
Introduction
Measurements continuously available in time

Under-sampled in time measurements

Under-sampled in time observers
for the wave equation

Nicolae Ĉındea
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Wave equation :





ẅ(t, x)−∆w(t, x) = 0, t > 0, x ∈ Ω
w(t, x) = 0 t > 0, x ∈ ∂Ω
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ Ω.

Energy of the solution :

E(t) =
1

2

(
‖w(t, ·)‖2H1

0 (Ω) + ‖ẇ(t, ·)‖2L2(Ω)

)
.

Discretization :

P1 finite elements in space.

midpoint finite differences scheme in time.
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Numerical simulation

One-dimensional wave equation discretized using :

P1 finite elements in space.

midpoint finite differences scheme in time.
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Error increases with time
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h is the discretization
step in space

∆t is the discretization
step in time

Relative error at time k∆t :

‖Ekh‖ ≤ C(w0, w1)kκ(h,∆t), k ∈ N.

Go Back
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Aim of the talk

Supposing that measurements of the system’s state are available,
we propose a method to fully discretize second order conservative
systems {

ẅ(t) +A0w(t) = 0, t > 0
w(0) = w0, ẇ(0) = w1,

such that the discretization error Ekh at the time k∆t verifies

‖Ekh‖ ≤ C(w0, w1)κ(h, ∆t).

Known data :
z(t) = B0w(t), where

A0 : D(A0)→ H self-adjoint, positive, with compact
resolvents.

B0 ∈ L(D(A
1
2
0 ), Z).
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A first order system

We write this system as a first order system

{
ẋ(t) = Ax(t), t > 0
x(0) = x0,

where A : D(A0)×D(A
1
2
0 )→ X = D(A

1
2
0 )×H and

x(t) =

(
w(t)
ẇ(t)

)
, A =

(
0 I
−A0 0

)
.

The known data are now given by

z(t) = Bx(t), B =
(
B0 0

)
.
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Some more notation

(Vh)h a family of finite dimensional subspaces of D(A
1
2
0 ).

πh : H → Vh, π̃h : D(A
1
2
0 )→ Vh orthogonal projectors with

respect to inner product in H and D(A
1
2
0 ), respectively.

A0h ∈ L(Vh) :

〈A0hφh, ψh〉 = 〈A
1
2
0 φh, A

1
2
0 ψh〉, ∀φh, ψh ∈ Vh.

Ah ∈ L(Vh × Vh), Ah =

(
0h Ih
−A0h 0h

)
.

Πh : D(A
1
2
0 )×H → Vh × Vh, Πh =

(
π̃h 0
0 πh

)
.
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Fully discretized system

First order continuous system :

{
ẋ(t) = Ax(t), t > 0
x(0) = x0.

Full discretization :

Galerkin method in space.

finite differences midpoint scheme in time.





xk+1
h − xkh

∆t
= Ah

xkh + xk+1
h

2
, k ∈ N∗

x0
h = Πhx0.

Ekh = xkh −Πhx(k∆t). Error estimate
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Luenberger observer

D. G. Luenberger, An introduction to observers. IEEE Trans.
Autom. Control 16 (1971) 596-602.

We consider the following observer
{

˙̂x(t) = Ax̂(t) + γB∗(z(t)−Bx̂(t)), t > 0
x̂(0) = x̂0.

We denote e(t) = x(t)− x̂(t) the error between the observer and
the observed system :

{
ė(t) = (A− γB∗B)e(t), t > 0
e(0) = x0 − x̂0

If (A,B) is exactly observable it is well known that there exist
M,µ > 0 such that

‖e(t)‖2X ≤Me−µt‖e(0)‖2X , ∀t > 0.
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Discrete Luenberger observer

Continuous observer :
{

˙̂x(t) = Ax̂(t) + γB∗(z(t)−Bx̂(t)), t > 0
x̂(0) = x̂0.

Fully discretized observer :

Galerkin’s method in space.

Newmark midpoint scheme in time.

x̂k+1
h − x̂kh

∆t
= Ah

x̂k+1
h + x̂kh

2
+ γB∗h

(
zkh + zk+1

h

2
−Bh

x̂k+1
h + x̂kh

2

)

x̂0
h = Πhx̂0.

We assume that data z(t) are available continuously in time.
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Error for the Luenberger observer

The error is given by

Ekh = x̂kh −Πhx(k∆t).

It is easy to see that Ekh satisfies

Ek+1
h − Ekh

∆t
= (Ah −B∗hBh)

Ekh + Ek+1
h

2
+Gkh

E0
h = 0,

where

Gkh = (AhΠh −ΠhA)
x(k∆t) + x((k + 1)∆t)

2
+ ∆tHk

h .
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Error estimate for the Luenberger observer

Ek+1
h − Ekh

∆t
= (Ah −B∗hBh)

Ekh + Ek+1
h

2
+Gkh

E0
h = 0,

Homogeneous system :

F k+1
h − F kh

∆t
= (Ah −B∗hBh)

F kh + F k+1
h

2
.

Assuming that (A,B) is exactly observable, there exists
Mh,∆t, µh,∆t > 0 such that

‖F kh ‖X ≤Mh,∆te
−µh,∆tk∆t‖F 0

h‖X .
Therefore,

‖Ekh‖X ≤
Mh,∆t∆t

1− e−µh,∆tk∆t
max
0≤i≤k

‖Gkh‖X .
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A viscous Luenberger observer

A discrete viscous observer

˜̂xk+1

h − x̂kh
∆t

= Ah
x̂kh + ˜̂xk+1

h

2
+ γB∗h


z

k
h + zk+1

h

2
−Bh

x̂kh + ˜̂xk+1

h

2




x̂k+1
h − ˜̂xk+1

h

∆t
= εVεx̂k+1

h

x̂0
h = Πhx0.

See also :

S. Ervedoza, E. Zuazua, Uniformly exponentially stable
approximations for a class of damped systems. J. Math. Pures
Appl. (9), 91(1) :20–48, 2009.
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Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

Suppose that (A,B) is exactly observable. With some technical
assumptions on

the projector Πh : D(A
1
2
0 )×H→ Vh × Vh

the viscosity operator Vε ∈ L(Vh × Vh)

and choosing ε = max{∆t, hθ}, there exists a positive constant
C(x0) depending on x0 ∈ D(A) such that the following estimate
holds

‖Ekh‖X ≤ C(x0) max{ε, ε2h−1∆t}, k ∈ N.
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Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

Suppose that (A,B) is exactly observable. With some technical
assumptions on

the projector Πh : D(A
1
2
0 )×H→ Vh × Vh

the viscosity operator Vε ∈ L(Vh × Vh)

and choosing ε = max{∆t, hθ}, there exists a positive constant
C(x0) depending on x0 ∈ D(A) such that the following estimate
holds

‖Ekh‖X ≤ C(x0) max{ε, ε2h−1∆t}, k ∈ N.

1 ‖πhϕ‖
D(A

1
2
0 )
≤ C0‖ϕ‖

D(A
1
2
0 )
, ∀ϕ ∈ D(A

1
2
0 ),

2 ‖πhϕ− ϕ‖
D(A

1
2
0 )
≤ C0h

θ‖ϕ‖D(A0), ∀ϕ ∈ D(A0),

3 ‖π̃hϕ− ϕ‖ ≤ C0h
θ‖ϕ‖

D(A
1
2
0 )
, ∀ϕ ∈ D(A

1
2
0 ).
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Main result

Theorem (D. Chapelle, N.C., P. Moireau (2012))

Suppose that (A,B) is exactly observable. With some technical
assumptions on

the projector Πh : D(A
1
2
0 )×H→ Vh × Vh

the viscosity operator Vε ∈ L(Vh × Vh)

and choosing ε = max{∆t, hθ}, there exists a positive constant
C(x0) depending on x0 ∈ D(A) such that the following estimate
holds

‖Ekh‖X ≤ C(x0) max{ε, ε2h−1∆t}, k ∈ N.

1 Vε is a self-adjoint, negative definite operator.

2 The orthogonal projector γ1/ε from X onto (Ch(1/ε))2

and Vε commute.

3 There exist c > 0 and C > 0 such that
{ √

ε‖(−Vε)
1
2 z‖h ≤ C‖z‖h, ∀z ∈ (Ch(1/ε))2,√

ε‖(−Vε)
1
2 z‖h ≥ c‖z‖h, ∀z ∈

(
Ch(1/ε)⊥

)2
,

uniformly with respect to ε.
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Example of viscosity operator

A first viscosity operator

Vε = A2
h =

(
−A0h 0h

0h −A0h

)
.

Another possible viscosity operator

Vε = A2
h

(
I − εA2

h

)−1
.

· · ·
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Idea of the proof (1)

The error verifies

Ẽk+1
h − Ekh

∆t
= (Ah −B∗hBh)

Ekh + Ẽk+1
h

2
+Gkh

Ek+1
h − Ẽk+1

h

∆t
= εVεEk+1

h

E0
h = 0,

where

Gkh = (−∆t

2
Ah +

∆tγ

2
B∗hBh − 1)εVεΠhx((k + 1)∆t) + ∆t2C(x)

+ (AhΠh −ΠhA)
x(k∆t) + x((k + 1)∆t)

2
.
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Idea of the proof (2)
A homogeneous dissipative system

F̃ k+1
h − F kh

∆t
= (Ah −B∗hBh)

F kh + F̃ k+1
h

2
F k+1
h − F̃ k+1

h

∆t
= εVεF k+1

h

We prove that there exist M,µ > 0 such that

‖F kh ‖X ≤Me−µk∆t‖F 0
h‖X . (1)

Therefore, ‖Ekh‖X ≤
M∆t

1− e−µk∆t
max
0≤i≤k

‖Gkh‖X .

To prove (1) is enough to prove an observability inequality for the
low frequencies of the corresponding space semi-discretized system.
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Idea of the proof (3)

Consider the following semi-discrete system
{
ẅh(t) +A0hwh(t) = 0, t > 0
wh(0) = w0h, ẇh(0) = wh1.

Proposition

With the assumptions of main theorem, there exists a time T ∗ > 0,
an observability constant k∗ > 0 and an η > 0 such that

∫ T ∗

0
‖B0hwh(t)‖2Z dt ≥ k∗

(
‖A

1
2
0hw0h‖2 + ‖w1h‖2

)
.

for every (w0h, w1h) ∈
(
Ch(η/hθ)

)2
, where

Ch(β) = span
{
φhj such that λhj ≤ β

}
.
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Sketch of the proof of the Proposition

Hypothesis (exact observability of the continuous system) :
∫ T

0
‖B0w(t)‖2Z dt ≥ kT

(
‖A

1
2
0w0‖2 + ‖w1‖2

)
.

Ervedoza(2009) m Miller(2005),Ramdani et al.(2005)

Resolvent estimate : there exist M,m > 0 such that for all
φ ∈ D(A0) the following estimate holds

‖A
1
2
0 φ‖2 ≤M2‖(A0 − λI)φ‖2 +m2‖B0φ‖2, λ ∈ I(A0).

⇓ ?

Discrete resolvent estimate : there exist M∗,m∗ > 0 such that
for every φh ∈ Ch(α/hθ)

‖A
1
2
0hφh‖2 ≤M2

∗ ‖(A0h−λI)φh‖2+m2
∗‖B0hφh‖2, λ ∈ [0, α/hθ].
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1
2
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Sketch of the proof of the Proposition (2)

We put Φh, solution of A0Φh = A0hφh, in the resolvent estimate :

‖A
1
2
0 Φh‖2 ≤M2‖(A0 − λI)Φh‖2 +m2‖B0Φh‖2, λ ∈ I(A0).

We prove that Φh is ”close” to φh :





‖A
1
2
0hφh‖2 ≤ ‖A

1
2
0 Φh‖2 + Cα

1
2h

θ
2 ‖A

1
2
0hφh‖2

‖(A0 − λI)Φh‖2 ≤ 2‖(A0h − λI)φh‖2 + Cα2‖A
1
2
0hφh‖2

‖B0Φh‖2Z ≤ 2‖B0hφh‖2Z + Cαhθ‖A
1
2
0hφh‖2.

We have

(
1−C(α

1
2 +α+α2)

)
‖A

1
2
0hφh‖2 ≤ 2M2‖(A0h−λI)φh‖2+2m2‖B0hφh‖2Z .
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Sketch of the proof of the Proposition (3)

Discrete resolvent estimate : there exist M∗,m∗ > 0 such that
for every φh ∈ Ch(α/hθ)

‖A
1
2
0hφh‖2 ≤M2

∗ ‖(A0h−λI)φh‖2+m2
∗‖B0hφh‖2, λ ∈ [0, α/hθ].

m
∫ T ∗

0
‖B0hwh(t)‖2Z dt ≥ k∗

(
‖A

1
2
0hw0h‖2 + ‖w1h‖2

)
.

for every (w0h, w1h) ∈
(
Ch(η/hθ)

)2
.
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Back to the wave equation





ẅ(t, x)−∆w(t, x) = 0, x ∈ Ω, t > 0
w(t, x) = 0, x ∈ ∂Ω, t > 0
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ Ω

with the observation z(t) = w(t, ·)|ω.
D(A0) = H2(Ω) ∩H1

0 (Ω), A0 : D(A0)→ H = L2(Ω),

A0ϕ = −∆ϕ, ∀ϕ ∈ D(A0).

D(A
1
2
0 ) = H1

0 (Ω), B0 ∈ L(H1
0 (Ω), H1(ω)).

B∗0 : H1(ω)→ H1
0 (Ω), B∗0φ = ψ, whith




∆ψ = 0, in Ω \ ω
ψ = 0, on ∂Ω
ψ = φ, in ω.
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Back to the wave equation
Exact observability

Proposition (D. Chapelle, N.C., M. De Buhan, P. Moireau, 2012)

Assume that the geometric control condition of Bardos, Lebeau
and Rauch is satisfied for some ω̆ strict subset of ω and some
T > 0. Then the following observability condition holds for every
time T ∗ > T

∫ T ∗

0
‖w(·, t)‖2H1(ω)dt ≥ C

(
‖w0‖2H1(Ω) + ‖w1‖2L2(Ω)

)
.
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Exact observability
Idea of the proof

C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for
the observation, control, and stabilization of waves from the
boundary. SICON 30 (1992) 1024-1065.

It is well known that if ω̌ and T verify the Bardos,
Lebeau and Rauch geometric optics condition the
following observability inequality holds :

Ω
ω̌

∫ T

0
‖ẇ(t, ·)‖2L2(ω̌) dt ≥ kT (‖w0‖2H1

0 (Ω) + ‖w1‖2L2(Ω)).

We prove that for ε > 0 there exists a constant C > 0 such that

C

∫ T

0
‖ẇ(t+ ε, ·)‖2L2(ω̌) dt ≤

∫ T+2ε

0
‖w(t, ·)‖2H1(ω) dt.
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Uniform observability of a space semi-discrete system
Numerical simulations

Exact observability
Idea of the proof

C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for
the observation, control, and stabilization of waves from the
boundary. SICON 30 (1992) 1024-1065.

It is well known that if ω̌ and T verify the Bardos,
Lebeau and Rauch geometric optics condition the
following observability inequality holds :

Ω
ω̌
ω

∫ T

0
‖ẇ(t, ·)‖2L2(ω̌) dt ≥ kT (‖w0‖2H1

0 (Ω) + ‖w1‖2L2(Ω)).

We prove that for ε > 0 there exists a constant C > 0 such that

C

∫ T

0
‖ẇ(t+ ε, ·)‖2L2(ω̌) dt ≤

∫ T+2ε

0
‖w(t, ·)‖2H1(ω) dt.

Nicolae Ĉındea (Clermont-Ferrand) Observers for the wave equation



Introduction
Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Exact observability
Idea of the proof - Details

K. Liu, Locally distributed control and damping for the
conservative systems. SICON 35 (1997) 1574-1590.

Consider the following cutoff functions :

ψ ∈ C∞c (Ω), ψ(x) =

{
0, if x ∈ Ω \ ω
1, if x ∈ ω̌

and

0 ≤ ψ(x) ≤ 1 for every x ∈ Ω.

φ(t) = t2(T − t)2.

Wave equation




ẅ(t, x)−∆w(t, x) = 0, x ∈ Ω, t > 0
w(t, x) = 0, x ∈ ∂Ω, t > 0
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ Ω

We multiply by φψw and we integrate by parts.
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - first example





ẅ(t, x)− wxx(t, x) = 0, t > 0, x ∈ (0, 1)
w(t, 0) = w(t, 1) = 0 t > 0
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ (0, 1).

P1 finite elements in space, midpoint Newmark in time.
h = 0.005, ∆t = 1.3h, ω = (0.1, 0.3), θ = 1.
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Introduction
Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - first example

black - exact solution

blue - non-viscous observer

red - viscous observer

magenta - standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - first example

black - exact solution

blue - non-viscous observer

red - viscous observer

magenta - standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - first example

black - exact solution
blue - non-viscous observer
red - viscous observer
magenta - standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - first example
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - second example
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P1 finite elements in space, midpoint Newmark scheme in
time.

h = 0.005, ∆t = h, ω = (0.1, 0.3).
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - second example

black - exact solution

blue - non-viscous observer

red - viscous observer

magenta - standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - second example

black - exact solution

blue - non-viscous observer

red - viscous observer

magenta - standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - second example

black - exact solution
blue - non-viscous observer
red - viscous observer
magenta - standard discretization
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Introduction
Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
One dimensional wave equation - second example

Relative error
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Back to the first slide example
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Back to the first slide example
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Standard discretization
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Two dimensional wave equation in a square

ω

ω

Figure : Domain and observation sets

uniform mesh with N = 50 discretization points on each
direction.

∆t = h = 1
N−1 .
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Two dimensional wave equation in a square
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Figure : Initial data.
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Two dimensional wave equation in a square
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Figure : Relative Error.
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Eigenvalues for the space semi-discrete system
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Figure : Eigenvalues for space semi-discrete systems
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Spectral abscissa versus N
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Figure : Maximum of Re(λhk) (semi-discrete) and Re log(λkh,∆t)/∆t
(fully discrete) when varying N – Gain value γ = 9
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Spectral abscissa versus γ
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Figure : Effect of gain parameter and observation set : (a) Max. of
Re(λhk) – (b) Max. of Re log(λkh,∆t)/∆t
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Introduction
Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Euler-Bernoulli equation





ẅ(t, x) + ∆2w(t, x) = 0, (t, x) ∈ (0, T )× Ω
w(t, x) = ∆w(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ Ω.

H = L2(Ω) and A0 : D(A0)→ H is defined by

D(A0) = {ϕ ∈ H4(Ω) | ϕ = ∆ϕ = 0 on ∂Ω}, A0 = ∆2.

A0 is a self-adjoint positive definite operator with compact
resolvents.

A
1
2
0 : D(A

1
2
0 )→ H is given by

D(A
1
2
0 ) = H2(Ω)∩H1

0 (Ω), A
1
2
0 ϕ = −∆ϕ for all ϕ ∈ D(A

1
2
0 ).

Known data : z(t) = w(t, ·)|ω, with ω ⊂ Ω.
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Euler-Bernoulli equation
Exact observability

Proposition (D. Chapelle, N.C., M. De Buhan, P. Moireau, 2012)

Assume that ω ⊂ Ω and T > 0 are such that

∫ T

0

∫

ω
|ẇ(t, x)|2 dx dt ≥ kT (‖w0‖2

D(A
1
2
0 )

+ ‖w1‖2H).

Therefore, for any Ť > T and any open set ω̌ with ω ⊂ ω̌ ⊂ Ω we
have

∫ Ť

0
‖w(t, ·)‖2H2(ω̌) dt ≥ k2

T (‖w0‖2
D(A

1
2
0 )

+ ‖w1‖2H).
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations

Spatial discretization :

1d : Hermite type finite elements.
2d : HCT finite elements (TO DO).

Temporal discretization :

midpoint finite differences scheme.

Nicolae Ĉındea (Clermont-Ferrand) Observers for the wave equation



Introduction
Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Euler-Bernoulli beam equation





ẅ(t, x) + wxxxx(t, x) = 0, (t, x) ∈ (0, T )× (0, 1)
w(t, x) = wxx(t, x) = 0, (t, x) ∈ (0, T )× 0, 1
w(0, x) = w0(x), ẇ(0, x) = w1(x), x ∈ (0, 1).

w0(x) = αx7(1− x)7, w1(x) = 0, x ∈ (0, 1).

Hermite type finite elements

Finite-differences midpoint scheme in time.
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Measurements continuously available in time

Under-sampled in time measurements

A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

Numerical simulations
Euler-Bernoulli beam equation
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Figure : Relative errors for beam equation with N = 100 discretization
points. Gain values : (a) γ = 5 ; (b) γ = 10.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Outline

1 Introduction
An abstract framework
Luenberger observers

2 Measurements continuously available in time
A viscous observer
Uniform observability of a space semi-discrete system
Numerical simulations

3 Under-sampled in time measurements
An on/off switch observer
An observer using interpolated data
Numerical simulations
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Observers using under-sampled data

We consider the following system :

{
ẋ(t) = Ax(t), t > 0
x(0) = x0

zn = Bx(nN∆t), n > 0

A : D(A)→ X is a skew-adjoint operator.

B is a bounded operator from X to Y .

N ∈ N∗ is a natural number.

Aim of the talk

Propose semi-discrete in time observers, with discretization
time-step ∆t which will use only the observations (zn)n.

Two possibilities :

time interpolation.

intermittent corrections.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Observer using under-sampled data

Continuous discrete Luenberger observer :
{

˙̂x(t) = Ax̂(t) + γB∗(z(t)−Bx̂(t))
x̃(0) = x̃0

Discrete observer with under-sampled data :




x̂n+1
− − x̂n+

∆t
= A

x̂n+1
− + x̂n+

2

x̂n+1
+ − x̂n+1

−
∆t

= δn+1γB∗(dn+1 −Bx̂n+1
+ ) + ν∆tA

2x̂n+1
+

On/off switch

δn =

{
0
1

dn =

{
zn if available
0 otherwise

Observer with interpolation

δn = 1
dn = interpolated data.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

On/off switch observer
Error system

We define the error by

x̃n+ = x(n∆t)− x̂n+, x̃n− = x(n∆t)− x̂n−.
Proposition

Assuming that x0 ∈ D(A3), the error satisfy the following discrete
dynamical system





x̃n+1
− − x̃n+

∆t
= A

x̃n+1
− + x̃n+

2
+ εn+1,

x̃n+1
+ − x̃n+1

−
∆t

= −δn+1γB∗Bx̃n+1
+ + ν∆tA

2x̃n+1
+ + εn+1

ν ,

where the consistency terms are

εn+1 =
∆t2

2
A3
(1

3
x(tn)− 1

2
x(rn)

)
, with tn, rn ∈ [n∆t; (n+ 1)∆t],

εn+1
ν = −ν∆tA

2x((n+ 1)∆t).
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

On/off switch observer
Error estimate

Theorem (N.C., A. Imperiale, P. Moireau)

Assuming that (A,B) is exactly observable and let N ∈ N. There
exist positive constants M0, µ0(N), C1 and C2 such that the error
x̃n+ satisfies

‖x̃n+‖ ≤M0e
−µ0b nN c∆t‖x̃0‖+

∆t

1− e−µ0
1
n
b n
N
c∆t

(∆t2C1 + ν∆tC2),

where

C1 =
5

12
‖A3x0‖ and C2 = ‖A2x0‖.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Idea of the proof

We thus consider the following dynamical system





x̃n,k+1
− − x̃n,k+

∆t
= A

( x̃n,k+1
− + x̃n,k+

2

)
, n ≥ 0, 0 ≤ k ≤ N − 1

x̃n,k+1
+ − x̃n,k+1

−
∆t

= ν∆tA
2x̃n,k+1

+ − δk,N−1γB
∗Bx̃n,k+1

+ , n ≥ 0, 0 ≤ k ≤ N − 1

x̃n+1,0
+ = x̃n,N+ , x̃n+1,0

− = x̃n,N− ,

where

δk,j =

{
1, if k = j
0, otherwise.

We denote Ẽn,k =
1

2

∥∥∥x̃n,k+

∥∥∥
2
.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Idea of the proof (2)

We prove the following energy estimate :

Ẽn2,k2 + γ∆t

n2∑

j=n1+δk1,0

∥∥∥Bx̃j,0+

∥∥∥
2

+ ∆tν∆t

[k2,n2]∑∑

[i,j]=[k1,n1]

∥∥∥Ax̃j,i+

∥∥∥
2

+
∆t

4

[k2,n2]∑∑

[i,j]=[k1,n1]

∆tν2
∆t

∥∥∥A2x̃j,i+

∥∥∥
2
≤ Ẽn1,k1 .

and then we prove the following observability inequality

kT,δ

∥∥∥x̃0,0
+

∥∥∥
2
≤ ∆t

∑

n∆T∈[0,T ]

∥∥∥Bx̃n,0+

∥∥∥
2
, x̃0,0

+ ∈ Cδ/∆T .
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Observer using interpolated data
Error system

Proposition

Assuming that x0 ∈ D(A3) then the error x̃n+ satisfies the
following dynamical system





x̃n+1
− − x̃n+

∆t
= A

x̃n+1
− + x̃n+

2
+ εn+1,

x̃n+1
+ − x̃n+1

−
∆t

= −γB∗Bx̃n+1
+ + ν∆tA

2x̃n+1
+ + εn+1

ν + γB∗εn+1
d ,

where εn+1 and εn+1
ν are as for the on/off switch and

εn+1
d = Bx((n+ 1)∆t)− dn+1.
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Measurements continuously available in time

Under-sampled in time measurements

An on/off switch observer
An observer using interpolated data
Numerical simulations

Observer using interpolated data
Error estimate

Theorem (N.C., A. Imperiale, P. Moireau)

Assuming that (A,B) is exactly observable and denoting

εd = max
1≤i≤n

‖εid‖,

there exist positive constants M0, µ0, C1, C2 and C3 independent
of ∆t and n such that

‖x̃n+‖ ≤M0e
−µ0n∆t‖x̃0‖+

∆t

1− e−µ0∆t
(∆2C1 + ν∆tC2 + γC3|εd|)
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Numerical simulations
No error on the initial data

0 1 2 3 4 5

10�6

10�4

10�2

time (s)

kex
n +
k2 X

0 20 40 60

time (s)

Figure : Estimation error with ∆T
∆t = 20, α = 0. In (black) is the

simulation without correction, in (cyan) is the observer with linear data
interpolation and in (red) is on/off observer
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Numerical simulations
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Figure : Numerical results with ∆T
∆t

= 20, α = 1 and δϕ(s) = sin(πs). In (green) is the exact solution

without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear data
interpolation and in (red) is on/off observer.
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Figure : Numerical results with ∆T
∆t

= 20, α = 1 and δϕ(s) = sin(πs). In (green) is the exact solution

without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear data
interpolation and in (red) is on/off observer.
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Figure : Numerical results with ∆T
∆t

= 200, α = 1 and δϕ(s) = sin(πs). In (green) is the exact

solution without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear
data, in (purple) is the observer with cubic data interpolation and in (red) is on/off observer.
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Figure : Numerical results with ∆T
∆t

= 200, α = 1 and δϕ(s) = sin(πs). In (green) is the exact

solution without perturbation, in (black) is the simulation without correction, in (cyan) is the observer with linear
data, in (purple) is the observer with cubic data interpolation and in (red) is on/off observer.
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Spectral analysis
Comparison between on/off switch and interpolation
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Figure : Comparison between the time-discrete on/off observer (in
(red)) and the time-discrete observer using interpolated data (in (cyan))
with ∆t = h2 and ∆T = 5h.
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D. Chapelle, N. Ĉındea, P. Moireau Improving convergence in
numerical analysis using observers - The wave-like equation
case. Mathematical Models and Methods in Applied Sciences
(M3AS), Vol. 22, No. 12 (2012).
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Thank you !
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