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ABSTRACT. A new class of finite volume MUSCL-type method for unstructured mesh using the cell
centered approach introduced by Buffard and Clain [3] is extended to the 3D case. Numerical
tests are performed in order to compare the accuracy, numerical viscosity and efficiency of
the new multi-slopes methods with the first order method and the standard gradient MUSCL
method.
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1. Introduction

MUSCL methods have been first introduced by Van-Leer [8] in order to provide a
more acurate approximation of the conservation equation solutions. The main idea is
to maintain stability and monotonicity while the scheme order is greater. The main ad-
vantage of the MUSCL technique is its ability to enhance the solution precision with-
out alteration of the numerical flux. This point is of major interest from a numerical
point of view since a specific MUSCL subroutine is only added without modification
of the solver. After Van-Leer works, extensions for multidimensional geometries has
been proposed using a regular mesh [6] and a version for unstructured meshes has
been introduced by [1]. A general presentation of the classical MUSCL can be found
in [5] and in [7].

Roughly speaking, the MUSCL technique consists in providing new approxima-
tion of the unknow on both side of each interface between two elements. To this end, a
predicted vectorial slope representing the gradient of the approximated solution at the
centroid point of the control volume is computed and a correction factor is introduced
to maintain the monotonicity of the reconstruction. The unknowns are evaluated at a
point on each interface.

We propose a new MUSCL technique where a scalar slope is introduced for each
direction leading to a one-dimensional MUSCL method where each slope is computed
independently. The revealant points of the presented method are the simplicity, since
we only use one-dimensional MUSCL reconstructions, and the stability.

2. The classical MUSCL methods

Let us consider a bounded domain Ω ⊂ R3 et ν denotes the outward normal vector
on the boundary ∂Ω. Let F (s) a R3-valued regular function, for any scalar function
ub(x, t) with x ∈ ∂Ω and t ∈ [0, T ], we define

Γ−(ub) = {(x, t); x ∈ ∂Ω, t ∈ [0, T ] such that F (ub(x, t)).ν(x) < 0}.

We consider the scalar conservation equation :

∂tu(x, t) + ∇.F
(
u(x, t)

)
= 0 x ∈ Ω, t ∈]0, T [, (1)

u(x, 0) = u0(x) x ∈ Ω, (2)

u(x, t) = ub(x, t) x, t ∈ Γ−(ub), (3)

with u0 a prescribed initial function and ub the Dirichlet condition. Assuming Ω
polygonal, we denote by Th a discretization of Ω with tetrahedron Ki of centroidBi.
For each volume Ki, V (i) is the set of index of all the neighbour elements Kj with a
common side Sij (see Figure 1 for a 2D configuration for the sake of simplicity). In
the sequel for any Ki ∈ Th and j ∈ V (i) we denote by |Ki|, |Sij | and |BiBj | the
volume, the area and the length. Moreover, nij stands for the exterior normal of Ki

on interface Sij .
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Figure 1. Geometry, 2D case.

Let (tn)n∈[0,N ] be a partition of [0, T ] and ∆tn = tn+1 − tn the time step, Uni
represents an approximation of the mean value of u(x, t) on Ki at time tn and a
generic explicite finite volume scheme writes

Un+1
i = Uni −∆tn

∑
j∈V (i)

|Sij |
|Ki|

F ij(U
n
i , U

n
j ).nij , (4)

where we assume that the numerical flux Gij(U, V ) = F ij(U, V ).nij is monotone in
order to provide L∞ stability under the CFL condition [4].

In order to get a better approximation, the MUSCL technique consists in providing
new values Unij and Unji on both side of the interface Sij and the second order scheme
then writes

Un+1
i = Uni −∆tn

∑
j∈V (i)

|Sij |
|Ki|

F ij(U
n
ij , U

n
ji).nij , (5)

such that we satisfy a maximum principle, for instance

min(Uni , U
n
j ) ≤ Unij , Unji ≤ max(Uni , U

n
j ). (6)

The valuable point is that the numerical flux has not to be modified but only its argu-
ments leading to a numerical method easy to implement: the flux and the reconstruc-
tion are indeed independent.

2.1. Classical mono-slope methods

Classical MUSCL technique is based on the following local reconstruction

ũi(x) = Ui + ai.Bix,
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where the slope ai is an approximation of ∇U at the element centroid Bi. We drop
the time index n for the sake of simplicity. Note that such a reconstruction is conser-

vative since
1

|Ki|

∫
Ki

ũi(x) dx = Ui. For a given point Xij on side Sij we define

Uij = Ui + ai.BiXij . Unfortunately, instabilities appear since relation (6) is not a
priori satisfied and a correction is provided using a limiter coefficient φi. Thus the
reconstruction is given by

Uij = Ui + φiai.BiXij . (7)

We name this class of MUSCL method mono-slope method since the values Uij , j ∈
V (i) are obtained using the same slope and the same limitation for all the sides of Ki.

2.2. Multi-slope methods

We now consider a new MUSCL method where the scalar slope pij in direction
BiXij is evaluated for each point Xij :

Uij = Ui + pij |BiXij |. (8)

We name this class of MUSCL method multi-slope method as we compute a specific
slope for each direction.
REMARK. — A mono-slope method can be formulated using the multi-slope frame-
work. Indeed, for a given slope ai and a pointXij ∈ Sij , we set

pij = ai.
BiXij

|BiXij |

and relation (7) becomes (8) provided that φi = 1. Consequently, the MUSCL multi-
slope method can be considered as an extention of the classical MUSCL method. �
Two particular choices are of importance (see Figure 1): in one hand the intersection
pointQij between Sij and the segment [BiBj ] for geometrical reason (interpolation)
and, in the other hand, the median point M ij of Sij to provide the best numerical
integration of the flux.

3. Multi-slope method at pointQ

We use point Qij to evaluate Uij with formula (8) and outline the construction of
slope pij . We shall only consider inner tetrahedra Ki such that #V (i) = 4. Let us
denote tij = BiBj/|BiBj | the nomalized neighbour directions. Since we assume
|Ki| > 0 we have the fundamental decomposition

tij =
∑
k∈V (i)
k 6=j

βijk tik. (9)

where βijk are real constants. Mesh Th is required to respect the following properties
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– (P1) : Qij is a point belonging to the side Sij ,
– (P2) : Bi is strictly inside the tetrahedra delimited by pointsBj , j ∈ V (i).

Under assumption (P2) we get that βijk < 0 since the barycentric coordinates of
Bi with respect to Bj , j ∈ V (i) are positive. We now define the forward slopes in
direction tij , j ∈ V (i) setting

p+
ij =

Uj − Ui
|BjBi|

. (10)

Using the fondamental decomposition (9), we build the backward slopes

p−ij =
∑
k∈V (i)
k 6=j

βijk p
+
ik. (11)

At last, we obtain the slope pij = minmod(p+
ij , p

−
ij) and the reconstructed values are

Uij = Ui + pij |BiQij |.
REMARK. — Other one dimensional limiter are available, for exemple the Sweeby or
the Van-Leer limiter. For a general discution on the limiter choice see [4]. �

3.1. Properties of the reconstruction

Property 3.1 We list here some basic properties of the multi-slopeQ reconstruction.

1) We have a second order method in the sense that for any linear function U(x):
Uij = Uji = U(Qij).

2) The scheme is first order at the extrema.

To prove the first assertion, let us consider a linear function U(x) = U0 + L.x, then
we have p+

ij = L.tij . Moreover, we write thanks to definition (11)

p−ij =
∑
k∈V (i)
k 6=j

βijk p
+
ik =

∑
k∈V (i)
k 6=j

βijk L.tik

= L.
∑
k∈V (i)
k 6=j

βijk tik = L.tij = p+
ij .

We deduce pij =minmod(p+
ij , p

−
ij)=minmod(p+

ij , p
+
ij) = p+

ij and thus Uij = U(Qij).

To prove the second assertion, let assume that Ui is a local extremum. Then all the
slopes p+

ij have the same sign and since the βijk coefficients are non positive, the
slopes p−ij have the opposite sign. Consequently p+

ijp
−
ij ≤ 0 and the minmod limiter

yields to pij = 0, hence Uij = Ui. �
REMARK. — A L∞ stability result is proved in [4] based on a sharp analysis of coef-
ficients βijk.
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4. Multi-slope method at pointM

We now intend to compute the values Uij at pointM ij to provide a better numer-
ical integration of the flux. Indeed, even if we use a second order reconstruction at
pointQij , the numerical integration is only a first order one and the scheme precision
is reduced. The main difficulty is that informations are given at points Bi and Bj

(hence Qij by interpolation) and we need here a representative value at point M ij .
To this end, we introduce the normalized directions

sij =
BiM ij

|BiM ij |
, (12)

and the decomposition sij = αij tij +
√

1− α2
ij t
⊥
ij , with αij = sij .tij , where the

orthogonal vector is given by the unique representation

t⊥ij =
∑
k∈V (i)
k 6=j

πijk tik. (13)

Coupling the above relations, we draw the combinaition

sij = αij tij +
√

1− α2
ij

∑
k∈V (i)
k 6=j

πijk tik. (14)

Thanks to relation (14), we define the forward slope in sij direction by

q+
ij = αij p

+
ij +

√
1− α2

ij

∑
k∈V (i)
k 6=j

πijk p
+
ik. (15)

To compute the backward slope, we use the fundamental decomposition

sij =
∑
k∈V (i)
k 6=j

β′ijk sik, (16)

where coefficients β′ijk are unique and negative and we set

q−ij =
∑
k∈V (i)
k 6=j

β′ijk q
+
ik. (17)

We obtain the slope in direction sij with qij = minmod(q+
ij , q

−
ij) and the reconstructed

values are Uij = Ui + qij |BiM ij |.
REMARK. — It is important to note that both in the M method and the Q method,
all introduced coefficients depend only on the mesh caracteristics and should be com-
puted in a preprocessing step. Only the slope evaluation and the limitation process
have to be performed to compute the approximation. It results in a very simplified
method and the computational cost is then strongly reduced with regard to the classi-
cal MUSCL technique. �
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Property 4.1 For any linear function U(x), using the multi-slopeM reconstruction,
we have Uij = Uji = U(M ij).

To prove the assertion, let us consider a linear function U(x) = U0 + L.x. Then we
have p+

ij = L.tij . Thanks to the relation (14), we get

q+
ij = αij p

+
ij +

√
1− α2

ij

∑
k∈V (i)
k 6=j

πijk p
+
ik

= αij L.tij +
√

1− α2
ij

∑
k∈V (i)
k 6=j

πijk L.tik

= L.

αij tij +
√

1− α2
ij

∑
k∈V (i)
k 6=j

πijk tik

 = L.sij .

Moreover, as in proposition (3.1), the fundamental decomposition (16) yields qij =
q−ij = q+

ij and thus Uij = U(M ij).�

5. Numerical tests

We present some numerical tests in the case of a linear convection problem to show
the performance of the MUSCL multi-slope method. The set Ω is the open cube ]0, 1[3

in which we consider the convection equation of variable u

∂tu+ ∇.
(
λu
)

= 0 (18)

where the convection velocity is λ = (1, 1, 1). Let u0 be the initial condition, the
exact solution is then ue(x, t) = u0(x− λt).

Let x0 = ( 1
4 ,

1
4 ,

1
4 ), we consider two different initial conditions with a compact

support in the ball B = {x ∈ Ω, |x− x0| ≤ 1
4} given by :

f1(x) = 0.5(1 + cos(4π|x− x0|)), f2(x) = 1.

Note that f1 is aC1 function whereas f2 is a discontinuous function on Ω. We compute
the approximation until a final time T in the finite volume framework using MUSCL
reconstructions with the minmod limiter and the upwind flux. On the other hand, we
use the limiter proposed in [1] to compute the limiter for the mono-slope method. On
the boundary, we impose a homogeneous Dirichlet condition since for T < 1/2 the
support of the exact solution is contained in domain Ω. Consequently, we only employ
a first order scheme for the boundary elements. We consider several 3D arbitrary
meshes with repectively 26201, 98254, 247802, 784553 and 1803439 elements. Let

h = min
Ki∈Th
j∈V (i)

|Ki|
|Sij |

represents the characteristic length of the mesh. We assume that the
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method order behaves asymptotically as follows ‖u(., T ) − ue(., T )‖Lγ(Ω) = Chα

where γ = 1,∞ and α is the coefficient order. When two methods have quite the
same order α, it is worth comparing their constant C to determine the accuracy.

First order Gradient multi-slopeQij multi-slopeM ij

f1

C α
5.1 0.7

C α
3.8 0.8

C α
4.3 0.95

C α
3.0 1.2

Table 1. Order and constant, L∞ norm.

For the regular solution, we compute the L∞ norm of the methods. As expected,
the multi-slope M ij method furnishes the highest order followed by the multi-slope
Qij method. The L1 norm of the error confirms that the multi-slope method provides

First order Gradient multi-slopeQij multi-slopeM ij

f1

f2

100× C α
1.7 0.7
7.5 0.4

100× C α
1.3 0.8
7.4 0.4

100× C α
1.8 1.0
5.3 0.5

100× C α
4.2 1.3
5.9 0.6

Table 2. Order and constant, L1 norm.

an higher order than the first order and the standard gradient methods. TheM method
is more accurate than the Q one which highlights the crucial importance of using a
second order numerical method for the flux integration. For the discontinuous function
test, the constants C are also of interest since the order is low. The M method and
Q method provide the smallest constant. The MUSCL multi-slope methods have also
been tested for the Euler system (see [4]) and we get similar results : the multi-slope
M ij method has the highest order while the diffusion is strongly reduced.
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