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1. Introduction

Various observability and controllability properties for the system of partial dif-
ferential equations modeling the vibrations of an Euler-Bernoulli plate have been
investigated in the literature. In most of the existing references it assumed that the
observation region satisfies the geometric optics condition of Bardos, Lebeau and
Rauch [1], which is known to be necessary and sufficient for the exact observabil-
ity of the wave equation (see, for instance, Lasiecka and Triggiani [9], Lebeau [10],
Burq and Zworski [2] and references therein). In the case of internal control, the
first result asserting that exact observability for the Schrödinger equation holds
for an arbitrarily small control region has been given by Jaffard [7], who shows, in
particular, that for systems governed by the Schrödinger equation in a rectangle
we have exact internal observability with an arbitrary observation region and in
arbitrarily small time. Jaffard’s method has been adapted by Komornik [8] to an
n-dimensional context. The similar results for boundary observation have been
given in Ramdani, Takahashi, Tenenbaum and Tucsnak [13] and Tenenbaum and
Tucsnak [14]. The aim of this work is to extend some of these results, namely those
in [7], for the case of an Euler-Bernoulli plate perturbed by a zero order term. Note
that the above mentioned papers tackling arbitrarily small observation regions use
the explicit knowledge of the eigenvalues and of the eigenvectors of the Laplace
operator in rectangular domains. Such an information is not available for the plate
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equations perturbed by lower order terms. On the other hand, as far as we know,
the method based on Carleman estimates, which is generally used to tackle lower
order terms, does not yield exact observability with arbitrarily small observation
region. This is why we consider a different method, in which our problem is tackled
as a perturbation of the case considered in [7] and [8], using recent results from
Hadd [4] and Tucsnak and Weiss [15].

Let us now give the precise statement of the problem and of the main results.
In the remaining part of this work n ∈ N and Ω is a rectangular domain in Rn,
say

Ω = [0, a1]× [0, a2]× . . . [0, an],
with a1, a2, . . . , an > 0.

We consider the initial and boundary value problem

∂2η

∂t2
+ ∆2η + aη = 0, in Ω× (0,∞) (1.1)

η = ∆η = 0, on Γ× (0,∞) (1.2)
η(0) = f, η̇(0) = g in Ω, (1.3)

where a ∈ L∞(Ω), f ∈ H2(Ω) ∩ H1
0 (Ω) and g ∈ L2(Ω). For n = 2 the above

equations model the vibrations of an Euler-Bernoulli plate with a hinged boundary.
The output of this system is

y(t) = η̇(·, t)|O, (1.4)
where O is an open subset of Ω. Here, and in the remaining part of this paper we
denote

η̇ =
∂η

∂t
.

Our main result is:

Theorem 1.1. For any subset O ⊂ Ω the system (1.1)-(1.4) is exactly observable
in time any time τ > 0, i.e., there exists a constant kτ > 0 such that∫ τ

0

‖η̇(t)‖2L2(O) dt ≥ k2
τ

(
‖f‖2H2(Ω) + ‖g‖2L2(Ω)

)
∀f ∈ H2(Ω) ∩H1

0 (Ω), g ∈ L2(Ω).

The above theorem has two consequences concerning exact controllability
and uniform stabilizability for the plate equations. The first one follows from a
standard duality argument, see for instance, Lions [11].

Corollary 1.2. For any open subset O ⊂ Ω the following problem

∂2η

∂t2
+ ∆2η + aη + uχO = 0, in Ω× (0,∞) (1.5)

η = ∆η = 0, on Γ× (0,∞) (1.6)
η(0) = f, η̇(0) = g in Ω, (1.7)

is exactly controllable in any time τ > 0, i.e., for any
[
f1
g1

]
,
[
f2
g2

]
∈ (H2(Ω) ∩

H1
0 (Ω))× L2(Ω) there exists a control u ∈ L2(O) such that[

η(0)
η̇(0)

]
=
[
f1
g1

]
and

[
η(τ)
η̇(τ)

]
=
[
f2
g2

]
,
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where by χO(x) we denote the function that is 1 for x ∈ O and 0 otherwise.

Moreover, from Theorem 1.1 and the general result in Haraux [5] it follows
that the system (1.5)-(1.7) can be exponentially stabilized by using a simple feed-
back. More precisely, the following result holds.

Corollary 1.3. Let O be an open subset of Ω and let a, b ∈ L∞(Ω, [0,∞)) with
b(x) ≥ b0 > 0 for almost every x ∈ O. Then the system determined by initial and
boundary value problem (1.5)-(1.7) with u(x, t) = −b(x)η̇(x, t), is exponentially
stable, i.e. there exist M,ω > 0 such that

‖η̇(t)‖L2(Ω) + ‖η(t)‖H2(Ω) ≤Me−ωt
(
‖f‖H2(Ω) + ‖g‖L2(Ω)

)
(t ≥ 0).

The plan of this work is as follows. In Section 2 we fix some notation and
we recall some basic results. Section 3 contains the proofs of the main results. In
section 4 we prove a Carleman estimate for the bilaplacian, which has been used
for the proof of the main result.

2. Notation and preliminaries

In the remaining part of the paper we denote H = L2(Ω) and

H1 =
{
ϕ ∈ H4(Ω)|ϕ = ∆ϕ = 0 on Γ

}
.

Let A0 : H1 → H be the operator defined by A0ϕ = ∆2ϕ, ∀ϕ ∈ H1. Let H 1
2

=
H2(Ω) ∩H1

0 (Ω), X = H 1
2
×H, X1 = H1 ×H 1

2
and

A : X1 → X, A =
[

0 I
−A0 0

]
.

It is well-known that A is skew-adjoint so that, according to Stone’s theorem, it
generates a strongly continuous group of isometries T on X. By ‖ · ‖ without any
index we design the standard norm in L2(Ω). We denote Y = L2(O), with O ⊂ Ω
an open set. The operator C ∈ L(X1, Y ) corresponding to the observation (1.4) is

C

[
f
g

]
= g|O

([
f
g

]
∈ X

)
. (2.1)

Let P0 ∈ L (H) be the linear operator defined by P0f = −af for all f ∈ H, and
P ∈ L(X) given by

P =
[

0 0
P0 0

]
, P

[
f
g

]
=
[

0
P0f

]
.

We define AP : D(AP )→ X by

D(AP ) = D(A), AP = A+ P. (2.2)

We note that

‖P‖L(X) = sup
{∥∥P [ fg ]∥∥X} = sup

‖f‖≤1

‖af‖ ≤ ‖a‖L∞ .
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We know from Pazy [12] (Theorem 1.1 p.76) that AP is the generator of a
strongly continuous semigroup TP satisfying

‖TPt ‖ ≤Meαt, t ≥ 0, (2.3)

where α = ω +M‖P‖, and ω and M are such that ‖Tt‖ ≤Meωt for all t ≥ 0.
In this context the problem (1.1)-(1.3) can be written as a first order equation

ż(t) = AP z(t), t ≥ 0 (2.4)
z(0) = z0, (2.5)

where z(t) =
[ η
η̇(t)

]
and z0 =

[
f
g

]
.

The proof of Theorem 1.1 is based on two abstract results, which are stated
below. The first one concerns the robustness of the exact observability with respect
to bounded small norm perturbations of the generator and it can be proved by a
simple duality argument from Theorem 3.3 in [4].

Proposition 2.1. Suppose that C ∈ L(X1, Y ) is an admissible observation operator
for T. Assume that (A,C) is exactly observable in time τ > 0, i.e., there exists
kτ > 0 such that (∫ τ

0

‖CTtz0‖2 dt
) 1

2

≥ kτ‖z0‖ ∀z0 ∈ D(A).

Let P ∈ L(X) and let TP be the strongly continuous semigroup generated by A+P .
If there exists a constant K > 0 such that

‖P‖ ≤ K, (2.6)

then (A+ P,C) is exactly observable in time τ , i.e., there exists kPτ > 0 such that(∫ τ

0

‖CTPt z0‖2 dt
) 1

2

≥ kPτ ‖z0‖ ∀z0 ∈ D(A).

The second result says, roughly speaking, that for systems with diagonalis-
able generators that in order to prove the exact observability it is is sufficient to
check the exact observability of the high frequency part and the observability of
eigenvectors. More precisely, we have the following result, borrowed from [15].

Proposition 2.2. Assume that there exists an orthonormal basis (φk)k∈N formed of
eigenvectors of A and the corresponding eigenvalues (λk)k∈N satisfy limλk = ∞.
Let C ∈ L(X1, Y ) be an admissible observation operator for T. For some bounded
set J ⊂ C denote

V = span {φk | λk ∈ J}⊥

and let AV be the part of A in V . Let CV be the restriction of C to D(AV ).
Assume that (AV , CV ) is exactly observable in time τ0 > 0 and that Cφ 6= 0 for
every eigenvector φ of A. Then (A,C) is exactly observable in any time τ > τ0.
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3. Main results

The proof of Theorem 1.1 follows the same idea like in [15] (Theorem 6.3.2), where
a similar result is proved for the waves equation. Also, we will use an appropriate
decomposition of X as a direct sum of invariant subspaces. To obtain this decom-
position, we need the following characterization of the eigenvalues and eigenvectors
of AP .

Proposition 3.1. With the above notation, φ =
[ ϕ
ψ

]
∈ D(AP ) is an eigenvector of

AP , associated to the eigenvalue iµ, if and only if ϕ is an eigenvector of A0 − P0,
associated to the eigenvalue µ2, and ψ = iµϕ.

Proof. Suppose that µ ∈ C and
[ ϕ
ψ

]
∈ X \ {[ 0

0 ]}. According to the definition of
AP this is equivalent to {

ψ = iµϕ
(−A0 + P0)ϕ = iµψ.

The above conditions hold iff

(−A0 + P0)ϕ = −µ2ϕ and ψ = iµϕ.

�

Clearly, A0 − P0 is self-adjoint and it has compact resolvent. Then A0 −
P0 is diagonalisable with an orthonormal basis (ϕk)k∈N∗ of eigenvectors and the
corresponding family of real eigenvalues (λk)k∈N∗ satisfies limk→∞ |λk| =∞. Since
A0 − P0 + ‖P0‖I ≥ 0, it follows that all the eigenvalues λ of A0 − P0 satisfy
λ > −‖P0‖. Hence, limk→∞ λk = ∞. Without loss of generality we may assume
that the sequence (λk)k∈N∗ is non-decreasing. We extend the sequence (ϕk) to a
sequence indexed by Z∗ by setting ϕk = −ϕ−k for every k ∈ Z−. We introduce
the real sequence (µk)k∈Z∗ by

µk =
√
|λk| if k > 0 and µk = −µ−k if k < 0.

We denote

W0 = span
{[ 1

isign(k)ϕk
ϕk

]∣∣∣∣ k ∈ Z∗, µk = 0
}
.

If Ker(A0 − P0) = {0} then of course W0 is the zero subspace of X. Let N ∈ N∗
be such that λN > 0. We denote

WN = span
{[ 1

iµk
ϕk

ϕk

]∣∣∣∣ k ∈ Z∗, |k| < N, µk 6= 0
}
,

and define YN = W0 +WN . We also introduce the space

VN = clos span
{[ 1

iµk
ϕk

ϕk

]∣∣∣∣ |k| ≥ N} . (3.1)

Lemma 3.2. We have X = YN ⊕ VN and YN , VN are invariant under TP .

By X = YN ⊕ VN we mean that X = YN + VN and YN ∩ VN = {0}.
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Proof. Let A1 : D(A0)→ H be defined by

A1f =
∑
λk=0

〈f, ϕk〉ϕk +
∑
λk 6=0

|λk|〈f, ϕk〉ϕk, ∀ f ∈ D(A0).

Since the family (ϕk)k∈N∗ is an orthonormal basis in H and each ϕk is an eigen-
vector of A1, it follows that A1 is diagonalisable. Moreover, since the eigenvalues
of A1 are strictly positive, it follows that A1 > 0. Is easy to see that the inner
product on X defined by〈[

f1

g1

]
,

[
f2

g2

]〉
1

= 〈A
1
2
1 f1, A

1
2
1 f2〉+ 〈g1, g2〉, ∀

[
f1

g1

]
,

[
f2

g2

]
∈ X,

is equivalent to the original one (meaning that it induces a norm equivalent to the
original norm). Let A1 be the operator on X defined by

D(A1) = H1 ×H 1
2
, A1 =

[
0 I
−A1 0

]
.

We can verify that A1 is skew-adjoint on X (if endowed with the inner product
〈·, ·〉1). Consequently we obtain that YN = V ⊥N (with respect to this inner product
〈·, ·〉1). It follows that X = YN ⊕ VN .

We still have to show that VN and YN are invariant subspaces under TP .
Since VN is the closed span of a set of eigenvectors of AP , its invariance under the
action of TP is clear. If µk = 0, then

AP

[ 1
isign(k)ϕk

ϕk

]
=
[
ϕk
0

]
=

1
2

([ 1
isign(k)ϕk

ϕk

]
+
[ 1
isign(−k)ϕ−k

ϕ−k

])
∈W0,

so that W0 is invariant under TP . If |k| < N and λk < 0 then

(A0 − P0)ϕk = −µ2
kϕk,

so that

AP

[ 1
iµk

ϕk
ϕk

]
=
[
ϕk
µk

i ϕk

]
= iµk

[ 1
iµk

ϕk
−ϕk

]
= iµk

[ 1
iµ−k

ϕ−k
ϕ−k

]
∈WN .

If |k| < N and λk > 0, then

AP

[ 1
iµk

ϕk
ϕk

]
= iµk

[ 1
iµk

ϕk
ϕk

]
∈WN .

Thus WN , and hence also YN = W0 +WN , are invariant for T. �

Lemma 3.3. With the previous notation and (3.1), let N ∈ N∗ be such that λN >
‖a‖L∞ . Let us denote by PVN

∈ L(VN , X) the restriction of P to VN . Then

‖PVN
‖ ≤ ‖a‖L∞√

λN − ‖a‖L∞
. (3.2)
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Proof. Take a finite linear combination of the vectors ϕk with k ≥ N :

f =
M∑
k=N

αkϕk, (3.3)

so that ‖f‖2 =
∑M
k=N |αk|2. Then

‖∆f‖2 + 〈af, f〉 =
∫

Ω

∆f∆f dx+
∫

Ω

a(x)ff dx =

=
∫

Ω

∆2ff + aff dx =
∫

Ω

(A0 − P0)ff dx =

=
M∑

k,l=N

αkαl 〈(A0 − P0)ϕk, ϕl〉 =
M∑
k=N

|αk|2λk ≥ λN‖f‖2.

From here we see that

‖∆f‖2 ≥ (λN − ‖a‖L∞) ‖f‖2.

Now take z to be a finite linear combination of the eigenvectors of AP in VN :

z ∈ span
{[ 1

iµk
ϕk

ϕk

]∣∣∣∣ |k| ≥ N} ,
so that in particular z ∈ VN and z =

[
f
g

]
, with f as in (3.3). Therefore

‖PVN
z‖X = ‖Pz‖X = ‖af‖ ≤ ‖a‖L∞‖f‖

≤ ‖a‖L∞√
λN − ‖a‖∞

‖∆f‖ ≤ ‖a‖L∞√
λN − ‖a‖∞

‖z‖X .

Since all the vectors like our z are dense in VN , it follows that the above estimate
holds for all z ∈ VN , and this implies the estimate in the lemma. �

Lemma 3.4. Let a ∈ L∞(Ω) and let u be a function such that

∆2u+ au = µ2u in Ω (3.4)
u = ∆u = 0 on ∂Ω (3.5)

and
u = 0 in O. (3.6)

Then u = 0 in all Ω.

Proof. The proof of this lemma is an direct consequence of the Theorem 4.3 given
in the next section. Let denote g = (µ2 − a)u ∈ L2(Ω). Now we apply Theorem
4.3 for (3.4)-(3.5) and using (3.6) we obtain

sλ2

∫
Ω

|∇(∆u)|2e2sϕdx+ s4λ6

∫
Ω

|∇u|2e2sϕdx+ s6λ8

∫
Ω

|u|2ϕ2e2sϕdx

≤ C
∫

Ω

|g|2

ϕ
e2sϕdx.
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After some small calculations we can prove the estimate∫
Ω

|g|2

ϕ
e2sϕdx ≤ C1(λ)

∫
Ω

(µ2 + ‖a‖2L∞)|u|2ϕ2e2sϕdx+ C2(λ),

where C1, C2 depend only of λ. Coupling the last two equations and taking s→∞
we obtain that u = 0 in Ω. �

Proof of Theorem 1.1. Let N ∈ N∗ be such that λN > 0 and let AN and CN be the
parts of AP , respectively of C, in VN , where VN has been defined in (3.1). (Thus,
AN = (A + P )|VN

and CN = C|VN
.) We claim that for N ∈ N∗ large enough the

pair (AN , CN ) (with state space VN ) is exactly observable in time τ0.
For a given constant K > 0, from the estimation (3.2), there exists a N ∈ N∗,

big enough, such that

‖PVN
‖ ≤ K.

Because (A,C) is exactly observable in any time τ > 0, using Proposition 2.1 we
obtain that (AN , CN ) is exactly observable in time τ in VN .

On the other hand, if φ =
[ ϕ
ψ

]
∈ D(AP ) is an eigenvector of AP , associated

to the eigenvalue iµ, such that Cφ = 0 then, according to Proposition 3.1, ϕ ∈ H1

is an eigenvector of A0 − P0, associated to the eigenvalue µ2, i.e., ϕ ∈ H1 satisfies

∆2ϕ+ aϕ = µ2ϕ. (3.7)

Moreover, the condition Cφ = 0 is equivalent to

ϕ = 0 in O.

As shown in Lemma 3.4, the only function ϕ ∈ H1 satisfying above conditions is
ϕ = 0. Now, from Proposition 2.2 we can conclude that (A,C) is exactly observable
in any time τ > 0. �

4. A global Carleman estimate for bi-Laplacian

In this section we will prove a global Carleman estimate for bi-Laplacian, applying
two times a particular case of the global Carleman estimate proved in [6].

Let Ω be an nonempty open set of class C2. Let y ∈ H2(Ω) ∩H1
0 (Ω) be the

solution of the problem

∆y = f, in Ω (4.1)
y = 0, on ∂Ω, (4.2)

where f ∈ L2(Ω). We use the following classic lemma stated in [6], and proved in
[3].
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Lemma 4.1. Let O be an nonempty open set O ⊂ Ω. Then there exists a function
ψ ∈ C2(Ω) such that

ψ = 0, on ∂Ω (4.3)
ψ(x) > 0, ∀x ∈ Ω (4.4)

|∇ψ(x)| > 0, ∀x ∈ Ω \ O. (4.5)

We consider a weight function

ϕ(x) = eλψ(x), (4.6)

where λ ∈ R, λ ≥ 1 will be chosen later. The following theorem is a particular case
of the Carleman estimate proved by Imanuvilov-Puel in [6] for the general elliptic
operators.

Theorem 4.2. Assume that the hypotheses (4.3)-(4.6) are verified and let y ∈
H2(Ω) ∩H1

0 (Ω) be the solution of (4.1)-(4.2). Then there exists a constant C > 0
independent of s and λ, and parameters λ̂ > 1 and ŝ > 1 such that for all λ ≥ λ̂
and for all s > ŝ we have∫

Ω

|∇y|2e2sϕdx+ s2λ2

∫
Ω

|y|2ϕ2e2sϕdx ≤

C

(
1
sλ2

∫
Ω

|f |2

ϕ
e2sϕdx+

∫
O

(
|∇y|2 + s2λ2ϕ2|y|2

)
e2sϕdx

)
. (4.7)

Let u ∈ H1 be the solution of the problem

∆2u = g, in Ω (4.8)
u = ∆u = 0, on ∂Ω, (4.9)

where g ∈ L2(Ω).

Theorem 4.3. Let ψ ∈ C2(Ω) be a function such that (4.3)-(4.5) are verified, let
ϕ given by (4.6), and let u ∈ H1 be the solution of (4.8)-(4.9). Then there exist
ŝ > 1, λ > 1 and a constant C > 0 independent of s ≥ ŝ such that

sλ2

∫
Ω

(
|∇(∆u)|2e2sϕ + s3λ4|∇u|2e2sϕ + s5λ6|u|2ϕ2e2sϕ

)
≤ C

(∫
Ω

|g|2

ϕ
e2sϕdx

+sλ2

∫
O

(|∇(∆u)|2 + s2λ2ϕ2|∆u|2 + s3λ4|∇u|2 + s5λ6ϕ2|u|2)e2sϕdx
)
. (4.10)

Proof. We denote y = ∆u. Then (4.8) and the last part of (4.9) can be written as

∆y = g, in Ω (4.11)
y = 0, on ∂Ω (4.12)
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Applying the Theorem 4.2 there exist s1 > 1, λ1 > 1 and C1 > 0 independent of
s and λ such that for all s ≥ s1, λ ≥ λ1 the following estimate is satisfied

sλ2

∫
Ω

|∇y|2e2sϕdx+ s3λ4

∫
Ω

|y|2ϕ2e2sϕdx ≤

C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇y|2 + s3λ4ϕ2|y|2

)
e2sϕdx

)
.

Replacing y with ∆u in the previous estimate we obtain

sλ2

∫
Ω

|∇(∆u)|2e2sϕdx+ s3λ4

∫
Ω

|∆u|2ϕ2e2sϕdx ≤

C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇(∆u)|2 + s3λ4ϕ2|∆u|2

)
e2sϕdx

)
. (4.13)

Now consider the problem

∆u = y, in Ω (4.14)
u = 0, on ∂Ω, (4.15)

and apply the Theorem 4.2. Then there exist C2 > 0, s2 > 1, λ2 > 1 such that for
s ≥ s2 and λ ≥ λ2 we have

sλ2

∫
Ω

|∇u|2e2sϕdx+ s3λ4

∫
Ω

|u|2ϕ2e2sϕdx ≤

C2

(∫
Ω

|∆u|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤

C3

(∫
Ω

|∆u|2ϕ2e2sϕdx+
∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
. (4.16)

We denote λ = max{λ1, λ2} and ŝ = max{s1, s2}. For s ≥ ŝ, combining (4.13)
and (4.16) we have

sλ2

∫
Ω

|∇(∆u)|2e2sϕdx+
s3λ4

C3

(
sλ2

∫
Ω

|∇u|2e2sϕdx+ s3λ4

∫
Ω

|u|2ϕ2e2sϕdx
)
−

− s3λ4

(∫
O

(
sλ2|∇u|2 + s3λ4ϕ2|u|2

)
e2sϕdx

)
≤

C1

(∫
Ω

|g|2ϕ−1e2sϕdx+
∫
O

(
sλ2|∇(∆u)|2 + s3λ4ϕ2|∆u|2

)
e2sϕdx

)
. (4.17)

How λ is fixed in 4.17, we affirm that exists a constant C > 0 such that (4.10) is
verified. So, the proof of theorem is completed. �
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