Modélisation des échanges chimiques en hémodialyse

Nicolae Cîndea en collaboration avec J. Aniort et L. Chupin

Séminaire d'Analyse Numérique et Calcul Scientifique

Besançon, jeudi 13 février 2020

L'hémodialyse En bref

Source : https://commons.wikimedia.org/wiki/File:Hemodialysis-en.svg

L'hémodialyse En bref

Source: https://commons.wikimedia.org/wiki/File:Hemodialysis-en.svg

Géométrie simplifiée d'un dialyseur

Modélisation de l'écoulement dans une fibre

Modélisation des échanges chimiques

Conclusion et perspectives

Géométrie simplifiée d'un dialyseur

Modélisation de l'écoulement dans une fibre

Modélisation des échanges chimiques

Conclusion et perspectives

Structure d'un dialyseur

• un grand nombre de fibres : $N \approx 10^4$; Chaque fibre est composée de trois parties :

- un canal central;
- une membrane;
- un canal extérieur;

Section d'une fibre

Structure d'un dialyseur

• un grand nombre de fibres : $N \approx 10^4$; Chaque fibre est composée de trois parties :

- un canal central;
- une membrane;
- un canal extérieur;

dimensions d'une fibre :

- longueur L = 23cm ;
- rayon R = 0.23mm;
- ▶ $R_1 = 0.1$ mm;

▶
$$R_2 = 0.14$$
mm

• on note
$$\varepsilon = \frac{R}{L} = 10^{-3}$$

Section d'une fibre

Simplification de la géométrie

Géométrie initiale du dialyseur

Simplification de la géométrie Une seule fibre

Simplification de la géométrie Symétrie radiale

Simplification de la géométrie

Changement de variables

Géométrie simplifiée d'un dialyseur

Modélisation de l'écoulement dans une fibre

Modélisation des échanges chimiques

Conclusion et perspectives

Trois milieux différents

Canal extérieur : Navier Stokes

$$\rho \left(\partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{w} \right) = -\nabla p_d + \mu \Delta \boldsymbol{w}$$

div $(\boldsymbol{w}) = 0$
+ conditions frontières

Trois milieux différents Membrane : Loi de Darcy

$$\begin{array}{l} \rho \left(\partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{w} \right) = -\nabla p_d + \mu \Delta \boldsymbol{w} \\ \mathsf{div}(\boldsymbol{w}) = 0 \\ + \textit{ conditions frontières} \end{array}$$

$$\left\{ \begin{array}{l} \boldsymbol{u} = -\frac{K}{\mu} \nabla p \\ \operatorname{div}(\boldsymbol{u}) = 0 \\ + \ conditions \ frontières \end{array} \right.$$

Trois milieux différents

Canal intérieur : Fluide non-newtonien

$$\rho \left(\partial_t \boldsymbol{w} + (\boldsymbol{w} \cdot \nabla) \boldsymbol{w} \right) = -\nabla p_d + \mu \Delta \boldsymbol{w}$$

div $(\boldsymbol{w}) = 0$
+ conditions frontières

$$\left\{ egin{array}{l} oldsymbol{u} = -rac{K}{\mu}
abla p \ {\sf div}(oldsymbol{u}) = 0 \ + \ {\it conditions \ frontières} \end{array}
ight.$$

 $\begin{cases} \rho \left(\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v}\right) = -\nabla p_b + \operatorname{div}(2\boldsymbol{\mu}(|D\boldsymbol{v}|)D\boldsymbol{v}) \\ \operatorname{div}(\boldsymbol{v}) = 0 \\ + \text{ conditions frontières} \end{cases}$

Changement de coordonnées

Domaine	Pression	Vitesse
Ω_d	p_d	$\boldsymbol{w} = (w_x, w_r)$
Ω_m	p_m	$\boldsymbol{u} = (u_x, u_r)$
Ω_b	p_b	$\boldsymbol{v} = (v_x, v_r)$

Changement de coordonnées

Changement de coordonnées

Domaine	Pression	Vitesse
Ω_d	p_d	$\boldsymbol{w} = (w_x, w_r)$
Ω_m	p_m	$\boldsymbol{u} = (u_x, u_r)$
Ω_b	p_b	$\boldsymbol{v} = (v_x, v_r)$

$$\begin{cases} \rho \Big(\partial_t v_x + v_x \partial_x v_x + \frac{1}{r} v_r \partial_r (r v_x) \Big) = -\partial_x p_b + 2\mu \, \partial_x \Big(G(\dot{\gamma}) \, \partial_x v_x \Big) + \frac{\mu}{r} \partial_r \Big(r \, G(\dot{\gamma}) \, (\partial_r v_x + \partial_x v_r) \Big) \\ \rho \Big(\partial_t v_r + v_x \partial_x v_r + \frac{1}{r} v_r \partial_r (r v_r) \Big) = -\partial_r p_b + 2\frac{\mu}{r} \partial_r \Big(r \, G(\dot{\gamma}) \, \partial_r v_r \Big) + \mu \, \partial_x \Big(G(\dot{\gamma}) \, (\partial_r v_x + \partial_x v_r) \Big) \\ \partial_x v_x + \frac{1}{r} \partial_r (r v_r) = 0. \end{cases}$$

$$\begin{split} \left(\rho\left(\partial_t w_x + w_x \partial_x w_x + \frac{1}{r} w_r \partial_r (rw_x)\right) &= -\partial_x p_d + \mu \partial_x^2 w_x + \frac{\mu}{r} \partial_r (r\partial_r w_x), \\ \rho\left(\partial_t w_r + w_x \partial_x w_r + \frac{1}{r} w_r \partial_r (rw_r)\right) &= -\partial_r p_d + \frac{\mu}{r} \partial_r (r\partial_r w_r) + \mu \partial_x^2 w_r, \\ \partial_x w_x + \frac{1}{r} \partial_r (rw_r) &= 0. \end{split}$$
N. Cíndea (UCA)

Changement de coordonnées

/ 31

Vitesse

 $\boldsymbol{u} = (u_x, u_r)$

 $\boldsymbol{v} = (v_r, v_r)$

Conditions frontières

conditions sur la pression du sang et du dialysat

$$\begin{array}{ll} p_b = p_{b, \text{in}} \; \text{sur} \; \Gamma_{\ell, b}, & p_b = p_{b, \text{out}} \; \text{sur} \; \Gamma_{r, b} \\ p_d = p_{d, \text{in}} \; \text{sur} \; \Gamma_{r, d}, & p_d = p_{d, \text{out}} \; \text{sur} \; \Gamma_{\ell, d} \end{array}$$

Conditions frontières

conditions sur la pression du sang et du dialysat

$$\begin{aligned} p_b &= p_{b,\text{in}} \text{ sur } \Gamma_{\ell,b}, \quad p_b &= p_{b,\text{out}} \text{ sur } \Gamma_{r,b} \\ p_d &= p_{d,\text{in}} \text{ sur } \Gamma_{r,d}, \quad p_d &= p_{d,\text{out}} \text{ sur } \Gamma_{\ell,d} \end{aligned}$$

conditions de symétrie et de non-pénétrabilité

$$\begin{split} w_r &= 0 \, \operatorname{sur} \, \Gamma_d, \quad \partial_r w_x = 0 \, \operatorname{sur} \, \Gamma_d, \quad \partial_r p_d = 0 \, \operatorname{sur} \, \Gamma_d \\ \partial_r v_x &= 0 \, \operatorname{sur} \, \Gamma_b, \quad v_r = 0 \, \operatorname{sur} \, \Gamma_b, \quad \partial_r p_b = 0 \, \operatorname{sur} \, \Gamma_b \end{split}$$

Conditions frontières

conditions sur la pression du sang et du dialysat

$$\begin{array}{ll} p_b = p_{b, \text{in}} \; \text{sur} \; \Gamma_{\ell, b}, & p_b = p_{b, \text{out}} \; \text{sur} \; \Gamma_{r, b} \\ p_d = p_{d, \text{in}} \; \text{sur} \; \Gamma_{r, d}, & p_d = p_{d, \text{out}} \; \text{sur} \; \Gamma_{\ell, d} \end{array}$$

conditions de symétrie et de non-pénétrabilité

$$\begin{split} w_r &= 0 \, \operatorname{sur} \, \Gamma_d, \quad \partial_r w_x = 0 \, \operatorname{sur} \, \Gamma_d, \quad \partial_r p_d = 0 \, \operatorname{sur} \, \Gamma_d \\ \partial_r v_x &= 0 \, \operatorname{sur} \, \Gamma_b, \quad v_r = 0 \, \operatorname{sur} \, \Gamma_b, \quad \partial_r p_b = 0 \, \operatorname{sur} \, \Gamma_b \end{split}$$

conditions sur les frontières latérales

$$\begin{aligned} \partial_x v_x &= \partial_x v_r = 0 & \text{sur } \Gamma_{\ell,b} \cup \Gamma_{r,b}, \\ \partial_x w_x &= \partial_x w_r = 0 & \text{sur } \Gamma_{\ell,d} \cup \Gamma_{r,d}, \\ \partial_x p_m &= 0 & \text{sur } \Gamma_{\ell,m} \cup \Gamma_{r,m}. \end{aligned}$$

Conditions frontières intérieures

• interface sang / membrane (Γ_{bm})

$$\begin{cases} v_r = -\frac{K}{\mu} \partial_r p_m, \\ -\partial_r v_x = \frac{\alpha_{\rm BJ}}{\sqrt{K}} v_x, \\ p_m = p_b - p_o \end{cases}$$

avec α_{BJ} la constante de Beavers-Joseph (coefficient de frottement dépendant du milieu poreux uniquement) du parois poreux et p_o est une pression osmotique.

Conditions frontières intérieures

• interface sang / membrane (Γ_{bm})

$$\begin{cases} v_r = -\frac{K}{\mu} \partial_r p_m, \\ -\partial_r v_x = \frac{\alpha_{\rm BJ}}{\sqrt{K}} v_x, \\ p_m = p_b - p_o \end{cases}$$

avec $\alpha_{\rm BJ}$ la constante de Beavers-Joseph (coefficient de frottement dépendant du milieu poreux uniquement) du parois poreux et p_o est une pression osmotique.

• interface dialysate / membrane (Γ_{dm})

$$\begin{cases} w_r = -\frac{K}{\mu} \partial_r p_m, \\ \partial_r w_x = \frac{\beta_{\mathsf{BJ}}}{\sqrt{K}} w_x, \\ p_m = p_d, \end{cases}$$

Adimensionnement et changement d'échelle

Valeurs de quelques constantes

$$\rho = 10^3 \, \mathrm{kg.m^{-3}}, \qquad \mu = 10^{-3} \, \mathrm{Pa.s}, \qquad K = 2.4 \times 10^{-18} \mathrm{m^2}.$$

 $p_{b,\rm in} = 16 \times 10^3 \, {\rm Pa}, \quad p_{b,\rm out} = 11 \times 10^3 \, {\rm Pa}, \quad p_{d,\rm in} = 10^3 \, {\rm Pa}, \quad p_{d,\rm out} = 0.1 \times 10^3 \, {\rm Pa}.$

Adimensionnement et changement d'échelle

Valeurs de quelques constantes

$$\rho = 10^3 \, {\rm kg.m^{-3}}, \qquad \mu = 10^{-3} \, {\rm Pa.s}, \qquad K = 2.4 \times 10^{-18} {\rm m^2}.$$

 $p_{b,\rm in} = 16\times 10^3\,{\rm Pa}, \quad p_{b,\rm out} = 11\times 10^3\,{\rm Pa}, \quad p_{d,\rm in} = 10^3\,{\rm Pa}, \quad p_{d,\rm out} = 0.1\times 10^3\,{\rm Pa}.$

Quantités de référence

$$\mathcal{P}_1 = \frac{p_{d, \mathsf{in}} - p_{d, \mathsf{out}}}{P}, \quad \mathcal{P}_2 = \frac{p_{b, \mathsf{out}} - p_{d, \mathsf{in}}}{P}.$$

temps de référence :

$$T = \frac{L}{V}$$

On définit les nombres sans dimension suivants :

$$\varepsilon = \frac{R}{L}, \quad \mathcal{R}e = \frac{\rho R V}{\mu}, \quad \mathcal{D}a = \frac{K}{R^2}, \quad B_b = \frac{\alpha_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}, \quad B_d = \frac{\beta_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}.$$

On définit les nombres sans dimension suivants :

$$\varepsilon = \frac{R}{L}, \quad \mathcal{R}e = \frac{\rho R V}{\mu}, \quad \mathcal{D}a = \frac{K}{R^2}, \quad B_b = \frac{\alpha_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}, \quad B_d = \frac{\beta_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}.$$

Dans le cas de l'exemple on obtient les valeurs suivantes :

$$\varepsilon = 10^{-3}$$

 $\mathcal{R}e = 124.836$
 $\mathcal{D}a = 4.537 \times 10^{-11}$
 $B_b = 2.5$
 $B_d = 7.3 \times 10^3$

On définit les nombres sans dimension suivants :

$$\varepsilon = \frac{R}{L}, \quad \mathcal{R}e = \frac{\rho R V}{\mu}, \quad \mathcal{D}a = \frac{K}{R^2}, \quad B_b = \frac{\alpha_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}, \quad B_d = \frac{\beta_{\mathsf{BJ}}}{\sqrt{\mathcal{D}a}}.$$

Dans le cas de l'exemple on obtient les valeurs suivantes :

$$\varepsilon = 10^{-3}$$

$$\mathcal{R}e = 124.836$$

$$\mathcal{D}a = 4.537 \times 10^{-11}$$

$$B_b = 2.5$$

$$B_d = 7.3 \times 10^3$$
et on adimensionne:

$$x = Lx^{\star}, \ r = Rr^{\star}, \ t = Tt^{\star}, \qquad \gamma_{\ell,d}$$

$$p_a = p_{b,out} + Pp_a^{\star}, \text{ for } a \in \{b, m, d, o\}, \qquad \gamma_{\ell,m}$$

$$w_x = Vv_x^{\star}, \ v_r = \varepsilon Vv_r^{\star}$$

$$u_x = Wu_x^{\star}, \ u_r = \varepsilon Wu_r^{\star}$$

$$w_x = Ww_x^{\star}, \ w_r = \varepsilon Ww_r^{\star}.$$

$$\gamma_{\ell,b}$$

 $\gamma_{r.d}$

 $\gamma_{r,m}$

 $\gamma_{r,b}$

13 / 31

 r^{\star}

N. Cîndea (UCA)

 $u_x =$ $w_x =$

Écoulement dans ω_b

L'écoulement du sang à l'intérieur du domaine ω_b est gouverné par les équations suivantes :

$$\begin{cases} \varepsilon \mathcal{R}e\Big(\partial_t v_x + v_x \partial_x v_x + \frac{1}{r} v_r \partial_r(rv_x)\Big) &= -\partial_x p_b - \partial_x p_o + 2\varepsilon^2 \partial_x \Big(\widetilde{G}(\dot{\gamma}) \partial_x v_x\Big) \\ &+ \frac{1}{r} \partial_r \Big(r \, \widetilde{G}(\dot{\gamma}) (\partial_r v_x + \varepsilon^2 \partial_x v_r)\Big), \\ \varepsilon^3 \mathcal{R}e\Big(\partial_t v_r + v_x \partial_x v_r + \frac{1}{r} v_r \partial_r(rv_r)\Big) &= -\partial_r p_b + 2\frac{\varepsilon^2}{r} \partial_r \Big(r \, \widetilde{G}(\dot{\gamma}) \partial_r v_r\Big) \\ &+ \varepsilon^2 \partial_x \Big(\widetilde{G}(\dot{\gamma}) (\partial_r v_x + \varepsilon^2 \partial_x v_r)\Big), \\ \partial_x v_x + \frac{1}{r} \partial_r(rv_r) &= 0, \end{cases}$$

avec

et

$$\begin{split} \dot{\gamma} &= \sqrt{|\partial_x v_x|^2 + |\partial_r v_r|^2 + \left|\frac{v_r}{r}\right|^2 + \frac{1}{2} \left|\frac{1}{\varepsilon} \partial_r v_x + \varepsilon \partial_x v_r\right|^2} \approx \frac{1}{\sqrt{2}|\varepsilon|} |\partial_r v_x| \\ & \widetilde{G}(X) = G \Big(\frac{\varepsilon^2 P}{\mu} X\Big). \end{split}$$

Dans la membrane l'équation de Darcy s'écrit sous la forme adimensionnée suivante :

$$\begin{cases} \varepsilon^2 \partial_x^2 p_m + \frac{1}{r} \partial_r (r \partial_r p_m) = 0, \\ u_x = -\frac{\mathcal{D}a}{\mathcal{P}_1} \partial_x p_m, \\ u_r = -\frac{\mathcal{D}a}{\varepsilon^2 \mathcal{P}_1} \partial_r p_m, \end{cases}$$

L'écoulement du dialysat est modélisé par l'équation de Navier-Stokes dans ω_d :

$$\begin{split} \varepsilon \mathcal{R}e\mathcal{P}_1\Big(\partial_t w_x + w_x \partial_x w_x + \frac{1}{r} w_r \partial_r(rw_x)\Big) &= -\partial_x p_d + \varepsilon^2 \mathcal{P}_1 \partial_x^2 w_x \\ &+ \frac{\mathcal{P}_1}{r} \partial_r(r\partial_r w_x), \end{split}$$
$$\varepsilon^3 \mathcal{R}e\mathcal{P}_1\Big(\partial_t w_r + w_x \partial_x w_r + \frac{1}{r} w_r \partial_r(rw_r)\Big) &= -\partial_r p_d + \frac{\varepsilon^2 \mathcal{P}_1}{r} \partial_r(r\partial_r w_r) \\ &+ \varepsilon^4 \mathcal{P}_1 \partial_x^2 w_r, \end{aligned}$$
$$\partial_x w_x + \frac{1}{r} \partial_r(rw_r) = 0. \end{split}$$

Le système à résoudre

$$\begin{cases} 0 = -\partial_x p_b + \frac{1}{r} \partial_r \left(r \, \widetilde{G}(\dot{\gamma}) \, \partial_r v_x \right) - \partial_x p_{\rm o}, \\ 0 = -\partial_r p_b, \\ \partial_x v_x + \frac{1}{r} \partial_r (r v_r) = 0, \end{cases} \qquad \text{dans } \omega_b$$

$$\begin{cases} v_r = -\widetilde{\mathcal{D}a} \, \partial_r p_m, \\ -\partial_r v_x = B_b v_x, & \text{sur } \gamma_{bm} \\ p_m = p_b - p_0. \end{cases}$$

$$\begin{cases} \partial_r(r\partial_r p_m) = 0, \\ u_x = 0, & \text{dans } \omega_d \\ u_r = -\frac{\overline{\mathcal{D}a}}{\mathcal{P}_1} \partial_r p_m, \\ \end{cases} \\ \begin{cases} w_r = -\frac{\overline{\mathcal{D}a}}{\mathcal{P}_1} \partial_r p_m, \\ w_x = 0, & \text{sur } \gamma_{dm} \\ p_m = p_d. \end{cases}$$

$$\begin{cases} 0 = -\partial_x p_d + \frac{\mathcal{P}_1}{r} \partial_r (r \partial_r w_x), \\ 0 = -\partial_r p_d, & \text{dans } \omega_d \\ \partial_x w_x + \frac{1}{r} \partial_r (r w_r) = 0. \end{cases}$$

Le système à résoudre

$$\begin{cases} 0 = -\partial_x p_b + \frac{1}{r} \partial_r \left(r \, \widetilde{G}(\dot{\gamma}) \, \partial_r v_x \right) - \partial_x p_{\rm o}, \\ 0 = -\partial_r p_b, \\ \partial_x v_x + \frac{1}{r} \partial_r (r v_r) = 0, \end{cases} \qquad \text{dans } \omega_b$$

$$\begin{cases} v_r = -\widetilde{\mathcal{D}a} \, \partial_r p_m, \\ -\partial_r v_x = B_b v_x, & \text{ sur } \gamma_{bm} \\ p_m = p_b - p_0. \end{cases}$$

$$\begin{cases} \partial_r(r\partial_r p_m)=0,\\ u_x=0,\\ u_r=-\frac{\widetilde{\mathcal{D}a}}{\mathcal{P}_1}\partial_r p_m, \end{cases} \quad \text{dans } \omega_d \end{cases}$$

$$\begin{cases} w_r = -\frac{\widehat{\mathcal{D}a}}{\mathcal{P}_1} \partial_r p_m, \\ w_x = 0, & \text{sur } \gamma_{dm} \\ p_m = p_d. \end{cases}$$

$$\begin{cases} 0 = -\partial_x p_d + \frac{\mathcal{P}_1}{r} \partial_r (r \partial_r w_x), \\ 0 = -\partial_r p_d, & \text{dans } \omega_d \\ \partial_x w_x + \frac{1}{r} \partial_r (r w_r) = 0. \end{cases}$$

Conditions frontières extérieures

$$\begin{cases} p_b|_{\gamma_{\ell,b}} = 1, \quad p_b|_{\gamma_{r,b}} = 0, \\ p_d|_{\gamma_{r,d}} = -\mathcal{P}_2, \quad p_d|_{\gamma_{\ell,d}} = -\mathcal{P}_2 - \mathcal{P}_1, \\ w_r|_{\gamma_d} = \partial_r w_x|_{\gamma_d} = 0, \\ \partial_r v_x|_{\gamma_b} = 0. \end{cases}$$

formulation variationnelle;

- formulation variationnelle;
- maillage du domaine;

- formulation variationnelle;
- maillage du domaine;
- approximation par éléments finis $P_{1b} \times P_1$.

Un exemple numérique $p_{b,in} = 16 \times 10^3 \text{ Pa}, \ p_{b,out} = 11 \times 10^3 \text{ Pa}, \ p_{d,in} = 10^3 \text{ Pa}, \ p_{d,out} = 0.1 \times 10^3 \text{ Pa}$

FIGURE – Vitesse pour le modèle Newtonian (a) et pour le modèle *Power-law* (b).

Un exemple numérique $p_{b,in} = 16 \times 10^3 \text{ Pa}, \ p_{b,out} = 11 \times 10^3 \text{ Pa}, \ p_{d,in} = 10^3 \text{ Pa}, \ p_{d,out} = 0.1 \times 10^3 \text{ Pa}$

FIGURE – Profiles de la vitesse sur la droite $x = \frac{L}{2}$.

Un exemple numérique $p_{b,in} = 16 \times 10^3 \text{ Pa}, \ p_{b,out} = 11 \times 10^3 \text{ Pa}, \ p_{d,in} = 10^3 \text{ Pa}, \ p_{d,out} = 0.1 \times 10^3 \text{ Pa}$

FIGURE – Pression (en Pa) associée au modèle *power-law*. (a) Distribution dans ω . (b) Profile longitudinales en sang et dialysat.

N. Cîndea (UCA)

Quelques remarques

connaissance des conditions frontières pour la pression :

 $p_{b,\text{in}} = 16 \times 10^3 \,\text{Pa}, \quad p_{b,\text{out}} = 11 \times 10^3 \,\text{Pa}, \quad p_{d,\text{in}} = 10^3 \,\text{Pa}, \quad p_{d,\text{out}} = 0.1 \times 10^3 \,\text{Pa}?$

20 / 31

Quelques remarques

connaissance des conditions frontières pour la pression :

 $p_{b,\text{in}} = 16 \times 10^3 \,\text{Pa}, \quad p_{b,\text{out}} = 11 \times 10^3 \,\text{Pa}, \quad p_{d,\text{in}} = 10^3 \,\text{Pa}, \quad p_{d,\text{out}} = 0.1 \times 10^3 \,\text{Pa}?$

▶ pas d'accès au pressions (P = (p_{b,in}, p_{b,out}, p_{d,in}, p_{d,out})), mais au débits (Q = (Q_{b,in}, Q_{b,out}, Q_{d,in}, Q_{d,out}));

Quelques remarques

connaissance des conditions frontières pour la pression :

 $p_{b,\text{in}} = 16 \times 10^3 \,\text{Pa}, \quad p_{b,\text{out}} = 11 \times 10^3 \,\text{Pa}, \quad p_{d,\text{in}} = 10^3 \,\text{Pa}, \quad p_{d,\text{out}} = 0.1 \times 10^3 \,\text{Pa}?$

- ▶ pas d'accès au pressions ($\vec{P} = (p_{b,in}, p_{b,out}, p_{d,in}, p_{d,out})$), mais au débits ($\vec{Q} = (Q_{b,in}, Q_{b,out}, Q_{d,in}, Q_{d,out})$);
- ▶ minimisation de la fonctionnelle $\mathcal{J}(\vec{P}) = \frac{1}{2} \|\Phi(\vec{P}) \vec{Q}\|^2$ pour déterminer un jeu de conditions frontières donnant le bon débit.

connaissance des conditions frontières pour la pression :

 $p_{b,\text{in}} = 16 \times 10^3 \,\text{Pa}, \quad p_{b,\text{out}} = 11 \times 10^3 \,\text{Pa}, \quad p_{d,\text{in}} = 10^3 \,\text{Pa}, \quad p_{d,\text{out}} = 0.1 \times 10^3 \,\text{Pa}?$

- ▶ pas d'accès au pressions ($\vec{P} = (p_{b,in}, p_{b,out}, p_{d,in}, p_{d,out})$), mais au débits ($\vec{Q} = (Q_{b,in}, Q_{b,out}, Q_{d,in}, Q_{d,out})$);
- ▶ minimisation de la fonctionnelle $\mathcal{J}(\vec{P}) = \frac{1}{2} \|\Phi(\vec{P}) \vec{Q}\|^2$ pour déterminer un jeu de conditions frontières donnant le bon débit.

quelle modéle choisir pour le sang?

 $\widetilde{G}(X) = ?$

modèles non-Newtoniens

Exemple avec optimisation de la pression $\vec{Q} = (300, 290, 500, 510) \text{ (ml.min}^{-1})$

FIGURE – Profiles de la vitesse sur la droite $x = \frac{L}{2}$.

Géométrie simplifiée d'un dialyseur

Modélisation de l'écoulement dans une fibre

Modélisation des échanges chimiques

Conclusion et perspectives

• concentrations définies sur Ω_b , Ω_d et Ω_m

• concentrations définies sur Ω_b , Ω_d et Ω_m

23 / 31

• c_1 : concentration de calcium

▶ concentrations définies sur Ω_b , Ω_d et Ω_m

23 / 31

- c₁ : concentration de calcium
- ► c_2 : concentration d'albumine

- concentrations définies sur Ω_b , Ω_d et Ω_m
 - c_1 : concentration de calcium
 - ► c_2 : concentration d'albumine
 - ► *c*₃ : concentration de calcium-albumine

- concentrations définies sur Ω_b , Ω_d et Ω_m
 - c_1 : concentration de calcium
 - ► c_2 : concentration d'albumine
 - ► *c*₃ : concentration de calcium-albumine
 - c₄ : concentration de citrate

- concentrations définies sur Ω_b , Ω_d et Ω_m
 - c_1 : concentration de calcium
 - c₂ : concentration d'albumine
 - ► *c*₃ : concentration de calcium-albumine
 - c₄ : concentration de citrate
 - ► *c*₅ : concentration de calcium-citrate.

- concentrations définies sur Ω_b , Ω_d et Ω_m
 - c_1 : concentration de calcium
 - c₂ : concentration d'albumine
 - c_3 : concentration de calcium-albumine
 - c₄ : concentration de citrate
 - c_5 : concentration de calcium-citrate.
- réactions chimiques :

calcium + albumine
$$\underset{k_2}{\underbrace{k_1}}$$
 calcium-albumine

calcium + citrate
$$\overleftarrow{k_3}_{k_4}$$
 calcium–citrate

 $k_1 = 1 \text{ mol.m}^3 \text{.s}^{-1}, \ k_2 = 10 \text{ s}^{-1}, k_3 = 0.28 \text{ mol.m}^3 \text{.s}^{-1}, \ k_4 = 0.15 \text{ s}^{-1}.$

Un système d'advection-réaction-diffusion

$$\partial_{t}c_{i} + \underbrace{\underbrace{S_{i}(U_{x}\partial_{x}c_{i} + U_{r}\partial_{r}c_{i})}_{\text{advection}} - \underbrace{\frac{1}{r}\partial_{r}(rD_{i}\partial_{r}c_{i}) - \partial_{x}(D_{i}\partial_{x}c_{i})}_{\text{diffusion}} = \underbrace{\underbrace{F_{i}(c_{1}, \dots, c_{5})}_{\text{réaction}}_{\text{réaction}}$$

Paramètres du systèmes

$$\begin{array}{ll} \blacktriangleright \mbox{ coefficients de tamisage } S_i:S_1=S_4=S_5\equiv 1\mbox{ et }\\ S_i(x)=\left\{ \begin{array}{ll} 1 & \mbox{ if } x\in\Omega_b\cup\Omega_d \\ 0 & \mbox{ if } x\in\Omega_m, \end{array} \right. \mbox{ for } i\in\{2,\,3\}, \end{array} \right.$$

 \blacktriangleright termes de réaction F_i :

$$F(c_1, ..., c_5) = \begin{pmatrix} k_2c_3 + k_4c_5 & - & k_1c_1c_2 - k_3c_1c_4 \\ k_2c_3 & - & k_1c_1c_2 \\ -k_2c_3 & + & k_1c_1c_2 \\ k_4c_5 & - & k_3c_1c_4 \\ -k_4c_5 & + & k_3c_1c_4 \end{pmatrix}$$

 \blacktriangleright coefficients de diffusion D_i :

Notation	Valeur $(m^2.s^{-1})$
D	10^{-10}
D_1	16.6×10^{-10}
D_2 et D_3	0.877×10^{-10}
D_4 et D_5	7.6×10^{-10}

٠

Résolution numérique

- adimensionnement et changement d'échelle;
- éléments finis en espace;
- différences finies en temps;
- résolution « en cascade » du système à l'aide d'un traitement semi-implicite de la non-linéarité.
- plusieurs jeux de données frontières :

Nom	Sang	\mathcal{D}_0	\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3
calcium (c_1)	1.2	1.5	0.981	1.11	0
albumine (c_2)	6.53	0	0	0	0
calcium–albumine (c_3)	0.783	0	0	0	0
citrate (c_4)	0.0307	0	0.281	0.26	0.8
calcium–citrate (c_5)	0.0693	0	0.519	0.54	0

Quelques exemples de résultats numériques

FIGURE – Concentrations c_i (en mol.m⁻³ dans ω au temps T^* correspondant à 300 s le dialysat \mathcal{D}_0 : a) calcium. b) albumine. c) calcium-albumine. d) citrate. e) calcium-citrate.

N. Cîndea (UCA)

Concentration de calcium (c_1)

N. Cîndea (UCA)

FIGURE – Concentration c_1 (en mol.m⁻³) au temps 300 s. (a) Dialysate \mathcal{D}_0 . (b) Dialysate \mathcal{D}_1 . (c) Dialysate \mathcal{D}_2 . (d) Dialysate \mathcal{D}_3 .

28 / 31

Comparaison des niveau de calcium dans le sang Dialysats avec plus ou moins de citrate

FIGURE – Évolution de la concentration du calcium total dans le sang à la sortie du dialyseur pour les dialysats \mathcal{D}_0 , \mathcal{D}_1 , \mathcal{D}_2 et \mathcal{D}_3 .

Géométrie simplifiée d'un dialyseur

Modélisation de l'écoulement dans une fibre

Modélisation des échanges chimiques

Conclusion et perspectives

▶ analyse asymptotique quand $\varepsilon \rightarrow 0$;

- analyse asymptotique quand $\varepsilon \to 0$;
- meilleure prise en charge de la pression osmotique :

• analyse asymptotique quand $\varepsilon \to 0$;

meilleure prise en charge de la pression osmotique :

couplage des deux modèles : fluides et espèces chimiques ;

- analyse asymptotique quand $\varepsilon \to 0$;
- meilleure prise en charge de la pression osmotique :
 - couplage des deux modèles : fluides et espèces chimiques;
- quel modèle choisir pour la partie chimie quand l'ultrafiltration est importante?

- analyse asymptotique quand $\varepsilon \to 0$;
- meilleure prise en charge de la pression osmotique :
 - couplage des deux modèles : fluides et espèces chimiques;
- quel modèle choisir pour la partie chimie quand l'ultrafiltration est importante ?
- validation clinique du modèle :

- analyse asymptotique quand $\varepsilon \to 0$;
- meilleure prise en charge de la pression osmotique :
 - couplage des deux modèles : fluides et espèces chimiques;
- quel modèle choisir pour la partie chimie quand l'ultrafiltration est importante?
- validation clinique du modèle :
 - plusieurs espèces chimiques?

- analyse asymptotique quand $\varepsilon \to 0$;
- meilleure prise en charge de la pression osmotique :
 - couplage des deux modèles : fluides et espèces chimiques;
- quel modèle choisir pour la partie chimie quand l'ultrafiltration est importante?
- validation clinique du modèle :
 - plusieurs espèces chimiques?

Merci !

Model	Description
Power-law model	$\widetilde{G}(X) = m \left(\frac{\varepsilon^2 P}{\mu}\right)^{n-1} X^{n-1}$
Carreau model	$\widetilde{G}(X) = \frac{1}{\mu} \left(\mu_{\infty} + \left(\mu_0 - \mu_{\infty} \right) \left(1 + (\lambda^* X)^2 \right)^{\frac{n-1}{2}} \right)$
Quemada model	$\widetilde{G}(X) = \frac{\mu_p}{\mu} \left(1 - \frac{1}{2} \frac{k_0 + k_\infty \sqrt{X/\gamma^\star}}{1 + \sqrt{X/\gamma^\star}} \phi \right)^{-2}$
Cross model	$\widetilde{G}(X) = \frac{1}{\mu} \left(\mu_{\infty} + (\mu_0 - \mu_{\infty}) \left(1 + \left(\frac{X}{\gamma^{\star}} \right)^n \right)^{-1} \right)$

 $\ensuremath{\mathrm{TABLE}}$ – Non-Newtonian blood viscosity models.

Surmortalité chez des patients dialysés avec un liquide contenant du citrate?

SCIENCES · SANTÉ

Favoris (★)

Dialyse au citrate : l'ANSM demande des études complémentaires

Alertée sur un risque de mortalité accru d'environ 40 % en cas d'utilisation d'un dialysat au citrate l'Agence nationale de sécurité du médicament attend de nouvelles données des industriels.

Par Pascale Santi - Publié le 08 février 2019 à 14h13

Lecture 3 min.

🔟 Article réservé aux abonnés

Surmortalité chez des patients dialysés avec un liquide contenant du citrate?

SCIENCES · SANTÉ Dialyse au citrate : l'ANSM demande des études

comp¹ómontoirea

Alertée sur SCIENCES · MÉDECINE

l'Agence na

Par Pascale Sa

Dialyse : des études rassurantes sur les produits @ Lecture 3 r citrate

201 Article rési

En 2018, une étude suggérait une surmortalité chez les patients dialysés avec certains composés observation non confirmée par des travaux plus récents.

Par Pascale Santi - Publié le 09 octobre 2019 à 06h00 Ö Lecture 2 min.

Article réservé aux abonnés

Des études rassurantes ont été présentées lors du 4^e congrès de la Société francophone de néphrologie, dialyse et transplantation (SFNDT), qui s'est tenu du 1^{er} au 4 octobre à Nancy. Elles ne montrent pas d'augmentation du risque de décès chez les patients dialysés avec un produit à base de citrate.

Un an auparavant, une étude observationnelle présentée lors d'un congrès de la SFNDT par le docteur Lucile Mercadal (Inserm/hôpital de la Pitié-Salpêtrière) indiquait en effet que les patients traités par un liquide de dialyse (ou dialysat) au citrate présenteraient une surmortalité de 40 % par rapport à ceux traités avec d'autres produits à l'acétate ou à l'acide chlorhydrique. Autrement dit, alors que le

Eavoris (

Favoris (🛧

