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Controllability of the Euler-Bernoulli beam equation

We consider the following clamped beam equation :

i(z,t) + Opu(z,t) = 0, (0,1) x (0,T)
u(0,t) = u(1,t) =0, te(0,7T) (CB)
O,u(0,t) =0, Jyu(l,t) =wv(t), te (0,7)
u(x,0) = up(z), a(x,0)=wu(x), x € (0,1).

» T >0

» ug € L?(0,1)

» uy € H2(0,1)
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Controllability of the Euler-Bernoulli beam equation

We consider the following clamped beam equation :

i(z,t) + Opu(z,t) = 0, (0,1) x (0,7)
u(0,t) = u(1,t) =0, te(0,7T) (CB)
0;u(0,t) =0, Oyu(l,t) =v(t), te (0,7
u(w,O) = uO( ) U($,0) = ul(x)a S (0 1)
» T>0

» ug € L?(0,1)

» u; € H2(0,1)
Definition
We say that the beam equation (CB) is null controllable in time
T > 0, if for every initial data (ug,u1) € L?(0,1) x H=2(0,1)
there exists a control v € L?(0, 7)) such that

u(-,T) = u(-, T) = 0.
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Controllability of the Euler-Bernoulli beam equation

We consider the following Wallifetls MolE oW IETAloTN:

ii(z,t) + Ofu(w,t) = 0, ( 1) x (0,T)

u(0,t) = u(1,t) =0, € (0,7)

02u(0,4) = 0, S2u(1,t) = v(t), € (0.T) (HB)
u(l‘,O) :’ILO(JJ), u(x70) :ul(w)a ( 1)

»T>0

» ug € HL(0,1)

» uy € H0,1)
Definition
We say that the beam equation ( HB) is null controllable in time
T > 0, if for every initial data (ug,u1) € Hg(0,1) x H~1(0,1)
there exists a control v € L?(0, 7)) such that

u(-,T) = a(-, T) = 0.
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Observability of the beam equation

In order to define the dual observability concept, we consider the
following homogeneous clamped beam equation :

ii(x,t) + Oty(x,t) =0, (0,1) x (0,7)

y(0,t) = y(1,t) =0, te (0,T) (S)
0,y(0,t) = dyy(1,t) =0, te (0,7)

y(a:,O) :y0<x)7 y(w,O) :yl(‘r)7 T € (07 1)
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Observability of the beam equation

In order to define the dual observability concept, we consider the
following homogeneous clamped beam equation :

j(x,t) + Opy(z,t) =0, (0,1) x (0,7)

y(0,t) = y(1,t) =0, te (0,T) (S)
a:py(ovt) = 8my(1at) =0, le (O7T)

y(a:,O) :yO(x)a y(w,O) :yl(x)a T € (071)

Definition

We say that the beam equation (S) is exactly observable in time
T > 0, if there exists a constant K7 > 0 such that for every initial
data (yo,y1) € H3(0,1) x L*(0,1) the solution y satisfies

T
ol 2o + 912200y < Kz / O2y(1,0)%dt (OBS)
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Observability of the beam equation
In order to define the dual observability concept, we consider the
following homogeneous Bl MLl IENAloT N

(. 1) + Oy, t) = 0, (0,1) x (0,T)
y(0,t) = y(1,t) =0, te (0,T) S)
&2(0.1) = Py (1,1) =0, te(0,T) (

y(a:,O) :yO(x)a y(.’IZ‘,O) :yl(m)7 T € (071)
CONTROLLABILITY <— OBSERVABILITY
Definition
We say that the beam equation (S) is exactly observable in time
T > 0, if there exists a constant K7 > 0 such that for every initial
data (yo,y1) € Hg(0,1) x H=1(0,1) the solution y satisfies

T
0l 0.0 + 1101y < Kz /0 O.y(1,0)2dt (OBS)
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Finite differences semi-discretization

N discretization points in (0, 1) z; = jh
! :
h=——— O e e e e e —_
N+1 29 =0 Tyt =1

N. Cindea Numerical aspects of the controllability of some beam equations 4/31



Finite differences semi-discretization

N discretization points in (0, 1) z; = jh
p—— ‘
T N+1 =0 =1

u(wj_z,t) —du(zj—1,t) + 6u(z;, t) — du(zji1,t) + u(zji2,t)
h4

dpu(zj,t) =~

€T
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Finite differences semi-discretization

N discretization points in (0, 1) z; = jh
p—— ‘
T N+1 =0 =1

Pulz; t) ~ u(wj_z,t) —du(zj—1,t) + 6u(z;, t) — du(zji1,t) + u(zji2,t)
Jo ~

o A
7 —4 1 0 ... 0

clamped —4 6 —4 1 0 0
beam 1 -4 6 -4 1 o 0
0 1 -4 6 —4 1 0 0

A7 = RIS

0 0 1 -4 6 —4 1 0

0 1 —4 6 —4 1

0 0 1 -4 6 —4

0 o 0 1 -4 7
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Finite differences semi-discretization

N discretization points in (0, 1) z; = jh
p—— ‘
T N+1 =0 =1

u(wj_z,t) —du(zj—1,t) + 6u(z;, t) — du(zji1,t) + u(zji2,t)

dpu(zj,t) =~ %

€T

hinged -4 6 -4 1 0
beam 1 -4 6 —4 1

0 1 -4 6 —4 1 0

o O O O

As = . . .. . :
0 1 —4 6 —4 1 0

1 4 6 —4 1
6

—4
o 1 -4 H

N. Cindea Numerical aspects of the controllability of some beam equations 4/31

(aw]
—_
|
W



The following semi-discrete finite-dimensional system is an
approximation of the clamped beam equation (CB)

Un(t) + A7 Up(t) = F (1), te(0,7)

. (CSp)
Un(0) = Uy, Un(0) = U,
1
where A7, = ﬁfh and
ul uy (t) 0 clamped
A ul us (t) 0 beam
U= .| out)=| " Fu(t) = — 35
uly un(t) vn(t)

Discrete controllability problem

For a given time T > 0 and for every initial data
(U,?, Ué) € CN x CV find a control v;, € L?(0,T) such that

Un(T) = U,(T) = 0.
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The following semi-discrete finite-dimensional system is an
approximation of the clamped beam equation (CB)

Un(t) + AspUn(t) = F(1), te(0,7)
Un(0) =UY,  Un(0) = UL,

1
where Asj, = ﬁA5 and

u’l ui(t)

) ul us (t
Ui=| 2|, Ut) = 2
uly un(t)

Discrete controllability problem

For a given time T > 0 and for every initial data
(U,?, Uﬁ) € CN x CV find a control v;, € L?(0,T) such that

Un(T) = U,(T) = 0.
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A uniform observability inequality?

Aim: to study the discrete observability property corresponding
to the controlled problem (CS;,) which reads as follows: there
exists a constant K, such that the following inequality holds

}/]IN )2

lamped
= s ’ dt, (OBSy)

o IYPIE I < ko [ [T

0 Y,
for any <§j::l> € C?N, where (YZ> is the solution of the following

semi-discretization of (S)
Yh(t) + A7th(t) =0, t e (0, T)

‘ (Sn)
Yi(0) =Yy, Yi(0) =Y.
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A uniform observability inequality?

Aim: to study the discrete observability property corresponding
to the controlled problem (CS;,) which reads as follows: there
exists a constant K, such that the following inequality holds

‘)/hN )‘

hinged

R (110112 + [[v;/]12, < K, / dt, (0BS1)

forany (.4 ) € C?!V, where | - ) is the solution of the following
Y, Yy
semi—discretlzation of (S)

Vi (t) + AspYi(t) =0,  te(0,7)
(Sn)
Yi(0) =Y, Y,(0) =Y.
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A uniform observability inequality?

Aim: to study the discrete observability property corresponding
to the controlled problem (CS;,) which reads as follows: there
exists a constant K, such that the following inequality holds

2
Yan (®) ‘ dt, (OBS},)

hinged
beam IVRNT + V117, < Kn / ‘

forany (.4 ) € C?!V, where | - ) is the solution of the following
Y, Yy
semi—discretlzation of (S)

Vi (t) + AspYi(t) =0,  te(0,7)
(Sn)
Yi(0) =Y, Y,(0) =Y.

Question

The constant K} is uniformly bounded w.r.t. h?
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The case of the hinged beam equation

@ L. LEON, E. ZUAZUA, Boundary controllability of the

finite-difference space semi-discretizations of the beam equation.
ESAIM COCV, 2002, 8, 827-862.

> explicit form of the eigenvalues and eigenvectors of the
matrix As
» Ingham’s inequality
= uniform observability

> filtering of the high-frequencies at the level yh=* for v € (0,1)
» adding an extra boundary control acting on O.
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The case of the hinged beam equation

@ L. LEON, E. ZUAZUA, Boundary controllability of the

finite-difference space semi-discretizations of the beam equation.
ESAIM COCV, 2002, 8, 827-862.

> explicit form of the eigenvalues and eigenvectors of the
matrix As
» Ingham’s inequality
= uniform observability

> filtering of the high-frequencies at the level yh=* for v € (0,1)
» adding an extra boundary control acting on O.

@ I.F. BucaAriu, S. Micu,; I. ROVENTA, Approximation of the

controls for the beam equation with vanishing viscosity. Math.
Comp. 85 (2016), no. 301, 2259-2303.

» adding a vi52cous term of the form c45,Y,
with £ € (25 In(h 1), h)
» moment method

= uniform controllability
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The case of the clamped beam equation

Theorem (NC, S. Micu, I.Roventa)

Let T > 0 and v € (0,1). There exists Ny € N such that for every
N > Ny the observability inequality (OBSy) holds, with a positive
constant K independent of h, for every solution of (S) with initial
data in the space Cp,(7y). Moreover,

Yy
Y13 + 1Y, 15 (th

Vi (8)]? <Yh> solution of (S
h? at Y o)

) e C2Nand

lim sup

h—00 /T
0

= OQ.
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The case of the clamped beam equation

Theorem (NC, S. Micu, I.Roventa)

Let T > 0 and v € (0,1). There exists Ny € N such that for every
N > Ny the observability inequality (OBSy) holds, with a positive
constant K independent of h, for every solution of (S) with initial
data in the space Cp,(7y). Moreover,

Yy
Y13 + 1Y, 15 (th

Vi (8)]? <Yh> solution of (S
h? at Y o)

) e C2Nand

lim sup

h—00 /T
0

= OQ.

YO
Cr(v) = (th>: Z an®",  (an)i<ni<yn € C
h 1<|n|<YN
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The case of the clamped beam equation

Theorem (NC, S. Micu, I.Roventa)

Let T > 0 and v € (0,1). There exists Ny € N such that for every
N > Ny the observability inequality (OBSy) holds, with a positive
constant K independent of h, for every solution of (S) with initial
data in the space Cp,(7y). Moreover,

vy
YO 2 Yl 2 Yl
i sup d IR +I¥AE | Ay

T 2
h—o0 Yin (1) dt (Yh> solution of (Sp)
. h2 Yh

) e C2Nand

= OQ.

h2
Ampd" = Mng® " = | VA | "l
Vo —sgn(n) i
Ch(7) = <th> = Y a®", (an)igin<yn CC
h 1<|n|<yN
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Comments and references

» Case of the hinged beam equation

i(z,t) + Otu(z,t) = 0, (0,1) x (0,7)
u(0,t) = u(1,t) =0, te (0,7)
02u(0,t) =0, Ou(l,t) = v(t), t e (0,7)
u(z,0) = up(z), u(zr,0)=ui(x), x € (0,1).

[d L. LeSN, E. Zuazua

@ I.F. BuGgAriu, S. Micu, I. ROVENTA
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[d L. LESN, E. Zuazua
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Comments and references

» Case of the hinged beam equation

i(z,t) + Otu(z,t) = 0, ( 1) x (0,7)
u(0,t) = u(1,t) =0, € (0,7)
02u(0,t) =0, Ou(l,t) = v(t), € (0,7)
u(z,0) = up(z), u(z,0)=ui(x), € (0,1).

similar results for hinged and clamped beam
[d L. LESN, E. Zuazua

@ I.F. BuGgAriu, S. Micu, I. ROVENTA
» Abstract systems case

@ S. ERVEDOZA, Spectral conditions for admissibility and
observability of wave systems: applications to finite element
schemes. Numer. Math., 2009, 113, 377-415
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i(z,t) + Otu(z,t) = 0, ( 1) x (0,7)
u(0,t) = u(1,t) =0, € (0,7)
02u(0,t) =0, Ou(l,t) = v(t), € (0,7)
u(z,0) = up(z), u(z,0)=ui(x), € (0,1).

similar results for hinged and clamped beam
[d L. LESN, E. Zuazua

@ I.F. BuGgAriu, S. Micu, I. ROVENTA
» Abstract systems case

@ S. ERVEDOZA, Spectral conditions for admissibility and
observability of wave systems: applications to finite element
schemes. Numer. Math., 2009, 113, 377-415

filtering at the range Ch™
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Idea of the proof

Spectral properties of the matrix A

Proposition

The matrix A7 has only real eigenvalues (\,)i1<n<n C (0,16) and
there exists an orthonormal basis in CV (with respect to the
canonical inner product (-, -)o) consisting of eigenvectors
(¢")1<n<n of Az

7 —4 1 0 ... 0
—4 6 —4 1 0 ... 0
1 —4 6 —4 1 0o ... 0
o 1 -4 6 -4 1 0 0
A ::A7 = T T
0 0 1 -4 6 —4 1 0
0 0 1 -4 6 —4 1
0 e 0 1 -4 6 —4
0 e 0 1 -4 7
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Idea of the proof

Spectral properties of the matrix A

Proposition

The matrix As has only real eigenvalues (\,)i1<n<n C (0,16) and
there exists an orthonormal basis in CV (with respect to the
canonical inner product (-, -)o) consisting of eigenvectors
(¢")1<n<n of As.

-4 1 0 ... Ul hinged beam
—4 6 —4 1 0O ... ... ... 0
nmh

1 =4 6 -4 1 0 ... ... 0 |\,=16sin? <2>
0 1 —4 6 —4 1 0 ... 01, ...

" =gin(jnmh
0 0 1 - 6 —4 1 0
0 0 1 —4 6 —4 1
0 0 1 —4 6 —4
0 0 1 —4 B
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Idea of the proof

Spectral properties of the matrix A

Proposition

With the above notation, \ is a eigenvalue of the matrix A if and only if verifies one of the
following relations

sX N _ Ax2NHD _ /)
2 (227D — AX]H 4 2)

cos (N +1)arg(X4)) = s sin((N+1) arg(X4)) > 0,

or

8XNHL 4 Aax2NHD 4 /X
2 (2X12(N+1) + \/Xxi\f-&-l + 2)

cos ((N + 1) arg(X4)) = , sin((N+1) arg(X4)) < 0,

where for each j € {1, 2, 3, 4} the numbers X are given by

2+ VA 2+ VA2 -4
N 2

2—VAtiy/4—(2— V)2
= . ,

X1,2 , X34

N. Cindea Numerical aspects of the controllability of some beam equations 11/31



The proof of the proposition is somehow similar to the one for the
discrete Laplacian in the the book of Keller and Isaacson:

» n-th line of linear system A¢ = Ao

Ptz = Adni1 + (6 = N)dpn — ddn—1 + dn2 =0

N. Cindea Numerical aspects of the controllability of some beam equations 12/31



The proof of the proposition is somehow similar to the one for the
discrete Laplacian in the the book of Keller and Isaacson:

» n-th line of linear system A¢ = Ao
¢n+2 - 4¢n+1 + (6 - >\)¢n - 4¢n—1 + ¢n—2 =0
» X, (i € {1,2,3,4}) are the solutions of

ot — 423 4+ (6 — N)a® —4x+1=0.
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The proof of the proposition is somehow similar to the one for the
discrete Laplacian in the the book of Keller and Isaacson:

» n-th line of linear system A¢ = Ao
Ony2 — Adns1 + (6 = N)pp — 4dp_1 + 2 =0
» X, (i € {1,2,3,4}) are the solutions of
ot — 423 4+ (6 — N)a® —4x+1=0.
» components of the eigenvector ¢ write as

on = C1 X7 + Co X3y + O3 X3 + Cy X}
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The proof of the proposition is somehow similar to the one for the
discrete Laplacian in the the book of Keller and Isaacson:

» n-th line of linear system A¢ = Ao
Ony2 — Adns1 + (6 = N)pp — 4dp_1 + 2 =0
» X, (i € {1,2,3,4}) are the solutions of
ot — 423 4+ (6 — N)a® —4x+1=0.
» components of the eigenvector ¢ write as
bn = C1XT + Co XD + C3 X2 + C4 X7
» boundary conditions on ¢

¢0=¢Ns1 =0
$—1 = P1, ON = ON12
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1+ Cy +

R C; - RyCy +
Xptter v X0y +
xMeier - xPT'RiC, 4+

Cs + Cy

iR_Cs — iR_Cy
xNttos  + xXNttey
Xy T'R_Cy — ix)T'R_Cy

From the first two equations we extract

SRETA AP

2 R_

2 R_

1
cr= L1+ -

and from the last two equations

C3

Cy

N. Cindea

2 R_ Xé\/+1
L), B XN+t
_ ) AL
2 R_ XiVJrl

1 XN+1
_ ! <1 —iR+> Yo

1

R,
1 T
( +2R_>CQ,

R,
1—4-*
< ZR>027

1 XN+1
= <1 +z‘R+> —2__C

N — DN

2 R_ Xé\Hl 25
1 Ry X
—_—— —_— 27 —
L R_) xNH17%
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Idea of the proof

Spectral properties of the matrix A

» any number A € (0,16) can be written as

hz
A = 16sin* [ —
6 sin <2>

for some z € (0,%) and, hence, arg(Xy) = 27 — zh.
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Idea of the proof

Spectral properties of the matrix A

» any number A € (0,16) can be written as

hz
A = 16sin* [ —
6 sin (2>

for some z € (0,%) and, hence, arg(Xy) = 27 — zh.
» the new variable z satisfies the equations
2 (1 —sin? (%)) rV*+1i(z)

F5(2) =g (2) — r2(NHD) (2) F 2sin? (B2) rN+1(2) + 1

=0,

where i
g5 (2) = cos(z) £ sinz(%).

=tz () vy () (1 (7))
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Characterization of the high-frequencies

---- sin? (ﬁ)
2

10 15 20

Figure: Solutions z, of equations g™ (z) =0 for N = 10.

o, zh
g% (2) = cos(z) + st(?).
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“n Zn+1 ZN

N. Cindea Numerical aspects of the controllability of some beam equations 16/31



A\

‘ > C’1h6
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By Rouché’s Theorem, if NV and n are large enough,
the zeros yF of f* are close to zeros " of ¢*.
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Proposition (NC, S. Micu, I. Roventa)

Let o > 1. There exists dp > 0 such that, for each 6 € (0, dy),
there exists No(0) € N* with the property that the eigenvalues
()\n)glnNgngN of the matrix A € MN(R) with N > N()((g) are
given by

.4 yih .
16 sin (%) ifn=2k+ 2,

A = 2
U tesint (BY) ifn =2k 41,

where y,j and y,. are zeros of the functions [ and f~.
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Observability of the high-order eigenvectors

Theorem (N.C., S. Micu, I. Roventa)

Let o € (0,1). There exist K > 0 and Ny € N* such that, for each
N > Ny and each \ eigenvalue of the matrix A with the property
that \ € (0,16 — o), the corresponding normalized eigenvector

¢ = (r)1<k<n € RN has the following property

lon| > KV

Moreover, if p? € RY is the eigenvector corresponding to the last
eigenvalue A\, we have that

lewl _

Ta=O(h)
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Observability of the high-order eigenvectors

oF = ClXéf + CoXh + O3 Xk + cc*4Xjf

Ci=——+— Cy= ————
N+1_1° N+1,.2
Xy Ty Xy Ty

B Xl N+1 Xg N+1
Cg——OéCl ()(3) —ﬁCQ (Xg)
X

N+1 ¥, \ N+
4 X4

= J ((f{)]” 1> ((ﬁ)mg ey
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Observability of the high-order eigenvectors

Lemma

There exists Ny € N* such that for each N > Ny and any
eigenvalue \ of the matrix A with the property that
A > (3hIn N)* the following estimates hold:

Lo o(1)VA,

N+1
Xl

’1 . ’ _ 1 N+1
T’N — Xl Y

rd > XN+ 1.

N. Cindea Numerical aspects of the controllability of some beam equations



Observability of the high-order eigenvectors

107 10

Figure: Evolution of the quantity as a function of h.
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Characterisation of low eigenvalues and eigenvectors

Proposition

Let € € (0,2). There exist No > 0 and d > 0 such that, for each
N > Ny, the following estimate holds:

%(\/ﬁf\/ﬂ\zdn (1< n<NEC9).

Proposition

Let N e N*, 0 € (0,1) and ¢ = (¢) <<y be the normalized
eigenvector of A corresponding to the eigenvalue \ € (0,16 — o).
Then there exists a constant K > 0, independent of N and X,
such that the following estimate holds

lon| > KV
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Low eigenvalues distribution

» Let (A, D(A)) be the operator in L2(0,1) associated to the
clamped beam equation

Au=0%  (ue D(A)), D(A)=H"0,1)nHZ0,1).

x
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Low eigenvalues distribution

» Let (A, D(A)) be the operator in L2(0,1) associated to the
clamped beam equation

Au=0%  (ue D(A)), D(A)=H"0,1)nHZ0,1).

x

» A has a sequence of simple eigenvalues (A\,)n>1:

- 1\*%
)\n—<n+2> o+, (n>1),

where (vy,)p>1 is a sequence converging exponentially to zero.
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Low eigenvalues distribution

» Let (A, D(A)) be the operator in L2(0,1) associated to the
clamped beam equation

Au=0%  (ue D(A)), D(A)=H"0,1)nHZ0,1).

» A has a sequence of simple eigenvalues (A\,)n>1:

4
~ 1
)\n_<n+2> 7T4+'Un (nZl),
where (vy,)p>1 is a sequence converging exponentially to zero.

» Let € € (0,2). There exist Ny > 0 and C' > 0 such that, for
each N > Ny, the following estimate holds:

~ An
A= 2

< CKe (1 <n< N%@—f)) .
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Low eigenvectors observability

» We employ a discrete multiplier method:

Ap=Xp | - J.Dico,
where
0 1 0o ... 0 1
-1 0 1 0 0 2
0 -1 0 1 0 0 3
ch - J =
0 0 -1 0 1 0 N -2
0 0 -1 0 1 N -1
0 0 -1 0
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Low eigenvectors observability

» We employ a discrete multiplier method:

Ap=Xp | - J.Dico,
where
0 1 0o ... 0 1
-1 0 1 0 0 2
0 -1 0 1 0o ... 0 3
Dy. = T : J = :
0 0 -1 0 1 0 N -2
0 0 -1 0 1 N -1
0 0 -1 0

» One deduce the following expression for ¢on:

P = (Ag, ¢>—*<B¢ ¢)— (4¢1 +40% — 162 — dN-10N) -
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Low eigenvectors observability

Some discrete " derivation” formula

Lemma
With the above notation we have that
1. A= DwD3+ M,
2. D3 = DB+ Mo,
3. B = DyDy, + Ms,
4. Dj,(v.w) = Dijyv.w + Sjv.Di,w, for every vectors

v, W E RY, where
So =1 — Dy, (1)

where T denotes the identity matrix in My (R).

4 -1 ... 0 o ... 0 1 0 O

0 0o ... O 0 ... O 0 0 0
My = , M= , M3 =

0o ... 0 0 0 0o 2 0o ... 0
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Gap property and Ingham's inequality

Proposition

Let T > 0. There exist Ny, np € N* such that, for any N > Ny,
the eigenvalues \,, of the matrix A verify

2
Vst — Vo > %hQ (nr<n<N-nr). (2)

Conclusion of the proof follows by:

Yi(t) —isgn(m) VI
s — "
. (Yh 0 1<Z ;
<In|<yN
» a Ingham’s type inequality:

In| |2 T i
S Janf? PN < K// S e E) e ON |
1<|n|<yN VA O Jiginj<yN VAR
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Numerical simulations

» We approach the discrete controls v;, minimising the
functional

T
J(v) = /0 r(t)|o(t)[2dt

where r € C*°(0,T) is given by

0 (te(0,2)U(T - 2,T))
7“(”:{ 1 (te (ol —a)).

» A classical conjugate gradient algorithm is used to minimise
the dual functional J*.

» Newmark method is employed for the time discretization with
a discretization step At small enough.
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Numerical simulations

A first example

ug(x) = sin?(nz), ui(z) =0 (x €(0,1))
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Numerical simulations

A first example

ug(x) = sin?(nz),

Control (v(t))

|
I
3

0 02 04 06 08 1
Time (t)

Figure: Control vy, (t)
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Numerical simulations

A first example

06 0.8

0.4
1o 02 Time (t)

Figure: Control solution.
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Numerical simulations

A more oscillating example

t=0.0000

WXt
o

-1.5 1 e ocos o1 oots ooz oozs

"o 0.5
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Numerical simulations
A highly oscillating example

[YN]
i n n N
uy = E (ug, d")og" € C.
n=1
1.2
----- v=0.1
9 5 ——y=0.5
: [ -—-1=09
0.8} 3 [l
o8t
=
>~3c>
0.4+
0.2r 3 |
O—q—-w'—,(;d H'—_—'q--—
0.2 : : : :
0.2 0.4 0.6 0.8 1

X
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Numerical simulations

Number of iterations needed for the CG to converge

¥y=01]v=05|7v=09|v=1
N =25 4 6 12 29
N =50 4 6 15 52
N =100 4 6 17 87
N =200 4 6 20 168
N =400 4 6 19 321

Table: Number of iterations needed for the convergence of the conjugate
gradient algorithm for initial data (ug,0) and different values of N.
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Numerical simulations

Energy of controlled solutions

0 05 1
i

Figure: Energy of controlled solutions corresponding to u for different
values of v and N = 400.
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Conclusion and perspectives

Conclusion:

» We proved that the observability inequality associated to a
finite-differences semi-discretization of the clamped beam
equation holds uniformly for filtered initial data;

» The filtration threshold is sharp.

» A precise analysis of the spectral properties of the discrete
operator was needed.

Perspectives:
» Mindlin-Timoshenko equation (en cours)
» two-dimensional case?

» other less academic numerical schemes?
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» The filtration threshold is sharp.

» A precise analysis of the spectral properties of the discrete
operator was needed.

Perspectives:
» Mindlin-Timoshenko equation (en cours)
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» other less academic numerical schemes?

Thank you for the attention!
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