The multi-slopes MUSCL method

Stéphane Clain® — Vivien Clauzon™*

* Université Paul Sabatier
clain@mip.ups-tise.fr
** Université Blaise Pascal

vivien.clauzon @math.univ-bpclermont.fr

ABSTRACT. A new class of finite volume MUSCL-type method for unstructured mesh using the cell
centered approach introduced by Buffard and Clain [3] is extended to the 3D case. Numerical
tests are performed in order to compare the accuracy, numerical viscosity and efficiency of
the new multi-slopes methods with the first order method and the standard gradient MUSCL
method.
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1. Introduction

MUSCL methods have been first introduced by Van-Leer [8] in order to provide a
more acurate approximation of the conservation equation solutions. The main idea is
to maintain stability and monotonicity while the scheme order is greater. The main ad-
vantage of the MUSCL technique is its ability to enhance the solution precision with-
out alteration of the numerical flux. This point is of major interest from a numerical
point of view since a specific MUSCL subroutine is only added without modification
of the solver. After Van-Leer works, extensions for multidimensional geometries has
been proposed using a regular mesh [6] and a version for unstructured meshes has
been introduced by [1]. A general presentation of the classical MUSCL can be found
in [5] and in [7].

Roughly speaking, the MUSCL technique consists in providing new approxima-
tion of the unknow on both side of each interface between two elements. To this end, a
predicted vectorial slope representing the gradient of the approximated solution at the
centroid point of the control volume is computed and a correction factor is introduced
to maintain the monotonicity of the reconstruction. The unknowns are evaluated at a
point on each interface.

We propose a new MUSCL technique where a scalar slope is introduced for each
direction leading to a one-dimensional MUSCL method where each slope is computed
independently. The revealant points of the presented method are the simplicity, since
we only use one-dimensional MUSCL reconstructions, and the stability.

2. The classical MUSCL methods

Let us consider a bounded domain © C R? et v denotes the outward normal vector
on the boundary 9. Let F(s) a R3-valued regular function, for any scalar function
up(x,t) with x € 9N and ¢ € [0, T, we define

I~ (up) = {(,t); « € 9Q,t € [0,T] such that F(up(z,t)).v(x) < 0}.

We consider the scalar conservation equation :

dyu(w,t) + V.F (u(x,t)) =0 x €, t €]0, 77, (1)
u(z,0) = u’(x) x €, 2)
u(x,t) = up(x,t) x,t € T (up), 3)

with ©° a prescribed initial function and w; the Dirichlet condition. Assuming
polygonal, we denote by .7}, a discretization of €2 with tetrahedron K; of centroid B;.
For each volume K;, /() is the set of index of all the neighbour elements K ; with a
common side S;; (see Figure 1 for a 2D configuration for the sake of simplicity). In
the sequel for any K; € ., and j € ¥/(i) we denote by |K;|, |S;;| and |B;B;| the
volume, the area and the length. Moreover, n;; stands for the exterior normal of K
on interface S;;.
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Figure 1. Geomerry, 2D case.

Let (t"),,¢[0,n] be a partition of [0,7] and At™ = "+ — ™ the time step, U"
represents an approximation of the mean value of u(x,t) on K; at time ¢t" and a
generic explicite finite volume scheme writes
S,
jer() "

where we assume that the numerical flux G;;(U, V) = F;;(U, V').n;; is monotone in
order to provide L° stability under the CFL condition [4].

In order to get a better approximation, the MUSCL technique consists in providing
new values U and U7; on both side of the interface S;; and the second order scheme
then writes

vt =vp—ar Y Blp s o, ©)
JEV(3) I

such that we satisfy a maximum principle, for instance

min(U;", U}") < UL, UL < max (U], UY). ©6)
The valuable point is that the numerical flux has not to be modified but only its argu-
ments leading to a numerical method easy to implement: the flux and the reconstruc-
tion are indeed independent.
2.1. Classical mono-slope methods

Classical MUSCL technique is based on the following local reconstruction

ﬁq(m) = Uz + aq;.B,-zc,
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where the slope a; is an approximation of VU at the element centroid B;. We drop
the time index n for the sake of simplicity. Note that such a reconstruction is conser-

1 ~ . . .
vative since m / u;(x) dz = U,. For a given point X ;; on side S;; we define
il Jk,

U;; = U; + a;.B; X ;. Unfortunately, instabilities appear since relation (6) is not a
priori satisfied and a correction is provided using a limiter coefficient ¢;. Thus the
reconstruction is given by

Uij = U; + ¢ia,.B; X ;. @)

We name this class of MUSCL method mono-slope method since the values U, j €
¥ (i) are obtained using the same slope and the same limitation for all the sides of K.

2.2. Multi-slope methods

We now consider a new MUSCL method where the scalar slope p;; in direction
B; X ;; is evaluated for each point Xj;:

Uij = Ui + pij| Bi X ij]. (®)

We name this class of MUSCL method multi-slope method as we compute a specific
slope for each direction.

REMARK. — A mono-slope method can be formulated using the multi-slope frame-
work. Indeed, for a given slope a; and a point X ;; € S;;, we set

Pi = TR X

and relation (7) becomes (8) provided that ¢; = 1. Consequently, the MUSCL multi-
slope method can be considered as an extention of the classical MUSCL method. [J
Two particular choices are of importance (see Figure 1): in one hand the intersection
point Q,; between S;; and the segment [ B; B for geometrical reason (interpolation)
and, in the other hand, the median point M ;; of S;; to provide the best numerical
integration of the flux.

3. Multi-slope method at point Q

We use point Q; jto evaluate U;; with formula (8) and outline the construction of
slope p;;. We shall only consider inner tetrahedra K; such that #7% (i) = 4. Let us
denote t,; = B;B,/|B;B;| the nomalized neighbour directions. Since we assume
| ;] > 0 we have the fundamental decomposition

ti; = Z Bijr tik- 9
kEV (i)
k#j

where (3,5, are real constants. Mesh .7}, is required to respect the following properties
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- (21) : Q,; is a point belonging to the side S,
— (H2) : B, is strictly inside the tetrahedra delimited by points B, j € ¥ (i).
Under assumption (Z%5) we get that 3;;;, < 0 since the barycentric coordinates of

B; with respect to B, j € ¥(i) are positive. We now define the forward slopes in
direction t;;, j € ¥ (i) setting

+ J @
e ) 10
Pij = B,B|] (10)
Using the fondamental decomposition (9), we build the backward slopes
P =Y Bijk D (11)
ke (i)
k)

At last, we obtain the slope p;; = minmod(pjj , p;) and the reconstructed values are
Uij = Ui + pij| BiQ,;|.

REMARK. — Other one dimensional limiter are available, for exemple the Sweeby or
the Van-Leer limiter. For a general discution on the limiter choice see [4]. O

3.1. Properties of the reconstruction

Property 3.1 We list here some basic properties of the multi-slope Q reconstruction.

1) We have a second order method in the sense that for any linear function U(x):
Uij = Uji = U(Qij)-

2) The scheme is first order at the extrema.

To prove the first assertion, let us consider a linear function U(x) = Uy + L., then
we have p;; = L.t;;. Moreover, we write thanks to definition (11)

Di; = Z Bijk Py, = Z Bijr Lty

kEV (i) ke (i)
k#j k#j
= L Biik tiw = L.t;; = pi-
. ijk Uik ‘Lig pij~
ke (i)
k#j

We deduce p;; :minmod(p;;,pi_j)=minm0d(p;rj,pjj) = p;; and thus U;; = U(Q,;).

To prove the second assertion, let assume that U; is a local extremum. Then all the
slopes pjj have the same sign and since the 3;;, coefficients are non positive, the
slopes p,; have the opposite sign. Consequently p:;p; < 0 and the minmod limiter
yields to p;; = 0, hence U;; = U;. O

REMARK. — A L°° stability result is proved in [4] based on a sharp analysis of coef-
ficients B;jr.
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4. Multi-slope method at point M

We now intend to compute the values U;; at point M ;; to provide a better numer-
ical integration of the flux. Indeed, even if we use a second order reconstruction at
point Q;;, the numerical integration is only a first order one and the scheme precision
is reduced. The main difficulty is that informations are given at points B; and B
(hence Q,;; by interpolation) and we need here a representative value at point M ;.
To this end, we introduce the normalized directions

= (12)
|B; M ;|

Sij
and the decomposition s;; = a; tij + /1 — a3; tfj, with a;; = s;;.t;;, where the
orthogonal vector is given by the unique representation

t; = § Tijk tin- (13)
ke (4)
k#j

Coupling the above relations, we draw the combinaition

8ij = ij tij + /1 —aZ; Z Tijk bik- (14)

ke (i)
k#j

Thanks to relation (14), we define the forward slope in s;; direction by

qf =iy plH\J1—ad > mik pik (15)

ke (i)
k#j

To compute the backward slope, we use the fundamental decomposition

Sij = Z Bijk Siks (16)
kEV (i)
k)

where coefficients 3;;, are unique and negative and we set

G = > Bl din (17)
keV (i)
2

We obtain the slope in direction s;; with g;; = minmod(qu7 q;) and the reconstructed
values are Uij =U; + qij|BiMij|.
REMARK. — It is important to note that both in the M method and the @ method,
all introduced coefficients depend only on the mesh caracteristics and should be com-
puted in a preprocessing step. Only the slope evaluation and the limitation process
have to be performed to compute the approximation. It results in a very simplified
method and the computational cost is then strongly reduced with regard to the classi-
cal MUSCL technique. [
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Property 4.1 For any linear function U (), using the multi-slope M reconstruction,
we have Uij = Uji = U(M”)

To prove the assertion, let us consider a linear function U(x) = Uy + L.x. Then we
have pj'j = L.t;;. Thanks to the relation (14), we get

+ _ + 2 +
%Gj = Qi P+ \/1_7% Z Tijh Pik
k#j
_ 2
ke (i)
k#j
p— 2 -
kev (i)

k#j

Moreover, as in proposition (3.1), the fundamental decomposition (16) yields g;; =
Qz‘; = q;; and thus Uij = U(Mij)'D

5. Numerical tests

We present some numerical tests in the case of a linear convection problem to show
the performance of the MUSCL multi-slope method. The set 2 is the open cube ]0, 1[3
in which we consider the convection equation of variable w

du+V.(Au) =0 (18)

where the convection velocity is A = (1,1,1). Let u° be the initial condition, the
exact solution is then u¢(zx,t) = u®(x — At).

Let xg = (%, %, i) we consider two different initial conditions with a compact
support in the ball B = {x € Q, | — @o| < 1} given by :

fi(x) = 0.5(1 + cos(dnm|x — xol)), fa(x) =1.

Note that f; isa C'* function whereas f5 is a discontinuous function on 2. We compute
the approximation until a final time 7T in the finite volume framework using MUSCL
reconstructions with the minmod limiter and the upwind flux. On the other hand, we
use the limiter proposed in [1] to compute the limiter for the mono-slope method. On
the boundary, we impose a homogeneous Dirichlet condition since for T < 1/2 the
support of the exact solution is contained in domain €2. Consequently, we only employ
a first order scheme for the boundary elements. We consider several 3D arbitrary
meshes with repectively 26201, 98254, 247802, 784553 and 1803439 elements. Let

K|
h = min

sesly 19l

represents the characteristic length of the mesh. We assume that the
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method order behaves asymptotically as follows ||u(.,T) — ue(., T)| L) = Ch®
where v = 1,00 and « is the coefficient order. When two methods have quite the
same order «, it is worth comparing their constant C' to determine the accuracy.

Firstorder | Gradient | multi-slope Q,; | multi-slope M ;;
C | a C | « C | «o C | «
fi 51107 3.810.8 4.3 10.95 3.0|1.2

Table 1. Order and constant, L*>° norm.

For the regular solution, we compute the L norm of the methods. As expected,
the multi-slope M ;; method furnishes the highest order followed by the multi-slope
Q;; method. The Ly norm of the error confirms that the multi-slope method provides

First order Gradient multi-slope Q,; | multi-slope M ;;
100x C | « 100 x C' | « 100 x C' | « 100xC | «
fi 1.7 0.7 1.3 0.8 1.8 1.0 4.2 1.3
fa 7.5 0.4 7.4 0.4 5.3 0.5 5.9 0.6

Table 2. Order and constant, L* norm.

an higher order than the first order and the standard gradient methods. The M method
is more accurate than the @ one which highlights the crucial importance of using a
second order numerical method for the flux integration. For the discontinuous function
test, the constants C' are also of interest since the order is low. The M method and
Q@ method provide the smallest constant. The MUSCL multi-slope methods have also
been tested for the Euler system (see [4]) and we get similar results : the multi-slope
M ;; method has the highest order while the diffusion is strongly reduced.
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