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Abstract

We study the exact controllability of a nonlinear plate equation by the means of a
control which acts on an internal region of the plate. The main result asserts that this
system is locally exactly controllable if the associated linear Euler-Bernoulli system is
exactly controllable. In particular, for rectangular domains we obtain that the Berger
system is locally exactly controllable in arbitrarily small time and for every open and
nonempty control region.

Keywords: local exact controllability, Berger equation, nonlinear plate equation, spectral
criterium.

1 Introduction

During the last decades an important literature has been devoted to the exact controllability of
various linear equations modeling the vibrations of elastic plates (see, for instance, Zuazua [20],
Lasiecka and Triggiani [10], Jaffard [8]). A case of particular interest is the Euler-Bernoulli
model with distributed control, i.e., the initial and boundary value problem

ẅ(x, t) + ∆2w(x, t) = u(x, t)χO for (x, t) ∈ Ω× (0,∞), (1.1)

w(x, t) = ∆w(x, t) = 0 for (x, t) ∈ ∂Ω× (0,∞), (1.2)

w(x, 0) = ẇ(x, 0) = 0 for x ∈ Ω. (1.3)

In the above equations, Ω ⊂ R2 is an open nonempty set, O is an open subset of Ω and a dot
denotes differentiation with respect to the time t, so that

ẇ =
∂w

∂t
, ẅ =

∂2w

∂t2
.

The state trajectory of the above system is the function t 7→
[
w
ẇ

]
, where w and ẇ stand for

the transverse displacement and the transverse velocity of the plate, respectively. The input
function is u ∈ L2([0,∞);L2(O)), extended by zero outside O, and χO is the characteristic
function of O.

A general sufficient condition for the exact controllability of (1.1)-(1.3) is that Ω and
O satisfy the geometric optics condition of Bardos, Lebeau and Rauch [2]. This has been
originally shown in Lebeau [11], using microlocal analysis. The proof has been successively
simplified in Miller [13] and Tucsnak and Weiss [18, Example 11.2.4]. The geometric optics
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condition is not necessary for the exact controllability of (1.1)-(1.3). Indeed, as has been shown
in Jaffard [8], if Ω is a rectangle then (1.1)-(1.3) is exactly controllable for every nonempty
control regionO. More complicated situations in which the geometric optics condition fails but
the exact controllability property holds have been recently investigated in Burq and Zworski
[4] (see also Tenenbaum and Tucsnak [17] for boundary controllability). Note that the proofs
of the exact controllability results in [4] and [8] are based on technics which are quite different
of those used for the case in which the geometric optics condition holds.

The aim of this work is to study the local exact controllability of a system modeling the
nonlinear vibrations of an elastic plate. This model, which has been proposed by Berger (see
Berger [3]), is equivalent in one space dimension to the wider known Von Karman equations
(see Perla Menzala and Zuazua [12]). In the two-dimensional case the system we consider can
be seen as an asymptotic limit of the Von Karman equations (see Perla Menzala, Pazoto and
Zuazua [15], Nayfeh and Mook [14]).

Berger’s model for an elastic plate filling the domain Ω and hinged on the boundary ∂Ω
consists in the following initial and boundary value problem:

ẅ(x, t) + ∆2w(x, t)−
(
a+ b

∫
Ω
|∇w|2 dx

)
∆w(x, t) = uχO for (x, t) ∈ Ω× (0,∞), (1.4)

w(x, t) = ∆w(x, t) = 0 for (x, t) ∈ ∂Ω× (0,∞), (1.5)

w(x, 0) = 0, ẇ(x, 0) = 0 for x ∈ Ω. (1.6)

In the above system we continue to use the notation described after (1.1)-(1.3). Moreover, the
constant a is supposed to be larger then −λ1, where λ1 > 0 denotes the first eigenvalue of the
Dirichlet Laplacian in Ω and it corresponds to the in-plane stretching (a < 0) or compression
(a > 0) of the plate. The constant b is supposed to be positive.

The first main result of the paper is:

Theorem 1.1. Let Ω ⊂ R2 be an open bounded set with C2 boundary and let O ⊂ Ω be an
open and nonempty subset of Ω such that (1.1)-(1.3) is exactly controllable (in some time
τ0 > 0). Then the nonlinear system (1.4)-(1.6) is locally exactly controllable (in some time
τ > 0), i.e., there exist τ > 0, M > 0 such that for every [w0

w1 ] ∈ (H2(Ω) ∩H1
0 (Ω)) × L2(Ω),

with ‖w0‖2H2(Ω) + ‖w1‖2L2(Ω) ≤M
2, there exists u ∈ L2([0, τ ];L2(O)) such that the solution w

of (1.4)-(1.6) satisfies
w(·, τ) = w0, ẇ(·, τ) = w1.

The main interest of Theorem 1.1 is that, being a perturbation result, it relies only on the
exact controllability of (1.1)-(1.3), which is a well studied problem. Note that (1.1)-(1.3) is
not the linearization around 0 of (1.4)-(1.6). Therefore our perturbation argument is divided
in two steps: we first tackle the case b = 0, by using frequency domain techniques and then we
go back to the original nonlinear problem by a fixed point argument. The main shortcoming
of Theorem 1.1 is that it does not provide, as expected, the local exact controllability in
arbitrarily small time. Our second main result is Theorem 1.2 below, which fills this gap, at
least in the case of rectangular domains.

Theorem 1.2. Let Ω ⊂ R2 be a rectangle and let O be an open and nonempty subset of Ω.
Then (1.4)-(1.6) is locally exactly controllable in any time τ > 0. In other words, for every
τ > 0 there exists a constant M > 0 such that for every [w0

w1 ] ∈ (H2(Ω) ∩ H1
0 (Ω)) × L2(Ω),

with
‖w0‖2H2(Ω) + ‖w1‖2L2(Ω) ≤M

2,

there exists u ∈ L2([0, τ ];L2(O)) such that the solution w of (1.4)-(1.6) satisfies

w(·, τ) = w0, ẇ(·, τ) = w1.
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The remaining part of this paper is organized as follows. In Section 2 we give some no-
tation and some background on exact controllability, exact observability and pseudo-periodic
functions. In Section 3 we show that if an abstract plate equation is exactly controllable then
the same result holds if we perturb the equation by a particular lower order term. Section 4
is devoted to the fixed point argument and to one example in one space dimension. Finally,
the main results are proved in Section 5.

2 Notation and preliminaries

In this section we will recall some known results on the observability and controllability of
infinite dimensional systems and some results on pseudo-periodic functions. We do not give
proofs and we refer to the existing literature.

Let X be a Hilbert space, let A : D(A)→ X be a densely defined operator with resolvent
set ρ(A) 6= ∅, let β ∈ ρ(A) and let X1 be D(A) with the graph norm. Then A ∈ L(X1, X),
(βI −A)−1 ∈ L(X,X1) and this operator is unitary.

In the remaining part of this section X and U are complex Hilbert spaces which are iden-
tified with their duals, T = (Tt)t≥0 is a strongly continuous semigroup on X, with generator
A : D(A) → X and X1 is D(A) with the norm ‖z‖1 = ‖(βI − A)z‖X , where β ∈ ρ(A) is
fixed. The restriction of Tt to X1 is the image of Tt ∈ L(X) through the unitary operator
(βI −A)−1 ∈ L(X,X1). Therefore, these operators form a strongly continuous semigroup on
X1, whose generator is the restriction of A to D(A2).

Let us consider the following infinite dimensional system

ż(t) = Az(t) +Bu(t), z(0) = 0, (2.1)

where B ∈ L(U,X). It is known (see, for instance, [18, Section 4.2]) that, if τ > 0 and
u ∈ L2([0, τ ];U), then the solution of (2.1) is z ∈ C([0, τ ];X)

z(t) = Φtu (t ∈ (0, τ)), (2.2)

where Φτ ∈ L(L2(0, τ ;U), X) is defined by

Φτu =

∫ τ

0
Tτ−σBu(σ) dσ. (2.3)

Definition 2.1. Let τ > 0. The pair (A,B) is exactly controllable in time τ > 0 if Ran Φτ =
X. The pair (A,B) is exactly controllable if it is exactly controllable in some time τ > 0.

The dual concept of exact controllability is the exact observability. The duality between
these two concepts is formalized in the result below, see Dolecki and Russell [7].

Proposition 2.2. With the above assumptions on A and B, the pair (A,B) is exactly con-
trollable if and only if the pair (A∗, B∗) is exactly observable, i.e., if there exist τ, Cτ > 0
such that

C2
τ

∫ τ

0
‖B∗T∗tφ‖2U ≥ ‖φ‖2X (φ ∈ D(A∗)).

Proposition 2.3. Suppose that (A,B) is exactly controllable in time τ . Then there exists an
operator Fτ ∈ L(X,L2([0, τ ];U)) such that

(1) ΦτFτ = IX .
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(2) If u ∈ L2([0, τ ];U) is a control driving the solution z of (2.1) from 0 to z0 in time τ ,
then

‖u‖L2([0,τ ];U) > ‖Fτz0‖L2([0,τ ];U).

A simple consequence of the above proposition shows that we can steer the solution of

ż(t) = Az(t) +Bu(t) + F (t), z(0) = 0, (2.4)

to an arbitrary state in X by means of a control u ∈ L2([0, τ ];U), where F ∈ L2([0, τ ];X).
More precisely, using (2.2) and Proposition 2.3 we easily obtain the following result.

Corollary 2.4. Let τ > 0 and assume that the pair (A,B) is exactly controllable in time τ .
Let z0 ∈ X and

u = Fτz0 − Fτ
∫ τ

0
Tτ−sF (s) ds, (2.5)

where Fτ is the operator in Proposition 2.3. Then the solution z of (2.4) satisfies z(τ) = z0.

Definition 2.5. Let V ⊂ X be a closed invariant subspace for T. The part of A in V , denoted
by AV , is the restriction of A to D(AV ) = D(A) ∩ V , regarded as a (possibly unbounded)
operator on V .

Clearly, AV is the generator of the restriction of T to V . The following proposition follows
directly from Proposition 6.4.4 from [18] and Proposition 2.2 (see also Tucsnak and Weiss
[19]).

Proposition 2.6. Assume that there exists an orthonormal basis (Φn)n∈N formed by eigen-
vectors of A and the corresponding eigenvalues λn satisfy lim |λn| = ∞. For some bounded
set J ⊂ C denote

V = span {Φn | λn ∈ J}⊥ ,

let A∗V be the part of A∗ in V and let B∗V be the restriction of B∗ to D(A∗V ). Assume that
(A∗V , B

∗
V ) is exactly controllable in time τ0 > 0 and that B∗Φn 6= 0 for every eigenvector Φn

of A. Then (A,B) is exactly controllable in any time τ > τ0.

In this work we use the following spectral characterization of exact controllability of the
pair (A,B) in the case where A is skew-adjoint. The proof of this theorem is a straightfor-
ward combination of Theorem 1.3 from Ramdani, Takahashi, Tenenbaum and Tucsnak [16],
Proposition 2.2 and Proposition 2.6.

Theorem 2.7. Assume that A is skew-adjoint with compact resolvents and that B ∈ L(U,X).
Moreover, assume that (Φn)n∈Z∗ is an orthonormal sequence of eigenvectors of A associated
to the eigenvalues (iµn)n∈Z∗, where (µn)n∈Z∗ is a sequence of real numbers.

For ω ∈ R and ε > 0, set

Jε(ω) = {m ∈ Z∗ such that |µm − ω| < ε} . (2.6)

Then the pair (A,B) is exactly controllable if and only if there exist ε > 0 and δ > 0 such
that for all ω ∈ R and for all z =

∑
m∈Jε(ω)

cmΦm:

‖B∗z‖Y ≥ δ‖z‖X . (2.7)

4



We call an element z =
∑

m∈Jε(ω)

cmΦm a wave packet of A of parameters ω and ε. Notice

that z ∈ D(A∞) =
⋂
n≥1
D(An).

We next introduce some new notation wich will be useful for second order systems. Let H
be a Hilbert space which will be identified with its dual and let A0 : D(A0)→ H be a strictly
positive operator. Whenever no confusion is possible, the inner product and the induced norm
in H will be simply denoted 〈·, ·〉 and ‖·‖ respectively. When saying that A0 is strictly positive
we mean that A0 is self-adjoint and that there exists a constant γ > 0 such that

〈A0ϕ,ϕ〉 > γ‖ϕ‖2 (ϕ ∈ D(A0)).

Recall that such an operator A0 has an orthonormal basis of eigenvectors (ϕn)n∈N∗ corre-
sponding to the positive eigenvalues (λn)n∈N∗ . We denote H1 the Hilbert space D(A0) with
the inner product 〈ϕ,ψ〉1 = 〈A0ϕ,A0ψ〉 and the induced norm

‖ϕ‖1 = ‖A0ϕ‖ (ϕ ∈ H1).

The Hilbert space H2 is D(A2
0) with the inner product 〈ϕ,ψ〉 =

〈
A2

0ϕ,A
2
0ψ
〉

and the induced
norm

‖ϕ‖2 = ‖A2
0ϕ‖ (ϕ ∈ H2).

Consider the second order evolution equation

ẅ(t) +A2
0w(t) = B0u(t), w(0) = 0, ẇ(0) = 0, (2.8)

where B0 ∈ L(U,H). In order to write this equation as a first order system we introduce the

Hilbert space X = H1 ×H and the family of operators (Ãa)a>−λ1 , Ãa : D(Ãa) → X defined
by

D(Ãa) = H2 ×H1, Ãa =

[
0 I

−A2
0 − aA0 0

]
, (2.9)

where λ1 is the first eigenvalue of the operator A0. Since A0 is strictly positive, is easy to prove
that (A2

0 + aA0) is a strictly positive operator with compact resolvents and so, Ãa, defined

by (2.9), is a skew-adjoint operator. Applying Stone’s theorem, we have that Ãa generates
an unitary group T on X = H1 ×H. Finally, we introduce the control operator B ∈ L(U,X)
defined by

Bv =

[
0
B0v

]
(v ∈ U). (2.10)

Then (2.8) can be written as

ż(t) = Ã0z(t) +Bu(t), z(0) = 0,

where we have denoted z(t) =
[
w(t)
ẇ(t)

]
.

In the remaining part of this section we recall some definitions and results on pseudo-
periodic functions, borrowed from Kahane [9], which will be used in the proof of Theorem
1.2.

Let I ⊂ Z an infinite set of integers. We say that Λ = (λm)m∈I ⊂ Rn is a regular sequence
if there exists γ > 0 such that

inf
m,l∈I
m 6=l

|λm − λl| = γ. (2.11)
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Definition 2.8. An open subset D ⊂ Rn is called a domain associated to the regular sequence
Λ = (λm)m∈I if there exist constants δ1(D), δ2(D) > 0 such that, for every sequence of complex
numbers (am)m∈I with a finite number of non-vanishing terms, we have

δ2(D)
∑
m∈I
|am|2 ≤

∫
D

∣∣∣∣∣∑
m∈I

ame
iλm·x

∣∣∣∣∣
2

dx ≤ δ1(D)
∑
m∈I
|am|2. (2.12)

Definition 2.9. Let Λ = (λm)m∈I and Λ̃ = (λ̃m)m∈I be two regular sequences in Rn. We say
that the sequences Λ and Λ̃ are asymptotically close if for every α > 0 there exists an open
ball B ⊂ Rn large enough such that

|λm − λ̃m| < α (m ∈ I such that λm, λ̃m ∈ Rn \B).

We use below the following theorem from [9, Theorem III.2.2].

Theorem 2.10. Let Λ and Λ̃ be two regular sequences asymptotically close. Then an open
set D ⊂ Rn is an associated domain to Λ if and only if is an associated domain to Λ̃.

3 From ẅ + A2
0w = B0u to ẅ + A2

0w + aA0w = B0u

In this section we continue to use the notation introduced in the previous one. In particular,
H and U are Hilbert spaces, A0 is a strictly positive operator (possibly unbounded) on H,

B0 ∈ L(U,H) and Ãa, B are defined as in (2.9), (2.10). We consider the following differential
equation

ẅ(t) +A2
0w(t) + aA0w(t) = B0u(t) (3.1)

w(0) = 0, ẇ(0) = 0, (3.2)

with a > −λ1. With notation from the Section 2, the system (3.1)-(3.2) can be written in the
form

ż(t) = Ãaz(t) +Bu(t), z(0) = 0, (3.3)

where z(t) =

[
w(t)
ẇ(t)

]
.

Our aim is to show that if (3.3) is exactly controllable for a = 0 then it is exactly control-
lable for every a > −λ1, where λ1 is the first eigenvalue of A0. The main result of this section
is the following proposition, which gives no information on the controllability time. Note that[

0
−aA0

]
is not a compact operator in the state space X = H1 ×H, so that the compactness-

uniqueness method introduced in [2] (see also [4]) cannot be applied. Our method is based on
a spectral test of Hautus type introduced in [16].

Proposition 3.1. Assume that the pair (Ã0, B) is exactly controllable. Then for every a >

−λ1 the pair (Ãa, B) is exactly controllable.

Proof. Recall from Section 2 that Ãa is skew-adjoint with compact resolvents for every a >
−λ1. The conclusion is obtained bellow by first showing that in “high frequency” a wave
packet (as defined in Section 2) is exactly observable.

Denote ϕ−n = ϕn for all n ∈ N∗. For every a > −λ1 we denote by (λn(a))n∈N∗ the

eigenvalues of the operator (A2
0 + aA0)

1
2 associated to the eigenvectors (ϕn)n∈N∗ . It is easy to

verify that

λn(a) = λn

√
1 + aλ−1

n = λn +
a

2
+
a2

8
o(λ−1

n ), (3.4)
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where, as in Section 2, λn = λn(0) are the eigenvalues of the operator A0. Then the family
(Φn(a))n∈Z∗ given by

Φn(a) =
1√
2

[ 1
iµn(a)ϕn

ϕn

]
(n ∈ Z∗) (3.5)

is an orthonormal basis of eigenvectors of the operator Ãa associated to the eigenvalues
(iµn(a))n∈Z∗ , where

µn(a) =

{
−λn(a), if n ∈ N∗
λn(a), if − n ∈ N∗, (3.6)

for every a > −λ1.
For ε > 0, ω ∈ R and a > −λ1 we define

Jε(ω, a) = {m ∈ Z∗ such that |µm(a)− ω| < ε}. (3.7)

Since the pair (Ã0, B) is exactly controllable we know from Theorem 2.7 that there exist
ε, δ > 0 such that for all ω ∈ R we have

‖B∗ϕ‖U ≥ δ‖ϕ‖X , (3.8)

for every wave packet ϕ =
∑

m∈Jε(ω,0)

cmΦm(0).

The idea is to prove that the inequality (3.8) implies a similar inequality for every wave
package ψ =

∑
m∈Jε(ω,a) cmΦm(a). For the remaining part of this proof we consider a > −λ1

fixed. Since |µk(a)| → ∞ when k → ∞, there exists an ωa > 0 such that for every |ω| ≥ ωa
if m ∈ Jε(ω, a) then a

8 |µm(a)−1| ≤ 1
2 . Let ω be such that |ω| ≥ ωa. Then m ∈ Jε(ω, 0) is

equivalent to

|λm(a)− a

2
− a2

8
o(λ−1

m )− ω| < ε⇔ m ∈ Jε(ω + a, a),

so Jε(ω, 0) = Jε(ω + a, a). Since

B∗ψ =
∑

m∈Jε(ω,a)

cmB
∗Φm(a) =

∑
m∈Jε(ω,a)

cm
1√
2
B∗0ϕm =

∑
m∈Jε(ω−a,0)

cmB
∗Φm(0),

from (3.8) we have for every ω with |ω| ≥ ωa that

‖B∗ψ‖U ≥ δ‖ψ‖X .

Denote V = span{Φm(a) | |µm(a)| < ωa}⊥. From the above inequality and Theorem 2.7

we obtain that (Ãa|V , BV ), with Ãa|V as in Definition 2.5, is exactly controllable.

From the exact controllability of the pair (Ã0, B) it is clear that

B∗Φn(a) =
1√
2
B∗0ϕn = B∗Φ(0) 6= 0, (n ∈ Z∗, a > −λ1)

and, using Proposition 2.6, the pair (Ãa, B) is exactly controllable.

The particular case where A0 is the Dirichlet Laplacian is discussed in the following ex-
ample.
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Example 3.2. We consider the problem of exact controllability of the following linear plate
equation

ẅ(x, t) + ∆2w(x, t)− a∆w(x, t) = u(x, t)χO, for (x, t) ∈ Ω× (0,∞) (3.9)

w(x, t) = ∆w(x, t) = 0, for (x, t) ∈ ∂Ω× (0,∞) (3.10)

w(x, 0) = 0, ẇ(x, 0) = 0, for x ∈ Ω. (3.11)

Let Ω ⊂ R2 be an open bounded set with its boundary ∂Ω of class C2. Assume that Ω and
its open subset O are such that the Bardos, Lebeau and Rauch geometric control condition
is verified, i.e. that there exists τ > 0 such that any light ray traveling in Ω at unit speed
and reflected according to geometric optics laws when it hits ∂Ω, will intersect O in a time
smaller than τ (see [2]). Then the problem (3.9)-(3.11) is exactly controllable, i.e., there
exists a time τ > 0, such that for every [w0

w1 ] ∈ (H2(Ω) ∩ H1
0 (Ω)) × L2(Ω) exists a control

u ∈ L2([0, τ ];L2(O)) such that the solution w of (3.9)-(3.11) satisfies

w(x, τ) = w0(x), ẇ(x, τ) = w1(x) (x ∈ Ω).

Indeed, denote H = L2(Ω), H1 = H2(Ω) ∩H1
0 (Ω),

H2 = {ϕ ∈ H4(Ω) | ϕ = ∆ϕ = 0 on ∂Ω}

and U = L2(O). Let A0 : H1 → H be defined by

A0ϕ = −∆ϕ (ϕ ∈ H1)

and B0u = uχO. Then, like in Section 2, we introduce the operators Ãa and B, given by (2.9)
and (2.10). Then (3.9)-(3.11) can be written as

ż(t) = Ãaz(t) +Bu(t), z(0) = 0,

where z = [wẇ ]. Since we supposed that Ω and O satisfy the geometric condition of Bardos,

Lebeau and Rauch, (Ã0, B) is exactly controllable in arbitrarily small time (see [11]). Then,

from Proposition 3.1, we conclude that (Ãa, B) is exactly controllable for every a > −λ1,
where λ1 is the first eigenvalue of the Dirichlet Laplacian in Ω.

4 From ẅ+A2
0w+aA0w = B0u to ẅ+A2

0w+(a+b‖A
1
2
0w‖2)A0w = B0u

In this section we consider the following perturbation of the linear differential equation studied
in Section 3:

ẅ(t) +A2
0w(t) + (a+ b‖A

1
2
0w(t)‖2)A0w(t) = B0u(t) (4.1)

w(0) = ẇ(0) = 0, (4.2)

where a > −λ1, b > 0 and B0 ∈ L(U,H).
The principal result of this subsection is the following.

Theorem 4.1. Assume that (3.1)-(3.2) is exactly controllable in time τ > 0. Then (4.1)-(4.2)
is locally exactly controllable in time τ , i.e., there exists a constant M > 0 such that for every
[w0
w1 ] ∈ H1 ×H, with ‖w0‖2H1

+ ‖w1‖2H ≤ M2 exists a control u ∈ L2([0, τ ];U), such that the
solution w of (4.1)-(4.2) satisfies

w(τ) = w0, ẇ(τ) = w1.
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Proof. Recall that since (A2
0 + aA0) is a strictly positive operator with compact resolvents,

the operator Ãa is skew-adjoint and, applying theorem of Stone, generates a unitary group T
in X = H1 ×H. We denote G : H1 ×H → H1 ×H

G

[
w1

w2

]
=

[
0

b‖A
1
2
0w1‖2A0w1

]
.

Then (4.1)-(4.2) can be written as

ż(t) = Ãaz(t) +Gz(t) +Bu(t), z(0) = 0, (4.3)

where z = [wẇ ] and Bu(t) =
[

0
B0u(t)

]
. Let us consider the following linear equation

ż(t) = Ãaz(t) + F (t) +Bu(t), z(0) = 0, (4.4)

where F =
[

0
f(t)

]
and f ∈ L2([0, T ];H). Let z0 ∈ X. Since the pair (Ãa, B) is exactly control-

lable in time τ we can consider a control operator Fτ ∈ L(X,L2([0, τ ];U)) as in Proposition
2.3. Using Corollary 2.4 we see that the input function u given by (2.5) is such that z(τ) = z0.

Consider the mapping F : L2([0, τ ];H)→ L2([0, τ ];H) defined by

F(f) = b‖A
1
2
0w‖L2(0,τ ;H)A0w,

where [wẇ ] is the solution of (4.4) with u given by (2.5).
To obtain the conclusion of the theorem it suffices to show that F has a fixed point. Let

M > 0 to be fixed later and f ∈ L2([0, τ ];H) with ‖f‖L2([0,τ ];H) ≤M . We first show that if M
is small enough the ball B(0,M) of center 0 and radius M is invariant for F in L2([0, τ ];H).
Since the operator Fτ given by Proposition 2.3 is bounded, from (2.5) we obtain easily that
there exists a constant Cτ > 0 such that

‖u‖L2([0,τ ];U) ≤ Cτ (‖z0‖X + ‖f‖L2([0,τ ];H)). (4.5)

Using the formula

z(τ) =

∫ τ

0
Tτ−sF (s) ds+ Φτu

combined to the inequality (4.5) and renoting the constant, we obtain

‖z‖C([0,τ ];X) = ‖w‖C([0,τ ];H1) + ‖ẇ‖C([0,τ ];H) ≤ Cτ (‖z0‖X + ‖f‖L2([0,τ ];H)).

From the last estimate we can conclude that

‖F(f)‖L2([0,τ ];H) = b‖A
1
2
0w‖

2
L2([0,τ ];H)‖A0w‖L2([0,T ];H) ≤ bCτ‖z‖3C([0,τ ];X)

≤ bCτ
(
‖z0‖X + ‖f‖L2([0,τ ];H)

)3
.

Then, assuming that 0 < M < 1
2bCτ

√
2

and ‖z0‖X < M , we obtain from the previous estimate

that F(B(0,M)) ⊂ B(0,M).
We next show that F is a contraction of B(0,M). Let f1, f2 ∈ L2([0, τ ];H) two functions

such that ‖f1‖, ‖f2‖ ≤M . Let u1, u2 ∈ L2([0, τ ];U) be the controls given by (2.5) for f = f1,
respectively f = f2, and denote z1 and z2 the solutions of

ż1(t) = Ãaz1(t) +

[
0

f1(t)

]
+Bu1(t), z1(0) = 0, (4.6)
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ż2(t) = Ãaz2(t) +

[
0

f2(t)

]
+Bu2(t), z2(0) = 0. (4.7)

Then we have

‖F(f1)−F(f2)‖L2([0,τ ];H) =

∥∥∥∥‖A 1
2
0w1‖2L2([0,τ ];H)A0w1 − ‖A

1
2
0w2‖2L2([0,τ ];H)A0w2

∥∥∥∥
L2([0,τ ];H)

≤ ‖A
1
2
0w1‖2L2([0,τ ];H)‖A0(w1 − w2)‖L2([0,τ ];H)

+

∥∥∥∥A 1
2
0 (w1 − w2)

∥∥∥∥
L2([0,τ ];H)

(
‖A

1
2
0w1‖L2([0,τ ];H) + ‖A

1
2
0w2‖L2([0,τ ];H)

)
‖A0w2‖L2([0,τ ];H),

where z1 =
[w1
ẇ1

]
and z2 =

[w2
ẇ2

]
. If we denote z̃ = z1 − z2 then we have

˙̃z(t) = Ãaz̃(t) +

[
0

(f1 − f2)(t)

]
+B(u1(t)− u2(t)), z̃(0) = z̃(τ) = 0.

It is easily to prove that there exists a constant C > 0 such that

‖w1 − w2‖C([0,τ ];D(A0) ≤ C(‖f1 − f2‖L2([0,τ ],H) + ‖u1 − u2‖L2([0,τ ];U)).

Moreover, using the form of u1 and u2, we have

u1 − u2 = −Fτ
∫ τ

0
Tτ−s

[
0

(f1−f2)(t)

]
ds.

Therefore, there exist two constants C1, C2 > 0 such that

‖A0(w1 − w2)‖L2(0,τ ;H) ≤ C1‖f1 − f2‖L2(0,τ ;H),

‖A
1
2
0 (w1 − w2)‖L2(0,τ ;H) ≤ C2‖f1 − f2‖L2(0,τ ;H).

Using the above estimates there exists a constant α > 0, depending on the time τ , such
that

‖F(f1)−F(f2)‖L2([0,τ ];H) ≤ α
[
(‖z0‖+ ‖f1‖L2([0,τ ];H))

2

+(‖z0‖+ ‖f1‖L2([0,τ ];H))(‖z0‖+ ‖f2‖L2([0,τ ];H)) + (‖z0‖+ ‖f2‖L2([0,τ ];H))
2
]
‖f1−f2‖L2([0,τ ];H),

for all f1, f2 ∈ L2([0, τ ];H) with ‖f1‖L2([0,τ ];H), ‖f2‖L2([0,τ ];H) ≤M .
Then, choosing M small enough, ‖z0‖X < M and denoting C = 12αM2, we can write the

previous estimate as

‖F(f1)−F(f2)‖L2([0,τ ];H) ≤ C‖f1 − f2‖L2([0,τ ];H),

so F is a contraction in B(0,M).
Using Banach fixed point theorem, we obtain that F has a fixed point, and the proof of

the theorem is completed.

Example 4.2. In one space dimension, i.e. Ω = (0, π), the initial system (1.4)-(1.6) becomes

ẅ(x, t) +
∂4w

∂x4
(x, t)−

(
a+ b

∫ π

0

∣∣∣∣∂w∂x (x, t)

∣∣∣∣2 dx

)
∂2w

∂x2
(x, t) = uχO, x ∈ (0, π), t > 0 (4.8)

w(0, t) = w(π, t) =
∂2w

∂x2
(0, t) =

∂2w

∂x2
(π, t), t ∈ (0,∞) (4.9)
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w(x, 0) = 0, ẇ(x, 0) = 0, x ∈ (0, π), (4.10)

where a > −1, b > 0 and O ∈ Ω is an open interval. The above equations are a model for the
free vibrations of a hinged extensible beam compressed (if a > 0) or stretched (if a < 0) by an
axial force, which has been extensively studied in the literature (see Dickey [5], [6], Ball [1]).

We claim that this problem is locally exactly controllable in arbitrarily small time. Indeed,
denote H = L2(0, π), H1 = H2(0, π) ∩H1

0 (0, π) and

H2 =

{
ϕ ∈ H4(0, π) ∩H1

0 (0, π) such that
d2ϕ

dx2
(0) =

d2ϕ

dx2
(π) = 0

}
.

Let A0 : H1 → H be the operator defined by A0ϕ = −d2ϕ
dx2

for all ϕ ∈ H1. Using the

operator Ãa, defined by (2.9), we can write (4.8)-(4.10) on the form of system (4.1)-(4.2).

Denote ϕn(x) =
√

2
π sin(nx) the eigenvectors of (A2

0 + aA0)
1
2 associated to the eigenvalues

λn(a) =
√
n4 + an2 and ϕ−n = ϕn for all n ∈ N∗. It follows that (Φn)n∈Z∗ given by

Φn(x) =
1√
2

 1
iµn(a)

√
2
π sin(nx)√

2
π sin(nx)


is an orthonormal basis formed by the eigenvectors of Ãa associated to the eigenvalues
(iµn(a))n∈Z∗ , where

µn(a) =

{
−λn(a), if n ∈ N∗
λn(a), if − n ∈ N∗,

Is easy to verify that for any a > −1 we have

lim
n→∞

|µn+1(a)− µn(a)| =∞.

Using Proposition 8.1.3 from [18], we obtain that the linear part of the (4.8) is exactly con-
trollable in a time arbitrarily small. So, applying Theorem 4.1 we obtain the local exact
controllability of equation (4.8)-(4.10) in a time arbitrarily small.

5 Proof of main results

In this section Ω ⊂ R2 is a bounded open set with C2 boundary or Ω is a rectangle and the
operator A0 is as in Example 3.2, i.e., A0 ∈ L(H1, H), where

H1 = H2(Ω) ∩H1
0 (Ω), A0ϕ = −∆ϕ (ϕ ∈ H1).

Then, H2 = D(A2
0) = {ϕ ∈ H4(Ω) | ϕ = ∆ϕ = 0 on ∂Ω} and

A2
0ϕ = ∆2ϕ (ϕ ∈ H2).

If O ⊂ Ω is an open and nonempty set we denote U = L2(O) and we consider B0 ∈ L(U,H)
defined by B0u = uχO.

Proof of Theorem 1.1. With the above notation, the problem (1.4)-(1.6) can be written as

ẅ(t) +A2
0w(t) + (a+ b‖A

1
2
0w(t)‖2)A0w(t) = B0u(t) (5.1)

w(0) = 0, ẇ(0) = 0. (5.2)
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By the hypothesis, for a = b = 0, the system (5.1)-(5.2) is exactly controllable in some
time τ0 > 0. Applying Proposition 3.1 we have that (5.1)-(5.2), with A0 and B0 chosen like
above, is exactly controllable in a time τ > 0 for every a > −λ1 and b = 0, where λ1 is the
first eigenvalue of Dirichlet Laplacian in Ω. Then from Theorem 4.1 we obtain that (5.1)-
(5.2) is locally exactly controllable in time τ , which means that (1.4)-(1.6) is locally exactly
controllable.

As already mentioned the above result gives no information on the controllability time of
(1.4)-(1.6). This shortcoming can be remedied in the case of a rectangular domain Ω by using
the explicit knowledge of the eigenvectors and of the eigenvalues of A0. We prove first an
exact observability result for plate equation in a rectangular domain. Consider the initial and
boundary value problem:

ẅ(x, t) + ∆2w(x, t)− a∆w(x, t) = 0, for (x, t) ∈ Ω× (0,∞) (5.3)

w(x, t) = ∆w(x, t) = 0, for (x, t) ∈ ∂Ω× (0,∞), (5.4)

w(x, 0) = w0, ẇ(x, 0) = w1, for x ∈ Ω, (5.5)

where a > −λ1. We consider the following output:

y(t) = ẇ(·, t)|O. (5.6)

Proposition 5.1. Let Ω = (0, l1)× (0, l2) be a rectangle in R2 and O an open and nonempty
subset of Ω. Then (5.3)-(5.6) is exactly observable in the state space H1 × H in any time
τ > 0.

We use notation and results on pseudo-periodic functions which have been recalled in
Section 2. The following proposition plays a central role in the proof of Proposition 5.1.

Proposition 5.2. Let r, s > 0, a > −(r + s) and let Λ = (µmn)m,n∈Z∗ be a sequence defined
by

µmn =

 m
√
r

n
√
s√

(rm2 + sn2)2 + a(rm2 + sn2)

 . (5.7)

Then any open and nonempty set in R3 is a domain associated to Λ in the sense of Definition
2.8.

Proof. Consider the sequence (αmn)m,n∈Z∗ in R3 defined by

αmn =

 m
√
r

n
√
s

rm2 + sn2

 (m,n ∈ Z∗). (5.8)

According to Jaffard [8], every open and nonempty set D ⊂ R3 is an associated domain to
(αmn). This clearly implies that every open and nonempty set in R3 is an associated domain
to the sequence Λ̃ = (µ̃m,n)m,n∈Z∗ defined by

µ̃mn =

 m
√
r

n
√
s

rm2 + sn2 + a
2

 .
It is easy to check that√

(rm2 + sn2)2 + a(rm2 + sn2) = rm2 + sn2 +
a

2
+ εmn,
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with lim
m2+n2→∞

εmn = 0. From that it follows that the sequences Λ and Λ̃ are asymptotically

close in the sense of Definition 2.9. Therefore, applying Theorem 2.10, every open nonempty
set in R3 is an associated domain to Λ.

To prove Proposition 5.1 we also need the following lemma:

Lemma 5.3. With notation from the beginning of this section, let C0 ∈ L(H,U) be the

operator defined by C0w = w|O. The pair (i(A2
0 + aA0)

1
2 , C0) is exactly observable in H in

every time τ > 0, i.e., there exists a constant kτ > 0 such that∫ τ

0
‖C0Stw0‖2U dt ≥ k2

τ‖w0‖2 (w0 ∈ H),

where (St) is the semigroup generated by i(A2
0 + aA0)

1
2 .

Proof. Denote (λmn)m,n∈N∗ the eigenvalues of Dirichlet Laplacian in Ω, given by

λmn = rm2 + sn2 (m,n ∈ N∗),

where r =
(
π
l1

)2
, s =

(
π
l2

)2
and denote by (ϕmn) a corresponding orthonormal basis formed

by eigenvectors of A0

ϕmn(x, y) =
2√
l1l2

sin(
√
rmx) sin(

√
sny) (m,n ∈ N∗, (x, y) ∈ Ω).

It is easy to check that for every m,n ∈ N∗ ϕmn is an eigenvector of (A2
0 + aA0)

1
2 with

corresponding eigenvalue

λmn(a) =
√

(rm2 + sn2)2 + a(rm2 + sn2).

The above facts imply that for every a > −λ11(0) the semigroup S generated by i(A2
0 +

aA0)
1
2 verifies

Stz =
∑
m,n

zmne
iλmn(a)tϕmn (z ∈ H1),

where we have denoted
zmn = 〈z, ϕmn〉 (m,n ∈ N∗).

Therefore, we have

∫ τ

0
‖C0Stz‖2 dt =

∫ τ

0

∫
O

∣∣∣∣∣∣
∑

m,n∈N∗
zmne

iλmn(a)tϕmn(x, y)

∣∣∣∣∣∣
2

dxdydt

=
4

l1l2

∫ τ

0

∫
O

∣∣∣∣∣∣
∑

m,n∈N∗
zmne

iλmn(a)t sin(
√
rmx) sin(

√
sny)

∣∣∣∣∣∣
2

dxdydt (5.9)

Let us extend the sequence (zmn) by setting

z−m,n = −zmn, zm,−n = −zmn, z−m,−n = zmn, (m,n ∈ N∗).

Then (5.9) can be written as

∫ τ

0
‖C0Stz‖2 dt =

1

l1l2

∫ τ

0

∫
O

∣∣∣∣∣∣
∑

m,n∈Z∗
zmne

iµmn·
[x
y
t

]∣∣∣∣∣∣
2

dxdydt,
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where (µmn) is defined by (5.7). By Proposition 5.2, (µmn)mn is a sequence associated to the
domain O × (0, τ) for any τ > 0 and any open and nonempty O ∈ Ω. Using the definition of
an associated sequence to a domain it follows that there exists a constant c > 0 such that∫ τ

0
‖C0Stz‖2 dt ≥ c2

∑
m,n∈Z∗

|zmn|2.

We have thus shown that the pair (i(A2
0 + aA0)

1
2 , C0) is exactly observable in any time τ >

0.

Proof of Proposition 5.1. Let C0 ∈ L(U,H) be the operator introduced by Lemma 5.3. From

this lemma we have that the pair (i(A2
0 + aA0)

1
2 , C0) is exactly observable in any time τ > 0.

Applying Proposition 6.8.2 from [18] (with A0 replaced by (A2
0 + aA0)

1
2 ), we obtain that the

pair (Ãa, C), with C =
[

0
C0

]
, is exactly observable in any time τ > 0.

A direct consequence of Proposition 5.1 and Proposition 2.2 is the following corollary.

Corollary 5.4. Let Ω = (0, l1) × (0, l2) be a rectangle and O an open and nonempty subset
of Ω. Then for every a > −λ1 and b = 0 the system (1.4)-(1.6) is exactly controllable in any
time τ > 0.

Proof of Theorem 1.2. With notation from the beginning of this section the system (1.4)-
(1.6) can be written, like in the proof of Theorem 1.1, as an abstract system (5.1)-(5.2).
From Corollary 5.4 we obtain that for b = 0 and for every a > −λ1 the system (5.1)-(5.2) is
exactly controllable in a time τ > 0 arbitrarily small. Then, applying Theorem 4.1, we can
conclude that (5.1)-(??) is locally exactly controllable in time τ > 0, so we proved that, if Ω
is a rectangle, Berger equation (1.4)-(1.6) is locally exactly controllable in a time arbitrarily
small.
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Sup. (3), 79 (1962), pp. 93–150.

[10] I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Euler-
Bernoulli equations with boundary control only in ∆w|Σ, Boll. Un. Mat. Ital. B (7), 5
(1991), pp. 665–702.

[11] G. Lebeau, Contrôle de l’équation de Schrödinger, J. Math. Pures Appl. (9), 71 (1992),
pp. 267–291.

[12] G. P. Menzala and E. Zuazua, Timoshenko’s beam equation as limit of a nonlinear
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