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A dissipative wave equation

W(t,x) — Aw(t,z) + aw(t,z) = f(t,x), in (0,00) x Q
w(t,z) =0, in (0,00) x 9Q (D)
w(0,2) = wo(z), w(0,x)=wi(zx), in

Hypotheses:

» Q and w C  are two open sets in R¢
with C! boundaries

» a € CHQ), a(x) >0, Vr € Q
a(xz) >0, Vo € w
> fis a T-periodic function with 7" > 0
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A dissipative wave equation

W(t,x) — Aw(t,z) + aw(t,z) = f(t,x), in (0,00) x Q
w(t,z) =0, in (0,00) x 9Q (D)
w(0,2) = wo(z), w(0,x)=wi(zx), in

Hypotheses:

» Q and w C  are two open sets in R¢
with C! boundaries

» a € CHQ), a(x) >0, Vr € Q
a(xz) >0, Vo € w
> fis a T-periodic function with 7" > 0

Question

There exists a T-periodic solution w of (D)?
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Observability and existence of periodic solutions

We consider the following wave equation:
i(t,x) — Au(t,z) =0, (t,x) €
u(t,z) =0, (t,x) €
u(0,2) = uo(x), @(0,2) = wi(z), @€ Q.

(0,00) x 0
(0,00) X 90 (%)

Inequality of observability

We say that () is observable in time 77 > 0, with the observation
y(t) = au(t), if there exists a constant kp, > 0 such that

T
| ettt ar > ke, (ol o + s o)
for every (ug,u1) € HE(Q) x L*(Q).
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Observability and existence of periodic solutions

We consider the following wave equation:

i(t,x) — Au(t,z) =0, (t,x) € (0,00) x Q2
u(t,z) =0, (t,z) € (0,00) x O (%)
u(0,z) = up(z), w(0,z) =ui(z), = €.

Inequality of observability

We say that () is observable in time 77 > 0, with the observation
y(t) = au(t), if there exists a constant kp, > 0 such that

1
| ettt ar > ke, (ol o + s o)
for every (ug,u1) € H3 () x L*().

Theorem

If (x) is observable in a time Ty > 0 and f € C(0,T; H}(Q)) is
T-periodic then there exists a unique T-periodic solution w of (D).
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Observability = existence of periodic solutions

Sketch of the proof (1)

We denote A : H3(Q) x L?(2) — H(Q) x L*(Q) :
A(w()? wl) = (w(T7 ')7 w(Tv ))

where w is solution of

{ w(t,z) — Aw(t,z) + a(z)w(t,x) = f(t,z), (t,x) € (0,00) x Q
w(t,z) =0, (t,z) € (0,00) x O
w(0,z) = wo(z), w(0,z)=wi(z), x €.

N. Cindea (Clermont-Ferrand) 4 /37



Observability = existence of periodic solutions

Sketch of the proof (1)

We denote A : H3(Q) x L?(2) — H(Q) x L*(Q) :
A(’wo, wy) = (w(T7 ')7 w(Tv ))

where w is solution of

{ w(t,z) — Aw(t,z) + a(z)w(t,x) = f(t,z), (t,x) € (0,00) x Q
w(t,z) =0, (t,z) € (0,00) x O
w(0,z) = wo(z), w(0,z)=wi(z), x €.

Idea of the proof

Show that A have a fixed point.
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Observability = existence of periodic solutions

Sketch of the proof (2)

By Duhamel's formula we have:

T
A(wo, wi) = S(T) (wo, wr) —I—/O S(T —t)(0, f(t,-))dt

> (S(t))+>0 is the semi-group associated to the dissipative wave
equation.

In fact, we show that there exists a n € N* such that A" is a
contraction:

nT
A" (w, w1) = S(nT) (wo, wr) +/0 S(nT — 1)(0, f(t, -))dt

and

[A™ (wo, w1)=A"(20, 21) | g2 x 22 = IS(nT) (wo—20, w1—21) || 3 12-
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Observability = existence of periodic solutions

Sketch of the proof (3)

Observability <= Stability :
there exist M > 0 and p > 0 such that

IS®) (wo, w)ll g2 < Me™*|[(wo, w) | g2, VE20

for every (wo,w1) € HE(Q) x L*(Q).
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IS®) (wo, w)ll g2 < Me™*|[(wo, w) | g2, VE20
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Therefore,

[A™ (wo, w1) — A" (20, 21) | 2 w2 = [S(RT)(wo — 20, w1 — 21) || 2 w12

< Me *| (wo, wy) — (20721)||H3xL2
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Observability = existence of periodic solutions

Sketch of the proof (3)

Observability <= Stability :
there exist M > 0 and p > 0 such that

IS®) (wo, w)ll g2 < Me™*|[(wo, w) | g2, VE20

for every (wo,w1) € HE(Q) x L*(Q).

Therefore,

JA™ (wo,wn) = A (20, 20l g 22 = IS(T) (o — 20, w1 — 21) | 2
< Me | (wo, wn) — (20, 21) | 312

For n large enough A™ is a contraction.
Let (wp,w1) be the unique fixed point of A™.
Then (wy, w1) is a fixed point for A.
L]
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Numerical analysis of the problem

A particular case: monochromatic sources
Numerical results

Perspectives and conclusions
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Numerical analysis of the problem
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> (Vi)n>o a family of finite dimensional subspaces of H}(f2).
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> (Vi)n>o a family of finite dimensional subspaces of H}(f2).

» 7, : HE(Q) — V, the orthogonal projector.
We assume that 7, satisfies:

e — @lliz < Cohllel anmy (¢ € H*(Q) N Hy (),
I7ne — ¢l < Cob’ ol . (v € Hy ().
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> (Vi)n>o a family of finite dimensional subspaces of H}(f2).

» 7, : HE(Q) — V, the orthogonal projector.
We assume that 7, satisfies:

Imne = @l < Coh® (el pramms (v € H*(Q) N Hy (),
I7ne — ¢l < Cob’ ol . (v € Hy(2)).
» discretized equation:

{ wp(t) + Apwn(t) + BpBjun(t) = fa(t), (t>0)

wy(0) = wop,  Wp(0) = wy. (Dn)
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> (Vi)n>o a family of finite dimensional subspaces of H&(Q)
» 7, : HE(Q) — V, the orthogonal projector.
We assume that 7, satisfies:

Imne = @l < Coh® (el pramms (v € H*(Q) N Hy (),
I7ne — ¢l < Cob’ ol . (v € Hy(2)).
» discretized equation:

{ ’[Dh(t) + Ahwh(t) + BhB;;wh(t) = fh(t), (t > O) (Dh)

wp(0) = won, wp(0) = wi.

> (Sk(t))e>0 denotes the semi-group associated to the discrete
equation (Dp,).
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> (Vi)n>o a family of finite dimensional subspaces of H}(f2).

» 7, : HE(Q) — V, the orthogonal projector.
We assume that 7, satisfies:
Imne = @llms < Coh® ||l s2nms (v € H*(Q) N Hy (),
I7ne — ¢l < Cob’ ol . (v € Hy(2)).

» discretized equation:

{ wp(t) + Apwn(t) + BpBjun(t) = fa(t), (t>0)

wy(0) = wop,  Wp(0) = wy. (Dn)

> (Sk(t))e>0 denotes the semi-group associated to the discrete
equation (Dp,).
> Ay Vi x Vi = Vi X Vg, Ah(w0h7w1h) = (wh(T)awh(T))
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Energy associated to the discrete system

The discrete energy corresponding to (D) is defined by

1/, 1 _
Ealt) = 5 (I14fwnl? + on?)

If f5, =0, then taking the inner product by wy, in equation (D},),
we deduce that

dEy,

o B == 1B in(®)ly  (t>0).

Thus, if f, =0, the energy E} is non increasing.
Hypothesis

We shall suppose that the following holds

tlg(r)lo En(t) = 0.
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Existence of periodic solutions of discrete system

Theorem (N.C., S. Micu, J. Morais (2013))

Let h > 0. Assume that lim;_,~, Ep(t) = 0 and that

fn € C([0,00); V,) is T-periodic.

There exists a unique (@), @) € V;2 such that the corresponding
solution (@, W) € C* ([0, 00); V}2) of (Dy) with initial data

/\0 ~1 . . .
(wy,w,) is T'—periodic.
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Existence of periodic solutions of discrete system

Theorem (N.C., S. Micu, J. Morais (2013))

Let h > 0. Assume that lim;_,~, Ep(t) = 0 and that
fn € C([0,00); V,) is T-periodic.
There exists a unique (@), @) € V;2 such that the corresponding
solution (@, W) € C* ([0, 00); V}2) of (Dy) with initial data
(@9, w}) is T—periodic.
Idea of the proof:

» fixed-point algorithm

» decay of the discrete energy: for every h > 0 there exists

constants M > 0 and w(h) > 0 such that

Ey(t) < M?Ep(0)e~ 2t
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Some remarks

1. The following are equivalent:
> thm Eh(t) =0.
—00
> Byop # 0 for every ¢} eigenvector of Ap.
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Some remarks

1. The following are equivalent:

> tgrgo EL(t) =0.

> Byop # 0 for every ¢} eigenvector of Ap.
2. B¢™ # 0 does not imply By¢p # 0.

Kavian’s example:

[d E. Zuazua, Propagation, observation, w—
and control of waves approximated by

finite difference methods, Siam Review,
2005.
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Some remarks

1. The following are equivalent:

> tgrgo EL(t) =0.

> Byop # 0 for every ¢} eigenvector of Ap.
2. B¢™ # 0 does not imply By¢p # 0.

Kavian’s example:

[d E. Zuazua, Propagation, observation, w—
and control of waves approximated by

finite difference methods, Siam Review,

2005.
3. In general case w(h) — 0 when h — 0.
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A discretization with vanishing viscosity

We consider the following discretization of (D):

{ wp(t) + Ahwh(t)fr By, B (t) + OhT Apiiy (t) = fa(t) (Dno)

wh(O) = Woh, wh(O) = w1.

v

¥ € [0,1]
n>0
(Shy)t>0 the associated semi-group

Apy 2 Viy X Vi = Vi X Vi, Apg(won, win) = (wi(T), wn(T))
where wy, is the solution of (Dyy).

if fr, =0 then

v

v

v

v

2

1
(t) = ~ B an ()2 — 007 A7 i (1) < 0.
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A discretization with vanishing viscosity

Existence of periodic solutions

Theorem (N.C., S. Micu, J. Morais (2013))

Let b€ (0,h*), 9 > 0 and ) = .

Furthermore, assume that f;, € C([0,00);V},) is a T-periodic
function.

Then there exists a unique (W%, @}) € Vi, x V}, such that the
corresponding solution (@, wp) € C([0,00); Vi, x Vi) of (Dpy)
with initial data (@), w:) is T—periodic.
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A discretization with vanishing viscosity

Existence of periodic solutions

Theorem (N.C., S. Micu, J. Morais (2013))

Let h € (0,h*), ¥ >0 andn=0.
Furthermore, assume that f;, € C([0,00);V},) is a T-periodic
function.
Then there exists a unique (W%, @}) € Vi, x V}, such that the
corresponding solution (wy,, W) € C1([0,00); Vi, x Vi) of (Dpy)
with initial data (@), w:) is T—periodic.
Idea of the proof:

» fixed-point algorithm

» decay of the discrete energy: for every h > 0 there exists

constants M > 0 and w > 0 such that

En(t) < M?E,(0)e 2. [
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Some error estimates — non-viscous case

Theorem (N.C., S. Micu, J. Morais (2013))
Let f be a T-periodic function such that f|[O}T] e Whi(o,T; H&)
Assume that BB* € L(H? N H}, HE) and tlim En(t) =0.
—00
Let U° and (7,? be the unique fixed points of A and Ay. Then

there exists a constant C' > 0 such that, for each n > 1 and
h < h*, the following estimate holds

~0 ~0 0 q" qg’
U°-U <C|nh"+—+ :
| rllx < (n 1—q 1-— qh> ”f”W“(O,T,Hé)’

where ¢ = e T and ¢, = e~ “(WT,
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Some error estimates — non-viscous case

Theorem (N.C., S. Micu, J. Morais (2013))
Let f be a T-periodic function such that f|[O}T] e Whi(o,T; H&)
Assume that BB* € L(H? N H}, HE) and tlim En(t) =0.
—00
Let U° and (7,? be the unique fixed points of A and Ay. Then

there exists a constant C' > 0 such that, for each n > 1 and
h < h*, the following estimate holds

180~ 090x < (nhf + L 4 — %) oz
= l—q¢ 1—q " (OT3Ho)

—wT w(h)T

where g = e and q, = e~

Remark: This result does not ensure the convergence of (ﬁ}?);»o

to U°. Indeed, since ¢, = e "7 may tend to 1, the terms nh?
a

n
and T

may not tend simultaneously to zero as h does.
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Some error estimates — viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that f|[O}T] e Whi(o,T; H&)
Assume that BB* € L(H? N H}, HE), 9 > 0 and n = 6.
Let U° and U} be the unique fixed points of A and Apy. Then

there exists a constant C > 0 such that, for each n > 1 and
h < h*, the following estimate holds

7,.71

A A qn
IU° - URllx <C <nh9 T tTo r) 1F w0123

where g = e T and r = e« (0T,
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Some error estimates — viscous case

Theorem (N.C., S. Micu, J. Morais (2013))

Let f be a T-periodic function such that f|[O}T] e Whi(o,T; H&)
Assume that BB* € L(H? N H}, HE), 9 > 0 and n = 6.

Let U° and [7,? be the unique fixed points of A and Apy. Then
there exists a constant C > 0 such that, for each n > 1 and

h < h*, the following estimate holds

n

i
) Moy

107 - BBl < (4 12+

wT w(h,)T

where ¢ = e~ " andr =e~

Remark: This result does ensures the convergence of (ﬁ,?)h>0 to

U, Indeed, Indeed, by taking n = [W (%)] +1, we

obtain [T° — Tfllx < C1® | flwraormy  (n> 1)
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A particular case: monochromatic sources
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A particular case: monochromatic source terms

We suppose that the nonhomogeneous periodic term f has the
following particular form

f(t.a) = e 'g(a),
where ¢ € R and g € L(Q).
Evidently, these functions are periodic of period T' = 2{ and are
usually called monochromatic.
They appear in many important applications including acoustic,
electromagnetic and geophysical wave propagation.
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A particular case: monochromatic source terms

We suppose that the nonhomogeneous periodic term f has the
following particular form

f(t, ) =e'*'g(a),
where ¢ € R and g € L(Q).

Evidently, these functions are periodic of period T' = 2{ and are
usually called monochromatic.

They appear in many important applications including acoustic,
electromagnetic and geophysical wave propagation.

For instance, the wave equation

wy(t, x) — Aw(t, z) = e tg(z), (x€Q, t>0)

has a periodic solution w = e*Stu if and only if u verifies the
Helmholtz's equation

(4 Du(z) = —g(z),  (ze€Q),
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Application to Helmholtz equation

Some references

@ C. Bardos and J. Rauch.
Variational algorithms for the Helmholtz equation using time evolution and
artificial boundaries.
Asymptotic Anal., 9 (1994), pp. 101-117.

@ M. O. Bristeau, R. Glowinski and J. Périaux.
Controllability methods for the computation of time-periodic solutions;
application to scattering.
J. Comput. Phys., 147 (1998), pp. 265-292.

@ R. Glowinski, J. Périaux and J. Toivanen.
Time-periodic solutions of wave equation via controllability and fictitious domain
methods.
WAVES 2003, Springer, Berlin, 2003, pp. 805-810.

@ E. Zuazua.
On the numerical approximation of Helmholtz equations.
Mat. Contemp., 32: 253-286, 2007.
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Convergence of fixed points

Theorem (N. C., S. Micu, J. Morais (2013))
Letc€R, T =2, ge Hy and let f € W0, T; Hg) given by
f(t,x) = e'<*g(x).
Assume that BB* € L(H? N H}, H}) and that
lim Bj(t) = 0.
By taking fi(t) = e*tnyg, let U° and ff,? be the unique fixed

points of A and Ay, respectively. Then there exist hy > 0 and
K >0, such that for every h < hy and n > 1

~ ~ 0 q"
16° = BBl < 6 (e + 15 1) Uy
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Convergence of fixed points

Idea of the proof

Lemma

Let ¢ € R. There exists hg > 0 with the property that, for every
h < hg, there exist two subspaces W,% and Wf% of V}, such that

1. Vi may be written as
Vi = Wi @ W7

2. There exist two positive constants My and w1, independent of
h, such that for every t > 0

ISk®OURNX < Mie™ | URlx  (Up € Wy x Wy)
3. There exists a constant C' > 0, independent of h, such that

|G T - AU x <CROITRIIx  (UY € Wi x Wi).

Ix
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Convergence of fixed points

Proof of the Lemma

We denote )
> (¢} )1<n<n(n) eivenvectors of AZ,

1
> (AR)1<n<N(n) the corresponding eivenvalues of A, .
For a fixed value of § > 0, we take

1)
W) = Span{g¢} | A} < ﬁ}
Wi = W]+
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Convergence of fixed points

Proof of the Lemma

We denote )
> (¢} )1<n<n(n) eivenvectors of AZ,

1
> (AR)1<n<N(n) the corresponding eivenvalues of A, .
For a fixed value of § > 0, we take

)
W), = Span{gj | Aj < ﬁ}
Wi = W]
On note A} = [ 0 I] , Ay = [ U ! } and let (7))

—Ap 0O An —BpBj
be the eigenvectors of skew-adjoint operator A,ll:

" 1 In|
he E [isgn(gh)\w(bw] ’ (1 <[n| < N(R)).
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Convergence of fixed points

Proof of the Lemma (2)

We take
U= 3 andp, € (WP)°

[

and we remark that

(6T — Ap)"'UR — (i — A T'UR| <

o2 = ) ey 108 — i — it — A1) 10 <
(65T = ) gz 1B GisT — 41102
where By, = [8 —B(;)IB;;] and, hence,

|GisZ — A1) UL < CliisT — ADTUSx.

I
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Convergence of fixed points

Proof of the Lemma (3)

Remark that, at the same time, hg and 6 can be chosen such that

0
5| < oh0 for every h < hg

and, hence the operator (icI — A})~1 is well defined in £((W?)?).
Moreover, we have that

1

A _ an 0
(isI — ANTUY| . = ———®pp|| <  max ———— [|U}]x.
H R @hnezwvf:)z BBl | T o€ @D o= Al "
Since ®, € (VV}%)2 implies that Ap, > h%, we deduce that there

exists a constant C'y > 0 such that the following inequality holds

[(sZ — 83709 < CRURx (U € (WR)?, h < ho).

Ix

[ ]
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Convergence of fixed points

Proof of theorem (2)

Let U% € (H%(Q) N HY(Q)) x HE () such that
I,U% := U? € (W})2. We have that

ARUP = Sp(nT)(UY — UP) + Uy

and [7,‘3 satisfies (ic — Ap)UY = Gy, where G, = [ﬂog] .
h
By using the Lemma we deduce that there exist two unique

elements g,ll € W,% and g,% € W}% such that mpg = g,ll + g%. Let us
denote by G = [Ol] i=1,2.
9h

IARUS — U9l = [Sh(nT)(UY — U9)||x
< [[Su(aT)UD || + ||S(nT) (is — An)~ (G| 5 -
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Convergence of fixed points

Proof of theorem (3)

Since U € (W})2, from Lemma we deduce that
[Sh(nT)(UR) || € Mie ™™ (|UR]lx  (n>0). (1)

On the other hand, by writing G, = G}lZ + G% and by using
properties of the spaces W,% and W,% we deduce that

ISk (nT) (is — AR)"H(Gn) || x < IS (T) (s — Ap) "N (GH)|| x +ISh(nT) (i — AR) "G || =
= ||(is — Ap) "' Sh(nT)(GR)|| x + [ISh(RT)(is — An)H(GR) || 5 <
< Mie™ wind H ic — Ap) 1”5(\/,) HGh”X +Ch9”G IIx-
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Numerical results
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One dimensional wave equation

Consider the following one-dimensional wave equation

_ g:g(t,:v) +a(z)w(t,z) = f(t,xz), t>0, z€(0,1),

w(t,0) =w(t,1)=0, t>0

w(t, x)
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One dimensional wave equation

Consider the following one-dimensional wave equation

_ g:g(t,:v) +a(z)w(t,z) = f(t,xz), t>0, z€(0,1),

w(t,0) =w(t,1)=0, t>0

w(t, x)

» a:[0,1] — R is a nonnegative regular function which is
strictly positive in a subdomain w C (0,1).

» f€C([0,00); L?(0,1)) is a periodic function of period T such
that f\(O,T) € W“(O, T; H(% (0,1)).
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One dimensional wave equation

Consider the following one-dimensional wave equation

_ g:g(t,:v) +a(z)w(t,z) = f(t,xz), t>0, z€(0,1),

w(t,0) =w(t,1)=0, t>0

w(t, x)

» a:[0,1] — R is a nonnegative regular function which is
strictly positive in a subdomain w C (0,1).

» f€C([0,00); L?(0,1)) is a periodic function of period T such
that f\(O,T) € W“(O, T; H(% (0,1)).

» 75, a mesh of the interval (0,1) formed by N equidistant
points and we denote (h = 1/(N + 1))

» Vi={0 e C0,1) ¢ € P(I) V1€ e0)=p(l)=0}.
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One dimensional wave equation

A mono-chromatic source term

> the source term
f(t,z) = (=k* + n%) sin(nz) cos(kt) — ka(z) sin(mz) sin(kt).
with
=T
» the T-periodic solution:

w(t, x) = sin(mwz) cos(kt)

» the fixed point of the operator A:

by — [Singrx)]
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One dimensional wave equation

A mono-chromatic source term

70F :
0 9=0
a9 =1,n=4
» 60 kP =1,m=2
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(a) (b)

Figure : (a) Error for a fixed period T'= 7. (b) The number of iterations
necessary to achieve a precision € = h? in the fixed point algorithm.
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One dimensional wave equation

A mono-chromatic source term

[ Period T [ 010 0.15 0.30 0.45 0.60 0.80 1.00 |
n(h) for 9 =0 10000 4203 1518 794 491 238 95
n(h) fordy=1,n=4 10000 4183 1510 791 490 237 94
n(h) ford =1, n=2 660 448 233 155 108 90 71
Error 0.0873 0.0370 0.0096 0.0043 0.0026 0.0015 0.0011

Table : Number of iterations n(h) and error ||Uy — n( )U0||X for

different values of T'.
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One dimensional wave equation

A general periodic function

» the source term

f(t,z) =at(T —t) (6(T — t)* — 18(T — t) + 6t*) 2°(1 — z)*
—a(1+8(T —t)°z(1 —z)) (6(1 — 2)* — 182(1 — z) + 62?)
+ a3t}(T — t)*(T — 2t)a(z)x3(1 — )3,

» the T-periodic solution:
wt,z)=a(l+3(T —t)*) 2°(1 — z)°
» the fixed point of the operator A:

0o _ [ozx?’(lo— x)T ‘
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One dimensional wave equation

A general periodic function

Error

Nu
W
o

*

0.005  0.007 0.012 0.02 0.005  0.007 0.012 0.02
Space discretization step (h) Space discretization step (h)

(a) (b)

Figure : (a) Error for a period T'= 1.5. (b) The number of iterations
necessary to achieve a precision € = h? in the fixed point algorithm.
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Two dimensional wave equation

Consider the following two-dimensional wave equation

w(t,x) — Aw(t,z) + a(x)w(t,z) = f(t,z), t>0, zeQ,
w(t,z) =0, t>0, z€d

N. Cindea (Clermont-Ferrand)



Two dimensional wave equation

Consider the following two-dimensional wave equation

w(t,x) — Aw(t,z) + a(x)w(t,z) = f(t,z), t>0, zeQ,
w(t,z) =0, t>0, z€d

» a: ) — R is a nonnegative regular function which is strictly
positive in a subdomain w C .

» f€C([0,00); L3()) is a periodic function of period T" such
that f\(O,T) S Wl’l(O,T; H&(Q))
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Two dimensional wave equation

Consider the following two-dimensional wave equation

w(t,x) — Aw(t,z) + a(x)w(t,z) = f(t,z), t>0, zeQ,
w(t,z) =0, t>0, z€d

» a: ) — R is a nonnegative regular function which is strictly
positive in a subdomain w C .

» f€C([0,00); L3()) is a periodic function of period T" such
that f\(O,T) S Wl’l(O,T; H&(Q))

> Th a triangular mesh of )

» Vi={peCw)|preP(T)VTe Ty e=00nd0}.
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Two dimensional wave equation

Q=(0,1)>

» the source term

f(t,z,y) =a(6t(T — )% - 18t2( t)? + 6t3(T —1))z3(1 - 2)%P 1 - y)?
—a(l+ t3(T ) (6z(1 —z)® — 182%(1 — z)? + 623 (1 — x))y?’(l —9)3
—a (1+ 3T = 1)) (6y(1 — y)® — 18y%(1 — y)% + 6y>(1 — y))2>(1 — z)?
+a(3t(T — 1) = 36°(T — t)*)az, y)2° (1 — 2)*y*(1 — y)?,

» the T'-periodic solution:
w(t,z,y) =a(1+(T —1)%) 2°(1 — 2)°y*(1 — y)°
> the fixed point of the operator A:

O [ar? (=2 (1 —y)®
0~ 0

N. Cindea (Clermont-Ferrand)



Two dimensional wave equation
Q=(0,1)?

Figure : The function a € C1(9).
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Two dimensional wave equation
Q=(0,1)?

Error
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Figure : (a) Evolution of the error in the fixed point algorithm as a
function of the iteration’s number.
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Two dimensional wave equation

Q C R? convex with C* boundary
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Figure : (a) Domains © and w. (b) Triangulation of the domain €2: by
circles we design the points in Q \ w, and by stars the points in w.
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Two dimensional wave equation

Q C R? convex with C* boundary

We consider the following periodic function f € C([0,00); HE(Q))

27t

flt.) = w(a)cos (7).

where T is the period and v is the solution of the following elliptic
problem

{ Y(z) =1, (z€Q)
W(x) =0, (z € 99).
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Two dimensional wave equation

Q C R? convex with C* boundary

w(x, y)

Figure : The fixed point of operator Ay
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Perspectives and conclusions
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Perspective — the boundary dissipation case?

One can consider the system

U(z,t) — Uge(z,t) =0,

u(0,t) =0, on (6, 00)
(1, t) + ug(1,t) + au(l,t) = f(), on (0, 00).
> a>0

> f(t+T)=f(t), t>0.

[4 N.C., S. Micu and A. Pazoto.
Periodic solutions for a weakly dissipated hybrid system.

Journal of Mathematical Analysis and Applications, Vol. 385
(1), p. 399-413, 2012.
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Some conclusion

v

Existence of periodic solution

v

Convergence of the discrete periodic solutions

v

Mono-chromatic case and application to Helmholtz equation

v

Everything can be extend to plate equations and elasticity.
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Thank you!

[4 N.C., S. Micu and J. Morais
Approximation of periodic solutions for a dissipative hyperbolic
equation. Numerische Mathematik. Volume 124, Issue 3
(2013), Page 559-601.
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