with the speed b% /n and rate function

1(x)= 52
)= 50 pry-
PROOF. The proof easily follows from the previous exponential probability

inequalities and the MDP for martingale with bounded jumps; see, for example,
[9,11,24]. O

REMARK 3.6. Taking particularly n = |T,| and (b,) as a sequence of real
numbers satisfying Assumption 1, we get that for all f € By (S?), (M1, (f)/byT,))

satisfies a MDP in R with the speed b|2'Jr,|/ |T,| and the rate function I (x) =

x2

2(u, P’
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4. Application: First order Bifurcating autoregressive processes. In this
section, we seek to apply the results of the previous sections to the following bi-
furcating autoregressive process with memory 1 defined by

Xon =X, + Bo + &2n,
X2n+1 =o1 X, +p1+ En+1,

where ag, @1 € (—1, 1); o, B1 € R, ((€24, €2n+1), n > 1) forms a sequence of i.i.d.
bivariate random variables and v a probability measure on R.

Several extensions of the model have been proposed and various estimators are
studied in the literature for the unknown parameters; see, for instance, [2, 17-19,
25, 26]. See [4] for a relevant references.

Throughout this section, we assume that the distribution v has finite moments
of all orders.

In the sequel, we will study (4.1) in two settings:

@4.1) L(X)=v and Vn>1 {

o the Gaussian setting which corresponds to the case where ((e2,,, €2,4+1), 1 > 1)
forms a sequence of i.i.d. bivariate random variables with law N> (0, I') with

4.2) F:az(ll) ’f) 0250, pe(=1,1);

e the bounded setting which corresponds to the case where X1 and ((€2;, €21+1),
n > 1), which forms a sequence of centered i.i.d. bivariate random variables,
take their values in a compact set. Let us note that in this case, (X, n € T) takes
its values in a compact set.

Our main goal is to give deviation inequalities and MDP for the estimator of the
4-dimensional unknown parameter 8 = («g, Bo, @1, B1) and for the statistical test
defined in [14].

To estimate the 4-parameter 6 = («o, Bo, &1, B1), as well as o and p, as-
sume we observe a complete subtree T,ij. The least square estimator or =
(&g, By. @], 1) of 6 is given by (see [14]), for n € {0, 1},

. T 7 Y ier, XiXoign — (T ™ e, XO(TA 17 i, Xoigsy)
" T~ Yier, X7 — (Tr 7 Tier, Xi)2
B =T 17" > Xoiy — &y T, 171 Y Xi

ieT, ieT,

e

’

(4.3)

Notice that in the Gaussian case, this least square estimator corresponds to the
maximum likelihood estimator.

We also need to introduce the estimators of the conditional variance o2 and the
conditional sister—sister correlation p. These estimators are naturally given by

1 A2, A2
2T, z;r:,(% +8%41)

A2
L=

(4.4) |
pr=—>3 Y E2iait,

r ieT,
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where the residues are defined by &4, = X2j4, — &ZX; - ,ér, with n € {0, 1}.

Let us denote by Cpo1(R) [resp., Cpol (R%)] the set of all continuous functions
f:R— R (resp., f:R?> — R) such that | | is bounded above by a polynomial.
From [14], we know that Cpo(R) fulfills hypotheses (i)—(vi).

We will take F = c;ol(R) the set of all C' functions f:R — R such that
| 1 + |f’| is bounded above by a polynomial. Then, one can check that F ful-
fills hypotheses (i)—(vi). Moreover, for all f € F, hypothesis (H1) holds with
o = max(|agl, |o1]). Let w be the unique stationary distribution of the induced
Markov chain (Y,, r € N); see [14] for more details.

Let us denote by C];o1 (R3) the set of all C! functions f:R> — R such that | f|+
| /| is bounded above by a polynomial. We shall denote by x (resp., X, Xy, ¥, ...)
the element of Céol(Rz’) defined by (x, y, ) — x (resp., x2, XY, Y,y ...

We define two continuous functions p1:® — R and uz: ® x R} — R by writ-
ing
(4.5) (%) =p1(6) and  (u,%°) = pa(6,07),

where 6 = (ag, Bo, o1, 1) €O =(—1,1) x Rx (=1,1) x R.
To segregate between Hp = {(xp, Bo) = («1, B1)} and its alternative H; =
{(ag, Po) # (a1, B1)}, we shall use the test statistic

1 — [T | &r_&rzf* 2 + (& = &5 i _’_"r_"r2
Xr 262(1— py) {(&0 1) (A2r — 27,) + (&0 Dit+Bo — B}
where we write (11 , = m(é’) and [lo , = Mz(ér, 0y).

As usual the Gaussian setting has specific properties that allow easier calcula-
tions and more general assumptions.

4.1. The Gaussian setting. We introduce the following assumption on the
speed of the MDP. Let (b,) be an increasing sequence of positive real numbers

such that
(4.6) n + R 0
. — —> 400 and ———0.
Jn J/nlogn
PROPOSITION 4.1. Let (b,) be a sequence of real numbers satisfying (4.6).
Then

A~ superexp
—

97’
bip, /1T

PROOF. We will treat the case of &, given in (4.3). The others, 36 &) and ,3{ ,

-G

given in (4.3), may be treated in a similar way. Note that &( = 3-, where

Cr = Mr,(xy) — Mt,(0)MT,(y) and B, =Mrt,(x") — MT,(x)".
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Now, using Lemma B.2 and Proposition 2.14, it follows that

~p SUDETEXD
0y —> Q.

bip, /1T | O

We recall that in the BAR model (4.1), we use o = max{|ag|, |a1]}, and b :=
w20, o) — Ui (0)%, where w1 and wo are given in (4.5), so we have the following
deviation inequality:

c1b

PROPOSITION 4.2. For all § > 0, for all r € N and for all y < min(HE,

c1b c1b . R .
5 1t i‘/S)’ where ¢ is a positive constant which depends on (11, we have
r+1
R (1> L et <n
yrasi—r\4 2
an B -ol=9 =] 22T )
| - | e\ =z
¢ 4(r41) o2 l
4;/46154—17“ ) fa®> X

where the constant ¢ depends on o, |11, 2 and differs line by line, p = p(§) €
{0,2,4} and g = q(8) € {0, 1}.

REMARK 4.3. The values of p and ¢ in Proposition 4.2 depend on the order
of §. For example, if § is small enough, we have p =0 and g = 0.

PROOF. See Section A.5 in Appendix A. [

REMARK 4.4. Proposition 4.2 can be improved by calculating the 2kth order
moments, with k > 2, as in the proof of Theorem 2.1. But, as we have said, this
comes at the price of enormous computation.

PROPOSITION 4.5. Let (b,) be a sequence of real numbers satisfying (4.6).
Then

62,4r) 2 (52, )
b3 /T

PROOF. Let us first deal with arz given in (4.4). We have (see, e.g., [14])
6} = 5Mr,(f(-.0)) + Dy,
where f(x,y,2,0) = (y —aox — o)* + (z —a1x — B1)? and

1 - .

r
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By the Taylor—Lagrange formula, we can find g € Cpol(]R3 ) such that (see [14])
Dyl < 56" =6 (1+ 161 + 6" —6]) M, (9).
Now, Propositions 2.14 and 4.1 lead us to
52 M 52
by, /1T |
The proof for p, given in (4.4) is similar. [

PROPOSITION 4.6. Let (by) be a sequence of real numbers satisfying (4.6).
Then the sequence (|T,|(6" — 0)/bt,|) satisfies the MDP on R* with the speed

b%m/ |'T,| and the rate function I given by

I(x)= %x’(Z/)flx,

r_ 2 K pK
> =0 (pK K)

where

with

_ 1 L -
K= 2 2 2\ |-
p2(0,02) — u1(0)?> \—p1(0) p2(0,07)
PROOF. We first observe that
urf)

|Tr|(ér_9):M(Ar9Br)' L)

byr,| bt,|
where f = (f1, f2, f3, fa)' = (xy.y,xz,2)", U'(f) = M1, (f — Pf), Ar =
Mr, (x), B, = MT,(x*) — M, (x)? and

1 —A,
— 0 0
B, B,
—BA, B, ;r A2 0 0
M(Ay, By) = d d 1 —A
0 0 — i
r Br )
0 0 —A, B, + A’
B, B,

For the sake of simplicity we wrote Pf = (Pf1, Pf2, Pf3, Pf4)", where P denotes
the T-transition probability associated to BAR(1) process in the Gaussian case,
which is given by

1
2mo2(1 — p?)
x exp<_l (y — opx — ﬂo)t -l (y — apx — ﬂo)) dydz.

2\z—a1x — B z—aix — B

P(x,dy,dz) =
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where I' is the covariance matrix defined in (4.2).
On one hand, from Proposition 2.14,

superexp superexp
A, — a:=p1(0) and B, — b:=pa(0,0%) —m®)?%
b /1Ty bip, /1T

so that by Lemma B.2, we obtain

M(Ar, B) "5 M(a,b) = (Ig 2)
b, /ITr|

On the other hand, let A = (A1, A2, A3, Ag)! € R*. For all x € R, we have that
Pexp(A'(f — Pf))(x)

4
:/Rzexp(z)“i(ﬁ _Pﬁ)>(xvy’Z)P(x’dy7dZ)
i=1

xy — x(erox + Bo)

_ ' y —aox — o
_/Rzexp M e e | Py
z—aix — i

ol (3228 (552
a1x+/31 A3X + Mg

ALX + A2 ! y
X/RZCXP((MX—FM) (Z))P(x,dy,dz).
amx+r\ [y
Jooo((G i) (2))pendras

t
_ eXp((aox + ,3()) (Alx +K2)>
a1x + B A3x 4+ Mg
L ax+ 2\ (x4 2
x exP(E (xgx +A4> r (sz +A4>)‘
Let E(x) denote the square matrix with entries (Pf; f; — PfiPf;)(x), for 1 <
i, j <4.So we obtain that

1 t
Pexp(A'(f — Pf))(x) :eXP<§ (i;ﬁiii) r (i;i iﬁ))

1 4
=exp<§ Z Aidj(Pfifj— Pfinj)(x))

i,j=1

We know that

1
= exp(ikt = (x)k).
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Recall that the filtration (H,),>0 is defined by Ho = o (X1) and ‘H,, = o (An(),
I1G + 1), 1 <i < n). Therefore, from the previous calculations, we deduce that
for all k € N,

E[exp(A' (f — Pf)(Anw)))/Hi—1] = P(exp(A' (f — Pf)))(Xniw)
= exp(%)\tE(Xn(k)))»).

Now, recall that (M,P( f — Pf)nen 18 a (H,)-martingale and by straight-
forward calculations, its increasing process is given by (MU(f — Pf)), =
Y i—1 E(Xn))- From the foregoing, we infer that

M MI(f — Pf))n)\»
neN

(exp(fo,{‘(f — Pf) — 3

is a (H,)-martingale. It then follows that for all A € R*, G, (1) = %)J (MT( f—
Pf))n,A 1s an upper and lower cumulant. Moreover, from Proposition 2.14 and

Lemma B.2,
—1 -1
superexp ., ; 2 K ,OK
G,(M) — SAXA where X = o < _1 _ )
A pK™ K7

We thus deduce that (see, e.g., [24]) (M,I? (f)/by) satisfies a MDP on R* with
speed b2 /n and the rate function

(4.8) J(x)=1x'2 71y,

Taking n = |T,|, it follows that (U"(f)/byt,|) satisfies a MDP with speed
b\zT,.|/|Tr| and the rate function J given in (4.8). Finally, using the contraction
principle (see, e.g., [10]) as in [23], we get the result. [

Let us now consider the test statistic.

PROPOSITION 4.7. Let (b,) a sequence of real numbers satisfying (4.6). Then
1/2
under the null hypothesis Hy = {(ao, Bo) = (o1, B1)}, M()(,(1))1/2

tisfies a
bty | Sa
MDP on R with speed bIZTrI /|T,| and the rate function

2
royy=17  ¥yeRy
+00, otherwise.

Under the alternative hypothesis Hy of Hy, we have for all A > 0,

T
lim sup %logp(xr(l) <A)=—o0.
r—00 ITrl
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PROOF. We have
Hy={g(®) =0} where g(6) = (a0 — a1, Bo — B1)".

From Proposition 4.6, (|T,|(é’ — 0)/bjt, ) satisfies a MDP on R* with speed
b|2T,|/|Tr| and the rate function /(x) = %x’(Z/)_lx. So that, using the delta

method for the MDP (see, e.g., [13], Theorem 3.1) we conclude that (| T, | (g(é’) —

g(0))/byt,)) satisfies a MDP on R? with speed b\zqm /|T,| and the rate function
J(y) =inf{l(x); y = g'(6)x}.

Identification of this rate function by usual optimization argument leads us to

(4.9) J@)=1x' (2% where " =20%(1 - p)K.

Under the null hypothesis Hp, we have g(0) = 0, so that (|T,| g(é’) /byT,|) satisfies
a MDP on R? with speed b|2T | /|T,| and rate function J given in (4.9).

Now, smce K = K (0, 0) is a continuous function of (6, o) (see [14]), so that,
letting K, =K (6", 6,), Lemma B.2, Propositions 4.6 and 4.5 entail that

&7/ ) N A superexp 17
Y. =201 -p)K, R PI
b|'ﬂ‘,|/|Tr|

It follows using the contraction principle (see, e.g., [23]) that
(1T, 12/~ 2g(0") /by, )

satisfies a MDP on R? with speed b|T | /|T,| and the rate function J'(y) = %

In particular,
|T |1/2
) =—— \ Xr(l)

T,
’ T & EN l/2g(0 p
T |

b, "

satisfies a MDP with speed b|T /|Tr| and the rate function / " given in the Propo-
sition 4.7.
Now, under the alternative hypothesis Hj,

O A
r _g(er)tz//—lg(e )

r

T | b, ‘/|'Jr,

superexp

g®)'(=") " 'g6) >0,

(D b\z’ﬂ‘ |
so that x,~ converges T

proof of the Proposition 4.7. [

4.2. Compact case: The uniformly ergodic setting. We recall that the model
under study in this section is the model (4.1) where we assume that the noise and
initial state X take their values in a compact set. The results will be given without
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proofs, since the proofs are similar to those done in the previous section. The
novelty here is that the range of speed is improved in comparison to the previous
section. However, we suppose that the process takes its values in a compact set,
which is not the case in the previous section.

We take F' = Cg (R) the set of all C! functions bounded on R. Therefore, one can
easily check (as in [14], proof of Proposition 28) that hypothesis (H2) is satisfied
with o = max(|ayg], |@1]). We use the same notation as in the previous section.

Let us begin by the fact that the estimator of 6 converges super exponentially
fast to the true parameter.

PROPOSITION 4.8. Let (b,) a sequence of real numbers satisfying the As-
sumption 1. Then we have
A superex
o perexp
bip, /1T

We may now refine this result by proving deviation inequality.
cab  ab c1b

487 1487 14957
log(y48'~P/2/co)

PROPOSITION 4.9. For all § > 0 and for all y < min(

where c1 is a positive constant which depends on 1, and for ro 1=

loga ’
we have
caexp(c’y 181 7P/2) exp(—c'y48°7P|T,|),
1
Vr eN, ifa< 3
crexp(c'y98' P2 (r + 1) — 'y*8*P|T, ),
1
Vr € N, lf‘a = 5’
1653 eXp(—c/y2q82_p|T,|),
. ! V2
(4.10) ]}D(H@V_QH > 8) < Vr > ro, lfa <oc<7,
T,
—cyis2rp T )
c exp( c'y 1)
2
Yr > ro, ifoa = i’
2
1
r.2q Q2—
czexp<—c Y48 PW)
2
Vr > rg, ifa > %’

where c¢; is a positive constant, ¢’ and ¢” depend on a, and ¢ and may differ line
by line, co depends on «, ¢ and y, and may differ line by line, p € {0, 1,3/2} and
q €{0,1}.
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We have now to consider super exponential convergence of the estimators of the
other parameters.

PROPOSITION 4.10. Let (b,) a sequence of real numbers satisfying Assump-
tion 1. Then we have

~D ~ \ SUperexp , o
(67 6r) > (0% p).
b|'ﬂ‘,\/|Tr‘

As previously we may now prove MDP for the estimator of 6.

PROPOSITION 4.11.  Let (bn) a sequence of real numbers satisfying the As-
sumption 1. Then (|T,|(60" — 6)/br,|) satisfies the MDP on R* with the speed

bﬁm /|Ty| and rate function
1) =1x'(2) 7"y,
where

r_ 2 K pK
> =0 (pK K)

with

_ 1 1 —n1(6)
k= p2(6,02) — pu1(6)? <—M1(9) Mz(G,Gz))'

REMARK 4.12. Notice that the proof of Proposition 4.11 does not need the
cumulant method as in the proof of Proposition 4.6. Indeed, since we are in the
bounded case, from MDP of martingale with bounded jumps (see [9]), we need
only to prove the superexponential convergence of increasing process of the mar-
tingale. This convergence is easily obtained from Theorem 3.2.

Let us give us our last result by considering a MDP for the test statistic.

PROPOSITION 4.13. Let (b,) a sequence of real numbers satisfying the
Assumption 1. Then under the null hypothesis Hy = {(xo, Bo) = (a1, 1)},

T2 (DN1/2 s ; 2 ;
So— (xr ')/ “ satisfies a MDP on R with speed bm| /|Ty| and the rate function

brry|
2
I'oy=1{7%" ifyeRy,
~+00, otherwise.

Under the alternative hypothesis Hy of Hy, we have for all A > 0,

T
lim sup |2_r| logP(x\ " < A) = —o0.

r—0o0 |Tr|
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APPENDIX A: PROOF OF THE EXPONENTIAL INEQUALITIES
This section is devoted to the proofs of Theorems 2.11, 2.12, 3.1, 3.2 and Propo-

sition 4.2.

A.1. Proof of Theorem 2.11. Let f € F such that (u, f) = 0. We shall study
the three empirical averages Mg, (f), M ,1;[ (f) and M, (f) successively.

Part 1. Let us first deal with Mg, (f). By the Markov inequality, we get, for all
5>0,

i — |
B([Me, ()] > 8) =B(Mc, (DI’ > 8%) = E[(Mo, (/)]
By Guyon (see [14]), we have
E[(Mg,(f)’]=Y_ 277" =P P(Q" "7 f@ 0" P71 ).
p=0

Hypothesis (H1) implies that there exists g € F and o € (0, 1) such that for all
pel0,1,...,r}

vOPP(Q" P F@Q P f) <P 0P P(g ® ).

Next, hypotheses (iii), (v) and (vi) imply that there is a positive constant ¢ such
that forall p € {0, 1,...,r},

Otz(r_p_l)vaP(g Rg) < ca2r—r=1

This leads us to

E[(MG, (f))z] <c Z 2= P=1p<r o 20r=p—1)

p=0
(A.1) )
1\ o —(1/2) o, 1
_ (3) i ey
) o=
cry5 ) > if = —,
2 2

and therefore (2.14) follows.

Part 2. Let us now consider M}? (f). By the Markov inequality and the triangle
inequality, we get, for all § > 0,

P(M'(f)| > 8)
_ 1 _
A2 =P(M] NI > 8%) < GE[(M](1)’]

<£E VHX_:I%MG ) 2 +£E 1XH:JC(XH') 2
- 52 pr e 52 n ® '

i=2"n
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In the last inequality (A.2), we have used the decomposition

rp—1 24
Z MG (f)-l- Zf(XH(z))

i=2"n

M (f) =

In what follows, the constant ¢ may be slightly different from that of part 1 and
may differ term by term. For the first term appearing in (A.2), we have

)

p=0

rn—1 24 2 r,,—l 2 rn—1 9 2
{(Z MGq<f)> } Z M@q(f) < (Z 7nzw@q(f)Hz) :
2 q=0
Using (A.1), we get that
rm—1 Tn
. 2 1
—Z(ﬁ)qfcf , ifoz2<§,
n
=0
rp—1 T'n 1/2 n
029 c r . 1
3 Mg, (P, < —qu/zﬁqgc”i, ifo? =,
n 1 n n 2
q=0 0
— Z (2a)q < ca'” if O{Z > —,
q =0
which implies that
2”}1 1 rp+1 1
¢ §c<§> : if o? < X
rn—l 2
A3) E iy, n o2 L
a3 [(zo e, ) | <ot =)
ca 2t D), if a? > %

Now, we have to control the second term in (A.2). As in Guyon [14], we have that

rp—1

DT (i K= )

[( Z fXna))
i=2"n
n— 2’" +1
<———v Q" f?
n—=2""Y(n—-2"+1)
n2(1 —27")
c rm—1
< = 2—p—1 2rn—2p—2.
= +c Z o




138 Limit theorems for bifurcating Markov chains with application

274 S. V. BITSEKI PENDA, H. DJELLOUT AND A. GUILLIN

Discussing following the value of o, we obtain that

1 o, 1

CW, if o <5,

| ? 'n |

Ad)  EN X FXne)) | yepg ifal=3,
i=2"n 1

ca?ntD) if o > %

Inequality (2.15) then follows from (A.3) and (A.4).

Part 3. The case of MT,( f) can be deduced from the previous by taking
n=|T,|.

A.2. Proof of Theorem 2.12. Let f € B(S>) such that Pf and Pf? exist
and belong to F and (u, Pf) = 0. We shall study the three empirical averages
Mg, (f), MI'(f) and M, (f) successively.

Part 1. Let us first deal with Mg, (f). By the Markov inequality, we get for all
s >0,

— 1 _
B(|[M, ()] > 8) = E[(Me, ())’]

1 .
E[Mg, (Pf*— (Pf)%)]

| R— 1
= 52El(Ms, (PP + i

=5
1 — by
< 8—2E[(MG,(Pf))2] T 8%<5> '

The last inequality follows from the convergence of the sequence (]E[MGr (Pf? —
(PF)HDr (see [14]).

Now, using part 1 of the proof of Theorem 2.11 with Pf instead of f leads us
to a similar inequality (2.14) in Theorem 2.12 for f € B(S?).

Part 2. Let us now treat M};{ (f). Using the two equalities

. rn—1 G, |__ 1 n
M) (f) = > |n—q|MGq(f)+; > F(Any),
q=0 i=2n

(0 N ety

i=2"n i=2rn

1|1 &
+ —E[; D (Pf- (Pf)2)(Xn<i))}

n i=2n
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and part 2 of the proof of Theorem 2.11 with Pf instead of f leads us to a similar
inequality (2.15) in Theorem 2.12 for f € B.

Part 3. The case of MT,( f) can be deduced from the previous by taking
n=|T,|.

A.3. Proof of Theorem 3.1. Let f € B,(S) such that (i, f) = 0. We shall
study the three empirical averages Mg, (f), M'(f) and M, (f) successively.
Part 1. Let us first deal with Mg, (f). We have for all A > 0 and for all § > 0

(A.5) P(Mg, (f) > 68) < exp(—kélGrDE[exp(k 3 f(X,-))].

ieG,
By subtracting and adding terms, we get

]E[exp<,\ > f(X,-))]

ieG,

:E[E[ [T exp(h(f (X2 + f (Xais1) — 20 (X))

ieG,_

< T ex@rr o)/ ||

ieG,_

Now using the fact that conditionally to the (» — 1) first generations the sequence
{A;,i € G,_1} is a sequence of independent random variables, we have that

E[E[ [T exp(A(f(X20) + f(X2i11) —20Qf (X))

ieG,_

< 1 exp(szﬂxi))/fr_]H

ieG,_

=E[ [] exp(2r0f (X))

i€eG,_q

< 1 E[exp(k(f(Xzin(XmH)—2Qf<x,~)))/f,_1]].

ieG,_

Using the Azuma—Bennett—Hoeffding inequalities [1, 3, 16] (see Lemma B.1 for
more detail), we get according to (H2), forall i € G,_1,

E[exp((f (X2i) + f (Xai41) — 20 (X)))/Fr1] < exp(227c* (1 + @)?).
This leads us to

E[exp(k > f(Xl-)>:|Sexp(k2c2(1+a)2|(Gr|)E|: I exp(Zka(Xi))].

ieG, ieG,_1
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Doing the same thing for E[[[;cg,_, exp(2AQf(X;))] with Qf replacing f, we
get

E[ I exp(2)\Qf(Xi))}

i€eG,_q
<exp(2r%c? (o + az)zlG,|)E|: I1 exp(22kQ2f(Xi)):|.
i€G,_p
Iterating this procedure, we get

2lexp(1 X £000)) | < Blewp( 20" 7 x1)]

ieG,
,
x [Texp(@ '3 (! +d)?|G,)).
k=1

Once again, according to (H2), we have
-
E[exp<,\ > f(Xi)ﬂ < exp(rca|G,|) x exp(kzcz(l +a)?|G,| Z(2a2)k_l>.
ieG, k=1
Hence:
o if a? % 1, then

E[exp(,\ > f(X,-))} < exp(kzcz(l—l—a)

ieG,

51— (a?)"

o IG) xexplaca |Gy )

o ifa? =1, then

E[exp<x > f(Xl-)ﬂ <exp(A2c*(1 + a)*r|G,|) x exp(kc(?)rﬁfﬁrl).

ieG,
We then consider three cases:

1 1—(2a?)" 1 . 1-2a3)5 -
(@) If @® < §, then 1-0% ) < —1— for all . Taking A = 2(2(17103)2 in (A.5)

leads us to

_ (1 —20%)82 (1 —2a2)3> )
P(M 8) < T - =) IG, ).
(M, (f)> )—e"p< <4c2(1+a)2 et rar)

o Ifu< %, then (2a)” <1 for all r € N. We then have for all r € N,

(1 —2a%)8 (1 —20%)8%|G,|
20(1+oz)2>ex <_ 421 + o) )

P(Mg,(f)>38) < exp(
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o If % <a< JTE’ then for all » € N such that r > log(%)/loga, we have (6 —

2ca’) > %, and it then follows that

a —2a2)52|Gr|>

P(M, () > 8) <exp( —pzot s

(b) If o = 1, then for all A > 0,

P(Mg, (f) > 8) < exp((—8r + (1 + a)*ri?)|G,|)

X exp()»c(?)rl(@rl).

Taking A = we are led to

)
2¢2(14a)?r’

P(M, (f) > 8) < exp(—%(a - 2c(?)))

For all r € N such that r > log(%)/log(g), we have (§ — 26(4)’) > % and for
such r, it follows that

52|Gr|)

P(Mg, (f)>$) < eXP(- 1822,

(c) If a? > %, then for all A > 0,

, (2% —1 )

P35, (f) > 8) < exp(=381G 1) x exp(1263(1+ P G,
a J—

x exp(rca”|Gy|)
A2 (1 + a)? ,
< eXP(-I(GA(NS - 20527_1(20‘2) >>
x exp(rca”|G,).

. 202-1)8
Taking A = m leads us to

_ 202 — 1)8
P(Mg,(f) > ) < eXp(— 4C§(?+ a);ab (6 — 200/)).

Now for all r € N such that r > log(%)/loga, we have

Qa? —1)82 )

P(MG, (f)) = exp(— 8c2(1 + )22
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Part 2. Let us now deal with MT, (f). We have for all > > 0 and all § > 0,

(A.6) P(Mr,(f) > ) < exp(—x5|T,|)E[exp(,\ 3 f(X,-))].

€T,
By subtracting and adding terms, we get

E[exp(k > f(Xi))]

ieT,

=]E[IE[ [T exp(A(f(Xa) + F(Xais1) — 20 (X))

iEGr,I

< T ew(rr () x T explaf X0}/ % |

ieG,_ ieT,_

:]E[E[ [T exp(:(f(X2) + f(Xai41) — 20 (X))

ieG,_;

x [T exou(f +200)X0) x ] exp(mxl-))/fr_lﬂ.

ieG,_g ieT,_»

The fact that conditionally to the (r — 1) first generations the sequence {A;,i €
Gr-1} 1s a sequence of independent random variables and Azuma—Bennett—
Hoeffding inequality (see Lemma B.1) lead us according to (H2) to

E[exp(k Z f(X,-))]
ieT,
<exp(2A2c3(1 + @)?|G,_1))
X E[ [] exp(r(f +20N X)) [] eXP()\f(Xi))]
ieG,_y i€T, >
Doing the same things for

E[ [T exp(A(f +20NH X)) [] exp(kf(Xi))]

ieG,_ ie€T,_»
with f +2Qf replacing f, we get
E[exp(k Z f(X,-))}
ieT,

<exp(222* (1 + @)?|G,r_1]) x exp(22%c* (1 + 3o + 2a2)2|Gr_2|)

<[ TT expla(f +207 +2021)0x0) T] explfox)|

ieG,_p i€eT,_3
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Iterating this procedure leads us to

E[exp(k > f(Xi)>]

ieT,

roo/q—1 2
< exp <2xzc2(1 +a)? Yy (Z(Za)k> G, |>

g=1 \k=0

x E[exp(A(f +20f +220%f +---+270" f)(X1))].

Using (H2) we get
E[exp(k > f(Xi)ﬂ
ieT,
r r /q—1 2
<exp (Xc Y o)t + 2221+ )y (Z(Za)k> G |>.
k=0 g=1 \k=0

Now for o # % and o? # % we have

P(Mr,(f) > 9)
2r —1 a(l —a”)2rtl
(1-2a)2 (1-2a)2(1—a)
202(1 — 2a®)"H2"
(1—=2a)%(1 — 2a2))>

< exp(—A8|T,|) exp<2k2c2(1 + a)z(

( 1— (2a)r+1)
X exp| AC——F—
1 -2«
2221 +a)? 4a?(1 — 2a®)")
< —|T [ A6 — ————| 1
<ewp(-m1(20 - = (140 ))
( 1— (za)r-i—l)
X exp|l Ac——— |.
1 -2«
Taking A = 5 leads us to

(2c2(1+a)?/(1-20)2) (1+402(1— 2a2)") /(1—202))

P(Mr, (f) > )

- (_T (1 —20)%82 )
=X\~ T T )20 4a2(1 = @) /(1 = 202))
(1 —2w)%s 1 — Qa) !
. Xp(zc(1+a)2(1+4a2(1—(2a2)r)/(1—2a2)) 1 — 2 )
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1—(2a2)" 1
1202 = 1-242

° Ifa<%,then forall r e N,

— I -2«
P(Mr, (f) > 38) < eXP(m(S)

(1 —2a2)(1 — 2a)282 T
4c2(1 + @)2(1 + 2a2) | r')'

X exp(—

1 V2 1—Q2a2)" 1
o If 3 <a <= then 555~ < ;= forallr e N,

P(Mr,(f) > §)

(1—2a2)(2a—1)28|Tr|<  2e(1 =20’ ! ))
4¢2(1 4+ )2 (1 + 2a2) Qa—1D(1+2a2)/)

< exp(—

Now for all r € N such that » + 1 > log(w)/loga, we have § —

4c(1-2a2
2c(1-2¢2)a’ ! 5 ( :
m > ) so that for such r, we have

(1 —2a%) Qe — 1)252|T,|>

P(MT, (f) > 8) = exp(— 8C2(1 +a)2(1 + 20(2)

o Ifa? > % then for all » > 1, we have

P(Mr,(f) > §)

Qo — 1)?22a? — 1)3( 1602ca’ ! ))
32¢2(1 + o)220+D Qa2 -1DQRa—-1/)

< exp(—

For all r € N* such that r + 3 > log((zaz_?#)/loga, we have § —
1602 ca’t!

)
21 (20 > 580 that

(1 = 20)%2a? — 1)82 < 1 )’“)

P(ﬁ'ﬂ} (f) > 8) = CXP<— 64C2(1 + Ol)2

a?
Now if o = %, then >0 _, 621—5 < 22021 621—5 = 6. Then for all A > 0,

P(Mt,(f) > 8) < exp(— (A8 — 27¢*A?)|T,|) x exp(re(r + 1)).

Taking A = 527 leads us to

_ 82 8
P(MT,(f)>§) < exp(— 10882 |'JI‘,|> X exp(%(r + 1)).
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Finally, if o = 2, in the same way as previously, for all » € N such that r + 1 >
log(Y2=1%) /10g(*2), we have

(vV2-1)?% |T;| )
4c2(1 +/2)2r+1)
Part 3. Eventually, let us look at M1(f). We have for all § > 0

Pl =0)<k(; 3 rxp=3)+ ( S FXne) > )

ieT i=2"n

P(Mr,(f) > 8) < exp(—

rn—

On the one hand, (3.2) leads us to
exp(c”8) exp(—c'8%n),

1
Vn e N, ifa < 5’
exp(2¢'8(rn + 1)) exp(—c/82 ),
1
Vn eN, ifa= 5
exp(—c'8%n),
v L V2
et exp(—c’éz—n )
rm+1
2
VYr, > ro, ifa:i’
| 2
/2
exp<—c ) aiz(’nﬂ))’
2
Vrp >ro—2, ifa>§,

where r( := log(c%) /loga and cg, ¢’ and ¢’ are positive constants which depend
ona, || flleo and c. g, ¢’and ¢” differ line by line. On the other hand, for all A > 0,

8 n
(n Z fXnw)) > )SGXP(—%H)E{GXP(X Z f(XH(i))>:|-

=2 j=2rn
Now let:

e O, ={I12™"), T2 +1),...,II(n)};

° Orl,,—l the set of individuals of generation G,,_; which are ancestors of one
individual in O, ;

° Orz,,—l the set of individuals of generation G,,_; which are ancestors of two
individuals in O, ;
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e O, the set of individuals of O,, whose parents belong to Orln—l;
L Orn_l = O}}n—l U Oz

rp—1°

We introduce the filtration J:'r =0 (F,,I1(),1 <i <T). Then we have

E{exp(x 3 f(Xn(i)))]

i=2n

=E[exp(xieozz 20 (X)) +xieozl 0r(x))

rm—1 rm—1

X E[exp(k Z f(Xp) — Qf(X[i/2])>/J%rn—lj|

@/

x E[exp(km%l FXa) + £ (Xair) = 207(X))) /ﬁr,,-lﬂ.

Using the Azuma—-Bennett—Hoeffding inequality, as in part 1, we get
A2 (1 +a)?

]E[exp(x\ > f(X) - Qf(X[i/Z]))/frn—l:| < eXP(fw;n )

i€0;,

and

Blexp(r X Ot + £ (o) ~207 (X)) /7 |

. 2
lGOrnil

<exp(222c? (1 4+ a)?|02 ).

rm—1

Now, we have
(Azcz(l +w)?
exp| ————

10, ) + exp(2221 + 2102 )

O/
= exp(xzcz(l + oz)2<2’(’)r2n_1| + %))

<exp(A2c*(1 +a)?n).
This leads us to

E[exp(k > f(Xl'I(i))):|

i=2n
fexp(x262(1+a)2n)E|:exp<)L Z 20f(X;)+ A Z Qf(X,-)):|.
ic0? | i€o} |

Now let:
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° Orln’l_z the set of individuals of G,,_» which are ancestors of one individual in
O;,,—1 and one individual in O, ;

° (’):};272 the set of individuals of G,,_» which are ancestors of one individual in
O,,,—1 and two individuals in O, ;

° (’)rzn’z_2 the set of individuals of G,, _» which are ancestors of two individuals in
O, —1 and two individuals in O, ;

° (9,27;3’_2 the set of individuals of G,, _» which are ancestors of two individuals in
O,,—1 and three individuals in O, ;

° Ofn’iz the set of individuals of G,, _» which are ancestors of two individuals in
O,,,—1 and four individuals in O, ;
° (’);n_l the set of individuals of O, _; whose parents belong to Orln 1_2;
e O] | the set of individuals of Oy, whose parents belong to Orlr;z_z.
Then we have
Blep( X 20fCt)+3 X 0F(x))]

: 2 . 1
te(’)rn_l le(’)rn_l

=E[l1 x Ih x Iz x I4 x I5 x Ig x I7],

where
n=ep(i ¥ 0F00+n X 20X+ X 203X
icop!, icop?, €0y,

+X 30 +A X 4QPF(X).
ic0? ieopt,
L =FE|exp| A Z ofXi) — sz(X[i/2])>/~7}rn—2:|’

ieO

rm—1

I=Elexp(2% ) Qf(Xi)—sz(X[i/2])>/7:"rn—2]’

. Y
zeorn_l

. 2,2
zeorn_l

)\’ ~
Is = E|exp 3 Z 20f(X2i) + Of (X2i41) — 3Q2f(Xi)>/~7:rn—2]’

ie0>?

m—1

(
(
n=Elew(i X 0F )+ 0f o) ~ 2071 (X)) [, 2],
(
(

)\’ ~
lo=Elexp(5 ¥ Qf(Xzi)+2Qf(X2i+1)—3Q2f(Xi)>/7:rn—2]’

ic0>?

m—1
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B=E[exp(h Y 20f () +20f (Xais) =407 F (X)) [, 2],
ie(’)fy’:‘_l

Using the Azuma—-Bennett—Hoeffding inequality, we get

12X13X14XI5XI6XI7

O/
sexp(12(e +aP (125 polop | +2/022

rp—1
9107 |
. )
<exp(222c3 (o + a?)’n),
hence
n
]E|:exp(k Z f(Xl‘l(i))):| < exp(kzcz(l +a)2n) exp(Zkzcz(a + az)zn)E[ll].
i=2rm
Now, iterating this procedure we get
n 'n
]E|:exp<k Z f(Xn(,-))>:| < exp(kzcz(l +a)’n 2(2012)17) exp(rca’n).
i=2"n p=0
Then it follows as in part 1 that

1 & )
P(; > FXnay) > 5)

i=2n

(A.8) '
exp(c”8) exp(—c'8°n),
1
exp(—c'8%n),
1 V2
Vn € N such that r,, > rg, 1f§ <a<7,
< exp(—c/(SzZ),
I'n
1
Vn € N such that r,, > rp, if a2 = X
1 2rn
on(eo(2)")
* 1
Vn € N such that r,, > rp, if a2 > 7

where rg := log(%) /log(a) and the positive constants cq, ¢’ and ¢”” depend on «,
8, ¢ and differ line to line. Finally (A.7) and (A.8) lead us to (3.3).
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A.4. Proof of Theorem 3.2. Let f € B,(S?) such that (i, Pf) = 0.
Part 1. Let us first deal with Mg, (f). We have for all § > 0 and A > 0,

P(is, (/) = ) < exp(-21G, )E[exp(1 Y- ran)]
ieG,
Conditioning and using Bennett—Hoeffding inequality gives us
E[exp(x ) f(A,-))] < exp(zxznfuoomr|)E[exp(x 3 Pf(Xi))].
ie(Gr iEGr
Now, applying part 1 of the proof of the Theorem 3.1 to Pf, we get (3.1) for
[ €By(SY).

Part 2. Let us now treat MT, (f). We have for all § > 0,
_ — 8 — )
(A9) P(Mr,(f) > 8) < P(MT,(f —Pf) > 5) + P(MT,(Pﬂ > 5).

Now, since (MnrI (f — Pf))n>11s a H,-martingale with bounded jumps, the Azuma
inequality [1] gives us for some positive constant ¢/,

_ 5
JP’(MTr(f - Pf)> 5) < exp(—c'8|T,|).

For the second term on the right-hand side of (A.9), we use inequalities (3.2) with
Pf instead of f. Gathering these inequalities, we get (3.2) for all r large enough.

Part 3. The proof for the case M,l:[ (f) follows the same lines as the proof of
part 2.

A.S. Proof of Proposition 4.2. We will prove the deviation inequality for
|65 — aol. The other deviation inequalities for |8 — fol, |& — 1| and |8} — 1|
may be treated in a similar way.

One easily checks that

&f —ap = (M, (xy) = M1, (P(xy))) — (MT,(X))(MT,(y) — MT,(P(y)))
B, '

We then have, for all § > 0,
P(|a — ao| > 9)

3 P(%, (xy = POy _ §>
B, 2

+IP,(IJVIT,(X)IIMT,(Y— PODI 5)

B, 2)
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On one hand, for all y; > 0 we have

]P’( |Mr, (xy — P(xy))| 5>

> —_
B, 2
(A.10) )
<P(B, <) + P(WT, (xy — P(y)| > %)

Now, for b = u» (6, o?) — U1 (0)%, where w1 and wo are given in (4.5), we have

_ bh—
P(B, <y1) < H”(—MT,(X2 — Y2) > 3)/1)

Vb —y1
v

_ b —
+P(MT,(X—M1)> yl).

6|1l
2h  —4++/48b82+16

We choose y1 < min{573;, 652

+P(|m,(x—m>| >

b n b=y
’1+35lu1|} so that 5 < max{ 3

—Vf/__;", %}. Then we have

and therefore we get

P(IMT,(XY — P(xy))] - §>
B, 2

— ) — é
< 2P([3r, = )] > 1) 4 (W, (a2 =) = 221 )

_ 1)
+IP’(|MTr(xy— P(xy))| > %)

On the other hand, we have

IEI,(IMT,(X)IIMT,(Y— PODI 5) SP<|MT,(X—,U«1)||M’JT,(Y_ PODI 5)

B, 2

B, 4
M - P b
HP(I T, (¥ )] - )
Br 4|Ml|

The last term of the previous inequality can be dealt with in the same way as
inequality (A.10), using y3 > 0 such that

ablpi] 2]~ + 24582/ 1| + 16) 2b}

”3<mm{4|m|+35’ 352 '+ 38
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For the second term, we have

P(|M'JI‘r(X_M1)||MTr(y_P(Y))| 5)
> J—
B, 4

= P(me— )| > ?) HP><lm,.<yB—r PO _ §>

Let y» > O such that y, < m1n{2+3f —4ty §§b5+16, 1+3~l;5|u1 | }, in such a way that

we obtain Vzﬁ/g < max(%; 2, Ij/gy , Ié| u«}?l }. We thus have

P(|MT,(X—M1)||MT,(Y_P(Y))| 5)
> J—
B, 4

< P(WT, x— )| > ?)

—|—IP’(|MT, (2 — )| > %ﬁ) +IP><|MT, (y—P®y)| > sz)

Vz;/g).

From the foregoing, we deduce that for all y > 0 such that y < min(yy, y2, ¥3),

+ 2P(|M1rr (x—p1)| >

P(lag’ - ao| > 6)

— ) — )
< 2P<}M1r,(x— m)| > %) +IP’(MT,.(M2 -x%) > —y>

2
+P<WT, (xy — P(xy))| > %) (|MT &=l > ?)
+IP’(|MT (x* — u2)] T\/_>+ (|MT Y= P> Vf)
rvh

+2P<|MT x— )| >

Sy
+2P( | M —
) (' T, (= ’“)|>4|m|>

)+P<|MTy P> 4|8:1|>‘

+P('M'H‘ [,Lz —x?

4|M1|
Now, using (2.8) and Markov’s inequality we get

. 8)/ c 1 r+1
P(|er(xy—P<xy))}>7)584 4(1) ,

. 6)/ C//L (1)r+1
P(|Mx (y — P =) < -
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and

P(qu, (y—Py)| > VT\/S> < 526;/4 G)m,

where the constant ¢ can be found as in Remark 2.4.

Finally, the other terms, that is, the terms related to M’JI‘, (x2 — j12) and MTr (x—
i1), can be bounded as in Corollary 2.2 and this completes the proof.

APPENDIX B

Let us gather here, for the convenience of the readers, various theorems useful
to establish LIL, ASFCLT, deviation inequalities and MDP.
First, let us enunciate the Azuma—Bennett—Hoeffding inequality [1, 3, 16].

LEMMA B.1. Let X be a real-valued and centered random variable such that
a<X<ba.s.,witha <b. Then for all » > 0, we have

Az(b—a)2>.

E[exp(AX)] < exp( g

LEMMA B.2. Let (E,d) a metric space. Let (Z,) a sequence of random vari-
ables values in E, (v,) a rate and g:Dg C E — R continuous. Let 7 € E be a
deterministic value:

IfZ, Su%re?p z then g(Z,) Su%re;(p g(2).

PROOF. For all § > 0, there exists (see, e.g., [22], proof of Theorem 2.3)

ap(6) >0

(B.1) P(|g(Z,) — g(2)| > 8) <P(d(Zn, 2) > ap(8)).
Indeed, since g is continuous, for all § > 0, there exists «o(§) > 0 such that
|g(x) — g(z)| <34 whenever d(x, z) < ag(d).
We then have
{@:1d(Zy(w),2) <)} C{w:(g(Zn(®)) — 8(2)| < 8}
and therefore inequality (B.1). Now, the result of the lemma follows since

superex
z, BP0

Un

Let M = (M,,, H,,n > 0) be a centered square integrable martingale defined
on a probability space (2, H,P) and ((M),) its bracket. We recall some limit
theorems for martingale used intensively in this paper.

We recall the following result due to W. F. Stout (Theorem 3 in [21]).
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THEOREM B.3. Let (M) such that My =0. If (M), — oo a.s. and

>, 2loglog(M) 5
Y o El(Ma = My 1)* (4, — 1,25 K2 (M) @loglog (b)) Hin—1]
K; (M),

n=1
< 00 a.s.,

My _
nloglog(M),

where K,, are H,_1 measurable and K,, — 0 a.s., then lim sup NEXIT)
1a.s.

We recall the following result due to Chaabane (Corollary 2.2 in [5]).

THEOREM B.4. Let (V) be a (H,)-predictable increasing process such that:
H-1 V.2 M), — 1,a.s.;
n—oo

H-2 for all & > 0, ¥ ,=1 V,y *EL(My — Mu—1)*Lip,—pt, 156V, /Hn—1] < 00,
a.s.;

H-3 for some a > 1, Y, V, 2 EIU(My — My—1)* Vip,—m, 1 1<v,/Ha—1] <
00, a.s.

Then M, satisfies an ASFCLT, that is, for almost all w, the weighted random mea-

sures
o1 N VZ
Wi (w, ) = (log Vy) Z(l - VT”)fS{wn(w)e-}
n=1 n+1

associated to the continuous processes V,(w) = {¥, (w, t),0 <t < 1} defined by
_ -1
Wy (@, 1) =V, {My+ (Ve = V)™ 0V, = V) (M1 — M)},
when sz < tVn2 < VkZ_H, 0 <k <n—1, weakly converge to the Wiener measure

on C([0, 1], R).

Let us enunciate the following which corresponds to the unidimensional case of
Theorem 1 in [11].

PROPOSITION B.5. Let (b,) a sequence satisfying

by, is increasing, — — +00, — — 0,

N n

such that c(n) := n/b, is nondecreasing, and define the reciprocal function ¢~ (1)
by

@) = inf{n € N:c(n) > t}.

Under the following conditions:
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(C1) there exists Q € R such that % SU%XP ;
(C2) limsup,,_, ;o 75 log(nesssup <j<c—1 ., ) P>UMk — Mi—1] > bp/Hi—1)) =
superexp
(C3) foralla>0 L Y0 E(My — Mx—1 > m— w1 1an/bn)/ Hi—1) ﬁ 0;
n n

(M, /bn)nzeN satisfies the MDP in R with the speed b% /n and the rate function
I(x)= ;—Q
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Abstract. The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least
squares estimators of the unknown parameters of general pth-order asymmetric bifurcating autoregressive processes, under suitable
assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

Résumé. L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estima-
teurs des moindres carrés des parametres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre p, sous certaines
conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.

MSC: 60F10; 62F12; 60G42; 62M10; 62G05

Keywords: Deviation inequalities; Moderate deviation principle; Bifurcating autoregressive process; Martingale; Limit theorems; Least squares
estimation

1. Motivation and context

Bifurcating autoregressive processes (BAR, for short) are an adaptation of autoregressive processes, when the data
has a binary tree structure. They were first introduced by Cowan and Staudte [6] for cell lineage data where each
individual in one generation gives rise to two offspring in the next generation.

In their paper, the original BAR process is defined as follows. The initial cell is labelled 1, and the two offspring
of cell k are labelled 2k and 2k + 1. If X denotes an observation of some characteristic of individual k then the first
order BAR process is given, for all k > 1, by

Xop =a+bXy +ex,
Xog+1=a+bXy + eop41-

The noise sequence (e2k, £2x+1) represents environmental effects, while numbers a and b are unknown real param-
eters, with |b| < 1, related to inherited effects. The driven noise (e2x, €2x+1) Was originally supposed to be independent
and identically distributed with normal distribution. However, since two sister cells are in the same environment at
their birth, &7 and ey;41 could be correlated, inducing a correlation between sister cells, distinct from the correlation
inherited from their mother.

Several extensions of the model have been proposed and various estimators for the unknown parameters have been
studied in the literature, see for instance [2,19-21,28,29]. See [3] for relevant references (although [3] deals with the
asymmetric case unlike the above cited papers).

Recently, there have been many studies of the asymmetric BAR process, considering cases where the quantitative
characteristics of the even and odd sisters are allowed to depend on their mother’s through different sets of parameters.




158 Deviation inequalities for estimators in bifurcating autoregressive models

Deviation for bifurcating autoregressive processes 807

In [18], Guyon proposes an interpretation of the asymmetric BAR process as a bifurcating Markov chain. This
enables him to derive laws of large numbers and central limit theorems for the least squares estimators of the unknown
parameters of the process. This Markov chain approach was further developed by Delmas and Marsalle [10], for cells
which are allowed to die. They defined the genealogy of the cells through a Galton—Watson process, studying the same
model on the Galton—Watson tree instead of a binary tree.

Another approach based on martingales theory was proposed by Bercu, de Saporta and Gégout-Petit [3], to sharpen
the asymptotic analysis of Guyon, under weaker assumptions. It should be pointed out that missing data is not dealt
with in this work. To take it into account in the estimation procedure, de Saporta et al. [8] and [9] use a two-type
Galton—Watson process to model the genealogy.

Our objective in this paper is to go a step further by

e studying the moderate deviation principle (MDP, for short) of the least squares estimators of the unknown parame-
ters of general asymmetric pth-order bifurcating autoregressive processes (BAR(p), for short). More precisely we
are interested in the asymptotic estimations of

P(?(@n —-0)c A),

n

where @, denotes the estimator of the unknown parameter of interest ©, A is a given domain of deviation, (v, > 0)
is some sequence denoting the scale of deviation. When v, =1 this is exactly the estimation of the central limit
theorem. When v,, = /7, it becomes the large deviation. And when 1 < v, < /7, this is the so called moderate
deviations. Usually, MDP has a simpler rate function inherited from the approximated Gaussian process, and holds
for a larger class of dependent random variables than the large deviation principle.

To prove our result on MDP, we use

(1) the work of Bercu et al. [3] on the almost sure convergence of the estimators with the quadratic strong law and
the central limit theorem;

(2) the work of Dembo [11], and Worms [26,27] on the one hand, and the papers of Puhalskii [24] and Djellout
[13] on the other hand, on the MDP for martingales.

e giving deviation inequalities for the estimator of bifurcating autoregressive processes, which are important for a
rigorous nonasymptotic statistical study. We aim at obtaining estimates such as

Vx>0 P(|0, — O] =x) <e W,

where C,(x) will crucially depend on our set of assumptions. The upper bound in this inequality hold for arbitrary
n and x (not a limit relation, unlike the MDP results), hence they are of much more practical use (in statistics). De-
viation inequalities for estimators of the parameters associated with linear regression, autoregressive and branching
processes were investigated by Bercu and Touati [4]. In the martingale case, deviation inequalities for a self nor-
malized martingale have been developed by de la Pefia et al. [7]. We also refer to the work of Ledoux [22] for
precise credit and references. This type of inequalities is motivated by theoretical questions as well as numerous
applications in different fields including the analysis of algorithms, mathematical physics and empirical processes.
For some applications in nonasymptotic model selection problems we refer to Massart [23].

Let us emphasize that to our knowledge, there are no existing studies of the above questions, that is of the MDP and
deviation inequalities for the least squares estimators of the unknown parameters of the general asymmetric BAR(p)
process. These questions have been adressed recently by Bitseki Penda et al. [5], but for the BAR(1) processes.
Moreover, in the latter, the authors have obtained their results under stronger assumptions than those made in this
paper.

The main aspect of our contribution is that our results highlight the competition between the binary division and the
speed of convergence in the MDP. Our MDP holds following three regimes, depending on the value of the ergodicity
parameter of the BAR(p) compared with 1/2. This new phenomenon is not seen in the case of the previously proved
limit theorems: central limit theorem and law of large numbers. However, a similar phenomenon occurs for the central
limit theorem of a branching particle system: see [1].
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This paper is organized as follows. First of all, in Section 2, we introduce the BAR(p) model as well as the least
squares estimators for the parameters of the observed BAR(p) process and some related notation and hypotheses. In
Section 3, we state our main results on the deviation inequalities and MDP for our estimators. Section 4 is dedicated
to the superexponential convergence of the quadratic variation of the martingale; this section contains exponential
inequalities which are crucial for the proof of the deviation inequalities. The main results are proved in Section 5.

2. Notation and hypotheses
In all the sequel, let p € N*. We consider the asymmetric BAR(p) process given, for all n > 27~! by

Xon =ap + ZI[;:l akX[n/zk—l] + &2n,
Xont1 =bo+ Y p_ bk Xpn k1) + €20115

where the notation [x] stands for the largest integer less than or equal to the real number x. The initial states {Xj, 1 <
k<2rl_ 1} are the ancestors while (&2, £2,+1) is the driven noise of the process. The parameters (ag, a, ..., ap)
and (bo, b1, ..., bp) are unknown real vectors.

For any matrix M the notation M’, | M| and Tr(M) stand for the transpose, the Euclidean norm and the trace of
M respectively.

The BAR(p) process can be rewritten in the abbreviated vector form given, for all n > 27 -1 by

X0, = AX, 4+ n2n, @2.1)
Xont1 = BXy + 02041, '
where X, = (X, X[u/2)5 -+, X[n/z,,_l])’ is the regression vector, 12, = (ap + €2,)e1 and 92,41 = (bo + €2n+1)e1,
with e; = (1,0,...,0)" € R”. Moreover, A and B are the p x p companion matrices
ay ay - ap by by --- by
1 0 1 0 --- 0
A= 0 ) and B = 0 )
0 1 0 1
We shall assume that the matrices A and B satisfy the contraction property
B =max([|All, |B]]) < 1. (2.2)

One can view this BAR(p) process as a pth-order autoregressive process on a binary tree, where each vertex
represents an individual or cell, vertex 1 being the original ancestor. For all n > 1, denote the nth generation by
Gp={2",2"+1,...,2"T1 — 1}, see Figure 1.

In particular, Go = {1} is the initial generation and G = {2, 3} is the first generation of offspring from the first
ancestor. Let G,, be the generation of individual n, which means that r, = [log, (n)]. Recall that the two offspring of
individual n are labelled 2n and 2n + 1, or conversely, the mother of the individual n is [n/2]. More generally, the

ancestors of individual » are [n/2], [n /22], ..., [n/2"™]. Furthermore, denote by
n
T, = U Gy
k=0

the subtree of all individuals from the original individual up to the nth generation. We denote by T,, , = {k € T,k >
2P} the subtree of all individuals between the pth and the nth generation (T, | removed). One can observe that, for
alln>1,T,o=T,andforall p>1,T, , =G,.

The BAR(p) process can be rewritten, for all n > 27 ~1 in the matrix form

Zn :OtYn + Va,
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Fig. 1. The binary tree T.

where

X2n 1 Eon
Z, = , Y, = , Vo = ,
" (X2n+1) " (Xn) " (82n+1)

and the (p + 1) x 2 matrix parameter 6 is given by

ap by
a; b
o= . .
ap by

As in Bercu et al. [3], we introduce the least squares estimator én of 8 for all n > p, from the observation of all
individuals up to the nth generation (that is, the complete sub-tree T;,)

o=5" Y Wz, 2.3)
kETn—I.p—l
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where the (p + 1) x (p + 1) matrix S, is defined as

1 x
_ t__ k
So= Y. nyi= > (Xk %, ) . (2.4)

k€T, p—1 k€T, p—1

We assume, without loss of generality, that for all n > p — 1, §,, is invertible. From now on, we shall make a slight
abuse of notation by identifying 6 and 6, respectively to

ao &O,n

—| % 5y — | dpn
vec(d) = b and vec(6,) = 3

0 0,n

by I;p,n

Let ¥, = I, ® S,,, where ® stands for the matrix Kronecker product. We then deduce from (2.3) that

Xok

R . 1 X X
=3, Z vee(YiZp) =2, Z Xok11

k€Ty_1,p—1 k€Tn—1.p-1 X Xok+1

Consequently, (2.1) yields
&2k
. B e X,
0, —0= En,ll Z A : =
e E2k+1
P N epr1 X

Denote by [ = (F,) the natural filtration associated with the BAR(p) process, which means that F;, is the o-
algebra generated by the individuals up to the nth generation, in other words F,, = o {Xy, k € T, }.

For the initial states, we set X = max{||Xg||, k < 2P~} with the convention that Xy = 0 and we introduce the
following hypotheses:

(Xa) For some a > 2, there exists ¢ > 0 such that
E[exp(¢X7)] < oe.

This assumption implies the weaker Gaussian integrability condition.

(X2) There is ¢ > 0 such that
]E[exp({Y%)] < 00.

For the noise (e2,, €2,+1) the assumption may be of two types.

(1) In the first case we will assume the independence of the noise which allows us to impose less restrictive conditions
on the exponential integrability of the noise.
Case 1: We shall assume that ((€2,,, €21,41), n > 1) forms a sequence of independent and identically distributed
bi-variate centered random variables with covariance matrix I" given by

— o’ p 2 2
I = o o2) where 0“ > 0 and |p| <o~ (2.6)
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Foralln > p — 1 and for all k € G,,, we set

E[a,%] = 02, E[s,‘:] =14 Eleoke2k+1] = p, E[e%kS%kH] = v2, where 74 > 0,1 < T
In addition, we assume that the condition (X2) on the initial state is satisfied and that
(G2) onecan find y > 0 and ¢ > 0 such that for all n > p — 1, for all k € G,, and for all |t| <c¢

Efexp(t(e — 02))] < exp<y7t2>.

In this case, we impose the following hypotheses on the scale of the deviation
(V1) (vy,) will denote an increasing sequence of positive real numbers such that

v, —> +00

and for B given by (2.2)

e if f < %, the sequence (vy) is such that v”l% — 0,

o if > %, the sequence (v,,) is such that (v,+/Togn)p"»+D/2 — 0.

(2) In contrast with the first case, in the second case we will not assume that the sequence ((€2,,, €2n41), 7 > 1) is
i.i.d. The price to pay for giving up this i.i.d. assumption is to assume higher exponential moments. Indeed we
need them to make use of the MDP for martingales, especially to prove the Lindeberg condition via the Lyapunov
condition.

Case 2: We shall assume that for all n > p — 1 and for all j € G,41 E[e;/F,] =0 and for all different
k,l € G,y with [%] #* [%], e and g; are conditionally independent given F,,. And we will use the same notation
asin case 1: forall n > p — 1 and for all k € G, 41,

E[a,f/]—',,] =a?, ]E[e,ﬁ/]—',,] =7, Elewent1/Fnl=p, E[s%ks%k+1/-7'—n] =12 as.

where t* > 0, v2 < 7% and we use also I" for the conditional covariance matrix associated with (g2,,, En+1)-
In this case, we assume that the condition (Xa) on the initial state is satisfied, and we shall make the following
hypotheses:

(Ea) for some a > 2, there exist ¢t > 0 and E > 0 such that for all n > p — 1 and for all k € G, 41,

E[exp(rleklza)/fn] <E <00, as.

Throughout this case, we introduce the following hypotheses on the scale of the deviation
(V2) (vy) will denote an increasing sequence of positive real numbers such that

v, —> 400,

and for g given by (2.2)

o if B2 < %, the sequence (v,,) is such that 298"

—> 0,

. . 3/2
o ifg2= %, the sequence (v,) is such that % — 0,

o if /32 > % the sequence (vy) is such that (v, 1ogn),3’"+l — 0.
Remarks 2.1. The condition on the scale of the deviation in case 2, is less restrictive than in case 1, since we assume
a stronger integrability condition on the noise (Ea). This condition on the scale of the deviation naturally appears in

the calculations. More precisely, the 1og term comes from the commutation of a probability and a sum.

Remarks 2.2. From [14] or [22], we deduce with (Ea) that
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(N1) there is ¢ > 0 such that for alln > p — 1, for all k € G, and forall t € R,

o1’
E[exp(tsk)/fn] < exp(T), a.s.

We have the same conclusion in case 1, without the conditioning; i.e.

(G1) thereis ¢ > 0 such that for alln > p — 1, for all k € G, and for all t € R,
2
t
E[exp(ter)] < exp(%).

Remarks 2.3. Armed with the recent development in the theory of transportation inequalities, exponential integrability
and functional inequalities (see Ledoux [22], Gozlan [16] and Gozlan and Leonard [17]), we can prove that a sufficient
condition for hypothesis (G2) to hold is the existence of to > 0 such that for all n > p — 1 and for all k € G,
E[exp(toe,%)] < 00.

We now turn to the estimation of the parameters o2 and p. On the one hand, we propose to estimate the conditional
variance o2 by

1 N 1
A2 2 a2 a2
o, = 1Vill* = eyt ¢ :
n 2|T,17]| Z 2|Tn71| Z ( 2k 2k+1)

keTnfl,pfl ke’]rnfl,pfl

where foralln > p — 1 and all k € G,,, ‘A/k’ = (&, Eox+1)" with
Eok = Xok — Qo0 — Yoty Gin X i1
ézk-H = Xok+1 — [;O,n - Zip:] éi,nx[k/zi—l]-

We also introduce

1
2 § : 2 2
0, = T (82k +82k+])'
2[Tp-|
kE’]I‘,,,Lp

On the other hand, we estimate the conditional covariance p by

. 1 A
Pn = E E2kE2UA41-
|Tn—]|
kET,,,L],,]

We also introduce

1

= } E2E A1+
|Tn—l| &
ETnfl,p

pl‘l

In order to establish the MDP results of our estimators, we shall make use of a martingale approach. For all n > p,
set

&2k
M, = Z £2k X e R2pHD)
E2k+1
KeTnot.p E2k+1 X

We can clearly rewrite (2.5) as

0 —60=2""M,. 2.7)
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We know from Bercu et al. [3] that (M,,) is a square integrable martingale adapted to the filtration F = (F;,). Its
increasing process is given for all n > p by

(Myp=T & Sp—1,

where S, is given in (2.4) and I" is given in (2.6).
Recall that for a sequence of random variables (Z,), on RI*XP we say that (Z,), converges (v%)—superexponen—
tially fast in probability to some random variable Z if, for all § > 0,

1

limsup — log P(||Z, — Z|| > §) = —oc.
n n

— 00

This exponential convergence with speed v% will be abbreviated to

superexp
Z, =

2
Uy

Remarks 2.4. Note that for a determininistic sequence that converges to some limit £, it also converges (v,zl)-
superexponentially fast to £ for any rate v,,.

We follow Dembo and Zeitouni [12] for the language of the large deviations, throughout this paper. Before going
further, let us recall the definition of a MDP: let (v,) be an increasing sequence of positive real numbers such that

Un
N

We say that a sequence of centered random variables (M,,), with topological state space (S, S) satisfies a MDP
with speed v,% and rate function /: § — R if foreach A € S,

1 1
—inf I(x) < liminf—2 logP(ﬁMn € A) < 1imsup—210gP<ﬁMn € A) < —inf I(x),
n—00 Vs Up 1

xX€A? Un n—oo Uy X€A

v, —> oo and

— 0. (2.8)

where A and A denote the interior and closure of A respectively.
Before we present the main results, let us fix some more notation. Let

b —  al+b] — A+B
g=dotb Ty _atbhy g _A+B
2 2 2
We set
E=a(l,—A) e, (2.9)

and let A be the unique solution of the equation (see Lemma A.4 in [3])
1 t t
A=T+E(AAA + BAB') (2.10)
where
— 1
T = (0 +a%)eel + 5 (ao(AZe] +e1E'A") +bo(BEe] + €1 E'B)). 2.11)
We also introduce the following matrices L and X' given by

L=<,l, i) and ¥=LQL. 2.12)
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3. Main results

Let us present now the main results of this paper. In the following theorem, we give the deviation inequalities of the
estimator of the parameters.

Theorem 3.1.
(i) In case 1, we have for all 5 > 0 and for all £ > 0 such that £ < || X||/(1 + 8)

02 on . 1
C1 eXP(— CC3Z+(M) (n—l)z) ifB <

A . 2 n .
P(116, — 0l > 8) < cl(n—l)exp(c;i((‘sfg) (ﬁl)z) if B=

—c(50)2 .
e1(n = Dexp(Z35h o) B>

3.1

where the constants ci, ¢2 and c3 depend on 6%, B, y and ¢, may differ line by line and are such that c1, c3 > 0,
c3>0.
(ii) In case 2, we have for all § > 0 and for all £ > O such that £ < | X'||/(1 4 §)

A

SN
=
I

o v i

A1 .
€1 EXP(_Cgim(aa (,,71)2) ifp

~ £V 2 on
P(l16, — 6]l > 8) < { c1exp(— 2% )

2(80) 1
crexp(— 3o 60 m)

(3.2)

<
=
\

where the constants c1, ¢2, ¢3, and ¢4 depend on o2, B, y and ¢, may differ line by line and are such that
c1,62>0,¢3,¢4 20, (3, ca) # (0,0).

Remarks 3.2. Note that the estimate (3.2) is stronger than the estimate (3.1). This is due to the fact that the integra-
bility condition (Ea) in case 2 is stronger than the integrability condition (G2) in case 1.

Remarks 3.3. Let us stress that by tedious but straightforward calculations, the constants which appear in the previous
theorem can be well estimated.

Remarks 3.4. The upper bounds in previous theorem hold for arbitrary n > p — 1 (not a limit relation, unlike the
results below), hence they are very practical (in nonasymptotic statistics) when sample size does not allow the appli-
cation of limit theorems.

In the next result, we present the MDP of the estimator én

Theorem 3.5. In case 1 or in case 2, the sequence (\/|T,—1 I(én —0)/V|T,_,|)n>1 satisfies the MDP on R2(P+D with
speed v|2T . and rate function

Iy(x)= sup {Mx—A(Ir'®L "'} = 1xf(r ®L") 'x, (3.3)
AeR2(p+1) 2

where L and I' are given in (2.12) and (2.6) respectively.

Remarks 3.6. Similar results about deviation inequalities and MDP have already been obtained in [5], in a restric-
tive case of bounded or Gaussian noise and when p = 1, but results therein also hold for general Markov models.
Moreover in [5], when the noise is Gaussian, the range of speed of MDP is very restricted in comparison to the range
of speed of MDP in case 1 of this paper. These improvements are due to the fact that in this paper, we take advantage
of the autoregressive structure of the process while in 5], only its Markovian nature is used.
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Let us also mention that in case 2, the Markovian nature of BAR(p) processes is lost and this case is not studied

in [5]. However in case 2, for p = 1, if we assume that the initial state X| and the noise take their values in a compact

set, we can find the same results as in [S]. The results of this paper then allow to extend the results of the latter paper.
Let us consider now the estimation of the parameter in the noise process.

Theorem 3.7. Let (vy,) an increasing sequence of positive real numbers such that

Un
v, — o0 and — — 0.

Jn
In case 1 or in case 2,

(1) the sequence (y/ |'JI‘,,_1|(U,,2 — 0'2)/U|’I[‘n71|)n21 satisfies the MDP on R with speed UIZTn—l\ and rate function

x2
2= T s GD
(2) the sequence (\/|Ty—1|(pn — p)/V|T,_,)n>1 satisfies the MDP on R with speed vﬁrnil‘ and rate function
IRE (3.5)
X)= ——-—7—. .
g 202 = p?)

Remarks 3.8. Note that in this case the MDP holds for all the scales (vy,) verifying (2.8) without other restriction.

Remarks 3.9. It would be more interesting to prove the MDP for (,/|?I“,,,1|(c?n2 — 02)/v|11~n71|)n51, which will be

the case if one proves for example that («/|Tn—1|(&,,2 — 0‘2)/U|’]I‘”71|)n21 and (,/l']I‘n_ll((rn2 — 02)/U|'[["17]‘)n21 are
exponentially equivalent in the sense of the MDP. This is described by the following convergence

vV |Tn—l| (512 _ 0‘2) sugxpo'

¥ n
v 2
[Tr-1l U‘Tn—]‘

The proof is very technical and very restrictive with respect to the scale (v,) of the deviation. Actually we are only
able to prove that

~ superex;
62— o2 p:>p0.

n n
2
YT,

This superexponential convergence will be proved in Theorem 3.10.
In the following theorem we state the superexponential convergence.

Theorem 3.10. In case 1 or in case 2, we have
~ 7 superexp
62 P2,

n
U‘Tn—l‘

In case 1, if instead of (G2), we assume that

(G2') one can find y’ > 0 such that for all n > p — 1, for all k,1 € G, with [l%] = [é] and for all t € 1—c, c[ for
some ¢ > 0,

)//1‘2
E[expt(ekal — p)] < exp<7>,
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and in case 2, if instead of (Ea), we assume that

(E2') one can find y' > 0 such that for alln > p — 1, for all k, 1 € Gy, 41 with [%] = [%] and forallt e R

y’t2
]E[expt(skel — p)/]-"n] < exp( 5 >, a.s.

Then in case 1 or in case 2, we have

~ superexp
Pn =

2
le‘n—l‘

Before going into the proofs, let us gather here for the convenience of the reader two theorems useful to establish
MDP for martingales and used intensively in this paper. From these two theorems, we will be able to give a strategy
for the proof.

The following proposition corresponds to the unidimensional case of Theorem 1 in [13].

Proposition 3.11. Let M = (M,,, H,,,n > 0) be a centered square real valued integrable martingale defined on a
probability space (2, H,P) and let ((M),) be its bracket. Let (v,,) be an increasing sequence of real numbers satis-
Sfring (2.8).

Let c(n) := vinn be nondecreasing, and define the reciprocal function ¢~ (t) by
o) = inf{n eN: c(n) > t}.

Under the following conditions

)

(D1) there exists Q € RY such that % NP (0]

v”
(D2) limsup,, , ;o 75 10g(1 esssupy _y 1 (/o) PUMr — Mi—1| > va/n/Hi—1)) = —00;
superexp

(D3) foralla >0 % 3% E(My — Mi-11* 151, _yt,_y12a(iasomy/ Ha—1) =0

n

(M, /vy/1)n>0 satisfies the MDP in R with speed v,% and rate function I (x) = %
Let us introduce a simplified version of Puhalskii’s result [24] applied to a sequence of martingale differences.

Theorem 3.12. Let (m'})1<j<p be a triangular array of martingale differences with values in R4, with respect to
some filtration (H,)n>1. Let (v,) be an increasing sequence of real numbers satisfying (2.8). Under the following
conditions

(P1) there exists a symmetric positive semi-definite matrix Q such that
1 & nl n\t superexp
N D E[m () He1] = 0,
k=1

U

N

(P2) there exists a constant ¢ > 0 such that, for each 1 <k <n, |m}| < cv—: a.s.,
(P3) forall a > 0, we have the exponential Lindeberg’s condition

l n "
n ZEHmZ |21{|m2\za(ﬁ/vn)} |Hi-1] SH%XPO,
k=1

n

e my [/ (Un /1))n>1 satisfies an MDP on R? with speed v,% and rate function

1
A*(v) = sup (A’u - Ek’ QA).

reRd
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In particular, if Q is invertible, A*(v) = %th*IU.

As the reader can imagine naturally now, the strategy of the proof of the MDP consists in the following steps:

e the superexponential convergence of the quadratic variation of the martingale (M,). This step is very crucial and
the key for the rest of the paper. It will be realized by means of powerful exponential inequalities. This allows us to
obtain the deviation inequalities for the estimator of the parameters,

e introduce a truncated martingale which satisfies the MDP, thanks to the classical Theorem 3.12,

o the truncated martingale is an exponentially good approximation of (M,,), in the sense of the moderate deviation.

[N

. Superexponential convergence of the quadratic variation of the martingale

First, it is necessary to establish the superexponential convergence of the quadratic variation of the martingale (M,,),
properly normalized in order to prove the MDP of the estimators. Its proof is very technical, but crucial for the rest of
the paper. This section contains also some deviation inequalities for some quantities needed in the proof later.

Proposition 4.1. In case 1 or case 2, we have

Sn superexp
Tl w2

|Tn|

A.1)

where S, is given in (2.4) and L is given in (2.12).

For the proof we focus on case 2. Proposition 4.1 will follow from Proposition 4.3 and Proposition 4.9 below,
where we assume that the sequence (v,) satisfies the condition (V2). Proposition 4.10 gives some ideas of the proof
in case 1.

Remarks 4.2. Using [14], we infer from (Ea) that
(N2) one can find y > 0 such that for alln > p — 1, forall k € G,41 and for allt e R
2_ 2 yt?
E[expt(sk -0 )/f,,] <exp - a.s.

Proposition 4.3. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1 superexp
E XX T =" A,
T ke
keTy,p ITn |

where A is given in (2.10).
Proof. Let

K, = Z XX, and L, = Z el. 4.2)
keT, p_i keTn,p

Then from (2.1), and after straightforward calculations (see p. 2519 in [3] for more details), we get that

K, _ ! Cil<p_1 Ct 5 ! CT,_C'
T = T 2 7 g 2. Chac
CelA; B+ k=0~ Ce{A;B}
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where the notation {A; B} means the set of all products of A and B with exactly & terms. The cardinality of {A; B}¥
is obviously 2%, and

Li (2 =27, e, ]
T = 2k+lelel+a o erey + 1, + I +WUk
with a2 = (ak +b3)/2 and
1 H, H; H_ Hj_
1 k—1 -1 k—1 k—1
I,:):§<ao<A e te—; A’)+b0(B et B’)), 4.3)
1@ = 1 Z (aperr + boga41) |ere 4.4
ko= \ 5k 0821 0€21+1) )ereq, .
lekal.p—l
U= Y en(AXjel + e1X]A") + exq1 (BXie} + e1X] B'). 4.5)
1€Tk—1,p-1
Then the proposition will follow if we prove Lemmas 4.4, 4.6, 4.7, 4.8 and 4.5. O

Lemma 4.4. Assume that hypothesis (Xa) is satisfied. Then we have

1 K,_
— c2LL o RSP, (4.6)
on—p+1 P B
CelA;Byr—r+] Ty

where K, is given in (4.2).

Proof. We get easily
1 Kp-1
‘ on—p+l Z ¢ 2p ¢

Ce{A;By1i—p+l
where S is given in (2.2), X is introduced in (Xa) and ¢ is a positive constant which depends on p. Next, Chernoff
inequality and hypothesis (X2) lead us easily to (4.6). O

—2
< cp™X1,

Lemma 4.5. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have
n—p
1 Un—k ct superexp
Y X CotmC =00 @7
k:O CelA: B}k YTy

where Uy is given by (4.5).

Proof. LetV, = ZkeT &2x Xx. Then (V,,) is an JF,-martingale and its increasing process satisfies, for all n > p,

n—1,p—1

Yo oxp=o? > Xp=o? D> I

kET”,Lp keT;z—l,p—l kETn—l,p—l
For A > 0, we infer from hypothesis (N1) that (Yy) p<k<» given by

22
Ya —exp<AVn - > X,%),

kETn—l,p—l
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is an Fi-supermartingale and moreover E[Y,] < 1. For B > 0 and § > 0, we have

" i o) (e
P >8) <P X?>B)+P|Y,>exp|rs — — 2T
<|Tn|+1 )‘ <|Tn|+1 2 X n= P 2

kET:l—l,p—l
i o) wen( (0450 )2)
<P XZ> B +exp( | —rs+=—)2""1).
= (|1rn|+1k 2 X P 2
ETn—lAp—l

Optimizing on X, we get

]P’( Va >8>§IP( ¢ Z X,%>B>+exp<—ﬁ2”+l>.
[Tn|+1 T +1 B

kETnprfl

Since the same thing works for —V}, instead of V,, and using the following inequality,

dooxis Y Il

keTp—1,p—1 k€Tp_1,p-1
we get
[Val ¢ i .
P s)<P X B ). Ny
<|Tn|+1> >_ (|Tn|+1 Z IXgll” > + exp 2 @.8)

kng—Lp—l

From [3], with « = max(|ag|, |bo|), we have

, 4 4o’ —
Do Ikl < TP+ 75 Qe+ 2K R, 4.9)
ke’ﬂ‘nfl,pfl
where
k—p rk—p
Po= 20 D Bemy  Qu= 20 DB Re= ) BT
keT, , i=0 keT, , i=0 kT, poi

Now, to control the first term in the right hand side of (4.8), we will use the decomposition given by (4.9). From

P, and % 0O, (see [3] for more details) let /1 and /; be such that

the convergence of aT=A

4¢
A=) (T, |+

2
—4¢P"71 —1; and Vn>p-—1 —4¢a On-1 <
(I=B)(T,|+1) (I=B)(T, |+ 1)

For é§ > 0, we choose B =6 + [ + 2, using (4.9), we then have

¢ 2
P(mul 2 ”X"”>8)

.

kETn—lvp—l
-2
Py ’ ) < anl ’ ) (Rn,1X1 )
<P —1>86|+P —0L,>8)+P > 83, (4.10)
(|Tn|+1 ! IT,l+1 2 T + 1
where

1-p8)8 1-p8)I 1-p8)8 1-p8)1 )
81:( ﬂ) ’ li:ws 82:%’ é:& and 83:7'
12¢ 4¢ 1202¢ 4a2¢ 6¢
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First, by the choice of /5, we have

IP’( Gn-t —z§>32)=0. (4.11)

Next, from Chernoff inequality and hypothesis (X2) we get easily

., c1 exp(—c282" 1) if g < ﬁ
P(R,HXI - 53) < crexp(-cdZ)  ifp= TZ, (4.12)
crexp(—e8( )" it p> 2

for some positive constants c1 and c,. Let us now control the first term of the right hand side of (4.10).

First case. If B = 2, from [3]

nl—Z(l’l—k)ZE and [ =0>

ieGy
‘We thus have
P . 1 n—1 n—1 n k
n— 2 _ _ 2 2 2 _
T o i1 2 L o) +e (Zank 1)'
n n k=p ieGy k=p

In addition, we also have
n—1
2 n—k
o (Z 2n+17k - 1) = 0.
k=p
We thus deduce that

Pnfl /
P —1;>61) < —k - 8
<|Tn|+1 1 1)— <|T|+1Z( )2 (eF =) > 1)

ieGy

On the one hand we have

n—1
<|T|+12(n—k)28 —o? >81)

lEGk

1 1 n—2
5§,P<m|+1 DL k=1 ) (ediy— 02)>51/2>~ (4.13)

k=p—1 ieGy
On the other hand, for all A > 0, an application of Chernoff inequality yields

1
P(lTn|+l Z (n—k—=1)) (e3, — >51/2)

k= p—1 lGGk

_spa2nt! = )
§exp<T> x E| exp| A Z (”_k_l)Z(Szi_U ) .
k=p—1

ieGy
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From hypothesis (N2) we get

E[exp<xk§l<n—k—ni;&<e;—ﬁ)]
= [ [exp< Z (1—k=1) (=0 )/fﬂ

k=p—1 ieGy

=E|:exp< kni (k=1 (3 — ) I1 E[exp(k(e%,-—OQ))/fn]}

1 ieGy i€G,_
< exp(xzylGn 21) |:exp<k Z n—k—1) Z &3, — )j|
k= p—1 lEGk
Iterating this procedure, we obtain

n—2 n—p+1
|:exp< Z (n—k —I)Z 821 )] Sexp<yk2 Z kzlGn_k|)

k=p—1 ieGy k=2

< exp(cyk22”+'),

2 o .
where ¢ =Y 2, 2,]f+2 = %. Optimizing on X, we are led, for some positive constant c; to

1
P(m [+ 1 Z (n—k—1) Z 82, >61/2> fexp(—c182|11‘,1|).

k=p—1 ieGy

Following the same lines, we obtain the same inequality for the second term in (4.13). It then follows that

Py ’ ) 2
P — 17> 061 ) <crexp(—c26°|T 4.14
(ITn|+1 | > 81 ) < crexp(—c28°|T,|) (4.14)

for some positive constants c1 and c3.
Second case. If B 75 5» then from [3], we have [/

n—1
) 1— (2ﬂ)n—k 02
? <,§, a- 2ﬁ>2"k+1) S2-p)
we deduce that

Prot T Y. o .
P(|Tn|+1_ll>81) <|T|+1Z 1-28 2(85—0)>51 .

ieGy

= 2(1 ﬂ) Since

o If B < % then for some positive constant ¢, we have

Pn—l /
Pl ——-11>61) < — 1)
<|1rn|+1 1= 1>‘ (ITIHZZS - >cl)

k=pieGy
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Proceeding now as in the proof of (4.21), we get

P,_
]P’(lT 'i _;1 -1 > 81) < crexp(—c28?|T,)) “.15)
n

for some positive constants ¢; and c;.
o If 8> %, then for some positive constant ¢, we have

n—1
Py l n—k _
P(|T T -1 81> <|T |+1 E 28) E 8 o’ >C‘81>

ieGy

Now, from Chernoff inequality, hypothesis (N2) and after several successive conditioning, we get for all A > 0

P(m s Z(Zﬂ)” £ (ef —o? >051>

ieGy
n—p+1
< exp(—C(SMZ”H) exp (yk22"+1 Z (Zﬂz)k).
k=2
Next, optimizing over A, we are led, for some positive constant ¢ to
exp(—c2[T,|)  if 4 <p <2

! / 2 [Tyl a2
P(IT,,I — —1] > 51> < exp(—cale)n+1 ?fﬂ 2 (4.16)
exp(—cs (P) ) if B> %

Now combining (4.8), (4.10), (4.11), (4.12), (4.14), (4.15) and (4.16), we have thus showed that

1
IP’(7|V,,|>5)
T, + 1

1 exp(—c2822”+1) + crexp(— c282”+1) +exp(5+ll+l 2"“) if B < */75,
< { crexp(—c282 2 )+c1exp( 628n+1)+exp(5+l 52") if g =42, (4.17)

c1 exp(—cz82(%) ) +c exp(—czz?(ﬁ) ) + eXP(sﬁszan) if 8> 4,

where the positive constants ¢; and ¢y may differ term by term.

One can easily check that the coefficients of the matrix U, are linear combinations of terms similar to V,,, so that
performing calculations similar to the above for each of them, we deduce the same deviation inequalities for U, as in
4.17).

Now we have

n—p 1
P(Zz—k

k=0

n
1
< ]P) z(il—k) U > 5
= (k B |’]I‘k|+l” kll

14

n

_yop( MU 8 .
ITel+1 " (n—p+ D00
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From (4.17), we infer the following

1 U,
n—k t
f(Tg] = epte]-s)
k=0 Ce{A; B}

5224k+1 522/(+1
c1 ZZ:pexp(—cz%) C1Y je pexp(—cz (,ﬁgz)n )

n 29k+1 . f
+c1 Zk:p exp( 2 IRy 2= 1)) if B <%5°

2”
1 Z’/?:p eXP(_QW) +e1 i peXP( €2 (k+1)n)
§20k+1 _ 2
+ci ZZ:peXp( 2 Gy - 1)) if =%,
$2(2p2)k+1
1Y k=p eXP(—Cz%) +e1) - pexp(—mnlgﬁ)

" s20k+1 . V2
+ci Zk:p exp( O Sl pEa Dy g2 1)) if g > 5

IA

where [ =[; + [> and the positive constants ¢; and ¢ may differ term by term.
Now

o If B < %= then on the one hand,

82(2/3 )/(-H
ZeXp(_c n2 g )

C82 (2ﬂ4)k+1ﬁ74"(l—(ZﬁA)”fk)
= exp(—c(S2 ) 1+ Z(exp( ))

n+l1
< exp(—c82ﬂ42n—2> (1+o(D),

where the last inequality follows from the fact that for some positive constant cy,

k+1,_ —k k+1,_
(@6 (1= (28%)" ) car (28%) BT
On the other hand, following the same lines as before, we obtain
n 522/(4—1

n 2k+1
Zexp - < Zexp B L —
(8 + nlp2n—k=Dypg20—k=1) | — h n2p2n—k=1)
=p

k=p

522n+1
< exp(—ci((S n l)n2> (1+o0(D)),

and

§(28 )k-‘rl n 5(2ﬂ2)k+1
(-] < Lm0

— k=p

We thus deduce that

— 1 Uy,—
f(Lg] X eyt

k=0 Ce{A; B}

2n+l 2n+1
>8] <c exp(-cZa2 p )—I—cl exp(—czﬁ " ) (4.18)
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for some positive constants c¢; and c;.
o If 8= 4, then following the same lines as before, we show that

qn 22n+l
Zexp( W) < eXp(—C8 n3 )(1 +0(1)),
n 822k+] 522n+1
/;eXp<_ G+ ln2*<"*k*1>>n2*<n*k*1>> = eXp<_Cn2(a T z>>(1 o).

on 2n+1
Zexp( (k—l—l)) §exp(—c8 3 )(1+0(1)).

It then follows that
n—p
Un k l
(L] = egte]-s)
k=0 Ce{A; B}

22n+1 822n+1 2n+1
<c 6Xp<—628 3 ) + ¢y exp(—czm> +c exp(—cz(S 3 ) (4.19)

for some positive constants c¢; and c5.
o If 8> */TE, once again following the previous lines, we get

n—p

Unkt
f(Lg] = egte]-)
k=0 Ce{A; B}

1 82 8
<ci eXp(—C282m> + ¢ eXp(—cz W) + C]VlﬁXp(-sz) (420)

for some positive constants c¢; and c;.
We infer from the inequalities (4.18), (4.19) and (4.20) that
n—p

Un k ,superexp
S X okt

k=0~ Ce{A;B} [Tl O

Lemma 4.6. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n—p
Z ect “‘PWPJ 4.21)
k=l 0 CelA; B}k \Tn |

where Ly is given in the second part of (4.2) and

l_Z Z aelel

k=0 Ce{A; B}k

is the unique solution of the equation

1
l=0"ere} + 5 (AIA"+ BIB').
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Proof. First, since we have for all k > p the following decomposition on odd and even part

Z (812 - ‘72) = Z (8%i - ‘72) + (8%i+1 - ‘72)’

i€y, p i€Tk—1,p-1
we obtain for all § > 0O that

1
1 2 2 1 S
P<|Tk|+1i§k (¢ ")>8>52)P(|Tk|+1 > (e ")>2>'
P

n= iETk—l,Il—l

We will treat only the case n = 0. Chernoff inequality gives us for all A > 0
P _ Z (3 —0?) > 8 <exp —A§2k+1 E|exp( A Z (2 — %)) |.
[Tkl +1 ' 2) - 2 , '
i€T—1,p-1 i€T—1,p-1
We obtain from hypothesis (N2), after conditioning by Fi—_
E[exp(k Z (e3; —02)>:| < exp(kzyle_”)E[exp(k Z (e3; —62)>].
i€Tk—1,p—1 i€Tr2,p-1
Iterating this, we deduce that
k—1
E[exp(k > (s —az)ﬂ < exp(y)»2 > IGzl> <exp(ya?2"th).
iETk—I,p—] I=p-1
Next, optimizing on A, we get
P 1 Z (3 — 02) > 8 < exp(—c8?|Txl)
ITel +1, g 2)
lETk*l,p—l

for some positive constant ¢ which depends on y. Applying the foregoing to the random variables —(z?i2 —02), we
obtain

1
P(ml - (2 —0?)| > 5) < dexp(—c?|Txl). 4.22)
i€y p
Now we have
n—p n—p
1 Ly
Zz—k CZZ_I]:ele'ICt—lz ( )eleIC’
k=0~ Ce{A;B}k k=0

o0

- Y % Y clad)c
{A;

k=n— p+l c B}k

and since the second term of the right hand side of the last equality is deterministic and tends to 0, to prove Lemma 4.6,
it suffices to show that

L,k 2 t ~t Superexp
sz Z C(zn_k —0° |ere|C ?0‘

YTy
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From the following inequalities

IR i = ) M1 ED DR Sl L= S 1CRP T
k= 0 Ce{A; B} k= 0 Ce{A; B}
n
L
< 2(n—k) k 2
- kX: p [Tkl + 1
=p
and from (4.22) applied with §/((n — p + 1)p2(n=k)y instead of §, we get
- Lok o\ — om—b| Lk 2
< <2n_k—0>elelc >§ f]P Zﬁ W— >4
=0 CE{A B} k=p

)
< Z 0'2 >
P |Tk| + 1 (n— p+ 1)p2n=k

n 4\k+1
Z (287
<c CXP(—CZ(SZ%).
k=p n

Now, following the same lines as in the proof of (4.7) we obtain

+1 .
c1exp(—c28? 2:;2 ) ifpt<i

2 ’
( ( az)eleth’ > 5) <1 cinexp(—cz azﬂ) if g4 =1, (4.23)
k=0 CE A Bt crexp(— C252n2ﬂ4") if g% > %
for some positive constants ¢; and c;. From (4.23), we infer that (4.21) holds. O

Lemma 4.7. Assume that hypothesis (N1) is satisfied. Then we have

Z Y a2 “"’WPO, 4.24)
k=0 " Ce{A;B} Uit
1)
where I, is given in (4.4).

Proof. This proof follows the same lines as that of (4.21). O

Lemma 4.8. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n—p
1 (1) ' superexp
> o > e = A, (4.25)
k=0 = Ce(A: B} Tl
where

Z o +a )eletI)C’,
k= 0

Ce{A; B}

is the unique solution of the equation

A =T — (62 +a?)ere) + %(AA’A’ +BA'B'),
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where T is given (2.11) and I,gl) is given in (4.3).

Proof. Since in the definition of 1,51) given by (4.3) there are four terms, we focus only on the first term

ao , Hi-1
A

The other terms will be treated in the same way. Using (4.29), we obtain the following decomposition:

n—p
ao 1 Hy—j—1 1 2 3
T2 2 CA T ac =T+ TP+ 1,
k=0 " Ce{A;B}

where

ap -~ |1 k—p H k-1 H
m_d5 1 —n—k—p Hp—1 b1 Hp 1 |,
V=22 2 CA{A St YA S }elC,

n—p n—k—1 I —1
1 —n—k—l— 20 —2r
Tn(Z) = a_; E Z_k E CA{ An k= IH(T>9163}CI

k=0 "~ Ce{A;B} I=p
and
a n—p 1 n—k—1 iei—1 P
0 —n—k—Il— 4 .
T,§3>=7 o > ca) A STeeiCl, with Py = > e
k=0 Ce{A; B}k I=p keTy, p

On the one hand, we have
n
_x | Pkl
I <ed " S
k=p

__pn—l
where c is a positive constant such that ¢ > |ag]| ! 15,3 for all n > [, so that

n
| Py 28
P(||Tn(3)” >3) = Zp(lTkl +1 ~ cn,B”fk)'

k=p

We deduce again from hypothesis (N1) and in the same way that we have obtained (4.22) that

Py 2 e
P < —C16"——— Vk >
(mm +17 cnﬁ”"‘) —e"p< 0 g =’

for some positive constant c. It then follows as in the proof of (4.7) that

exp(—clézi—;l) if 82 < %,
P(| 7,7 > 8) < nexp(—c1522’:—:l) if g% = 1,
exp(—clazﬁ) if g > 3,
so that
7 ST, (4.26)

Ty
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On the other hand, we have after tedious calculations
X . 1
Cﬁ if B < Z’

I = et ifB=1.

B X1 if B> 1

where c is a positive constant which depends on p and |ag|. Next, from hypothesis (X2) and Chernoff inequality we
conclude that

VSR, (4.27)
Vil

Furthermore, since (T,l(z)) is a deterministic sequence, we have (see [3], Lemma A.4)

TSR A (4.28)
Ul |

where

Z Z ( aoAuel)Cl
k0 Cel{A;B

Jk

is the unique solution of
/" 1 ~ t 1 /At /I pt
A" =ZapAZe +§(AA A"+ BA"B").

It then follows that

n—p
1 H
@ 1 Z CA n—k—1 ,Ctsuperepr '
2 2k n—k 2
k=0~ Ce{A;B}* YTy
Doing the same for the three other terms of I, ) , we end the proof of Lemma 4.8. O

Proposition 4.9. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1 superexp
Z Xy = =,

T
Tl k€T, , YTy |

where B is given in (2.9).
Proof. Let

Z Xy and P, = Z &k.

k€T, p—1 keTy,, p

From p. 2517 in Bercu et al. [3], we have

2k _
L e = Za<A>" (B et Z @yt

k=p—1
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Since the second term in the right hand side of this equality is deterministic and converges to &, this proposition
will be proved if we show that

n (Z)nik n
superexp n— k superexp
E THp_l ? 0, E 2/<+1 (A) ? 0, (4.29)
k=p—1 Ul k=p Ul |

which follows by reasoning as in the proof of Proposition 4.3 (see the proof of Proposition 4.3 for more details). [
We now explain the modification in the last proofs in case 1.

Proposition 4.10. Within the framework of case 1, we have the same conclusions as Propositions 4.9 and 4.3 with the
sequence (vy) satisfying condition (V1).

Proof. The proof follows exactly the same lines as the proof of Propositions 4.9 and 4.3, and uses the fact that if a
superexponential convergence holds with a sequence (v,) satisfying condition (V2), then it also holds with a sequence
(vy) satisfying condition (V1). We thus obtain the first convergence of (4.29), the convergences (4.6), (4.27), (4.28)
and (4.24) within the framework of case 1 with (v,) satisfying condition (V1). Next, following the same approach as
which used to obtain (4.22), we get

1 2 2
Pz 2 -

i€Ty p
where ¢ and ¢; are positive constants which do not depend on §. On the other hand, let ng such that for n > nyd/(n —
p + 1y is large enough. We have
> 8)

<— Ce{A; Bt (
8 . L )
> + P -0 >
(n—P-i-l)ﬁz(""‘)) ,Zn:o (‘|Tk|+1

N 8) - {cl exp(—c28%|Tk|) if § is small enough, 4.30)

c1 exp(—CZSI'JI‘kI) if § is large enough,

az)eletIC’

5
(n—p+1Hp=h )

no—1
> (| s -
[Te| + 1

Now, using (4.30) with §/(n — p + 1) B2=k) instead of § and following the same approach used to obtain (4.18)—
(4.20) in the two sums of the right hand side of the above inequality, we are led to

( Z > <2n - —oz>e1e§cf >5)

k= 0 Ce{A; B}
) +crexp(—2220) if g <

1
2
clnexp( 2/34,,)—|—clexp( ,3%) if,3>%,

62322n+l

crexp(—

and we thus obtain convergence (4.21) with (v,,) satisfying condition (V1). In the same way we obtain
29n+1 n41
crexp(— —Czﬁn% - )+l exp(——cz‘si - ) ifB <1,
. n+1 .
P(|7,7] > ) < | cinexp(— %) ifg=1,
€1 eXp( ZﬁZn) +c eXP( nﬂ") lfﬂ > %,

so that (4.26) and then (4.25) hold for (v,) satisfying condition (V1). To reach the convergence (4.7) and the second
convergence of (4.29) with (v,) satisfying condition (V1), we follow the same procedure as before and the proof of
the proposition is then complete. (]
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Remark 4.11. Let us note that we can actually prove that

1 " superex; superex|
Y xEE2 and § X xt MESP 4
n v% 2

k=2P =27
/
Indeed, let H,, = Zzzzp,l Xy and PI(") = ][!Z;Jf, &x. We have the following decomposition
H, 1 1
L - B X, — & X, — &
; . Y K-8 +- Z X — &) +
kETrn—l,p—l k 2'n

On the one hand, observing that vy /viT, _|| <2, we infer from Proposition 4.9 that

Superex|
Y -8 p:2>"0.

v,
kGTrn—l,p—] "

The sequence (2 -1z

) being deterministic and converging to 0, we deduce that

2=l superex;
T FMERTy,

n Ur21

On the other hand, from (2.1) we deduce that

n B [n/ @ —p+1)] nep o, B
D Xp=2mrH @yt N X2y <[2—k] ok I)Zk(A)kel
k=2 k=2p-1 k=0
'n—p rm—p+1
+ Y 2@ PMer = Y s 2 A T BX 0k + Mpyzioy40)-
k=0 k=1
where
1 lf[ ] is even,
* T 0 i) is odd.

Reasoning now as in the proof of Proposition 4.9, tedious but straightforward calculations lead us to

1 Z X — ) S supelz'exp 0.

k 2rn Uy

It then follows that

Z ﬂuperexp z

" y=ar ”"
The term % > heor kaz can be dealt with in the same way.

The rest of the paper is dedicated to the proof of our main results. We focus on the proof in case 2, and some
explanations are given on how to obtain the results in case 1.

5. Proof of the main results

We start with the proof of the deviation inequalities.
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5.1. Proof of Theorem 3.1

We begin the proof with case 2. Let § > 0 and ¢ > 0 such that £ < || X|| /(1 + §). We have from (2.7)

(10, — 01 > 5) =Pl 5 12t ) gL L2l )
iz~ mor =) s 7 T

| M, || ) (H Zu-1 )
< >80 )+ P — >||X=2).
<|Tn—1| [Ty -1l

Since £ < || ¥'||/(1 + §), then

En—]
P -3 >||2||—z) (H 2H>5z).
(H |Tnfl| |Tn 1|

It then follows that

A ”Mn” n—1
P(||6, — 0| > 6 §2max{]P’< ) (H
(e ) o1 I T—1]

On the one hand, we have
1
M 1 Y4
]P’(” ull >8€>§Z{P( >—>
IT)—1] o IT)—1] 4

HP(’ T - %]

Now, by carrying out the same calculations as those which have permitted us to obtain Lemma 4.7 and equation
(4.17), we are led to

o)

Z E2k+n
p—1

kETn_l

> ewnXe
p—1

keT,_

@0? , s
| My, || c1 exp(_ c;im(ae) ) if B < %2,
n (5@)2 on ) v
]P)(|Tn71| > (SE) <{crexp(— c:42-04(5€) ) if =22, .
1

1 eXp(_c;i(ch()M)(,ﬂ) ) ifp> 4

where the positive constants ¢y, ¢2, ¢3 and ¢4 depend on o, 8, y and ¢ and (c3, c4) # (0, 0).
On the other hand, noticing that X,,_; = I, ® S,—1, we have

]P’(H -1 >5£)§21P(‘ Sn—1 —LH >%>.
[Tp—1] [Tp—1l 2

Next, from the proofs of Propositions 4.9 and 4.3, we deduce that

S(60? " . N
b ¢ cl exp(— c;-zrm(aé) (n71)2) if B < 5
nl 602 o e 3

(H T H 5) <\ 1 exp(-5350m ) ifp=-5, (5.2)

2 )
clexp( %(m)) 1f,3> 4’

where the positive constants ¢y, ¢2, ¢3 and ¢4 depend on o, B, y and ¢ and (c3, c4) # (0, 0). Now, (3.1) follows from
(5.1) and (5.2).
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In case 1, the proof follows exactly the same lines as before and uses the same ideas as the proof of Proposition 4.10.
In particular, we have in this case

(802 on p
c exp(—032+(5€) (nil)z) if B <

Zn-1 l 60! .
P(H IToal EH ~ 5) = at—Dexp(—HG5 o) if =

ci(n— 1)exp(—§f(?; () i B>

)

)

s

D= NI—= D=

where the positive constants ¢y, ¢ and c¢3 depend on o, 8, y and ¢. (3.1) then follows in this case, and this ends the
proof of Theorem 3.1.

5.2. Proof of Theorem 3.7
First we need to prove the following

Theorem 5.1. In case 1 or in case 2, the sequence (M, /(vT,_,|+/|Ta=11))n>1 satisfies the MDP on R2(PHD with
speed U|2Tn71| and rate function

t t 1 t —1
Iy(x)=sup {kx—k(F@L)k}:Ex (re L) x. (5.3)

reR2(P+D

5.2.1. Proof of Theorem 5.1

Since the size of the data doubles at each generation, we are not able to verify the Lindeberg condition. To come over
this problem, and as in Bercu et al. [3], p. 2510, we change the filtration and we will use the sister pair-wise one, that
is, (Gu)n>1 given by G, = o {X1, (Xok, Xok+1), 1 < k <n}. We introduce the following (G,) martingale difference
sequence (Dj), given by

En
Dn — Vn ® Yn — &2n Xn
E2n+1
82n+1Xn
We clearly have

D,D. =V, V! ®Y,Y/..

So we obtain that the quadratic variation of the (G,) martingale (N,,),>,p-1 given by

n
Ny = Z Dy

k=2r-1
is
n n
(Nyy= Y E(DiD/Gi1)=T® Y Yi¥}.
k=2r—1 k=2r—1

Now we clearly have M, = Nyr,_,| and (M), = (N)T,_,) = I" ® S,—1. From Proposition 4.1, and since (M), =
I' ® S,_1, we have

M S
(IT )r P reL. (5.4)
n

2
U‘Tn—l‘
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Before going to the proof of the MDP results, we state the exponential Lyapounov condition for (N,),,>p-1, which
implies exponential Lindeberg condition, that is

lim sup 2log[P’( Z E[ ||Dk|| 1 HDkII>r(f/vn)] 8) =—00
k=2r—1

(see Remark 3, p. 10, in [25] for more details on this implication).

Remarks 5.2. By [14], we infer from the condition (Ea) that
(Na) one can find y, > 0 such that for alln > p — 1, for all k € G, 1 and for all t € R, with u, =E(|lex|*/Fn) a.s.

a ya[2
E[expt(lskl — /La)/]-',,] <exp = a.s.

Proposition 5.3. Let (v,) be a sequence satisfying assumption (V2). Assume that hypotheses (Na) and (Xa) are
satisfied. Then there exists B > 0 such that

1
lim sup — log]P< Z E[ID;1/G;- 1]>B)

n—o00 jear-1

Proof. We are going to prove that

‘THI
1
limsupz—logIP’< Z E[ID;1?/Gj-1] > B) = —00, (5.5
\

n— 00 U\’]I‘,, | nl j=2r
and Proposition 5.3 will follow by proceeding as in Remark 4.11. We have

> E[IDIY/Gj—1] <en® D (14 1X;1%)

J ETIL[? /ETn.p

where c is a positive constant which depends on a. From (2.1), we deduce that

2
c —_
> IX ﬁ)a_lp B _ﬁ?ﬂ”l +2¢R, X7,
J€Tnp
where
rj—p rj—p
Po= 30 Yo Blegpal’s Qu= 30 Y B Ra= )0 BTNV,
JETy,p i=0 JE€T,p i=0 JET,p

and c is a positive constant. Now, proceeding as in the proof of Proposition 4.3, using hypotheses (Na) and (Xa)
instead of (N2) and (X2), we get for B large enough

X >3) (5.6)

JETn,p

1
limsup —— log P (

n—oo U\T\ | nl

Now (5.6) leads us to (5.5) and following the same approach as in Remark 4.11, we obtain Proposition 5.3. O
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Remarks 5.4. In case 1, we clearly have that (X,;,n € T. ,_1), where

oo
T.,1= {J G
r=p—1
is a bifurcating Markov chain with initial state Xyp-1 = (Xpp-1, Xop-2,..., X1)". Let v be the law of X,p-1. From

hypothesis (X2), we deduce that v has finite moments of all orders. We denote by P the transition probability kernel
associated to (X,,n € T. ,_1). Let (Y, r € N) the ergodic stable Markov chain associated to (X,,n € T. ,_1). This
Markov chain is defined as follows, starting from the root Yo = Xyp-1 and if Y, =X, then Y, 11 = Xoyy¢,,, fora
sequence of independent Bernoulli r.v. ({4, q € N*) such that P({, =0) =P({, =1) =1/2.

Let u be the stationary distribution associated to (Y, ,r € N). For more details on bifurcating Markov chain and
the associated ergodic stable Markov chain, we refer to [18] (see also [5]).

From [5], we deduce that for all real bounded function f defined on (R?)3,

> FCKk Xt Xaep1)

1
VIT,_1]V |Tn—]| K€Ty—1,p-1

satisfies a MDP on R with speed vﬁrnil‘ and the rate function I (x) = ﬁ?,f‘)’ where Sz(f) =(u, P(f2) — (Pf)2>.

Now, let f be the function defined on (RP)3 by f(x,y,2) = lxl? + ||y||2 + 1zII%. Then, using the relation (4.1) in
Proposition 4.1, the above MDP for real bounded functionals of the bifurcating Markov chain (X,,n € T. 1) and
the truncation of the function f, we prove (in the same manner as the proof of Lemma 3 in Worms [25]) that for all
r>0

1 1 n
li li — logP[ — Xill2 4+ 1X2i 12 + 1X2411%
im sup imsup _; log (n (X124 12X 17 + 1 X25117)

R—o0 n—>00 j:21’*‘

x 1{HX,‘H+||X2jH+IIX21'+1II>R} = r) =—0o0,

which implies the following Lindeberg condition (for more details, we refer to Proposition 2 in Worms [25])

, 1 -
limsup — logP( = > (IX;11* + 1 X2;1% + 1X2j4111%)
n—oo Uy njzzli—l

X 05 110 150 1 15 (0} > 3) =

forall § > 0 and for all r > 0. Notice that the above Lindeberg condition implies in particular the Lindeberg condition
on the sequence (X,).

Now, we come back to the proof of Theorem 5.1. We divide the proof into four steps. In the first one, we introduce a
truncation of the martingale (M, ),>¢ and prove that the truncated martingale satisfies some MDP thanks to Puhalskii’s
Theorem 3.12. In the second part, we show that the truncated martingale is an exponentially good approximation of
(M,,), see e.g. Definition 4.2.14 in [12]. We conclude by the identification of the rate function.

Proof in case 2. Step 1. From now on, in order to apply Puhalskii’s result [24] (Puhalskii’s Theorem 3.12) for the
MBDP for martingales, we introduce the following truncation of the martingale (M,,),>¢. For r > 0 and R > 0,

R) _ (r,R)
Ml(lr )= Z Dk,n ’
kETn—].Iz—l
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where, forall 1 <k <n, D(r R) V(R) ® Y,((Trz, with

(R) _ ((B) (R) ! r) _ (r)\?
V (8211 ’82n+1) and Yk,n - (LXk,n) ’

where

(R) _ " _
& =elyer=r) —Elarlgensnl Xen =Xy < T v, 01

We introduce I"®) the conditional covariance matrix associated with (eéf), séﬂl)’ and the truncated matrix asso-

ciated with S,;:

2 1 (X(") )t
r® — (GR ’0123) and S,Y)z Z ( kn )
(r) (r) ()
PR Of keTras Xen X&)

The condition (P2) in Puhalskii’s Theorem 3.12 is verified by the construction of the truncated martingale, that is
for some positive constant ¢, we have that for all k € T,

.R) VITn-1l
i
U‘Tnf]‘
From Proposition 5.3, we also have for all r > 0,

1

superexp

Ty Z KL, o (ST /om0 0 (5.7
keT,— 1,p—1 T,—1l
and
1 superexp
IT,_1] kETZ Xka1{||Xk||>r(./|T,, T/, ) ‘:: 0. (5.8)
n—1,p—1 T,

From (5.7) and (5.8), we deduce that for all » > 0

1

(r) \ superexp
S =S, — 0. 5.9
|Tn 1|( "l ) 2 ( )

YT,y

Then, we easily transfer the properties (5.4) to the truncated martingale (M,,(r'R) )n>0. We have for all R > 0 and all
r >0,

(R) (") ")
(MR, _r S, :—F(R)(X)(Sn 11— Sn 1) R g Sn=l Sn—1 superepr(R)®L

ITn—ll |Tn—l| |Tn—l| |Tn ]| v L

That is condition (P1) in Puhalskii’s Theorem 3.12.
Note also that Proposition 5.3 works for the truncated martingale (M, ,(,r’ R)) »>0, which ensures Lindeberg’s condition

and thus condition (P3) for (M,,(r'R))nzo. By Theorem 3.12, we deduce that (M,(lr’R)/(vmnq IV Tu=11))n=>0 satisfies a
MDP on R2P+1 with speed vﬁrnil‘ and good rate function given by

1 _
Ig)= 22" (e L) 'x. (5.10)

Step 2. First, we infer from the hypothesis (Ea) that:
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(N1R) there is a sequence (kg)r-o With kg —> 0 when R goes to infinity, such that for all n > p — 1, for all
k € G,41, for all r € R and for R large enough

2
E[expl(ek - 815)/.7:”] < exp(%) a.s.

Then, we have to prove that for all » > 0 the sequence (M,Y’R)),, is an exponentially good approximation of (M},)
as R goes to infinity, see e.g. Definition 4.2.14 in [12]. This approximation in the sense of the moderate deviation, is
described by the following convergence, for all » > 0 and all § > O,

(r,R)
M, —M
logIP’(” u d ”>8>=—oo.
\

VITw-1lvr, |

For that, we shall prove that for n € {0, 1}

limsup limsup —
R—o0 n—>00 U‘T'H]

1 R) \ superexp
= 3 (o2 —e3f),) S0, (5.11)
/ n
|Tn71|v|’]rn_ll kETn—l,p—l l)‘2'11‘71—1‘
1

R superexp
Y (eaanXe — 5y, X00) "ES0. (5.12)

h=—x%——
VITn-1lvT v
n Tl keT, 1, p1 [Ty—1l

We need only prove (5.11) and (5.12) for n = 0, the same proof works for n = 1.

Proof of (5.11). We have, for all « > 0 and R large enough

E(exp(a Y (en - s;§>)))

kETn—l.p—l
=E 1_[ exp(a(EZk — séf))) X IE|: 1_[ exp(a(szk — eéf)))/./”:,,_lﬂ
_kETrHZ.pfl keanl
5[ [T ewlelex—e) x T Elexploten —)/51]]
_kETn—Z,p—l kEGn—]
<E 1_[ exp(a (e — sgj))) exp(|Gn—1 |Ol2KR):|
-kETn—Z,p—l

< exp(|Ta1la’kr).

where hypothesis (N1R) was used to get the first inequality, and the second was obtained by induction. By Chebyshev
inequality and the previous calculation applied to o« = Av|r,_,/|T,—1]|, we obtain for all § > 0

1
P(i Z (62 — 825)) > 8) < eXp(_UIZT,HI(M — KR)\.Z)).

VITn—1lv1m, 11 ey

Optimizing on A, we obtain

n—1,p—1

2

1
1og]P>(7 Y (ew—e .
2 2k =
UIT, 1| VITa—t Tl ger, KR

Letting n go to infinity and then R go to infinity, we obtain the negligibility in (5.11).
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Proof of (5.12). Now, since we have the decomposition

e X — 5 X[, = (e — 3 )XY, + e (X = X[7),

RO

we introduce the following notation

L= 3 en(X—X{)) and FP= 3 (en—ey)X[.

kETnfl,pfl kETnfl.pfl

To prove (5.12), we will show that for all » > 0

szr) superexp
= 0, (5.13)

VITotlvom, ) v,

and forallr >0andall § >0

(r,R)
. . 1 I1F _
limsup limsup — logP | >4 | = —o0. (5.14)

R—o00 n—o0 vlTn—l| VT, _| |Tn,1

Let us first deal with (Lﬁf)). Let its first component be

L= > ew(Xe— X)),

kGTn,I,pfl
For A € R, we consider the random sequence (Z,(qr; )n>p—1 defined by

o A2
r) _ ry ~¢ 2
Zna= eXp(ALnJ > Xkl{nxkuwu/mrnfl\/um,,,,m>

kETn—l.p—l
where ¢ appears in (N1). For 7 > 0, we introduce the following event
1
(r) _ 2
Ap 1 (h) = { T Z Xkl{llxkllw(«/ITnfll/vm,,_I\)} = h}

kETn—l,p—l

Using (N1), we have for all § > 0

1
p(im . 3)
U,y [V Th—1l

] 22
<P(AV () + P(z,ﬁ")l > exp<5xuml| ITo_1] — T¢h|7r,,_1 |>>

s — "oV Tl 'T”‘”A?)), (5.15)

<P(A)) () +eXP<—v\Tn7n ITHI( -

n—1l

where the second term in (5.15) is obtained by conditioning successively on (g[)zp—lgiim’k 1|1 and using the fact
that

2
) 2
E[eXpogzp (Xarmr = Xgp) = 5 X, H>rwzﬂ*‘/vy’_1>})] ="

which follows from (N1).
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From Proposition 5.3, we have for all 2 > 0

limsup ——— log (A} (1)) = —o0,

v
00 HIT, |

so that taking A = Svjr,_,|/(hey/|Tr—-1]) in (5.15), we are led to

li 1 Lizr)l 82
1m sup 3 10g]Pj S8 <———.
n=00 U, | T,y | Ta—1 2he

Letting 4 — 0, we obtain that the right hand side of the last inequality goes to —oo.

Proceeding in the same way for —Lflr’)l, we deduce that for all » > 0

(r)
L n,1 superexp

VT, gV Tl ofy

Now, it is easy to check that the same proof works for the others components of Lf,r). We thus conclude the proof
of (5.13).

Let us now consider the term (F,gr’R)). We follow the same approach as in the proof of (5.13). Let its first compo-
nent be
(r,R) (R)\ y(r)
Fn,rl = Z (e2k — &3y )Xk’:n'

kETn—l,p—l

For A € R, we consider the random sequence (W,Er’lR)),,Z p—1 defined by

22k
Wi =eo(n 3 a0 -0 S ().
kETn—l,p—l kejrn—l,p—l

where kr appears in (N1R).
Let & > 0. Consider the following event B,(:; h) = {ﬁ Zkeﬂr,,,l,,,,l (X,Ele)2 > h}.
‘We have for all § > 0,

(r,R)
F
P<7 > 5)
vlTn—ll |Tn71|
)»2KR
<P(B)\(h)) +1P(w,§f'1“ > exp(sxvm,l,m/nrn_n - Tm_nh))

o) 516

<P(BV)(h - To11( 8% —
<P(B, 1 (1) +exp| —vir,_ 1V [Ta—1] 2o

where the second term in (5.16) is obtained by conditioning successively on (Gi)ap-1<; <1
that

1 and using the fact

n—1l—

)»2ICR 2
E[exp(k(ezp —géf))xg,{l - (X;;{l) <l1.

Since Br(lri (h) C {m ZkeT”_Lp_l X,% > h}, from Proposition 4.3, we deduce that for / large enough

lim sup ——— log IP’(B,Y; (h)) = —o0,

n—oo
‘Tn—]‘
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so that choosing A = 8v|r,_,|/(krh+/|Ts—1]), we get for all § > 0

(r,R)

lim sup

1 IOgP( n,l ) 82
n—00 U‘ZT U|T,_ 1|1/|Tn 1 - ZKR/’I

n—1l
Letting R go to infinity, we obtain that

(r.R)

1
limsup lim sup — logIP’( .l > 5) = —00.
R—o00 n—00 vlT",]l UIT, | |Tn71|

Now it is easy to check that the same works for — F}Sr‘lR)

that (5.14) holds for all » > 0.

and for the others components of F, ,,(r’R). We thus conclude

Step 3. By application of Theorem 4.2.16 in [12], we find that (M, /(vjT,_,|v/|Ta—1])) satisfies an MDP on R?>(P+D
with speed v‘zﬂ.n_” and rate function

I(x) = suphmmf inf Ig(z2),

§=0 R—>00 z€By s

where Ig is given in (5.10) and B, s denotes the ball {z: |z — x| < §}. The identification of the rate function T= Iy,
where I, is given in (5.3) is done easily (see for example [15]), which concludes the proof of Theorem 5.1. O

Proof in case 1. For the proof in case 1, there are no changes in Step 1, and for Step 3, instead of (5.7), (5.8), and
(N1), we use Remark 5.4 and (G1). In Step 2, the negligibility in (5.11) comes from the MDP of the i.i.d. sequences
(e2k — 82k)) since it satisfies the condition, for A > 0 and all R > 0

E (exp(A(e2x — eéf)))) < 00.
The negligibility of (L,(f)) works in the same way. For (F,gr’R)) we will use the MDP for martingale, see Proposi-
tion 3.11. For R large enough, we have
02

P(|X{) (e2 — £5¢)| > vy, V1T 11 Fic1) <P<|82k—8zm| 'T"_ll)

r

vin, |
:IP(|£2 —e®| > —*‘) =0.
r

This implies that

lim sup
n—o0 U\T

log<|'IF,, 1|esssup]P> ]an 82k—82k ) = v, VI Tt || Fi— 1)) —09.
n—1

That is condition (D2) in Proposition 3.11.
For all y > 0 and all § > 0, we obtain from Remark 5.4, that

1 1 2
lim su logIP XY 1 r >5>
i vk € (l’ﬂ‘,,_1| Z (Xin) X 1>y Tt /vm, D)

kGTnfl.p—l

, 1 1 2
=z logp(mrn_” 2 Xy (o, ) > 5) =

v
=00 [Ty—1 kET,,,LI,,]
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That is condition (D3) in Proposition 3.11. Finally, from Remark 5.4 and in the same way as in (5.9), it follows that

(F(r‘R)) 1 1 2 superexp
Tl =y 2 () e
n—1 n=1 kET,l,]'p,] U\Tn—]‘

for some positive constant £, where Qg = E[(e; — SER))Z]. That is condition (D1) in Proposition 3.11. Moreover,
it is clear that Qg converges to 0 as R goes to infinity. In light of above, we infer from Proposition 3.11 that

(Frfr’lR)/(vmn_”‘/|’]I‘,,,1|)) satisfies an MDP on R of speed vlz?l'n-ll and rate function Ig(x) = x2/(2Qg%). In par-
ticular, this implies that for all § > 0O,

: ! IF,) 52
limsup — logP > Ss)<——
n=00 U, 4| T,y | Ta—1 20rt

and letting R go to infinity clearly leads to the result. O

5.2.2. Proof of Theorem 3.5
The proof works in case 1 and in case 2. From (2.7), we have

\% |Tn—l| A -1 Mn
—,—-0) =T |> | ———>—.
U‘Tnfl‘ " ! " IU|’]I‘n71||Tn_||

From Proposition 4.1, we obtain that

by Su ¢
LI A i sy A 5 (5.17)
T ITal 22,

According to Lemma 4.1 of [26], together with (5.17), we deduce that

1 superexp

Ta-112,0, = L®L . (5.18)

UlTn—ll

From Theorem 5.1, (5.18) and the contraction principle [12], we deduce that the sequence (,/|'J1‘,,,1|(6‘A,Z —
0)/vT,_,)n>1 satisfies the MDP with rate function /o given by (3.3).

5.3. Proof of Theorem 3.7

For the proof of Theorem 3.7, case 1 is an easy consequence of the classical MDP for i.i.d.r.v. applied to the sequence
(8%,( + e%k +1)' For case 2, we will use Proposition 3.11, rather than Puhalskii’s Theorem 3.12.

We will prove that the sequence(y/|T,—1 |(03 — 02)/11‘1;H |) satisfies the MDP. For that, we will prove that condi-
tions (D1), (D2) and (D3) of Proposition 3.11 are verified. Let us consider the G,,-martingale (Q,,) n>2p-1 given by

n
O, = Z vk, Where vy = £%k + 8%k+1 —202.
k=2r-1
It is easy to see that its predictable quadratic variation is given by

Q= > E[/G1]=(n—2"""+1)(21" — 40" + 207),
k=2pr-1

which immediately implies that

(Q)n superex
n superexp
n v%

214 — 40* + 212,
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ensuring condition (D1) in Proposition 3.11.
Next, for B > 0 large enough, we have for a > 2 (in (Ea)), and some positive constant ¢

1 & 1 <« B

Pl = “~B|<3 Pl = 2a, Z )L

(5.2 e s) <o (o5 S - 5|
k=2r-1 k=2r-1

From hypothesis (Ea) and since B is large enough, we obtain for a suitable r > 0 via the Chernoff inequality and
several successive conditionings on (G,), for n € {0, 1}

1 B B
Pl- > 2> — | <exp(—tn( — —logE ) ) <exp(—tc'n),
(n |e2k4y]* > 36) _exp( n<3c og )) <exp(—tc'n)
k=2r—1
where ¢, ¢’ are positive generic constants. Therefore, for B > 0 large enough, we deduce that
li ! logP ! En [vk|* > B 0
imsup — lo — vg|? > <0,
pologh) k

n—00 k=217—1

and this implies (see e.g. [26]) exponential Lindeberg condition, that is for all » > 0

1 « 2 superexp
= 2 Vil = O
k=2r—1 Ui

That is condition (D3) in Proposition 3.11.
Now, for all k£ € N and a suitable ¢t > 0 we have

1
P(Ivel > van//Gr1) < Z()P(k%m ~o?|> #/QH)
n=

1

—tva/n
< exp(#) ZOE[exp(ﬂe%H,’ —0?)/Gk-1]
n=
< 2E’exp<_wTM/ﬁ),

where from hypothesis (Na), E’ is finite and positive. We are thus led to

1 log(2E’ t
—210g(nesssup]P’(|vk| > unﬁ/gk_l)) < LG) _ ﬁ
Uy keN* Uy Un
and consequently, letting n go to infinity, we get the condition (D2) in Proposition 3.11.
Now, applying Proposition 3.11, we conclude that (Q,/(vy+/1))n>0 satisfies the MDP with speed vﬁ and rate
function

x2
lo)= — >
0= 1T 21 2

Applying the above to |T,_1| and using the contraction principle (see e.g. [12]), we deduce that the sequence

VIl o 2y Ol

|Tn—]|

n -
UIT,—q| 2vT,

n—1l

satisfies a MDP with speed U|2Tr,,,1\ and rate function /> given by (3.4).
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We obtain as in the proof of the first part, with a slight modification, that the sequence (|T,—1|(0, — p)/v|T,_,|)
satisfies a MDP with speed U‘ZT'P” and rate function I, given by (3.5).

5.4. Proof of Theorem 3.10

Here also the proof works for the two cases.
Let us first deal with ,,. We have

From (4.22) and (4.30), we easily deduce that 0,12 sufére;poz in case 1 and in case 2. Thus, it is enough to
YT,y
prove that 62 — 02 =" 0. Let 6© = (ag, a1, ...,ap)", 60 = (bo, b1, ....bp)", O = @ a1 ns-- s dpn)s

VT, 1
Al A oA A
08" = (bo.n, brns - by
Let us introduce the following function f defined for x and z in RP?*! by

p+l 2
fx.2)= <x1 -z - sz) ,
i=2

where x; and z; denote respectively the ith component of x and z. One can observe that

Goot= Y {f(5a60) - (X, 00))

n =
2|T,—
| n 1|kETn—1.p—1

Z {f (Xaiq1.6") = £ (Xaxg1.0) ).

kETn—l.p—l

L
2|1l

By the Taylor-Lagrange formula, Vx € RP*! and Vz,7 € RP“, one can find A € (0, 1) such that

p+l1
frd) = f =) (2 —2j)0,; f(x. 2+ A( —2)).

j=1

Let the function g be defined by

p+1
g(x, 1) =x1—21 — sz-
j=2
Observing that
of

(x,2) = —2g(x,2),

dz1

7L () =—2xjg(x,2) V=2,

we get easily that |21 (x, z)] <4(1 + [|z[)(1 + [lx[|?) for all j > 1, and this implies

az;

|f(x.2) = f ] < el =2 (14 Dzl + 2 = 2 ) (1 + %12
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for some positive constant c. Now, applying the above to f (sz,é,(,o)) - f Xox, 09y and to f (XZk_,_l,é,(,l)) —
fXorr1,0M), we deduce easily that

A A N 1
167 — o] <clld, —01(1 101+ 16 = 01) > (I
n-l kETn—l,p—l
for some positive constant c. From the MDP of 6, — 6, we infer that
superexp

10, — 011" =50, (5.19)

YT, 11

Form Proposition 4.3 we deduce that

1 S
Y (L I%P) "=+ Te(A). (5.20)
|Tn—1| k U2
eTrn—l,p—l [Ty—1l

‘We thus conclude via (5.19) and (5.20) that

A superex;
,%—anz =5P0.
2

YT, 1|

This ends the proof for 6,,. The proof for 5, is very similar and uses hypotheses(G2’) and (N2') to get inequalities
similar to (4.22) and (4.30).
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We first give a characterization of tiie-transportation cost-information
inequality on a metric space and nextdisome appropriate sufficient condi-
tion to transportation cost-information inequalities for dependent sequences.
Applications to random dynamical systems and diffusions are studied.

1. Introduction and questions. Let (E, d) be a metric space equipped wit
o-field 8 such thati(-, -) is B x B-measurable. Givep > 1 and two probability
measureg andv on E, we define the quantity

1/p
(1.2) Wg(,u,v)zinf(/ d(x,y)”dzr(x,y)) ,

where the infimum is taken over all probability measuresn the product space
E x E with marginal distributiong: andv [say coupling of(x, v)]. This infimum
is finite as soon ag andv have finite moments of ordes. This quantity is
commonly referred to as?”-Wasserstein distance betwegrandv. Whend is
the trivial metric @(x, y) = 1,+y), ZWf(u, v) = ||u — v|lTv, the total variation

of u —v.
The Kullback information (or relative entropy) ofwith respect tqu is defined
as
dv
log — dv, if ,
(1.2) H(v/p) = { [ 1os dn " veH
+00 otherwise.

We say that the probability measure satisfies theL?-transportation cost-
information inequality on(E, d) if there is some consta@ > 0 such that for
any probability measure,

(1.3) W, v) <V2CH (v/p).

To be short, we writg. € T, (C) for this relation.
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The cases p = 1" and “p = 2" are particularly interesting. Thafy(C) are
related to the phenomenon of measure concentration was emphasized by Martc
[10, 11], Talagrand [18], Bobkov and Goétze [2] and amply explored by Ledoux
[8, 9]. TheT»(C), first established by Talagrand [18] for the Gaussian measure, has
been brought into relation with the log-Sobolev inequality, Poincaré inequality, inf-
convolution, Hamilton—Jacobi's equations by Otto and Villani [15] and Bobkov,
Gentil and Ledoux [1]. Since those important works, a main trend in the field is to
put on relations of, (C) with other functional inequalities (of geometrical nature
in particular). In this paper we shall study three questions around the following
problem going somehow to the opposite directibow to establish théT),(C)”
without reference to other functional inequalities in various concrete situations

To raise our first question, let us mention the following:

THEOREM 1.1 (Bobkov and Gétze [2]). 1 satisfies theLl-transportation
cost-information inequality oRE, d) with constantC > O, that is u € T1(C),
if and only if for any Lipschitzian functiof': (E, d) — R, F is u-integrable and

52
(1.4) /;Ee/\(F—(F)u) du < exp<?C||F||Eip> VieR,
where(F), = [ Fdu and
|F(x) — F(y)l
IFl|Lip = Sup Y beo
Xy d(x,y)

In that case

},2
w(F — (F) >r)§exp<——) Vr > 0.
8 2C|IF 113,

It might be worthwhile to recall the classical Pinsker—Csizsar inequality which
is the starting point of many recent works. By the coupling characterization of the
total variation distancé - | Tv, the Pinsker—Csizsar inequality

v —plitv <y 3HO/R)

says that w.r.t. the trivial distanekx, y) = 1,+, on E, any probability measure
satisfies thd.1-transportation cost-information inequality with the sharp constant
C = 1/4. And by Theorem 1.1, the Pinsker-Csizsar inequality for the trivial
distance follows from the classical well-known inequality: for a real bounded
random variablé with values in[a, b],

N2
Feb —E& EEXp<(b 861) >

(and vice versa).




Transportation cost-information inequalties and applications 201

2704 H. DJELLOUT, A. GUILLIN AND L. WU

We now do a simple remark. Assume that 71(C) or, equivalently, (1.4). Let
v (d)) be the standard Gaussian IaW0, 1) on R. We have for any Lipschitzian
function F on E with (F),, =0and|| F|Lp <1, anda € R,

/Eexp(a—zze) d,u:/E/Re“)‘Fy(d)\)duffIReXp(%aZA2>y(dk)
1

_a® 1
_ ] if — < —,
- 1—a2C 2 2C
+00, otherwise.

Applyingitto F(x) :=d(x, xp) — [ d(x, x0) du(x), we obtain
1
/eCdz(x’XO) du(x) < +o00 Yce (O, i)
In particular, for alls € (O, %) we have,

(1.5) f/ SPED 4 (x)ydpu(y) < +oo.

That naturally leads to the following questions:

QUESTION 1. Will the Gaussian tail (1.5) be sufficient for tfié-transporta-
tion cost-information inequality oft?

The second question is about dependent tensorizations df,iit®. Let, for
example,P?, the law of a homogeneous Markov chaif(x))1<k<, on E”
starting fromx € E, with transition kernelP (x, dy).

QUESTION2. AssumethaP(x,-) € T,(C) forall x € E. Where is the appro-
priate condition under whicl? satisfies thel.”-transportation cost-informatior
inequality w.r.t. the metric

n 1/p
dlp(x’ )’) = (Zd(xi’ yi)p> ?

i=1

The same question can be raised for the law of an arbitrary dependent seq
(Xi)1<k<n- When (Xx)1<k<n are independent, this question has a rapid &
affirmative answer, see [8, 9] and references therein.

In the dependent case, whéris the trivial metric, angp = 1 (andd;, becomes
the Hamming distance oik”), Marton [10] generalized the Pinsker—Csizs
inequality to the law of the so called “contracting” Markov chains:

(1.6) % sup  |Pi(-/yi—1) — Pi(-/xi—Dlltv =r < L.

(xXi—1,¥i-1)
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Her approach is based on coupling ideas, natural by the definition of the involvec
Wasserstein distance. Her results have been strengthened by Marton [11, 12] a
Dembo [4] and have been generalized to uniform mixing processes by Samson [1]
and Rio [16].

However, the trivial distance does not reflect the natural metric structure of the
state spacé& to which usual Markov processes such as random dynamical system
or diffusions are related and that is why the uniform mixing assumption was made
in her work (and also in [17]). This is a main motivation for Question 2.

For the L2-transportation cost-information inequality>(C), recall that
Talagrand [18] proved that the standard Gaussiandaw.V (0, 1) satisfiesl>(C)
on R w.r.t. the Euclidean distance with the sharp constaet 1 and found that
T>(C) is stable for product (or independent) tensorization. To our knowledge the
Markovian tensorization of>(C) has not been investigated in the literature.

Since the works of Otto and Villani [15] and Bobkov, Gentil and Ledoux [1],
we know that7»(C) follows from the log-Sobolev inequality in the framework
of Riemannian manifolds. Indeed, all knowp(C)-inequalities up to now can be
derived from the log-Sobolev inequality. An important open question in the field is
whether7>(C) is strictly weaker than the log-Sobolev inequality. Hence, it would
be interesting to investigate the following question:

QUESTION 3. How do we establish th&(C)-inequality in situations where
the log-Sobolev inequality is unknown?

This paper is written around those three questions and it is organized as follows
The next section is the general theoretical part of this paper. After noticing the
stability of 7, (C) under Lipschitzian map and under weak convergence in Sections
2.1and 2.2, in Section 2.3 we prove that condition (1.5) is, in fact, sufficient for the
Ll-transportation cost-information inequality, solving Question 1. In Section 2.4
we revisit the coupling method of Marton and show that it actually works for
dependent tensorization f,(C) for 1 < p < 2, under a contraction assumption
[see (C1) in Theorem 2.5] close to Marton’s (1.6). Section 2.5 is devoted to revisit
the McDiarmid—Rio martingale method which allows us to obtain a much more
subtle condition (C? than (C1) for tensorization dfy(C) in Theorem 2.11.

Sections 3 and 4 contain several applications of the general results in Section
to random dynamical systems and diffusions which are our main motivation for
Question 2.

In Section 5, quite independent, we present a direct approadh(af) for
diffusions, by means of the Girsanov transformation, with respect to the usua
Cameron—Martin metric ok2-metric.

The reader may consult the recent monograph by Villani [19] for an extended
(analytical and geometrical) treatment on transportation.
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2. Criteria for T,(C). Throughout this paper letE, d) be a metric space
equipped withr -field 8 such thati(-, -) is B x B8-measurable; and whelk, d)
is separableg will be the Borelo -field.

2.1. Stability under push-forward by Lipschitz mapNe begin with the
stability of 7,(C) under Lipschitzian map and under weak convergence, wk
will be useful later.

LEMMA 2.1. Assume thajw € T,(C) on (E,dg) and (F,dr) is another

metric spacelf ¥ : (E, dg) — (F,dF) is Lipschitzian
drp(V(x), ¥(y)) <adg(x,y) Vx,y€E,

thenji:=puoW=1e T,(Ca?) on(F,dr).

PROOF Let v be a probability measure such thdi(v/ix) < +o0o. The key
remark is
(2.1) H®/p) =inf{H@w/pw);vo W 1 =7).
To prove it, puttingyo(dx) := %(\D(x))u(dx), we see thatgo U1 = 7. We have

for anyv so thatv o W1 =9,

Hv/w) = H(vo/11) + f A5y H Wy /11y),

wherev, :=v(-/¥ =y) and u, := u(-/¥ = y) are, respectively, the regula
conditional distribution ob, u knowingW = y. Hence, (2.1) follows.
With (2.1) in hand, the rest of the proof is easy and is omitted.

2.2. Stability under weak convergence.

LEMMA 2.2. Let(E,d) be a metri¢ separable and complete spa(®olish
say) and (u,, w),en a family of probability measures oA. Assume thaj, €
T,(C)foralln e Nandu, — u weakly Thenu € T,,(C).

PrROOF Recall at first two facts (see, e.g., [19]):

1. If p, — pandv, — v weakly, then liminf_. oo W, (1,, vi) = W, (1, v).
2. If u, — p weakly and{d(x, xo)?, u,(dx)} is uniformly integrable W, (.,
w) — 0.

What one needs to prove is

W2(fu ) =2C [ flogfdu
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for all f such thatf  is a probability. By approximation (and using fact 2 above),
it is sufficient to prove the result for continuoysso that YN < f < N overE
forsomeN > 1. Leta, = [ fdu, and we have by, € T,(C),

W,f(g:" , w) < 2C/<£> |09<£> dpin = i—f/f'ogfdun-

Sinceu,, converges weakly tp, a, converges tqu(f) = 1, and one can pass to
the limit in the right-hand side of this last inequality. For the convergence of the
left-hand side, it is enough to apply the lower semi-continuitpyof [

2.3. Characterization off1(C) by “Gaussian tail. We present here a char-
acterization of71(C), based on the Bobkov and Goétze [2] result, that is, some
Gaussian integrability property.

THEOREM 2.3. A given probability measure. on (E,d) satisfies the
L1-transportation cost-information inequality with some consté@ran (E, d) if
and only if (1.5) holds In the latter case

2\ 1/k 1/k
(2.2) Cigiul E;i))’) .U/eadz(x’y)du(x)du(y)] < +o00.

PrROOFE It is enough to show the sufficiency. By Bobkov—-Goétze’s Theo-
rem 1.1, it is enough to show that there is some congiaatC (§) verifying (2.2)
such that

C)2
(2.3) Eer®) < exp(T) VieR,

forall F:E — R with || F|lLjp <1 andEF(§) =0, where£ is a random variable
valued inE with law p, defined on some probability space, #, P).

Let &’ be an independent copy §f defined on the same probability space
(2, F,P). Since EF(’) = 0, by the convexity of thex — ¢*, we have

E(e~*F¢)) > 1. Consequently, noting th& F (¢) — F(£")]%*+1 = 0, we have
E(e”(é)) < E(e/\F(S))]E(e—AF(S’))
— R MFE-FED)
o AE[F(§) — F(EH*

=1+

i—1 (2k)!
0 )\.ZkEd(é, %-/)Zk
=142 o

k=1
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Hence, putting

k. Ed(%', ‘(;_-/)Zk)l/k
C = 2 )
f§f< (26!

we get

o0 )\‘Zk C k C)\‘Z
E(e*F®) <1 —(—) :exp(—).
() = +k§1 o \2 2

Thus, for (2.3), it remains to estimatedefined above. Since

1 k
Ed (€, &N <k!- (—) Eexp(8d (€, £")?),
)
we get

2 (k)2
C < —-Su
8 k=1\ (2k)!

the desired estimate (2.2)0J

1/k
) [Eexps(d, £)?) Y < +00

REMARK 2.4. For comparison notice that the Bernoulli meagum@n {0, 1}
with w(1) € (0, 1) satisfiesTy1(1/4) w.r.t. the trivial metric, but does not satisf
T,(C) for any p > 1 (see [7]). Hence, any probability measuyrewhich is not
a Dirac measure o does not satisfyl’,(C) for any p > 1 w.r.t. the trivial
metric. Another example for illustrating difference ©f and 7> inequalities is
the following.

Let u = ¢ (x)?dx onR with 0 < ¢ € Cy°(R) (compact support). It satisfiey
always 71(C) w.r.t. the Euclideand(x, y) := |y — x| by the theorem above
But if the support ofu (or of ¢) has two connected components /o with
dist(11, I2) > 0, then the correspondin@>(C) fails. In fact, if contrary to
w € To(C), then by [15] or [1] the following Poincaré inequality holds:

VarM(f)fchf’zd,u Y f e COR).

Choose nowf smooth enough and equal to 1 énand 0 on/>. Then the right-
hand side in the Poincaré inequality is 0, whereas the variangevafl be non
zero so that the Poincaré inequality cannot hold, neifh@er).

This example shows, moreover, tHatC) on R does not imply the Poincare¢
inequality, unlikeT>(C).

The next two sections are dedicated to the tensorizatidi @) for dependent
sequences.
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2.4. Weakly dependent sequenchkarton's coupling revisited. Let P be a

probablllty measure on the product spade’, 8"), n > 2. For anyx € E",
= (x1,...,x;). Let P;(-/x'~1) denote the regular conditional law of given

xi‘l for i z 2 (assume its existence). By conventifi(-/x°) is the law ofx;
underP, wherex® = xq is some fixed point. WheR is Markov, thenP; (-/xi~1) =
P;(-/x;_1) is the transition kernel at step- 1.

Our aim in this section is to extend transportation cost-information inequali-
ties (1.3) for a probability measuleon (E", d;,), where

n 1/p
dp,(x,y):= (Zd(xi,yi)p> :
i=1

THEOREM2.5. LetlP be a probabiliy measure o™, and1 < p < 2. Assume
that P;(-/x'~1) € T,(C) on(E,d) forall i > 1,x'"1in EI=1 (EC := {x0}). If

(C1) there existz; > O with r? := Z?il(aj)l’ < 1suchthat

i—1
(2.4) [Wa(P;(-/x'™H, Pi(-/Z7H)])7 <Y (ap)PdP (xi—j, Fi)).

j=1

forall i > 1,x~1, =1 in Ei~1, then for any probability measuf@ on E”,

Wy (Q.B) < -\ 2Cn2r 11 /P,

PROOF The proof is similar to the one used for the Hamming distance by
Marton [10], however, we have to use the assumpRgr/x' 1) e T,(C) instead
of Pinsker’s inequality. Assume that(Q/P) < 4oo (trivial otherwise).

Let Q; (-/x'~1) be the regular conditional law af knowingx’~* for i > 2 and
01(-/x%) the law ofx1, both under lawQ. We shall use the Kullback information
between conditional distributions,

Hi (&1 = H(Qi (/31 Pi(-/Z'7h),
and exploit the following important identity:

(2.5) HQP =Y [ HGE Q).
i=—17E"

The key is to construct an appropriate couplingloandP, that is, two random
sequencex” and X" distributed according t@ andP, respectively, on some
probability spacé<2, ¥, P).

We define a joint dlstrlbutlon£(X” X"™") by induction as follows. Add
artificially time 0 and putXo = Xo = i° = x°, the fixed point. Assume that
for somei, 1 <i < n, £(X’ Lxi-b s already defined. We have to define
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the joint conditional distributiont(X;, X; /X'~ = =1, X'~ = x'~1), where
(x'71, x71) is fixed (but arbitrary).
Givene > 0 so small that (1+¢) < 1, this distribution will have marginal laws

LR X =51 X =y = 0, (/7Y
and
£(Xi/)~(i_1 D G Pi(-/xi_l)
SO as to satisfy
E(d(X;, Xp? /X' t=5"1 x"t=x""1)
<A+WHQi(/Z' ™, Pi(/x"h)P

for all -1, xI=1in Ei~1. Obviously,X", X" are of lawQ, I, respectively.
By the triangle inequality for théVl‘,’-distance,

E(d(j("l’ Xl')p/Xi_l :ii_l, Xi—l :xi—l)
<A+ o) [Wi(Qi(/xh, P/ H) + WE (P (/% P /x"H)]P.

Using the elementary inequality that + y)? < a?~1x? + pP~1yP (for p > 1
Vx,y > 0)wherea, b > 1 such that 1la + 1/b =1, we have by the assumption
Pi(-/x'=1) e T,(C) and (C1)

]E(dp(f(,', X,-)/f(i_l :-;C'l'—l, Xi—l — xi—l)

i—1 1/p\ p
(2.6) <(1+e) (\/ 2CH,; (~l 1) + |:Z (aj)pdp(ii_j,x,-_j)} )

j=1

i—1
<1+ e)(al’—l[ch,- GOy (@pPdP (Fij, xie j>>.
j=1

By recurrence o, this entails tha~EdP(X§, X)) <+ooforali=1,...,n
Taking the average with respect (X ~1, X'~1), summing oni and using the
concavity of the function: — x?/2 for p € [1, 2], we get by (2.5) and (2.6)

1
E(d”(X;, X;
n(1+8)z i )
o B p/2 p—1 n i-1
Sap_l<72EHi(Xl_l)> +—ZZ ajEd"(Xi—j. Xi-))
i—1 i=1j=1

ZEdp(Xk, Xi) Z al’

i=k+1

2 p/2
= ap_l<7CH(@/]P’)> 40
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Using ijlaf =r? and lettinge — 0+, the above inequality gives us, when
rPpP—1 <1,

p—1

)1/p\/2Cn2/P_1H(@/IP).

Optimizing on(a, b), we get the desired inequality[]

d
Wp "(Q,P) < (W

Noting that for a real functiorf on E", I fllLipa,) <o if and only if for every
k=1,...,n,

(2.7) | i) — i)l <ad(xk, y)  Vaxr, € E,

where fi (x;) is the functionf w.r.t. thekth variable while the others are fixed.
Then we get by Theorem 1.1,

COROLLARY 2.6. Under the assumption of Theorehb for p = 1, for any
real function f on E" satisfying(2.7),

C)%an
Epe*/~Er/) < exp(—) VieR.
= ="M 2a=n2 ©

In particular, for anyr > 0,

12(1—r)?
P(f>Epf+1) fexp( o2 )
REMARK 2.7. The condition?;(-/x'~1) e T,(C) is our starting point for
tensorization of th&', (C) and itis verified for many interesting examples, such as
the stochastic differential equation (SDE) (4.1) or random dynamical systems o
Gibbs fields. Condition (C1), meaning that the dependence gbrémenton the
past is very weak, is a crucial condition. Indeed, when, y) =1,.,, p=1and
P is Markovian, (C1) is equivalent to (1.6), and Theorem 2.5 is exactly the result
of Marton mentioned in the Introduction.

REMARK 2.8. That the constant, for the Ti-inequality of P, increases
linearly on dimensiom is natural in the point of view of the Hoeffding inequality
in Corollary 2.6. This is completely different from the case of thenequality,
for which it is hoped that th&>-constant remains independent of dimensioas
seen for the independent tensorizatioefC) by Talagrand [18] or its extension
Theorem 2.5.

REMARK 2.9. UnderP;(-/x'™1) e T,(C) and (2.4) but without the contrac-
tion condition that? :=3_;(a;)” < 1, we have alway®, € T,,(C,) on E" w.r.t.
d, for some constant, (but the crucial estimate af,, in Theorem 2.5 is lost).
We give only the proof of this fact fop = 1.




Transportation cost-information inequalties and applications 209

2712 H. DJELLOUT, A. GUILLIN AND L. WU

Indeed, consider the nonnegative nilpotent lower triangular matex (a;;),
whereq;; = a;_; if i > j and O otherwise. For any givére (0, 1), there is always
a (positive) vectot = (z1, ..., z») Such that; >0, ;z; =1and

n
A= Y ziai—x <8z Vk=1...,n.
i=k+1
Then by (2.5) forp = 1, we have by Jensen’s inequality,

n
E> zid(Xi, Xi)
i=1

n n i—1
<(1+e) (Z ZEV2CHE D+ > "2 ) a;Ed(Xi;, 5(,;,))
i=1

i=1 j=1

n n—1 n
< (1+s)<JZz,~2CEH()E"1)—|— Y Ed(Xe, Xe) Y z,-ai_k>

i=1 k=1 i=k+1

n—1
<(1+e) (\/zc maxz; H(Q/P) + Y §zxEd(Xy, Xk)),
! k=1

where it follows that

Wi(Q,P) <

(1—3) min; z; \/2C maxz; H (Q/F).

Whenz; = 1/n, the best choice dfis r, and this inequality becomes Theorem 2.

2.5. T1(C) for weakly dependent sequencéécDiarmid—Rids martingale
method revisited. The last inequality in Corollary 2.6, applied t68(X74, ...,
X,) = Y i_1 f(Xx) and the trivial metricd, where (X;) are independent anc
| f(X©)lloo < ¢, becomes exactly the sharp Hoeffding inequality (see [13]). |
when it is applied toF (X1, ..., X,) = f(X,), it does not furnish the good orde
of n for n large. As this last question is important for thgC) of the the invariant
measure, we give now a very simple proof of the following:

PROPOSITION2.10. Let(E,d) be a Polish spacd.et P(x, dy) be a Markov
kernel onE such that

(@) P(x,-) € T1(C) for everyx € E;
(b) Wf(P(x, J); P(x,-)) <rd(x,x), foreveryx, x in E and some < 1.

Then there is a unique inviant probability measure: of P and it satisfied1(Ceso)
as well asP”(x, ) Vn > 1,whereCo = C(1 — r?)~ 1.
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PROOF When(E,d) is Polish, the spach(E) of probability measures
on E such that/ d(x, x0)” dv(x) < 400, equipped with the Wasserstein metric
W, (-, -) is a metric complete separable space (see [19]). S’iIGZCMll(E) = VP e
Mll(E) by (a) and, condition (b) implies (in fact, equivalent to)

W1(viP,voP) <rWi(vy, v2) Vv, o€ Mll(E),

hence, by the fixed point theorem, there is one and onlymavariant measure
n € MY (E), and P"(x,-) — p in the metric W1 for any initial pointx € E.
The last point shows also thatis the unique invariant probability measure Bf

[without the restriction that € M3 (E)].
Since
[ rav—[ ran
E E
condition (b) is also equivalent to
IPfllLp =7l fllp V[

Thus,|| PV fllLip <7V | fllLip for all N > 1. Now given a Lipschitzian functiogf,
we have by (a) and Bobkov—-Gotze’s Theorem 1.1,

P'(el) < P”‘l[exp(Pf + %)]

Wi, m= sup
Fillfllup=1

b

2
2 2
_ Pn_z[exp(P2f+ CIf Ity C||Pf||up>]
- 2 2
ClIflIE,  CUPFIE, CIP* 1 fIE,
<exp| P"
_Xp( f+ 5 + 5 +---+ 5 >
Clf g,
< exp| P" — .
< exp( f+2(1_r2))

In other words, for every € E, P"(x,-) € T1(Cx), WhereC Is given in the
proposition. Lettingn — oo, we obtain the desired result for by Lemma 2.2.
O

We now use the martingale method of McDiarmid [14] (in the independent case
and Rio [16] (in the uniform mixing case) for extending the argument above to the
process-level laviP.

'THEOREM 2.11. Let P be a probability measure o™ satisfying P;(-/
x'™Y e Tv(C) (Vi, x'~1) in TheorenR.5.Assume instead dC1) that
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(C71) there is some constast> 0 such that for all real bounded Lipschitzial
function f (xg+1, ..., x,) With ||f||Lip(d,1) <1,forall x e E", y; € E,

Ep(f (Xit1s -0 Xn)/ X5 =x%) = Ep(f (Xis1, -, Xn)/ X5 = 571 30)]

< Sd(xk, yk)-
Then for all function F on E" satisfying(2.7),
Cr2(1+ 9)%a?
(2.8) Epe*(F~EeF) < exp( ( ; ) ”) VieR.

EquivalentlyP € T1(C,) on (E", d;,) with
C,=nC(1+ S)%

PROOF We may assume without loss of generality that 1. Let (M =
E]p(F/X"))kZo, whereMy=EpF. It is a martingale. It is enough to show that f¢

eachk,
2 2
EP(ek(Mk—Mk_l)/Xk—l) <eXF(C)\- (1+ S) )
- 2

To this end, note at first by,-(-/x"—l) € T1(C) and Theorem 1.1,

212
EP(eA(Mk—Mk_l)/Xk—l) <eXp<C)“ bk)
J— 2 9

where
M k -M k—l’
by = supl k(x®) K (x )’k)|.
X,y d(.Xk, Yk)
But M;(x*) = [F&K xepns ..., x)PAxiit, ..., dx,/x%), writing X =
(Xk+1, ..., Xy) We have

| M (x%) — M ("2, v

< \ [FG g — P, xz+1>>P<dxz+1/xk>\

+ ‘ [ PO ) (B 15 — Pty /6 m)‘

<d(xk, yx) + Sd(x, yi).
Hencep, < (1+S), the desired result.(]

REMARK 2.12. Whend(x, y) = 1,4y, P;(-/x'~1) € T1(1/4), and this result
is essentially due to Rio [16]. Using a different condition than’j(te essentially
proved that the constasstin condition (C1) verifiesS < 22?‘;1@, whereg; is
the uniform mixing coefficient of the sequeng¥, ). Our proof above is, in fact,
inspired by his work.
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REMARK 2.13. Ifthe condition (C1) is viewed adackwardtype, then (C)
may be seen asfarwardtype. Indeed (C? is equivalent to

d, _ _
Wit (Pl 1 /xk, x50, P@x) 4 /vi, X571) < Sd (xx, yo).-

It means intuitively that the present does not influence a lot the future of the
processP. In concrete situations (Cllis often weaker than (C1) with = 1. For
example, letP,) be a uniformly ergodic (Doeblin recurrent, say) Markov chain
with transitionP (x, dy) in the sense that, := sup,.g || P" (x, ) — u|ltv — 0. As

2¢, < r,, we have by Rio’s estimate above,

o0
S<) suplP"(x,) — plltv,
n=1X€E
which is finite. But Marton’s condition (1.6) or (C1) mea(ly2) sup..g || P" (x,
) — ulltv <r" foralln > 1. See also Example 3.3.
It would be very interesting to generalize Theorem 2.1T5@).

3. Application: study of Ty (C) and T>(C) for random dynamical systems.

3.1. T1.(C). Let E be a complete connected Riemannian manifold equipped
with the Riemannian metrid. Consider now the nonlinear random perturbed
dynamical system valued i,

(3.1) Xo(x):=x€E, Xn+1(x) = F(Xn(x), Wy41), n>0,

where the noiséW,),>o is a sequence of i.i.d. r.v. valued in some measurable
space(G, ), defined on some probability spac®, ,P), and F(x, w): E X

G — E is measurable. Denote by (x,dy) the law of F(x, W1), and the
following:

PrROPOSITION3.1. Assume that there exists> 0 such that

(3.2) supE(e‘Sd(F(x’Wl)’F(x’WZ))Z) < +o00.
xek
If there existd < r < 1 such that
(3.3) E(d(F (x, W1), F(X, W1))) <rd(x,X) Vx,Xx€E,

or more generally for some constasit- O,
(0]

(3.4) Z E(d(X,(x), Xn(¥))) < Sd(x,X) Vx,Xx €E,
n=1

then there is some constafit> 0 such that for any: > 1, for every probability
measure” on E",

d
W, (@Q", P! < VCnH(@Q"/PY),
whereP” is the law of(Xy (x))1<k<, ON E".
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PROOF By Theorem 2.3, condition (3.2) is equivalent t® (x, -) € T1(C)
Vx € E.” Notice that (3.3) is equivalent to (C1) (with=1) in Theorem 2.5, and
(3.4) implies trivially (C1) with the same constaistin Theorem 2.11. Hence, this
proposition follows from Theorems 2.5 and 2.11]

REMARK 3.2. If the largest Lyapunov exponentir given by

( Ed (X, (x), Xn@)))l/”

)»max(Ll) = lim

n—o0

su .
x;éf d(x, x)

is strictly smaller than 1, then condition (3.4) is verified.

ExampLE 3.3 (ARMA model). To see the difference between (C1)
Theorem 2.5 and (CLin Theorem 2.11, let us consider the ARMA model

Xo(x) =x, Xpnt1(x) = AX, (x) + Wyt

in E=R?, whereA € My (the space of x d matrices) andW,,) is a sequence
of i.i.d. r.v. with values inG = R“. This model is a particular case of the gene
model above withF (x, w) = Ax + w. Condition (C1), equivalent to (3.3), mean
thatr = ||A| := suf{|Ax[; |x] < 1} < 1, however, (C) for this linear model is
equivalent to

rep(A) := max{|A|; A is an eigenvalue i€ of A} = Amax(L) < 1,

which is much weaker. This last condition is a well-known sharp suffici
condition for the ergodicity of this linear ARMA modek,,).

REMARK 3.4. For this model, the known results mentioned in the Introd
tion cannot be applied, for the uniform mixing condition is, in general, not satis
when E is noncompact. For example, the ARMA model with2 0 and W1 un-
bounded is never uniformly mixing. See [22].

3.2. T>(C). Consider a particular case of the preceding model

(3.5) Xo(x) = x, Xnt1(x) = f (X (x)) + 0 (Xn (X)) W1,

(the discrete time SDE), that i (x, w) = f(x) + o(x)w, where E = R,
G=R" f:R? > R4 ¢:R?Y - My, (the space ofl x n matrices) and the
noise (W,),cz is a sequence of i.i.d. r.v. with values R' such thatEW,; = 0.
Assume that:

() Py :=P(W1€-) e To(C) onR" w.r.t. the Euclidean metric;
(i) lo@w| < K|w|V(x,w) e RY x R";
(i) for somer €10, 1),

(36) VIf () — FOR+E|(0() —o@)Wif><rlx—F|  Vx 7R
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Notice that conditions (i) and (ii) imply tha® (x, -) € T>(CK?) for all x € R?,
by Lemma 2.1; and condition (iijmplies (C1) with the same for p = 2. Hence,
by Theorem 2.5P" € To,(CK?/(1 — r)?). That yields, by Bobkov, Gentil and
Ledoux [1], the following:

CoROLLARY 3.5. For the model(3.5) above assume condition(®—(iii).
ThenP” e T>(CK?/(1— r)?) and for any measurable functiof(x1, ..., x,) €

LY (R, PY),
EexplpQF (X1(x),..., Xp(x))) <exp(pEF (X1(x), ..., X, (x))),
where

1—r)? L
:=( ) QF(x1,...,x,):= inf (F(x+y)+%2|yklz>.

CK?2 "’ ye(Rdyn par]

As noted in [1], several estimates of Laplace integrals are the consequence (¢
the functional inequality version of thE(C) above. For instance, Corollary 6.1
in [1] says that for any convex functiafi on (R%)",

Epn exp(,o [F -3 Z(akF)ZD < exp(pEpn F).
k=1

REMARK 3.6. Consider the Lyapunov exponentlif,

~\\2\ 1/n
Amax(L?) := lim (supEd(X”(x)’~X;(x)) ) .
n—>00\ 45 d(x,Xx)

Obviously, (3.6) implies\max(L?) < 1. It is then natural to ask whethéx(x, -) €

T2(C) Yx plus Amax(L?) < 1 do imply “P" € T»(K)” for some constantk

independent of: (for which we have no answer unlike f@h). Notice that for
the ARMA model,Amax(L?) = Amax(L) = rsp(A).

4. Application: study of T1(C) for paths of SDEs. Let us give here an
application of Theorem 2.3 to SDE. Consider the SDR%h

(4.1) dX,=0(X;)dB; +b(X;)dt, Xo=x € R?,

whereo :R? — M y,, b:R? — R? and(B,) is the standard Brownian motion
valued inR” defined on some well filtered probability spage, F, (#;), P).
Assume that, b are locally Lipschitzian and for all, y € R¢,

(4.2) supllo(®)lus<A,  (y—x,b(y) —bx)) < B(L+|y—x[),

xeRd
where ||o ||ys := ~/troo? is the Hilbert—Schmidt norm{x, y) is the Euclidean
inner product andx| := 4/(x, x). It has a unique nonexplosive solution denoted

by (X,(x)) whose law on the spac&R*, R?) of R?-valued continuous functions
onR* will be denoted byP,.
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COROLLARY 4.1. Assume the conditions abow®r eachT > 0, there exists
some constant = C(T, A, B) independent of initial point such thatP, satisfies
the T1(C) for everyx € R?, on the spac& ([0, T], R¢) of R¢-valued continuous
functions o0, T'] equipped with the metric

dr (y1, y2) :i= sup |y1(t) — y200)|.
1€[0,T]

PROOFE Let (B;), (B;) be two independent Brownian motions defined
some filtered probability(2, ¥, (#),P) and X;(x), X;(x) strong solutions
of (4.1), respectively, driven bgB;), (B;). Put

X, = X, (x) — X; (x), by :=b(X,;(x)) — b(X;(x))
a(-):=oc0o'(), ar = a(X,(x)) + a(X;(x))

t t ~ ~
Lt ::L G(Xl(x))dBt_/() O'(XI(X))CIB[
Then
A t/\
Xt:Lt+f bsds.
0

By Theorem 2.3, it is enough to show that there exists some positive con
8§ =46(T, A, B) such that

(4.3) Eexp(8 sup |X,|2> < +00.

O<t<T
Let f(x) := h(|x]), whereh € C*°(R) is pair and such that(r) = r for r > 4 and
h(r)>r, O<h(r)<1lAar, o<n'(r<1 VrelO,4].
Considery; := (1+ f()?,))e—ﬂf, whereg > 0 is a constant to be determined late
By Ito’s formula,
d

1 y . A
dY, = e—/3’<é ai’ 9;0; f (X)) +(Vf(Xy), b,)) dt — BY,;dt +dM,

i,j=1
(Xt’ C_ZIXI>

1 A
— —pt _h// X
e (2 (1XD= 2

1 . [tra X, a, X
+_h/(|Xt|)< At_( tAtS t>>
‘ 2 | Xt | X+
WX D ~ « .
+ (|A t|)<Xt,bt>_ﬁ(1+h(|Xt|)))dt+tha

| X+

where(M,) is a local martingaléM,) with My = 0, whose quadratic variationg
proces§M] is given by
t 2

1, = [ "2V F(R,),asV F(Ry)) ds < 242 [ s < %.
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Using our condition (4.2), we see thBt< 1+ 4(0) + M, once if
B > max0, 2A% + B}.
Fix such aB. For anyi > 0, using the exponential martingale,

)\‘2
eXD<?»Mt - E[M]t),

(Novikov’s condition is satisfied) and Doob’s maximal inequality [applied to the
positive submartingale expM;/2)], we have

242
EekuR=r Ti-1-h0) < i gupeMr < 4(BetMr)2 < 4 ex,(i).
t<T p
Hence, by Chebychev’s inequality and an optimization ofre get

2
IP’(squ,>1+h(O)—|—r> §4ex;<—ﬂ) Vr>0.

Consequently,

Eexp<a Squ,2> < 400, if 0 <a< i

Hence, (4.3) is true for all € (0,¢=#7.L;), whereg > max0,242+ B}. O

REMARK 4.2. If b e C? verifies for some consta,
(4.4) Vb= (33! +0;b"))1; ;=g < Bla
in the order of nonnegative definiteness whéyeis the identity matrix, then
(y —x,b(y) — b(x)) < Blx — y|? and the condition oi in (4.2) is satisfied.

REMARK 4.3. Assumé|Vh| < K,n =d ando (x) = o = I;. Capitaine, Hsu
and Ledoux [3] yields the log-Sobolev inequality below:

2

fC([o,T],Rd) Ep, F?2
whereDF be the Malliavin gradient and

F?log

dP, §ZeKT/ IDF[2, dP,
C([0,T],R%)

' 2 T 2
Hi={r = [(he)dsi Iy = [ 1ho)2ds < -+oo)

(the Cameron—Martin space). As the result of Otto and Villani [15] suggests that
the log-Sobolev inequality implies th&(C) inequality (that is proved on the
smooth Riemannian manifold), we should ha®ge 7>(C) on C([0, T]) w.r.t.
the following pseudo-metric,

lvr —vallu, if y1—y2€eH,
+00, otherwise.

du(y1,y2) = {
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This last pseudo metric is much larger thén used in the Corollary above. W¢
shall give a simple proof of this lagb(C) inequality in Section 5.

Notice that asdy above is only a pseudo-metric an.||y = 400, a.s.,
Theorem 1.1 cannot be applied f61(C) associated witlady (since its sufficient
part is no longer valid) and Theorem 2.3 (whose proof is based on Theorem 1
no longer true w.r.tdy.

REMARK 4.4. Without essential change of proof, the same result holds if
locally Lipschitzian condition ofr, b is replaced by the well posedness of tf
martingale problem associated wiikio’, b), in the sense of Stroock—Varadhan.

REMARK 4.5. If the condition on the drifib in (4.2) is substituted by
(x,b(x)) < B(1+ |x|?) Vx € R?, then with the same proof as above, we can prq
thatE exp(8 Sup (o, 1 X+ (x)]?) < +oo for somes > 0 depending on initial point.
Hence P, satisfies th&1-inequality with a constant = C,, depending onx.

Note the following drawback of the previous corollary: the constamnt the 71
inequality obtained through Theorem 2.3 via inequality (2.2) is of af&mwhich
is not natural in regard of the results obtained via weakly dependent sequence
now show how Theorem 2.5 enables us to get the correct order.

We know from Corollary 4.1 that the law afX,(x))/e[0,1; satisfies thel;-
inequality with a constar@ independent of. In other words, the transition kerng
of the Markov chairt,, := Xy, 1] valued inC ([0, 1], R¢) satisfiesl1(C). Let us
check (C1) below.

Given two different initial points, x, let

X=X (x) — X, (%),
6 =0(X;(x)) —o(X,(X), b =b(X,(x)) —b(X,(F)).

By Ito’s formula,
S o2 ~2 ? A A A A
R =y =52+ | (0660 +2(%0. b)) ds + i

where(M;) is a local martingale witldZo = 0, whose quadratic variational proces
is given by

t A A
(M1, =4 / (Rs, (6,61 Rs) ds.
0

Let 7, :=inf{t > 0; | X,| vV [M]; = n}. If there is§ > O such that
(o (x) —o(®) (0 (x) — o (®))' ]+ (x — &, b(x) — b(F))

(4.5)
< —8lx — %2 Vx, % eRY,
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then
E| nz |2 < |x — 52— 28 /O[]E|f(m 2ds.
This entails by Gronwall’s inequality and Fatou’s lemma,
(4.6) ElX,(x) — X;®)P=E|X,)?<|x— 5% % V>0

Moreover, if o is globally Lipchitzian, then by Burkholder—Davis—Gundy’s
inequality and Gronwall's inequality, we obtain easily from the estimate above
that

E sup |Xs(x) — Xs()|? < K|x — X% 2
tfsft—l—l

for some constank. Thus, the Markov chaity, := X{, ,+1; valued inC ([0, 1],
R?) satisfies (C) too. Consequently, we obtain by Theorem 2.11, the following:

PROPOSITION4.6. Assumg4.2), (4.5)and o is globally Lipchitzian Then
there is some constant > 0 such that for any: > 1 and any initial pointx, the
law P, of (X;(x));e[0.n,1 ONC([O, n], R?) satisfies the inequality; (C - n) wr.t. the
metric

n—1

d(y1.y2):=)_ sup [yi(t) — y2(0)l.
k=0k=<t<k+1

REMARK 4.7. Let(P;) be the semigroup of transition probability kernels of
our diffusion (X;). Notice that under (4.5), we have (4.6) which entails not only
the existence and uniqueness of the invariant probability measoife( P;), but
also

W5 (Pi(x,-), Pi(%, ) <e”|x — &J,

which gives us the exponential convergence below:

1/2
Wg(P,(x,~),M)§e_3’</ |x—i|2du(£)> VxeR >0

Let us present a Hoeffding type inequality for

F(y) = fo "V,

whereV :R? - R satisfie|V||Lip < «. For suchV, || F||Ljp < a wW.r.t. the metric
given in the proposition above. Hence, by Theorem 1.1, Proposition 4.6 entails

B [TV ()~ BV ar > ) <enpf

,
2nC

) Vr>0.
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5. A direct approach to T>(C) for SDEsvia stochastic calculus.

5.1. T»-inequality of the Wiener measure w.r.t. the Cameron—Martin met
Let us extend thd»-inequality of the Gaussian measure due to Talagrand to
Wiener measur® on C ([0, T'], R¢), by means of Girsanov formula. Givéh« P
such thatH (Q/P) < 400, then undefQ, there exist a Brownian motio{B;) and
a predictable proces,) such that the coordinates systépp) of C([0, T'], RY)
verifies

dy; =dB; + B;(y)dt, yo=0.
Moreover, it is well known that [see the proof of (5.7) below in a much m¢
complicated case]

T
(5.1) H(Q/P) = iEC fo B2(y) dt.

Consider the Girsanov transformatidn(y) := y (-) — [y B:(y) dt. Then the law
of (y, ®(y)) underQ is a coupling of(Q, P). Hence, w.r.t. the Cameron—Marti
metricdy givenin Remark 4.2,

T
(5.2) (W@ P)? <E%dy(y, d(y))2=EC fo B2 di = 2H(Q/P),

thatis,P € T>(1) on (C([0, T1, R?), dy). We see now why this is sharp. Indeed,
B; is determinist (or, equivalently) is a Gaussian measure), we claim that

T
(W2 (@, P)2 = fo \Bi2d1 = 2H (Q/P).

This follows by the following observation:

LEMMA 5.1. LetX be arandom variable valued in a Banach spdacand H
be a separable Hilbert space continuously embeddefl.iffhen for any element
he H,

W3 (P, Px ) = Il .
wherePy is the law ofX, dy (x, y) := ||x — y||g if x — y € H and+o0 otherwise
PROOF At first [Wﬁl” Px,Pxin)? <E|X — (X + h)||12q = ||h||%,. To show
the inverse inequality, let be a probability measure i such that its marginal
laws are, respectively, laws of and X + &, and [/ ||y — x||12qn(dx, dy) < +o0.

Sincey — (x + h) is centered in the sense tH&k (¢;, y — (x + h))yg = 0 where
(e;) is an orthonormal basis d@f, we have by Jensen’s inequality,

/f ly — 137 (dx. dy) = f/ [h+ (3 = e+ W) |2 (dx, dy) = IR,
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the desired result.

Considering the mappingl () = y (T'), which verifies

W (y) — VY (2| <~vTdg(y1, y2),

we get by Lemma 2.1 and (5.2) that(0, T 1;) € T>(C) onR¢ w.r.t. the Euclidean
metric with the sharp constaat= T (the theorem of Talagrand).

REMARK 5.2. Gentil [7] proved the dual (functional) version of the
T>-inequality of the Wiener measure w.rthe Cameron—Martin metric by gen-
eralizing the approach in [1]. The proof here is completely different and seems tc
be simpler and direct.

REMARK 5.3. Recall the method of Talagrand for proving ligC) for
N (0, 1;). At first by independent tensorization, he reduces to dimension 1. And in
dimension one, he uses the optimal transportation of Fréchet putting fopnard
N(0,1) to fdy, and a direct integration by parts yields miraculously Bi&C).
The method here is completely different, we use the Girsanov transformatior|
which putsQ back toP instead of an (eventual) optimal transportation putting
forward to Q. The approach of Talagrand is generalized recently by Feyel and
Ustunel [6] who succeed to construct the optimal transportation Féo1Q on an
abstract Wiener spacédv, H, P).

We learned very recently (10 monthes after our first version) from Fang that the
method of Girsanov transformation here has been used by Feyel and Ustunel [§
in a less elementary manner. So the result of this paragraph is due to them.

5.2. T»-inequality of diffusions w.r.t. the Cameron—Martin metrié/e now
generalize the preceding argument to solution of the SDE

dX;=dB, +b(X;)dt,  Xo=xeR?,
where(B,) is aR?-valued Brownian motion. We assume that C1 and
IVb] < K.
For any pathy € C([0, T], R¢) with y (0) = 0, letd(y) = n be the solution of

t
() =x+ () +fo b(n(s)) ds.

Then the solution of the SDE above is given X¥y= ®(B.). Hence, for proving
the T»>-inequality of X. w.r.t. the metricdy, it is enough to show tha® is
dg-Lipschitzian. To this end, consider

d
g(t) = e ®(y +¢eh)lq—o,
£
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whereh € H is fixed. It satisfies

t
g(t) = h(t) + /0 Vb(n(s))g(s) ds.

Its solution is given by

t
g(1) = /0 J (s, N (s) ds.

whereJ (s, t) is the solution of the matrix differential equation
d
(5.3) J(s,s) =1y, E](s,t):Vb(n(t))J(s,t).

Since V*b < BI, for someB < K, we have|J(s,1)y| < eBU=9|y| Vy e R4,
Consequently,
t
{G] 5/ B0 (5)| ds.
0

Thus, by Cauchy-Schwarz,

T T
gl <2 /O ' (1) [%dt + 2 fo IVb(n(1))g (1) dt

T t 2
§2||h||%,+2K2/ [/ eB<f—S>|h’(s)|ds} dt.
0 0
Note that

Tr rt 2 T T T
/ { / eB<f—S>|h/(s)|ds] dt = / f |h’(u)||h’(v)|[ f e23f_<"+v>dz]dudv
0 0 0 0 uvv

= (CIW'], 11']) L20,77)

where
2BT _ eZB(u\/v)

—B(u+v) € ;
F(u,v)={e e 2B ’ it B #0,
T—uvv, if B=0
andI'f(u) := fo ['(u,v) f(v)dv. Let Amax(I") be the largest eigenvalue bfin
L%([0, T]). We havermax(l) < ||r||1, the norm ofl" in Ll([o T]) It is easy to

getT1 <5 if B<O,|1=< BZ if B>0, and||F||1— °if B=0. Thus,
setting
K? .
2(1—|— ﬁ) if B<0,
) ) ¢2BT
(5.4) a“:=a“(T,K, B) = 1 2(1+1<2 2) if B> 0,
( ) if B=0;
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we get by the estimates above that|?, < «2||k|%,, thatis,| ®||Lip,) < . Thus,
Lemma 2.1 (which remains valid for the pseudo-mettig) together with the
T»>-inequality for the Wiener measure gives us the following:

PROPOSITIONS.4. Assumev®b < Bl; and||Vb| < K, then for every initial
point x, P, € T»(a?) on C([0, T], RY) wir.t. the metricdy, wherea? is given
by (5.4).

REMARK 5.5. Of course, the estimate ¢ || ip,) < « together with the
log-Sobolev inequality of Gross for the Wiener measure gives us also

2
EEDXFZ

F2log P, < 2a2/ IDF |2, dP;,

/C([O,T],Rd) C([0,T],R%)

which is better than the Capitaine—Hsu—-Ledoux’s estimate in Remark 4.3 wher
B <O0.

It is interesting to investigate whether this proposition and the corresponding
log-Sobolev inequality continue to hold in the case wheété < B1; with B <0
without condition|| Vb || < K.

5.3. T»-inequality of diffusions w.r.t. theé2-metric. Perhaps the most elemen-
tary metric onC ([0, T], R%) is the foIIowinng[O, T1-metric,

T
do(y1. y2) = /0 () — y2() 2.

Indeed, the argument leading to theinequality of the Wiener measure will yield
the following robust»>-inequality w.r.t. the metric above:

THEOREMS5.6. Assume thad, b are locally Lipschitzian and satisfy.5)for
somes > 0,and||o ||« := Sup|o (x)z|; x € R?, |z] < 1} < 400. ThenP, € T»(C)
on C([0, T1, RY) wir.t. the L2-metric d> above for allx e R? and T > 0, where
the constanC is given by

oo otk
=2,

2
Moreovey Pr(x, -) € Tz(%) onRR?, as well as the unique invariant probability
measureu of (P;).

REMARK 5.7. The twol»-inequalities in this theorem are both sharp. Indeed,
letd =1, 0(x) =1, b(x) = x/2, that is, (X;) is the standard real Ornstein—
Uhlenbeck process, whose invariant measureVi®©, 1). By this proposition,
€ T>(C) with C = ||o'||2,/28 = 1, which is sharp.
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For the sharpness of ti&-inequality forP, w.r.t. d2, note that any Gaussiat
measureN (m, ¥) on R”" satisfiesT>(C) with the sharp constan® being the
largest eigenvaluenax(X) of the covariance matrixz. This can be extended
easily to any Gaussian measure- N (m, X) on any separable Hilbert space
where the covariance matriX is a Hilbert—Schmidt operator o6. Hence, if
(X1)r>0 is a Gaussian process with paths a.sLM([0, T1,dt), then its lawP
satisfies thel>(C) on L2([0, T], dt) with the sharp constar@ = Amax(X), the
largest eigenvalue of the operator

T
Xf(s) ::/ Cov(Xy, X;) f(t)dt Vfe L2([0, T, dt).
0
For the Ornstein—Uhlenbeck process [Byabove starting from 0, Ca@X,, X;) =
exp(—|t —s|/2) —exp(—(s +t)/2). In that case,

(X10,77, Lj0.17)
T

Hence, the constar® = ||o'||?/82 = 4 in the T>-inequality for P given by our
theorem becomes sharp whEn— +oo.

Amax(2) > — 4 asT — oo.

PrROOF We shall prove that for any > 0, for any probability measur® on
C(I0, T1,RY),

(1= D7)|o

o2,
o H@P)

(5.5) (WE2(Q, Py))° <2

and for any probability measureon R”,

(e—25)t 2
(56) (Wde(v’ PT(X, )))2 < ZSUQG[O,T] € ||G||OO H(V/PT(X, ))

Choosinge = § in (5. 5) we get the first claim in the theorem; letting 25, we

getPr(x,-) € Tz(”(’”m) by (5.6) and thenu € T2(|| ||°°) by Lemma 2.2 and the
fact thatPr(x, ) — n asT — oo (see Remark 4. 7)

It is enough to prove (5.5) fo « P, and H(Q/P,) < +o0. We divide its
proof into two steps.

&

Stepl. We do at first some preparation of stochastic calculus(Det¥, P)
be a complete probability space on whictmalimensional Brownian motion

.....

by P). Let Xt(x) be the unique solution of (4.1) starting from Then the law
of X.(x) isP,. Consider

. d . - /d
Q::dﬁ. P, Mt::EP(ﬁ(X.(x))/}‘J Vrel0,T].
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Remark that, a€) is a probability measure and the law &f(x) underP is
exactlyP,, we have

dQ
C([0,T],RY) dPy

d -
A dIE% (XC0)dl = (w) dPy(w) = Q(C(0. T). R)) = 1.

(M;) is a martingale can and will be chosen as a continuous martingale. Lef
7 :=inf{t € [0, T]; M, = 0} with the convention that inb := T+, whereT +
is an artificial added element larger th@n but smaller than ang > 7'. Then
Q(r=T+)=1and

M; =1, exp(L, — 3[L1;),
% Vi < 1. (L;), being aP-local martingale ori0, 7), can be

represented in the following way: there is a predictable pro¢g3s= (ﬁ,j)og<r
such thatf} |81%ds < +oo, P-a.s. ont < t] and

where L, := [j

n r ) t

L,:§jf ﬂgngzf (B.dBy) Vi<t
— Jo 0
j=1

Lett, =Iinf{r € [0, [; [L]; = n} with the same convention that iaf:= T +. It is
elementary that, 1 t, P-a.s. Hence, by martingale convergence,

H(Q/P) = H(Q/P) = E*Mrlog M7 = lim EF My, log M7 v,

= lim E%(L7ng, — 3[L17Ax,)-

n—o0

By Girsanov’s formula(L; ., — L]z, )0, 7] IS aQ-local martingale, then a true
martingale since its quadratic variation process urigidreing again([L]az,), IS
bounded byx. Consequentl)dE@(LTMn — [L]r Ar,) = 0. Substituting it into the
preceding equily and noting thatQ(z, 1 t = T+) = 1, we get by monotone
convergence,

(5.7) H(@/P) =3 lim E¥Llr, = iE%L)y = $EO fo ey
Notice that this is an extension of (5.1).
Step2. By Girsanov’s theorem,
B; :=B; —/;)tﬁsds

is a Q-local martingale with[B?, B/, = [B', B/], = 1,—;¢, hence, a Brownian
motion under). UnderQ, X, = X, (x) verifies

dX;=0(X;)dB; +b(X,)dt + o (X,) B, dt, Xo=x.
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We now consider the solutior} (underQ) of
dY, = o (Y,)dB, +b(Y;)dt, Yo =x.

The law of (Y;):e[0.17 under@ Is exactlyP,. In other words(X, Y) under@ is a
coupling of (Q, P,.).
Setting

X, =X, - Y, 6 =0(X;) —o(Yy), b :=b(X,) — b(Y,),
we have
(5.8)  dIX,>=[2(X,, b + 0 (X)B,) +tr(G0)]dt +2(X;,6,dB,).
Letting 7, :=inf{r € [0, T]; |X,| = n}, we have that for any > 0,

AT,
(X5, 0(Xs)Bs) ds

t ) A
=(e-2) [ EY% 2 18,2 ds.
Gronwall’s lemma, together with Fatou’s lemma, gives us
(5.9) EQ|X,? < lo OOEQf (E=20)(=91812ds Vit >D0.

Thus,

(We2(Q. P,))> E@/ X, 12d1

- T
< QE@/ |ﬁs|2ds/ HE=2)1=9) 4,
& 0 s

2 (25—&)T . T
1-
< o, 2= ¢ E@/ 1851 ds,
£ 26 — ¢ 0

the desired (5.5). For (5.6), notice that by the key remark (2.1),
H(v/Pr(x, ) =Inf{H(Qlco,r1.r¢)/Pxlc(o,11.re)); O := Qlxr € -) = v}.

And for each suchp, defineQ as before, we have

[We (v, Pr(x,dy)? < EQ| X7

and conclude using (5.9).0]

REMARK 5.8. After the first version was submitted, we learned from
Ledoux the work of Wang [20] who obtained the(C) w.r.t. the L?-metric for
the elliptic diffusons with lower bounded; condition of Bakry on a Riemanniar
manifold. His method consists of a continuous time tensorization off$€)
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of the heat kernels (which is true by the log-Sobolev inequality due to Bakry).
Hence, the method and the result here are very different from his: the volatility
coefficiento could be completely degenerated in Theorem 5.6, and our proof does
not rely on the log-Sobolev inequality which is unknown in our context.

REMARK 5.9. By the proof above, we see that (5.5) and (5.6) hold under (4.5)
even withs < 0, except now th&s-constant goes to infinity a8 — +oo.

REMARK 5.10. The local Lipschitzian condition om, » in this theorem
can be substituted by their continuity together with the well-posedness of the
martingale problem associated witlao’, b). Indeed, one can findo", b")
tending locally uniformly to(o, b), such that(c”, b") is locally Lipschitzian,
lo"lo < llollcoc @and verifies condition (4.5) with the sanie Now the desired
result follows from Theorem 5.6 and Lemma 2.2.

As indicated in [1], many interesting consequences can be derived from this
result. For instance

COROLLARY 5.11. Under the assumptions of Theoré&n®, we have for any
T >0,

(a) for any smooth cylindrical functiorF on G := L2([0, T],dr; RY) >
C([0, T1, RY), that is

FeFC®:={f(y,h1),.... (v, hu));n=1,hi € H, f € C;°R")}

[where(y1, y2) fo y1()y2(t) dt], the following Poincaré inequality holds

o112
(5.10) Varp, (F) < —> IVF ()% dPy(y),
1) C([0,T],R9)

whereVarp_ (F) is the variance of under lawP,, andV F(y) € G is the gradiant
of Faty
(b) Foranyg € C°(RY),
lo 115 >
(5.11) Varp; r.)(8) = == i IVe)|“Pr(x,dy).

(c) (Inequality of Tsirel'son type.lfor any nonempty subsét in G such that
Z(y) :=sup,cx (v, h) € LY(P,), then

hi2 2
(5.12) fexp( sup[ (y,h) — 2 lGD dP, 5exp< ) > EPXZ)
lo 12 hek 2 loll5%
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(d) (Inequality of Hoeffding type.for any V : R¢ — R such that]| V|| ip < «,
1 (T 1 (T
]P)<7./0 V(Xt(x))dt—E?/o V(Xt(x))dt>r>

T 2 2
gexp(—%> Vr>0.

20262

PrROOFR For part (a), for anyF(y) = f((y,h1),....(y,hn)) € FC°, we
may assume without loss of generality that . . ., 4, are orthonormal. In such
case,

Oy — (y,h), ..., {(y, hy), G — R"

is Lipschitzian with||®||Lip < 1. Hencep :=P, o ®~1 € Tu(||o |3, /6%) onR" by
Lemma 2.1. Thus, the result of [1], Section 4.1 entails

2
Varp (F) = Var,(f) < ”08!00 fRn IV fI?dv

_lol% f IVE()I2 dP.(y).
82 Jeqo,r1.RY)

Part (b) is a consequence of Theorem 5.6 by [1], Section 4.1. One can d
part (c) from Theorem 5.6 by the same argument as in the finite-dimensional
given in [1], Section 6.1. For part (d), note tHBEt(C) = T1(C). Moreover, the
function F(y) :=(1/T) fOT V(y())dt on C([0, T1,R?) is Lipschitzian w.r.t. the
L?-metric and| FlLip < «/~/T. Hence, part (d) follows from Theorem 1.1

REMARK 5.12. Let us compare thi(C)-inequality onC ([0, 7], R?) w.r.t.
the L2-metric d» or the Cameron—Martin metridy, denoted, respectively, by

T2(C/d2), T2(C/dp).

(@) If y1(0) = 12(0), thenda(y1, y2) < Z%dH(yl, y2) by the classical Poincaré
inequality. Hence, if the lawP, of our diffusion starting fromx verifies
T>(C /dy) on C([0, T1,R?), thenP, € To(C(4T?/n?)/d>) on C([0, T, RY).
That orderT? in the lastT>-inequality is of correct order. For example, fq
the real Wiener measur®, we see by Section 5.1 th&#t e T>(1/dy) on
C ([0, T1, RY), but the largest eigenvalugnax(I") of the covariance function
[(s,7)=s Atin L%([0, T) verifies

(CLjo.r), o) T2
T 3’

Amax(I') >

Thus, by the same analysis as in Remark B.¢,7>(CT?/d) with 4/7? >
C = Aimax(I") > 1/3.
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(b) The contribution ofy1(r) — y2(¢)| to the L?-metric is homogeneous in time
t, but not at all to the Cameron—Martin metdg . This is the principal reason
for

(b.1) TheT>(C/dy) is well adapted to the small time asymptotics of the
diffusions, but not for their large time asymptotics. For instance?,ife
T2(C/dy)), since for Z(y) = supy<,<r Iy 1) — v O, 1 ZllLipws) < VT,
then by Theorem 1.1 (its necessary part remains truedfpiLipchitzian
function F which is, moreover, integrable, by following the proof in [2]),

2
_ _rx _ < _
IP’X(O;USpT|Xt(x) x| —E O:tuSpT|X,(x) x| >r) _exp( 2CT>

which is of the correct order wheh — 0+, but completely meaningless for
large. See [21] for the nonadaptability of the log-Sobolev inequality w.t.
for the large time asymptotics of the diffusions.

(b.2) In contrary, we have seen that th&C/d>) is very well adapted for
the large time asymptotics of the diffusions.

REMARK 5.13. Theorem 5.6, together with Corollary 3.5, is our main new
example for whichT»>(C) is true but the inequality of log-Sobolev is unknown.
They are our (very partial) answer to Question 3 in the Introduction. We believe
that in the situations of Theorem 5.6 and Corollary 3.5, the log-Sobolev inequality
may fail without further regularity assumptions on the volatility coefficient
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Abstract. By direct calculus we identify explicitly the Lipschitzian norm of the solution of the Poisson equation —£G = g in
terms of various norms of g, where £ is a Sturm-Liouville operator or generator of a non-singular diffusion in an interval. This
allows us to obtain the best constant in the L!-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and
some sharp transportation—information inequalities and concentration inequalities for empirical means. We conclude with several
illustrative examples.

Résumé. Par un calcul direct, on identifie explicitement la norme Lipschitzienne de la solution de 1’équation de Poisson —L£G = g
en terme de différentes normes de g, out £ est I’opérateur de Sturm—Liouville ou le générateur d’une diffusion non singuliere sur un
intervalle. Ainsi, nous pouvons obtenir, d’une part la meilleure constante dans 1’inégalité de Poincaré L (une inégalité un peu plus
forte que I’inégalité isopérimétrique de Cheeger) et d’autre part certaines inégalités de transport-information et de concentration
fines pour la moyenne empirique. On conclut avec des exemples illustratifs.

MSC: 47B38; 60E15; 60J60; 34L15; 35P15

Keywords: Poisson equations; Transportation—information inequalities; Concentration and isoperimetric inequalities

1. Framework and introduction

Let I be an interval of R so that its interior 1 = (xo, yo) where —0o < xg < yp < +o0. Consider a Sturm-Liouville
operator on /:

L=a(x) & +b(x) d
=a(x)—= xX)—
dx? dx
with the Neumann boundary condition at 9/ = {xg, yo} N R, where a, b: I — R are measurable and satisfy:

(A1) a, b are locally bounded (i.e., bounded on any compact subinterval of 7);
(A2) a(x) > 0, dx-a.e. and 1/a is locally dx-integrable on I.

Here dx is the Lebesgue measure. On I, £ can be rewritten as the Feller’s form

1 d 1 d d d
= @ ) =—_, (1.1)
m'(x) dx (s’(x) dx) dm ds
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where m, s are respectively the speed and scale functions of Feller, which are absolutely continuous functions on /
such that dx-a.s.

s'(x) = exp(— /x % du) and m'(x) =

where c is some fixed pointin /. Let C3° (/) be the space of infinitely differentiable real functions f on I with compact
support and D be the space of all functions f in C3°(1) such that f'|3; =0 (i.e., satisfying the Neumann boundary
condition). The operator £ defined on D is symmetric on L2(I, m), where m denotes also the measure m’(x) dx. Let
(X;: t > 0) be the diffusion on the interval I generated by £ (the Neumann boundary condition corresponds to the
reflection at the boundary 7). See [17] for background and precise definitions.

We will assume that:

a(x)s’(x)’ (1.2

(A3) the diffusion is non-explosive and positively recurrent, i.e., m(l) = f 7 m’(y)dy < +o0 and

f)’o f(x)(/x m'(y) dy) dx=+o00 ifyy¢l,

/Cs’(x)(/cm’(y)dy>dx:+oo ifxg ¢l
X0 X

(A4) the generator £, definedon D ={f € CSO(I); f'lar = 0}, is essentially self-adjoint on L3(1,dm), or equiv-
alently [11,12]:

s & L*((xo,cl,dm) ifxo¢1; and s¢L*([c,y0),dm) ifyo¢l.

Notice that when a(x) =1 and I = R, the assumptions (A3) and (A4) are automatically satisfied once if m(I) < +o00
(see [17] for (A3), [12] for (A4)).

Throughout this paper we assume that (A1)—(A4) are satisfied. In that case (X;);>¢ is reversible w.r.t. the probability
measure u(dx) = ﬁm’ (x)dx. Let (P;);>0 be the transition semigroup of (X;);>0, L2 the generator of (P;) on
L2(I, u) with domain D(£,), which is an extension of (£, D).

Consider the Poisson equation

—L2G =g, (1.3)

where g € L2(I, 1) such that u(g) = f ; &dun = 0. By the ergodicity of the diffusion, the solution G of the Poisson
equation, if exists, is unique in L2(I, ) up to the difference of some constant. In the physical interpretation of the
heat diffusion, g represents the heat source, G is the equilibrium heat distribution.
The objective of this paper is to estimate
IG(y) -Gl

IGlLip(p := sup — L (1.4)
POV elney 1000 — p@)]

in terms of various norms on the heat source g. Here p is some absolutely continuous function on I such that p’(x) > 0,
dx-a.e.

Let A be the spectral gap of £, i.e. the lowest eigenvalue or spectral point above zero of —L;. Then cp := Afl is
the best constant in the following Poincaré inequality

Var, (f) < cp /1 @) f' 0 du(), feD, 15)

where Var, (f) := /,L(fz) — (/L(f))2 is the variance of f w.r.t. w and w(f) := f, f du. The importance of the spectral
gap is that it describes the exponential convergence rate:

|Pif = w(H|, <e™™ | f=uH], vi=o,
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where | - ||2 is the L2(I, j)-norm. The constant A can be also interpreted by means of the Poisson equation:

1G = w(G)[, <cpligla or /a(x)G/(x)sz(x) <cpligl?
1

Those physical interpretations explain why the study of A or cp is of fundamental importance. Since the study on
A1 is of a very long history, it is not possible for us to describe even the main line, the reader is referred to the books
[9,24] for bibliographies. For the stronger log-Sobolev inequality, the first characterization was due to Bobkov—Goétze
[3], see [2,9] for further improvements of constant.

Our initial motivation was to understand Chen’s variational formula for A; [8]:

s :
cp =infsup — f [0(t) = (o))’ (1) dr, (16)
P xel P (x) x

where p runs over all C!(7) functions with p’ > 0, in L%(/, ). Notice that no variational formula is known for
the best log-Sobolev constant on the real line. But our main motivation comes from some concentration inequalities
for the empirical mean (1/t) fol g(X;)ds, which are immediate consequences of the estimate on [|G||Lip(p) Via the
forward-backward martingale decomposition or transportation—information inequalities developed in [15], see also
[18].

Our method for estimate of ||G||Lip(p) is direct: the solution of the Poisson equation (1.3) can be solved explicitly
(unlike the corresponding heat equation), only some further (easy) control is needed for completing the job. Besides
those motivations, the estimation of G’ is physically meaningful: in the heat diffusion problem, in presence of the heat
source g with u(g) =0, G represents the equilibrium heat distribution; an estimate on |G’| allows us to control the
variation of the equilibrium heat distribution.

This paper is organized as follows. In the next section, we state the main results and present several applications in
concentration inequalities and transportation—information inequalities, L'-Poincaré inéquality (a little stronger than
the Cheeger isoperimetric inequality), and provide several examples to illustrate the results. In Section 3 the proof of
the main result is given.

2. Main results and applications
2.1. Main results

Given an absolutely continuous function p:I — R such that p’ > 0, dx-a.e., let d,(x, y) = |p(x) — p(y)| be the
metric on [ associated with p. If the Lipschitzian norm || f||Lip(p) of f w.r.t. d, defined in (1.4) is finite, we say that
f is p-Lipschitzian. Let L3(I, ) :={f € L*(I, n); n(f) = 0}.

Now, we can state the main result in this paper.

Theorem 2.1. Assume (A1)—(A4) and let p, p1, p2 be absolutely continuous functions on I such that p, px € L3(1, ),
P, p; >0, dx-a.e.

@ If

/ Yo
cLip(p1, p) i=esssup S / [p1(t) — (o))’ (6)dr < 40, 2.1)

xel Pz(x)

then for any p1-Lipschitzian function g € L(z)(l, 1), there is a unique solution G with u(G) = 0 belonging to the
domain D(Ly) of the Poisson equation (1.3). Moreover, G (or one dx-version of it) is p>-Lipschitzian and satisfies

1GlILip(ps) =< cLip(o1, 2) 1 €lILip(or)- 2.2)

Furthermore, this inequality (2.2) becomes equality for g = p1 — u(p1).
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(ii) Let ¢:1 — RY be a nonnegative function in L3(I, ). If

s’ (x)

X + —
p (x)m(1)<,u(1x )/l;(pdu-i-,u(lx )/;ﬁwdu) < +o00, (2.3)

c(p, p) :=esssup
xel

where It ={y eI, y>x}, I ={y €1; y < x}, then for any function g € L2, ) such that |g| < @, there is
a unique solution G with u(G) = 0 to the Poisson equation —L,G = g — u(g). Moreover, G (or one dx-version
of it) is p-Lipschitzian and satisfies

sup (|G llLip(p) = c(@, p). 2.4)
g:lgl<e

Its proof is postponed to Section 3.

Remark 2.2. Let Crip(p),0 be the Banach space of all p-Lipschitzian functions g with j1(g) = 0 equipped with norm
Il - ILip(p)- Part (i) above says that the Poisson operator (=L~ L CLip(p1),0 = CLip(p2),0 is bounded and

L7 ey 0 Crnipmno = CLi(P1 £2)- 2.5)
Since L is self-adjoint on L(Z)(I, W), a general functional analysis result (see [25], Proposition 2.9) says that

-1 -1
— < —
H ( 52) || L(Z)([,,u,) — || ( [:2) || CLip(p).0—=>CLip(p).0
But the left-hand side is exactly the Poincaré constant cp, so we get

cp = H (_Ez)_l ”CLiP(/’)vO_)CLiP(p),() = cLip(p’ p)

which is exactly the ‘<’ part in (1.6). We now outline the idea of Chen for the converse inequality in (1.6). If the
eigenfunction p associated with A1 = 1/cp exists, i.e. —Lop = L1 p, it must be strictly monotone (see [9]) and then
could be assumed to be increasing, and p’ is given by (3.2) with C = 0 and g = L1 p (see Section 3 for the reason why
C=0),ie.

Yo
olx) = Als/(x)/ [0@) = w(p)]m' () dt,  dx-a.s.,

where the ‘>’ part in (1.6) follows. When X1 has no eigenfunction, Chen proved the converse inequality by using a
sequence of increasing functions p € L%(l , W) approximating this virtual eigenfunction.
That is our interpretation to Chen’s variational formula (1.6).

Remark 2.3. Let ||gll, be the largest constant ¢ such that |g(x)| < co(x) over I and byBB be the Banach space of those
measurable functions g such that its norm || glly is finite. Let Pg = g — ju(g): LI, ) — L%(I, L), the orthogonal
projection. Part (ii) above means that (L)~ P s bounded from byBB to CLip(p),0 and its norm is exactly c(¢, p).

2.2. Applications to transportation—information inequalities and concentration inequalities

For any probability measure v on 7, say v € M ([), the Wasserstein distance between v and p w.r.t. a given metric d
on / is defined by

Wiao =inf [ [t mar.a),
g 12
where 7 runs over all couplings of v, u, i.e. all probability measures 7 on I with the first and second mar-

ginal distributions v, u, respectively. When d is the trivial metric (d(x, y) = lyxy), 2Wia(p,v) = |u — vlTv :=
sup; s1<1 1(n — v)(f)I, the total variation of u — v.
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Under (A1)—(A4), the Dirichlet form (£, D(E)) associated with the transition semigroup (P;) of (X;) is given by
D) =D(v~L2) = { feL* (I, wNAC), / a(x) f'(x)*du(x) < +oo},
I

ECf f) = f, a) /P dul),  f D).

For f, g € D(E), let I'(f, g) = af’g’ be the carré-du-champs operator. The Fisher—-Donsker—Varadhan information of
v w.r.t. i is defined by

d d : d
T =1 WG Jan). ifv<uand [ e DE), 06
+o00, otherwise.
_ox 1 . . . . e .
Recall that for pp(x) = fc o] dy the associated metric d, (x, y) = |po(y) — po(x)| is the intrinsic metric of the

diffusion (X;).

Corollary 2.4. Assume (A1)~(A4). Let p € AC(I) N L*(1, ) so that p'(x) > 0, dx-a.e. and
0
¢y =esssups'(Va) [ [p) — (e () dy < +ex. @)
xel X
Then for all v e M (I)

(Wi, (v, w)* <4c21(v|), 2.8)

or equivalently for every p-Lipschitzian function g on I, we have for any initial measure v < p and t,r > 0,

( tr? ) 2.9)
exp[ —————— ). )
L2(1,1) 4c2 ||g||fip(p)

Proof. Remark that ¢, = cLip(p, po), the constant given in (2.1). The equivalence between the transportation—
information inequality (2.8) and the Gaussian concentration inequality (2.9) is due to Guillin et al. [15], Theorem 2.4.
By Kantorovitch-Rubinstein dual equality, (2.8) is equivalent to: if [ gllLipp) < 1,

1 t
Pu<—/ g(Xs)ds > u(g) +r> <
t Jo du

2
(/gd(v—u)> S4C§I(VIM) Yv e M(I).
1

We may assume that I (v|p) < 400, i.e., v = hZu with h € D(E). Let G be the solution of —£,G = g — u(g) with
1 (G) = 0 (its existence and uniqueness is assured by Theorem 2.1(i)). Notice that with f = "2 (h>0),

/Igd(v—u«) =(-L26G, [)=£E(G, f)=/1a(X)G/(X)f/(X)dM(X)

< esssup[/a(o)|6 /0] [ Vall £ |0 duce)
< 2,/ (B2 u[ah?] =2¢p /T (vIp), (2.10)

where the last inequality follows by Theorem 2.1(i) and Cauchy—Schwarz inequality, for esssup,c; v/a(x)|G'(x)| =
G lILip(po)- U

Remark 2.5 (Proposed by the referee). If the observable g is fixed and absolutely continuous, the best choice of p for
the Gaussian concentration inequality (2.9) is p such that p' = |g’'| by Lemma 3.2 in Section 3 (though such p is not
strictly increasing, but Theorem 2.1 is still valid as seen for its proof).
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Remark 2.6. The second inequality in (2.10) can be read as

Wip(fit 1) <, /I TG P du < 2e) /T,

Repeating the argument above but using part (ii) of Theorem 2.1, we get (2.11) below.

Corollary 2.7. Assume (A1)—(A4). Let0 < ¢ € L2(1, ) such that c(p, po) < +o0o. Then forallv= fu e Mi(I),

lew — )|y < cle. po) /1 VI, fdm < 2c(p, po)y/1(v|w). (2.11)

Or equivalently for every g :1 — R such that |g(x) — g(¥)| < Bp(x,y) :==[0(x) + @(y) 12y (ie., ||g||Lip(,3¢) <1,
we have for any initial measure v K p and t,r > 0,

( tr > (2.12)
€X _ . .
L2(1,) P 4c(@, po)?

The Gaussian concentration inequality (2.12) follows from (2.11) by [15], Theorem 2.4, and the fact that || (v —
wltv = SUPg: gl Lip(gp=1 f, gd(v — ) (cf. [14]). Notice that S, is a metric once ¢ is positive (and a pseudo-metric
satisfying the triangular inequality in the general case).

t
Pv<lf g(Xs)ds > u(g)+r> <=
t Jo du

Remark 2.8. When ¢ =1 in (2.11), the constant c(¢, po) becomes

cs :=2esssupv/a(x)s' )m D (L (1), (2.13)
xel
where 7, I are given in Theorem 2.1; and the inequality (2.11) becomes: for every j-probability density f € AC(I)

fl 1 — ld < e fl I P du < 2e5/TCFalio). (2.14)

It was proved by Guillin et al. [15], Theorem 3.1, that if the Poincaré inequality holds, then

/Ilf —dp < 2eG Tl

with the best constant cg < 2cp (the index G is referred to the equivalent Gaussian concentration inequality); and
conversely if the last inequality holds, then cp < 2cg.

Remark 2.9. Gozlan [13] has established some connections between Talagrand’s transportation—entropy inequalities
and weighted Poincaré inequalities, see also [23].
The concentration inequalities (2.9) and (2.12) do not contain the asymptotic variance of g:

t

1
GZ(g) ::llim ?Varpu (/ g(XS)ds)
—>00 0

which plays a fundamental role in the central limit theorem (then in statistical applications). This is provided in the
following Bernstein’s type concentration inequality.

Corollary 2.10. Assume (A1)—-(A4). Suppose that the constant cs in (2.13) is finite.
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(i) If the constant c,, in (2.7) is finite, then for every p-Lipschitzian function g with ||g|lLip(p) < 1, we have for any
initial measure v < wand t, x > 0,

dv
du

—1x

!
P, (;/ g(Xg)ds > u(g) + \/(202(g) —1—40'% min{l, caﬁ})x> <
0

e
L2(1, )
(ii) If the constant c(¢, po) in (2.3) is finite, then for every measurable function g such that |g(x) — g(y)| < ¢(x) +

@(y), the inequality in (i) holds with c,, replaced by c(¢, po).
Proof. Our proof below follows [16].

(i) We may and will assume that | gl ip(p) < 1. Let G be the solution of —LG = g — u(g). Notice that oz(g) =
2(G, g)u =2£(G, G).
We have for v = h?p with I (v|u) < 400,

/gd(v — 0 =2/aG/hh/du(x) < 2\//61G’2h2 du - I (vw).
! ! !

Since 0 <aG”? < ||G||iip( o) = ¢2 by Theorem 2.1(i), using the fact that [, F d(v — u) < 3|lv — |1y for F verifying
|F(x) — F(y)| <1, we have by (2.14),

2 2
/aG’zhzdu,ffaG’zdu+7p/]h2— 1dp<? 2(g) +min{1, es/ T ).
1 1 1

Plugging it into the previous inequality (for £g), we obtain

2
(/Igd(v — m) < (20%(g) + 42 min{1,c5/ TGO )T Wlw) Vv,

This is equivalent to the desired concentration inequality by [15], Theorem 2.4.
(ii) The same argument as above (but using part (ii) of Theorem 2.1 instead of part (i)), we have Vg such that

lgl<¢

2
(/Igd(v - m) < (20%(g) + 4c(p, po)* min{ 1, csy/T@IW }) T (v]w) Vv

This leads to the desired concentration inequality again by [15], Theorem 2.4.

2.3. L'-Poincaré inequality and Cheeger’s isoperimetric inequality

The Poincaré inequality has a L' counterpart related to Cheeger’s isoperimetric inequality. Namely, let cp | be the
best constant such that the following L'-Poincaré inequality holds: for any f € AC(I) N L'(I, )

/Ilf—u(f)|duScp,lf]\/amlf’ldu, (2.15)

where AC(I) is the space of all absolutely continuous functions on /. Theorem 2.1 allows us to identify the best
constant cp, 1 in the L!-Poincaré inequality (2.15).

Theorem 2.11. Assume (A1)—(A4). The best constant cp | in the L'-Poincaré inequality (2.15) is finite if and only if
cs given in (2.13) is finite. In this case cp,1 = cs.




238  Lipschitzian norm estimate of one-dimensional Poisson equations and applications

Lipschitzian norm estimate of one-dimensional Poisson equations and applications 457

Proof. At first cp,1 < cs, by (2.14) (the passage from p-density f to general f in (2.15) is easy). For the converse
inequality, we may assume that cp,; < +o0. In that case for any g € bB such that |[g| <1, G = (=L ! (g —u(g)
exists (because the Poincaré inequality holds by Cheeger’s inequality). We have for any p-probability density f €
AC(D),

fl ()G () f/ (1) du(x) = (—L2G = (g0 f — D
5/IIf—llduScm/I\/a(x)|f'(x)|dM(X)-

That implies |G |Lip(py) = €sSSUp,c; v/a(x)|G’(x)| < cp,1 (however this elementary fact do no longer work in the
multi-dimensional case). Hence ¢5 < cp | by Theorem 2.1(ii). O

Let us discuss now some connections between (2.15) and isoperimetric inequalities. Consider the intrinsic metric
dp, associated with the diffusion where po(x) = fL o] dy, and the corresponding isoperimetric function

L(p) :=inf{uuy(0A): u(A) = p}. pe,1).

Here 0A is the boundary of A and the surface measure p; of A is defined by (3 A) = liminfy ¢, M and

Ag ={x €1, such that d,,(x, A) < ¢}, the e-neighborhood of A.

Remark 2.12. Let ccpeeger be Cheeger’s isoperimetric constant of |1 w.r.t. the intrinsic metric d,, i.e. the best constant
in the following Cheeger isoperimetric inequality

min(u(A), 1-— M(A)) < Ccheegerits (0A)

for all measurable subsets A C I, or equivalently 1,,(p) > L min{p, 1 — p}. It is well known (cf. [4,20]) that
i

— Ccheeger
Ccheeger 18 also the best constant in the functional version of Cheeger’s isoperimetric inequality below: for any f €

AC(HNLYU, w)

j;‘f_mu(f)|d/$fccheeger/lva(x)’f/‘dﬂv (2.16)

where m,, (f) is a median of f w.rt. u (via Co-Area formula). Since

1
s#(lf = mHl) = ullf =mu (D)) = (| f = ()

we have
1
ECP,I =< Ccheeger = CP,1- 2.17)

The two inequalities above are both sharp as seen for the examples later. An important result of Bobkov—Houdré [5],
Theorem 1.3, says that

_ m (1) min{p (1), n(1;))
Ccheeger = €SSSUP

xel m'(x)/a(x)
= esssupm(1)y/a(x)s’(x) min{u (1), u(1;)} (2.18)
xel

or say roughly, the extreme set for Ccpeeger is a semi-interval 1 ;‘ . In recent years, the best constant Cepeeger (in multi-
dimensional case) has been extensively investigated, see [1,5,7,20,22,26] and relevant references therein.
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Remark 2.13 (Proposed by the referee). By Bobkov—Houdré [4], Theorem 1.2, the L'-Poincaré inequality (2.15) is
equivalent to the following isoperimetric inequality associated with d,:

20(A)(A) < cpias (BA) 2.19)

for any measurable subset A of I, or equivalently 1,,(p) > %p(l —p), p €(0,1). That equivalence holds on a
general metric space.

Notice that if a(x) is continuous and positive, c; is just the best constant in (2.19) (in place of cp.1) for A varying
over IF,x el.

When a(x) =1 and pn is log-concave (i.e., u = f dx with log f concave), Bobkov—Houdré [4], Corollary 13.8,
showed that the optimal set for 1,,(p) is I} with w(I}) = p for every p € (0, 1), and then cp,; = cs.

The referee indicates another approach for Theorem 2.11 even for general | not necessarily log-concave, when
a(x) = 1. The idea goes as follows. At first notice that p(1 — p) is the isoperimetric function I,(p) of the logistic
distribution v: v(—o00,x] = (1 +e™*)~'. Following the proof of Bobkov—Houdré 5, proof of Theorem 1.3, if ¢s <
+00, the increasing mapping U :R — I pushing forward v to p must be Lipschitzian and ||U ||Lip = 2cs. Then one
sees that the best constant cp 1 in (2.19) for w is just |U||Lip/2 = cs.

Let us remark finally that the L'-Poincaré inequality (2.15) is equivalent to the following concentration inequality
([4], Theorem 2.1, pp. 20-21):

p

A0) > ,
WA = Y ep(—2e/er )

u(A)=pe©,1),e>0.

2.4. A qualitative description for the boundedness of the Poisson operator

For g € L%(I, W), the solution G with ;(G) = 0 of the Poisson equation —£,G = g, if exists, will be denoted by
(—L£)"'g. One may think naturally that when ¢ is bounded but tends to zero at the boundary 31, the Lipschitzian
norm c(¢, pg) may be finite even if c5 = +o00. The same picture might appear in one’s mind for crip(0, po) when o
tends to O at the boundary d/. However this is not the case.

Proposition 2.14. Assume (A1)—(A4). Let p, ¢ be as in Theorem 2.1, but moreover bounded and ¢ > 0. Let po(x) =
ff ﬁ dy. Consider the following properties:

(1) Cp = CLip(p7 PO) = ”(_52)71 ”CLip(p).O_)CLip(ﬂo),O < +OO
(i) c(@, p0) =SUPy: 1<y (—L£2)7 (g = (&) ILip(on) < +00.
(iii) cs = supjg <1 (—L£2) 7" (¢ — (&) lILip(op) < +00.
(iv) The L'-Poincaré inequality (2.15) holds, i.e., cp,1 < 400.
(v) The transportation—information inequality below holds: there is some finite best constant cg > 0 such that for

allv= fue M),

/1 |f —1ldp < +/2ccI(v|p).

(vi) The Poincaré inequality (1.5) holds, i.e., cp < +00.
Then

(a) the properties (1)—(iv) are equivalent.

(b) (v) = (v) & (vi).

©) Ifa(x)=1and b’ < K (i.e., the Bakry—Emery curvature is bounded from below by —K), (vi) = (iv) and then
(i)—(vi) are all equivalent.

Proof. (a) Equivalence between (i), (ii) and (iii). It is enough to regard the behavior at the boundary of the functions
appearing in the definitions of ¢, = cLip(p, o), ¢s and c(¢, po). For instance, if yo ¢ I, for x close to yp,say x >z > c,
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we have
Yo
(p(2) — w(E)u(L}) < f (p() = m(p)) du(y) < (p (o) — () i(LF).

p()u (1) < (K (I7) < n(LY),
w1 -@(IF) = (1) -9) + 1 (17 ) u( 1+9) < 20lleon(L)).

Hence the supremums over [c, yo) of the functions appearing in the definitions of c,, cs and c(¢, po) are simultane-
ously finite or infinite. The same argument works when x¢ ¢ /. That completes the proof of the equivalence between
(i), (ii) and (iii).

(iii) <> (iv). That is contained in Theorem 2.11: ¢s = cp 1.

(b) (iv) = (v). Since f, Ja@)| fdu <2/ T(f i), we have cg < 20%,.1.

(v) <& (vi). This is noticed in Remark 2.8: cp/2 < cg < 2cp.

(c) (vi) = (iv). This converse of the Cheeger’s inequality is known in the actual lower bounded Bakry—Emery’s
curvature case see Buser [7] and Ledoux [21], Theorem 5.2 (otherwise there are counter-examples). O

2.5. Several examples

Example 2.15 (Gaussian measure). Let | =R, a(x) = 1 and b(x) = —x /o2 where o > 0. Then m'(x) = e=x*/20°

and ;1 =N (0, 02), the centered Gaussian law with variance o*. For po(x) = x, we see that
o0
2 2 2 _y2 2 2 2
cLip(P0, P0) = Cpy = supe* /%7 f ye /207 4y = o2,
xeR x

By Remark 2.2, cp < cp, = o2 which is in reality an equality as well known [20). The transportation inequality (2.8)
becomes equality for v =N (m, c?).
By calculus we identify the constant cs in (2.13) as

cs =2sup exz/%ZMG,u([x, +oo))u((—oo, x)) = \/go.

xeR

On the other side, Ccheeger > \/ga as seen for A=R™*. Then by (2.17) and Theorem 2.11, Ccheeger =C8 =CP 1.

Example 2.16 (Uniform distribution). Let [ = [—D/2, D/2] where D > 0, a(x) =1 and b(x) = 0. The unique
invariant probability measure i is the uniform measure on I. Since m’'(x) = 1 =s'(x), we have

D/2 D2
Cpo = CLip(py,pp) =  SUP / ydy= <
xe[-D/2,D/2]1Jx
and the constant cs = c(@, po) with ¢ =1 is given by
D
cs = sup  2Du([—D/2,x])u(lx, D/2]) = 5
xe[-D/2,D/2]

AS Ceheeger > D2 (as seen for A = [0, D/2]), we have ccpeeger = D /2 = cs = cp,1 by (2.17) and Theorem 2.11.

Example 2.17 (Exponential measure on R™). Let I = R' = [0, +00), a(x) = 1 and b(x) = —A where A > 0. Then
m'(x) = e =1/5'(x), po(x) = x and . is the exponential distribution with parameter . It is easy to see that Cpy =
CLip(pg.po) = +00: no spectral gap in the po-Lipschitzian norm. In fact the transportation—information inequality (2.8)
is false for p = pg. By Theorem 2.11

1 1 2
cp.1=cs=2sup—e™ u(0, x)pu(x, +00) =2sup — (0, x) = =.
xZO)L )czo)L A
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However ccheeger = % by Bobkov—Houdré [5], which together with the Gaussian measure above shows that the two
inequalities in (2.17) are both sharp (as promised). We have also the transportation—information inequality (2.14),
which is read as

4
|Iv—/x||w§x I(v|lw) V.

It is sharp. Indeed let v be the exponential law withparameter X € (0,)). We have I (v|p) = (A — )1)2/4, and the right-
hand side above is given by 2(1 — x) where x = L/A. The left-hand side above is given by 2(x*/(1=%) — x1/(1=x)y
Then the inequality above for such v says

xx/(l—x)_xl/(l—x)il—x, 0<X<1,

which is sharp as x — 0.
For this model it is well known that cp = 4/1* [20]. The inequality above is same as provided by [15], Theorem 3.1
(from the Poincaré inequality).

Example 2.18 (Log-concave measure on R). Let I =R, a(x) = 1 and b(x) = —V'(x) where V is C 2 strictly
convex on R such that V(0) =0 and fR e~V dx < +oo. Then m’'(x) = e~ V™ and s'(x) = V™ and py(x) = x. Let
0(x) = V'(x), which is u-integrable and u(p) = 0. We have

+o00
¢p = cLip(p, po) = supe” ™) / V(e "W dy =supe?@e VM = 1.
xeR x x>0

Thus assuming f V?e~V dx < 400, we have the transportation—information inequality (2.8) and the Gaussian con-

centration inequality (2.9). For instance, for any g € C'(R) such that |g'| < V" we have for any initial measure v < it
andt,r >0,

t
Pu(;/ g(Xy)ds > u(g) +r> <
0

o (-5)

— exp| —— ). (2.20)
d,LL Lz(l,u) 4
Furthermore, for any nonnegative ¢ < M(1 + |V'|), it is easy to see that c(@, py) < +00, then the transportation—
information inequality (2.11) holds.

In comparison recall the Lyapunov function criterion in [15], Theorem 5.1, for (2.11): for some 0 < U € C2,
—U" 4+ V'U +|U'|* = c?* — K for some two positive constants ¢, K (which does not require the convexity of V).

It will be very interesting to generalize it to log-concave measures on multi-dimensional spaces RY. See Bobkov—
Ledoux [6] for some results in this direction.

Example 2.19 (Jacobi diffusion). Let I =10, 1[,a(x) =x(1—x) and b(x) = —x+1/2, then u(x) = 1/(n/x(1 — x))
[10]. For po(x) = % + Arcsin(2x — 1), we see that

2 1 72

)

cLip(00, PO) = Cpy = SUp <— — — Arcsin“(2x — 1)) = —.
xepo\ 8 2 8

By calculus we identify the constant cs in (2.13) as

2 T[2 .2 T
cs = — sup (— — Arcsin”“(2x — 1)) =—.
T xejo [\ 4 2

Using (2.18), see Bobkov—Houdré [5], we obtain ccpeeger = %, 50 we have Ccpeeger = Cp,1 = C5 = Z by Theorem 2.11.
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Example 2.20 (Continuous branching process). Let I =10, 400, a(x) =2x and b(x) = —2x + 1, then pu(x) =
ﬁ % This process arise as diffusion limits of discrete space branching process, see [19]. For po(x) = ~/2x, we see
that

et [XeY
cLip(00, p0) = Cpy = SUp <1—— _dy>:1,
v S N A

Example 2.21. See Example 1.4.2in[24]. Let I =R*, a(x) = (14+x)* witha > 1,and b(x) = 0, then u(x) =

—1
(1a+x)“'
For o > 2 and po(x) = ﬁ(l — (1 +x)~@=2/2) e see that

4 1
. — . = 1 —(@=2)/2(1 _ (1 B G
cLip(P0, P0) = Cpy PRy xselﬁg( +x) (1-1+x) ) @200

By calculus we identify the constant cs in (2.13) as

sup (1 +x)"@2/2(1 -1 +x)_(°‘_1)) =

Cs =
a—1 g+ 3a —4

4 [ a—2\@2/Ca-D)
<3a — 4) '

By Theorem 2.11, we have cp | = cs. However, using (2.18), we obtain Ccpeeger = ﬁ(%)(“*z)/(z(“*l)).

3. Proof of Theorem 2.1
3.1. Several lemmas

Let £* be the adjoint operator of (£, D) in L2(I, m), more precisely a function f in L2(1,m) belongs to the domain
of definition D, (£*) of £* if there is g € L>(I, m) such that { f, Lh),, = (g, h),, for all A € D, in such case L* f = g.
Here (-, -),, is the inner product on L2(1, m).

We want to understand the Poisson equation (1.3) as an ordinary differential equation. That is the purpose of the
following lemma.

Lemma 3.1. Assume (A1) and (A2). For a given f € L3(1,m), f €Dy (L) if and only if

() f admits a dx-version f such that f € CX(D), f'|31 =0, and f' € AC(I);
Gi) af”+bf e L*U,m).

Inthat case L* f =af’ +bf.

Proof. This follows by integration by parts argument and the distribution theory, as in [12], Appendix C, Theorem 2.7,
or [27], Lemma 4.5. So we omit the details. O

Since £5 is an extension of (£, D), then £* is an extension of L] = L, (because the generator of a symmetric
strongly continuous semigroup is always self-adjoint). Of course under (A4), £* = £,. Then in our framework (i.e.,
(A1)—(A4) are satisfied), solving the Poisson equation (1.3) is equivalent to check G € C'(I) N L(z)(l , ) such that
G’ € AC(I) and G’|3; =0 and

—(aG" +bG) =3. (€R))

This is a first-order differential equation for G’. It can be easily solved as

Yo

G’(X)=$’(X)[C+/ g(y)m’(y)dy} (32)

for some constant C (to be determined).
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Lemma 3.2. Let p be as in Theorem 2.1 and g : 1 — R be p-Lipschitzian with (g) = 0. Then for all x € I,

Yo

Yo
/ gym' (1) dt < ||glLip(o) f [p(1) — (o) ]m' (1) dr.

Proof. Without loss of generality, we may suppose that ||g||Lipp) =1 and m(I) =1 and u(p) = 0. Letting m(x) :=

f;;m’(t)dt andg=gom™', f=pom™', wehave

Yo 1 Yo 1
/ g(t)m'(t)dt:/ g(w)du and / p(t)m’(t)dt:/ p(u)du.

X m(x) x m(x)

As || ZlILip(3) = lIglILip(p)» We have only to prove that for all x € [0, 1]

1 1
h(x) =/ p(s)ds —/ g(s)ds > 0.
X X
Since h(0) = h(1) =0 and 4’ is absolutely continuous on [0, 1] and for dx-a.s. x € [0, 1]
R (x)=—=p"(x) + &' (x) < 18llLipi3) A (x) — p'(x) <O0.
So A is concave on [0, 1]. Consequently 4 (x) > 0 for all x € [0, 1]. O

Lemma 3.3. Let 0 < ¢ € L?(I, j1). Then for every x € I,

Yo
sup / [g(t)—M(g)]m’(t)dt=m(1)<u(lj)/fwdu+u(1x_)/ﬁ<pdu>,

g lgl<g Iy

where I =[x, y0l N I, 1] = [x0, x) N I. The supremum is attained for g = 11;4,0 - 11;<p.

Proof. We may assume that m(I) = 1 and then ; = m. Fix x € I. The functional ®(g) = fxy" [g(®) — u(g)Im'(t)dt =
Cov, (g, 1 1X+) (the covariance of g and 1 I under ) is a linear functional of g. Since the closed convex hull of
{lag, A € B} (B is the Borel o-field on I, and the closure is to be understood in L2(I, 1)) is {g; 0 < g < ¢}, and
{g; 18l <@} ={h1 — h2;0 <hy, hy < ¢}, then

sup @(g)= sup DP(hy)— inf &D(hy)=sup Cov,(lag,1;+)+ sup Cov,(—1lap,1,+).
g lgl<e hi: 0<hi<¢ O=hy=¢ AeB T 4AeB *

We examine the first supremum at the right-hand side. Note that
COV#(IA(ﬂ,l[;r):/ wdu—u(lj)/ pdu.
ANIF A

With AN/ j = B fixed, this functional of A attaint the maximum when A becomes the smallest B. Next for A = B
or equivalently A C I, the right-hand side above equals to

/Asvdu(l —u(L))

which attaint the maximum if A = I;F. So we have proven that

maxCov, (g 1) = [ oau(1=n(1) =n(r7) [ _van.

x
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Now we turn to the last supremum. Note Covy, (—1a¢, 1;+) = — fAm;r edu+p(}) [, ¢du and

max(—/ (pdu,+,u(1;')/ godu) = max  max (—/ gadu+,u(1;')/ (de)
AeB ANIF A BCI{ A: AnLF=B ANIF A

:max(—/(pdu+,u(1f)/ (pdu)
BclIy B BUI;
= max (—M(I;)/B(pdu+u(1;') /liwd;L).

BcIy

The last functional in B C I attaints the maximum if B is the smallest empty set. Thus

max(—/ (/JdpL-i-,LL(I;L)/ godu) :;L(I;r)/ edu.
AeB ANIF A I

Summarizing the conclusions in two cases, we obtain the desired result. O
3.2. Proof of Theorem 2.1(1)

We separate its proof into three cases: yp € I, xo € I or I = (xo, yo):

Case 1. yo € 1. Let g be p;-Lipschitzian such that u(g) = 0. By Lemma 3.1, if G is a solution of the Poisson
equation (1.3), G € C'(I), G’ € AC(I), and G’ is given by (3.2). Since G’(yp) = 0, the constant C there must be
zero. Now applying Lemma 3.2, we get

Y0
|G'(x)| < ”g”Lip(p])S/(x)/ [01() — (1) ]m’ (1) dt < lIgllLip(oncLip(P1, £2) 05 (X)
X

for dx-a.e. x € I. This yields to (2.2).
We turn to prove the existence of solution to the Poisson equation (1.3). Let G be a primitive of

G'(x) = 5'(x) / " g(m' () dy.

By what shown above, [GllLip(py) < cLip(01, 02)IgILip(py) < 00, then G € L2(I, ) (for py € L2(1, ). By
Lemma 3.1 and (A4), G € D(L*) =D(L,). Hence G is a solution of (1.3).

Finally, for g = p; — u(p1), we see that G'(x) = s’ (x) fx“’ [o1(y) — n(p1)Im’(y) dy. Then (2.2) becomes equality
for that g.

Case 2. xq € 1. Parallel to the case 1, for G'(x) is again given by (3.2) with C = 0.

Case 3. I = (xq, yo). By the proof in case 1, we have only to show that for any solution G of (1.3), G’ is given by
(3.2) with C =0.

Assume in contrary that C # 0 in (3.2). Let G be a fixed primitive of s’(x) fxy" g(y)m’(y)dy. As shown above
1GollLip(os) =< cLip(p1, p2)I&IILip(p;) < +00, then G € L2(I, w) (for py € L(I, w)). Therefore for some constant K,

G=Cs+Gy+K.

But s ¢ L2(I, j1) by (A4), then G ¢ L*(I, ), contrary to the assumption that G € D(£3) C L2(I, ). Thus C = 0 as
desired.

3.3. Proof of Theorem 2.1(ii)

At first notice that by (3.2), if —£2G = g — uu(g), then G € C'(I), G’ € AC(I) and

Yo

G'(x) =s/(X)[C+/ [6() — (@) ]m' (y) dy}- (3.3)
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We denote by Gy, the function above when C = 0. We separate its proof into the three cases as in the proof of part (i):
Case 1. yp € 1. Fix the measurable function g on [ such that |g| < ¢. If G is a solution of —L,G = g — (g), as
G'(yo) =0,C =0in (3.3),i.e., G' = G{. By Lemma 3.3, we have for dx-a.e. x € I,

|G'(0)| =[Gy < s’(x>m(1><u(1;) /1 pdu+p(ly) /1 . wdu> = clp, )P/ (x)

x

which gives us ||GllLip(p) < c(¢, p). Moreover, any primitive G of G6 satisfies ||GollLipp) < c(@, p), then Go €
L2(I, ) (for p € L2(I, ). By Lemma 3.1 and (A4), Gy is a solution of —£,G = g — u(g).

Finally the supremum of [|G||Lip(p) Over {g; |g| < ¢} equals to c(¢, p), by Lemma 3.3.

Case 2. xo € I. Same as the proof of case 1.

Case 3. x0, yo ¢ 1. As in the proof of case 3 in part (i), we have G’ is given by (3.3) with C = 0. Now one can
repeat the proof of case 1 to conclude.

Remark 3.4. For some partial extensions of the results here to multi-dimensional Riemannian manifolds case, see the
second named author [26].
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Abstract

A moderate deviation principle for non-linear functionals, with at most quadratic growth, of moving average processes (or linear
processes) is established. The main assumptions on the moving average process are a Logarithmic Sobolev Inequality for the
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autoregressive process and of the Neyman—Pearson likelihood ratio test in the Gaussian case.
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Résumé
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pour le périodogramme empirique, faisant apparaitre une nouvelle forme de la fonction de taux, avec un terme correctif comparé
a la fonction de taux gaussienne. Comme applications statistiques, on donne des estimations de déviations modérées pour les
estimateurs de Yule—Walker et des moindres carrés du parametre de processus autoregressif stationnaire, ainsi que pour le test de
Neyman—Pearson pour le rapport de vraisemblance dans le cadre gaussien.
© 2005 Elsevier SAS. All rights reserved.

MSC: 60F10; 60G10; 60G15

Keywords: Moderate deviations; Moving average processes; Logarithmic Sobolev inequalities; Toeplitz matrices

* Corresponding author.
E-mail addresses: djellont@math.univ-bpclermont.fr (H. Djellout), guillin@ceremade.dauphine.fr (A. Guillin),
Li-Ming.Wu@math.univ-bpclermont.fr (L. Wu).

0246-0203/$ — see front matter © 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2005.04.006




250 MDP of empirical periodogram

394 H. Djellout et al. / Ann. I. H. Poincaré — PR 42 (2006) 393416

1. Introduction

Consider the moving average process (or the linear process)

+00 +o00
Xpi= Y ajafj= Y ajfarj, Vnel (1.1)
j=—o0 j=—o0

where (§,),cz is a sequence of R-valued centered square integrable i.i.d.r.v., with common law L(&y) = u, and
(an)nez be a sequence of real numbers such that

> lanl* < +oo. (1.2)

nez

This last condition (1.2) is necessary and sufficient for the a.s. convergence or convergence in law of the series (1.1)
(see [17, Chapter 2]). The sequence (X}) is strictly stationary with the spectral density given by

£(©) = Var(éo) |20
where
“+00
g0):= Y ane". (1.3)
n=—0oo
Moving average processes (or linear processes) are of special importance in time series analysis, filtrage of noise
and they arise in a wide variety of contexts. Applications to economics, engineering and physical sciences are very
broad and a vast amount of literature is devoted to the study of the limit theorems for moving average processes under
various conditions (e.g. Brockwell and Davis [4] and references therein). A most important class of moving average
processes is the real stationary Gaussian processes (X,) with a square integrable spectral density function f (which
can be represented as (1.1) with § = A/ (0, 1) in law).
Let
2

Z,0) = , (1.4)

1
n

n
Z Xy eik0
k=1

be the so-called empirical periodogram of order n of the process (Xi). It is one of the main tools in the study of
non-parametric statistical estimation of the unknown spectral density f on the basis of the sample (X1, ..., X;,) from
the process (X;). And for an observable F(x) = F(xp, ..., x;) valued in R™, let

1 1 &
=Su(F) == F(Xt, Xit1. - Xat1)
n n
k=1
be the empirical mean of F. We begin with reviewing some known results which motivate our investigation.

(I) Linear observables F(x) = x.
(a) The minimal condition for the central limit theorem (CLT in short) for % Zzzl Xk is the continuity of g at
0 =0 (see [17, Corollary 5.2, p. 135]).
(b) Large deviations for % > %1 Xk. See Burton and Dehling [7], Jiang, Rao and Wang [18,19], Djellout and
Guillin [12] etc.
For non-linear observables F', the limit theorems for %Sn (F) becomes much more difficult, even in the particular
Gaussian case.
(Il) Quadratic observables F(x) = (xg, X0X1, ..., XoXx;) and T, (6).
By Fourier series, one can often reduce the limit theorems of the empirical periodogram Z,(0) to those for
rllS,,(F ) where F(x) = (xg, X0X1, --..,Xox7). There exists an abundant literature on limit theorems of 7, (¢) and
of %S,, (F) because of their importance in practice, especially in Gaussian case.

(a) CLT. Avram [1] and Fox and Taqqu [15] proved the CLT for Z,,(-) and %Sn(F ) in the Gaussian case. This
CLT was generalized by Giraitis and Surgailis [16] to non-Gaussian case.
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(b) Large and moderate deviations. Bryc and Dembo [6] have considered quadratic functional F(x) = x(% of
Gaussian processes both at the level of large and moderate deviations, under the boundedness of f or the
L9-integrability of f respectively. But for F(x) = xox; with [ > 1, they have assumed that f =1 (i.e., (Xk)
are i.i.d.), an assumption excluding the dependent case.

Their result on large deviations (LDP in short) was generalized for general quadratic F by Bercu, Gamboa
and Rouault [2] under some condition on the distribution of the eigenvalues of the involved Toeplitz matrix,
always in the Gaussian case. This last “technical” condition, (wrongly) omitted in the precedent works, is
optimal but quite difficult to check in practice. In [2], they provided several concrete important statistical
examples for which their condition is fulfilled.

In [24], the third author proved the LDP of Z,, and %Sn(F ) for general quadratic F', without the technical

condition in [2], but under the following integrability condition Eekgz < 400, VA > 0, which excludes
unfortunately the Gaussian case.
(IIT) General non-linear observables F.

(a) CLT. The literature is again abundant, we refer the reader to Rosenblatt [21] and the references therein.

(b) Large deviations. The seminal work of Donsker and Varadhan [14] established the LDP of the empirical
process R, := %Z’,ﬁzl 8(Xt,Xgs1,...) for the stationary Gaussian processes such that f € C(T) and log f €
L'(T). This implies the LDP of %Sn (F) once if F is continuous and bounded. Bryc and Dembo [5] showed
that the continuity of the spectral density f cannot be weakened but the condition log f € L!(T) can be
removed, for the LDP result of Donsker and Varadhan. More recently, the third author [24] generalized this
last result to all moving average processes such that E e P < ~+o00 for some 6 > 0.

The main purpose of this paper consists to investigate the moderate deviation principle (MDP in short) for the
so-called empirical periodogram Z, (6) of order n of the process (Xy) defined by (1.4) in the space L?(T, df) of
p-integrable function on the torus T identified with [—m, [ equipped with the weak convergence topology. We
establish the MDP for Z,(6) under some conditions such as the L7 (T, d0)-integrability of the spectral density of
(Xx) and a Logarithmic Sobolev Inequality (in short LSI) for the law p of the driven random variable &. Moreover
our approach allows us to obtain the MDP of %Sn (F) for non-linear R™-valued observables F of at most quadratic
growth.

To our knowledge, it is the first time that a MDP for a general class of non-linear observables of moving average
processes is established (not only in the Gaussian case). Our investigation is a natural continuation of the known works
[14,6,2,24] etc. We also consider statistical applications such as

(1) the MDP of the least square and Yule—Walker estimators of the autoregression parameter in a stationary autore-
gressive process, complementing known CLT results and the LDP (limited to the Gaussian case) obtained by
Bercu et al. [2];

(2) the MDP in the Neyman—Pearson likelihood ratio test (largely inspired by Bercu and al. [2]) in the Gaussian case.

Besides the standard techniques in large deviations (such as approximation lemmas, projective limit etc.), our
method is mainly based on the LSI technique, as developed by Ledoux [20] and al.

This paper is structured as follows. The MDP for the empirical spectral density and non-linear functionals are
stated in next section. In Section 3, we provide statistical applications. We establish the key a priori estimations in
Section 4. The last section is devoted to the proofs of the main results.

2. Main results
2.1. MDP for the empirical periodogram

For the sake of completeness, we recall the definition of the LDP [10] and [11]. A sequence of random variables
(Y,,) with values in a regular Hausdorff topological space E is said to satisfy the LDP with speed A,, — oo and good
rate function 7 (-) : E — R if: I has compact level sets and for all measurable sets A of X:
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1 1
— inf I (x) < liminf — logP(Y, € A) < limsup — logP(¥,, € A) < — inf I (x)
q n—+00 A, A A

xeA n—+o00 n xeA

where /i, A denote the interior and closure of A, respectively.

In the whole paper we shall study only a special type of LDP, called usually moderate deviation principle (MDP in
short, cf. [10]).

Let (&,)nez is a sequence of R-valued centered i.i.d.r.v., with common law L(§p) = u, and let a := (a, ),z be a
sequence of real numbers satisfying (1.2), and define (X;,) by (1.1). Our basic assumption, supposed throughout this
paper, is that u satisfies a LSI, i.e. there exists C > 0 such that

Ent, (h*) < 2CE,(IVh|?) 2.1
for every smooth £ such that E,, (h%log™ h?) < 0o, where

Ent,, (h?) = E, (h* logh?) — E, (h?) log E,, (h?).
See Ledoux [20] for further details on LSI. Note that it implies in particular that there exists some positive § such that

E,, () < oo. 2.2)

Remark 2.1. First note that there exists some practical criteria ensuring the LSI. For example, consider a C? function
W on R¢ such that e~" is integrable with respect to Lebesgue measure and let

dux)=2Z"le W™y

where Z is the normalization constant, and suppose that for some ¢ € R, W”(x) > cI for every x and that for some
€>0,

/ / e FOP 4 ) du(y) < 0o

where ¢~ = —min(c, 0). Then p satisfies (2.1) by the criterion of Wang [20]. Obviously Gaussian variables fulfill
this criterion. See Bobkov and Gotze [3] for a necessary and sufficient condition in the actual one-dimensional case,
relying on generalized Hardy’s inequalities.

We are interested in the moderate deviation principle (MDP in short) of the empirical spectral density (or peri-
odogram) of (X,,) defined by

n
Z X, eik@
k=1

which are random elements in the space L? (T, df) equipped with the weak convergence topology, where T is the
torus identified with [—s, [ in the usual way.

We first present here the MDP for the empirical autocorrelation vector which will be our main tool for the MDP of
the empirical spectral density, and has its own interest in statistics. Let

_ E(&*) - 3[EEH]?
B E(£2)

the cumulant of order 4 of the driven random variable &.

2

1
Z,0) = .

)

Theorem 2.1. Assume that p satisfies the LSI (2.1). Suppose moreover that

(H1) the spectral density function f is in L9(T, d@), where 2 < g < +00; and
(H2) the moderate deviation scale (by) is a sequence of positive numbers satisfying 1 < b, < /n (i.e. b, — +00
and byn=12 = 0, the moderate deviation scale) and

byn'/4712 5 0,
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then for every . € R"*1,
. 1 I,
lim 5 logIEexp(\/_ > n Z(kaw Exkxkﬂ;)) =k 2 (2.3)

where X2 = (Elg’e)()gk,ggm is given by
1 s i 1 i 1 i
St = E/(e‘(k 00 4 k0 £2(9) do +K4(§/f(9)ek9 d@) (E/f(e)e“ d@)
T T T
= L / 2cos(k6) cos((@)f2(9) do + K4(L / f(6) cos(kB) d9) (i / ) cos(l@)d@). (2.4)
2 2 2
T T T

In particular

1 n
XX —EXi X
(bnﬁ;( kXk+e k k+£)>

0o<em
satisfies the LDP on R™ ! with speed bﬁ and with the rate function given by

1
I(z) = sup {(A,z)—i(k,xzx)}.
AeRm !

Remark 2.2. By Cauchy—Schwartz inequality we have [E(£2)]> < E(£%), so k4 > —2 and ky = —2 iff £2 = C, a.s.
Under the assumption (2.1), & 2 cannot be constant by [13, Remark 2.4], so k4 > —2. Consequently the matrix 2
symmetric and non-negative definite. Notice that the rate function / given above can be calculated explicitly as

1(z) = { 3(z, z), lfzeRan(E );
+00, otherwise,

where X2 is the inverse of X2 restricted to the range Ran(X?) of 2.

Remark 2.3. The assumptions (H1) and (H2) on f and the scale b, are exactly the ones imposed in Bryc and
Dembo [6, Theorem 2.3] for the MDP of % Y i X,% in the Gaussian case. Their large deviations result (namely
Proposition 2.5 in [6]) for the empirical autocorrelation is further restricted to the i.i.d. case.

Remark 2.4. Notice that the condition (H1) on the dependence is indeed quite weak and general. It covers not only the
short-range case (i.e. Y |Cov(Xo, X,)| < +00), but also some cases of long range. To illustrate this case, consider the
following example: let { By (¢), t € R} be the fractional Brownian motion with Hurst parameter 0 < H < 1. Consider
its increments

Yi=By(j+1)—By(j), JjeZ,

which form a stationary Gaussian sequence with mean zero and variance E(Blzi(l)) = a(%. The sequence {Y;, j € Z}
has the covariance function

2
g,
a(j) =E(Y1Yj41) = 7°(|j + 12 =21 1 — 1121,

and the spectral density

0_02 o ) +o00 1

_ i

f0=gle" =11 2 g TSk
k=—00

where C is a constant depending only on H. It is known that (see [22])

a(j)~of HQH — 1)j*172 as j— oo, for H #1/2,
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and f is continuous on T \ {0} and
FO) ~6ZCT2HH)A'TH, as i — 0.

When 0 < H < 1/2, f is continuous (and then bounded) on T. So the MDP in Theorem 2.1 holds for every
moderate deviation scale (b,).

When 1/2 < H < 1, the series ) a(j) diverges. In this case {Y;, j € Z} exhibits long range dependence. The
condition (H1) is satisfied if 1/2 < H < 1/2+41/(2g), (so 1/2 < H < 3/4 for g > 2), and (1.2) is thus easily verified.
In this case, we obtain the MDP of Theorem 2.1 for the sequence {Y;, j € Z} with k4 = 0 for the moderate deviation
scale (b,) verifying (H2).

The following corollary follows from Theorem 2.1 by the contraction principle

Corollary 2.2. Under the assumptions of Theorem 2.1, we have for all £ > 0, (1/(/nby) Zzzl (X Xikre —EXi Xk40))
satisfies the LDP on R with speed b,% and rate function given by
2

Z
I'e)= 5 1/(27) [ 2cos2(€0)) f2(0) A0 + ka(1/(27) [ f(0) cos(£) db)>

with the convention that a/0 = +o0 for a > 0 and 0/0 := 0.

Let us present now the main result of this paper. From Theorem 2.1 (and its proof) together with the projective
limit method, we yield the functional type’s MDP below, for

Ly(6) = ‘/—(I (0) —EZ,(9)).

Theorem 2.3. Suppose that u satisfies the LSI (2.1) and (H1), (H2). Let 1 < p <2 and p' € [2, +00] the conjugated
number, i.e., 1/p+1/p’ = 1. Assume moreover

(H3) the moderate deviation scale b, satisfies

ol =12 o LU 1
. = :

2

Then I,,(0) satisfies the MDP, i.e., (L,)n>0 satisfies the LDP on (LP (T, d6), o (L? (T, d), Ly (T, d0))) with speed
b,% and with the rate function given by

/ 7O) 4y K (L/ n(6) d0)2
2 4f2(9) 2+K4 2 ) 2f(0) ’
T

ifics > —2, nis even, nd6 < fd6 and % € LX(T, df);

J(n) =

+00, otherwise.

As a consequence of Theorem 2.3 we have the following marginal MDP:
Corollary 2.4. Under the assumptions of Theorem 2.3, we have that for all h € L”/(T, do),
1
1imsupb—210g]E(e”5 2 S hOLy @ d0) o 2(py,

n—oo Uy

where

2
a?(h) = L/Zh (9)j (6)do +/c4< /h(@)f(@)d@)
2w 21
T T

and h(0) = (h(9) + h(—6))/2. In particular % /T h(0)L,(0)d0 satisfies the LDP on R with speed b% and with the
rate function given by I,(z) := (1/2)z2/(c%(h)).




MDP of empirical periodogram 255

H. Djellout et al. / Ann. I. H. Poincaré — PR 42 (2006) 393-416 399

Remark 2.5. One cannot hope that the MDP in Theorem 2.3 holds w.r.t. the strong topology of L?(T, df), because
the rate function 7 (n) is not inf-compact w.r.t. this topology.

The assumption (H3) is stronger than (H2). When p =1 (and then p’ = +00), (H3) becomes (H2) and thus under
the LSI for £ and (H1) and (H2), £,,(9) satisfies the LDP on L!(T) w.r.t. the weak convergence topology o (LY, L™)
in Theorem 2.3, and % fT h(0)L,(0)do satisfies the LDP in Corollary 2.4 for every h € L°°(T).

Remark 2.6. Now assume that (£,) is a sequence of real i.i.d. normal random variables, so (X,) is a stationary
Gaussian process and inversely any real Gaussian stationary process (X,) with a square integrable spectral density
function f can be represented as (1.1). In this case, we have E(&*) = 3E(£2)? and thus k4 = 0, so under the assump-
tions of Theorem 2.3 we obtain that (£,,), > satisfies the LDP on L?(T, df) with speed b,zl and with the rate function
given by

L/ n22(6) do, ifniseven, ndd < fdb and o L2(T, do),
J() = 27TT 41%(0) f

+o00, otherwise.

We thus give the MDP for the spectral empirical measure in the setting of Bercu and al. [2]. Note however that they
only consider the marginal LDP, i.e. LDP for Z,, (k) for some bounded / on the torus with an extra assumption on the
eigenvalues of the Toeplitz matrix, where Z,,(h) = % fT T,(0)h(0)db.

Remark 2.7. For any real and symmetric function & € LY(T, do), let T, (h) be the Toeplitz matrix of order n associated
with & i.e. T, (h) = (Fx—; (h))1<k,1<n Where 7 (h) is the kth Fourier coefficient of 4 given by
1 )
Flh) = / e*n(0)ds, VkeZ. (2.5)
T

T

The matrix 7, (h) is obviously real and symmetric, is positive definite whenever 4 > 0.
Notice that the extra term with respect to the Gaussian case in the evaluation of the asymptotic variance has been
known for a long time (see [21]). The result of [16] about CLT for Z,, can be summarized as below: if

1 1
Jim (L, NT0)) = 5 [ Poro 2.6)
T

(where Ty, (h) is the Toeplitz matrix of ) then /n(Z,(h) — EZ, (h)) converges in law (as n — 00) to the normal distri-
bution N (0, 02(h)) with o2(h) given in Corollary 2.4. In Gaussian case this result was already proved by Avram [1]
and Fox and Taqqu [15].

In the next corollaries of Theorem 2.3, we replace EZ,(0) by f(6) in the definition of £,(6), more useful in
practice, but need more assumptions. More precisely we are interested in the MDP of

L,(0) = %(In(e) - f®).

n

Corollary 2.5. Suppose that i satisfies the LSI (2.1) and the spectral density f verifies
FeL®M and |fa+)~ O =0W1) 2.7

then for every scale 1 < b, K nl/2=1/p" (CN,,),,>0 satisfies the LDP on LP(T,d6) w.rt. the weak topology
o (LP(T), Lr (T))), with speed b% and with the rate function J given in Theorem 2.3.

We have also the following consequence of Corollary 2.4 for the marginals of the empirical spectral measures

Corollary 2.6. Assume (2.1) and (H1), (H2). Suppose that
heL®(T) and |h(t+-)—hO)| g =01 (2.8)
then the conclusion of Corollary 2.4 holds for fn h(@)ﬁn (0) dO instead offn h(0)L, (0)deo.
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2.2. MDP for non-linear functionals

We now present the MDP of %Sn(F), i.e., the LDP of

n

\ﬁbEXNMVMXHnAMHn“wXHmy
" k=1

where the observable F :R'*! — R™ is a general non-linear differentiable function.

M, (F) =

Theorem 2.7. Suppose that | satisfies the LSI (2.1), and g given in (1.3) is continuous on T. Assume moreover that
Oy, F is Lipschitz for i =0, ...,1. Then

n—>+oo n

1 n
>2:= lim —F(ZF(Xk,...,XkH)) (2.9)
k=1

exists where I'(-) is the covariance matrix of the random vector -, and for every moderate deviation scale 1 < b, <
/n, M, (F) satisfies the LDP on R™ with speed bﬁ and good rate function Ir given by

1 1 -2 i 2
IF(z) = sup {()\’@ - E%M} — { 2(2, Xr 2), ifze R?H(Z‘F),
LERM 2 400, otherwise,

where 2;2 : Ran(Z‘%) — Ran(Z%) is the inverse of the limit covariance matrix E% restricted to Ran(E%).

Note also the following corollary in the linear case F'(xo, ..., x;) = xo in which the assumption on g can be largely
weakened.

Corollary 2.8. Suppose that | satisfies the integrability condition (2.2), if
N kT 2
0)= 1—— ,
M) 2:( N)uﬂea
[kI<SN
then for every moderate deviation scale 1 < b, < /n, ﬁ > i1 X satisfies the LDP on R with speed b% and rate

2
HOES 5=

Remark 2.8. When f admits a version which is continuous at 0, then £~ (0) — f(0) = o2. This corollary generalizes
Theorem 3.1 of Djellout and Guillin [12] to the case of unbounded r.v.

3. Statistical applications

We now provide two statistical applications. The first deals with the least square estimator of the parameter of the
autoregressive linear process and the second about the likelihood ratio test on spectral densities in the Gaussian case.

3.1. Autoregressive stationary process

Consider the autoregressive process (not necessarily Gaussian)
Xn+1=0Xn +0&p 41,

where the noises sequence ((§,),ez) is i.1.d. with common law u, satisfying a LSI, and E(§,) =0, ]E(éz) =1,0>0
and 6 € (—1,1) is the unknown parameter. Assume that X is independent of (£,),>1 and has the same law as
Z/?io ko &_i. (X,) is thus a centered stationary process of the form (1.1), with spectral density given by

2

f@® vr eT.

_ o
T 1462 —-20cost’
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Let 6, be the least square estimator of 8, given by:
é _ Z?:l XiXi—l
n — 2 .
i X

It is well-known that 6, — 6 a.s. and Jn (én — 0) satisfies the CLT. We show in the next proposition the MDP of
the least square estimator.

Proposition 3.1. For every moderate deviation scale 1 < b, < /n, ‘l{—f(én — 0) satisfies a LDP on R with speed b,%
and with the rate function given by

2

X

Remark 3.1. Let 5,1 be the Yule—Walker estimator of 0:
b _ iz XiXio
= .
Yo X}
It is well-known that the Yule—Walker estimator share the same almost sure property and the same CLT. Bercu et
al. [2] showed however that the LDP of the Yule—Walker estimator is better than the one of the least-squares.

In the regime of the MDP, following the same proof as for the least square estimator we see that the Yule-Walker
estimator share the same MDP.

3.2. Likelihood ratio test in the Gaussian case

Let fo and f; be two spectral densities which differ on a positive Lebesgue measure subset of T. If we wish to
test Hyo: f = fo against Hy: f = fi, on the basis of the stationary centered Gaussian observation X7, ..., X,, the
Neyman—Pearson theorem tells us that the optimal strategy is the likelihood ratio test:

1 ( det T, (fo)
=—|log———
2n " © det T, (f1)

The study of the MDP properties of (L,) under hypothesis Hy or H; is useful to control asymptotically the threshold
or the power of the test. We now make the two following assumptions:

L, +(X [T (fo) ™" = Tn<f1>—1]x<">>).

(A1) the spectral density fj is in the Szego class, i.e. log(fp) € LY(T);
(A2) theratio fy/f1 € L°(T).

Under those assumption, Bercu and al. [2] proved that L, converges a.s. to

1
E(/logfo(t)dl —flogfl (t)dt—i—/(l — %) dt)
T T T

and satisfies the LDP. Inspired by their work we have furthermore

Proposition 3.2. Assume that (A1) and (Ajy) are satisfied. Then, under the null hypothesis Ho, for every moderate
deviation scale 1 < b, < \/n, the sequence ‘b/—f(Ln — E(L,)) satisfies a LDP on R with speed b,zl and good rate
function

x2

(1/@2m)) Jr(1 = fo/ f)*(6)do°

G(x)=

4. Several lemmas

In this section we first establish the a priori estimate, next recall several facts concerning the Toeplitz matrix and
the Fejer approximation and the MDP of m-dependent stationary sequences.
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4.1. A priori estimation
We recall the following well known elementary result

Lemma 4.1. Suppose that Y™ = (Yy, ..., Y,)* is a standard N (0, I') centered Gaussian vector valued in R" and let
A be a symmetric real valued n x n-matrix. Let M1, ..., L, be the eigenvalues of the matrix A. Then for every z € R

1 & 1
-3 > log(1—2zh)) if lg?én(zxj) <3

logEexp(z(Y™, AY™)) = = @.1)
00, otherwise.
We give a crucial lemma which was first proved in Wu [24], and reproduced here for completeness.
Lemma 4.2. [f the centered r.v. & satisfies (2.2), then there is some constant K > 0 such that
K? ,
L(y) :=Eexp(y&) < eXp<7y ) VyeR. 4.2)

Proof. Let § > 0 be given in (2.2). Since
260 < 2063 + =y
X 0 28 ’

there is C; > 0 such that (4.2) holds for all |y| > 1.
For |y| < 1, notice that log L(y) € C*°(R), and

d
log L(0) =0, —log L(y) =E& =0.
dy y=0

By Taylor’s formula of order 2, we have for all y with |y| <1,
1
log L(y) < 5C3y%,

where

2

d 12
0?2 log L(y)

Cy := sup
lyIst

Thus (4.2) follows with K :=Cy Vv C2. O

We now extend (4.1) from Gaussian distribution to general law p satisfying (2.2), which is a generalization of the
preceding lemma.

Lemma 4.3. Let (Xi) be the moving average process given by (1.1) and T, (f) the Toeplitz matrix associated with the
spectral density function f of (Xy), given in Remark 2.7. Assume the integrability condition (2.2) (but not the stronger
LSI).

Let X = (Xy,..., X,)* B be a real non-negative definite symmetric n x n-matrix, and Wy, ...,y the eigen-
values of the matrix ~/B T, (f)~/B. Then for all 1 > 0 satisfying Amaxig gn M;f < 1/(2K?), we have

1 n
(n) (n) _ Y < W
logEexp(A(X"™, BX™)) < 25‘ llog(l 2K 7)),
=

where K > 0 is given in Lemma 4.2.
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Proof. The main difficulty resides in the non-linear property of (x, Bx). The trick consists to reduce it to an estimation
of linear type in the following way:

E{e%t2<X<”),BX‘"’>} - E{e%ﬂ\ﬁX‘”)F} - f Efe!VEX" )y (dy®™)

R}l
where y is the standard Gaussian law A/(0, I) on R”.
Since
(VBX®, y") = (x® VBy™) Zxk(f By "= & Za j—k(VBy ™).

JELZ k=1

}.

=Y > aj4aj1(VBY" ) (VBy")

ki=1jeZ

= > (1)), VBY"(VBy™

k=1
= (v, VBT,(H)VBy™).

Then letting uf, ..., u;, be the eigenvalues of the matrix VBT,(f)vB (which are also the eigenvalues of
T,(f)B), we get for all 7 such that K> maxi<j<a 1 < 1,

2.2
E{exp[%tz(X(”),BX(”))]} g/{exp[KTt(y("),x/ETn(f)x/Ey(”))“y(dy("))
]Rn

We get by Lemma 4.2 and the i.i.d. property of (&;),

{exp[ \/—Xm) (n) ]}<exp|:K Z Zaj k(\/—)’(n))k

JEZLlk=1

Now observe that

D1 aj - VBy ™y

jezlk=1

2

=—= Zlog(l K

j 1
where the last equality follows by Lemma 4.1. Finally the desired result follows with A =¢2/2. O

Remark 4.1. If we assume ||gllcc = 1I1g(8) |z (T,a0) < +00, and B = I we obtain exactly the result in Wu [24]. In
fact in this case, we have for any A > 0 such that 2)\K2||g||gO <1,

n n 1
log EeX ™ X" ¢ 5 log(1 - 20K g1, 4.3)
because the eigenvalues of 7,,(f) are bounded by || f|lco = ||g||§o.

Remark 4.2. Instead of Lemma 4.2, we can use the consequence of the LSI (5.3) below to prove Lemma 4.3, but (5.3)
is stronger than (2.2).

4.2. Preparating lemmas

For an n x n matrix A, we consider the usual operator norm ||A|| = sup, g« (JAx|/|x|). Recall (cf. Remarks 2.7)
that for any real and even function h € LY(T,d6), T,(h) is the Toeplitz matrix of order n associated with £ i.e.
T (h) = (Fx—1(h)) 1<k 1<n Where Fi(h) is the kth Fourier coefficient of & given by

1 .
Fe(h) = E/e‘“’h(e)de, Vk € Z.
T
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Lemma 4.4 ((Avram [1], Lemma 1)). If f € L9(T) where 1 < g < 00, then for all n > 1 we have |T,(f)| <
1/q
n 4 fllg-

Lemma 4.5 ((Avram [1], Theorem 1)). Let fy € L% (T, d0) with gy > 1 fork=1,..., p and Z,’::l(l/qk) < 1. Then
1 P P
im e [Tmfo ) =7 TT#)-
k=1 k=1
Introduce now the Fejer approximation of g:
N N ij6 N /1
g (9)=Zaj e , VOeR, Whereaj za-j(l_ﬁ>1|j|<N'

JEZ
We recall the following (see [8])

Lemma 4.6. gV (9) = ffﬂ g(0 —t)Kn(t) dt where Ky is the Fejer kernel of order N given by

1 (sin(Nt /2) )2

Kn@)=— Sn(t/2) eT.

27 N

Furthermore for g € LP(T) where 1 < p < o0, g¥ — g in LP(T) and g — g uniformly on T if g is continuous.
Moreover, K,, is even, non-negative and possesses the following properties for small §:

(@) /Kn(t)dt:L

T
C
) fKn(t)dt<—,
n
1123
Cn™¢, a<l1,
) /Kn(t)t“dt< Cn'lnn, a=1,
<6 Ccn !, oa>1.

Let m be a given positive integer, a sequence (Z,), > of strictly stationary random variables is called m-dependent
if for every k > 1 the two collections {Z1, ..., Zx} and {Zx+m, Zk+m+1, - - .} are independent. We have the following

Lemma 4.7 ((Chen X. [9])). Let (Z,),>1 be a stationary sequence of m-dependent random variables taking values
in R™, such that

E(e“'z“) < +00, forsomea > 0.

Then for all » € R™,

. 1 b2 (% 4 Y i1 (Zk—EZy) 1 . Z 2
_ n\" by, k=1 — _ _
. lim % log]E(e ) = nllm E(A, kg 1(Zk EZy)

1 5 m+1

=5 (IE(A, Z))? +2) B Z)ER, Zk) ).
k=2

5. Proofs of the main results in Section 2

5.1. Proof of Theorem 2.1

The proof is divided into three steps. In the first one, we approximate the moving average process by a bilateral
moving average process of finite range 2N which satisfies the MDP. Then we will show that this approximation is
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a good one in the sense of the MDP. In third step, we will finally establish the convergence of the rate function and
the subsequent existence of the limiting variance.
Step 1 (Approximation by bilateral moving average process of finite range 2N). Let XV = Z_,‘ <7 ajy &k+j, where

aj.v =a;(l— %)1 |j|<N» be the Fejer approximation of X.
Put

Qﬁz(Qﬁ”)z(sz) and 0, = (0))i=0 mz( : z’>,
1=0,....m

by, —Om TR Vnb, "

.....

where

n n
ZN =X XY - EXY XY ) and Zh = (Xi Xk — EXp Xiqn).
k=1 k=1

.....

By (2.2), we get for all N there is n > 0 such that E(e”‘XfiVXl]rVH') < 00.
Then applying Lemma 4.7, we get that for each N fixed, for all A € R"*1,

1 1 1 1
lim — logB(e’® %)) = = lim —E(3, ZV")? =~ (A, >Ny e R .1)
n— 00 b’% n—oon 2
where X2V is the limit covariance matrix given in Lemma 4.7, and that Q,Ilv satisfies the MDP on R™*! with the
good rate function

1
IN(x)= sup {(k,x) — = (A, ZZ’NA)}.
reRm+1 2
Furthermore, by [21], Z‘,i’lN can be expressed as (2.4) with f replaced by fV.
Step 2 (Exponential contiguity, see Section 4.2 in [10]). The purpose of this step will be to prove the asymptotic
negligibility of Q,, — QY with respect to the MDP as N goes to oo, i.e. we will establish that for all » € R"*!,
1
limsup lim sup — log E(ebﬁ(’\'g"*Qm) =0.
N—>oo n—>00 bn
As our functional 9, — Q,I:’ are centered, by Jensen inequality we only have to establish the upper inequality in the
equality above. By Jensen’s inequality again,
1

m
b2, 00— 0N)) < (m+1)b23 (04— 0"
(e )< i B )

we need only to show that for each/ =0, ..., m fixed and for every X € R,
1 25 ol _ NI
lim li — log E(eln*(@n=2n)) < 0. 52
i, Bmsep ga toe (e ) 2

To this end, our main tool is the following consequence of the LSI (2.1), see Ledoux [20, Theorem 2.7] (after having
extended (2.1) by tensorization to the product measure of x): for any integrable C! functional G of & = G ki<m»

E (e bn/ VI G-EG)) (¢} (Ba/mCIVEGIY (5.3)

with C given in (2.1), where |V5G|2 =>4 |3§kG|2. This inequality can be extended to all integrable functionals
G=FXi,...,X,) where F € C'(R") by dominated convergence (even now X depends on the infinite sequence
(ék)kez, the detail is left to the reader).

Let apply it to

n
G EDicz) =Y (XaXupr — X X)),
k=1

so that our main estimations are now transferred to the gradient of G,]lv A
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Clearly

n
NI N N N Ny.
0, GN = (@i Xirr + a1 Xi —a]  Xpy, —a XY
k=1
SO

n 2 n 2
IVGN12 < 4Z<<Z(ai—k - ail\ik)Xk-ﬁ-l) + ( (@i —j—1 — ail\ik_[)xk>
k

i€Z k=1 =1

n 2 n 2
+ (Zail\ik(xkﬂ - X1€v+z)> + ( a g (X — Xliv)) )
k=1

k=1
= (I) + Iy + () + (V).

By Holder inequality,
log E(e*®n/¥ )(G%’—EGﬁ“)) < logE(ecx2(bg/n>||vfan~lHz)
1 22/ 1 21,2
< ZlogE(e“CA (b"/1)(l)) + ZlogIE(e“C* (bn/n)(ll))
+ llogE(ewwbg/m(u])) + llogE(eztc;ﬂ(bg/n)(IV)). (5.4)
4 4

Let us deal with the first term of this inequality. Using the definition of 7; given in (2.5) and the fact that the spectral
density of (Xj — X,ICV) is |g¢ — g™ |?, we rewrite the expression of (/) as

n n
(D=4 > @x—al @i —a D XeuXep =4 Y Fri(lg— g 1) XenXe

i€Z k=1 k=1
=4(x). T, (1 — gV 1) X)),
where X(_'f_)l = (X415 .-, Xpon)*. Let MY'N, <., Y be the eigenvalues of the matrix

JTg = e )T Tillg — 8V P).

Its operator norm is bounded from above by (using Lemma 4.4)
IT(H - 1T (1s = 8NP <n' a0 flgn']1g — 8™ P

Since (b, /y/n)n'/? — 0 by (H2) and f € L4(T,dd) by (H1), we have for all n sufficiently large, 32C K?>A2b2 /n
max|gj<n u?’N < 1. Applying the crucial Lemma 4.3, we get

g

n 2
a2 /may L _ 2,260 aN
logE(e ) < 5 E 1log 1—32CK*A ) (5.5)
J:

Similarly, for all n sufficiently large such that 32CK2k2(b,%/n) 1r<na§ ,u’}’N < 1, we have

NS
1 « b2
logE(e4CA2(b5/n)(n)) _ 1OgEelﬁC(b,zl/n)kz(X.(”),T,,(\g—gN|2)X.(”)) <= Zk’g<1 _ 32CK2)L2_nM,;,N> (5.6)
2 n'J ) '
j=1
Let us deal with the third term. We rewrite the expression of (IIT) as

n
=4y 3 aaly Xy = X)X = X))
i€Z k,k'=1
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n

=4 Y Foi(Ig" ) Kar = X2\ ) K — X))

kk'=1
=4} = O T(lg™ ) (X - ),
where (XN)(TI = (XH_I, e X,Hl)*. Let v?’N, ..., "N the eigenvalues of the matrix

To(1sV1?) T (1 — 8" 1)y Tu (18" ).
Its operator norm is bounded from above by (using Lemma 4.4)
172 (18" P) - 171 = &) [ < 918" 2] 17 1 = &P -

By our assumptions (H1) and (H2) on b, and f, we have for all n sufficiently large, 32CK 232 (b,% /n)maxigign v;.l’N
< 1. Applying the crucial Lemma 4.3, we get

2
log B(e4C+ (Ba/m Iy < Zlog(1—32CK2x2b" jN) 5.7
j=1

Similarly for all n sufficiently large such that 32C K 2)»2(172 /n)max| g <n v j "N~ 1 and we have

b2
log B (e*CH /)y < Zlog(l —32CK22n ;“V> (5.8)
j=1
By (5.4) and the previous estimations (5.5)—(5.8), we obtain

n

NI 1 b? b2
log E(e}%(2h—0n)) < -2 Z(log( —32CK2A7-uy N) + 1og< - 32c1(2x2fv7”v)>. (5.9)
j=1
Notice that by the Taylor’s expansion of order 1, we have for |z| < 1
log(l —z) = —z(1 — lz)f1
where ¢ =1(z) € [0, 1]. This applied here to z/}"¥ = 32CK222(b2/m)A"s", where A"

satisfies sup; ¢ <, Iz;f’N| — 0 as n — oo, yields by (5.9),

1 1 o
lim sup — logE(e’\bﬂ(Q -0 )) 16C2k2nlirgo<; Z(M;'N-i-v?‘lv)).

:u;"N or }L;’JN :M?’N which

n—o00 n

Thanks to Lemma 4.5, we have

1 ] .
Jim =3 N = tim ~ (T () T(1g — ") = Fo(ls = &P 1).
=1

Similarly
IS 1 .
nlggozzlv;?”=nlggo;tr(Tn(|gN|2)Tn(|g—gN|2))=ro(|gN|2|g—gN|2).
j:
So we get

limsup — log E(e*4(@ ) < 16c222Fo(Ig — g 1) + Fo(lg — &" Plenl?)]

n—oo Oy

where the desired negligibility (5.2) follows.
Step 3. Now we establish (2.3), i.e., for all A € R"*1,

1 1
lim — logEe?*2n) = — (5, 52)). (5.10)
n— 00 b% 2
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At first we have Eli’lN — Z‘,f’ ; forall k, 1 as N goes to infinity, by (H1) and the expression (2.4). Next for any fixed
a, B> 1with 1 + % = 1, by Hélder inequality we have that

logEeb’%(k'Q") < llogEeabﬁ(thy) + llOgEeﬁbﬁerQ,’,")
o B
for all A € R"*!, From (5.1) and (5.2) it follows that

1
lim sup = logEeb%(’\’Q") < %(A, Zz’NA) + Sn

n—o0 0Oy

where dy :=lim supn_)oo(l/ﬁbz) logEeﬁbg(’\’Q”_Qm — 0. Letting N — oo, we get
1
lim sup — logIEeb o < Lo 2. (5.11)
n—00 bn 2
Similarly, by Holder inequality, we have for every A,
—10 Ee bnl* Q'I'V) ! logEe n(%Qn) llogEe(ﬁbﬁ/am'Qﬁ_Q”) .
b? bn B

Taking first liminf,_, o, and next limy_, o, we get from (5.1) and (5.2)

2q2

Letting « — 1 in (5.11) and (5.12) yields (5.10). Finally the desired MDP follows from (5.10) by Ellis—Girtner’s
theorem ([10], Section 2.3).

1 2(0.0u)
n, X k) <11m1nfb—logEe (% On (5.12)
n

5.2. Proof of Theorem 2.3
We begin with the following

Lemma 5.1. Under the hypothesis Theorem 2.3, we have that for all h € LY (T, do),

/ FAOn* ) dr. (5.13)
n—oo Uy

In particular P(L,, € -) is exponentially *-tight in (L? (T, d9), o (L? (T, d6), LY (T, dB))), where 1/p’ +1/p=1.
Proof. The last claim follows from (5.13) by [23, Chapter 2, Proposition 2.5] when 1 < p < 2 and by [23, Chapter 2,
Theorem 2.1] when p = 1. So it is enough to prove (5.13). For every function & € L? (T, df), the function h(0) =
2[h(®) + h(—0)] is even and

L/h(G)In(@)de=L/fl(9)fn(9)d9,
2 21
T T

we shall hence restrict ourselves to the case where / is even. Since

1
E/h(@)ﬁ,,(@)d@ = b
T

= (X 100X ) = B, 700 X)),
n

Applying (2.1) to H((Eiez) = (X", T, () X™), we have
E(e ,1<1/(2n))fTh<e>z:n<d9)) B (e(bn/vMH-EH)) E(e(b,%/mCW;HF).

Since T,,(h) is symmetric, we have

n n
H(Eiez) = ) aiaXiTu(Wig + aii Xk LWy =2 ) ai—x Xi T (b 1.
Lk=1 Lk=1
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Clearly
n 2 n n
IVeH? = (0 H)* = Z(z > aikszn(h)kJ) =4y ( > Tn(h>k,lTn<f>k,k/Tn<h>kf,p>szz/
i€Z i€Z \ k=1 LI'=1 \kk'=1
n
=4 Y (TL(WT(HT(), XXy =4X™, T, T, (H T ()X ™).
LU=t
Letaf, ..., o) the eigenvalues of the matrix

VI W (T (h) Tn(HV T (W T () Ta(h).
Its operator norm is bounded from above by (using Lemma 4.4)
IO 1T T (O T | < (291 £1) (7 ).

Since bynl/a+1/P'=1/2 _, ¢, feLi(T,dd) and h € Lp/(T, df), we have 8CK2(bg/n) maxi|gj<n a’j? < 1 for n large
enough. Applying Lemma 4.3, we get

2
log E(e” (l/(2n))fTh(9)£,,(d0) Zlog<1 _ 8CK2b" 7)
Jj=1
Thus
1
limsup — log E(e ,1(1/(271))[Th(0)£n(d0)) <4CK? lim — Zoc”
n—oon

n—oo Uy =1

Since f € L4(T,d0) and h € L? (T, d6) with 1/p +1/q < %, applying Lemma 4.5, we obtain

lim Za Jim tr((T(f)T(h)))_fo(f2h2)<+oo.

n——+oon
Hence (5.13) follows. 0O
‘We now turn to the

Proof of Theorem 2.3. Step 1. By Lemma 4.3, Ee*Xo® < 400 for some A > 0. Then by Chebychev inequality

n

1
> XaXepe— EXkaH))
(bn\/— 0o<e<m

k=n—{+1

is negligible with respect to the MDP. Using Theorem 2.1, we get the finite dimensional MDP on R"*! of

n—{

1
—— ) (XiXpre — EXp Xy ))
(Wk; - EXiXin

with the rate function given by

0o<em

I(z)= sup {(A,z) — %(k, Z‘ZA)},
AeRm+1

where

m 2 m 2
1 1
(0, Z20) :E/2<Zkkcos(k9)> fz(o)dé+K4(E/(ZMCOS(I{G))f(G)dQ) .
T

7 \k=0
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Now notice that £,,(0) is even and

n—~{

1
X Xise — EXe Xiwe), £€30.
bnﬁ,;( kXk+e k Xk+e)

N 1
L,(f) = — / cos(£0)L,(0)do =
2
T
Thus (/fn (£))ogegm satisfies the MDP on R™*! with the same rate function. By Lemma 4.3 and the projective limit

Theorem [10, Theorem 4.6.9], we deduce that (£,),>¢ satisfies the MDP on (L? (T, d6), o (L?(T, d9), LY (T, do)))
with the rate function given by

1 / - 1 (& e
sup  sup — E Arcos(kB) |n(@)do — = A E Mrcos(kB) | ¢, if piseven,
I(n) = { m>050,... xmeR[ 2 (ko 2\ (5.14)
T \k= =
+00, otherwise

where

A ( > M cos(k9)> = (1, Z%).

k=0

Step 2. Identification of the rate function. Introduce L2, (T, v) = {h € LP(T, v), h even}. Remark as trigonometric
polynomials are dense in L2(T, £2d6), one can find for every & € Lgven (T, £2d#), an approximation by some cosine
polynomials sequence #,, such that

nli)ng()/(h,, —)2() f*(0)do =0. (5.15)
T

So we can extend continuously the definition of A to all functions & € L2, (T, f2d9),

2
A(h)=%/-%z(e)fz(@)de+K4<%fh(6)f(9)d9> . (5.16)
T T

(a) Suppose that n is even, ndé is absolutely continuous w.r.t. f2dd, and n/f € L*(T,dd). For any h €
Lgven (T, £2d0), let h, the sequence defined in (5.15), by Cauchy—Schwartz inequality, we get

2 2
([1ths-m@m@|a) < [0 -no) e [(4) @0 — o
T T T

So 1(n) defined in (5.14) coincides with

1 1
() = sup {Z—/h(e)n(e))de - 5A(h)} = sup  D(h).
heL2, (T, f2do) L <7 A helLl,, (T, f2do)

even

Let us find explicitly the maximizer ko of D(h). Let k € L2, (T, f2d6) and € > 0,

even

fim 2 +€0 = D) _ L/k(@)n(e)de - %(%/2f2(9)h(9)k(9)d9
T T

e—0 € 2

1 1
+2K4<Z/f(9)h(9)d9) <g/f(8)k(9)d9>>.
T T

So
. D(h+€k)— D(h)

) 0, VkelL2,, (T, f>do) (5.17)
€— €




MDP of empirical periodogram 267

H. Djellout et al. / Ann. I. H. Poincaré — PR 42 (2006) 393-416 411
iff
1
n(0) =21(0)*h(0) + k4 (ﬂ / FO)h(®) d9> 1 ). (5.18)
T
Dividing (5.18) by f and integrating over T, we obtain
0
/f(@)h(@)d@ - 20) 4.
2+k4) f(O)
T T

Plugging this last expression in (5.18), it is then easy to verify that the only functional kg € Lgven (T, f?d0) realiz-
ing (5.17) is given by

Ca® & (1 [ n@
ho @) 1O =375 2+K4<27T / 21 @) d“)'
T

Calculating D(hg) gives finally the announced rate function.
(b) Now we have to treat the case where 1d6 is absolutely continuous w.rt. f2df but % ¢ L*(T, d9). So there

exists g € L3y, (T, d6) such that [1g(6)}(6)df = +00,and g} > 0. Leth:= %, 50 h € Lge, (T, f?d6), we choose
h, = (h Vv (—n)) A n. We get by dominated convergence

Tim f (ha(0) — h(8))” £ (6)* d6 =0,
T

so it follows that

lim A(h,) = Ah).
n—+00
By Fatou’s lemma we get

liminff h,(0)n®)do > /liminfh,,(Q)r)(Q)dO = +o00.
n—oo n—o00

T T
Since by approximation,

1 1
1) > 2—/hn(9)n<0>d9 LAl
T 2
T

letting n to oo, we obtain /(1) = oo.

(c) Now we have to treat the case where 7 dé is not absolutely continuous w.r.t. f2dé, i.e. there exists a measurable
and symmetric set K C T such that | xf 2(9) d9 = 0 while /. x 1(0)do > 0. For any t > 0, we approximate the function
t1x by a sequence of cosine polynomials /,, in L>(T, (f% + |n|) d9) and get

I(n) > lim D(hy) ZIfn(G) de.
n—-+o00
K
Letting ¢ to infinity, we get I (n) = +o00. O

5.3. Proof of the corollaries of Theorem 2.3

Proof of Corollary 2.4. It is enough to prove it for 4 even. When £ is a cosine polynomial, this was established in the
proof of Theorem 2.3. For general 7 € L? (T, df), let (hy) be a sequence of cosine polynomials such that hy — h
in L? (T, dO). To get the desired result, it remains to show

—X n—oo Oy

1 1
lim limsup o) log]EeXp()\bﬁz— /(hN —h)L,(0) d@) =0, VieR.
T
T

This follows by Lemma 5.1. O
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Proof of Corollary 2.5. To deduce MDP for (£,,) from Theorem 2.3 (with ¢ = +00), we only need to prove that for
all h e LP(T),

N
b—(/h(t)]EIn(t)dt—/f(t)h(t)dt)r:zo. (5.19)
T T

n

It is easy to see that

/h(t)IEIn(t) dr = [f Ky(u—1t)fuh@)dtdu = (K, * f, h)
T TT

where K, is the Fejer kernel function given in Lemma 4.6. Since the function K, is even, we have

/h(t)EIn(t)dt:%// K,l(t)f(u—{—t)h(t)dtdu—i-%// Kn (1) f)h(t + u) dt du.
T T T T

T

Taking into account the equalities [ f(u)h(u)du = [ f(u +O)h(u +1)du, 1 K,(t)dr =1 we get

‘/h(t)]EIn(t)dt—ff(t)h(t)dt :%‘/Kn(t)/(f(u)—f(u+t))(h(t+u)—h(u))dudt
T T T T

1
gE/Kn(t)”f(')—f('+t)||p||h(t+')_h(') pdr-

T

By our assumption (2.7) on f, for § > 0 small and |¢| < § we have

lfe=re+nl,<cVirl and  [a@+-) —h()

» < 2||h||p’~

By Lemma 4.6, the last quantity above is smaller than
1
Clilly [ KaoViTdu+ 201,00 [ Koerar = O(ﬁ)'
[7]<8 1]>8

Hence (5.19) follows. O

Proof of Corollary 2.6. By Corollary 2.4 with p = 1, we only need to prove (5.19) for all & satisfies (2.8), and the
proof of (5.19) is completely similar to that of Corollary 2.5. O

5.4. Proof of Theorem 2.7

Let us describe briefly how the preceding proof of Theorem 2.1 can be easily extended to the general non-linear
functional F'. We only consider F(xo, ..., x;) = F(xo) and it is real-valued (for simplicity).
Since F’ is Lipschitz continuous, we get for some positive L, and for all N

N
|[FOXO| < L(1+1X)1P) <2L(N + 1)(1 + ) a}skzﬂ)
j==N

so that, setting 8 = 8/(2L(N + 1)? sup; ajz.) where § is given in (2.2), by the assumption on the validity of the LSI,
we get

E(e¥1FO1) < o LNHDE() < oo,

Hence for every N fixed, by Lemma 4.7, (1/n) Y ;_; F(X ,iv ) satisfies the MDP as in Step 1 in the proof of Theo-
rem 2.1.
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Thus by the argument in Step 3 of Theorem 2.1, it remains to prove that V1 € R,

lim sup lim sup blz logEeXp< r;z Z[F(Xk) - F(X,](V) —E(F(Xp) — F(X,f’))]) =
n k=l

N—oo n—>o0

We apply again (5.3) to
n

GN(Eiez) = Y (F(Xp) — F(XD)).

k=1
Writing F/(X.) :== (F'(X1), ..., F'(X,))* and similarly F’(X.), we have

2
n
VeGP = Z(Zai_kmxk) - aﬁkF%X,?))

i€eZ \k=1
n 2
<22<Z(ai—k—al-1vk)F’(Xk)> +2Z<Z a, F(Xk)—F(Xk)))
ieZ \k=1 i€Z \ k=1

2 2
=2|/Tu(lg = gVIP) F' (X" + 2|y Tu(IgV 1) (F'(X) = F'(x ™))",
By the fact that the derivative of F is Lipschitz and the spectral density is bounded, the last term above is bounded by
n
2L1g - g"li3 <n+Zxk> +20gV 1% Y (X — X
k=1 k=1
Finally as Az(b,zl /n)llg —gV ||go can be chosen arbitrary small for large n, we have by Lemma 4.3

1
o 1ogEexp<A7<GN EG,?))ucxzng—gNuio 4bzlog(1—4CLK2A2 2lg—g ||oo||g||oo)

n
b?
242%n N2 N2
T 10g(1 —4CLK 2 o 187 llls —¢ ||oo>
and the r.h.s. of this last inequality is easily seen to behave as n — 0o as
lg — g" I3 (LCA* +2CLE?A%IIgI13,)-
By the famous Fejer Theorem (Lemma 4.6), under the assumption of continuity of g, we get that
li —gV2 =0,
Jim g — g7 5
which yields to the desired negligibility.
5.5. Proof of Corollary 2.8

Under assumption (2.2), the crucial inequality (5.3), as a consequence of the LSI, may not be used. However, we
may encompass this difficulty by noting that integrability (2.2) is, by Djellout and al. [13, Theorem 2.3], equivalent to
a Transport inequality in L1-Wasserstein distance which is itself equivalent to the inequality (5.3) with the Lipschitz
norm instead of the gradient in the right hand side, but for this particular linear case, the gradient and Lipschitz norm
are equal so that the same proof works.

5.6. Proof of statistical results in Section 3

5.6.1. Proof of Proposition 3.1
Considering X, /o if necessary, we can assume without loss of generality that o = 1. Let us introduce

n o 1-62 &
= Y6 =) and Ry = S (XiXio1 —6X2)).

bn T by
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By Theorem 2.1, R, satisfies the MDP. Before identifying its rate function let us first show that r,, — R, is negligible
w.r.t. the MDP. To that end, note

VY (XiXiog —6X] )

ry=Y2 = 3 (XiXiot = 0X7) X
n— - 1A]—
bn Y X7 nby ¢ i X,Z—1
So
1< X2 —1—-0H7!
In— Ry=——) (X;Xi_1 —0X]_) x L== x (1 —6%).
’ 1 ﬁbn; o : ;11 i= IX2
Fore >0, L >0andé > 0, we have
1
P('l’n Rn| ( \/_Z(X Xz 1 — 9X2 1) 1_92L\/g)
n

g

For 6, ¢ sufficiently small but fixed, the two last terms are bounded by (for # large enough)

P( ﬁé(xgl _ 1_;92> . ﬁ)

which is clearly negligible as n — 400 by the MDP of

by
 R— 1
X, - —— ).
ﬁm?( o 1—92>

The first one is negligible by the MDP of R, by letting L — oo. So r,, satisfies the same MDP as R,,. It remains to
identify the rate function governing the MDP of R,,. By Theorem 2.1, the rate function governing the MDP of R, is
given by

> ?) +P(%Zx?1 <5).

i=1

x2

2(1 — 92)2A2
with A2 := 0253, — 20 32, + 2%, where

1 1 2
Egoz§/2f2(u)du+/<4(§/f(u)du) )
T T
2= (2 2u)d ! du) (= d
& _E/ cos(u) [~ (u) M+K4<E/f(u) M) (E/f(u)cos(u) “)
T T T

2
o= L/(1 + cos 2u) 2 (u) du +K4<L/f(u)cos(u) du) )
2 2w
T T

I(x)= (5.20)

Hence

LN YA N NI S NP 0 o ?
A7 =20r0(f7) — 2071 (f) +ro(f7) +72(f7) +ka 27{ Sf(u)du 27{ f(u)cosudu

where 7 (%) = 5 fT F2u)ye ik dy = 2n fT f£2(u) cos(ku) du is the kth Fourier coefficient. The last term with co-
efficient k4 is zero for

i / f(u)du — L / f(u)cosudu =0 Var(Xg) — Cov(Xp, X1) =0.
2 2
T T
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Furthermore (recalling that 0 = 1 and EXoX,, = 0" (1 — 6%~ forn > 0),

1 n| Jinu g 1 iku n —n
f%m:—(l_ez)z(zeue ) = G e g

nez keZ nez

where it follows that 7 (f 2y = m Y onez glnltlk=nl From this last relation we deduce easily

o= =2 =l
7 = , F = > T = :
0 1—g23 a—e23 7 (1—02)3
Substituting to the expression of A2, we get
1
A= — .
1—02

Substituting in (5.20), we obtain the claimed rate function.

5.6.2. Proof of Proposition 3.2
We need the following stronger result in the centered Gaussian case, inspired by [2]

Lemma 5.2. Assume that (£§;) are Gaussian N'(0,1). Let X™ = (X1,..., X,)* and M, be a n x n order sym-
metric matrix. Denote by ()L’]’.)lg j<n the eigenvalues (counting up to the multiplicity) of M, T,(f). Assume that
sup,, max |k;’.| < 400 and for some measurable function m on T such that fm € L*°(T),

lZ(A’;)Z — L/(f(e))m(e))zde. (5.21)
n pi 2 J

Then for every moderate deviation scale 1 K b,, K ﬁ, we have for all A,

n—-+00

o1 rb e
lim ElogEexp(ﬁ((X("),MnX(”))—IE(X(”),M,,X(”)))>:E/fz(e)mz(é)de.
T

Proof. Denote 7,, = (XD M, XDy —E(X®, M, X™)) we have

1
/nby

b 1< b
1ogIE(e”5”n) = —)\\/—"E]E(X("), M, X"y — 5 Zlog(l - ZA\/—%A’}).

j=1
Notice that by Taylor’s Theorem for |z| < 1

1
log(l —z) =—z— Ez2(1 —12)72,

where t =1(z) € [0, 1]. This applied here to z;? = 2)\(19,,/\/5))»3?, which satisfies SUPI<j<n |z’j?| — 0 asn — oo, and
hence |1 — t(z’]’.)z;?| — 1 uniformly in 1 < j < n. Since the Gaussian process (Xj) is assumed centered we have

n
ij. =t(M T, (f)) =E(X™, M, X™).
j=1
Thus
1 2 1<
. o by ATy — 2 9 - n 2
nlirgo 5 logIE(e ) A nll)ngonz;()\j) .
j:

The conclusion follows by our hypothesis. O

Proof of Proposition 3.2. We have
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(L, —E(Ly) = (X, [T (fo) ™ = () XD = E(XP[T,(fo) ™" = T ()~ ]X™))).

=%
S | s

1
2/nb,

We want to apply Lemma 5.2 with f = fo, My, = 3(T,(fo) ' =T (f1)™") andm = L (f;"' — f~1). The boundness
of the eigenvalues (A’;) of M, T, (fo),n > 11is given by Lemma 10 in [2], and it is proved in [2, Proof of Proposition 7]
that (1/n) Z;le 8 X converges weakly to the image measure of the normalized Lebesgue measure dt/(27) by fm =

%(1 — fo/f1) (the factor 1/2 is missed in [2]). Thus condition (5.21) is satisfied for ()»;'.)n,j is bounded. Now the
desired MDP follows by Lemma 5.2 and Ellis—Girtner’s theorem. O
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MODERATE DEVIATIONS FOR THE DURBIN-WATSON STATISTIC RELATED
TO THE FIRST-ORDER AUTOREGRESSIVE PROCESS

S. VALERE BITSEKI PENDA!, HACENE DJELLOUT? AND FREDERIC PROTA?

Abstract. The purpose of this paper is to investigate moderate deviations for the Durbin—Watson
statistic associated with the stable first-order autoregressive process where the driven noise is also given
by a first-order autoregressive process. We first establish a moderate deviation principle for both the
least squares estimator of the unknown parameter of the autoregressive process as well as for the serial
correlation estimator associated with the driven noise. It enables us to provide a moderate deviation
principle for the Durbin—Watson statistic in the case where the driven noise is normally distributed and
in the more general case where the driven noise satisfies a less restrictive Chen-Ledoux type condition.
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1. INTRODUCTION

This paper is focused on the stable first-order autoregressive process where the driven noise is also given
by a first-order autoregressive process. The purpose is to investigate moderate deviations for both the least
squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation
estimator associated with the driven noise. Our goal is to establish moderate deviations for the Durbin—Watson
statistic [11-13], in a lagged dependent random variables framework. First of all, we shall assume that the driven
noise is normally distributed. Then, we will extend our investigation to the more general framework where the
driven noise satisfies a less restrictive Chen-Ledoux type condition [5,17]. We are inspired by the recent paper
of Bercu and Proia [3], where the almost sure convergence and the central limit theorem are established for
both the least squares estimators and the Durbin—Watson statistic. Our results are proved via an extensive use
of the results of Dembo [6], Dembo and Zeitouni [7] and Worms [24, 25] on the one hand, and of the paper
of Puhalskii [21] and Djellout [8] on the other hand, about moderate deviations for martingales. In order to
introduce the Durbin—Watson statistic, the first-order autoregressive process of interest is as follows, for all

Keywords and phrases. Durbin—Watson statistic, moderate deviation principle, first-order autoregressive process, serial
correlation.
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(1.1)

{Xn = eXn—l + en

En pPEn—1 + ‘/n

where we shall assume that the unknown parameters |#] < 1 and |p| < 1 to ensure the stability of the model.
In all the sequel, we also assume that (V},) is a sequence of independent and identically distributed random

variables with zero mean and positive variance o2. The square-integrable initial values X, and ey may be

arbitrarily chosen. We have decided to estimate 6 by the least squares estimator

5o Dkt X Xi-1

0 (1.2)
k=1 X1
Then, we also define a set of least squares residuals given, for all 1 < k < n, by
Bk = Xk — 00 X1, (1.3)
which leads to the estimator of p,
> EkEr—1
k=1%k—1
Finally, the Durbin—Watson statistic is defined, for n > 1, as
A~ n B —_— B 2
D = Zk:l(ak Ek—l) . (15)

! k=0 Ex
This well-known statistic was introduced by the pioneer work of Durbin and Watson [11-13], in the middle of
last century, to test the presence of a significative first order serial correlation in the residuals of a regression
analysis. A wide range of literature is available on the asymptotic behavior of the Durbin—Watson statistic,
frequently used in Econometry. While it appeared to work pretty well in the classical independent framework,
Malinvaud [18] and Nerlove and Wallis [19] observed that, for linear regression models containing lagged de-
pendent random variables, the Durbin—Watson statistic may be asymptotically biased, potentially leading to
inadequate conclusions. Durbin [10] proposed alternative tests to prevent this misuse, such as the h-test and
the t-test, then substantial contributions were brought by Inder [15], King and Wu [16] and more recently
Stocker [22]. Lately, a set of results have been established by Bercu and Proia in [3] for the first-order autore-
gressive process, and by Proia [20] for the autoregressive process of any order, in particular a test procedure
as powerful as the h-test and more accurate than the usual portmanteau tests, and they will be summarized
thereafter as a basis for this paper in the one-dimensional case. This work can be seen as an extension of [3]
in the sense that more powerful convergences are reached and that a better precision than the central limit
theorem is provided for the same random sequences. Hence, the establishment of moderate deviations is the
natural continuation following the proof of central limit theorems and laws of iterated logarithm. We are now
interested in the asymptotic estimation of

p(¥

(6, - 6) eA>

where ©,, denotes the estimator of the unknown parameter of interest @, A is a given domain of deviations and
(b,) denotes the scale of deviations. When b,, = 1, this is exactly the estimation of the central limit theorem
(CLT). When b,, = y/n, it becomes a large deviation principle (LDP). And when 1 < b, < /n, this is the
so-called moderate deviation principle (MDP). Usually, an MDP has a simpler rate function inherited from the
approximated gaussian process which does not necessarily depend on the parameters under investigation and
holds for a larger class of dependent random variables than the LDP. Furthermore, an MDP can be seen as a
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refinement of the CLT in the sense that the MDP tells us that the gaussian estimation still holds up to the scale
of large deviations. For the sake of clarity, all useful definitions will be given later.

The paper is organized as follows. First of all, we recall the results recently established by Bercu and Proia [3].
In Section 2, we propose moderate deviation principles for the estimators of 6 and p and for the Durbin—Watson
statistic, given by (1.2), (1.4) and (1.5), under the normality assumption on the driven noise. Section 3 deals
with the generalization of the latter results under a less restrictive Chen—Ledoux type condition on (V;,). Finally,
all technical proofs are postponed to Section 4.

Lemma 1.1. Assume that (V,,) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the autoregressive estimator,

lim 6, =0* as.
n—oo

where the limiting value

0+p
9* = . 1.6
14 6p (16)
In addition, as soon as E[V}}] < oo, we also have the asymptotic normality,
Jn (én - 9*) £ N(0,03)
where the asymptotic variance
1—6%)(1—0p)(1—p?
o 000 =0p)(1 = p?), )

(1+06p)

Lemma 1.2. Assume that (V,,) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the serial correlation estimator,

lim p, =p* a.s.
where the limiting value
p*=0p0". (1.8)

Moreover, as soon as E[V}}] < co, we have the asymptotic normality,

ﬁ(ﬁn - p*) £> /\/’(0,02)
with the asymptotic variance

72 = g (04 P14 80 + 01— #9)1 = ) (1.9)

In addition, we have the joint asymptotic normality,
Na ( gn - f}) £ n.r)

where the covariance matriz , )
o; Opo
= (9;}32 (fz 9) . (1.10)
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Lemma 1.3. Assume that (V,,) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the Durbin—Watson statistic,

lim Bn =D* a.s.
where the limiting value
D* =2(1—p"). (1.11)

In addition, as soon as E[V}}] < oo, we have the asymptotic normality,

Vi (Do - D) £ n(0,02)

where the asymptotic variance
o = 4o (1.12)

Proof. The proofs of Lemma 1.1, Lemmas 1.2 and 1.3 may be found in [3]. (]

Our objective is now to establish a set of moderate deviation principles on these estimates in order to get a
better asymptotic accuracy than the central limit theorem.

In the whole paper, for any matrix M, M’ and ||M]| stand for the transpose and the euclidean norm of
M, respectively. In addition, for a sequence of random variables (Z,,), on R¥*?  we say that (Z,), converges
(an)—superexponentially fast in probability to some random variable Z with a,, — oo if, for all § > 0,

1
lim sup — logIP’( Wz, —Z|| > 5) = —o0.
n—oo On

This exponential convergence with speed a,, will be shortened as

superexp
Zy — Z.
an

The exponential equivalence with speed a,, between two sequences of random variables (Y;,), and (Z,,),, whose
precise definition is given in Definition 4.2.10 of [7], will be shortened as

superexp
Y, ~7 Z,.
An

We start by recalling some useful definitions.

Definition 1.4 (Large Deviation Principle). We say that a sequence of random variables (M,,),, with topological
state space (S, S) satisfies an LDP with speed a,, and rate function I : S — RT if a,, — oo and, for each 4 € S,

1 1

— inf I(z) <liminf — log]P’(Mn € A) < limsup — log]P’(]VIn € A) < — inf I(x)
TEA® n—=00 Qnp n—oo QOn €A

where A° and A denote the interior and the closure of A, respectively. The rate function I is lower semicontin-

uous, i.e. all the sub-level sets {z € S | I(x) < ¢} are closed, for ¢ > 0.

Let (b,,) be a sequence of increasing positive numbers satisfying 1 = o(b2) and b2 = o(n),

b
b, — o0, ﬁ — 0. (1.13)
Definition 1.5 (Moderate Deviation Principle). We say that a sequence of random variables (M), with
topological state space (S, S) satisfies an MDP with speed b2 such that (1.13) holds, and rate function I : S — R*
if the sequence (y/nM, /b,), satisfies an LDP with speed b2 and rate function 1.

Formally, our main results about the MDP for a sequence of random variables (M,,),, will be stated as the
LDP for the sequence (v/nM,, /by )n.
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2. ON MODERATE DEVIATIONS UNDER THE GAUSSIAN CONDITION

In this first part, we focus our attention on moderate deviations for the Durbin—Watson statistic in the easy
case where the driven noise (V},) is normally distributed. This restrictive assumption allows us to reduce the set
of hypotheses to the existence of ¢ > 0 such that

G1
]E[exp(ts%)} < 00,

G2
E[exp(th)} < 00.

Theorem 2.1. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (V,,) follows the
N(0,0?) distribution. Then, the sequence

satisfies an LDP on R with speed b2 and rate function

Ip(x) (2.1)

= %07
where o2 is given by (1.7).

Theorem 2.2. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (V;,) follows the
N(0,0?) distribution. Then, as soon as 0 # —p, the sequence

(\/ﬁ (gn - 9*)>
bn I/O\n - p* n>1
satisfies an LDP on R? with speed b2 and rate function
1 /=1
K(z) = 2% Iz (2.2)

where I' is given by (1.10). In particular, the sequence

(=),

satisfies an LDP on R with speed b2 and rate function

L@) = 5 (2.3)

where o2 is given by (1.9).

Remark 2.3. The covariance matrix I is invertible if and only if 6 % —p since one can see by a straightforward
calculation that its determinant is given by
a5(0 +p)*(1 —6p)

det(I') = A+ .
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Moreover, in the particular case where § = —p, the sequences

Ge),, = (FE)

satisfy LDP on R with speed b2 and rate functions respectively given by

n>1

22(1 — 6?)
2(1+6?)

22(1 - 6?)

Io(w) = =0T )

and I,(z)

Theorem 2.4. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (V;,) follows the
N(0,02) distribution. Then, the sequence
(@ (. - D*)>
bn n>1

satisfies an LDP on R with speed b2 and rate function
2

I =
where a2, is given by (1.12).

Proof. Theorem 2.1, Theorems 2.2 and 2.4 are proved in Section 4. O

3. ON MODERATE DEVIATIONS UNDER THE CHEN—LEDOUX TYPE CONDITION

Via an extensive use of Puhalskii’s result, we will now focus our attention on the more general framework
where the driven noise (V},) is assumed to satisfy the Chen-Ledoux type condition. Accordingly, one shall
introduce the following hypothesis, for any a > 0.

CL1(a) Chen—Ledoux.

. 1 “
hmsupb—2 logn]P’(|V1\ > bn\/ﬁ> = —0.
n—oo n
CL2(a)
‘EO‘CL superexp
0.
b/ 82
CL3(a)
[Xo|* superexs
boy/n b2 '
Remark 3.1. If the random variable V; satisfies CL1(2), then
li 11 P( V2 —E[VH| > buv/n) = 3.1
imsup 15 logn (}17 V2| > b n)—foo, (3.1)

n—o00 n

which implies in particular that Var(V;?) < co. Moreover, if the random variable V;? has exponential moments,
i.e. if there exists ¢ > 0 such that
E [ exp (tVf)} < 00,
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then CL1(2) is satisfied for every increasing sequence (b,,). From [1,2,14], condition (3.1) is equivalent to say

that the sequence
1 ¢ 2 2
(bm; (i —E[Vk]))

satisfies an LDP on R with speed b2 and rate function

n>1

$2

0= vy

Remark 3.2. If we choose b, = n® with 0 < o < 1/2, CL1(2) is immediately satisfied if there exists ¢ > 0
and 0 < 3 < 1 such that

E[exp (tVfﬂ)} < 00,
which is clearly a weaker assumption than the existence of ¢ > 0 such that
E [ exp (tVf)} < 00,
imposed in the previous section.
Remark 3.3. If CL1(a) is satisfied, then CL1(b) is also satisfied for all 0 < b < a.

Remark 3.4. In the technical proofs that will follow, rather than CL1(4), the weakest assumption really
needed is summarized by the existence of a large constant C' such that

lim sup — 02 log]P’( ka > C>

n—oo

Theorem 3.5. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence

satisfies the LDP on R stated in Theorem 2.1.
Theorem 3.6. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, as soon as 0 # —p, the sequence

(\/_ﬁ (é\n - 9*))
bn Z)\TL - p* n>1

satisfies the LDP on R? stated in Theorem 2.2. In particular, the sequence

(3. 6-)

satisfies the LDP on R also stated in Theorem 2.2.

n>1

Remark 3.7. We have already seen in Remark 2.3 that the covariance matrix I" is invertible if and only if

0 # —p. In the particular case where § = —p, the sequences
N ‘ Vi
(Z (.- 07) @1 and E(pn —0") .

satisfy the LDP on R stated in Remark 2.3.
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Theorem 3.8. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence

(e @=7))...

satisfies the LDP on R stated in Theorem 2.4.

Proof. Theorem 3.5, Theorems 3.6 and 3.8 are proved in Section 4. (|

4. PROOF OF THE MAIN RESULTS

For a matter of readability, some notations commonly used in the following proofs have to be introduced.
First, for all n > 1, let

Ln=>» V. (4.1)
k=1
Then, let us define M, for all n > 1, as
M, = ZXk—lvk (4.2)
k=1

where My = 0. For all n > 1, denote by F,, the o-algebra of the events occurring up to time n, F, =
o(Xo,e0,V1,--+, V). We infer from (4.2) that (M,),>0 is a locally square-integrable real martingale with
respect to the filtration F = (F,),>0 with predictable quadratic variation given by (M)o = 0 and for all n > 1,
(M),, = 02S,_1, where

n
Sn =Y X{. (4.3)
k=0
Moreover, (Ny)n>0 is defined, for all n > 2, as
Ny => Xp Vi (4.4)
k=2

and Ng = N7 = 0. It is not hard to see that (N, ),>0 is also a locally square-integrable real martingale sharing the
same properties than (M,,),>0. More precisely, its predictable quadratic variation is given by (N), = 025,_a.
To conclude, let Py = 0 and, for all n > 1,

Pp=> Xp 1X. (4.5)
k=1
To smooth the reading of the following proofs, we introduce some relations.

Lemma 4.1. For any n > 0,

n n

DXk < (L a(m)[Xol " + alm)B(n)leo| " + aln)B(n) Y Vil

k=0 k=1

where
am) =1 —10)"" and B(n)=1~1p))"".
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In addition,
2 < 2 2 2‘
max X < o(1) Xg + «(2)B(1) e + a(2)B8(2) [max Vi

Proof. The proof follows from (1.1). Details are given in the proof of Lemma A.2 in [3]. O

Lemma 4.2. For alln > 2,

. L, M, N, R,
Se:é[(02)+29*29p+R (ws)
n g n n n n

where Ly, M,, S, and N, are respectively given by (4.1), (4.2), (4.3) and (4.4),
Ry, =200+ p)p* = (0+p)* = (0p)°] X5 — (0p)° Xy + 20" X X1 + &1,
and where the remainder term
& = (1-20p— p*)X§ + p*el + 20pXoc0 — 2pp™ (g0 — Xo)Xo + 2p(e0 — Xo)Vi.

In addition, for allm > 1,

Pn Sn 1 Mn 1 Rn 0 X2
n n 1+0p n 14+6p n n
with
Rn(o) =0pX, X1+ PX0(€0 - XO)
Proof. The results follow from direct calculation. |

4.1. Proof of Theorem 2.1

Before starting the Proof of Theorem 2.1, we need to introduce some technical tools. Denote by ¢ the almost
sure limit of S, /n [3], given by

/- a?(1+ 6p) . (48)
=) (1 - 6p)(1— )
Lemma 4.3. Under the assumptions of Theorem 2.1, we have the exponential convergence
Sn superexp (4.9)

noon
where ¢ is given by (4.8).

Proof. First of all, (V) is a sequence of independent and identically distributed gaussian random variables with
zero mean and variance o2 > 0. It immediately follows from Cramér—Chernoff’s Theorem, expounded e.g. in [7],
that for all 6/ > 0,
1 L
lim sup — log P (’—n — o2
n

n—oo

> 5’) <0. (4.10)

Since b2 = o(n), the latter convergence leads to

Ln superex
n SURSIOP 52 (4.11)

n b2
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ensuring the exponential convergence of L, /n to 02 with speed b2. Moreover, for all § > 0 and a suitable ¢ > 0,
we clearly obtain from Markov’s inequality that

P <X73 > 5> < eXp(45715)IE[GXP(th)}7

which immediately implies via G2,
X2 3 rex
20 SRR, (4.12)
n b2

and we get the exponential convergence of X2/n to 0 with speed b2. The same is true for Vi2/n, €3/n and more

generally for any isolated term in &; given after (4.6). Let us now focub our attention on X2 /n. The model (1.1)

can be rewritten in the vectorial form,

b, = Aby_y + W, (4.13)
where @,, = (Xn anl)l stands for the lag vector of order 2, W,, = (Vn 0)/ and
0+p—0
A= ( L 0'0>. (4.14)

It is easy to show that the spectral radius of A is given by p(A) = max(|0],|p|) < 1 under the stability conditions.
Then,
”@TLH2 superexp
IEnll superer o)
n b7
according to [23], which is clearly sufficient to deduce that
X2 S rex
Tn SUREEP ), (4.15)
n b2
The exponential convergence of R,,/n to 0 with speed b2 is achieved following exactly the same lines. To conclude
the proof of Lemma 4.3, it remains to study the exponential asymptotic behavior of M,,/n. For all § > 0 and a

suitable y > 0,
M, M, M,

< exp (—”jj) +]P’((M)n > y) (4.16)

by application of Theorem 4.1 of [4] in the case of a gaussian martingale, and Remark 4.2 that follows. From
Lemma 4.1, one can find a and § such that, for a suitable ¢ > 0,

IP((M)n > y) g]P(Xg > 3;’02) +]P’<5(2) 35 ) +IP’<Ln 1> 350 )
< 3max <exp (3;:?2) E[exp(th)],eXp (3/_3?5:2) E[exp(tsg)},

P<L" > ))

Let us choose iy = nx, assuming x > 380*. It follows that

1 log3 1 —naxt
7 1og]P>(<M>n > nm) < S g e <ﬁ + logIE[exp(th)],
nT
Sﬁ Py ) + logE[exp(tso)},logP (L7L71 > W) )
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Since b2 = o(n) and by virtue of (4.10) with §’ = 2/(330%) — 02 > 0, we obtain that

limsup —
n—oo bn

log]P((M>n > m:) = —o0. (4.17)
It enables us by (4.16) to deduce that for all § > 0,

M,
hin:o%p 2 log]P’ <7 > (5> —00. (4.18)
The same result is also true replacing M,, by —M,, in (4.18) since M,, and —M,, share the same distribution.
Therefore, we find that
]\Jn superexp
_— —

0. 4.19

A similar reasoning leads to the exponential convergence of N,,/n to 0, with speed b2. Finally, we obtain (4.9)
from Lemma 4.2 together with (4.11), (4.12), (4.15) and (4.19) which achieves the proof of Lemma 4.3. O

Corollary 4.4. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Pn superexp (4.20)
n b2

where {1 = 0*¢.

Proof. The proof is immediately derived from previous statements and Lemma 4.2. t

We are now in the position to prove Theorem 2.1. We shall make use of the following MDP for martingales
established by Worms [23].

Theorem 4.5 (Worms). Let (Y,,) be an adapted sequence with values in RP, and (V,,) a gaussian noise with
variance o > 0. We suppose that (Yy,) satisfies, for some invertible square matriz C of order p and a speed
sequence (b2) such that b2 = o(n), the ezponential convergence for any & > 0,

n—1
lim — 1og1P> (H > vy -c| > 6) = —o0. (4.21)
b =0
Then, the sequence
1 n
— Z Yklvk->
<bn\/ﬁ k=1 n>1
satisfies an LDP on RP of speed b2 and rate function
I(z) = 5 21‘ ‘0 . (4.22)
Proof. The proof of Theorem 4.5 is contained in the one of Theorem 5 of [23] with d = 1. g
Proof of Theorem 2.1. Let us consider the decomposition
vn (A n
v (G, — 9*) = A, 4B, 4.23
™ an, At (4.23)

with
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that can be obtained by a straighforward calculation, where the remainder term R, (6) is defined after (4.7).
First, by using the same methodology as in convergence (4.12), we obtain that for all 6 > 0 and for a suitable
t>0,

_ 1 X2 _ Ay L1 )
— < —t0 — —
h:;ﬂsup v log P (bnﬁ > 6) < 7Lhm < to b ) + nhm » logE[exp(th)},

S (4.24)

since b, = o(y/n), and the same is true for any isolated term in (4.23) of order 2 whose numerator does not
depend on n. Moreover, under the gaussian assumption on the driven noise (V4,), it is not hard to see that

1 supere
perexp

—— max Vi

bny/n 1<k<n

As a matter of fact, for all § > 0 and for all ¢ > 0,

0. (4.25)

n

n

P (lgl,glgn Ve > mﬁ) =P (U {vi= mﬁ}) < gp(vk? > dbuv/n).

k=1
< nexp (—tdb,/n) E[exp (V) } :

In addition, as soon as 0 < ¢t < 1/(20?), E[ exp(tV}?)] < oo. Consequently,

logE| exp (tV{
Sﬁ logn_t6+ [ ( 1)}
by bn\/ﬁ bn\/ﬁ

which clearly leads to (4.25). Then, we deduce from (4.24), (4.25) and Lemma 4.1 that

1 2
R >
2 log P (1m§1?§Xn ViE > 6bn\/ﬁ>

1 o superexp

which of course imply the exponential convergence of X2/(b,v/n) to 0, with speed b2. Therefore, we obtain that

Ro(6) superess

v (4.27)
We infer from Lemma 4.3 and Lemma 2 of [23] that the following convergence is satisfied,
superex 1
g,%?pz (4.28)

where £ > 0 is given by (4.8). According to (4.27), the latter convergence and again Lemma 2 of [23], we deduce
that

superexp
—

B, 0. (4.29)

n

Hence, we obtain from (4.28) that the same is true for

n 1 superexp
Ap e — — ; 4.
(<M>n o%) ! (430)

since Lemma 4.3 together with Theorem 4.5 with p = 1 directly show that (M,,/(b,+/n)) satisfies an LDP with
speed b2 and rate function given, for all x € R, by

$2




MDP for Durbin 285

320 S.V. BITSEKI PENDA ET AL.

As a consequence,
vn (6. -0) 1 My
by \" b2 L(1+6p) bpy/n’

superex ]. M
PP n (4.32)

and this implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. One shall now take advantage
of the contraction principle ([7], Thm. 4.2.1), to establish that (y/n(6,, — 6*)/b,) satisfies an LDP with speed
b2 and rate function Iy(z) = J(£(1 + 0p)z) given by (2.1), that is

2

‘[9(1) = mv

which achieves the Proof of Theorem 2.1. O

4.2. Proof of Theorem 2.2

We need to introduce some more notations. For all n > 2, let

Qn=>_ Xp 2X. (4.33)

k=2

In addition, for all n > 1, denote

* % %D * Sn * n * Pn Qn
T, =146 — (1 +p (0, +0 )) o+ (2,0 +0,+0 ) T (4.34)
where S,, and P, are respectively given by (4.3) and (4.5). Finally, for all n > 0, let
Jn = & (4.35)
k=0

where the residual sequence (€,,) is given in (1.3). A set of additional technical tools has to be expounded to
make the Proof of Theorem 2.2 more tractable.

Corollary 4.6. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Qn, superexp
PEALE e 62
n b2

where by = ((6 + p)0* — Op)L.

Proof. The Proof of Corollary 4.6 immediately follows from the relation

n Sn *]\/[n Nn 7?
O _ (04 p)0m —op)Sn — g Mn | Mo &7 (4.36)
n n n n n

where £9 is a residual term made of isolated terms such that

Q
superex
gi p_) p 0

)
noob2

see e.g. the proof of Theorem 3.2 in [3] where more details are given on £9. O
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Lemma 4.7. Under the assumptions of Theorem 2.2, we have the exponential convergence

superexp
A, — A
2

n

where
! 0
n Sn—1
L= , 4.37
1+0p Ty . (0 +p) ( )
Jn—l Jn—l
and ) 2
1— (6" 0
A= ; . 4.38
=091 —(0)7) (6p+<9 ? f<e+p>> (4.38)
Proof. Via (4.28), we directly obtain the exponential convergence,
1 superex 1
L superexp : (4.39)

(1+6p)Su1 w2 U(1+6p)

The combination of Lemma 4.3, Corollary 4.4, Corollary 4.6 and Lemma 2 of [23] shows, after a simple calcu-
lation, that o
T, "5 (0%)2 + 0p. (4.40)

b

Moreover, J,, given by (4.35) can be rewritten as
Jn = Sn - Qé\nPn + é\n?snfly

which leads, via Lemma 2 of [23], to

Jn superexp 2
— =" (1 — (0%)7). 4.41
T 41— () (441)

Convergences (4.40) and (4.41) imply

T50p) Ton w W0+ 0p)(1— (0))
and consequently,
n 0+ P superexp 0+ P
. 4.43
(%) 72 % mramie e (449
Finally, (4.39) together with (4.42) and (4.43) achieve the proof of Lemma 4.7. d
Proof of Theorem 2.2. We shall make use of the decomposition
v (6, — 6* 1
-— (2 = A, Z, + By, 4.44
by \pPn — P* bn\/ﬁ * ( )
where A, is given by (4.37), (Z,)n>0 is the 2-dimensional vector martingale given by
_ Mn,
z= () (1.45)
and where the remainder term
R.(0)
B,— L Y| S (4.46)
(1 + ‘9/)) by, Rn(P)
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The first component R, () is given in (4.7) while R, (p), whose definition may be found in the proof of
Theorem 3.2 in [3], is made of isolated terms. Consequently, (4.24) and (4.27) are sufficient to ensure that

Rn(e) su}ilre)xp 0 and Rn (p) supire;(p 0.

boy/n b2 boy/n b2

Therefore, we obtain that
superexp
—

2
bn

In addition, it follows from Lemma 4.7 and Theorem 4.5 with p = 2 that (Z,/(bn/n)) satisfies an LDP on R?
with speed b2 and rate function given, for all x € R2, by

B, 0. (4.47)

1
202

16"
a=e(y 7). (4.49)

J(z) = oA e, (4.48)

where

since we have the exponential convergence

(Z)n superexp. 5 4 (4.50)
n b2

by application of Lemma 4.3 and Corollary 4.4. One observes that /A is invertible. As a consequence,

1 superex
(An — A)Z, =570, (4.51)

bny/n b2

and we deduce from (4.44) that

0. — p* superex 1
V(O =0 speree 1y, (4.52)
by \pPn—p b2 bpy/n

This of course implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. The contraction principle
([7], Thm. 4.2.1) enables us to conclude that the rate function of the LDP on R? with speed b2 associated with
equivalence (4.52) is given, for all x € R2, by K (x) = J(A™'z), that is

1
K(z) = -2’ 'z,
2

where I' = 02 AAA’ is given by (1.10), and where we shall suppose that 6 # —p to ensure that A is invertible.
In particular, the latter result also implies that the rate function of the LDP on R with speed b? associated
with (v/n(pn — p*)/by) is given, for all z € R, by

T
I,(x) = —
P(T> 20_% ’

where 02 is the last element of the matrix I". This achieves the Proof of Theorem 2.2. O

4.3. Proof of Theorem 2.4
For all n > 1, denote by f, the explosion coeflicient associated with .J,, given by (4.35), that is

Jp—Jn1 B2
= —In, 4.53
f JIn JIn ( )
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It follows from decomposition (C.4) in [3] that

V(5 o oV SN
by (D”’D)_*an (1’f")(p”’p)+ b, (4.54)
where the remainder term ¢, is made of negligible terms, that is
. £2_z2
G =2(p" = 1) fn+ 7 0.

From the definition of (£,,) in (1.3), from (4.26), (4.41) and considering that £y = Xy, we clearly have that

n superexp superexp
L G — 0 and fn — 0.
b 2 2
n b7 b3,

As a consequence,

ﬁ (ﬁn _ D*) Supi{exp _2@ (ﬁn _ p*)’ (455)

n b2 bn

and this implies that both of them share the same LDP. The contraction principle [7] enables us to conclude
that the rate function of the LDP on R with speed b2 associated with equivalence (4.55) is given, for all z € R,
by Ip(xz) = I,(—x/2), that is
2
x

which achieves the Proof of Theorem 2.4.

4.4. Proofs of Theorem 3.5, Theorems 3.6 and 3.8

We shall now propose a technical lemma ensuring that all results already proved under the gaussian assump-
tion still hold under the Chen-Ledoux type condition.

Lemma 4.8. Under CL1(4), CL2(4) and CL3(4), all exponential convergences of Lemma 4.3, Corollary 4.4,
Corollary 4.6 and Lemma 4.7 still hold.

Proof. Following the same methodology as the one used to establish (4.27), we get
2 2 _ 2
P (1?5%(” V2> 6bn\/ﬁ) < ]; ]P’(Vk > 6bn\/ﬁ) - n]P>(V1 > 6bn\/ﬁ>.

Via CL1(2), CL2(2), CL3(2) and the same reasoning,

XEL superexp
—

bov/n vz

and Cauchy-Schwarz inequality implies that this is also the case for any isolated term of order 2, such as
X, X,—1/(bpy/n). This allows us to control each remainder term. Note that under CL2(4) and CL3(4) and
using (4.56), ¢ /n, X§/n, e3/n, X2/n and X2 /n also exponentially converge to 0, since b,+/n = o(n). Moreover,
it follows from Theorem 2.2 of [14] under CL1(2), that

(4.56)

Ln superex
Ln superexp 3 (4.57)

noo2
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Furthermore, since (M,,) is a locally square integrable martingale, we infer from Theorem 2.1 of [4] that for all
z,y >0,

lP’(IMnI >z, (M) + [M], < y) < 2exp (—%) , (4.58)

where the predictable quadratic variation (M),, = ¢S,,_1 is described in (4.3) and the total quadratic variation
is given by [M]o = 0 and, for all n > 1, by

(M, =Y X7V (4.59)
k=1
According to (4.58), we have for all § > 0 and a suitable b > 0,
M,
P (_‘ : S 5) < P(IMa| > 61, (M) + [M] < 10 + (M) + [M], > nb),

< 2exp (7@) Jr]P’((]W)n + [M], > nb).

2b

Consequently,

. 1 | M| . 1

lim sup 5l logP | —— > ¢ | <limsup ) log]P’(<M>n + [M], > nb). (4.60)

n— o0 n n n— o0 n
Moreover, for all n > 1, let us define

n n
T, =Y X} and L=y Vi
k=0 k=1

From Lemma 4.1 and for n large enough, one can find « > 0 such that
T, < ~Iy

under CL2(4) and CL3(4). According to Theorem 2.2 of [14] under CL1(4), we also have the exponential

convergence,
Fn superexp

4
— 4.61
n b2 T (4.61)

where 7* = E[V}*], leading, via Cauchy—Schwarz inequality, to
1 M), 1 I, ¢
limsup — log P u>(5 <limsup < logP | — > — |,
2 n b2 n

n—00 n n—00 n \ﬁ
= —o0, (4.62)

where § > 7%, /7. Exploiting (4.57) and again Lemma 4.1, the same result can be achieved for (M), /n under
CL1(2) and § > o*y. As a consequence, it follows from (4.62) that

1 M), + [M],
limsup — log P M + [M]n >b| = —o0, (4.63)
as soon as b > oty + 74\ﬁ4 Therefore, the exponential convergence of M, /n to 0 with speed b2 is obtained

via (4.60) and (4.63), that is, for all § > 0,

1 M,
lim sup 0 logP (% > 6) = —o0. (4.64)

n— 00 n
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Explicitly, (4.64) is equivalent of (4.19) which was the main element for the proof of Lemma 4.3, and the same
obviously holds for N,,/n. In consequence, one can proceed similarly to establish Corollary 4.4, Corollary 4.6
and Lemma 4.7. Indeed, hypotheses CL2(4) and CL3(4) together with exponential convergences (4.56), (4.57)
and (4.64) are sufficient to achieve the proof of Lemma 4.8. d

Let us introduce a simplified version of Puhalskii’s result [21] applied to a sequence of martingale differences,
and two technical lemmas that shall help us to prove our results.

Theorem 4.9 (Puhalskii). Let (m?)i1<;j<n be a triangular array of martingale differences with values in R?,
with respect to a filtration (Fp)n>1. Let (by) be a sequence of real numbers satisfying (1.13). Suppose that there
exists a symmetric positive-semidefinite matriz QQ such that

2
n

1 - 9 superex
SY E[mp(mp) | Fioa | ST Q. (4.65)
k=1

Suppose that there exists a constant ¢ > 0 such that, for each 1 <k < n,

|mp| < c? a.s. (4.66)

n

Suppose also that, for all a > 0, we have the exponential Lindeberg’s condition

1 S n|2 superexp
- ;E[|mk| g5 o) |}"k_1] 2 (4.67)
Then, the sequence
1 n
DL
<bn\/ﬁ k=1 ) n>1
satisfies an LDP on R? with speed b2 and rate function
* / 1 /
A*(v) = sup <)\U* — Q)\)-
AER? 2
In particular, if Q is invertible,
1
A*(v) = 3 v'Q M. (4.68)
Proof. The proof of Theorem 4.9 is contained e.g. in the proof of Theorem 3.1 in [21]. O

Lemma 4.10. Under CL1(a), CL2(a) and CL3(a) for any a > 2, we have for all § > 0,

) . 1 1 &
hmsuphmsupalogﬂl’ (5 ZX,? I xu >R}y > 5) = —00.

R—oo n— oo k=1
Remark 4.11. Lemma 4.10 implies that the exponential Lindeberg’s condition given by (4.67) is satisfied.

Proof. From Lemma 4.1, for any 7 > 0 and n large enough, one can find v > 0 such that

n

n
SOIXKPTT <y > [V (4.69)

k=0 k=1
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under CL2(2 + ) and CL3(2 + 7). If we suppose that CL1(2 + 1) holds, then it follows that, for R > 0,
R X Lx,asry < O 1K <y Y IVRPT,
k=1 k=1 k=1
for n large enough and n > 0, leading to
1 I~ oy 1 1< iy O
5 logP (; ;Xk_ﬂ{\xkqu > 5) < g7 logP (5 kz_:l Vil > ZR" .

Using Theorem 2.2 of [14] and letting R go to infinity, we immediately reach the end of the proof of
Lemma 4.10. U

Remark 4.12. The same result can be achieved under the less restrictive CL1(2) condition, via a techni-
cal proof using the empirical measure associated with the geometric ergodic Markov chain (X,,),>0. A same
reasoning can be found in [9].

Lemma 4.13. Under CL1(4), CL2(4) and CL3(4), the sequence

( M, )
b"\/ﬁ n>1

satisfies an LDP on R with speed b2 and rate function

(4.70)

where £ is given by (4.8).

Proof. From now on, in order to apply Puhalskii’s result concerning MDP for martingales, we introduce the
following modification of the martingale (M,,),>0, for r > 0 and R > 0,

n

MR =3 x 0 v (4.71)
k=1
where, for all 1 < k < n,
") _ (”) _ ~
X=Xl my amd VY =T ]E[Vkl{lvklgR}] (4.72)

Then, we have to prove that for all » > 0 the sequence (My(f"R)) is an exponentially good approximation of (M,,)
as R goes to infinity, see e.g. Definition 4.2.14 in [7]. This approximation, in the sense of the large deviations,
is described by the following convergence, for all > 0 and all § > 0,

, , 1 |M,, — M)
limsuplimsup — logP | —————— > § | = —oc. 4.73
From Lemma 4.8, and since (M),, = 025,,_1, we have

(M svpereor 2 (4.74)

n b2
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From Lemma 4.10 and Remark 4.11, we also have for all » > 0,

1 ~ 2 superexp
ggxkl{mmg} il (4.75)

We introduce the following notations,

h=E[V{"P] and 50 =3(x{)
k=0

Then, we easily transfer properties (4.74) and (4.75) to the truncated martingale (M}LT"R))"ZO. We have for all
R > 0and all » >0,

_Rn_R

n n n n b2

<]VI(T’R)>7L 0_2 Sr(LT_)l _ 0_2 (Snl _ Sr(zr—)1> + Iz%sn 1 superexp 2£

which ensures that (4.65) is satisfied for the martingale (M, MY R))nzo. Note also that Lemma 4.8 and Remark 4.11
work for the martinagle (MT(,,T’R)),LZO. So, for all » > 0, the exponential Lindeberg’s condition and thus (4.67)

are satisfied for (M,ST"R)),LZO. By Theorem 4.9, we deduce that (ZVL(LT’R)/bn\/ﬁ) satisfies an LDP on R with speed

b2 and rate function

IQ

Tn(e) = 5y (4.76)

We intend to transfer the MDP result for the martingale (M,,), >0 by proving relation (4.73). For that purpose,
let us now introduce the following decomposition,

M, — M) = () 4 prR)

where
n n

LD =3 (Ko =XV and - B =37 (V- v (0,
k=1 k=1

One has to show that for all » > 0,

T
Ln superexp

0 4.77
b/ b2 ’ (4.77)
and, for all » > 0 and all § > 0, that
li li L logP |F”7R)‘>5 = (4.78)
111%11 jolip lglsolép 2 og N = —o00. .

Via inequality (4.69), for n large enough,

1/2

— n 1/2 n
1 NN )
< Y- § Xp_q |27 E V2 | Xpoq|"
= b/ (T b") <k=1 - ) <k=1 e ) 7

b\ 1 &
< Ar — ~ 24n 4.
_/\(7777,7)(\/5) nE Vi (4.79)
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by virtue of Holder’s inequality, where A(r,7,v) > 0 can be easily evaluated. As a consequence, for all § > 0,

. 1 LY 2+ vy
o (510) et e (e 25 ()
. (4.80)

as soon as 1 > 1, by application of Theorem 2.2 of [14] under CL1(2 + 1), since

n—1
lim (\b/ﬁ) = 0.

Lnr Sulire)xp
bny/n b2 ’
which achieves the proof of (4.77), under CL1(2 + 1), CL2(2 + 1) and CL3(2 + ) for > 1. On the other

hand, (FT(LT’R))”ZO is a locally square-integrable real martingale whose predictable quadratic variation is given
by (F(f)y =0 and, for all n > 1, by

We deduce that

(4.81)

2
(FR)y, =R {(vl - } S0,

To prove (4.78), we will use Theorem 1 of [8]. For R large enough and all k > 1, we have

P((X(” <V V(R)>’>b \/_‘fk 1><P<)v V<R>(> )

2
:P()vl—vfm\ > %) ~0.

1 r
limsup — 0 log (n ess sup ]P’< ‘X,Ql (Vk — Vk(R))’ > bpv/n ‘fk1>> = —00. (4.82)

n—o0 k>1

This implies that

For all v > 0 and all § > 0, we obtain from Lemma 4.10 and Remark 4.11, that

. 1 1 n ; 2
h,flsiip 2 log P (ﬁ Z <X1221> I{|X< D> vy } - 5)

lim sup — 72 log]P’( ZXk 1 {IX }>5> = —00.

n—oo

Finally, from Lemma 4.8, Lemma 4.10 and Remark 4.11, it follows that

F(T,R) S(T) 7 S(T) 7 superex
T T = RO PR

n—
n n b7

where

Or=E {(‘/1 _ V1<R>)2} |
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and ¢ is given by (4.8). Moreover, it is clear that Qg converges to 0 as R goes to infinity. Consequently, we infer

from Theorem 1 of [8] that (F\"™ /(b,\/n)) satisfies an LDP on R of speed b2 and rate function

2

Ir(z) = @'
In particular, this implies that for all § > 0,
. 1 T2l 5?
h:}is;pb—%logp( b >5> =" 20n0 (4.83)

and letting R go to infinity clearly leads to the end of the proof of (4.78). We are able to conclude now that
(MT(LT’R)/(bn\/ﬁ)) is an exponentially good approximation of (M,,/(b,+/1)). By application of Theorem 4.2.16
in [7], we find that (M, /(bn\/n)) satisfies an LDP on R with speed b2 and rate function

J(z) = supliminf inf J z),
( ) 5>Ig R—oo z2€B; 5 R( )

where Jp is given in (4.76) and B, s denotes the ball {z : |z — 2| < §}. The identification of the rate function
J = J, where J is given in (4.70) is done easily, which concludes the proof of Lemma 4.13. |

Lemma 4.14. Under CL1(4), CL2(4) and CL3(4), the sequence

L (M,
bn \/ﬁ Nn n>1

satisfies an LDP on R? with speed b2 and rate function

1
J(z) = Wx’/rlx (4.84)

where A is given by (4.49).

Proof. We follow the same approach as in the proof of Lemma 4.13. We shall consider the 2-dimensional vector
martingale (Z,,)n>0 defined in (4.45). In order to apply Theorem 4.9, we introduce the following truncation of

the martingale (Z,,)n>0, for r > 0 and R > 0,
gnm) _ (M
n - Nr(lr,R)

where M,(LT’R) is given in (4.71) and where NT(LT’R) is defined in the same manner, that is, for all n > 2,

NT(LT,R) _ ZXIET—)QVIC(R) (4.85)
k=2

with X,,(f) and Vng) given by (4.72). The exponential convergence (4.50) still holds, by virtue of Lemma 4.8,
which immediately implies hypothesis (4.65). In addition, Lemma 4.10 ensures that, for all r > 0,

superexp

1 n
EZX,?I{lXWT%} 0, (4.86)
k=0 "
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justifying hypothesis (4.67). Via Theorem 4.9, (Z,(LT’R)/(b,L\/ﬁ)) satisfies an LDP on R? with speed b2 and rate

function Jg given by
1

= Ex'/rlx. (4.87)

JR(JT)

Finally, it is straightforward to prove that (Z,(f’R) /(bny/n)) is an exponentially good approximation of
(Zn/(bpy/n)). By application of Theorem 4.2.16 in [7], we deduce that (Z,,/(bn\/n)) satisfies an LDP on R?
with speed b2 and rate function given by

J(z) =supliminf inf J
(0 = sup it 2yl @)

where Jg is given in (4.87) and B, s denotes the ball {z : |z — z| < §}. The identification of the rate function
J = J is done easily, which concludes the proof of Lemma 4.14. O

Proofs of Theorem 3.5, Theorems 3.6 and 3.8. The residuals appearing in the decompositions (4.23), (4.44)
and (4.54) still converge exponentially to zero under CL1(4), CL2(4) and CL3(4), with speed b2, as it was

n’
already proved. Therefore, for a better readability, we may skip the most accessible parts of these proofs whose
development merely consists in following the same lines as those in the proofs of Theorem 2.1, Theorem 2.2
and Theorem 2.4, taking advantage of Lemmas 4.13 and 4.14, and applying the contraction principle given e.g.
in [7]. d
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INTRODUCTION

Let (rm)i=; be a sequence of R%valued martingale differences defined on a
probability space (£2, &, P), with respect to the filtration (% ,),en, (%, C
F o1 CF,V¥n € N). All elements of R are assumed to be column vectors. For
x € R, x* denotes the transposed vector, |x] is the Euclidean norm. We denote
by F(d?) (resp. ¥ (d?)) the space of symmetric (resp. symmetric positive semi-
definite) d X d matrix equipped with the following norm [|A]] = sup;- Ix™ Ax|
for A € #(d?). Iz denotes the indicator function of a set B.
Let

My=0, M,= ka, VneN".
k=1

We denote by (M), the quadratic variation process of the martingale (M,,) given
by

(M), = Z EGmmy | F 1) = > Ee-1(mem, ).
k=1 k=1

Here and throughout, E,_; and [P,_, denote the conditional expectation and
conditional probability knowing % ,_,.
For many purposes in statistics one needs to estimate the limit behavior (when

H—% OO), Of
bﬂ ! )

where b, is a sequence of positive numbers tending to infinity.

When b, = /n, the estimation (1.1) becomes the central limit theorem (in
short CLT) for martingale, a traditional subject in probability. It is known that
under the following conditions:

1 *
@ - Z mym;, — (O, inprobability, for some Q € FH(d*yor
=

n
(ay % Z Erq (mkm: y— Q, inprobability, forsome Q € T (d?) and
k=1
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1 n
B = Bt (el Ly 5m)) — O,
k=1

in probability, V& > 0; (condition of Lindeberg)

then M,//n converges in distribution to a Gaussian law of zero mean and
covariance matrix @. Uniform and nonuniform bounds on the rate of the last
convergence have been obtained by many authors, see Refs. [18,19,31,32]. For
the proof of the CLT above as well as for general information about the
martingale CLT, we refer to Refs. [21,22,26].

If b, = n, the estimation (1.1) becomes the large deviation principle (in short
LDP) extensively studied by Puhalskii [27], in general case (sequence of
semimartingale).

Now assume,

b, increasing, b—"—* +00 E—> 0. (1.2)
) 7 ",
The estimation of the probabilities (1.1) is usually called the moderate
deviation principle (in short: MDP). So the MDP is an intermediate estimation
between CLT and LDP, it is often used to give further estimations related to CLT
and the law of iterated logarithm. The moderate deviation estimation arise from
the requirements of statistics. Our aim in this work is to give the asymptotic
behavior of the functionals associated with the Donsker invariance principle:

Zoo =" e o1,
bn
in (I3[0, 11, [Rd), the space of all R-valued cadlag functions on [0, 1], equipped
with the Skorohod topology and with the Borel o-field B.

Let us begin with some few bibliographical notes on the MDP (the reader will
find the detail in the references quoted below).

The Case of Banach Space Valued Li.d.r.v.’s

Borovkov and Mogulskii [3,4] considered the MDP for Banach valued ii.d.r.v.
sequences. Under the condition that Fe®™! < 40, for some & > 0, they proved
the MDP for Z,(1). Baldi [2] obtained the MDP for Z,(-) under the same
condition.

For b, = n® with (1/2) < « < 1, Chen [6] found the necessary and sufficient
condition for the MDP in a Banach space, and he obtained the lower bound for
general b, under very weak conditions. Using the isoperimetry techniques,
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Ledoux [25] obtained the necessary and sufficient condition in the general case
(i.e. for any sequence b, satisfying Eq. (1.2) and a technical condition roughly
meaning that b, cannot be too near to n), extending the works of Chen [6].
Indeed, he proved the equivalence between the MDP and the following
exponential tail condition:

dR >0, suchthatVu > 0,

# 512 (1.3)
limsup — log (nP(|m| > ub,)) = ——.
n—+00 bn R

The results of Ledoux [25] is extended to functional empirical processes (in the

setting of non parametrical statistics) by Wu [35]. The further developments are

given by Dembo and Zajic [11]. Arcones [1] obtains the MDP of functional type,

without the technical assumption on b, of Ledoux [25] but with Eq. (1.3)
substituted by

lim sup ;—2 log (nP(Im1] > B,)) = —co. (1.4)
oo h

On Markov Processes

How to extend the MDP to the dependent situations has recently attracted much
attention and remarkable works. The Markovian case has been studied under
successively less restrictive conditions (see Refs. [7,30,36], for the relevant
references) and very recently under weak conditions by de Acosta [8] and Chen
[7] for the lower bound (under different and non comparable conditions) and by
de Acosta—Chen [9] and Chen [7] (under the same condition but different proof)
for the upper bound. Guillin [20] obtained uniform (in time) MDP for functional
empirical processes. Using regeneration split chain method, Djellout and Guillin
[13,14] extend the characterization of MDP for i.i.d.r.v. case of Ledoux [25] to
Markov chains. The geometric ergodicity is substituted by a tail on the first time
of return to the atom. Their conditions are weaker than Theorem 1 in Ref. [9],
which allow them to obtain MDP for empirical measures and functional empirical
processes.
Those works motivate directly the studies here.

On Martingale Case

However, the studies on the MDP of martingale are more recent: see Refs.
[10,16,24,27,29,32,34]. Rackauskas [32] obtained the upper bound of the MDP
for a real sequence of bounded martingale differences Z,(1) under strong
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conditions:
M [/
M, _ o’ as,c€R, =0 (1.5)
n &
n3

His proof is based on sharp estimations about the rate of the convergence of
M, //n to the normal law. Though he has not given the corresponding lower
bound, but it is a rather easy exercise to deduce it from his Theorem 1, under the
same conditions, as for the upper bound. His estimations depend heavily on his
conditions (1.5), and it is difficult to obtain MDP for the functional Z,(-) through
his method. For a bounded R%valued sequence of martingale differences (my),
Dembo [10], using the cumulant method of Puhalskii [28], gives the MDP for
Z,(-) in D[0, o), equipped with the locally uniform topology, under the following
condition

M

t Ql>5)<0, V8> 0; (1.6)

lil;llgaup % logP (H
for some Q € F7(d?).

Puhalskii [27] established conditions for the LDP in the Skorohod topology to
hold for a sequence of semi martingales in terms of the convergence of their
predictable characteristics. Gao [16] discussed the MDP for martingale
differences sequence under conditional exponential integrability of the
martingale, with some applications to mixing sequence. Worms [34] presents
some criterion for the MDP of vectorial martingale (and of some class of
regression sequences) with a deterministic normalization or autonormalization.
Some of his results are based on the cumulant method developed by Puhalskii
[28].

Our main aim is to prove the Chen—Ledoux type theorem for the MDP of a
sequence of martingale differences. Our method is the following:

(1) for small jumps of Z,(-), we apply the general result of Puhalskii [27];
(2) by following the method of Ledoux [25] and Arcones [1], we prove that the
large jumps part of Z,(’) is negligible in the sense of the MDP.

Several technical difficulties arise in the second step (2), when one passes from
the i.i.d. case of Ledoux—Arcones to the general martingale case here.

Let us present now the structure of this paper. In the second section, we give
our main result, the MDP for martingale differences sequence. Applications to ¢-
mixing sequence are discussed in the third section. The fourth section is devoted
to the proof of the MDP.
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MAIN RESULT

Firstly, we recall the result of Puhalskii [27, Theorem 3.1], applied to the
sequence of martingale differences, which gives the MDP below in the case of
very small jumps (for Z,(-)).

ProposITION 1 (PUHALSKII [27]) Let {m] : 1 = j = n} be a triangular array of
martingale differences, with values in R? Let b, be a sequence of real numbers

satisfying Eq. (1.2). Suppose that:
= 8) = —00;

ii) there exists a constant c such that for each 1 < k < n, |m}| = c(n/b,);
iii) Va > 0 and V& > 0,

. n 1 2 12 _ .
i logp(;ki_;ﬁkl('mk' jogecg)) = 5) =~

then Z,() satisfies the MDP in D([0, 1], R) (equipped with the Skorohod
topology), with speed bi /n and the good rate function

i) there exists Q € ¥ (d?) such that for all § > 0,

[nt] %
Y B (miemp) ") — 10

=

lim sup b—nz log P (sup

400 E[0,1]

NA*(@@nde if ¢ € L% ([0, 1])
() = b

+o0 otherwise,
where A* is given by

A @) = sup(/\*v— EA*Q/\)
AER? 2

(2.2)
| i1 : Ford f
=57 Q7 'v, if Qisinvertible |,
and
AE([0,1) = {¢: [0,1]—R? s absolutely continuous with ¢(0) = 0}.

Remark 2.1 This result is a consequence of Theorem 3.1 in Puhalskii [27]. We

present here the parallel with his conditions: (sup B), (K + L) and (L), in his

notations are implied by (iii); (C) by (i); v “ is (ii), and (0) is verified since My = 0.
Our main result is the following.
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TueoreMm |  Let (b, = b(n)) be a sequence satisfying Eq. (1.2), such that e(n) ==
n/b, is non-decreasing, and define the reciprocal function ¢ ~'(r) by

¢ Y= infln € N : c(n) = t}.

Under the following conditions:

(H1) thereexists Q € & T(d?)suchthat V5 > 0,

lim sup 210g[P’(< n QH>5):_

H— 400

(H2) limsup 'y log| nesssupPyy(ml > b,) | = —oo;
h——+00 bn I=k=c ! (b(n+1))

(H3) Va>0, andVs>0

. n 1 2
lggfl;lﬂp b_ﬁ logP(E;[Ek_l (lmkl D{Imklaaﬁ}) = 3) ——

Z,(-) satisfies the MDP in [D([0, 1], Rd) (equipped with the Skorohod topology),
with speed b2 /n and the good rate function given by Eq. (2.1). More precisely, for
any Borel-measurable subset A C D([0, 1], Rd), we have that

~inf/(¢) = limjnf b% log P(Z,() € 4) < limsup b% log P(Z,(-) € A)
= —j .
= q;)lréfA.I (¢);

where A® and A denote the interior and the closure of A, respectively.
We present some remarks and comments on the conditions (H1), (H2) and
(H3).

Remark 2.2 In the i.i.d.r.v’s case, conditions (H1) and (H3) are automatically
satisfied, and condition (H2) is exactly the tail condition in the work of Arcones
[1]. Assumption (H2) is the so called Chen—Ledoux condition. Moreover, for the
processes level MDP, the condition (H2) is necessary in the i.i.d.r.v.’s case, as
indicated by Arcones [1].

Ledoux [25] assumes that for some A > 1 and some 0 <8< 1, b, <
Ak'7%b,, ¥n, k € N. This condition is not satisfied by sequences very close to n,
for example by b, = n(logn)™* with e > 0. This technical condition on (b,) is
removed as in Arcones [1] for the i.i.d.r.v. case.
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Remark 2.3 If max=g=q|mel = cn/b,, for some constant c, this theorem is
proved, under (H1) and (H3) by Puhalskii [27, Theorem 3.1], (in the
bounded case and under (H1) by Dembo [10, Proposition 1]). In the general
case, if one imposes Eq. (4.4) (see the “Proof of theorem 1” section), (H1)
and (H3), then it is not difficult to see that by approximation technique, the
MDP in Theorem 1 can be reduced to the previous case. This was realized
by Worms [34, Théoréme 2.1]. Worms [34, Chapitre 1 and 2] also discussed
some conditions which are sufficient for Eq. (4.4) and compared them with
Puhalskii’s criterion [27, Corollary 6.3]. The key point of this paper is to
substitute condition (4.4), which is not explicit and quite difficult to check,
by the much easier condition (H2). Finally our conditions are weaker than
those of Gao [16, Theorem 1.1].

Remark 2.4 The condition (H3) is of “Lindeberg” type, compared with
condition (b) of the CLT.

Remark 2.5 Under conditions (H1), (H2) and (H3), Z,(1) satisfies the MDP in
R? with speed b2/n and the good rate function given by Eq. (2.2), by the
contraction principle [12, Theorem 4.2.1].

Remark 2.6 [37] Even for a martingale (M,) of stationary ergodic bounded
jumps with E(m;)? = 1, the condition (H1) is indispensable to Theorem 1, shown
by the following counter-example: let (§)z=; be a sequence of real bounded
iidrv. with E(&) =0, E(&)* = 1. Let us construct another sequence of N-
valued stationary ergodic bounded r.v. (7;);=, independent of (&)=, satisfying
1 < Er; < 40 and for some § > 0,

C(®):= limsup -5 logP (2 ~ Eny > §) > ~o0,
n—00 n

where o, = > ;_, T, b, = /nlog(n) is fixed.
In fact let (X,),=q be a stationary ergodic Markov chain on Z with transition
probability P(i, j), satisfying

i) it is independent of (&)p=1;
ii) the probability P is transitive in Z, and ET" = oo for some N = 2, where
T =inf{n = 0; X, = 0}.

So, P is nc;{t recurrent of degree N. Let 7 = 0_%(X;—;). Take 0 < 6 <
1 —P(Xo € Z" ). We claim that C(8) > —oo. If in contrary C(8) = —oo, then
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for all p > 0, and for all n large enough
P(T > n - 1):1]3(%: 1) = P(ﬁ— Er > 5) <ePh<
n
which is in contradiction with (i1).
The counter-example is then given by

M,= kz_; %, where h = /Em,

which is a (¥, = o(&,k =< n,7;,i = 1))-martingale with (M), = g,,/h* and
with bounded differences. So the condition (H1) is violated.

But by the MDP of S, = > ;_, & (well known, see Ref. [25]), we have for
r>0,

Esosup < Log LT Sods Bonsup— Tow P 025

—_— " r —r - —_— r‘ n

n—»+}>lop bﬁ E n—»+oop bi K h

n

= limsup %

n—-+4co

loginf P(S,, > hrb,)P(c;, > n(h® + &)
m=n(h?+8)

1 r2n?
==+ ().
2h24+ 68 +C©)
Consequently the upper bound of the MDP of Z,(1) fails for A = F = [r, 4-0)
for r large enough.

Remark 2.7 If (M,) is continuous, then (H1) (without (H2), (H3)) alone is
sufficient to the MDP of Z,(-) on the space of all continuous maps with speed bﬁ /n
and good rate function given by Eq. (2.1). It is a consequence of the
approximation lemma [12, Theorem 4.2.13], the Skorohod representation of
martingale [33, Theorem 1.6, Chapter V] and Schilder’s theorem [12, Theorem
5.2.3].

Remark 2.8 In contrast with the MDP, note that the LDP with speed » may fail

for M,/n even when (M,) is a real valued discrete parameter martingale with
bounded independent jumps such that E(m?) = 1, see Remark 6 in Ref. [10].

APPLICATIONS

We present now some interesting applications of Theorem 1.




306 MDP for martingale differences and applications

46 H. DJELLOUT

Let (X, n € Z) be a sequence of random variables with values in a Polish
space (E, &) on some probability space ({2, #, P). Denote by o-fields #7 =
oXp,m=k=n),F,=oX,k=n)and F" = o(X;, k = m). Set

#(n) = sup(|P(B/A) — P(B);A € #;, withP(A) > 0, B € F" k € 7).

The sequence (X,,n € Z) is said to be ¢-mixing if ¢(n) — 0 as n— +o0,
If (Xi,k € Z) is a stationary process, we have the following well known
inequality, which is a direct consequence of Ref. [21, Theorem A.6], Vi = 1

IEog(Xs) — m@lleo = 2¢(Dllglleo, @G.1

for every bounded g, where w is the law of X,

Stationary Martingale Case

We begin with the stationary martingale differences. The following corollary is a
quite pleasant extension of the Chen—Ledoux characterization of the MDP in the
ii.d. case.

CoroLLARY 1 Let (X3, kK € Z) be a square integrable R%valued stationary
martingale differences, ¢-mixing such that:

3C apositive constant such that Pe(X; € -) = Cul-), (3.2)

where w is the law of X,. If

lim sup % log(nP(1Xo| > ab,)) = —0, Va >0, (3.3)
n—+-00 :

then the MDP of Theorem 1 holds.

Proof Inview of Eq. (3.3) above and Theorem 1, Corollary 1 follows provided
we can verify (H1) and (H3). In order to check (H1), we first recall the following
result taken from [38, Lemma 2] O

Lemma 1 Let (&)ren be a sequence of real random variables adapted to the
filtration (% )yen on ({2, #, P), such that |&| = C, as. for all k. Let

1 jtn
Lini=~ Z &
=i

If there is some z € R so that

sugll[Ej(Lj‘n) = Z”LW(P) =%
J=
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as n— oo, then Ly, converges to z exponentially in probability, i.e.

. 1
hHL?,},JP = log P(||Lo (&) — zll > 8) <0, V¥6>0.

Set & = Ek_l(X,%) (bounded, by condition (3.2)). In the notation of Lemma 1,
we have that (M), /n = Ly, so by the stationarity, for (H1) we have only to show
that

It is not hard to see that for Eq. (3.4), it is enough to prove
IE-1 X% — wX)lloo — 0, asn— oo, (3.5)
Let A = 1 given. By Eqgs. (3.1) and (3.2), we have
IE-1X5 — s XDlleo = NE-1X701x, ) oo + NE-1 X015, 12y — BCXE D o)) Mlen
+ 1 g )
= (C + DGl (1xgiay + IE-1X00 15, 1245
— X3 xot=ap)lloo
= (C + DXy, =4)) +24%h(n + 1),
Since (X,),e7 15 square integrable, we can, given €, choose A so the first term
in the right hand side (RHS) of the last inequality is less than /2. By the ¢-

mixingness, we deduce that the second term in the RHS is also less than €/2 for all

n large enough. So Eq. (3.5) follows.
Now it remains to verify (H3). Again using Eq. (3.2), we have Va > 0

[Ek—l(Xﬁl{mEﬁ}) = CHJ(X%H{\X(JEM});

[N

and condition (H3) follows from the square integrability of Xj.

Stationary ¢-mixing Sequences

Now we make use of Theorem 1 to establish a MDP for a certain class of
stationary ¢-mixing sequences. The basic idea is a representation for the
increments of the stationary process in terms of the increments of a stationary
martingale differences plus other terms whose sum is negligible in the sense of
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large deviation. This idea is due to Gordin [17], who has used it to prove a central
limit theorem for stationary ergodic sequences and it has been widely developed,
see Ref. [21].

Suppose that the process (X,,n € Z) is stationary and ¢-mixing such that

+00
> Vbn) < +oo. (3.6)
n=1

Given a real measurable function f such that u(f) = [fdu = 0, define for
everyn = 1,1t € [0,1]

[nf]

Spt,f) =D _fXe),  Su(f) = Sa(1,f).
k=0

COROLLARY 2 Let f € L*(w). Assume that Egs. (3.2) and (3.6) hold. If

lim sup 52- log(nP(| f(Xo)| > aby)) = —co, Va >0, 3.7
n—+00 i

then the processes S,,(-,f)/b,, as n goes to infinity, satisfies the moderate deviation
principle on D[0, 1] with speed b2/r and with the good rate function J7 :
D[0, 1] — [0, 4-o0] given by

o3 JoY @At if y € ACy([0, 1T) and 0%(f) > 0

Hip=
@ 00 otherwise,

where o %( f) 1s given by
+o0
() = EfX0)) + 23 EFXo)f (X0)). (3.8)
k=1

Remarks

(1) Compared with the hyper-exponential convergence of ¢(n) to 0 (ie.
¢(m)e” — 0, YA > 0) required for the large deviations in the words of Bryc
[5], the condition (3.6) for the MDP here is much more weaker, it is an old
sufficient condition for the CLT see Corollary 5.5 in Ref. [21].

(2) The condition (3.7), being the best possible as is seen for the 1.i.d. case, is
weaker than the boundedness of fimposed in Gao [16], but our conditions
(3.2) and (3.6) are stronger.

(3) We can get the vectorial version of the corollary: if F = (f,....f,) €
(L*(w)? such that u(f;) =0, then S,(, F)b, satisfies the moderate
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deviation principle in D([0,1], R% with speed b2/n and with good rate
function J¥ : ([0, 1], R%) — [0, +o0] given by

Lo 2FW @), Y ()t if y € ACK([0, 1], R

JE(yp =
w +o0 otherwise,

where the matrix ¢(F) == (o(fi,f;)) is given by
+o00
S if) = Fufd+ D EFXo)f(Xe) -+ f5(Xo)f i (X))

k=1

and 0'72(F ) is the generalized inverse of 0'2(F ).

Proor Without loss of generality, we assume (X,,n € 7Z) is defined on
(02, %) = (E, &) as the system of coordinates and P is the law of (X,,n € Z).
Let 6 the shift on £2 (i.e. 8w(i) = w(i + 1)), we assume also that w(f) = 0.

We recall that Eq. (3.1) holds for every bounded g. We have also, that for every
integrable function g and { = 1,

Eog(X) — (@l = (C + Dligll; . (3.9)

By the Riesz—Thorin interpolation theorem, we deduce that for every g €
L*(w)and i =1,

IEog(X) — (@)l = V/(C + 1)3/2¢()lIgll,. (3.10)

Thus for every f € L%(w) such that u(f) = 0, by Egs. (3.6) and (3.10), we
deduce that

+00 +e0
> IS Xl = VC+IV2INY /8 < +00.
i=1

i=1

Hence we can define the potential
+oo
Gf(w) = Y Eo(f(Xe)),
k=0

which is absolutely convergent in L *(u). The series (Eq. 3.8) is then absolutely
convergent. This last claim implies

2
[E(SnT(f)) —0’(f), asn— +oo. (3.11)
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The key to the proof is the following martingale decomposition (see Refs.

[17,21])
Salf) = :Z;ﬂxk) = Gf(w) = Gf(0"w) + M (f), (3.12)
where
M, (f) = ;; [Gf (0* @) — Be-1(Gf (6" w))] = ; my, (3.13)

is a (#,)-martingale with stationary differences (which is not ¢-mixing in
general, unlike the underlying process (X,,,n € Z)). We have

2 2
o*(f) = limE (&) = ,}Lrglo[E(M’f)) = EM(F).

n

Notice that
+00
Gf (@) = f(Xo) + > _ Eo(f(X)) = f(Xo) + Gi(F), 3.14)
=1

where G1f € L*(w) as proved precedently. By conditions (3.7) and (3.12), the
moderate deviation of S,,(f)/b, is equivalent to that of M,(f)/b,, by means of the
approximation Lemma. By Theorem 1, it remains to verify (H1) and (H3) for
(M,(f)), since (H2) is entailed by Eq. (3.7).

To verify (H1), we need to use again Lemma 1. Set & = Ekfl(mf%). We have

my; = [Gf(8* ) — B 1 (G (6" ))* = 2Gf (6" w0)* + 2||Ee-1 GF (B* )2

Since there exist two positive constants C; and C, depending only on C and f
such that

B 1GF(O* w2, = 2¢%;
and
Gf (0*w)* = 2 (Xp)* +2C2, as.
we deduce that for n = 1/C? 4+ C3, m? < 4f%(X;) + 4m?, and then
Ee-10mp) < 4Ee—1(F*(Xe) + 1%) = 4Cu((f? + 12)).

So &, is bounded.
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In the notation of Lemma 1, we have that (M(f)),/n = Ly,, so by the
stationarity, for (H1) we have only to show that

E (W?) o, aswrevedog, SaERH, (3.15)

By Egq. (3.12), we have
E_1((M(),) = E_ M, (F)* = E1(Sulf) + Gf(8"w) — Gf ().

Since sup, [|E- 1 Gf (w)* + E- ((Gf(6"®))*|l < +00, we deduce that Eq. (3.15)
is equivalent to
E_ 2
ESOY L o), inr=@).
n

By Eq. (3.11), we have to show that
E- 1S — ESu(N)*
—

= 0, inL*(P). (3.16)
Since
[E-18(F)* — ES.()°]
n—1 n—1 n—1
= ) B — u(fH +2) > B (XX — EFEIFX)
k=0 i=0 j=i+1

n=1

= > IE-f(X0* = wif )l

n—1 oo
+2 Z NE-1(FXf (X)) — EFXF XDl
i=0 j=itl
For Eq. (3.16), it is enough to show
E-if(X)? — wf Hlleo — 0, asn— oo, (3.17)
and

a= Y NE((FXFE) — EFEF XD —0, asi—ow.  (3.18)

j=i+1
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The claim (3.17) follows obviously from the square integrability of f, condition
(3.2) and the ¢-mixingness, see the proof of Corollary 1.
It remains to show Eq. (3.18). To do that, we need the fact that f € L*(w) rather

then f € L%(u).

a =y T+ C\2MIF XXl

j=it1

= ) VT+CV2¢0\/ B AXDEFAX))

j=itl

= ) VIT+ V260 XDILIES*X)|eo

j=itl
= 21+ Ol I *lv/6D Y~ /oG — )
J=itl
= 2(1 + Ol I Il (Z V ¢(}')) ¢(i) — 0,
=1
asi— +0o0
So, we get the desired result. [l

We turn now to verify the Lindeberg type condition (H3). Using the previous
notations, we have

Ee-1 (m%”{\mgzg_;;}) = 4k ((fz(Xk) £a ﬂz)ﬂ{mxkna%-ﬂ})

2 2
= 4Cl-"((f +7 )“{[ﬂzﬁﬂl}):

where (H3) follows by the square integrability of f.

Stationary Markov Case

Now we apply Theorem 1 to establish the MDP for functionals of a Markov
process satisfying Doeblin recurrence condition.

Let (Xy,k € Z) be a Markov process satisfying the Dgeblin recurrence
condition, (condition Dy in Doob [15] pages 192 and 221). With this in mind, the
n-step transition function P "(x, B) satisfies for some y >0 and 0 < p < 1,

|P"(x, B) — u(B)| = yp",
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uniformly in x € E and B € &, where w is the unique stationary probability
distribution of the Markov transition function. It is well known that Ddeblin
recurrence condition implies the ¢-mixing condition with ¢(n) = cp” for some
¢ > 0, see Ref. [23].

CoROLLARY 3  Assume that Egs. (3.2) and (3.7) hold. Suppose that f € L?(u)
in this context. Then the MDP in Corollary 2 holds.

The proof of this result is identical to that of Corollary 2, except that condition
(H1) is more easier to check with the help of the following

Remark 1In the Gordin representation it is not clear that the martingale
differences sequence (my,k € 7) (see Egs. (3.12) and (3.13)) inherits the ¢-
mixing property of the original sequence (X,,n € Z). In the case of the Markov
process satisfying Déeblin recurrence condition, the Markov property helped in
preserving ¢-mixingness for (my, k € Z).

PROOF OF THEOREM 1

We now go to prove the main result of this paper. We need the following well
known lemma stated in the real case in Puhalskii [27, Lemma 3.1]. We make the
following convention: let C(z) be an %(d *)-valued function, we say that C(r) is a
non-decreasing function if for s = ¢, we have u *c Su=u ¥ C(tyu, forallu € R%.

Lemma 2 Let A, = (A,(0),t € [0,1]), A,(0)=0 be an &({d 2)—valued non-
decreasing process on ({2, %, P) and A = (A(2), t € [0, 1]), A(0) =0, be a
deterministic .#(d %)-valued non-decreasing continuous function. If for all + €
[0, 1] and for all 6 > 0,

hm 0Sup — s log P4, — A®|| > 8 =
then this convergence is uniform:

lim sup ;—2 log P(supllAn(z) — A > 8) =-o0, V&6=>0.
n—o b2 €[0,1]

Proof of Lemma 2 For N > 0, choose #f' = &, 0 =i = N, a partition of [0, 1].
Since A, and A are non-decreasing, for t € [IN_ va]

IA.(5) — AW = 14 — ACY DIV ALEY ) — AEDII.
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Hence, using that A,(0) = A(0) = 0,
fé‘}f)pll]lA”(I) — AW sl sugUAn(rj." ) = AN + supllA(u) — A(w)].

== lu—vl=fuv=s1

By the continuity of A,
supllA() — A(@)!L:»og.

Ju—v|.<_‘%u,vsl

So for each & > 0 and for N large enough

n n N 3
Ay (g&gl}lAn(r) — AWl > 8) =5 log; P (IlAn(zj.V) — A > 5) .

n n i

Hence

lim sup — log P (supllAn(t) — AWl > 3)
n—e” b [0,1]

= mf'ax lim sup % log P(IlAn(th) - AEH > g)

1

The latter goes to —oo as m— oo, by the assumptions. The lemma is

proved. O

Remark 4.1 This lemma gives the equivalence between (H1) and sup (H1),

where
> 8) = —e9,

Proof of Theorem 1 Let (my) be a sequence of martingale differences satisfying
conditions of Theorem 1. Forrn=1,2,... and 1 = k = n, define:

(M>[m] e
n

Q

sup(H1) ¥é > 0, lim sup % log P( sup
n—to by rE[0,1]

Xnge = Mgl <ey — Bt (el <ay )
{lmil =2} {lmy =g

Ynk = mkﬂ{ﬁ-ilmdﬂbn} - [Ekfl (mk”{#:]mﬂsb,,}):
[ni]

Wak = Ml {meis) = Ee1 (Ml mei>5,1)s  Xa(t) = an,k:
=1

[nf] [nf]
Yn(t) = Z}’n,k, Wn(-t) = an,k-
k=1 k=1
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(Xni)y ni)s (W, ) are martingale differences arrays. Because (m) is a sequence
of martingale differences,

My = Xp g + Yok + Wap.

‘We control now each term of this decomposition, showing that only the first
term contributes to the MDP, and the two other terms are negligible in the sense of
moderate deviation. The proof is then divided into three steps.

Step 1: We shall show here that for any é > 0,

lim sup — Iog P(— SuplW o = 5) 6" @1
n—+00 b r[
Since
P (L suplw,ol = 5) = P(LsuplS _
=— S W” 1) = = Su 1l =
me[oE,)l] @ banIDF;Z o Dol =b, ) 2

1 [n7]
+P su E 5
(bnfe[ﬁpiz k=10l j=,)) | =

for Eq. (4.1), it is enough to show that for all § > 0,

8 .
E s
) =—poy (4.2)

[n]

Z 7yl =)

lim sup — bz log P ( sup

n—+-+0c0 ,;tE[Ol
and
7 1 [nr]
lgllfgp BE log P » Es%pl Z[Ek 10 oy 120,10 = = —o00, (4.3)
Noting
[nt] n
(ml=b | = 8 C U =b,},
D minies) G, tmil = b)
we see that

[ni]

anfcﬁl\mkl =b,} = 6} Z [E([l{lmk|2b,,}) = Z [E(I]:Dkfl(lmkl = bn))
k=1 k=1

= ness supPr—1(|lmy| = b,).

1=k=n

1
P su
{bnre ()pl

Since n < ¢~ '(b(n + 1)) (because c(n) < b(n + 1)) for sufficiently large n,
then Eq. (4.2) follows from condition (H2).
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On the other hand, we have for all sufficiently large n,
[nr]

ZEk 1 25, S%;[E;’cl(Imklzﬂ{'m“zﬁ});

and then using condition (H3), we obtain Eq. (4.3).
Step 2: We will show that for each § > 0,

— Sy
anE[Opl

an

llm sup 2 log P ( suplY (0] = 8) —0c0, (4.4)

This step requires more efforts, and is the main new point of this paper.
Since Y,(t) is a bounded F ,,, -martingale, we deduce that exp(Ab, ¥, () /n) isa
sub-martingale. So by the maximal inequality, we have for any A > 0,

2
logIF’ supIY B =8|== log[F" exp )\E sup|Y,(0)| | = AE
bn bn.fE[ 0,1 bn nre0,1]
n by
~A6+?7—2 logE| exp /\;|Yn(l)| ,

and the last term above is

b n
F logIE(exp (/\. n Z (Imkll] ﬂ.<!mk|<b ] + [Ek 1|mk| n<|m&|<b"})))

k=1

<" E A2 i
=77 logess sup By  exp( A= Imillge oy <,

n

n
- /\b— esssup E,— (Imk,u{fnslm;_lsbn})'

n 1=k=n

Therefore for Eq. (4.4), it is enough to show that, for each A > 0,

u?
llm n Sup E log ess sup Ez—; (exp( ]mklﬂ{ : <ol <b })) =0, (4.5)

I1=k=n
and

lim sup bi esssup F;_ (lmkII]{ <‘m”<b”}) =0. (4.6)

n—+00 n 1=k=n
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If we denote J, = [n/b,, b,], we have for all A > 0

by,
Ee—s (GXP (/\; |mk|ﬁ{lmkEJn]))

b
= - (eXP (A;”mkl”{mklan}) Uimier)

bn
+exp ()t; |mk|“[|mk|e,rn}> “{lmk!ejn})
=B (e’\T"”{lmkIEJn} = B{Jmklem)

= LB (9 = 1) ).

Since Vx = 0, log(1 + x) = x, to prove Eq. (4.5), it is enough to show that

. n’ .
hl}}lﬂlp 2 esssup E;—4 ((e)‘nl il 1) ”{ﬁslmklsbn}) =0. (4.7)

1=k=n

Given0 < R < oQ, and letting )u'k,w(') = IPk_I(Imkl (= -),

2

n- A ] _
% EISSSICSSUHP Ey-1 ((e ’ 1)H ﬁslmklsbn})
2 o0
_ H_ A‘%"x _ )
=2 ess sup Jo (e 10 {ﬁgsbn}d#km(x)

Y, l=k=n

nz o0 Abpx
3 %Ssskgpjg ( J: ¢ d“) D <, } Atk (%)

2

n o
= E,{ elsiskssu?PJD L e”l {u=tionr) I {ﬁixsbﬂ}duk,w(x)du

0O

1=k=n n

ns = Ab, n
= 7 e“esssup Py {u < Imkl,b— < |m| = b, |du
nd0 n

A2

2 n
ne (= Ab,, n
=—2’ e“esssup Py [ u = lmgl,— =< lme| = b, )du
b o I=<k=n n b,

n
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2 (R
mn n
= —2J e“esssup Py [ [my] = — ) du
240 1<k=n bn

2

2 n
+Z—2J e“esssup[F";c_l(Imkl = W)du

w JR 1=k=n

2
= (ef - I)Z—i ess sup Py (lmki = %)

1=k=n

Ao2
o unz i
+J e Ez—esssup[@kll(lmﬂ zb A)du

R L 1=k=n
= ARR,n) + BR,n).

Let us first establish that A(R,n) — 0, VR > 1, when n goes to infinity.

Let L = L(#n) such that b; < n/b, < b;,1, we have that L — +co, when n —
+00. We also have for n large b; , < b7((L+ 1)/L)* < 4b}, by the non-
decreasingness of n/b,. Given 8 > 1, using condition (H2), and the fact that
n = c }b(L + 1)), we have for all sufficiently large n,

2

b
Lesssup Pi_(Im| > by) = Lesssup Py_;(Imy] > by) < e PL,
1=k=n 1=k=e " '(B(L+1))
Hence
R v v’ o
A(R,n) = (" — 1)4b; esssup Py (lmy| = by) = (e® — 1)4-Le P2
1=k=c N b(L+1)) &
b2
= (@R — Dae E Dt o,
as n goes to infinity.
‘We now go to control B(R, n). Let N = N(n, u) be such that
by = nud "B < byy.
Observe that N(n,u) = b "(uc(n)/)t) — 1 — +o0, when n— oo, uniformly in

u = R. So, given > 1+ 2A and R > A, for n large enough, using assumption
(H2), and the fact that

n<c! G.b(NJr 1)) =c YW + 1)),
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we have

s

NesssupPy_(lmg| > by) =e ¥, Yu=R.
I=k=n

Hence, for all u = R,

2
n e

— esssup Py (|my| = nud et = A%u
b, 1=k=n

_21712\,“ e1S<SkSUP Pr_ (|| = by)e"
=k=n

»
= WA N e Y,

For n large enough, by, , < 4b%, as noted before. Hence,

2
M= 0V S N, u= bNH,\li = zbw\lﬁ = 2)\‘%.
n n

So, we have for all sufficiently large n and forall u = R > 1 Vv A,

n? B: _ 4 o

7 esssup P (|my] = nu/\flb,fl)e” = 4}\2% e BwTH < g)2 o B D tu
1=k=n

e Bk
Substituting that estimation in B(R, n), we obtain

b2
2 pAl 2
: L 1, - 4A (8=
limsup — | esssupPy_;(lmy| = nua ]bn beduy = e (H I)R.
n—oo bn R 1=k=n A1

Since B is chosen so that 8 > 2A + 1, we have

feli_p;lolim supB(R,n) = 0.

Hence Eq. (4.5) follows.
Since x = &* — 1, Vx = 0, Eq. (4.6) follows from Eq. (4.7).
Step 3: By the previous estimations, it suffices to show that

[nt] [nt]

=2 =2y (= = e (migy) )

k=
satisfies the assumptions of the Proposition 1, to conclude the MDP. Using the
fact that

By (mkll{lmk,%}) = B3 (mkl]{‘mklzﬁ}), 4.8)




320 MDP for martingale differences and applications

60 H. DJELLOUT

we have

[Ek—l(xn,kx:!k) — [Ekfl(mkm:) = Ex—y (mkm;(k ﬂ{|mk|2ﬁ}) — By (mk”{;mzﬁ})

E3
X (Bt (midgmingy ) )
Hence
[nt] [nt]
E o -1 = [E — h
S nz k-1(x, chnk) (0 = Z et (mmg ) — 1Q

2 n
+ E ; [Fr—y (lmklzﬂ{lmklzﬁ}) -

By condition (H1) and (H3), we deduce that

[nf]

Z - l(xnkxnk) —1Q

(0,111

>) —o0, V&> 0.

hm 0 sup b_ logP (sup
Then condition (i) of Proposition 1 is checked.
Condition (ii) is obviously satisfied since |x, | =< n/b,, (with ¢ = 1).

To check condition (iii) in Proposition 1, we need to prove that, for all a > 0
and for all § > 0

; n 1 2
11&2@ E logP (R; Ei—1 (Ixnzkl H{Ix,hklzaﬁ}) > 8) = —oo0, (4.9
Let @ > 0, using Eq. (4.8), we have
sl 0 = 2milly, ) 2l (mad i
Xl Yl lzam} = 2 Uy <ay i, g} + 2| St | Py =y
< 2"y, Vo) + 2B (1 Uy ) (410)
and denoting V, ;. the first term at the right hand side of Eq. (4.10), we have

Vi = 2lmy |1 {Imil=az} + 2lmy” Wi <23 {|€e (

2
’"k”lmklzbn) >“m}

2 8 2
= 2]mk| I]{|mk|20ﬁ“} + EZ |[Ek—] (m;(|]|mk|2ﬁ)’

8
= zlmk|2ﬂ{|mk|2aﬁ} + a72[Ek_1 (lmklzl]{lmkléﬁ}) . (411)
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Combining the estimations (4.10) and (4.11), we obtain that

. n 1< 2
llnm_glp b—i log P (ﬁ ; Ee—1 ('xn,kl I]{Lx,“;([:zaﬁ}) = 8)
= max{ limsup 2 logP li Er—s (Imklzll i ) > o
Ay bz n — {‘mﬂzam 4 )

. n L& 1
hﬂﬂlp ? logP (H ; Er—1 (Imkizl]{|mk|2ﬁ}) = m 5) }

Then Eq. (4.9) follows from condition (H3) and the estimations above.

Hence, we deduce from Proposition 1 that X,(-) satisfies the MDP in
D([0, 1], R%) (equipped with the Skorohod topology), with speed bﬁ /n and good
rate function given by Eq. (2.1). That finishes the proof of Theorem 1. O

ReMARK 4.2 As it was kindly pointed out to us by Puhalskii, we can invoke
Corollary 6.3 in Ref. [27] rather than Theorem 3.1. This Corollary requires his
conditions: (0), (A) + (a), (MD), (sup A) and (Cp). Our proof can be seen as a
verification of his conditions, which has some technical difficulties. But the
essential motivation behind our work, is to attain Chen—Ledoux and Arcones [1]
condition (H2), which is necessary and sufficient in the i.i.d. case.
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Large and moderate deviations
for moving average processes *)

H. DJELLOUT AND A. GuiLLiN @)

RESUME. — Soit X, = Ziez Gitnwi, n 2 1, le processus & moyenne
mobile, (w;);cz étant une suite de v.a.i.i.d. réelles, et soit S, = (X1 +...+
Xn). Dans ce papier, nous établissons un principe de grandes déviations
et de déviations modérées pour Sy /n, sous les conditions suivantes : w;

sont bornées pour tout i € Z et ), a2 < co.

ABSTRACT. — Let X,, = Ziez Qi+nwi, B 2 1, the moving average
process, (w;i)icz ii.d. real random values, and Sn, = (X1 + ... + Xn)-

In this note, we prove large and moderate deviations principle for S, /n,
under the boundedness of w; and ) ez 93 < 00.

1. Introduction.

Let {w;, i € Z} be a doubly infinite sequence of independent and iden-
tically distributed square integrable real random variables with IE(w;) = 0,
defined on some probability space (2, F,P). Let {an,n € Z} be a doubly

infinite sequence of real numbers such that Z a? < oo.
i€Z
The moving average process X, k > 1, is defined by

Xk =) itk wi,
iez

(*) Recu le 8 avril 1999, accepté le 8 juin 2001

(1) Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 24 Avenue
des Landais, 63177 Aubigre.
email: {djellout, guillin}@math.univ-bpclermont.fr

- 923 —
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and let

Numerous works have been made on the problem of large and moderate
deviations of Sy,/n under the strong condition ) .., |a;| < oo. For exam-
ple, Burton and Dehling [BD90] have proved a large deviation principle for
{Sn/n;n > 1} with speed {n;n > 1} and a good rate function depend-
ing only on the moment generating function. Their proof, like many of the
referenced papers, relies on the powerful Ellis Theorem. The moderate de-
viations of {S,/n;n > 1} are obtained by Jiang and al. [JWR92] under the
condition of exponential integrability of wy. Jiang and al. [JWR95] proved
that the upper bound of large deviations for S, in a Banach space B holds
if and only if the condition IE (e7%(“)) < oo is fulfilled for some compact
K of B, where qx is the Minkowski functional of the set K. And the lower
bound of large deviations is obtained in [JWR95] without any condition,
with a rate function which may not have compact level sets, and which can
be different from the rate function of the upper bound.

Remember also the famous work of Donsker and Varadhan [DV85], on
large deviations of level-3 for stationary Gaussian processes, under moving
average form, which has motivated our study.

In this note, we prove a large deviation principle and a moderate de-
viation principle for moving average processes, substituting the absolute
convergence condition by the continuity of g(6) = 3", .z ane'™ at 0, a well
known condition for the Central Limit Theorem of {S,/+/n}, see ([HH80],
Corollary 5.2. pp 135). But we need the boundedness of w; instead of the
exponential integrability in the works cited above.

2. A large deviation principle
for the moving average processes.

About the language of large deviations, see Dembo and Zeitouni [DZ93],
Deuschel and Stroock [DS89]. The main result of this paper is

THEOREM 2.1. — Let (w;);ez be a family of P-i.i.d. real valued random
variables. Suppose the following conditions

(H1) > ,cz0? <00, E(w;) =0, E(w?) =1 and |w;| < C for alli € Z.

—24 —
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(H2) The function g given by |g(8)* := |3, (Jz,,e""‘9|2 = f(6) (the spec-
tral density function of Xj) is continuous at 0 and belongs to
L%([—m,n], df).

Then P (% € ) satisfies a large deviation principle with speed n and
the good rate function I given by
z
Ia:=A*(—), Vz € R, 2.1
@ =2 (5 (21)
where A* is the Fenchel-Legendre transform of the logarithmic moment gen-
erating function A()\) := logIEe*° of the common law of w;, i € X&.

Remark 2.i.— Except the boundedness of w;, the assumption (H1) is
minimal to define Xj.

Remark 2.i.— Condition (H2) is the usual condition for the Central
Limit Theorem for Sy, see [HH80]. Notice also that it is much weaker than
the condition f(f) € C([—m,7]) used in the pioneering work of Donsker-
Varadhan [DV85] for the level-3 large deviations of stationary gaussian pro-
cesses.

To prove Theorem 2.1 we need the following concentration inequality for
Sn, which is a translation of the well known Hoeffding inequality [Hoe63] in
our context.

LEMMA 2.2. — Under condition (H1), we have
+2
P (|Sn| > t) <2 e 27EGD. (2.2)

Proof of Lemma 2.2.— By Hoeflding inequality [Hoe63] (or more exactly
its proof), applied to
SK = Z Xn

li|l<K

where X',?’ = 2',:=1 ai+kw;, we have for all A >

0
B(05) < e (”f” > (iam)z)

2012 _
= exp()\zc E(SK)?).
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Letting K — 0o, X — 5, in L?(IP) and we get by Fatou’s lemma:

Then by Markov inequality, we have that for all ¢t > 0

22
P(S, > 1) < e FESL y) >0,

and optimizing in A, we obtain

+2

Vt>0, P(S,>t)<e 207B5%,

We have obviously the same inequality for —S,. Thus (2.2) follows.
Remark 2.iii.— Inequality (2.2) can be proved by means of logarithmic
Sobolev inequality for convex functions [Led96] (with less better constant),

in a way which is also valid for |S,| and thus give an alternate way to
establish Step 2 in the following proof.

Proof of Theorem 2.1 : we separate its proof into three steps.

n
Step 1. Let SK = Z X where we have for some fixed K in IN
k=1

K
Then IP (ST" € ) satisfies the large deviation principle with speed n

and some good rate function IX, by Sanov’s theorem and the contraction
principle, or using results of [BD90] which give IX with the same notations
as in Theorem 2.1:

I¥(z) = A* a: , .
@ (E|j|<K a; <1 - 11]?))

Step 2. We show that for all § > 0

S, SK

lim sup lim sup % log IP ( -

K—soo n—oo

> 6) = —00. (2.3)

- 26—
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By our hypothesis, we can apply Hoeffding inequality for S, — S,If , and
noting that IE(S, — SX) = 0 we get by lemma 2.2
< log2 né?
n 9C2E ((s,, - S,{f)‘*’)

LiogP (1 1S, — SK| >5)
n n

We have now to control the right term of this inequality. Let fx denote the
N a2
spectral density of XX, i.e. fx(8) = |gk(0)? := |E|J'I<K a; (1 - J}—{l) eo| .

Let introduce Fejer’s kernel F
2
1 sin %0
Fic(6) = 2rK (sin %9) )

An obvious property is that ffﬂ Fg(0)df = 1. Moreover, we have gx =
Fg *g, where “¢” denotes the usual convolution product. By the well known
theorem ([IL71], Theorem 18.2.1. pp322), we have

E (S, - 5%)?)

n

=27 [lg - gx?  Fa] (0). (2.4
For any € > 0, let [—4, 8] be such that |g(6) — g(0)| < § for || < 4. For

6] < $

lgx(6) —g(6)] = lg*Fk(6) —g(0)|

| Fx @06~ #)a8 - o0)

-7

<

/ Fie(#) (9(6 — ) — 9(6)) de'l
167|<6/2

—+

/ Fx(6') (96— 8') — 9(6)) do'~

|6'|26/2

< ¢ / Fx(8')d¢’ + C(K, 8)27 (lgll 2(aer) + 9(6)))
167|<8/2

3
< ef  Fu@)ds + .0 (Iolas + O]+ 5),
|0|<8/2

where C (K, 8) = supg/|55/2 |Fk(6')| < (2wK sin?(6/4))"! — 0 as K — oo.
We can now control the right hand side of (2.4)

liIr{nSUP [lg — g9k |? * Fy] (0) = limsup [ |g— gk |*(6)Fn(6)do
—00

—00 -

—927—
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<limsup< sup lg — 9x|*(8) + C(n, 5)/ |9“9K|2(0)d0)
|67]>8/2

K—oo \|0]<8/
<e.

We further conclude that

E ( (S, — S¥)*
lim sup lim sup (( . n) ) = 0.

K—oc0o n—o n

We then deduce (2.3). Applying the approximation lemma ([DZ93], Th.
4.2.16.), we obtain that S,, satisfies the large deviations principle with speed
n and the rate function

z) :=supliminf inf I¥(y) =suplimsu inf 1K
( ) 6>IO) K—oo yeB(z,6) ) 5>g K—»oopyeB(-T 5) 2

where B(z, d) is the ball of radius § centered at z.

Step 3. It remains to show that I(x) = I(z), where I is given by (2.1). We
will first prove that I(z) < I(z). Assume that I(z) < oo (trivial otherwise).
This inequality is obvious for x = 0 (as I*(0) = 0). Now for x # 0, the
finiteness of I(z) implies that g(0) # 0. For each § > 0, we have by the
convergence of gk (0) to g(0) that yg(0) € B(z,d) 1mpl1es Y9k (0) € B(z,26)
for sufficiently large K, so that we have

zEB( 8) {A*(y) yg(O) = Z} eb}l(lfms) {A*(y), ng(O) - z} ,

which yields I(zx) < I(z).

We now have to prove the converse inequality. Assume at first g(0) # 0,
by the lower semi-continuity of I (inf-compact in reality), we have

. Y
I(z) =suplimsup inf A* 11mmfA* z) = A*
l(z) 550 Kosoo VEB(.0) (.‘]K(O)) — 35y (2) ( (0))

Now assume g(0) = 0. 1(0) > I(0) (trivial). For x # 0,

. Yy
I(z) =suplimsup inf A*{——= liminf A*(2 +o00 = I(z).
[(z) 550 Kesod yEB(z.0) (QK(O)) |2|—+00 (2) = @)

So we have that I(x) = I(x), which ends the proof of theorem 2.1.

Remarks. — Under the boundedness ” |w;| < C” and the strong condition
> icz lai| < oo, the level-3 large deviations principle for (Xy,)nez holds.

—928 —
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Indeed, assume without loss of generality that (w;) is the coordinates system
on the product space Q¢ = [~C, C]% equipped with the product measure
P = u®%, where p is the common law of w;. Let ) be the shift operator
acting on (¢, defined by (6rw); = wi—k, Vk,l € Z, and let E, be the
empirical process of the i.i.d. sequence, defined on the space P({2¢c) of all
probability measures on {2¢:

1 n
En = —T; gégkw.

By the results of Donsker-Vardahan [DV85], E,, satisfies a level-3 large
deviation principle on P(§2¢) equipped with the weak convergence topology,
with speed n and the good rate function given by the Donsker-Varadhan
level-3 entropy H(Q), see [DV85] for some details on H(Q). Let ¢ be the
map given by

¢ : Q—RZ

w— (Z ai+kw¢) :
i€Z keZ

By the absolute summability } ;.4 |a;| < +00, ¢ is continuous from Q¢ to
RZ both equipped with product topology. Let P(RR%) be the space of all
probability measures on R% equipped with the weak convergence topology.
Define on P(IR%) the empirical measure

1 n
R, = - Z‘SX-W
k=1

We obviously have R, = E,0¢~!. By the contraction principle, we conclude
that R,, satisfies a level-3 large deviation principle on ’P(]Rz) with speed n

and the good rate function I(Q) = inf {H(Q), Q=Qo ¢—1}.

3. Moderate deviations.

We are now studying moderate deviations for S, in the same way as
we have proved large deviations in the preceding section, we keep the same
conditions on a; and w;. To this purpose, let (b,)n>1 be a sequence of positive
numbers such that

bp — +00 , (3.1)

bn

- 929 —
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THEOREM 3.1.— Under the conditions (H1) and (H2), IP ( Sn Tn )
'n

satisfies a large deviation principle with the speed b2 and the good rate func-

tion Ipg given by
12

Vz e R, IM(:I:)=§—f(—O)—.

(3.2)

Proof. — We separate its proof into two steps.

n
Step 1. Let SX = ZX K as before.
k=1

SK
Then, by [JWR92], ]P(

with speed b2 and the good rate function I¥ given by

) satisfies a large deviation principle

.7)2

2 (E|j|<K a; (1 - ijcl))z

Step 2. Since S, — SX satisfies assumptions of lemma 2.2, we apply the

concentration inequality (2.2) to %’L vVt > 0,

Iyi(z) =

n t? log 2

_ oK
Sn= S| )g_ g2
2C7E (S, - 5K)*) A

1
b2 log P (

But by the proof of Theorem 2.1 we have
E ((S» - 55)%)

lim sup lim sup =0
K—oo n—oo n
where it follows
. . S'n, - STI;{
limsuplimsup = log]P —|2t) = —o0.
K—oc0o n—oo b

According to the approximation lemma ([DZ93], Th. 4.2.16.), we deduce
that S, satisfies the moderate deviations principle with speed b2 and the
rate function

Inf(z) :=supliminf inf TIE(y)=suplimsu inf IX(y).
M( ) 5>18 K—oo yeB(z,6) m(¥) 6)18 K—»oopyEB(I#S) m(¥)

—-30-
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The identification of the rate function is done like in Stepd of the proof of
theorem 2.1.
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Bibliography

[BD90] BurTON (R.M.) and DEHLING (H.). — Large deviations for some weakly de-
pendent random processes. Statistics and Probability Letters, 9:397-401, 1990.

[DS89] DEeuscHEL (J.D.) and STROOCK (D.W.). — Large deviations. Academic Press,
Boston, 1989.

[DV8s5] DoNSKER (M.D.) and VARADHAN (S.R.S.). — Large deviations for stationary
gaussian processes. Communications in Mathematical Physics, 97:187-210,
1985.

[DZ93] DEMBO (A.) and ZEITOUNI (O.). — Large deviations techniques and their ap-
plications. Jones and Bartlett, Boston, MA, 1993.

[HHS80] HaiL (P.) and HEYDE (C.C.). — Martingale limit theory and its application.
Academic Press, New York, 1980.

[Hoe63] HOEFFDING (W.). — Probability inequalities for sums of bounded random vari-
ables. American Statistical Association Journal, pages 13-30, 1963.

[IL71] IBraGIMOV (I.A.) and LINNIK (Y.V.).— Independent and stationnary se-
quences of random variables. Wolters-Noordhoff Publishing, 1971.

[JWR92] Jiang (T.), WaNG (X.) and Rao (M.B.). — Moderate deviations for some
weakly dependent random processes. Statistics and Probability Letters, 15:71—
76, 1992.

[JWR95] Jiang (T.), WaNG (X.) and Rao (M.B.). — Large deviations for moving aver-
age processes. Stochastic Processes and Their Applications, 59:309-320, 1995.

[Led96] LeEpOUX (M.). — On Talagrand’s deviation inequalities for product measures.
ESAIM: Probability and Statistics, 1:63—87, 1996.

[Led99] LeEpoux (M.). — Concentration of measure and logarithmic Sobolev inequali-
ties. Séminaire de Probab. XXXIII, LNM Springer, 1709:120-216, 1999.

-31-




MDP for Markov chain with atom 335

& stochastic
\= processes
and their

applications

ELSEVIER Stochastic Processes and their Applications 95 (2001) 203-217
www.elsevier.com/locate/spa

Moderate deviations for Markov chains with atom

H. Djellout, A. Guillin*

Laboratoire de Mathématiques Appliquées, CNRS-UMR 6620, Université Blaise Pascal,
24 Avenue des Landais, 63177 Aubiére, France

Received 1 February 2001; received in revised form 10 April 2001; accepted 11 April 2001

Abstract

We obtain in this paper moderate deviations for functional empirical processes of general state
space valued Markov chains with atom under weak conditions: a tail condition on the first time
of return to the atom, and usual conditions on the class of functions. Our proofs rely on the
regeneration method and sharp conditions issued of moderate deviations of independent random
variables. We prove our result in the nonseparable case for additive and unbounded functionals of
Markov chains, extending the work of de Acosta and Chen (J. Theoret. Probab. (1998) 75-110)
and Wu (Ann. Probab. (1995) 420—445). One may regard it as the analog for the Markov chains
of the beautiful characterization of moderate deviations for i.i.d. case of Ledoux 1992. Some
applications to Markov chains with a countable state space are considered. (©) 2001 Elsevier
Science B.V. All rights reserved.

MSC: primary 60F10

Keywords: Moderate deviations; Markov chains; Regeneration chain method; Functional empiri-
cal processes; Countable state space

1. Introduction and main result

Let (E,&) be a measurable space and .Z(E) be the space of all finite signed measures
on (E,&) equipped with the total variation norm || - |lar. Let {X;};50 be an E-valued
irreducible ergodic Markov chain with transition probability P and invariant probability
measure 7. Throughout the paper, we assume that the chain {X;} has an atom, i.e.
Joo C E with ©(a) > 0, v a probability measure such that

Vx € o, P(x,-)=v(-), (1.1)

o is then called a atom. Note that, when the state space is discrete, every state charged
by 7 is an atom. We introduce the first time of entrance of the chain in this atom

* Corresponding author. Tel.: +33-4-73-40-70-50; fax: +33-4-73-40-70-64.
E-mail  addresses:  djellout@math.univ-bpclermont.fr  (H. Djellout), arnaud.guillin@math.univ-
bpclermont.fr (A. Guillin).
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which will play an important role in the study:
t=inf{n > 0; X, € a},

and we will always assume that E,7%> < oo.

Given a probability measure u on (E,8), P, will be the Markovian probability
measure on (EN,&%N) determined by the transition probability P and the initial law
. {X;};>0 will be then the sequence of coordinates on EV.

Let M,, n > 1, be random elements of .#(E) defined by

n—1

1
M, = b_niz_;(éX" — 1), (1.2)

where b, is a sequence of positive numbers tending to infinity. We are interested in
this paper in the asymptotic behaviour of P,(M, € -).

When b, =+/n, it is the Central Limit Theorem obtained first by Nummelin (1978)
and Chen (1997) under various conditions. If b, =n, it is the large deviations case
extensively studied since the pioneering works of Donsker—Varadhan (see for instance
Deuschel and Stroock, 1989; Wu, 1993 for a survey on this topic).

Now assume,

\b/nﬁ T +o0, %—>0. (1.3)
The estimation of the probabilities P, (M, € -) is usually called the moderate deviation
problem. We will suppose moreover the following: 94 > 1, 0 < 0 < 1 such that

Vmk =1, by <Ak'"°b,. (1.4)

It is the usual condition on the speed of moderate deviations in the i.i.d. case (Ledoux,
1992), it means that b, cannot be too near of n (the scale of large deviations). Sharp
results on moderate deviation are quite recent, even for the i.i.d. case: the works of
Ledoux (1992) for the upper bound in Banach space (which are largely used in this
paper) and results of Wu (1994) for the functional empirical process (nonseparable
Banach space case). See also Djellout (2000) for the extension to the martingale dif-
ferences case and applications to mixing sequences.

The Markovian case has been studied under successively less restrictive conditions
(Mogulskii (1984), Gao (2000), Wu (1994)) and recently under weak conditions by
de Acosta (1988a,b) and Chen (1997) for the lower bound (under different and non-
comparable conditions) and by de Acosta and Chen (1998), and Chen (1997) (under
same conditions but different proof) for the upper bound. de Acosta and Chen (1998)
have established their results under the assumptions of geometric ergodicity and a reg-
ularity condition (de Acosta and Chen, 1998, assumption (1.5)). Very recently, Guillin
(2000) extends their results to the uniform trajectorial case, and Guillin, 2001 for
Markov processes (continuously indexed).

We will be interested here by the asymptotic behaviour of M, uniformly over a class
of function (context of Wu, 1994).

Given a class of real measurable functions % such that Vf € 7, n(f)=0, f € L(n)
and [EV(Z:;:1 | £ (X)) < o0, let 1oo(F) be the space of all bounded real functions
on Z with norm [|F[|7 =sup ;7 |F (/).
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If Z# is infinite, /(%) is a nonseparable Banach space. Every ff € .#Z(E) can be
regarded as an element 7 € [.o(F) given by 7 (f)=p(f) = Jz fdp. We will now
establish the moderate deviations estimations of (M,)” in [.(Z%).

In the sequel, we will suppose that & is countable, or that the processes {M,(f);
f € F} are separable in the sense of Doob, to avoid measurability problems. Let d;
be the following metric for #: Vf,gc Z:

d2(f,9)=0(f —9),

where

5 2
1 n—1 T
o*(f)= lim —F (Zf()@)) =n()E, | > _f(X)
k=0 Jj=1

is the associated variance.

For an irreducible Markov chain taking integer values which has a finite second
moment for the first return time from some integer to itself, Levental (1990) find
necessary and sufficient conditions for the uniform CLT over all subsets of the integers.
Tsai (1997) generalized this result to unbounded classes, # ={f: |f| < F}, where F
is a non-negative function, say the envelope function, on the countable state space. Tsai
(2000) gives sufficient and nearly necessary conditions (weaker than condition of the
uniform CLT) for the compact and bounded law of the iterated logarithm for Markov
chains with a countable state space.

We will first give the moderate deviation principle in the general framework where
an atom is present, and then present some applications on a countable state space,
where some conditions can be more explicit.

Here is our main result:

Theorem 1. Suppose that (F,d,) is totally bounded and (M,)” — 0 in probability
in loo(F). Assume

(H1) limsup,_, . n/b2 log(nP,(t = b,)) = — oo,

(H2) limsup, ., . n/b;log(nP,(3"_y | f (X7 = ba)) = — oc.

Then for every probability measure p on (E,&) verifying

n—-+oo Uy

. n d
hmsupﬁlog[@# <Z||f(Xk) 7 an) = — o0. (1.5)
k=0

P.((M,)” €-) satisfies a moderate deviation principle on [(F ) with speed b2/n and
good rate function Jz given by

.....

T = swp [(68) — 501,80 (16)

ée Rm
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Suppose moreover >~ (&, [YPY(f,&) € Li(n) for all &€ R™, then

2= [(reranr2 [ St or e dn
k=1

Remarks. (i) Note that when an atom is present, the geometric ergodicity condition is
equivalent to

36 > 0 such that E,(e’%) < cc.

Condition (H1) is then strictly weaker than the geometric ergodicity imposed in the
work de Acosta and Chen (1998). Moreover (H1) can be more explicitly given. For
example, in the particular case b, =n'/? with 1 < p <2, for which conditions (1.3)
and (1.4) are then obviously verified, then (H1) is easily seen to be implied by

35 > 0 such that E,(e” ") < . (1.7)

Remark also that we consider here the nonseparable case of the functional empirical
process and unbounded functions, cases which are not studied by de Acosta and Chen.
To their credit, note however that they suppose neither the existence of an atom nor
the condition (1.4) on (b,) and their sole assumption is the well known geometric
ergodicity.

(ii) Still in the context b, =n'? with 1 < p < 2, following Nummelin and Tweedie
(1978) and Nummelin and Tuominen (1982) (or Meyn and Tweedie, 1993 for a
complete review) one can see that condition (1.7) is equivalent to the following
sub-geometric ergodicity: there exists » > 1 such that for m-a.e. x (with || - ||y de-
noting the total variation norm)

Zr" P, ) — @ty < oo, (1.8)
n=1

which is stronger than ergodicity of degree 2 (see Chen, 1999) but weaker than geomet-
ric ergodicity. Such an assertion implies in particular that (1.7) is valid independently
of the choice of the atom and so (H1) in this context.

We have not been able to derive the independence of the recurrence condition (H1)
on atom nor its characterization by means of some type of ergodicity for general b,
but fortunately our results are proved if (H1) and (H2) are satisfied by some and then
any atom.

(iii) Under (H2), condition (1.5) is verified, for instance, by the invariant measure
7 of the Markov chain and then by the Dirac measure J, for m-a.e. x € E, see the
appendix.

2. Applications to Markov chains with a countable state space

We will give in this section some applications where some conditions can be given
explicitly, more precisely when the total boundedness of .# with respect to the pseudo-
metric d, or (M,)” — 0 in probability can be proved under satisfying hypotheses. We
are much inspired here by the works of Levental (1990) and Tsai (1997).
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We then consider the MDP for Markov chains with a countable state space E =
{1,2,3...}. Here t; will be the ith hitting time of state 1, i.e.

ti=my=min{n: n > 1,X,=1} and for i > 1, t,=min{n: n>1,_1,X,=1},
and m; ; be the expected minimal number of steps from state i to state j, i.e.
m; ;= E(min{n: n > 1,X, =j} | Xo=1).

Let us first consider the case where . is the family of all indicator functions, i.e.
={1,—mn(A4): A C E}, related with Kolmogorov—Smirnov nonparametrical statistics.

Corollary 2. Assume that (H1) is satisfied and
+00
> “mk) /iy < oo, (2.1)
k=1

for all orderings of E. Then for every probability measure pn satisfying (1.5), the
MDP of Theorem 1 holds for the family of all indicator functions on E.

Proof. Condition (2.1) is the necessary and sufficient condition for the uniform CLT
over all subsets of the integers for Markov chains satisfying E(t, — 71)*> < oo by
Levental (1990). The uniform CLT implies in particular M7 — 0 in probability and
(Z,d,) totally bounded. For this family of indicator functions %, (H2) is identical to
(H1). The proof is completed by Theorem 1.

In the particular case of the law of the iterated logarithm (b, =+/2nloglogn), we
have the following:

Corollary 3. Assume that
E.(*(logt)*) < 00, Va > 0. (2.2)

Suppose moreover

ﬁZn(k)\/nﬂ — 0, (2.3)

loglogn

for all orderings of E. Then for every probability measure pn satisfying (1.5), the
MDP of Theorem 1 holds for the family of all indicator functions on E and for

b, =+/2nloglogn.

Proof. Remark that by Theorem 1, and by the fact that Ledoux (1992, Corollaire
2) shows that (H1) is implied by (2.2), we only have to prove that (M,)” — 0 in
probability in /(%) and that (%,d>) is totally bounded. But, Tsai (2000) proves that
under the square integrability of 7 under v (obvious by (2.2)), the compact LIL is
implied by (2.3) and that the compact LIL is equivalent to the needed convergence in
probability. Note also that the compact LIL implies that (#,d,) is totally bounded, so
ends our proof. [J

We can extend Corollaries 2 and 3 to unbounded classes of functions & ={f": |f]|
< F} centred with finite variance, where F is a nonnegative function on E (called
envelope of 7).
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Corollary 4. Suppose that (H1) and (H2) hold and that (#,d,) is totally bounded.
Assume either
(a) b, =n"""2 with 0 <o <1/2, and

1 n
do’ < o such that TZF(k)n(k),/ml,k — 0 asn— oo
n

k=1
or
(b) b, general and
\/ﬁ[\/ﬁbn]
W > F(kyn(k)/mix — 0 asn— oo, (2.4)
" k=1

for all orderings of E. Then for every probability measure u on (E, &), verifying (1.5),
the MDP of Theorem 1 holds.

First remark that the particular condition of part (a) is slightly weaker than in (b).
By trivial facts, one can show that, for b, =+/2nloglogn, condition (2.4) and (2.3)
are equivalent.

Proof. Once again, by Theorem 1, we only have to prove that (M,)” — 0 in proba-
bility in /(% ). The conditions for cases (a) and (b) are obtained through a rewriting
of the proof of Tsai (2000) in our context.

3. Proof
3.1. The separable case

We first need following lemma which gives us the moderate deviation principle when
Z is finite, i.e. in the separable case.

Let f be a measurable mapping from E to R?, suppose moreover that 7( /) =0 and
o?(f) < 0.

Lemma 5. Assume that (H1) is satisfied and

(H2') Timsup, ., .. n/B2 log(nP(X iy [|f ()| = b)) = — oo,
Then for every probability measure u on (E,&) verifying

T

) n

lim sup> log P, <Z||f(xk)|| > bn> = — o0, (3.1)
n—+oo YUy k=0

P (M,(f)€ ") verifies a moderate deviation principle with speed b%:/n and good rate

Sfunction J; given by (1.6).

Remark. By assumptions (1.3) and (1.4) on the speed b,, for each ¢ > 0, we may
choose some /(¢) > 0 such that &b, > by;),. Then, using (1.4), it is not hard to
conclude that (H1) implies Ve > 0

lim sup% log(nP,(t > eb,)) = — .

n—oo Uy
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The same extension can be made for (H2), (H2’), (3.1) and (1.5), which will be
referred in the sequel, with little abuse, again as (H1), (H2), (H2’), (3.1) and (1.5).

Proof of Lemma 5. The proof relies principally on a decomposition into blocks of
return to the atom, which by a regeneration argument enables us to reduce the problem
to the case of i.i.d. random variables.

We divide the proof of the Lemma into 4 steps: Step [ is dedicated to the key
decomposition of M,(f). We give an extended version of Ledoux (1992) moderate
deviations of i.i.d.r.v. and we apply it to our setting in Step 2. The negligibilities in
the decomposition are established in the third and fourth steps.

Step I: First, introduce by induction the following successive times of return to o:

1(0)=t=inf{n > 0; X, €a},

t(k + 1)=inf{n > t(k); X, €al. (3.2)

Obviously, {t(k)} are stopping times w.r.t. {X,}, and are almost surely finite. Note
that E,7=mn(o)"".
Here is the classical decomposition of the sum M,( f); which is again crucial here,

n—1
MA(f)= 33 1(X)
"=

i(n)—1

1 1
=Mopu-y()+ - D &GN+ Y, X)) ps, (3.3)
" =1 "imy+1<j<n—1
where the random &;(f') are defined by
(k)
&= . [, (3.4)
j=t(k—1)+1

and
n—1
i(n)=> LX),
k=0

and /(n)=1((i(n) — 1) V 0). Note that, by Nummelin (1984), {&:}(f) is a sequence
of independent random variables with common law ¥ P‘,(Z;:o f(X))).
Let us introduce for all n, e(n)=[n(a)n], (3.3) becomes

e(n) i(n)—1 e(n)
M,(f)= bizék(f) + Meno—1y(f) + bi ( > a) - Z@(f))
" k=1 T\ k=1 k=1

1
D DR 0} (3.5)
"in)+1<j<n—1
We control now each term of this decomposition, showing that only the first term con-
tributes to the moderate deviations. It is the decomposition Nummelin used to establish
the Central Limit Theorem (Nummelin, 1978, Theorem 7.6).
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Step 2: We deal here with the moderate deviations of the first term of (3.5). First
note the following.

Lemma 6. Let (w;) be a centred and square integrable i.i.d. sequence of RY such
that M, Vu e R

2

hmsup log(nP([[ewol| > uby)) < !

m sup - (3.6)

then, if a(n) is some positive increasing sequence such that a(n)/n — a < oo, 1/b,
Za(") wy satisfies a moderate deviation principle with rate function a=—'lI where

I(x)= sup {<x, V) — %[E<wo,y>2}-

yER?

Ledoux (1992) proves only this result with a(n) substituted by », but his proof
works in this context. So its proof is omitted.

Obviously, (&:(f)) verifies condition (3.6) by (H2") (regarded as its extension see
remark after Lemma 5). Then P,(1/b, Ze(") E(f) € ) satisfies a moderate deviation
principle with speed b2/n and rate function J, given by

J/(r)= sup {<¢> ¥~ Lo, f>)}
peR

Let us deal now with the other terms in the summation (3.5).
Step 3: We will prove that Ve > 0
> — 00, (3.7)

hmsupb logP, Z f(X))|| = eb, | =— o0, (3.8)

e In)+1<j<n—1

TA(n—1)

Z S(Xe)

n—oo

lim sup log[P’ (

In fact,
tA(n—1) tA(n—1)
doorxoll< Yo ||l rxp
k=0 j=0

and then (3.7) follows exactly from condition (3.1):

P, Yo S| zebn| <P D IfEDI=eb

In)+1<j<n—1 I(n)+1<j<n—1
<P, S @l =
w(i(n)—1)+1<j<t(i(n))
©(k+1)
< Py max Z |/ (XD = ebn

0<k<n—1
j=rt(k)+1
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By Nummelin (1984), {ng‘;,})) 1 I f(X))[[} are ii.d. random variables under P, with
common law Zp (3", _, |/ (Xk)]), so we get

Py Y. S| =eba | <nP, (ZHf(Xk>H>ebn),
k=0

I(n)+1<j<n—1

and (3.8) is a straightforward consequence of condition (H2").
Step 4: We shall prove here

i(n)—1 e(n)
lim sup 75 SlogPy [ | D &) =D& = aby | = — oo, (3.9)
oo j=1 k=1

This limit needs more effort than the previous negligibilities: let 0 < 0 < n(a) be fixed
but arbitrary, and » be sufficiently large in order that e(n) > on. We have by stationarity

i(n)—1 e(n)
Pu (|| D &) =D &) = eba
j=1 k=1

i(n)—1 e(n)
=P, Z Ef) - ka(f) > ¢by; |i(n) — 1 — e(n)] > on

i(n)—1 e(n)
+P, Zé,(f)—Zék(f) > eby; li(n) — 1 —e(n)] <

‘
<Py e(n)— [(5n]r£k§e(n)+[5n] ,_e(%;[én]éi(f )| = gb”

+P(Ji(n) — 1 — e(n)| > &)
<P <1<1,?3§‘[an Zf (N =50 )

+P,(i(n) — 1 — e(n) > dn)

+P(i(n) < e(n) — on + 1). (3.10)

Let us begin with the last two terms of the right side of this last inequality.
P.(i(n) =1 —e(n) > noé) < Py(t(e(n) + [on]) <n—1)
< Pu(t(e(n) + [0n]) —1(0) <n—1)

e(n)+[on]
<P, ( > (k) =tk —1)<n-— 1)

k=1

k(n) B
<Py < =y (r(k)—r(k— - n(la)) < k@) 1)

bi(n) = bin
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with k(n) =e(n) + [on]. We have

n—1—k(m)n(x)™"  k(n) (n -1 1 )
bi(n) by \k(n)  m(a))

Note now that for sufficiently large n, (n—1)/k(n) ~ (n(a)+6)~", and k(n)/by(y — oc.
By Ledoux (1992), condition (H1) implies the upper bound of the moderate deviations
for the i.i.d. sequence {t(k)—1(k—1)—m(x)~'} with rate function /; such that /;(x) —
oo when |x| — oo. Therefore, we have VL > 0,

lim supk( ) logP,u(i(n) — 1 —e(n) >9) < — ti<nfL]1(t).

n—oo k(l’l)

Letting L tend to infinity and noting that k(n)/n — n(o) + 0,

lim supb log P, (i(n) = e(n) + [on] — 1) = — o0

n—oo

Using the same argument, we obtain also

lim supb logP,(i(n) < e(n) —[on] —1)= —
We have the control of the last two terms of (3.9).

Because 1/b, Y ;_; &(f) — 0 in probability (by CLT for example), we have for
sufficiently large n,

- € 1

k<20n
j=k+1

Then, by the Ottavianii’s inequality for independent random variables, we get

2[on]

k
g
P E ; ==-b,| <2P g =
B j_e(n)—énéj(f) 27" . <)

™

Zb,
6

+2P, <max 1S (O =

O\lm
\/

Obviously by the same approach as in (3.8), condition (H2") implies
&
h,?li‘ipb log P, (kfgggnﬂék(f)ﬂ = gbn) =0
Taking F = {x; ||x|| = ¢/6}, we have by the results of Step 2

2[0n]
hmsupb2 logP, Zf](f) > b, | < —m(@)(20)"" inf J(x).

nmo 6 Il >4/

&

Combining these last results, we obtain

i(n)—1 e(n)
hmsupb logP, ij(f) Zék(f) >¢eb, | <— m(0)(26)7! inf Jf(x)

n—oo b3 P BT
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As a?((x,&)) is differentiable on ¢ and d:0%({x,&))|c=0=0, J;(x) =0 < x=0. Thus,
by the inf-compactness of J, we get

inf Jr(x
ot () >

As 0 is arbitrary, letting 6 — 0", we have then the negligibility (3.9).
Using estimates (3.7)—(3.9) and the moderate deviations of Step 2, we get the result
by Dembo and Zeitouni (1993, Theorem 4.2.13).

3.2. Proof of Theorem 1

Theorem 1 is established using the line of the proof of Wu (1994) for i.i.d. case.
In fact, we reduce our proof to the use of Lemma 5 and to an exponential asymptotic
equicontinuity with respect to the pseudometric d, associated with %

Under our hypothesis, by Lemma 5, we have the finite dimensional moderate de-
viation principle, i.e. for each f1,..., f, €%, M,((f1,..., fm)) satisfies the moderate
deviation principle with speed b%/n and the good rate function J s, ). We introduce
the following notation ¥y > 0:

Fy={f—9;/.9€7 and da(f,g) <n}.

We have obviously that (#,,d,) is totally bounded. Moreover (M, Y71 — 0 in prob-
ability in /o(#,) by our assumption. By Wu (1994), for the MDP we have only to
verify the following condition: Ve > 0,

.....

limlim sup logIP’ =>¢g)=— 00. (3.11)
=0 oo bn
Or equivalently, Ve > 0
n—1
limlim sup log P, sup Zf(X) > ¢eb, | = — o0 (3.12)
=0 n—oo b fez, =0

We use the same decomposition as in the proof of the preceding theorem:

[FDH sup Zf(X) = 8bn

fe/r] ] 0
TA(n—1) i(n)—1
=P, | sup Z SN+ > &N+ D>, (X)) =eb,
JEFy i=1 I(n)+1<i<n—1

i(n)—1

Zé(f)

tA(n—1)
€
<Py | sup Z SX)| = gbn + P, (sup

fEF, fe7,

=

+P, | sup Z SX)|| = 5bn

&
& 3
TE€ET N in)y+1 <i<n—1

We then have to prove the negligibility of all the terms in the right side of this
inequality.
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Using conditions (1.5) and (H2), we get as for (3.7) and (3.8)

tA(n—1)
limlim sup log P, | sup Z JX)|| = Ebn =— 00,
n—0 5,500 b fEF, =0 3
limlim sup > log P, | sup Z X)) = Ebn = — 0. (3.13)
=0 n—oo bn feF, ) +1 <m<n—1 3

For the middle term, first note
i(n)—1
sup
SETFY

me) ) P, <lrgg§nfsellp > &) >§bn>.
T || k=1

We obviously have that (1/b,> ;_, &(/))”" — 0 in probability in /(%) by the
assumption that (M,)” — 0 in probability. Therefore, for sufficiently large n, we have

Z@(f) ) <3

and we use again the Ottavianii’s inequality in Banach space for independent random

variables, then for sufﬁciently large n,
< 2P, | sup
fETy

Z@(f)
+2P, (rlglax sup 1€l = 8197 > )
nfeF

maxP,, < sup

ke<n feF,

Zék(f)

Sisnfez,

P, <1max sup

The negligibility of the last term is done as in the proof of Lemma 5. For the first term,
we then use Lemma 3 of Wu (1994), an extension of Ledoux moderate deviations in
the nonseparable case, we get identifying B=[/(% ) (in the notations of Wu, 1994,

Lemma 3)
&by, &2
Zék(f) ) <o

where Cy is some universal positive constant and ¢* = sup ;. 7, E&(f ))?. Remark that

lim sup— » log P, < sup

n—o00 feF,

o < n* and consequently

Z@(f)

Combining (3.3), (3.4), and precedmg inequalities, we get (3.2) and then our theorem.

limlim sup = log P, ( sup ) = — o0. (3.14)

n—0 ;00 bn fEl,,
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Appendix

This section is devoted to the proof of the following lemma:
Lemma 7. Under hypothesis (H2), the invariant measure w satisfies condition (1.5).
Proof. In fact, we will prove the following strongest assertion:

(i) limsup,_, . n/b; log P.(3=7_ |/ (X))||l7 = by) = — oo is equivalent to
(i) limsup, o n/b;log Pr (37 I/ (X))l 7 = by) = — oo

This assertion being proved, the conclusion of the lemma follows.
(ii) = (i): It follows simply from

Mozémmwmd
= /n(dx)P(x, 2)

> /n(dx)v(-)
= n(a)v(-).

(i) = (ii): By Nummelin (1984), letting g(x)= PX(Z;:O | f(X)|# = by), we have

o | SN 28, | = [ w@ors | Sl
j=0 E j=0
- / g(0)n(dx)
E

= n(@)E, <Zg(Xk )) :
k=1

Let oy = {n > k; X, € o}, using the strong Markov property, we get

fzbn

Pe [ DI/
j=0

T O
=n(@E, [ Y P | DI/ X)llr = ba/ T
k=1

J=k

O

=m(E [ Y =Py | IS EX)lF = b/ T
k=1 =k
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Since {t >k} is & measurable, and on {7t >k}, 0, =1, we have

P | ISPz 2 b | = mOE | D Lozt Lss, 710 503
j=0 k=1

< mOE | D s, iron)ls=b
k=1

= (BTl el >5.1)

%’7>bn 5

< n(o)V/Ey(22) | Py ZHf(Xj)
=0

where the last step is obtained by Cauchy—Schwartz inequality. We now easily derive
(11) from (1).

4. For further reading

The following references are also of interest to the reader: Athreya and Ney, 1978;
Chen, 1991; de Acosta, 1990; de Acosta, 1997; Gao, 1994; Wu, 1995.
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Résumé. Nous nous intéressons dans cette Note aux déviations modérées pour le processus
empirique fonctionnel d’'une chaine de Markov a valeurs dans un espace d'état général,
possédant un atome. Ce principe est établi sous les hypothéses suivantes : une condition
sur le premier temps d’entrée dans I'atome, et des conditions sur la classe de fonctions.
Le cas général est également présenté sous des conditions sur la «split chain» associée.
Ces résultats peuvent étre considérés comme I'extension aux chaines de Markov de la
caractérisation des déviations modérées de v.a. i.i.d. de Ledo@000 Académie des
sciences/Editions scientifiques et médicales Elsevier SAS

Moderate deviation principle for the functional empirical process
of Markov Chains

Abstract. We obtain in this paper moderate deviations for the functional empirical processes of
general state space valued Markov chains with atom under the following conditions: an
exponential tail for the first time of entrance in the atom of the Markov chain, and usual
conditions on the class of functions for the second case. Our proofs relie on sharp conditions
issued of moderate deviations of independent random variables. One can see our results as
an extension to the Markov case of the beautiful characterization of moderate deviations for
i.i.d. case of M. Ledouxa 2000 Académie des sciences/Editions scientifiques et médicales
Elsevier SAS

1. Introduction

Soit {X;};>0 une chaine de Markov irréductible sur un espace d'état mesurabt®), de probabilité
de transitionP, de mesure de probabilité invarianteNous supposerons de plus que cette chaine poss
unatomei.e.Ja € £, v une mesure de probabilité shrtels que :

Ve ew, Px,:)=v(),

Note présentée par Marc Yor.

S0764-4442(00)00188-9/FLA
00 2000 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés. 377
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et est ainsi appeléatome On remarquera que, dans le casfoest discret, chaque état estatome On
note parP, la loi markovienne suf EN, £4) determinée uniquement par la transitiBret la loi initiale
p. La chaine{ X} représente alors la suite des coordonnée&Sur

On définit les mesures empiriqués,, n > 1, par :

|
—

M, = bi (0x, —m),

I\
o

J

qui sont des éléments aléatoires ti&,(E), 'espace des mesures finies signées(€€) muni de la
norme de la variation totalg- ||v.r, €t 0Ub,, est une suite positive telle qig//n T +o0, b, /n — 0. On
supposera en outre quig est strictement croissante et qu'il existe> 1, 0 < § < 1 tels que :

Vn, k=1, b, < Ak'"%b,.

Cette condition technique est la condition usuelle pour la vitesse des déviations modérées dang
i.i.d. [8]. Elle signifie queb,, ne peut étre trop pres de(l'échelle des grandes déviations).
En statistique non paramétrique, on a besoin des estimations uniformas,d® := [ fdM, =

ﬁ Z;L;Ol (f(X;) —m(f)), surune classe de fonctioffs C’est I'objectif de cette Note.

Notre volonté est d’étendre les résultats sur les déviations modérées de Ledoux [8] et Wu [12] établ
le cas i.i.d. dans un espace de Banach séparable et non séparable respectivement, aux chaines d
Le cas markovien a été étudié de fagcon extensive sous des hypothéses de plus en plus géiéfales
13],...), ettrés récemment par de Acosta [1] pour la borne inférieure sous la seule condition de I'ergd
de degr&, et de Acosta—Chen [2] pour la borne supérieure sous I'ergodicité géométrique et une con
de régularité de la mesure initiale, dont I'objectif principal est le principe de déviations modérées pd
fonctionnelles bornées a valeurs dans un espace de Banach séparablestipour la mesure empirique
M,,. Nous améliorons et étendons ces résultats dans cette Note.

2. Résultat principal

Précisons quelques notations. Etant donné une classe de fonctions réelles et megutattegue
VfeFonan(f)=0, f €Ly(m), soitl(F) I'espace de toutes les fonctions réelles bornéegsununi
de lanorme|F|| = sup ;. » [ F'(f)], qui est un espace de Banach non séparable gtiasd infini. Atoute
mesurey € M, (E) correspond un élément” dansl(F) donné pav” = [ fdv,Vf € F.

Afin d’éviter les problemes de mesurabilité, on suppose Fuest dénombrable, ou que le process
{M,(f)., f € F} est séparable au sens de Doob pour toutlous nous intéressons ici au comporteme
asymptotique d@,, ((M,)” € ).

THEOREME 1. —Supposons qué/; — 0 en probabilit¢ dan€.,(F). SoitT = inf{n >0, X,, € a}.
Supposons de plus que

, n
(A1) limsup ) log(nP, (1 > b,)) = —oo,

n—-+4oo Yp

(A2) limsup,, b% 10g<nIF’l,(2;O IIf (X)llF > bn)) = —00,

(A3) o2(f) = n(a)E (Z f(Xk))2<oo forall f € F,

et que(F,ds) est totalement bornée avek(f,g) = o(f — g). Alors, pour toute mesure initiale de
probabilité u sur (E, £) vérifiant

hmiup logP, <Z}|f (Xk) H}- ) 00, (1)

378
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P, ((M,)” € -) satisfait un principe de déviations modérées dang.F) de vitessé? /n et de bonne
fonction de taux/», définie par. J=(F) =sup{Jit, .0 (F(f1)s- . F(fm)); f1,-- s fm € F, m >
1}, ol

Tr@) = sup [(@.6) - 50*((1,9)] @

Eerm

Remarques- (i) Ce cadre contient le cas de Banach séparable au sens suivant : Breguen espace
de Banach séparable, il exigig,) € B/(0,1) (boule unité du dual d8), tel que||x| = sup,, |{z,Y},)|. Et
donc pourF = {(-,y,); n € N}, B est un espace fermé de,(F).

(i) Méme dans le cadre d'espace de Banach séparable et pour des classes de fonctions te
Ilfll= < C, ou (A2) équivaut a (A1), notre condition (A1) est plus faible que la récurrence géométr
imposée par de Acosta—Chen [2]. Dans ce dernier cas, notre condition (1) est satisfaite par toutes les
de probabilité vérifiant 3r > 1, Y77 | || uP* — 7|var < 00.

(iif) Rappelons que les déviations modérées pour la mesure empirique (que nous obtenons égaler
permettent pas d’obtenir de résultats sur les classes infinies (ni dans le cadre du (i)).

3. Esquisse de la démonstration

Notre preuve repose sur les travaux de Ledoux [8] et Wu [12], dans le cas i.i.d., récemment for
dans un cadre général par Arcones [3]. Ainsi, on réduit la preuve du théoréme au cas de dimensid
et une équicontinuité exponentielle asymptotique par rapport a la pseudo-méfrigssociée &. Nous
devons donc démontrer que pour teut 0,

lim limsup bﬁ logP#(||Mn| Fn = 5) = -0

n—0 n—oco 2

ouF,={f—-g;f,9g€F, d2(f,g) <n} etle résultat en dimension finie suivant :

LEMME 2.-—Sous les condition#\1), (A2) (ouF est finig, pour toute mesure vérifiant(1), pour toute
fonctionf : B — R™ telle quer(f) =0, f € L?(r) eto?((f,&)) < oo pour touté € R™, P, (M, (f) € )
satisfait un principe de déviations modérées de vitésge et de bonne fonction de tauk donnée pag2).

Pour démontrer ces deux résultats, on décompose tout d'aipfd) en blocs de retour a I'atome,
puis on utilise les résultats de Ledoux [8] sur les déviations modérées de v.a. i.i.d. sur un espace de
comme estimation a priori pour affaiblir I'hnypothése de I'ergodicité géométrique de la chaine de Mg
et de la bornitude dég.

4. Extension au cas général

D’apres Nummelin ([11], théoréme 2.1), dans le cas général, la chaine de Maxkgvposséde des
ensembles petits, i.dm >1,b< 1, C C E, v une mesure de probabilité sUt, £) tels que :

VeeE, ACE, P™(z,A)>blc(x)v(A).

On utilise ensuite la technique dite deegeneration split chain methodsystématiquement développé
dans Nummelin [10,11] (pour le théoréme limite centrale dans notre contexte) et Athreya—Ney [4
crée la chain®@,, = {(X,,., Y»)}, & partir de la chaine initiale et d’'une suite de variables aléatlgs
a valeur dang0, 1}, avec probabilité de transitio® (voir [11] pour de plus amples détails sur cett
construction)C' x {1} est alors uratomede ®,,.

Soit une mesure de probabilitée M, (E), on définit la mesure de probabilifésur (E x I,€ @ T)
par i = p((1 — ble)I()) ® 8o + p(bIcl()) @ 61. On note ensuitéc = inf {n > 0; &, € C x {1}}, et

remplagons? paro? (f) = 7(C x {1})E; (X p7s ™! f(Xk))Q. On aalors:
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THEOREME 3. —Supposons quéF,ds) est totalement bornée et qud” — 0 en probabilité dans
lso(F). Supposons de plus
: n ~
(AL) limsup 5 log (nPs(7c = bn)) = —o,
+m—

(A2') Timsup,,_ o 7 log (nPs (MCZ X0l > b)) = o0,
bn k=0

et(A3) avecas?,. Alors pour toute mesure initiale de probabiljtésur (E, £) vérifiant

mTc+m—1
limsup%log]?;z( Z Hf(Xk)H]__>bn>:—oo,

n—-+4oo Unp k=0

P.((My,)” € -) satisfait un principe de déviations modérées dangF) de vitessé? /n et de bonne
fonction de taux/~.

Pour la preuve, on décompose la somidg(f) en blocs de retour & x {1}, de maniére a revenir
a un probleme de déviations modérées de variables aléatcuépendantes. On démontre ainsi ur
amélioration du théoréme sur les déviations modérées dé-dépendantes dans le cas Banach [6]
utilisant les résultats de Ledoux [8]. L'équicontinuité (2) provient de I'extension de I'inégalité d’'Ottavi
au v.a.l-dépendantes [5] et des résultats de Ledoux [8].
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