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Wave equation

Wave equation :

w(t,z) — Aw(t,z) =0, t>0,2eQ
w(t,z) =0 t>0,z €00
w(0,x) = wo(z), w(0,x) = wi(z), x €.

Energy of the solution :

1 .
E(t) = o (llwt, )7 + o i@ ) -
2 o()

Discretization :
e P finite elements in space.

@ midpoint finite differences scheme in time.
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Wave equation

Numerical simulation

Exact soluson

—— Standard mcretzaton
30t
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One-dimensional wave equation discretized using :
@ P finite elements in space.
@ midpoint finite differences scheme in time.
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Wave equation

Error increases with time

35

@ h is the discretization

= ] step in space

o At is the discretization
step in time

0 5 10 15 20 25 30 35 40
Time

Relative error at time kAt :

IEF|| < C(wo, w1 )kr(h, At),  k€N.
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@ Introduction
@ An abstract framework
@ Luenberger observers

© Measurements continuously available in time
@ A viscous observer
@ Uniform observability of a space semi-discrete system
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© Under-sampled in time measurements
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@ An observer using interpolated data
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rocuetion An abstract framework

Luenberger observers

Aim of the talk

Supposing that measurements of the system’s state are available,
we propose a method to fully discretize second order conservative
systems
W(t) + Agw(t) =0,  t>0
{ w(0) = wo, w(0) = wy,
such that the discretization error Eﬁ at the time kAt verifies

|EF|| < C(wo, wr)r(h, At).

Known data :
z(t) = Bow(t), where

e Ay :D(Ay) — H self-adjoint, positive, with compact
resolvents. )
e By e £(D(Ag), Z)
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Introduction
. o An abstract framework
Measurements continuously available in time

= Luenberger observers
Under-sampled in time measurements

A first order system

We write this system as a first order system

{ () = Ax(t), t>0

1 1
where A : D(Ag) x D(A5) =+ X =D(A§) x H and

~ (w(t) (0 I
o-() a-(% b
The known data are now given by

z(t) = Bx(t), B=(By 0).
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Introduction
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Under-sampled in time measurements

An abstract framework
Luenberger observers

Some more notation

1
(Vi)n a family of finite dimensional subspaces of D(Ag ).
1
7y H = Vi, 7 : D(AG) — V), orthogonal projectors with
1

respect to inner product in H and D(Ag), respectively.
Agp € ﬁ(Vh) :

1 1
<A0h¢h,7 wh> = <Aé ¢}L7 Aé wh/>7 v¢h7 wh € ‘/h,'

0, I
Ap € L(Vy x W), Ap, = (_/f% of)

1 7, 0
Hh:'D(AO)XH%VhXVh, I, = 0 )
h
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rocuetion An abstract framework

Luenberger observers

Fully discretized system

First order continuous system :

Full discretization :
@ Galerkin method in space.

@ finite differences midpoint scheme in time.

k+1 k k+1
' —xy A wh—i-x ke N*
At o <
Ty, = Hhxo

EF = 2k — a(kAL).
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Luenberger observers

Luenberger observer

A |Output
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Introduction
Measurements continuously available in time
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An abstract framework
Luenberger observers

Luenberger observer

[d D. G. Luenberger, An introduction to observers. |EEE Trans.
Autom. Control 16 (1971) 596-602.
We consider the following observer
Z(t) = AZ(t) + vB*(2(t) — BZ(t)), t>0
z(0) = xo.
We denote e(t) = x(t) — Z(t) the error between the observer and
the observed system :

{ é(t) = (A —vB*B)e(t), t>0
6(0) = o — i‘\o

If (A, B) is exactly observable it is well known that there exist
M, > 0 such that

le®)I% < Me™e(0)|%,  Vt>0.
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ntrodlichion An abstract framework
Luenberger observers

Discrete Luenberger observer

Continuous observer :

{ Z(t) = AZ(t) + vB*(z(t) — BZ(t)), t>0

Fully discretized observer :
@ Galerkin's method in space.
@ Newmark midpoint scheme in time.

ok+1 _ =k =kl ok ko k+l =kl ok

x, T —xy :Ahxh + LB zp + 2y _thh +
At 2 4 2 2

.5:‘\2 = Hhi‘\o

& We assume that data z(t) are available continuously in time.
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rocuetion An abstract framework

Luenberger observers

Error for the Luenberger observer

The error is given by
EF =2 — Mz (kAL).

It is easy to see that E,’f satisfies

EfL _ gk
v e 0

E) =0,

Ef + EFH!

5 — G

where

w(kAt) + 2((k + 1)At)
2

GF = (A1, — 11, A) + AtHE.
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rocuetion An abstract framework

Luenberger observers

Error estimate for the Luenberger observer

EF _ gk EF + EFH1
S T (4 - BB 1 G
0 A(L; 2
Homogeneous system :
Fk+1 Fk Fk +Fk+1
Th "h _ (A, — B*B " "h
At - An = BiB) =

Assuming that (A, B) is exactly observable, there exists
My At, ph,at > 0 such that

13 1x < M ave™ 555 F|x

Therefore,

x |Gl x.

My ae At
I1E7||x < mm 2
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Outline

© Measurements continuously available in time
@ A viscous observer
@ Uniform observability of a space semi-discrete system
@ Numerical simulations
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A viscous Luenberger observer

@ A discrete viscous observer

~k+1 - ~k+1 k1 >N ~k+1
T, — T z}, + T, o 2t T + T
= A, + ’th — By,
At 2 2 2

~k+1

~k+1 X

Th T Th ) gkl

Y =h

Ty = Hhxo.

See also :

[§ S. Ervedoza, E. Zuazua, Uniformly exponentially stable
approximations for a class of damped systems. J. Math. Pures

Appl. (9), 91(1) :20-48, 2000.
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

Suppose that (A, B) is exactly observable. With some technical
assumptions on
1
o the projector Iy, : D(A§) x H— Vi, x V},
@ the viscosity operator V. € L(V}, x V},)

and choosing € = max{At, h?}, there exists a positive constant
C(zo) depending on xy € D(A) such that the following estimate
holds

HE,l;HX < C(xo) max{s,€2h_1At}, ke N.
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Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

Suppose that (A, B) is exactly observable. With some technical
assumptions on

1
o the projector I, : D(Ag) x H— Vi, x V},

-] 1
o H7Th<PH OHSOH Vo € D(Ag),
an ) o)
Clzr @ |lmap — SOH . < C’oheHSOHD(AO)7 Vi € D(Ao),
hold (4) 1
Fre — || < Coh? . VypeD(AR).
O | The — ¢l < Co IIwIID(AO%) ¢ € D(Ag)
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A viscous observer
Uniform observability of a space semi-discrete system

Measurements continuously available in time
Numerical simulations

Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

m—- a2 (A 7L\, ¥ NSy | Ny Y | PN VA2l o e ]

S : T : -
"y @ V. is a self-adjoint, negative definite operator.

assu
© The orthogonal projector ;. from X onto (Ch(1/e))?
° and V. commute.
® @ There exist ¢ > 0 and C > 0 such that
and
1
C(z Vel(=Ve)zzlln < Cllelln, V2 € (Ch(1/€))272
hold VEI=Vobzln = cllslls ¥z € (Ch(1/e)Y)?,

uniformly with respect to €.
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Introduction A viscous observer

Measurements continuously available in time Uniform observability of a space semi-discrete system

Under-sampled in time measurements Numerical simulations

Example of viscosity operator

@ A first viscosity operator

—A 0
42 Oh h
Ve=4 _< Op, —A0h>'

@ Another possible viscosity operator

V.= A7 (1 —eA3) .
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|dea of the proof (1)

The error verifies

B g B4 B
LA VT 1) e My
k+1 k+1
Eh B Eh — €V5E}l§+1
At
E) =0,

where

A A
Gl = (=5 An + S BBy~ DeVlua((k + 1)A1) + ARC()

(A, — 1, 4) A T ff;((k + DAY
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system

Numerical simulations
|dea of the proof (2)

A homogeneous dissipative system

ﬁkJrl_Fk Fk_'_ﬁkle
h h:(Ah—B;;BfJ h 2h

E+T  pk-+1
By —F
At
We prove that there exist M, i > 0 such that

_ k+1
=eV.Fy

IER|x < Me "2 Fx. (1)

MAt
Therefore, |EP || x < morg%xk |G llx-

To prove (1) is enough to prove an observability inequality for the
low frequencies of the corresponding space semi-discretized system.
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system

|dea of the proof (3)

Consider the following semi-discrete system

{ Wy (t) + Agpwp(t) = 0, t>0
wh(O) = Woh, ’Lbh(O) = Wh1-

With the assumptions of main theorem, there exists a time T* > 0,
an observability constant k* > 0 and an n > 0 such that

T 1
/0 |Bowwn(®)I1% dt > k* (uAghwomF i uwmn?) |

for every (wop,w1p) € (Ch(n/he))Q, where

Ch(B) = span {cb;l such that )\? < ﬂ} .
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Sketch of the proof of the Proposition

Hypothesis (exact observability of the continuous system) :

T 1
/ | Bow(®)]l} dt > kr <||A5wo||2 - ||w1||2) '
0

Ervedoza(2009) | Miller(2005), Ramdani et al.(2005)

Resolvent estimate : there exist M, m > 0 such that for all
¢ € D(Ap) the following estimate holds

1
145 011> < M?|[(Ao = AD)o* +m?[| Bogl®, X € I(Ao).

U 7
Discrete resolvent estimate : there exist M,,m, > 0 such that
for every ¢y, € Cp,(a/h9)

1
1AG,0nll* < ME|[(Aon—=ADénl*+mZl| Bongnl®, A € [0,a/h).
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Sketch of the proof of the Proposition

Hypothesis (exact observability of the continuous system) :

T 1
/ | Bow(®)]l} dt > kr <||A5wo||2 - ||w1||2) '
0

Ervedoza(2009) | Miller(2005), Ramdani et al.(2005)

Resolvent estimate : there exist M, m > 0 such that for all
¢ € D(Ap) the following estimate holds

1
145 011> < M?|[(Ao = AD)o* +m?[| Bogl®, X € I(Ao).

4 7
Discrete resolvent estimate : there exist M,,m, > 0 such that
for every ¢y, € Cp,(a/h9)

1
||A5h¢}LH2 < ‘AZ[EH(AO/L_AI)¢]L“2+mzHBOh,QS]LH27 A€ [0,0é/he]
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Sketch of the proof of the Proposition (2)

We put @y, solution of Ag®;, = Agndn, in the resolvent estimate :

1
1AG @rl* < M?[[(Ao = AD)@p|* +m?| Bo®n|?, A € I(Ao).

We prove that &y, is "close” to ¢y, :

1A h<25h||2 < ||A2q)hH2 +Cazh3||A h¢h||
[(Ag — AI)®p|1? < 2[|(Aop — M)cf)hH2 + Ca?||A h¢h||2
1Bo®n||% < 2| Bondnl|Z + Cah?||A h¢h”2

We have

(1-Clad+a-+a?)) [ AZ,énl? < 2M2/|(Aoh—AD)én|2+2m?| Bonn|2-
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Sketch of the proof of the Proposition (3)

Discrete resolvent estimate : there exist M,, m, > 0 such that
for every ¢y, € Cp(a/h?)

1
142, énl2 < M2) (Aop-ADénlP+m2 Bonnl®s A€ [0, /i),
0
T* 1 9
[ 1ol ar = w <||Aghw0h||2 T fwil ) -

0

for every (wop, wip) € (Ch(n/he))2-
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Introduction A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Under-sampled in time measurements Numerical simulations

Back to the wave equation

w(t,z) — Aw(t,z) =0, reN, t>0
w(t,z) =0, red, t>0
w(0,2) = wo(x), w(0,2) = wi(zr), z €

with the observation z(t) = w(t, )|, -
o D(Ag) = H3(Q) N H(Q), Ao : D(Ag) — H = L*(Q0),

Aop = —Ap,  Vy € D(A).
o D(AZ) = HL(Q), Bo € L(HN(Q), H'(w)).
o Bi: HY(w) — HY(Q), Bi¢ = 1, whith

Ay =0, in Q\w
¥ =0, on 0f)
P = ¢, in w.
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Back to the wave equation

Exact observability

Proposition (D. Chapelle, N.C., M. De Buhan, P. Moireau, 2012)

Assume that the geometric control condition of Bardos, Lebeau
and Rauch is satisfied for some w strict subset of w and some

T > 0. Then the following observability condition holds for every
timeT* > T

T*
| et Ol e = 0 (ol + lun )
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Measurements continuously available in time Uniform observability of a space semi-discrete system
Under-sampled in time measurements Numerical simulations

Exact observability
Idea of the proof

@ C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for
the observation, control, and stabilization of waves from the
boundary. SICON 30 (1992) 1024-1065.

It is well known that if & and T verify the Bardos,
Lebeau and Rauch geometric optics condition the
following observability inequality holds :

T
e, Y3 At = kr(lwoll 2 gy + w220
0 0
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Exact observability
Idea of the proof

[ C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for
the observation, control, and stabilization of waves from the
boundary. SICON 30 (1992) 1024-1065.

It is well known that if & and T verify the Bardos,

Lebeau and Rauch geometric optics condition the
following observability inequality holds :

T
/ (e, M3y At > k(o2 o + lwr 320

We prove that for ¢ > 0 there exists a constant C' > 0 such that
T ) TH2e .
C [ Wit + el e [ g dr
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Exact observability
Idea of the proof - Details

[@ K. Liu, Locally distributed control and damping for the
conservative systems. SICON 35 (1997) 1574-1590.
Consider the following cutoff functions :

o YeCx@, )= { O Hreiw
1, ifrew

0 < (x) <1 for every z € Q.

° p(t) =t*(T' —1)*.

Wave equation

w(t,z) — Aw(t,z) =0 z€eQ, t>0
w(t,z) =0, redd, t>0
w(0,z) = wo(z), w(0,z)=w(x), ESRY)

We multiply by ¢v¥w and we integrate by parts.
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Numerical simulations

One dimensional wave equation - first example

W(t, ) — wee(t,z) =0, t>0,z€(0,1)
w(t,0) =w(t,1)=0 t>0
w(0,z) = wo(x), w(0,x) = wq(z), x € (0,1).

@ P finite elements in space, midpoint Newmark in time.
e h=0.005 At =1.3h, w=(0.1,0.3), 0 = 1.

1 1

0.9 09
08 08
07, 07
06 06
§° 05 ? 05
04 04
03 03
02 02
01 01

0 02 04 06 08 1 0 02 04 06 08 1

x x
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations

One dimensional wave equation - first example

black - exact solution
blue - non-viscous observer
red - viscous observer

o
o
o
@ magenta - standard discretization

ost

05t
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Numerical simulations

One dimensional wave equation - first example

black - exact solution
blue - non-viscous observer
red - viscous observer

o
o
o
@ magenta - standard discretization

0s / \

:
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:
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A viscous observer

Measurements continuously available in time Uniform observability of a space semi-discrete system

Numerical simulations

Numerical simulations

One dimensional wave equation - first example

@ black - exact solution

@ blue - non-viscous observer

@ red - viscous observer

@ magenta - standard discretization

4
1 —
/ A 3
2 02 025
05 / \
/ N\
// \\ 1
;_; ALZ \d t‘; o/
Bl
05
2
3
4
“
0 02 04 0s 08 1 0 02 [ 0s 08 1
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Numerical simulations

One dimensional wave equation - first example

Relative error

0.035

0.03

0.0251 b

Error

0.0151 9
0.01F 9

0.0051 1
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Numerical simulations

One dimensional wave equation - second example

1 1

08 08

06 06
=z =
By B

04 04

02 02

0 0

0 02 04 06 08 1 0 02 04 06 08 1

@ P finite elements in space, midpoint Newmark scheme in
time.

e h=0.005 At =h, w=(0.1,0.3).
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Numerical simulations

One dimensional wave equation - second example

black - exact solution
blue - non-viscous observer
red - viscous observer

o
o
o
@ magenta - standard discretization

AN L
o8 A N
> N 2
0s V% NG
04 v B
Z N i
02 o/ .
2 2
e ¥
02
-1
04
08 2
08
4 3
o 02 04 06 08 1 o 02 04 06 o8 1
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Numerical simulations

One dimensional wave equation - second example

black - exact solution
blue - non-viscous observer
red - viscous observer

o
o
o
@ magenta - standard discretization

witx)
o
wL
=
<
B
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations

One dimensional wave equation - second example

black - exact solution

°
@ blue - non-viscous observer

@ red - viscous observer

@ magenta - standard discretization
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Numerical simulations

One dimensional wave equation - second example

Relative error

0.35 T I ! i
No observer
— Viscous observer
0.3H -+ Non-viscous observer 1

Error
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Numerical simulations

Numerical simulations
Back to the first slide example

Exact solution
‘Standard discretization

witx)
w,(tx)
°

0 02 04 06 08 1 0 02 04 06 08 1
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Numerical simulations
Back to the first slide example

35

T T T
Standard discretization
Non-viscous observer

30r b

25r b

201 b

Error

0 5 10 15 20 25 30 35 40
Time
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Introduction

Measurements continuously available in time
Under-sampled in time measurements

A viscous observer

Numerical simulations

Uniform observability of a space semi-discrete system
Numerical simulations
Two dimensional wave equation in a squar

FIGURE : Domain and observation sets

direction.
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FIGURE : Initial data.
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FIGURE : Relative Error.
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Measurements continuously available in time

A viscous observer
Uniform observability of a space semi-discrete system

Numerical simulations

Eigenvalues for the space semi-discrete system

Conservative system
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Spectral abscissa versus N
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(fully discrete) when varying N — Gain value v =9
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Spectral abscissa versus
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Euler-Bernoulli equation

w(t, ) + Aw(t,z) = 0, (t,z) € (0,T) x Q
w(t,z) = Aw(t,z) =0, (t,x) € (0,T) x 0N
w(0,z) = wo(z), w(0,x)=wi(z), x €.

o H = L?*Q) and Ag: D(Ag) — H is defined by
D(Ag) ={p € H*(Q) | o = Ap=00n 90},  Ag= A%

e Ag is a self-adjoint positive definite operator with compact
resolvents

1
° A2 : D(A3) — H is given by
1 1 1
D(AZ) = H*(QNH(Q),  Alp = —Agp for all o € D(AZ).

e Known data : z(t) = w(t, )|w, with w C Q.

Nicolae Cindea (Clermont-Ferrand) Observers for the wave equation



A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Euler-Bernoulli equation

Exact observability

Proposition (D. Chapelle, N.C., M. De Buhan, P. Moireau, 2012)

Assume that w C ) and T > 0 are such that
T
| [ toa)? do dez kool + ).
0 w D(Ag)

Therefore, for any T > T and any open set & with w C & C £ we
have

i
w(t, Y22 dt > k2 (||wol? + |lw1]|%).
| Tt B dt = 5 o2, . + )

0
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Introduction A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Under-sampled in time measurements Numerical simulations

Numerical simulations

@ Spatial discretization :

e 1d : Hermite type finite elements.
e 2d : HCT finite elements (TO DO).

@ Temporal discretization :
e midpoint finite differences scheme.
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A viscous observer
Measurements continuously available in time Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Euler-Bernoulli beam equation

W(t, ) + Wegas(t, ) = 0, (t,z) € (0,T) x (0,1)
w(t, r) = wee(t,x) =0, (t,z) € (0,T) x 0,1
w(0,z) = wo(z), w(0,z)=w(x), z e (0,1)

wo(z) = az’(1 - z)", wy(z) =0, x € (0,1).

@ Hermite type finite elements

@ Finite-differences midpoint scheme in time.
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Measurements continuously available in time

Numerical simulations
Euler-Bernoulli beam equation

A viscous observer

Uniform observability of a space semi-discrete system

Numerical simulations
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FIGURE : Relative errors for beam equation with N = 100 discretization
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Introduction An on/off switch observer
Measurements continuously available in time An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Outline

© Under-sampled in time measurements
@ An on/off switch observer
@ An observer using interpolated data
@ Numerical simulations
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Observers using under-sampled data

We consider the following system :

{ i(t) = Ax(t),  t>0 2p = Bx(nNAt),n > 0

z(0) = xo

@ A:D(A) — X is a skew-adjoint operator.
@ B is a bounded operator from X to Y.
e N € N* is a natural number.

Aim of the talk

Propose semi-discrete in time observers, with discretization
time-step At which will use only the observations (2, ).

Two possibilities :
@ time interpolation.
@ intermittent corrections.
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Observer using under-sampled data

Continuous discrete Luenberger observer :

{ Z(t) = AZ(t) + yB*(2(t) — BE(t))
Z(0) = Zo

Discrete observer with under-sampled data :

Gt
At 2
:/L,\nJrl _ §n+1
+ — _ +1 * +1 ~n+1 2-n+1
T—é” yB*(d" — BxT) + va AT

Observer with interpolation

5" — 0 g 2™ if available o =1
1 0 otherwise d™ = interpolated data.
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

On/off switch observer

Error system

We define the error by
Ty = x(nAt) — 27, " =z(nAt) —z".

Proposition

Assuming that zg € D(A3), the error satisfy the following discrete
dynamical system

gril—gn gt
~n+ét ~n+1 2
.T+ —

i— 1. p* pan+l 2~n+1 +1
A7 = —0"TIyB*BI} " + ua AT et

1
+ et

where the cc2>nsistency terms are
At 1 1
el = 7A?’(gac(tn) = gx(rn)), with t,,1, € [nAt; (n + 1)At],

eM = —ya A%x((n + 1)AY).
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

On/off switch observer

Error estimate

Theorem (N.C., A. Imperiale, P. Moireau)

Assuming that (A, B) is exactly observable and let N € N. There
exist positive constants My, uo(IN),C1 and Cy such that the error
'} satisfies

At (
1— e*ﬂo% B

7 < Moe o R84 AT CutvaiGa),

where 5
Cy = EHAL“”QEOH and  Cy=|A%x].
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Introduction
Measurements continuously available in time

Under-sampled in time measurements

Idea of the proof

An on/off switch observer
An observer using interpolated data
Numerical simulations

We thus consider the following dynamical system

~n,k+1 ~n,k ~n,k+1 ~n,k
xr_’ -z —+x
- + —A( +) n>0  0<k<N-1
At 2 ’ = -
~n,k+1 ~n,k+1
— = l/AtAan’kH — 0 N_1YB*Bx"y k—H >0,
At
~n—+1,0 ~n,N ~n+1,0 _ ~n,N
+ by - —4—
where
1, iftk=j
Ok,j = .
’ 0, otherwise.
~ 1 2
We denote E™F = = HﬁkH
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

|dea of the proof (2)

We prove the following energy estimate :

[k2,n2]

n2
s $ ] s 350 o]
J=n1+dk, 0 [i.5]=[k1,m1]

[k2,m2]

ZZ At HA2

[ J1=lk1,na]

< Em,k’l.

and then we prove the following observability inequality

2
VS T
nAT€[0,T]
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Observer using interpolated data

Error system

Proposition

Assuming that zy € D(A3) then the error ! satisfies the
following dynamical system

~n+1 ~n n+1

T T B +x++€n+1
)
%n-i-éz fn-‘rl 2
+ - _ ~nt1 2=n+1 | _ntl +1
A7 = —yB*BI}" + va AT +ep T +yBrel T,

where €1 and 7t are as for the on/off switch and

entl = Ba((n + 1)At) — d" .
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An on/off switch observer
An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Observer using interpolated data

Error estimate

Theorem (N.C., A. Imperiale, P. Moireau)
Assuming that (A, B) is exactly observable and denoting

i
€4 = max |le
o= max il
there exist positive constants My, 1o, C1,Co and C3 independent
of At and n such that

- _ _ At
‘ :L‘:L_” < Mpe “OnAtH:L‘oH aF 1 (AQCl + vaiCy +703|Ed|)

— ef/ioAt
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Introduction An on/off switch observer
Measurements continuously available in time An observer using interpolated data
Under-sampled in time measurements Numerical simulations

Numerical simulations
No error on the initial data

1072

1074

72 11%

10-6 -

time (s) time (s)

FIGURE : Estimation error with 4% = 20, a = 0. In (black) is the

simulation without correction, in (cyan) is the observer with linear data
interpolation and in (red) is on/off observer
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Numerical simulations
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FIGURE : Numerical results with % =20, o = 1 and 8p(s) = sin(7s). In (green) is the exact solution
without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear data
interpolation and in (red) is on/off observer.
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Numerical simulations

Snapshot (I) Snapshot (II)
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FIGURE : Numerical results with % =20, o = 1 and 8p(s) = sin(7s). In (green) is the exact solution
without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear data

interpolation and in (red) is on/off observer.
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Numerical simulations
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FIGURE : Numerical results with % =200, o = 1 and &(s) = sin(ms). In (green) is the exact
solution without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear
data, in (purple) is the observer with cubic data interpolation and in (red) is on/off observer.
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Numerical simulations

Snapshot (I) Snapshot (II)
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FIGURE : Numerical results with % = 200, a = 1 and &p(s) = sin(ws). In (green) is the exact
solution without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear

data, in (purple) is the observer with cubic data interpolation and in (red) is on/off observer.
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Spectral analysis

Comparison between on/off switch and interpolation

200
100
S
B
~100
~200

Real()) Real()\)

FIGURE : Comparison between the time-discrete on/off observer (in
(red)) and the time-discrete observer using interpolated data (in (cyan))
with At = h? and AT = 5h.
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Some references

[4 D. Chapelle, N. Cindea, P. Moireau Improving convergence in
numerical analysis using observers - The wave-like equation
case. Mathematical Models and Methods in Applied Sciences
(M3AS), Vol. 22, No. 12 (2012).

[ D. Chapelle, N. Cindea, M. de Buhan, P. Moireau. Exponential
convergence of an observer based on partial field
measurements for the wave equation Mathematical Problems
in Engineering (2012).

[ N. Cindea, A. Imperiale, P. Moireau. Numerical convergence of
a time semi-discrete under-sampled observer - to appear in

ESAIM COCV.

Thank you!
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