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The wave equation with distributed control

We consider the following wave equation:





ytt(x, t)− yxx(x, t) = v(x, t)1qT (x, t), (x, t) ∈ QT

y(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).
(1)

I QT = (0, 1)× (0, T );

I ΣT = {0, 1} × (0, T );

I qT = ω × (0, T ) ⊂ QT ;

I (y0, y1) ∈ H1
0 (0, 1)× L2(0, 1).
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Controllability problem

We search a control v ∈ L2(qT ) such that

y(·, T ) = 0, yt(·, T ) = 0. (2)
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Controllability of the wave equation
Some references

J.-L. Lions, Contrôlabilité exacte, perturbations et
stabilisation de systèmes distribués. Masson, Paris, 1988.
I Hilbert Uniqueness Method (HUM).

C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient
conditions for the observation, control, and stabilization of
waves from the boundary, SIAM J. Control Optim., 1992.
I Geometric Control Condition.

E. Zuazua, Propagation, observation, and control of waves
approximated by finite difference methods, Siam Review, 2005.

I spurious high frequencies issue.
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Aim of this talk
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For time-dependent control domains qT :

I prove the exact controllability of the wave
equation;

I give a constructive method to approach
the control of minimal L2-norm;

I discuss the numerical implementation of
this method.
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A. Y. Khapalov, Controllability of the wave equation with
moving point control, Appl. Math. Optim. (1995).

L. Cui, X. Liu, H. Gao, Exact controllability for a
one-dimensional wave equation in non-cylindrical domains, J.
Math. Anal. Appl. (2013).

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV (2013).
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Observability inequality in time-dependent domain case

Proposition (C. Carlos, N.C, A. Münch – 2014)

Assume that qT ⊂ (0, 1)× (0, T ) is a finite union of connected
open sets and satisfies the following hypotheses:
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then, there exists C > 0 such that the following estimate holds :

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
(
‖ϕ‖2L2(qT ) + ‖Lϕ‖2L2(0,T ;H−1(0,1))

)
,

for every ϕ ∈ C([0, T ], L2(0, 1)) ∩ C1([0, T ], H−1(0, 1)) and
satisfying Lϕ ∈ L2(0, T ;H−1(0, 1)).

Notation: H = L2(0, 1)×H−1(0, 1).
Lϕ = ϕtt − ϕxx.
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.
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Boundary observability inequality:

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
∫ T

0
|ϕx(0, t)|2dt.

combined with the previous estimate gives:

‖(ϕ(·, 0), ϕt(·, 0))‖2V ≤ C
(
‖ϕt‖2L2(qT ) + ‖ϕx‖2L2(qT )

)

H = L2(0, 1)×H−1(0, 1)

V = H1
0(0, 1)× L2(0, 1)



Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving
pointwise control:

C. Castro, Exact controllability of the 1-D wave equation
from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.

Remark

The proof of the proposition is specific to the one-dimensional case.
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Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and qT ⊂ (0, 1)× (0, T ) be such that
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then the wave equation is null controllable in time T .
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Let T > 0 and qT ⊂ (0, 1)× (0, T ) be such that
any characteristic line starting at a point x ∈ (0, 1) at time t = 0
and following the optical geometric laws when reflecting at the
boundary ΣT must meet qT .
Then the wave equation is null controllable in time T .

Proof.

We apply HUM.

Numerical approximation :

I usual problems due to the controllability of high frequencies;

I problems due to the controllability domain non-constant in
time.
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Hilbert Uniqueness Method - a reformulation

N. Ĉındea and A. Münch, A mixed formulation for the
direct approximation of the control of minimal L2-norm for
linear type wave equations, Calcolo, Vol. 52, 2015.

min
ϕ∈Φ

Ĵ?(ϕ), subject to Lϕ = 0.

Φ =

{
ϕ ∈ C([0, T ], H1

0 (0, 1)) ∩ C1([0, T ], L2(0, 1))
such that Lϕ ∈ L2(0, T,H−1(0, 1))

}
.

Remark

Φ is an Hilbert space endowed with the inner product

(ϕ,ϕ)Φ =

∫∫

qT

ϕ(x, t)ϕ(x, t) dxdt+ η

∫∫

QT

〈Lϕ,Lϕ〉−1 dx dt.

for any fixed η > 0.

Nicolae Ĉındea Approximation of moving controls for the wave equation 8/ 18



Idea of the method: step by step

1. write the minimization of J∗ as a saddle-point problem for an
associated Lagrangian.

2. write the optimality conditions for the Lagrangian as a
mixed-formulation in ϕ and λ.

3. use the generalized observability inequality in order to prove
that this mixed formulation is well-posed:

I ϕ is the dual variable
I λ is the controlled solution.

4. discretize the mixed formulation and prove that the discrete
controls converge to the exact continuous controls:

I C1 finite elements for ϕ
I P1 finite elements for λ.
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Idea of the method: step by step

We consider the following mixed formulation : find
(ϕ, λ) ∈ Φ× L2(0, T,H1

0 (0, 1)) solution of
{
a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0, T,H1
0 (0, 1)),

where

a : Φ× Φ→ R, a(ϕ,ϕ) =

∫∫

qT

ϕϕdxdt+ η

∫∫

QT

〈Lϕ,Lϕ〉−1 dx dt.

b : Φ× L2(0, T,H1
0 (0, 1))→ R, b(ϕ, λ) =

∫ T

0
〈Lϕ(·, t), λ(·, t)〉−1,1dt.

l : Φ→ R, l(ϕ) = −〈ϕt(·, 0), y0〉−1,1 +

∫ 1

0
ϕ(x, 0)y1(x)dx.
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Numerical examples
Some controllability domains
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Numerical examples
Some controllability domains – and associated meshes
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A first numerical test
Initial data to control
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y0(x) = sin(πx).

y1(x) = 0.
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A first numerical example
Results
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Figure : qT = q12.2 : Functions ϕh (Left) and λh (Right).
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A first numerical example
Results
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Figure : Norms ‖v − vh‖L2(qT ) (•) and ‖y − λh‖L2(QT ) (�) vs. h.
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A second numerical example
Initial data to control
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A second numerical example
Results
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Figure : Functions ϕh (Left) and λh (Right).
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A second numerical example
Results

Table: qT = q2
T=2.2.

] Mesh 1 2 3 4 5
h 7.18× 10−2 3.59× 10−2 1.79× 10−2 8.97× 10−3 4.49× 10−3

‖vh‖L2(qT ) 5.350 5.263 5.195 5.172 5.165

‖v − vh‖L2(qT ) 1.3571 9.78× 10−1 6.91× 10−1 5.13× 10−1 3.69× 10−1

‖y − λh‖L2(QT ) 7.12× 10−3 3.23× 10−3 1.19× 10−3 4.82× 10−4 2.12× 10−4

I v – control of minimal L2-norm supported on qT ;

I y – controlled solution by control v.
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A wave with variable speed of propagation

We consider the following wave equation




ytt(x, t)− (c(x)yx(x, t))x = v(x, t)1qT (x), (x, t) ∈ QT
y(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

We take the propagation speed c ∈ C∞(0, 1) given by

Nicolae Ĉındea Approximation of moving controls for the wave equation 15/ 18

c(x) =

{
1, x ∈ [0, 0.45]
5, x ∈ [0.55, 1].



A wave with variable speed of propagation
Numerical results
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Figure : qT = q22 for a non-constant velocity of propagation
Function ϕh (Left) and λh (Right).
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Conclusion

I We proved the exact controllability of the one-dimensional
wave equation with a distributed control supported on a
non-cylindrical domain;

I We developed a constructive method to compute the control
of minimal L2-norm supported in non-cylindrical domains.

I Numerical results indicate that the computed controls
converge to the exact control.
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Some perspectives

I ‖vh − v‖L2(qT ) → chθ?

I Prove a uniform “inf-sup” discrete
condition.

I Optimization of the control’s support.
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I What about higher dimensional
wave equations?
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C. Castro, N. C., A. Münch, Controllability of the linear
1D wave equation with inner moving forces, SICON (2014).

N. C., E. Fernández-Cara, A. Münch, Numerical
controllability of the wave equation through primal methods
and Carleman estimates, ESAIM COCV (2013).

N. C., A. Münch, A mixed formulation for the direct
approximation of the control of minimal L2-norm for linear
type wave equations, Calcolo (2015).

Merci!
Thank you!
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