Numerical approximation of periodic solutions for dissipative hyperbolic equations

Nicolae Cîndea joint work with S. Micu and J. Morais Pereira

Monastir, 27/05/2015

A dissipative wave equation

$$\begin{cases} &\ddot{w}(t,x) - \Delta w(t,x) + a\dot{w}(t,x) = f(t,x), & \text{in } (0,\infty) \times \Omega \\ &w(t,x) = 0, & \text{in } (0,\infty) \times \partial \Omega \\ &w(0,x) = w_0(x), & \dot{w}(0,x) = w_1(x), & \text{in } \Omega \end{cases}$$

Hypotheses:

- lacktriangledown Ω and $\omega\subset\Omega$ are two open sets in \mathbb{R}^d with C^1 boundaries
- $\begin{array}{ccc} \bullet & a \in C^1(\overline{\Omega}), \ a(x) \geq 0, & & \forall x \in \Omega \\ & a(x) > 0, & & \forall x \in \omega \end{array}$
- f is a T-periodic function with T>0

A dissipative wave equation

$$\begin{cases} &\ddot{w}(t,x) - \Delta w(t,x) + a\dot{w}(t,x) = f(t,x), & \text{in } (0,\infty) \times \Omega \\ &w(t,x) = 0, & \text{in } (0,\infty) \times \partial \Omega \\ &w(0,x) = w_0(x), & \dot{w}(0,x) = w_1(x), & \text{in } \Omega \end{cases}$$

Hypotheses:

- lacktriangledown Ω and $\omega\subset\Omega$ are two open sets in \mathbb{R}^d with C^1 boundaries
- $\begin{array}{ccc} \bullet & a \in C^1(\overline{\Omega}), \ a(x) \geq 0, & & \forall x \in \Omega \\ a(x) > 0, & & \forall x \in \omega \end{array}$
- f is a T-periodic function with T>0

Question

There exists a T-periodic solution w of (D)?

Observability and existence of periodic solutions

We consider the following wave equation:

$$\begin{cases} \ddot{u}(t,x) - \Delta u(t,x) = 0, & (t,x) \in (0,\infty) \times \Omega \\ u(t,x) = 0, & (t,x) \in (0,\infty) \times \partial \Omega \\ u(0,x) = u_0(x), \ \dot{u}(0,x) = u_1(x), & x \in \Omega. \end{cases}$$

Inequality of observability

We say that (\star) is observable in time $T_1>0$, with the observation $y(t)=a\dot{u}(t)$, if there exists a constant $k_{T_1}>0$ such that $\int_0^{T_1}|a(x)\dot{u}(t,x)|^2dt\geq k_{T_1}\left(\|u_0\|_{H_0^1(\Omega)}^2+\|u_1\|_{L^2(\Omega)}^2\right)$ for every $(u_0,u_1)\in H_0^1(\Omega)\times L^2(\Omega)$.

Observability and existence of periodic solutions

We consider the following wave equation:

$$\begin{cases} \ddot{u}(t,x) - \Delta u(t,x) = 0, & (t,x) \in (0,\infty) \times \Omega \\ u(t,x) = 0, & (t,x) \in (0,\infty) \times \partial \Omega \\ u(0,x) = u_0(x), \ \dot{u}(0,x) = u_1(x), & x \in \Omega. \end{cases}$$

Inequality of observability

We say that (\star) is observable in time $T_1 > 0$, with the observation

$$y(t) = a\dot{u}(t)$$
, if there exists a constant $k_{T_1} > 0$ such that
$$\int_0^{T_1} |a(x)\dot{u}(t,x)|^2 dt \ge k_{T_1} \left(\|u_0\|_{H_0^1(\Omega)}^2 + \|u_1\|_{L^2(\Omega)}^2 \right)$$
 for every $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$

for every $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$.

Theorem

If (\star) is observable in a time $T_1 > 0$ and $f \in C(0,T;H^1_0(\Omega))$ is T-periodic then there exists a unique T-periodic solution w of (D).

Observability \Rightarrow existence of periodic solutions Sketch of the proof (1)

We denote
$$\Lambda:H^1_0(\Omega)\times L^2(\Omega)\to H^1_0(\Omega)\times L^2(\Omega):$$

$$\Lambda(w_0,w_1)=(w(T,\cdot),\dot w(T,\cdot))$$

where w is solution of

$$\begin{cases} \ddot{w}(t,x) - \Delta w(t,x) + a(x)\dot{w}(t,x) = f(t,x), & (t,x) \in (0,\infty) \times \Omega \\ w(t,x) = 0, & (t,x) \in (0,\infty) \times \partial \Omega \\ w(0,x) = w_0(x), & \dot{w}(0,x) = w_1(x), & x \in \Omega. \end{cases}$$

Observability \Rightarrow existence of periodic solutions Sketch of the proof (1)

We denote
$$\Lambda:H^1_0(\Omega)\times L^2(\Omega)\to H^1_0(\Omega)\times L^2(\Omega):$$

$$\Lambda(w_0,w_1)=(w(T,\cdot),\dot w(T,\cdot))$$

where w is solution of

$$\begin{cases} \ddot{w}(t,x) - \Delta w(t,x) + a(x)\dot{w}(t,x) = f(t,x), & (t,x) \in (0,\infty) \times \Omega \\ w(t,x) = 0, & (t,x) \in (0,\infty) \times \partial \Omega \\ w(0,x) = w_0(x), & \dot{w}(0,x) = w_1(x), & x \in \Omega. \end{cases}$$

Idea of the proof

Show that Λ have a fixed point.

Observability ⇒ existence of periodic solutions Sketch of the proof (2)

By Duhamel's formula we have:

$$\Lambda(w_0, w_1) = \mathbb{S}(T)(w_0, w_1) + \int_0^T \mathbb{S}(T - t)(0, f(t, \cdot))dt$$

• $(\mathbb{S}(t))_{t\geq 0}$ is the semi-group associated to the dissipative wave equation.

In fact, we show that there exists a $n \in \mathbb{N}^*$ such that Λ^n is a contraction:

$$\Lambda^{n}(w_{0}, w_{1}) = \mathbb{S}(nT)(w_{0}, w_{1}) + \int_{0}^{nT} \mathbb{S}(nT - t)(0, f(t, \cdot))dt$$

and

$$\|\Lambda^n(w_0, w_1) - \Lambda^n(z_0, z_1)\|_{H_0^1 \times L^2} = \|\mathbb{S}(nT)(w_0 - z_0, w_1 - z_1)\|_{H_0^1 \times L^2}.$$

Observability ⇒ existence of periodic solutions Sketch of the proof (2)

By Duhamel's formula we have:

$$\Lambda(w_0, w_1) = \mathbb{S}(T)(w_0, w_1) + \int_0^T \mathbb{S}(T - t)(0, f(t, \cdot))dt$$

• $(\mathbb{S}(t))_{t\geq 0}$ is the semi-group associated to the dissipative wave equation.

In fact, we show that there exists a $n \in \mathbb{N}^*$ such that Λ^n is a contraction:

$$\Lambda^{n}(w_{0}, w_{1}) = \mathbb{S}(nT)(w_{0}, w_{1}) + \int_{0}^{nT} \mathbb{S}(nT - t)(0, f(t, \cdot))dt$$

and

$$\|\Lambda^n(w_0, w_1) - \Lambda^n(z_0, z_1)\|_{H_0^1 \times L^2} = \|\mathbb{S}(nT)(w_0 - z_0, w_1 - z_1)\|_{H_0^1 \times L^2}.$$

Observability ⇒ existence of periodic solutions Sketch of the proof (3)

Observability \iff Stability : there exist M>0 and $\mu>0$ such that

$$\|\mathbb{S}(t)(w_0, w_1)\|_{H_0^1 \times L^2} \le M e^{-\mu t} \|(w_0, w_1)\|_{H_0^1 \times L^2}, \quad \forall t \ge 0$$

for every $(w_0, w_1) \in H_0^1(\Omega) \times L^2(\Omega)$.

Observability ⇒ existence of periodic solutions Sketch of the proof (3)

Observability ← Stability :

there exist M>0 and $\mu>0$ such that

$$\|\mathbb{S}(t)(w_0, w_1)\|_{H_0^1 \times L^2} \le M e^{-\mu t} \|(w_0, w_1)\|_{H_0^1 \times L^2}, \qquad \forall t \ge 0$$

for every $(w_0, w_1) \in H_0^1(\Omega) \times L^2(\Omega)$.

Therefore,

$$\|\Lambda^{n}(w_{0}, w_{1}) - \Lambda^{n}(z_{0}, z_{1})\|_{H_{0}^{1} \times L^{2}} = \|\mathbb{S}(nT)(w_{0} - z_{0}, w_{1} - z_{1})\|_{H_{0}^{1} \times L^{2}}$$

$$\leq Me^{-\mu nT} \|(w_{0}, w_{1}) - (z_{0}, z_{1})\|_{H_{0}^{1} \times L^{2}}$$

Observability ⇒ existence of periodic solutions Sketch of the proof (3)

Observability \iff Stability :

there exist M>0 and $\mu>0$ such that

$$\|\mathbb{S}(t)(w_0, w_1)\|_{H_0^1 \times L^2} \le M e^{-\mu t} \|(w_0, w_1)\|_{H_0^1 \times L^2}, \qquad \forall t \ge 0$$

for every $(w_0, w_1) \in H_0^1(\Omega) \times L^2(\Omega)$.

Therefore,

$$\|\Lambda^{n}(w_{0}, w_{1}) - \Lambda^{n}(z_{0}, z_{1})\|_{H_{0}^{1} \times L^{2}} = \|\mathbb{S}(nT)(w_{0} - z_{0}, w_{1} - z_{1})\|_{H_{0}^{1} \times L^{2}}$$

$$\leq Me^{-\mu nT} \|(w_{0}, w_{1}) - (z_{0}, z_{1})\|_{H_{0}^{1} \times L^{2}}$$

For n large enough Λ^n is a contraction.

Let $(\widehat{w}_0, \widehat{w}_1)$ be the unique fixed point of Λ^n .

Then $(\widehat{w}_0, \widehat{w}_1)$ is a fixed point for Λ .

Plan

Numerical analysis of the problem

A particular case: monochromatic sources

Numerical results

Perspectives and conclusions

Plan

Numerical analysis of the problem

A particular case: monochromatic sources

Numerical results

Perspectives and conclusions

• $(V_h)_{h>0}$ a family of finite dimensional subspaces of $H^1_0(\Omega)$.

- $(V_h)_{h>0}$ a family of finite dimensional subspaces of $H_0^1(\Omega)$.
- ▶ $\pi_h: H_0^1(\Omega) \to V_h$ the orthogonal projector. We assume that π_h satisfies:

$$\|\pi_h \varphi - \varphi\|_{H_0^1} \le C_0 h^{\theta} \|\varphi\|_{H^2 \cap H_0^1}, \qquad (\varphi \in H^2(\Omega) \cap H_0^1(\Omega)),$$

$$\|\pi_h \varphi - \varphi\|_{L^2} \le C_0 h^{\theta} \|\varphi\|_{H_0^1}, \qquad (\varphi \in H_0^1(\Omega)).$$

- $(V_h)_{h>0}$ a family of finite dimensional subspaces of $H_0^1(\Omega)$.
- ▶ $\pi_h: H^1_0(\Omega) \to V_h$ the orthogonal projector. We assume that π_h satisfies:

$$\|\pi_h \varphi - \varphi\|_{H_0^1} \le C_0 h^{\theta} \|\varphi\|_{H^2 \cap H_0^1}, \qquad (\varphi \in H^2(\Omega) \cap H_0^1(\Omega)),$$

$$\|\pi_h \varphi - \varphi\|_{L^2} \le C_0 h^{\theta} \|\varphi\|_{H_0^1}, \qquad (\varphi \in H_0^1(\Omega)).$$

discretized equation:

$$\begin{cases} \ddot{w}_h(t) + A_h w_h(t) + B_h B_h^* \dot{w}_h(t) = f_h(t), & (t > 0) \\ w_h(0) = w_{0h}, & \dot{w}_h(0) = w_1. \end{cases}$$
 (D_h)

- $(V_h)_{h>0}$ a family of finite dimensional subspaces of $H_0^1(\Omega)$.
- ▶ $\pi_h: H^1_0(\Omega) \to V_h$ the orthogonal projector. We assume that π_h satisfies:

$$\|\pi_h \varphi - \varphi\|_{H_0^1} \le C_0 h^{\theta} \|\varphi\|_{H^2 \cap H_0^1}, \qquad (\varphi \in H^2(\Omega) \cap H_0^1(\Omega)),$$

$$\|\pi_h \varphi - \varphi\|_{L^2} \le C_0 h^{\theta} \|\varphi\|_{H_0^1}, \qquad (\varphi \in H_0^1(\Omega)).$$

discretized equation:

$$\begin{cases} \ddot{w}_h(t) + A_h w_h(t) + B_h B_h^* \dot{w}_h(t) = f_h(t), & (t > 0) \\ w_h(0) = w_{0h}, & \dot{w}_h(0) = w_1. \end{cases}$$
 (D_h)

▶ $(\mathbb{S}_h(t))_{t\geq 0}$ denotes the semi-group associated to the discrete equation (D_h) .

- $(V_h)_{h>0}$ a family of finite dimensional subspaces of $H_0^1(\Omega)$.
- ▶ $\pi_h: H^1_0(\Omega) \to V_h$ the orthogonal projector. We assume that π_h satisfies:

$$\|\pi_h \varphi - \varphi\|_{H_0^1} \le C_0 h^{\theta} \|\varphi\|_{H^2 \cap H_0^1}, \qquad (\varphi \in H^2(\Omega) \cap H_0^1(\Omega)),$$

$$\|\pi_h \varphi - \varphi\|_{L^2} \le C_0 h^{\theta} \|\varphi\|_{H_0^1}, \qquad (\varphi \in H_0^1(\Omega)).$$

discretized equation:

$$\begin{cases} \ddot{w}_h(t) + A_h w_h(t) + B_h B_h^* \dot{w}_h(t) = f_h(t), & (t > 0) \\ w_h(0) = w_{0h}, & \dot{w}_h(0) = w_1. \end{cases}$$
 (D_h)

- ▶ $(\mathbb{S}_h(t))_{t\geq 0}$ denotes the semi-group associated to the discrete equation (D_h) .

Energy associated to the discrete system

The discrete energy corresponding to (D_h) is defined by

$$E_h(t) = \frac{1}{2} \left(\|A_h^{\frac{1}{2}} w_h\|^2 + \|\dot{w}_h\|^2 \right).$$

If $f_h = 0$, then taking the inner product by \dot{w}_h in equation (D_h) , we deduce that

$$\frac{dE_h}{dt}(t) = -\|B^*\dot{w}_h(t)\|_U^2 \qquad (t \ge 0).$$

Thus, if $f_h = 0$, the energy E_h is non increasing.

Hypothesis

We shall suppose that the following holds

$$\lim_{t \to \infty} E_h(t) = 0.$$

Existence of periodic solutions of discrete system

Theorem (N.C., S. Micu, J. Morais (2013))

Let h>0. Assume that $\lim_{t\to\infty} E_h(t)=0$ and that $f_h\in C([0,\infty);V_h)$ is T-periodic. There exists a unique $(\widehat w_h^0,\widehat w_h^1)\in V_h^2$ such that the corresponding solution $(\widehat w_h,\dot{\widehat w}_h)\in C^1\left([0,\infty);V_h^2\right)$ of (D_h) with initial data $(\widehat w_h^0,\widehat w_h^1)$ is T-periodic.

Existence of periodic solutions of discrete system

Theorem (N.C., S. Micu, J. Morais (2013))

Let h>0. Assume that $\lim_{t\to\infty} E_h(t)=0$ and that $f_h\in C([0,\infty);V_h)$ is T-periodic. There exists a unique $(\widehat w_h^0,\widehat w_h^1)\in V_h^2$ such that the corresponding solution $(\widehat w_h, \dot{\widehat w}_h)\in C^1\left([0,\infty);V_h^2\right)$ of (D_h) with initial data $(\widehat w_h^0,\widehat w_h^1)$ is T-periodic.

Idea of the proof:

- ▶ fixed-point algorithm
- ▶ decay of the discrete energy: for every h>0 there exists constants M>0 and $\omega(h)>0$ such that

$$E_h(t) \le M^2 E_h(0) e^{-2\omega(h)t}.$$

Some remarks

1. The following are equivalent:

- $B_h \phi_h^n \neq 0$ for every ϕ_h^n eigenvector of A_h .

Some remarks

- 1. The following are equivalent:
 - $\lim_{t \to \infty} E_h(t) = 0.$
 - ▶ $B_h \phi_h^n \neq 0$ for every ϕ_h^n eigenvector of A_h .
- 2. $B\phi^n \neq 0$ does not imply $B_h\phi_h^n \neq 0$.

Kavian's example:

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, Siam Review, 2005.

Some remarks

- 1. The following are equivalent:

 - ▶ $B_h \phi_h^n \neq 0$ for every ϕ_h^n eigenvector of A_h .
- 2. $B\phi^n \neq 0$ does not imply $B_h\phi_h^n \neq 0$.

Kavian's example:

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, Siam Review, 2005.

3. In general case $\omega(h) \to 0$ when $h \to 0$.

A discretization with vanishing viscosity

We consider the following discretization of (D):

$$\begin{cases} \ddot{w}_h(t) + A_h w_h(t) + B_h B_h^* \dot{w}_h(t) + \vartheta h^{\eta} A_h \dot{w}_h(t) = f_h(t) \\ w_h(0) = w_{0h}, \quad \dot{w}_h(0) = w_1. \end{cases}$$
 (D_{h\dfracthred})

- $\theta \in [0,1]$
- $> \eta > 0$
- $(\mathbb{S}_{h\vartheta})_{t\geq 0}$ the associated semi-group
- if $f_h \equiv 0$ then

$$\frac{dE_h}{dt}(t) = -\|B^*\dot{w}_h(t)\|^2 - \vartheta h^{\eta} \|A_h^{\frac{1}{2}}\dot{w}_h(t)\|^2 \le 0.$$

A discretization with vanishing viscosity

Existence of periodic solutions

Theorem (N.C., S. Micu, J. Morais (2013))

Let $h \in (0, h^*)$, $\vartheta > 0$ and $\eta = \theta$.

Furthermore, assume that $f_h \in C([0,\infty);V_h)$ is a T-periodic function.

Then there exists a unique $(\widehat{w}_h^0, \widehat{w}_h^1) \in V_h \times V_h$ such that the corresponding solution $(\widehat{w}_h, \widehat{w}_h) \in C^1([0, \infty); V_h \times V_h)$ of $(D_{h\vartheta})$ with initial data $(\widehat{w}_h^0, \widehat{w}_h^1)$ is T-periodic.

A discretization with vanishing viscosity

Existence of periodic solutions

Theorem (N.C., S. Micu, J. Morais (2013))

Let $h \in (0, h^*)$, $\vartheta > 0$ and $\eta = \theta$.

Furthermore, assume that $f_h \in C([0,\infty);V_h)$ is a T-periodic function.

Then there exists a unique $(\widehat{w}_h^0, \widehat{w}_h^1) \in V_h \times V_h$ such that the corresponding solution $(\widehat{w}_h, \widehat{w}_h) \in C^1([0, \infty); V_h \times V_h)$ of $(D_{h\vartheta})$ with initial data $(\widehat{w}_h^0, \widehat{w}_h^1)$ is T-periodic.

Idea of the proof:

- fixed-point algorithm
- ▶ decay of the discrete energy: for every h>0 there exists constants M>0 and $\omega>0$ such that

$$E_h(t) \le M^2 E_h(0) e^{-2\omega t}$$
. \square

Some error estimates — non-viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that $f_{|_{[0,T]}} \in W^{1,1}(0,T;H^1_0)$. Assume that $BB^* \in \mathcal{L}(H^2 \cap H^1_0,H^1_0)$ and $\lim_{t \to \infty} E_h(t) = 0$.

Let \widehat{U}^0 and \widehat{U}_h^0 be the unique fixed points of Λ and Λ_h . Then there exists a constant C>0 such that, for each $n\geq 1$ and $h< h^*$, the following estimate holds

$$\|\widehat{U}^0 - \widehat{U}_h^0\|_X \le C \left(n h^\theta + \frac{q^n}{1 - q} + \frac{q_h^n}{1 - q_h} \right) \|f\|_{W^{1,1}(0,T;H_0^1)},$$

where $q = e^{-\omega T}$ and $q_h = e^{-\omega(h)T}$.

Some error estimates — non-viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that $f_{|_{[0,T]}} \in W^{1,1}(0,T;H^1_0)$. Assume that $BB^* \in \mathcal{L}(H^2 \cap H^1_0,H^1_0)$ and $\lim_{t \to \infty} E_h(t) = 0$.

Let \widehat{U}^0 and \widehat{U}_h^0 be the unique fixed points of Λ and Λ_h . Then there exists a constant C>0 such that, for each $n\geq 1$ and $h< h^*$, the following estimate holds

$$\|\widehat{U}^0 - \widehat{U}_h^0\|_X \le C \left(n h^\theta + \frac{q^n}{1 - q} + \frac{q_h^n}{1 - q_h} \right) \|f\|_{W^{1,1}(0,T;H_0^1)},$$

where $q = e^{-\omega T}$ and $q_h = e^{-\omega(h)T}$.

Remark: This result does not ensure the convergence of $(\widehat{U}_h^0)_{h>0}$ to \widehat{U}^0 . Indeed, since $q_h=e^{-\omega(h)T}$ may tend to 1, the terms nh^θ and $\frac{q_h^n}{1-q_h}$ may not tend simultaneously to zero as h does.

Some error estimates — viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that $f_{|_{[0,T]}} \in W^{1,1}(0,T;H^1_0)$. Assume that $BB^* \in \mathcal{L}(H^2 \cap H^1_0,H^1_0)$, $\vartheta > 0$ and $\eta = \theta$. Let \widehat{U}^0 and \widehat{U}^0_h be the unique fixed points of Λ and $\Lambda_{h\vartheta}$. Then there exists a constant C>0 such that, for each $n\geq 1$ and $h < h^*$, the following estimate holds

$$\|\widehat{U}^0 - \widehat{U}_h^0\|_X \le C \left(n h^\theta + \frac{q^n}{1 - q} + \frac{r^n}{1 - r} \right) \|f\|_{W^{1,1}(0,T;H_0^1)},$$

where $q=e^{-\omega T}$ and $r=e^{-\omega(h,\vartheta)T}$.

Some error estimates — viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that $f_{|_{[0,T]}} \in W^{1,1}(0,T;H^1_0)$. Assume that $BB^* \in \mathcal{L}(H^2 \cap H^1_0,H^1_0),\ \vartheta>0$ and $\eta=\theta$. Let \widehat{U}^0 and \widehat{U}^0_h be the unique fixed points of Λ and $\Lambda_{h\vartheta}$. Then there exists a constant C>0 such that, for each $n\geq 1$ and $h< h^*$, the following estimate holds

$$\|\widehat{U}^0 - \widehat{U}_h^0\|_X \le C \left(n h^\theta + \frac{q^n}{1 - q} + \frac{r^n}{1 - r} \right) \|f\|_{W^{1,1}(0,T;H_0^1)},$$

where $q = e^{-\omega T}$ and $r = e^{-\omega(h,\vartheta)T}$.

Remark: This result does ensures the convergence of $(\widehat{U}_h^0)_{h>0}$ to \widehat{U}^0 . Indeed, Indeed, by taking $n=\left[\frac{\theta}{|\ln(\max\{q,r\})|}\ln\left(\frac{1}{h}\right)\right]+1$, we obtain $\|\widehat{U}^0-\widehat{U}_h^0\|_X\leq Ch^\theta\,\|f\|_{W^{1,1}(0,T;H_0^1)}$ $(n\geq 1).$

Plan

Numerical analysis of the problem

A particular case: monochromatic sources

Numerical results

Perspectives and conclusions

A particular case: monochromatic source terms

We suppose that the nonhomogeneous periodic term f has the following particular form

$$f(t,x) = e^{i \varsigma t} g(x),$$

where $\varsigma \in \mathbb{R}$ and $g \in L^2(\Omega)$.

Evidently, these functions are periodic of period $T=\frac{2\pi}{\varsigma}$ and are usually called *monochromatic*.

They appear in many important applications including acoustic, electromagnetic and geophysical wave propagation.

A particular case: monochromatic source terms

We suppose that the nonhomogeneous periodic term f has the following particular form

$$f(t,x) = e^{i \varsigma t} g(x),$$

where $\varsigma \in \mathbb{R}$ and $g \in L^2(\Omega)$.

Evidently, these functions are periodic of period $T=\frac{2\pi}{\varsigma}$ and are usually called *monochromatic*.

They appear in many important applications including acoustic, electromagnetic and geophysical wave propagation.

For instance, the wave equation

$$w_{tt}(t,x) - \Delta w(t,x) = e^{i \varsigma t} g(x), \qquad (x \in \Omega, \ t > 0)$$

has a periodic solution $w=e^{i\,arsigma\,t}u$ if and only if u verifies the Helmholtz's equation

$$(\varsigma^2 + \Delta)u(x) = -g(x), \qquad (x \in \Omega).$$

Application to Helmholtz equation

Some references

C. Bardos and J. Rauch.

Variational algorithms for the Helmholtz equation using time evolution and artificial boundaries.

Asymptotic Anal., 9 (1994), pp. 101-117.

M. O. Bristeau, R. Glowinski and J. Périaux.

Controllability methods for the computation of time-periodic solutions; application to scattering.

J. Comput. Phys., 147 (1998), pp. 265-292.

R. Glowinski, J. Périaux and J. Toivanen.

Time-periodic solutions of wave equation via controllability and fictitious domain methods.

WAVES 2003, Springer, Berlin, 2003, pp. 805-810.

F 7патпа

On the numerical approximation of Helmholtz equations.

Mat. Contemp., 32: 253-286, 2007.

Theorem (N. C., S. Micu, J. Morais (2013))

Let $\varsigma \in \mathbb{R}$, $T = \frac{2\pi}{\varsigma}$, $g \in H^1_0$ and let $f \in W^{1,1}(0,T;H^1_0)$ given by

$$f(t,x) = e^{i \varsigma t} g(x).$$

Assume that $BB^*\in\mathcal{L}(H^2\cap H^1_0,H^1_0)$ and that

$$\lim_{t \to \infty} E_h(t) = 0.$$

By taking $f_h(t)=e^{i\varsigma t}\pi_h g$, let \widehat{U}^0 and \widehat{U}_h^0 be the unique fixed points of Λ and Λ_h , respectively. Then there exist $h_1>0$ and K>0, such that for every $h< h_1$ and $n\geq 1$

$$\|\widehat{U}^0 - \widehat{U}_h^0\|_X \le K \left(nh^\theta + \frac{q^n}{1 - q} + r_1^n \right) \|f\|_{W^{1,1}(0,T;H_0^1)}.$$

Idea of the proof

Lemma

Let $\varsigma \in \mathbb{R}$. There exists $h_0 > 0$ with the property that, for every $h < h_0$, there exist two subspaces W_h^1 and W_h^2 of V_h such that

1. V_h may be written as

$$V_h = W_h^1 \oplus W_h^2$$

2. There exist two positive constants M_1 and ω_1 , independent of h, such that for every $t \geq 0$

$$\|\mathbb{S}_h(t)U_h^0\|_X^2 \le M_1 e^{-\omega_1 t} \|U_h^0\|_X \qquad (U_h^0 \in W_h^1 \times W_h^1)$$

3. There exists a constant C > 0, independent of h, such that

$$\|(i \varsigma I - \mathbb{A}_h)^{-1} U_h^0\|_X \le C h^{\theta} \|U_h^0\|_X \qquad (U_h^0 \in W_h^2 \times W_h^2).$$

Proof of the Lemma

We denote

- $lackbox{}(\phi_h^n)_{1\leq n\leq N(h)}$ eivenvectors of $A_{0h}^{\frac{1}{2}}$
- $(\lambda_h^n)_{1 \leq n \leq N(h)}$ the corresponding eivenvalues of $A_{0h}^{\frac{1}{2}}$.

For a fixed value of $\delta > 0$, we take

$$\begin{split} W_h^1 &= \operatorname{Span}\{\phi_h^n \mid \lambda_h^n \leq \frac{\delta}{h^\theta}\} \\ W_h^2 &= [W_h^1]^\perp. \end{split}$$

Proof of the Lemma

We denote

- $lackbox{}(\phi_h^n)_{1\leq n\leq N(h)}$ eivenvectors of $A_{0h}^{\frac{1}{2}}$
- $(\lambda_h^n)_{1 \leq n \leq N(h)}$ the corresponding eivenvalues of $A_{0h}^{\frac{1}{2}}$

For a fixed value of $\delta > 0$, we take

$$\begin{split} W_h^1 &= \operatorname{Span}\{\phi_h^n \mid \lambda_h^n \leq \frac{\delta}{h^\theta}\} \\ W_h^2 &= [W_h^1]^\perp. \end{split}$$

On note $\mathbb{A}^1_h = \begin{bmatrix} 0 & I \\ -A_h & 0 \end{bmatrix}, \qquad \mathbb{A}_h = \begin{bmatrix} 0 & I \\ A_h & -B_h B_h^* \end{bmatrix}$ and let (Φ^n_h)

be the eigenvectors of skew-adjoint operator \mathbb{A}^1_h :

$$\Phi_h^n = \frac{1}{\sqrt{2}} \begin{bmatrix} \phi_h^{|n|} \\ i \mathrm{sgn}(n) \lambda_h^{|n|} \phi_h^{|n|} \end{bmatrix}, \qquad (1 \leq |n| \leq N(h)).$$

Proof of the Lemma (2)

We take

$$U_h^0 = \sum_{\lambda_{h|n|} > \frac{\delta}{h^{\theta}}} a_n \Phi_{hn} \in (W_h^2)^2$$

and we remark that

$$\begin{split} \big\| (i\varsigma I - \mathbb{A}_h)^{-1} U_h^0 - (i\varsigma I - \mathbb{A}_h^1)^{-1} U_h^0 \big\|_X \leq \\ \big\| (i\varsigma I - \mathbb{A}_h)^{-1} \big\|_{\mathcal{L}(V_h)} \ \big\| U_h^0 - (i\varsigma I - \mathbb{A}_h) (i\varsigma I - \mathbb{A}_h^1)^{-1} U_h^0 \big\|_X \leq \\ \big\| (i\varsigma I - \mathbb{A}_h)^{-1} \big\|_{\mathcal{L}(V_h)} \ \big\| \mathbb{B}_h (i\varsigma I - \mathbb{A}_h^1)^{-1} U_h^0 \big\|_X \,, \end{split}$$
 where $\mathbb{B}_h = \begin{bmatrix} 0 & 0 \\ 0 & -B_h B_h^* \end{bmatrix}$ and, hence,
$$\big\| (i\varsigma I - \mathbb{A}_h)^{-1} U_h^0 \big\|_X \leq C \| (i\varsigma I - \mathbb{A}_h^1)^{-1} U_h^0 \|_X \,. \end{split}$$

Proof of the Lemma (3)

Remark that, at the same time, h_0 and δ can be chosen such that

$$|\varsigma| < \frac{\delta}{2h^{\theta}}$$
 for every $h < h_0$

and, hence the operator $(i\varsigma I-\mathbb{A}^1_h)^{-1}$ is well defined in $\mathcal{L}((W_h^2)^2).$ Moreover, we have that

$$\left\| (i\varsigma I - \mathbb{A}_h^1)^{-1} U_h^0 \right\|_X = \left\| \sum_{\Phi_{hn} \in (W_h^2)^2} \frac{a_n}{i\varsigma - i\lambda_{h|n|}} \Phi_{hn} \right\|_X \le \max_{\Phi_{hn} \in (W_h^2)^2} \frac{1}{|\varsigma - \lambda_{h|n|}|} \|U_h^0\|_X.$$

Since $\Phi_{hn}\in (W_h^2)^2$ implies that $\lambda_{hn}>\frac{\delta}{h^\theta}$, we deduce that there exists a constant $C_2>0$ such that the following inequality holds

$$\|(i\varsigma I - \mathbb{A}_h^1)^{-1}U_h^0\|_X \le C_2 h^\theta \|U_h^0\|_X \qquad (U_h^0 \in (W_h^2)^2, \ h < h_0).$$

Proof of theorem (2)

Let $U^0\in (H^2(\Omega)\cap H^1_0(\Omega)) imes H^1_0(\Omega)$ such that $\Pi_h U^0:=U^0_h\in (W^1_h)^2.$ We have that

$$\Lambda_h^n U_h^0 = \mathbb{S}_h(nT)(U_h^0 - \widehat{U}_h^0) + \widehat{U}_h^0$$

and \widehat{U}_h^0 satisfies $(i\varsigma-\mathbb{A}_h)\widehat{U}_h^0=G_h$, where $G_h=\begin{bmatrix}0\\\pi_hg\end{bmatrix}$.

By using the Lemma we deduce that there exist two unique elements $g_h^1 \in W_h^1$ and $g_h^2 \in W_h^2$ such that $\pi_h g = g_h^1 + g_h^2$. Let us denote by $G_h^i = \begin{bmatrix} 0 \\ g_h^i \end{bmatrix}$, i=1,2.

$$\begin{split} \|\Lambda_h^n U_h^0 - \widehat{U}_h^0\|_X &= \|\mathbb{S}_h(nT)(U_h^0 - \widehat{U}_h^0)\|_X \\ &\leq \|\mathbb{S}_h(nT)(U_h^0)\|_X + \|\mathbb{S}_h(nT)(i\varsigma - \mathbb{A}_h)^{-1}(G_h)\|_X \,. \end{split}$$

Proof of theorem (3)

Since $U_h^0 \in (W_h^1)^2$, from Lemma we deduce that

$$\|\mathbb{S}_h(nT)(U_h^0)\|_X \le M_1 e^{-\omega_1 nT} \|U_h^0\|_X \qquad (n \ge 0).$$
 (1)

On the other hand, by writing $G_h=G_h^1+G_h^2$ and by using properties of the spaces W_h^1 and W_h^2 , we deduce that

$$\begin{split} \left\| \mathbb{S}_{h}(nT)(i\varsigma - \mathbb{A}_{h})^{-1}(G_{h}) \right\|_{X} &\leq \left\| \mathbb{S}_{h}(nT)(i\varsigma - \mathbb{A}_{h})^{-1}(G_{h}^{1}) \right\|_{X} + \left\| \mathbb{S}_{h}(nT)(i\varsigma - \mathbb{A}_{h})^{-1}(G_{h}^{2}) \right\|_{X} = \\ &= \left\| (i\varsigma - \mathbb{A}_{h})^{-1} \mathbb{S}_{h}(nT)(G_{h}^{1}) \right\|_{X} + \left\| \mathbb{S}_{h}(nT)(i\varsigma - \mathbb{A}_{h})^{-1}(G_{h}^{2}) \right\|_{X} \leq \\ &\leq M_{1} e^{-\omega_{1} nT} \left\| (i\varsigma - \mathbb{A}_{h})^{-1} \right\|_{\mathcal{L}(V_{h})} \|G_{h}^{1}\|_{X} + Ch^{\theta} \|G_{h}^{2}\|_{X}. \end{split}$$

Plan

Numerical analysis of the problem

A particular case: monochromatic sources

Numerical results

Perspectives and conclusions

Consider the following one-dimensional wave equation

$$\begin{cases} \ddot{w}(t,x) - \frac{\partial^2 w}{\partial x^2}(t,x) + a(x)\dot{w}(t,x) = f(t,x), & t > 0, \ x \in (0,1), \\ w(t,0) = w(t,1) = 0, & t > 0 \end{cases}$$

Consider the following one-dimensional wave equation

$$\begin{cases} \ddot{w}(t,x) - \frac{\partial^2 w}{\partial x^2}(t,x) + a(x)\dot{w}(t,x) = f(t,x), & t > 0, \ x \in (0,1), \\ w(t,0) = w(t,1) = 0, & t > 0 \end{cases}$$

- ▶ $a:[0,1] \to \mathbb{R}$ is a nonnegative regular function which is strictly positive in a subdomain $\omega \subset (0,1)$.
- ▶ $f \in \mathcal{C}([0,\infty);L^2(0,1))$ is a periodic function of period T such that $f_{|(0,T)} \in W^{1,1}(0,T;H^1_0(0,1))$.

Consider the following one-dimensional wave equation

$$\begin{cases} & \ddot{w}(t,x) - \frac{\partial^2 w}{\partial x^2}(t,x) + a(x)\dot{w}(t,x) = f(t,x), \quad t > 0, \ x \in (0,1), \\ & w(t,0) = w(t,1) = 0, \quad t > 0 \end{cases}$$

- ▶ $a:[0,1] \to \mathbb{R}$ is a nonnegative regular function which is strictly positive in a subdomain $\omega \subset (0,1)$.
- ▶ $f \in \mathcal{C}([0,\infty); L^2(0,1))$ is a periodic function of period T such that $f_{|(0,T)} \in W^{1,1}(0,T; H^1_0(0,1))$.
- ▶ \mathcal{I}_h a mesh of the interval (0,1) formed by N equidistant points and we denote (h = 1/(N+1))
- $V_h = \{ \varphi \in C(0,1) \mid \varphi_{|I} \in P_2(I) \ \forall \ I \in \mathcal{I}_h, \varphi(0) = \varphi(1) = 0 \}.$

A mono-chromatic source term

the source term

$$f(t,x) = (-k^2 + \pi^2)\sin(\pi x)\cos(kt) - ka(x)\sin(\pi x)\sin(kt).$$

with

$$k = \frac{2\pi}{T}$$

the T-periodic solution:

$$w(t, x) = \sin(\pi x)\cos(kt)$$

• the fixed point of the operator Λ :

$$\widehat{U}_0 = \begin{bmatrix} \sin(\pi x) \\ 0 \end{bmatrix}$$

A mono-chromatic source term

Figure : (a) Error for a fixed period $T=\frac{\pi}{2}$. (b) The number of iterations necessary to achieve a precision $\epsilon=h^3$ in the fixed point algorithm.

A mono-chromatic source term

Period T	0.10	0.15	0.30	0.45	0.60	0.80	1.00
$n(h)$ for $\vartheta = 0$	10000	4203	1518	794	491	238	95
$n(h)$ for $\vartheta = 1$, $\eta = 4$	10000	4183	1510	791	490	237	94
$n(h)$ for $\vartheta = 1$, $\eta = 2$	660	448	233	155	108	90	71
Error	0.0873	0.0370	0.0096	0.0043	0.0026	0.0015	0.0011

Table : Number of iterations n(h) and error $\|\widehat{U}_0 - \Lambda_{h\vartheta}^{n(h)} U_0\|_X$ for different values of T.

A general periodic function

the source term

$$f(t,x) = \alpha t(T-t) \left(6(T-t)^2 - 18t(T-t) + 6t^2 \right) x^3 (1-x)^3$$
$$-\alpha \left(1 + t^3 (T-t)^3 x (1-x) \right) \left(6(1-x)^2 - 18x(1-x) + 6x^2 \right)$$
$$+\alpha 3t^2 (T-t)^2 (T-2t) a(x) x^3 (1-x)^3,$$

▶ the *T*-periodic solution:

$$w(t,x) = \alpha \left(1 + t^3 (T-t)^3\right) x^3 (1-x)^3$$

• the fixed point of the operator Λ :

$$\widehat{U}^0 = \begin{bmatrix} \alpha x^3 (1-x)^3 \\ 0 \end{bmatrix}.$$

A general periodic function

Figure : (a) Error for a period T=1.5. (b) The number of iterations necessary to achieve a precision $\epsilon=h^3$ in the fixed point algorithm.

Consider the following two-dimensional wave equation

$$\begin{cases} \ddot{w}(t,x) - \Delta w(t,x) + a(x)\dot{w}(t,x) = f(t,x), & t > 0, \ x \in \Omega, \\ w(t,x) = 0, & t > 0, \ x \in \partial \Omega \end{cases}$$

Consider the following two-dimensional wave equation

$$\begin{cases} \ddot{w}(t,x) - \Delta w(t,x) + a(x)\dot{w}(t,x) = f(t,x), & t > 0, \ x \in \Omega, \\ w(t,x) = 0, & t > 0, \ x \in \partial \Omega \end{cases}$$

- ▶ $a: \Omega \to \mathbb{R}$ is a nonnegative regular function which is strictly positive in a subdomain $\omega \subset \Omega$.
- ▶ $f \in \mathcal{C}([0,\infty);L^2(\Omega))$ is a periodic function of period T such that $f_{|(0,T)} \in W^{1,1}(0,T;H^1_0(\Omega))$.

Consider the following two-dimensional wave equation

$$\begin{cases} \ddot{w}(t,x) - \Delta w(t,x) + a(x)\dot{w}(t,x) = f(t,x), & t > 0, \ x \in \Omega, \\ w(t,x) = 0, & t > 0, \ x \in \partial \Omega \end{cases}$$

- ▶ $a: \Omega \to \mathbb{R}$ is a nonnegative regular function which is strictly positive in a subdomain $\omega \subset \Omega$.
- $f \in \mathcal{C}([0,\infty);L^2(\Omega))$ is a periodic function of period T such that $f_{|(0,T)} \in W^{1,1}(0,T;H^1_0(\Omega))$.
- ▶ \mathcal{T}_h a triangular mesh of Ω
- $\blacktriangleright \ V_h = \left\{ \varphi \in C(\omega) \, | \, \varphi_{|T} \in P_1(T) \, \, \forall \, \, T \in \mathcal{T}_h, \varphi = 0 \text{on } \partial \Omega \right\}.$

Two dimensional wave equation $\Omega = (0, 1)^2$

the source term

$$\begin{split} f(t,x,y) = &\alpha \left(6t(T-t)^3 - 18t^2(T-t)^2 + 6t^3(T-t) \right) x^3 (1-x)^3 y^3 (1-y)^3 \\ &- \alpha \left(1 + t^3(T-t)^3 \right) \left(6x(1-x)^3 - 18x^2(1-x)^2 + 6x^3(1-x) \right) y^3 (1-y)^3 \\ &- \alpha \left(1 + t^3(T-t)^3 \right) \left(6y(1-y)^3 - 18y^2(1-y)^2 + 6y^3(1-y) \right) x^3 (1-x)^3 \\ &+ \alpha \left(3t^2(T-t)^3 - 3t^3(T-t)^2 \right) a(x,y) x^3 (1-x)^3 y^3 (1-y)^3, \end{split}$$

▶ the *T*-periodic solution:

$$w(t, x, y) = \alpha \left(1 + t^3 (T - t)^3\right) x^3 (1 - x)^3 y^3 (1 - y)^3$$

• the fixed point of the operator Λ :

$$\widehat{U}_0 = \begin{bmatrix} \alpha x^3 (1-x)^3 y^3 (1-y)^3 \\ 0 \end{bmatrix}$$

Two dimensional wave equation $\Omega = (0, 1)^2$

Figure : The function $a \in C^1(\overline{\Omega})$.

Two dimensional wave equation $0 - (0.1)^2$

Figure: (a) Evolution of the error in the fixed point algorithm as a function of the iteration's number.

 $\Omega \subset \mathbb{R}^2$ convex with C^1 boundary

Figure : (a) Domains Ω and ω . (b) Triangulation of the domain Ω : by circles we design the points in $\Omega \setminus \omega$, and by stars the points in ω .

 $\Omega \subset \mathbb{R}^2$ convex with C^1 boundary

We consider the following periodic function $f \in C([0,\infty); H_0^1(\Omega))$

$$f(t,x) = \psi(x)\cos\left(\frac{2\pi t}{T}\right),$$

where T is the period and ψ is the solution of the following elliptic problem

$$\left\{ \begin{array}{ll} \Delta \psi(x) = 1, & (x \in \Omega) \\ \psi(x) = 0, & (x \in \partial \Omega). \end{array} \right.$$

 $\Omega \subset \mathbb{R}^2$ convex with C^1 boundary

Figure : The fixed point of operator $\Lambda_{h\vartheta}$

Plan

Numerical analysis of the problem

A particular case: monochromatic sources

Numerical results

Perspectives and conclusions

Perspective – the boundary dissipation case?

One can consider the system

$$\left\{ \begin{array}{ll} \ddot{u}(x,t)-u_{xx}(x,t)=0, & \text{in } (0,1)\times(0,\infty)\\ u(0,t)=0, & \text{on } (0,\infty)\\ \ddot{u}(1,t)+u_x(1,t)+\alpha\dot{u}(1,t)=f(t), & \text{on } (0,\infty). \end{array} \right.$$

- $ightharpoonup \alpha > 0$
- f(t+T) = f(t), t > 0.

N. C., S. Micu and A. Pazoto.

Periodic solutions for a weakly dissipated hybrid system. Journal of Mathematical Analysis and Applications, Vol. 385 (1), p. 399-413, 2012.

Some conclusion

- Existence of periodic solution
- Convergence of the discrete periodic solutions
- Mono-chromatic case and application to Helmholtz equation
- Everything can be extend to plate equations and elasticity.

Thanks

Thank you!

N. C., S. Micu and J. Morais

Approximation of periodic solutions for a dissipative hyperbolic equation. Numerische Mathematik. Volume 124, Issue 3 (2013), Page 559-601.