Fast and strongly localized observation for a perturbed plate equation

Nicolae Cîndea and Marius Tucsnak

Abstract

The aim of this work is to study the exact observability of a perturbed plate equation. A fast and strongly localized observation result was proven using a perturbation argument of an Euler-Bernoulli plate equation and a unique continuation result for bi-Laplacian.

Mathematics Subject Classification (2000). 35B37, 93B05, 93B07.
Keywords. plate equation, observability, perturbation, Carleman estimate.

1. Introduction

Various observability and controllability properties for the system of partial differential equations modeling the vibrations of an Euler-Bernoulli plate have been investigated in the literature. In most of the existing references it assumed that the observation region satisfies the geometric optics condition of Bardos, Lebeau and Rauch [1], which is known to be necessary and sufficient for the exact observability of the wave equation (see, for instance, Lasiecka and Triggiani [9], Lebeau [10], Burq and Zworski [2] and references therein). In the case of internal control, the first result asserting that exact observability for the Schrödinger equation holds for an arbitrarily small control region has been given by Jaffard [7], who shows, in particular, that for systems governed by the Schrödinger equation in a rectangle we have exact internal observability with an arbitrary observation region and in arbitrarily small time. Jaffard's method has been adapted by Komornik [8] to an n-dimensional context. The similar results for boundary observation have been given in Ramdani, Takahashi, Tenenbaum and Tucsnak [13] and Tenenbaum and Tucsnak [14]. The aim of this work is to extend some of these results, namely those in [7], for the case of an Euler-Bernoulli plate perturbed by a zero order term. Note that the above mentioned papers tackling arbitrarily small observation regions use the explicit knowledge of the eigenvalues and of the eigenvectors of the Laplace operator in rectangular domains. Such an information is not available for the plate
equations perturbed by lower order terms. On the other hand, as far as we know, the method based on Carleman estimates, which is generally used to tackle lower order terms, does not yield exact observability with arbitrarily small observation region. This is why we consider a different method, in which our problem is tackled as a perturbation of the case considered in [7] and [8], using recent results from Hadd [4] and Tucsnak and Weiss [15].

Let us now give the precise statement of the problem and of the main results. In the remaining part of this work $n \in \mathbb{N}$ and Ω is a rectangular domain in \mathbb{R}^{n}, say

$$
\Omega=\left[0, a_{1}\right] \times\left[0, a_{2}\right] \times \ldots\left[0, a_{n}\right],
$$

with $a_{1}, a_{2}, \ldots, a_{n}>0$.
We consider the initial and boundary value problem

$$
\begin{array}{r}
\frac{\partial^{2} \eta}{\partial t^{2}}+\Delta^{2} \eta+a \eta=0, \quad \text { in } \Omega \times(0, \infty) \\
\eta=\Delta \eta=0, \quad \text { on } \Gamma \times(0, \infty) \\
\eta(0)=f, \quad \dot{\eta}(0)=g \quad \text { in } \Omega, \tag{1.3}
\end{array}
$$

where $a \in L^{\infty}(\Omega), f \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $g \in L^{2}(\Omega)$. For $n=2$ the above equations model the vibrations of an Euler-Bernoulli plate with a hinged boundary. The output of this system is

$$
\begin{equation*}
y(t)=\left.\dot{\eta}(\cdot, t)\right|_{\mathcal{O}} \tag{1.4}
\end{equation*}
$$

where \mathcal{O} is an open subset of Ω. Here, and in the remaining part of this paper we denote

$$
\dot{\eta}=\frac{\partial \eta}{\partial t}
$$

Our main result is:
Theorem 1.1. For any subset $\mathcal{O} \subset \Omega$ the system (1.1)-(1.4) is exactly observable in time any time $\tau>0$, i.e., there exists a constant $k_{\tau}>0$ such that
$\int_{0}^{\tau}\|\dot{\eta}(t)\|_{L^{2}(\mathcal{O})}^{2} d t \geq k_{\tau}^{2}\left(\|f\|_{H^{2}(\Omega)}^{2}+\|g\|_{L^{2}(\Omega)}^{2}\right) \forall f \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), g \in L^{2}(\Omega)$.
The above theorem has two consequences concerning exact controllability and uniform stabilizability for the plate equations. The first one follows from a standard duality argument, see for instance, Lions [11].
Corollary 1.2. For any open subset $\mathcal{O} \subset \Omega$ the following problem

$$
\begin{array}{r}
\frac{\partial^{2} \eta}{\partial t^{2}}+\Delta^{2} \eta+a \eta+u \chi_{\mathcal{O}}=0, \quad \text { in } \Omega \times(0, \infty) \\
\eta=\Delta \eta=0, \quad \text { on } \Gamma \times(0, \infty) \\
\eta(0)=f, \quad \dot{\eta}(0)=g \quad \text { in } \Omega, \tag{1.7}
\end{array}
$$

is exactly controllable in any time $\tau>0$, i.e., for any $\left[\begin{array}{l}f_{1} \\ g_{1}\end{array}\right],\left[\begin{array}{l}f_{2} \\ g_{2}\end{array}\right] \in\left(H^{2}(\Omega) \cap\right.$ $\left.H_{0}^{1}(\Omega)\right) \times L^{2}(\Omega)$ there exists a control $u \in L^{2}(\mathcal{O})$ such that

$$
\left[\begin{array}{c}
\eta(0) \\
\dot{\eta}(0)
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
g_{1}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
\eta(\tau) \\
\dot{\eta}(\tau)
\end{array}\right]=\left[\begin{array}{c}
f_{2} \\
g_{2}
\end{array}\right],
$$

where by $\chi_{\mathcal{O}}(x)$ we denote the function that is 1 for $x \in \mathcal{O}$ and 0 otherwise.
Moreover, from Theorem 1.1 and the general result in Haraux [5] it follows that the system (1.5)-(1.7) can be exponentially stabilized by using a simple feedback. More precisely, the following result holds.

Corollary 1.3. Let \mathcal{O} be an open subset of Ω and let $a, b \in L^{\infty}(\Omega,[0, \infty))$ with $b(x) \geq b_{0}>0$ for almost every $x \in \mathcal{O}$. Then the system determined by initial and boundary value problem (1.5)-(1.7) with $u(x, t)=-b(x) \dot{\eta}(x, t)$, is exponentially stable, i.e. there exist $M, \omega>0$ such that

$$
\|\dot{\eta}(t)\|_{L^{2}(\Omega)}+\|\eta(t)\|_{H^{2}(\Omega)} \leq M e^{-\omega t}\left(\|f\|_{H^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right) \quad(t \geq 0)
$$

The plan of this work is as follows. In Section 2 we fix some notation and we recall some basic results. Section 3 contains the proofs of the main results. In section 4 we prove a Carleman estimate for the bilaplacian, which has been used for the proof of the main result.

2. Notation and preliminaries

In the remaining part of the paper we denote $H=L^{2}(\Omega)$ and

$$
H_{1}=\left\{\varphi \in H^{4}(\Omega) \mid \varphi=\Delta \varphi=0 \text { on } \Gamma\right\} .
$$

Let $A_{0}: H_{1} \rightarrow H$ be the operator defined by $A_{0} \varphi=\Delta^{2} \varphi, \forall \varphi \in H_{1}$. Let $H_{\frac{1}{2}}=$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega), X=H_{\frac{1}{2}} \times H, X_{1}=H_{1} \times H_{\frac{1}{2}}$ and

$$
A: X_{1} \rightarrow X, \quad A=\left[\begin{array}{cc}
0 & I \\
-A_{0} & 0
\end{array}\right]
$$

It is well-known that A is skew-adjoint so that, according to Stone's theorem, it generates a strongly continuous group of isometries \mathbb{T} on X. By $\|\cdot\|$ without any index we design the standard norm in $L^{2}(\Omega)$. We denote $Y=L^{2}(\mathcal{O})$, with $\mathcal{O} \subset \Omega$ an open set. The operator $C \in \mathcal{L}\left(X_{1}, Y\right)$ corresponding to the observation (1.4) is

$$
C\left[\begin{array}{l}
f \tag{2.1}\\
g
\end{array}\right]=\left.g\right|_{\mathcal{O}} \quad\left(\left[\begin{array}{l}
f \\
g
\end{array}\right] \in X\right) .
$$

Let $P_{0} \in \mathcal{L}(H)$ be the linear operator defined by $P_{0} f=-a f$ for all $f \in H$, and $P \in \mathcal{L}(X)$ given by

$$
P=\left[\begin{array}{cc}
0 & 0 \\
P_{0} & 0
\end{array}\right], \quad P\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{c}
0 \\
P_{0} f
\end{array}\right] .
$$

We define $A_{P}: \mathcal{D}\left(A_{P}\right) \rightarrow X$ by

$$
\begin{equation*}
\mathcal{D}\left(A_{P}\right)=\mathcal{D}(A), \quad A_{P}=A+P \tag{2.2}
\end{equation*}
$$

We note that

$$
\|P\|_{\mathcal{L}(X)}=\sup \left\{\left\|P\left[\begin{array}{l}
f \\
g
\end{array}\right]\right\|_{X}\right\}=\sup _{\|f\| \leq 1}\|a f\| \leq\|a\|_{L^{\infty}} .
$$

We know from Pazy [12] (Theorem 1.1 p.76) that A_{P} is the generator of a strongly continuous semigroup \mathbb{T}^{P} satisfying

$$
\begin{equation*}
\left\|\mathbb{T}_{t}^{P}\right\| \leq M e^{\alpha t}, \quad t \geq 0 \tag{2.3}
\end{equation*}
$$

where $\alpha=\omega+M\|P\|$, and ω and M are such that $\left\|\mathbb{T}_{t}\right\| \leq M e^{\omega t}$ for all $t \geq 0$.
In this context the problem (1.1)-(1.3) can be written as a first order equation

$$
\begin{array}{r}
\dot{z}(t)=A_{P} z(t), \quad t \geq 0 \\
z(0)=z_{0}, \tag{2.5}
\end{array}
$$

where $z(t)=\left[\begin{array}{c}\eta \\ \dot{\eta}(t)\end{array}\right]$ and $z_{0}=\left[\begin{array}{l}f \\ g\end{array}\right]$.
The proof of Theorem 1.1 is based on two abstract results, which are stated below. The first one concerns the robustness of the exact observability with respect to bounded small norm perturbations of the generator and it can be proved by a simple duality argument from Theorem 3.3 in [4].

Proposition 2.1. Suppose that $C \in \mathcal{L}\left(X_{1}, Y\right)$ is an admissible observation operator for \mathbb{T}. Assume that (A, C) is exactly observable in time $\tau>0$, i.e., there exists $k_{\tau}>0$ such that

$$
\left(\int_{0}^{\tau}\left\|C \mathbb{T}_{t} z_{0}\right\|^{2} d t\right)^{\frac{1}{2}} \geq k_{\tau}\left\|z_{0}\right\| \quad \forall z_{0} \in \mathcal{D}(A)
$$

Let $P \in \mathcal{L}(X)$ and let \mathbb{T}^{P} be the strongly continuous semigroup generated by $A+P$. If there exists a constant $\mathcal{K}>0$ such that

$$
\begin{equation*}
\|P\| \leq \mathcal{K} \tag{2.6}
\end{equation*}
$$

then $(A+P, C)$ is exactly observable in time τ, i.e., there exists $k_{\tau}^{P}>0$ such that

$$
\left(\int_{0}^{\tau}\left\|C \mathbb{T}_{t}^{P} z_{0}\right\|^{2} d t\right)^{\frac{1}{2}} \geq k_{\tau}^{P}\left\|z_{0}\right\| \quad \forall z_{0} \in \mathcal{D}(A)
$$

The second result says, roughly speaking, that for systems with diagonalisable generators that in order to prove the exact observability it is is sufficient to check the exact observability of the high frequency part and the observability of eigenvectors. More precisely, we have the following result, borrowed from [15].

Proposition 2.2. Assume that there exists an orthonormal basis $\left(\phi_{k}\right)_{k \in \mathbb{N}}$ formed of eigenvectors of A and the corresponding eigenvalues $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ satisfy $\lim \lambda_{k}=\infty$. Let $C \in \mathcal{L}\left(X_{1}, Y\right)$ be an admissible observation operator for \mathbb{T}. For some bounded set $J \subset C$ denote

$$
V=\operatorname{span}\left\{\phi_{k} \mid \lambda_{k} \in J\right\}^{\perp}
$$

and let A_{V} be the part of A in V. Let C_{V} be the restriction of C to $\mathcal{D}\left(A_{V}\right)$. Assume that $\left(A_{V}, C_{V}\right)$ is exactly observable in time $\tau_{0}>0$ and that $C \phi \neq 0$ for every eigenvector ϕ of A. Then (A, C) is exactly observable in any time $\tau>\tau_{0}$.

3. Main results

The proof of Theorem 1.1 follows the same idea like in [15] (Theorem 6.3.2), where a similar result is proved for the waves equation. Also, we will use an appropriate decomposition of X as a direct sum of invariant subspaces. To obtain this decomposition, we need the following characterization of the eigenvalues and eigenvectors of A_{P}.
Proposition 3.1. With the above notation, $\phi=\left[\begin{array}{l}\varphi \\ \psi\end{array}\right] \in \mathcal{D}\left(A_{P}\right)$ is an eigenvector of A_{P}, associated to the eigenvalue i μ, if and only if φ is an eigenvector of $A_{0}-P_{0}$, associated to the eigenvalue μ^{2}, and $\psi=i \mu \varphi$.

Proof. Suppose that $\mu \in \mathbb{C}$ and $\left[\begin{array}{l}\varphi \\ \psi\end{array}\right] \in X \backslash\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$. According to the definition of A_{P} this is equivalent to

$$
\left\{\begin{array}{l}
\psi=i \mu \varphi \\
\left(-A_{0}+P_{0}\right) \varphi=i \mu \psi .
\end{array}\right.
$$

The above conditions hold iff

$$
\left(-A_{0}+P_{0}\right) \varphi=-\mu^{2} \varphi \text { and } \psi=i \mu \varphi .
$$

Clearly, $A_{0}-P_{0}$ is self-adjoint and it has compact resolvent. Then $A_{0}-$ P_{0} is diagonalisable with an orthonormal basis $\left(\varphi_{k}\right)_{k \in \mathbb{N}^{*}}$ of eigenvectors and the corresponding family of real eigenvalues $\left(\lambda_{k}\right)_{k \in \mathbb{N}^{*}}$ satisfies $\lim _{k \rightarrow \infty}\left|\lambda_{k}\right|=\infty$. Since $A_{0}-P_{0}+\left\|P_{0}\right\| I \geq 0$, it follows that all the eigenvalues λ of $A_{0}-P_{0}$ satisfy $\lambda>-\left\|P_{0}\right\|$. Hence, $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$. Without loss of generality we may assume that the sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}^{*}}$ is non-decreasing. We extend the sequence $\left(\varphi_{k}\right)$ to a sequence indexed by \mathbb{Z}^{*} by setting $\varphi_{k}=-\varphi_{-k}$ for every $k \in \mathbb{Z}_{-}$. We introduce the real sequence $\left(\mu_{k}\right)_{k \in \mathbb{Z}^{*}}$ by

$$
\mu_{k}=\sqrt{\left|\lambda_{k}\right|} \text { if } k>0 \text { and } \mu_{k}=-\mu_{-k} \text { if } k<0 .
$$

We denote

$$
W_{0}=\operatorname{span}\left\{\left.\left[\frac{1}{\frac{1}{\operatorname{sign}(k)} \varphi_{k}} \underset{\varphi_{k}}{ }\right] \right\rvert\, k \in \mathbb{Z}^{*}, \mu_{k}=0\right\} .
$$

If $\operatorname{Ker}\left(A_{0}-P_{0}\right)=\{0\}$ then of course W_{0} is the zero subspace of X. Let $N \in \mathbb{N}^{*}$ be such that $\lambda_{N}>0$. We denote

$$
W_{N}=\operatorname{span}\left\{\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
\varphi_{k}
\end{array}\right]\left|k \in \mathbb{Z}^{*},|k|<N, \mu_{k} \neq 0\right\}\right.
$$

and define $Y_{N}=W_{0}+W_{N}$. We also introduce the space

$$
V_{N}=\text { clos span }\left\{\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \tag{3.1}\\
\varphi_{k}
\end{array}\right]||k| \geq N\} .\right.
$$

Lemma 3.2. We have $X=Y_{N} \oplus V_{N}$ and Y_{N}, V_{N} are invariant under \mathbb{T}^{P}.
By $X=Y_{N} \oplus V_{N}$ we mean that $X=Y_{N}+V_{N}$ and $Y_{N} \cap V_{N}=\{0\}$.

Proof. Let $A_{1}: \mathcal{D}\left(A_{0}\right) \rightarrow H$ be defined by

$$
A_{1} f=\sum_{\lambda_{k}=0}\left\langle f, \varphi_{k}\right\rangle \varphi_{k}+\sum_{\lambda_{k} \neq 0}\left|\lambda_{k}\right|\left\langle f, \varphi_{k}\right\rangle \varphi_{k}, \quad \forall f \in \mathcal{D}\left(A_{0}\right) .
$$

Since the family $\left(\varphi_{k}\right)_{k \in \mathbb{N}^{*}}$ is an orthonormal basis in H and each φ_{k} is an eigenvector of A_{1}, it follows that A_{1} is diagonalisable. Moreover, since the eigenvalues of A_{1} are strictly positive, it follows that $A_{1}>0$. Is easy to see that the inner product on X defined by

$$
\left\langle\left[\begin{array}{l}
f_{1} \\
g_{1}
\end{array}\right],\left[\begin{array}{l}
f_{2} \\
g_{2}
\end{array}\right]\right\rangle_{1}=\left\langle A_{1}^{\frac{1}{2}} f_{1}, A_{1}^{\frac{1}{2}} f_{2}\right\rangle+\left\langle g_{1}, g_{2}\right\rangle, \quad \forall\left[\begin{array}{l}
f_{1} \\
g_{1}
\end{array}\right],\left[\begin{array}{l}
f_{2} \\
g_{2}
\end{array}\right] \in X,
$$

is equivalent to the original one (meaning that it induces a norm equivalent to the original norm). Let \mathcal{A}_{1} be the operator on X defined by

$$
\mathcal{D}\left(\mathcal{A}_{1}\right)=H_{1} \times H_{\frac{1}{2}}, \quad \mathcal{A}_{1}=\left[\begin{array}{cc}
0 & I \\
-A_{1} & 0
\end{array}\right] .
$$

We can verify that \mathcal{A}_{1} is skew-adjoint on X (if endowed with the inner product $\langle\cdot, \cdot\rangle_{1}$). Consequently we obtain that $Y_{N}=V_{N}^{\perp}$ (with respect to this inner product $\left.\langle\cdot, \cdot\rangle_{1}\right)$. It follows that $X=Y_{N} \oplus V_{N}$.

We still have to show that V_{N} and Y_{N} are invariant subspaces under \mathbb{T}^{P}. Since V_{N} is the closed span of a set of eigenvectors of A_{P}, its invariance under the action of \mathbb{T}^{P} is clear. If $\mu_{k}=0$, then

$$
A_{P}\left[\begin{array}{c}
\frac{1}{i \operatorname{sign}(k)} \\
\varphi_{k}
\end{array}\right]=\left[\begin{array}{c}
\varphi_{k} \\
0
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{c}
\frac{1}{i \operatorname{sign}(k)} \varphi_{k} \\
\varphi_{k}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{i \operatorname{sign}(-k)} \varphi_{-k} \\
\varphi_{-k}
\end{array}\right]\right) \in W_{0}
$$

so that W_{0} is invariant under \mathbb{T}^{P}. If $|k|<N$ and $\lambda_{k}<0$ then

$$
\left(A_{0}-P_{0}\right) \varphi_{k}=-\mu_{k}^{2} \varphi_{k}
$$

so that

$$
A_{P}\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
\varphi_{k}
\end{array}\right]=\left[\begin{array}{c}
\varphi_{k} \\
\frac{\mu_{k}}{i} \varphi_{k}
\end{array}\right]=i \mu_{k}\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
-\varphi_{k}
\end{array}\right]=i \mu_{k}\left[\begin{array}{c}
\frac{1}{i \mu_{-k}} \varphi_{-k} \\
\varphi_{-k}
\end{array}\right] \in W_{N} .
$$

If $|k|<N$ and $\lambda_{k}>0$, then

$$
A_{P}\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
\varphi_{k}
\end{array}\right]=i \mu_{k}\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
\varphi_{k}
\end{array}\right] \in W_{N}
$$

Thus W_{N}, and hence also $Y_{N}=W_{0}+W_{N}$, are invariant for \mathbb{T}.
Lemma 3.3. With the previous notation and (3.1), let $N \in \mathbb{N}^{*}$ be such that $\lambda_{N}>$ $\|a\|_{L^{\infty}}$. Let us denote by $P_{V_{N}} \in \mathcal{L}\left(V_{N}, X\right)$ the restriction of P to V_{N}. Then

$$
\begin{equation*}
\left\|P_{V_{N}}\right\| \leq \frac{\|a\|_{L^{\infty}}}{\sqrt{\lambda_{N}-\|a\|_{L^{\infty}}}} \tag{3.2}
\end{equation*}
$$

Proof. Take a finite linear combination of the vectors φ_{k} with $k \geq N$:

$$
\begin{equation*}
f=\sum_{k=N}^{M} \alpha_{k} \varphi_{k} \tag{3.3}
\end{equation*}
$$

so that $\|f\|^{2}=\sum_{k=N}^{M}\left|\alpha_{k}\right|^{2}$. Then

$$
\begin{aligned}
\|\Delta f\|^{2}+\langle a f, f\rangle & =\int_{\Omega} \Delta f \Delta \bar{f} \mathrm{~d} x+\int_{\Omega} a(x) f \bar{f} \mathrm{~d} x= \\
& =\int_{\Omega} \Delta^{2} f \bar{f}+a f \bar{f} \mathrm{~d} x=\int_{\Omega}\left(A_{0}-P_{0}\right) f \bar{f} \mathrm{~d} x= \\
& =\sum_{k, l=N}^{M} \alpha_{k} \overline{\alpha_{l}}\left\langle\left(A_{0}-P_{0}\right) \varphi_{k}, \varphi_{l}\right\rangle=\sum_{k=N}^{M}\left|\alpha_{k}\right|^{2} \lambda_{k} \geq \lambda_{N}\|f\|^{2} .
\end{aligned}
$$

From here we see that

$$
\|\Delta f\|^{2} \geq\left(\lambda_{N}-\|a\|_{L^{\infty}}\right)\|f\|^{2}
$$

Now take z to be a finite linear combination of the eigenvectors of A_{P} in V_{N} :

$$
z \in \operatorname{span}\left\{\left[\begin{array}{c}
\frac{1}{i \mu_{k}} \varphi_{k} \\
\varphi_{k}
\end{array}\right]||k| \geq N\}\right.
$$

so that in particular $z \in V_{N}$ and $z=\left[\begin{array}{c}f \\ g\end{array}\right]$, with f as in (3.3). Therefore

$$
\begin{aligned}
\left\|P_{V_{N}} z\right\|_{X} & =\|P z\|_{X}=\|a f\| \leq\|a\|_{L^{\infty}}\|f\| \\
& \leq \frac{\|a\|_{L^{\infty}}}{\sqrt{\lambda_{N}-\|a\|_{\infty}}}\|\Delta f\| \leq \frac{\|a\|_{L^{\infty}}}{\sqrt{\lambda_{N}-\|a\|_{\infty}}}\|z\|_{X} .
\end{aligned}
$$

Since all the vectors like our z are dense in V_{N}, it follows that the above estimate holds for all $z \in V_{N}$, and this implies the estimate in the lemma.

Lemma 3.4. Let $a \in L^{\infty}(\Omega)$ and let u be a function such that

$$
\begin{array}{rc}
\Delta^{2} u+a u=\mu^{2} u & \text { in } \Omega \\
u=\Delta u=0 & \text { on } \partial \Omega \tag{3.5}
\end{array}
$$

and

$$
\begin{equation*}
u=0 \quad \text { in } \mathcal{O} \tag{3.6}
\end{equation*}
$$

Then $u=0$ in all Ω.
Proof. The proof of this lemma is an direct consequence of the Theorem 4.3 given in the next section. Let denote $g=\left(\mu^{2}-a\right) u \in L^{2}(\Omega)$. Now we apply Theorem 4.3 for (3.4)-(3.5) and using (3.6) we obtain

$$
\begin{aligned}
s \lambda^{2} \int_{\Omega}|\nabla(\Delta u)|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{4} \lambda^{6} \int_{\Omega}|\nabla u|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{6} \lambda^{8} \int_{\Omega} & |u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x \\
& \leq C \int_{\Omega} \frac{|g|^{2}}{\varphi} e^{2 s \varphi} \mathrm{~d} x
\end{aligned}
$$

After some small calculations we can prove the estimate

$$
\int_{\Omega} \frac{|g|^{2}}{\varphi} e^{2 s \varphi} \mathrm{~d} x \leq C_{1}(\lambda) \int_{\Omega}\left(\mu^{2}+\|a\|_{L^{\infty}}^{2}\right)|u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x+C_{2}(\lambda)
$$

where C_{1}, C_{2} depend only of λ. Coupling the last two equations and taking $s \rightarrow \infty$ we obtain that $u=0$ in Ω.

Proof of Theorem 1.1. Let $N \in \mathbb{N}^{*}$ be such that $\lambda_{N}>0$ and let A_{N} and C_{N} be the parts of A_{P}, respectively of C, in V_{N}, where V_{N} has been defined in (3.1). (Thus, $A_{N}=\left.(A+P)\right|_{V_{N}}$ and $\left.C_{N}=\left.C\right|_{V_{N}}.\right)$ We claim that for $N \in \mathbb{N}^{*}$ large enough the pair $\left(A_{N}, C_{N}\right)$ (with state space $\left.V_{N}\right)$ is exactly observable in time τ_{0}.

For a given constant $\mathcal{K}>0$, from the estimation (3.2), there exists a $N \in \mathbb{N}^{*}$, big enough, such that

$$
\left\|P_{V_{N}}\right\| \leq \mathcal{K} .
$$

Because (A, C) is exactly observable in any time $\tau>0$, using Proposition 2.1 we obtain that $\left(A_{N}, C_{N}\right)$ is exactly observable in time τ in V_{N}.

On the other hand, if $\phi=\left[\begin{array}{l}\varphi \\ \psi\end{array}\right] \in \mathcal{D}\left(A_{P}\right)$ is an eigenvector of A_{P}, associated to the eigenvalue $i \mu$, such that $C \phi=0$ then, according to Proposition 3.1, $\varphi \in H_{1}$ is an eigenvector of $A_{0}-P_{0}$, associated to the eigenvalue μ^{2}, i.e., $\varphi \in H_{1}$ satisfies

$$
\begin{equation*}
\Delta^{2} \varphi+a \varphi=\mu^{2} \varphi \tag{3.7}
\end{equation*}
$$

Moreover, the condition $C \phi=0$ is equivalent to

$$
\varphi=0 \text { in } \mathcal{O}
$$

As shown in Lemma 3.4, the only function $\varphi \in H_{1}$ satisfying above conditions is $\varphi=0$. Now, from Proposition 2.2 we can conclude that (A, C) is exactly observable in any time $\tau>0$.

4. A global Carleman estimate for bi-Laplacian

In this section we will prove a global Carleman estimate for bi-Laplacian, applying two times a particular case of the global Carleman estimate proved in [6].

Let Ω be an nonempty open set of class C^{2}. Let $y \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of the problem

$$
\begin{align*}
\Delta y & =f, \quad \text { in } \Omega \tag{4.1}\\
y & =0, \quad \text { on } \partial \Omega, \tag{4.2}
\end{align*}
$$

where $f \in L^{2}(\Omega)$. We use the following classic lemma stated in [6], and proved in [3].

Lemma 4.1. Let \mathcal{O} be an nonempty open set $\mathcal{O} \subset \Omega$. Then there exists a function $\psi \in C^{2}(\bar{\Omega})$ such that

$$
\begin{array}{rc}
\psi=0, & \text { on } \partial \Omega \\
\psi(x)>0, & \forall x \in \Omega \\
|\nabla \psi(x)|>0, & \forall x \in \overline{\Omega \backslash \mathcal{O}} . \tag{4.5}
\end{array}
$$

We consider a weight function

$$
\begin{equation*}
\varphi(x)=e^{\lambda \psi(x)} \tag{4.6}
\end{equation*}
$$

where $\lambda \in \mathbb{R}, \lambda \geq 1$ will be chosen later. The following theorem is a particular case of the Carleman estimate proved by Imanuvilov-Puel in [6] for the general elliptic operators.

Theorem 4.2. Assume that the hypotheses (4.3)-(4.6) are verified and let $y \in$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of (4.1)-(4.2). Then there exists a constant $C>0$ independent of s and λ, and parameters $\widehat{\lambda}>1$ and $\widehat{s}>1$ such that for all $\lambda \geq \widehat{\lambda}$ and for all $s>\widehat{s}$ we have

$$
\begin{align*}
& \int_{\Omega}|\nabla y|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{2} \lambda^{2} \int_{\Omega}|y|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x \leq \\
& C\left(\frac{1}{s \lambda^{2}} \int_{\Omega} \frac{|f|^{2}}{\varphi} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(|\nabla y|^{2}+s^{2} \lambda^{2} \varphi^{2}|y|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) \tag{4.7}
\end{align*}
$$

Let $u \in H_{1}$ be the solution of the problem

$$
\begin{array}{rc}
\Delta^{2} u=g, & \text { in } \Omega \\
u=\Delta u=0, & \text { on } \partial \Omega \tag{4.9}
\end{array}
$$

where $g \in L^{2}(\Omega)$.
Theorem 4.3. Let $\psi \in C^{2}(\bar{\Omega})$ be a function such that (4.3)-(4.5) are verified, let φ given by (4.6), and let $u \in H_{1}$ be the solution of (4.8)-(4.9). Then there exist $\widehat{s}>1, \lambda>1$ and a constant $C>0$ independent of $s \geq \widehat{s}$ such that

$$
\begin{align*}
& s \lambda^{2} \int_{\Omega}\left(|\nabla(\Delta u)|^{2} e^{2 s \varphi}+s^{3} \lambda^{4}|\nabla u|^{2} e^{2 s \varphi}+s^{5} \lambda^{6}|u|^{2} \varphi^{2} e^{2 s \varphi}\right) \leq C\left(\int_{\Omega} \frac{|g|^{2}}{\varphi} e^{2 s \varphi} \mathrm{~d} x\right. \\
& \left.+s \lambda^{2} \int_{\mathcal{O}}\left(|\nabla(\Delta u)|^{2}+s^{2} \lambda^{2} \varphi^{2}|\Delta u|^{2}+s^{3} \lambda^{4}|\nabla u|^{2}+s^{5} \lambda^{6} \varphi^{2}|u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) \tag{4.10}
\end{align*}
$$

Proof. We denote $y=\Delta u$. Then (4.8) and the last part of (4.9) can be written as

$$
\begin{align*}
\Delta y & =g, & \text { in } \Omega \tag{4.11}\\
y & =0, & \text { on } \partial \Omega \tag{4.12}
\end{align*}
$$

Applying the Theorem 4.2 there exist $s_{1}>1, \lambda_{1}>1$ and $C_{1}>0$ independent of s and λ such that for all $s \geq s_{1}, \lambda \geq \lambda_{1}$ the following estimate is satisfied

$$
\begin{aligned}
& s \lambda^{2} \int_{\Omega}|\nabla y|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{3} \lambda^{4} \int_{\Omega}|y|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x \leq \\
& C_{1}\left(\int_{\Omega}|g|^{2} \varphi^{-1} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla y|^{2}+s^{3} \lambda^{4} \varphi^{2}|y|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right)
\end{aligned}
$$

Replacing y with Δu in the previous estimate we obtain

$$
\begin{align*}
& s \lambda^{2} \int_{\Omega}|\nabla(\Delta u)|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{3} \lambda^{4} \int_{\Omega}|\Delta u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x \leq \\
& \quad C_{1}\left(\int_{\Omega}|g|^{2} \varphi^{-1} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla(\Delta u)|^{2}+s^{3} \lambda^{4} \varphi^{2}|\Delta u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) \tag{4.13}
\end{align*}
$$

Now consider the problem

$$
\begin{align*}
\Delta u & =y, \quad \text { in } \Omega \tag{4.14}\\
u & =0, \quad \text { on } \partial \Omega, \tag{4.15}
\end{align*}
$$

and apply the Theorem 4.2. Then there exist $C_{2}>0, s_{2}>1, \lambda_{2}>1$ such that for $s \geq s_{2}$ and $\lambda \geq \lambda_{2}$ we have

$$
\begin{align*}
& s \lambda^{2} \int_{\Omega}|\nabla u|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{3} \lambda^{4} \int_{\Omega}|u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x \leq \\
& C_{2}\left(\int_{\Omega}|\Delta u|^{2} \varphi^{-1} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla u|^{2}+s^{3} \lambda^{4} \varphi^{2}|u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) \leq \\
& \quad C_{3}\left(\int_{\Omega}|\Delta u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla u|^{2}+s^{3} \lambda^{4} \varphi^{2}|u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) . \tag{4.16}
\end{align*}
$$

We denote $\lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}$ and $\widehat{s}=\max \left\{s_{1}, s_{2}\right\}$. For $s \geq \widehat{s}$, combining (4.13) and (4.16) we have

$$
\begin{gather*}
s \lambda^{2} \int_{\Omega}|\nabla(\Delta u)|^{2} e^{2 s \varphi} \mathrm{~d} x+\frac{s^{3} \lambda^{4}}{C_{3}}\left(s \lambda^{2} \int_{\Omega}|\nabla u|^{2} e^{2 s \varphi} \mathrm{~d} x+s^{3} \lambda^{4} \int_{\Omega}|u|^{2} \varphi^{2} e^{2 s \varphi} \mathrm{~d} x\right)- \\
-s^{3} \lambda^{4}\left(\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla u|^{2}+s^{3} \lambda^{4} \varphi^{2}|u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) \leq \\
C_{1}\left(\int_{\Omega}|g|^{2} \varphi^{-1} e^{2 s \varphi} \mathrm{~d} x+\int_{\mathcal{O}}\left(s \lambda^{2}|\nabla(\Delta u)|^{2}+s^{3} \lambda^{4} \varphi^{2}|\Delta u|^{2}\right) e^{2 s \varphi} \mathrm{~d} x\right) . \tag{4.17}
\end{gather*}
$$

How λ is fixed in 4.17, we affirm that exists a constant $C>0$ such that (4.10) is verified. So, the proof of theorem is completed.

References

[1] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control. and Optim., 30 (1992), pp. 1024-1065.
[2] N. Burq and M. Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc., 17 (2004), pp. 443-471.
[3] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, vol. 34 of Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996.
[4] S. Hadd, Exact controllability of infinite dimensional systems persists under small perturbations, J. Evol. Equ., 5 (2005), pp. 545-555.
[5] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math., 46 (1989), pp. 245-258.
[6] O. Y. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not., (2003), pp. 883913.
[7] S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire., Port. Math., 47 (1990), pp. 423-429.
[8] V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9), 71 (1992), pp. 331-342.
[9] I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of EulerBernoulli equations with boundary control only in $\left.\Delta w\right|_{\Sigma}$, Boll. Un. Mat. Ital. B (7), 5 (1991), pp. 665-702.
[10] G. Lebeau, Contrôle de l'équation de Schrödinger, J. Math. Pures Appl. (9), 71 (1992), pp. 267-291.
[11] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées, Masson, Paris, 1988.
[12] A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
[13] K. Ramdani, T. Takahashi, G. Tenenbaum, and M. Tucsnak, A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal., 226 (2005), pp. 193-229.
[14] G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Transactions of the American Mathematical Society, to appear (2008).
[15] M. Tucsnak and G. Weiss, Observability and Controllability of Infinite Dimensional Systems., to appear.

Nicolae Cîndea
Université Henri Poincaré Nancy1
Institut Élie Cartan
Departement de Mathématiques (IECN)
B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France
e-mail: Nicolae.Cindea@iecn.u-nancy.fr
Marius Tucsnak
Université Henri Poincaré Nancy1
Institut Élie Cartan
Departement de Mathématiques (IECN)
B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France
e-mail: Marius.Tucsnak@iecn.u-nancy.fr

