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The wave equation with distributed observation

We consider the following wave equation:




wtt −∇ · (c∇w) + dw = f, in QT
w = 0, on ΣT

w(x, 0) = w0(x), yt(x, 0) = w1(x), x ∈ Ω.
(1)

I QT = Ω× (0, T );

I ΣT = ∂Ω× (0, T );

I qT = ω × (0, T ) ⊂ QT ;

I (w0, w1) ∈ L2(Ω)×H−1(Ω).

I f ∈ L2(0, T ;H−1(Ω)).

Observation:
y = w|qT .
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The wave equation with boundary observation

We consider the following wave equation:




wtt −∇ · (c∇w) + dw = f, in QT
w = 0, on ΣT

w(x, 0) = w0(x), yt(x, 0) = w1(x), x ∈ Ω.
(1)

I QT = Ω× (0, T );

I ΣT = ∂Ω× (0, T );

I Σ1
T = Γ1 × (0, T );

I qT = ω × (0, T ) ⊂ QT ;

I (w0, w1) ∈ H1
0 (Ω)× L2(Ω).

I f ∈ L2(QT ).

Observation:
y = ∂νw|Σ1

T
.
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Inverse problems





wtt −∇ · (c∇w) + dw = f, in QT
w = 0, on ΣT

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω.

From observations (or measurements) y recover

I initial data (w0, w1);

I source term f ;

I coefficients c, d. . .
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c ∈ C1(Ω),
c(x) ≥ c0 > 0
d ∈ L∞(QT ).

Questions: existence? unicity? stability? numerical approximation. . .



Inverse problems
Some references
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I books: Isakov (1998), Klibanov and Timonov (2004)
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I . . .



Plan of this talk

Boundary observation

Distributed observation

Time-dependent distributed observation

Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 5/ 45



Regularity of solutions





wtt −∇ · (c∇w) + dw = f, in QT
w = 0, on ΣT

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω.

If (w0, w1) ∈ H1
0 (Ω)× L2(Ω) and f ∈ L2(QT ) then solutions of the wave equation

have the following regularity:

w ∈ C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)).

We define Z =
{
w ∈ C([0, T ], H1

0 (Ω)) ∩ C1([0, T ], L2(Ω)) such that Lw ∈ L2(QT )
}

The following hidden-regularity property holds

‖c(x)∂νw‖2L2(Σ1
T ) ≤ CT

(
‖(w(·, 0), wt(·, 0))‖2H1

0×L2 + ‖Lw‖2L2(QT )

)
(w ∈ Z).
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Lw = wtt −∇ · (c∇w) + dw



Generalized observability

Hypothesis:
There exists a constant Cobs > 0 depending on Γ1, T , c, d such that the following
estimate holds:

‖(w(·, 0), wt(·, 0))‖2H1
0×L2 ≤ Cobs

(
‖c(x)∂νw‖2L2(Σ1

T ) + ‖Lw‖2L2(QT )

)
(w ∈ Z).

For constant coefficients, this hypothesis holds true if the triplet (Γ1, T, Ω) satisfies a
geometric optic condition.
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Consequence:
The space Z endowed with the inner product

〈w,w〉Z = 〈c∂νw, c∂νw〉L2(Σ1
T ) + η〈Lw,Lw〉L2(QT ) (w,w ∈ Z).

is a Hilbert space, for every value of the parameter η > 0.



A first inverse problem
Known source term

What we know:

I the velocity of propagation c;

I the potential d;

I the source f .
Without restraining the generality we take f = 0.

I the measurement y ∈ L2(Σ1
T ).
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We want to recover:

I the solution w ∈ Z of {
Lw = 0
∂νw|Σ1

T
= y,

or, completely equivalent, the initial data (w0, w1).



A first inverse problem
Some minimization problems

We consider the following minimization problem:

{
inf J(w) :=

1

2
‖c(x)(∂νw − y)‖2L2(Σ1

T )

subject to w ∈W := {w ∈ Z; Lw = 0 in L2(QT )}.

This problem is well posed:

I J is continuous over W endowed with the norm of Z

I J is strictly convex

I J(w)→∞ when w ∈W and ‖w‖Z →∞.
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A first inverse problem
Some minimization problems

We consider the following relaxed minimization problem:

{
inf Jr(w) :=

1

2
‖c(x)(∂νw − y)‖2L2(Σ1

T ) +
r

2
‖Lw‖2L2(QT )

subject to w ∈ Z.

We still have that this problem is well posed:

I J is continuous over Z

I J is strictly convex

I J(w)→∞ when ‖w‖Z →∞.
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A mixed formulation

Find (w, λ) ∈ Z × L2(QT ) solution of

{
ar(w,w) + b(w, λ) = l(w) (w ∈ Z)

b(w, λ) = 0 (λ ∈ L2(QT )),

where

ar : Z × Z → R, ar(w,w) = 〈c∂νw, c∂νw〉L2(Σ1
T ) + r〈Lw, Lw〉L2(QT )

b : Z × L2(QT )→ R, b(w, λ) = 〈λ, Lw〉L2(QT )

l : Z → R, l(w) = 〈cy, c∂νw〉L2(Σ1
T ).
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Theorem (NC, A. Münch)

Under the hypothesis of generalized observability,

1. The mixed formulation is well-posed.

2. The unique solution (w, λ) ∈ Z × L2(QT ) to the mixed formulation is the unique
saddle-point of the Lagrangian Lr : Z × L2(QT )→ R defined by

Lr(w, λ) :=
1

2
ar(w,w) + b(w, λ)− l(w).

3. The solution (w, λ) ∈ Z × L2(QT ) satisfies the estimates

‖w‖Z ≤ ‖c(x) y‖L2(Σ1
T ),

‖λ‖L2(QT ) ≤ 2
√
CΩ,T + η‖c(x) y‖L2(Σ1

T ).
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Idea of the proof

We easily show that:

I the bilinear form ar is continuous over Z × Z
I the bilinear form b is continuous over Z × L2(QT )

I the linear form l is continuous over Z.
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Moreover,

I ar is coercive on the kernel N (b) of b.



Idea of the proof

We easily show that:

I the bilinear form ar is continuous over Z × Z
I the bilinear form b is continuous over Z × L2(QT )

I the linear form l is continuous over Z.
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Moreover,

I ar is coercive on the kernel N (b) of b.

N (b) =
{
w ∈ Z | b(w, λ) = 0 for every λ ∈ L2(QT )

}

⇐⇒
∫∫

QT

Lwλdxdt = 0 for every λ ∈ L2(QT )

⇐⇒ Lw = 0 in L2(QT ) N (b) = W .
Since ar(w,w) = ‖c∂νw‖2L2(Σ1

T ) = ‖w‖2Z for every w ∈W ,

ar is coercive on N (b).
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Moreover,

I ar is coercive on the kernel N (b) of b.

I the following inf-sup property holds: there exists δ > 0 such that

inf
λ∈L2(QT )

sup
w∈Z

b(w, λ)

‖w‖Z‖λ‖L2(QT )
≥ δ.
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Moreover,

I ar is coercive on the kernel N (b) of b.

I the following inf-sup property holds: there exists δ > 0 such that

inf
λ∈L2(QT )

sup
w∈Z

b(w, λ)

‖w‖Z‖λ‖L2(QT )
≥ δ.

The conclusion of theorem follows from standard results about mixed formulations.



Some remarks

I The Lagrangian Lr is an augmentation of the simpler Lagrangian

L(w, λ) =
1

2
a(w,w) + b(w, λ)− l(λ) where a(w,w) = 〈c∂νw, c∂νw〉L2(Σ1

T )

I If the solution λ verifies Lλ ∈ L2(0, T ;H−1(Ω)) and
(λ, λt)|t∈{0,T} ∈ L2(Ω)×H−1(Ω), the multiplier λ verifies





Lλ = 0 in QT
λ = c(∂νw − y) on Σ1

T

λ = 0 on ΣT \ Σ1
T

λ = λt = 0 on Ω× {0, T}.

I If y is the normal derivative of a solution of the wave equation, then the unique
multiplier λ must vanish almost everywhere. In this case the saddle point of Lr is
(w, 0), where w is the minimum of Jr.

Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 13/ 45



A stabilized mixed formulation

We define the following space Λ

Λ = {λ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)),

Lλ ∈ L2([0, T ];H−1(Ω)), λ(·, 0) = λt(·, 0) = 0, λ|Σ1
T
∈ L2(Σ1

T )}

endowed with the inner product 〈λ, λ〉Λ := 〈Lλ,Lλ〉L2((0,T );H−1(Ω)) + 〈cλ, cλ〉L2(Σ1
T ).

For every α ∈ (0, 1) we define:

ar,α : Z × Z → R, ar,α(w,w) = (1− α)〈c∂νw, c∂νw〉L2(Σ1
T ) + r〈Lw,Lw〉L2(QT ),

bα : Z × Λ→ R, bα(w, λ) = 〈Lw, λ〉L2(QT ) − α〈c∂νw, cλ〉L2(Σ1
T )

cα : Λ× Λ→ R, cα(λ, λ) = α〈Lλ,Lλ〉L2((0,T );H−1(Ω)) + α〈cλ, cλ〉L2(Σ1
T )

l1,α : Z → R, l1,α(w) = (1− α)〈c∂νw, cy〉L2(Σ1
T )

l2,α : Λ→ R, l2,α(λ) = −α〈cλ, cy〉L2(Σ1
T ).
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A stabilized mixed formulation

Proposition (NC, A. Münch)

Under the hypothesis of generalized observability, for every α ∈ (0, 1), the following
stabilized mixed formulation

{
ar,α(w,w) + bα(w, λ) = l1,α(w), (w ∈ Z)

bα(w, λ)− cα(λ, λ) = l2,α(λ), (λ ∈ Λ)

is well-posed. Moreover, the unique pair (y, λ) ∈ Z × Λ satisfies

θ‖w‖2Z + α‖λ‖2Λ ≤
(1− α)2 + αθ

θ
‖y‖2L2(Σ1

T )

with θ := min (1− α, r/η).
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A stabilized mixed formulation
Idea of the proof

I the bilinear form ar,α is continuous over Z × Z
I the bilinear form bα is continuous over Z × Λ

I the bilinear form cα is continuous over Λ× Λ

I the linear forms l1,α and l2,α are continuous over Z and Λ respectively.

Moreover,

I the bilinear forms ar,α and cα are coercive:

ar,α(w,w) ≥ θ‖w‖2Z (w ∈ Z)

cα(λ, λ) ≥ α‖λ‖2Λ (λ ∈ Λ).

The conclusion follows applying a result in Boffi, Brezzi and Fortin (2013).
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Some more remarks

I the unique solution of the stabilized mixed formulation corresponds to the
saddle-point of the following Lagrangian:

Lr,α(w, λ) = Lr(w, λ)− α

2
‖Lλ‖2L2(0,T,H−1) −

α

2
‖c(x)(λ− (∂νw − y))‖2L2(Σ1

T ).

I the term
α

2
‖Lλ‖2L2(0,T,H−1(Ω)) in the Lagrangian is a stabilization term.

I if the solution of the unstabilized mixed formulation is regular enough then it
coincides to the solution of the stabilized mixed formulation.
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Recovering the source term and the solution?

Without any assumptions on the source f , for a given observation y the couple (w, f)
such that{

Lw = f in QT
∂νw = y on Σ1

T

is not anymore unique.
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I σ ∈ C1([0, T ]) with σ(0) 6= 0

I µ ∈ H−1(Ω).
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Assume that f(x, t) = σ(t)µ(x) with

I σ ∈ C1([0, T ]) with σ(0) 6= 0

I µ ∈ H−1(Ω).

Theorem (Yamamoto, Zhang (2001))

Assume that (Σ1
T , QT ) satisfies the geometric optic condition. Let

w = w(µ) ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) be the weak solution of the wave

equation Lw = σµ with c := 1 and (w0, w1) = (0, 0). Then, there exists a positive
constant C such that

C−1‖µ‖H−1(Ω) ≤ ‖∂νw‖L2(Σ1
T ) ≤ C‖µ‖H−1(Ω), (µ ∈ H−1(Ω)).



A minimization problem





inf J(w, µ) :=
1

2
‖c(x)(∂νw − y)‖2L2(Σ1

T ) +
r

2
‖Lw − σµ‖2L2(QT ),

subject to (w, µ) ∈W
(Pw,µ)

where W is the space defined by

W :=

{
(w, µ); w ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)), µ ∈ H−1(Ω),

Lw − σµ = 0 in QT , w(·, 0) = wt(·, 0) = 0

}
.

Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 19/ 45

I ∂νw ∈ L2(Σ1
T ).

I W endowed with the norm ‖(w, µ)‖W = ‖c∂νw‖2L2(Σ1
T )

is a Hilbert space.

I The extremal problem (Pw,µ) is well-posed.

I The solution µ are uniformly bounded in H−1(Ω).
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Hypothesis:
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I if the velocity c is constant, then (H2) is a consequence of the Yamamoto and
Zhang Theorem.

I under the hypothesis (H2), the space Y endowed with the following inner product

〈(w, µ), (w, µ)〉Y := 〈c∂νw, c∂νw〉L2(ΓT ) + η〈Lw − σµ, Lw − σµ〉L2(QT ),

is a Hilbert space.
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I under the hypothesis (H2), the space Y endowed with the following inner product
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A mixed formulation in Y

For any r ≥ 0, we now define the mixed formulation: find ((w, µ), λ) ∈ Y × L2(QT )
solution of

{
ar((w, µ), (w, µ)) + b((w, µ), λ) = l(w, µ), ((w, µ) ∈ Y )

b((w, µ), λ) = 0, (λ ∈ L2(QT )),
(MF2)

where

ar : Y × Y → R, a((w, µ), (w, µ)) := 〈c∂νw, c∂νw〉L2(Σ1
T ) + r〈Lw − σµ, Lw − σµ〉L2(QT ),

b : Y × L2(QT )→ R, b((w, µ), λ) := 〈λ, Lw − σµ〉L2(QT ),

l : Y → R, l(w, µ) := 〈c∂νw, cy〉L2(Σ1
T ).
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Theorem (NC, A. Münch)

Let r ≥ 0. Under the hypothesis (H2), the following holds :

1. The mixed formulation (MF2) is well-posed.

2. The unique solution ((w, µ), λ) ∈ Y × L2(QT ) is the saddle-point of the
Lagrangian Lr : Y × L2(QT )→ R defined by
Lr((w, µ), λ) := 1

2ar((w, µ), (w, µ)) + b((w, µ), λ)− l(w, µ).
Moreover, the pair (w, µ) solves the extremal problem (Pw,µ).

3. The solution ((w, µ), λ) satisfies the estimates:

‖(w, µ)‖Y = ‖c(x)∂νw‖L2(Σ1
T ) ≤ ‖c(x) y‖L2(Σ1

T )

and
‖λ‖L2(QT ) ≤ 2

√
CΩ,T + η‖c(x) y‖L2(Σ1

T )

for some constant CΩ,T > 0.
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Numerical analysis of the mixed formulations
Known source term case (f = 0)

We consider the following finite dimensional spaces:
I Zh ⊂ Z
I Λh ⊂ L2(QT ).

and for any h > 0 we introduce the following approximating problems:
find (wh, λh) ∈ Zh × Λh solution of

{
ar(wh, wh) + b(wh, λh) = l(wh), (wh ∈ Zh)

b(wh, λh) = 0, (λh ∈ Λh).
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This mixed formulation is well-posed as a consequence of two things:

1. ar is coercive on Nh(b) = {wh ∈ Zh; b(wh, λh) = 0 for every λh ∈ Λh}
2. a discrete inf-sup condition: for every h > 0

δh := inf
λh∈Λh

sup
wh∈Zh

b(wh, λh)

‖λh‖L2(QT )‖wh‖Z
> 0.



Proposition (NC, A. Münch)

Let h > 0. Let (w, λ) and (wh, λh) be the solutions of continuous and discrete mixed
formulations respectively. Let δh be the discrete inf-sup constant. Then,

‖w − wh‖Z ≤ 2

(
1 +

1√
ηδh

)
d(w,Zh) +

1√
η
d(λ,Λh),

‖λ− λh‖L2(QT ) ≤
(

2 +
1√
ηδh

)
1

δh
d(w,Zh) +

3√
ηδh

d(λ,Λh)

where d(λ,Λh) := infλh∈Λh
‖λ− λh‖L2(QT ) and d(w,Zh) := infwh∈Zh

‖w − wh‖Z .
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1. if r = 0 the discrete mixed formulation may be not well-posed.

2. what if δh → 0 when h→ 0?

3. Zh must be chosen such that Lwh ∈ L2(QT ) for every wh ∈ Zh.
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Choice of the discrete spaces

I Th a triangulation such that QT = ∪K∈ThK and {Th}h>0 is a regular family.
h := max{diam(K),K ∈ Th}

I Zh := {zh ∈ C1(QT ) : zh|K ∈ P(K) ∀K ∈ Th, zh = 0 on ΣT },
where P(K) denotes an appropriate space of functions in x and t:

I the Bogner-Fox-Schmit (BFS for short) C1-element defined for rectangles
I the reduced Hsieh-Clough-Tocher (HCT for short) C1-element defined for triangles.

We also define the finite dimensional space

Λh := {λh ∈ C0(QT ), λh|K ∈ Q(K) ∀K ∈ Th}

where Q(K) denotes the space of affine functions both in x and t on the element K.
Remark that, for any h > 0, we have Zh ⊂ Z and Λh ⊂ L2(QT ).
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Proposition (BFS element for N = 1)

Let h > 0, let k ≤ 2 be a nonnegative integer. Let (w, λ) and (wh, λh) be the
solutions of continuous and discrete mixed formulations respectively. If the solution
(w, λ) belongs to Hk+2(QT )×Hk(QT ), then there exist positive constants
Ki(‖w‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT )), i ∈ {1, 2, 3} independent of h, such that

‖w − wh‖Z ≤ K1

(
1 +

1√
ηδh

+
1√
η

)
hk,

‖λ− λh‖L2(QT ) ≤ K2

((
1 +

1√
ηδh

)
1

δh
+

1√
ηδh

)
hk,

‖w − wh‖L2(QT ) ≤ K3 max(1,
2√
η

)

(
1 +

1√
ηδh

+
1√
η

)
hk+2.
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Evaluating δh numerically, we obtain δh ≈ C
h√
r

as h→ 0+ . . .



Back to the stabilized mixed formulation
Numerical approximation

I α ∈ (0, 1), h > 0

I Λ̃h be a closed finite dimensional subspace of Λ such that
Lλh ∈ L2(0, T,H−1(Ω)) for every λh ∈ Λ̃h. A natural choice is

Λ̃h = {λ ∈ Zh such that λ(·, 0) = λt(·, 0) = 0}.

The discrete version of the stabilized mixed formulation is then the following
{
ar,α(wh, wh) + bα(wh, λh) = l1,α(wh), (wh ∈ Zh)

bα(wh, λh)− cα(λh, λh) = l2,α(λh), ∀λh ∈ Λ̃h.

I In view of the properties of the forms ar,α, cα, l1,α and l2,α, this formulation is
well-posed.
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Proposition (BFS element for N = 1)

Let h > 0, let k ≤ 2 be a positive integer and α ∈ (0, 1). Let (w, λ) and (wh, λh) be
the solution of the continuous and discrete stabilized mixed formulations respectively.
If (w, λ) belongs to Hk+2(QT )×Hk+2(QT ), then there exists
Ki = Ki(‖w‖Hk+2(QT ), ‖c‖C1(QT ), ‖d‖L∞(QT ), α, r, η) > 0, for every i ∈ {1, 2, 3} and
independent of h, such that

‖w − wh‖Z + ‖λ− λh‖Λ ≤ K1h
k.

‖w − wh‖L2(QT ) ≤ K2
hk+2

√
η
, ‖λ− λh‖L2(QT ) ≤ K3h

k.
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Proposition (BFS element for N = 1)
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Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 28/ 45

Remarks:

1. these estimates are not depending on a inf-sup constant

2. similar estimates can be obtained for the mixed formulation associated to the
inverse problem for recovering the source term.



Numerical experiments
Reconstruction of the solution – one dimensional case

I Ω = (0, 1), Σ1
T = {1} × (0, T )

I T = 2, c ≡ 1, d ≡ 0, f = 0.

Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 29/ 45



Numerical experiments
Reconstruction of the solution – one dimensional case

The corresponding solution is given by

w(x, t) =
∑

k>0

(
ak cos(kπt) +

bk
kπ

sin(kπt)

)√
2 sin(kπx)

with

ak =
4
√

2

π2k2
sin(πk/2), bk =

1

πk
(cos(πk/3)− cos(2πk/3)), k > 0.

The observation is then given by:

y(t) =
∑

k>0

(−1)kkπ
√

2

(
ak cos(kπt) +

bk
kπ

sin(kπt)

)
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Numerical experiments
Reconstruction of the solution – one dimensional case
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Figure : Exact solution w and approximated solution wh on the mesh ] 3.
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Numerical experiments
Reconstruction of the solution – one dimensional case

h 7.62× 10−2 3.81× 10−2 1.91× 10−2 9.53× 10−3 4.77× 10−3

‖w−wh‖L2(QT )

‖w‖L2(QT )
3.67× 10−2 1.35× 10−2 5.99× 10−3 2.63× 10−3 1.22× 10−3

‖λh‖L2(QT ) 2.12× 10−2 1.08× 10−2 5.45× 10−3 2.53× 10−3 1.18× 10−3

κh 2.15× 106 1.11× 107 1.03× 108 8.67× 108 6.94× 109

Table : Example HCT element - r = h2 - T = 2.
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Numerical experiments
Reconstruction of the solution – one dimensional case

10 2 10 110 4

10 3

10 2

10 1

h

Figure : Example EX1 -T = 2 - Relative error ‖w − wh‖L2(QT )/‖w‖L2(QT ) w.r.t. h for the
BFS element with r = h2 (+) and r = 1 (?), the HCT element with r = h2 (�) and r = 1 (◦)
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Numerical experiments
Reconstruction of the solution – one dimensional case
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Figure : Iterative refinement of the triangular mesh over QT with respect to the variable wh
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Numerical experiments
Reconstruction of the solution – one dimensional case

We can add noise to the observation

ỹσ(t) = y(t) +Nσ(t) (t ∈ (0, T ))
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Numerical experiments
Reconstruction of the solution – one dimensional case
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Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 29/ 45



Numerical experiments
Reconstruction of the solution – two dimensional case

Ω

Γ

Figure : Bunimovich’s stadium and the subset Γ of ∂Ω on which the observation is available
(Left). Example of mesh of the domain QT (Right).
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Numerical experiments
Reconstruction of the solution – two dimensional case

Mesh number 1 2 3

Number of elements 1 860 18 060 158 280
Number of nodes 1 216 10 261 84 241

∆x 1.82× 10−1 8.2× 10−2 3.95× 10−2

∆t (Height of elements) 0.2 0.1 0.05
h 2.7× 10−1 1.29× 10−1 6.37× 10−2

Table : Characteristics of the three meshes associated with QT .

{
−∆w0 = 10, in Ω
w0 = 0, on ∂Ω,

w1 = 0 in Ω.
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Numerical experiments
Reconstruction of the solution – two dimensional case
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Figure : Initial data w0 (Left). Reconstructed initial data wh(·, 0) (Right).
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Numerical experiments
Reconstruction of the solution – two dimensional case
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Figure : Initial data w0 (Left). Reconstructed initial data wh(·, 0) (Right).
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Numerical experiments
Reconstruction of the solution and the source

I Ω = (0, 1), T = 2, Σ1
T = {1} × (0, T )

I c = 1, d = 0, σ(t) = 1 + t

Spatial part of the source we want to reconstruct µ ∈ H1(0, 1) :

µ(x) =
x

θ
1[0,θ](x) +

(1− x)

1− θ 1[θ,1](x), θ =
1

3
.

In order to get explicit solution, we use that the solution with zero initial conditions
can be expanded as follows :





w(x, t) =
∑

p>0

bp(t) sin(pπx)

bp(t) :=
1

pπ

∫ t

0
sin(pπ(t− s))fp(s)ds, fp(s) := 2σ(s)

∫

Ω
sin(pπx)µ(x)dx.

Nicolae Ĉındea Inverse problems for wave equations using mixed formulations 31/ 45



Numerical experiments
Reconstruction of the solution and the source
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Figure : Left: Function µ (full line) and µh (dotted line); Right: (−∆)−1(µ−µh)
‖(−∆)−1µ‖

H1
0(Ω)

along Ω.

‖w − wh‖L2(QT )

‖w‖L2(QT )
= O(h1.9),

‖µ− µh‖H−1(Ω)

‖µ‖H−1(Ω)
= O(h1.4).
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Distributed observation – the inverse problems





wtt −∇ · (c∇w) + dw = f, in QT
w = 0, on ΣT

w(x, 0) = w0(x), yt(x, 0) = w1(x), x ∈ Ω.

I QT = Ω× (0, T );

I ΣT = ∂Ω× (0, T );

I qT = ω × (0, T ) ⊂ QT ;

I (w0, w1) ∈ L2(Ω)×H−1(Ω).

I f ∈ L2(0, T ;H−1(Ω)).

Observation: y = w|qT .
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Distributed observation – hypotheses and functional spaces

Z =

{
w ∈ C([0, T ], L2(Ω)) ∩ C1([0, T ], H−1(Ω)) such that
Lw ∈ L2(0, T,H−1(Ω)), w|ΣT

= 0

}

Hypothesis:
There exists a constant Cobs = C(ω, T, ‖c‖C1(Ω), ‖d‖L∞(Ω)) such that the following
estimate holds :

‖(w(·, 0), wt(·, 0))‖2L2×H−1 ≤ Cobs
(
‖w‖2L2(qT ) + ‖Lw‖2L2(0,T,H−1(Ω))

)
, w ∈ Z.
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〈w,w〉Z :=

∫∫

qT

w(t)w(t) dxdt+ η

∫ T

0
〈Lw(t), Lw(t)〉H−1(Ω) dt (w,w ∈ Z).

Here, 〈·, ·〉H−1(Ω) denotes the inner product in H−1(Ω) defined by

〈ϕ,ψ〉H−1(Ω) =

∫

Ω
∇(−∆)−1ϕ(x) · ∇(−∆)−1ψ(x)dx, ∀ϕ, ψ ∈ H−1(Ω).



Distributed observation – mixed formulation

Find (w, λ) ∈ Z × L2(0, T,H1
0 (Ω)) solution of

{
a(w,w) + b(w, λ) = l(w), (w ∈ Z)

b(w, λ) = 0, (λ ∈ L2(0, T,H1
0 (Ω))),

where

a : Z × Z → R, a(w,w) :=

∫∫

qT

ww dxdt,

b : Z × L2(0, T,H1
0 (Ω))→ R, b(w, λ) :=

∫ T

0
〈λ(t), Lw(t)〉H1

0 (Ω),H−1(Ω)dt,

l : Z → R, l(w) :=

∫∫

qT

y w dxdt.
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Numerical experiments - 1d

I Ω = (0, 1), qT = (0.1, 0.3)× (0, T )

I T = 2, c ≡ 1, d ≡ 0, f = 0.
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Numerical experiments - 1d
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Numerical experiments - 1d

Mesh number 1 2 3 4

] elements 792 2 108 7 902 14 717
] points 429 1 101 4 041 7 462

‖w−wh‖L2(QT )

‖w‖L2(QT )
1.34× 10−2 8.69× 10−3 6.01× 10−3 5.9× 10−3

‖λh‖L2(QT ) 1.14× 10−5 7.99× 10−6 5.02× 10−6 4.79× 10−6

Table : Information concerning the meshes and approximation errors for mesh adaptation
strategy.
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Numerical experiments – 2d
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Figure : (a) Example of sets Ω and ω. (b) Example of mesh of the domain QT .
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Numerical experiments – 2d
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Figure : (a) Initial data w0. (b) Reconstructed initial data wh(·, 0).
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Numerical experiments – 2d

Mesh number 1 2 3
‖wh−wh‖L2(QT )

‖wh‖L2(QT )
1.88× 10−1 8.04× 10−2 7.11× 10−2

Table : Errors in the reconstructed solution

I wh is the solution of the mixed formulation

I wh numerical computed solution of the wave equation which was used to simulate
the observation y.
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Some references concerning the controllability with moving controls

A. Y. Khapalov, Controllability of the wave equation with moving point
control, Appl. Math. Optim. (1995).

L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave
equation in non-cylindrical domains, J. Math. Anal. Appl. (2013).

C. Castro, Exact controllability of the 1-D wave equation from a moving interior
point, ESAIM COCV (2013).
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Observability inequality in time-dependent domain case

Proposition (C. Carlos, N.C, A. Münch – 2014)

Assume that qT ⊂ (0, 1)× (0, T ) is a finite union of connected open sets and satisfies
the following hypotheses:
any characteristic line starting at a point x ∈ (0, 1) at time t = 0 and following the
optical geometric laws when reflecting at the boundary ΣT must meet qT .
Then, there exists C > 0 such that the following estimate holds :

‖(ϕ(·, 0), ϕt(·, 0))‖2L2(0,1)×H−1(0,1) ≤ C
(
‖ϕ‖2L2(qT ) + ‖Lϕ‖2L2(0,T ;H−1(0,1))

)
,

for every ϕ ∈ C([0, T ], L2(0, 1)) ∩ C1([0, T ], H−1(0, 1)) and satisfying
Lϕ ∈ L2(0, T ;H−1(0, 1)).
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving pointwise control:

C. Castro, Exact controllability of the 1-D wave equation from a moving interior
point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.
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Boundary observability inequality:

‖(ϕ(·, 0), ϕt(·, 0))‖2H ≤ C
∫ T

0
|ϕx(0, t)|2dt.

combined with the previous estimate gives:

‖(ϕ(·, 0), ϕt(·, 0))‖2V ≤ C
(
‖ϕt‖2L2(qT ) + ‖ϕx‖2L2(qT )

)

H = L2(0, 1)×H−1(0, 1)

V = H1
0(0, 1)× L2(0, 1)
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Observability inequality in time-dependent domain case
Idea of the proof

We follow the method used by C. Castro in the case of a moving pointwise control:

C. Castro, Exact controllability of the 1-D wave equation from a moving interior
point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

I D’Alembert formulae;

I known observability inequality in the boundary case;

I equi-repartition of energy.

Remark

The proof of the proposition is specific to the one-dimensional case.
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Numerical experiments
Example of observation domains qT and the associated meshes
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Figure : Domain q1
T and domain q2

T triangulated using some coarse meshes.
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Numerical experiments
Exact and reconstructed solution from measurements on q2T
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Figure : (a) Reference solution w. (b) Solution reconstructed from the observation y = w|q2
T

.
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Numerical experiments
Simulation results using measurements on q2T

h 6.24× 10−2 3.12× 10−2 1.56× 10−2 7.8× 10−3 3.9× 10−3

‖w−wh‖L2(QT )

‖w‖L2(QT )
1.38× 10−2 6.37× 10−3 2.64× 10−3 1.15× 10−3 5.25× 10−4

‖λh‖L2(QT ) 6.37× 10−6 1.65× 10−6 3.88× 10−7 9.74× 10−8 2.90× 10−8

κ 2.02× 108 2.62× 109 2.05× 1010 1.61× 1011 1.32× 1012

dim({λh}) 554 2 135 8 381 33 209 132 209

Table : Observation domain q2
T - r = 1 - T = 2.
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Conclusion and perspectives

Conclusion:

I We reduced the inverse problems of reconstruction of solution or of a source term
to the resolution of a mixed formulation – for the wave equation.

I Boundary or distributed observation can be used in this method.

I Method is constructive – numerical convergent scheme.

Some perspectives:

I the method can be extended to more general systems

I avoid the use of C1 finite elements?
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C. Castro, N. Ĉındea, A. Münch, Controllability of the linear 1D wave
equation with inner moving forces, SICON (2014).

N. Ĉındea, A. Münch, Inverse problems for linear hyperbolic equations using
mixed formulations, Inverse Problems 31 (7), 075-001, 2015.

N. Ĉındea, A. Münch, Reconstruction of the solution and the source of
hyperbolic equations from boundary measurements: mixed formulations,
submitted.

Thank you!
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