On the approximation of moving controls for the wave equation

Nicolae Cîndea

joint work with Carlos Castro and Arnaud Münch

The wave equation with distributed control

We consider the following wave equation:

$$\begin{cases} y_{tt}(x,t) - y_{xx}(x,t) = v(x,t) \mathbb{1}_{q_T}(x,t), \\ y(x,t) = 0, \\ y(x,0) = y_0(x), \qquad y_t(x,0) = y_1(x), \end{cases}$$

•
$$Q_T = (0,1) \times (0,T);$$

• $\Sigma_T = \{0, 1\} \times (0, T);$

•
$$q_T = \omega \times (0,T) \subset Q_T$$
;

•
$$(y_0, y_1) \in H^1_0(0, 1) \times L^2(0, 1).$$

Controllability problem

We search a control $v \in L^2(q_T)$ such that

$$y(\cdot, T) = 0, \qquad y_t(\cdot, T) = 0.$$
 (2)

Nicolae Cîndea Approximation of moving controls for the wave equation

- J.-L. LIONS, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris, 1988.
 ▶ Hilbert Uniqueness Method (HUM).
- C. BARDOS, G. LEBEAU, AND J. RAUCH, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 1992.
 Geometric Control Condition.
- E. ZUAZUA, Propagation, observation, and control of waves approximated by finite difference methods, Siam Review, 2005.
 spurious high frequencies issue.

Aim of this talk

For time-dependent control domains q_T :

- prove the exact controllability of the wave equation;
- give a constructive method to approach the control of minimal L²-norm;
- discuss the numerical implementation of this method.

Aim of this talk

For time-dependent control domains q_T :

- prove the exact controllability of the wave equation;
- give a constructive method to approach the control of minimal L²-norm;
- discuss the numerical implementation of this method.
- A. Y. KHAPALOV, Controllability of the wave equation with moving point control, Appl. Math. Optim. (1995).
- L. CUI, X. LIU, H. GAO, *Exact controllability for a one-dimensional wave equation in non-cylindrical domains*, J. Math. Anal. Appl. (2013).
- C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV (2013).

Nicolae Cîndea Approximation of moving controls for the wave equation

Observability inequality in time-dependent domain case

Proposition (C. Carlos, N.C, A. Münch – 2014)

Assume that $q_T \subset (0,1) \times (0,T)$ is a finite union of connected open sets and satisfies the following hypotheses: any characteristic line starting at a point $x \in (0,1)$ at time t = 0and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T .

Then, there exists C > 0 such that the following estimate holds :

$$\|(\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2 \le C \bigg(\|\varphi\|_{L^2(q_T)}^2 + \|L\varphi\|_{L^2(0,T;H^{-1}(0,1))}^2\bigg),$$

for every $\varphi \in C([0,T], L^2(0,1)) \cap C^1([0,T], H^{-1}(0,1))$ and satisfying $L\varphi \in L^2(0,T; H^{-1}(0,1))$.

Notation: $H = L^2(0, 1) \times H^{-1}(0, 1)$. $L\varphi = \varphi_{tt} - \varphi_{xx}$.

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

D'Alembert formulae;

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;
- equi-repartition of energy.

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;
- equi-repartition of energy.

Remark

The proof of the proposition is specific to the one-dimensional case.

Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and $q_T \subset (0,1) \times (0,T)$ be such that any characteristic line starting at a point $x \in (0,1)$ at time t = 0and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T . Then the wave equation is null controllable in time T.

Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and $q_T \subset (0,1) \times (0,T)$ be such that any characteristic line starting at a point $x \in (0,1)$ at time t = 0and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T . Then the wave equation is null controllable in time T.

Proof.

We apply HUM.

Controllability in time-dependent control domain case

Corollary (C. Castro, N.C., A. Münch – 2014)

Let T > 0 and $q_T \subset (0,1) \times (0,T)$ be such that any characteristic line starting at a point $x \in (0,1)$ at time t = 0and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T . Then the wave equation is null controllable in time T.

Proof.

We apply HUM.

Numerical approximation :

- usual problems due to the controllability of high frequencies;
- problems due to the controllability domain non-constant in time.

Hilbert Uniqueness Method - a reformulation

N. CÎNDEA AND A. MÜNCH, A mixed formulation for the direct approximation of the control of minimal L²-norm for linear type wave equations, Calcolo, Vol. 52, 2015.

$$\begin{split} & \min_{\varphi \in \Phi} \hat{J}^{\star}(\varphi), \quad \text{ subject to } \quad L\varphi = 0. \\ \Phi = \left\{ \begin{array}{l} \varphi \in C([0,T], H_0^1(0,1)) \cap C^1([0,T], L^2(0,1)) \\ \text{ such that } L\varphi \in L^2(0,T, H^{-1}(0,1)) \end{array} \right\}. \end{split}$$

Remark

Φ is an Hilbert space endowed with the inner product

$$(\varphi,\overline{\varphi})_{\Phi} = \iint_{q_T} \varphi(x,t) \overline{\varphi}(x,t) \, dx dt + \eta \iint_{Q_T} \langle L\varphi, L\overline{\varphi} \rangle_{-1} \, dx \, dt.$$

for any fixed $\eta > 0$.

1. write the minimization of J^* as a saddle-point problem for an associated Lagrangian.

- 1. write the minimization of J^* as a saddle-point problem for an associated Lagrangian.
- 2. write the optimality conditions for the Lagrangian as a mixed-formulation in φ and λ .

We consider the following mixed formulation : find $(\varphi, \lambda) \in \Phi \times L^2(0, T, H^1_0(0, 1))$ solution of $\begin{cases}
a(\varphi, \overline{\varphi}) + b(\overline{\varphi}, \lambda) &= l(\overline{\varphi}), & \forall \overline{\varphi} \in \Phi \\
b(\varphi, \overline{\lambda}) &= 0, & \forall \overline{\lambda} \in L^2(0, T, H^1_0(0, 1)),
\end{cases}$

where

$$\begin{split} a: \Phi \times \Phi \to \mathbb{R}, \quad a(\varphi, \overline{\varphi}) &= \iint_{q_T} \varphi \overline{\varphi} dx dt + \eta \iint_{Q_T} \langle L\varphi, L\overline{\varphi} \rangle_{-1} dx dt. \\ b: \Phi \times L^2(0, T, H^1_0(0, 1)) \to \mathbb{R}, \quad b(\varphi, \lambda) &= \int_0^T \langle L\varphi(\cdot, t), \lambda(\cdot, t) \rangle_{-1, 1} dt. \\ l: \Phi \to \mathbb{R}, \quad l(\varphi) &= -\langle \varphi_t(\cdot, 0), y_0 \rangle_{-1, 1} + \int_0^1 \varphi(x, 0) y_1(x) dx. \end{split}$$

- 1. write the minimization of J^* as a saddle-point problem for an associated Lagrangian.
- 2. write the optimality conditions for the Lagrangian as a mixed-formulation in φ and λ .
- 3. use the generalized observability inequality in order to prove that this mixed formulation is well-posed:
 - φ is the dual variable
 - λ is the controlled solution.

- 1. write the minimization of J^* as a saddle-point problem for an associated Lagrangian.
- 2. write the optimality conditions for the Lagrangian as a mixed-formulation in φ and λ .
- 3. use the generalized observability inequality in order to prove that this mixed formulation is well-posed:
 - φ is the dual variable
 - λ is the controlled solution.
- 4. discretize the mixed formulation and prove that the discrete controls converge to the exact continuous controls:
 - C^1 finite elements for φ
 - P_1 finite elements for λ .

Numerical examples Some controllability domains

Numerical examples

Some controllability domains - and associated meshes

Nicolae Cîndea Approximation of moving controls for the wave equation

A first numerical test Initial data to control

 $y_1(x) = 0.$

A first numerical example Results

Figure : $q_T = q_{2,2}^1$: Functions φ_h (Left) and λ_h (Right).

Nicolae Cîndea Approximation of moving controls for the wave equation

A first numerical example Results

Figure : Norms $||v - v_h||_{L^2(q_T)}$ (•) and $||y - \lambda_h||_{L^2(Q_T)}$ (•) vs. h.

Nicolae Cîndea Approximation of moving controls for the wave equation

A second numerical example Initial data to control

Nicolae Cîndea Approximation of moving controls for the wave equation

A second numerical example Results

Figure : Functions φ_h (Left) and λ_h (Right).

Nicolae Cîndea Approximation of moving controls for the wave equation

Table: $q_T = q_{T=2.2}^2$.

‡ Mesh	1	2	3	4	5
h	7.18×10^{-2}	$3.59 imes10^{-2}$	1.79×10^{-2}	$8.97 imes 10^{-3}$	4.49×10^{-3}
$\ v_h\ _{L^2(q_T)}$	5.350	5.263	5.195	5.172	5.165
$\ v - v_h\ _{L^2(q_T)}$	1.3571	$9.78 imes10^{-1}$	$6.91 imes 10^{-1}$	$5.13 imes 10^{-1}$	$3.69 imes 10^{-1}$
$\ y - \lambda_h\ _{L^2(Q_T)}$	7.12×10^{-3}	3.23×10^{-3}	1.19×10^{-3}	4.82×10^{-4}	2.12×10^{-4}

▶ v – control of minimal L^2 -norm supported on q_T ;

• y – controlled solution by control v.

A wave with variable speed of propagation

We consider the following wave equation

$$\begin{cases} y_{tt}(x,t) - (c(x)y_x(x,t))_x = v(x,t) \mathbb{1}_{q_T}(x), & (x,t) \in Q_T \\ y(x,t) = 0, & (x,t) \in \Sigma_T \\ y(x,0) = y_0(x), & y_t(x,0) = y_1(x), & x \in (0,1). \end{cases}$$

We take the propagation speed $c \in C^{\infty}(0,1)$ given by

Nicolae Cîndea Approximation of moving controls for the wave equation

A wave with variable speed of propagation Numerical results

Figure : $q_T = q_2^2$ for a non-constant velocity of propagation Function φ_h (Left) and λ_h (Right).

- We proved the exact controllability of the one-dimensional wave equation with a distributed control supported on a non-cylindrical domain;
- ► We developed a constructive method to compute the control of minimal L²-norm supported in non-cylindrical domains.
- Numerical results indicate that the computed controls converge to the exact control.

Some perspectives

$$\blacktriangleright \| v_h - v \|_{L^2(q_T)} \to ch^{\theta}?$$

- Prove a uniform "inf-sup" discrete condition.
- Optimization of the control's support.

Some perspectives

$$\blacktriangleright \|v_h - v\|_{L^2(q_T)} \to ch^{\theta}?$$

- Prove a uniform "inf-sup" discrete condition.
- Optimization of the control's support.

What about higher dimensional wave equations?

- C. CASTRO, N. C., A. MÜNCH, Controllability of the linear 1D wave equation with inner moving forces, SICON (2014).
- N. C., E. FERNÁNDEZ-CARA, A. MÜNCH, Numerical controllability of the wave equation through primal methods and Carleman estimates, ESAIM COCV (2013).
- N. C., A. MÜNCH, A mixed formulation for the direct approximation of the control of minimal L²-norm for linear type wave equations, Calcolo (2015).

Merci! Thank you!

