Inverse problems for the wave equation using mixed formulations and space-time FEM

> Nicolae Cîndea joint work with Arnaud Münch

Institute for Mathematics and its Applications Control Theory and its Applications September 01, 2015 - June 30, 2016 Minneapolis, March 24, 2016

Nicolae Cîndea Inverse problems for wave equations using mixed formulations

The wave equation with distributed observation

We consider the following wave equation:

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & y_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

• $Q_T = \Omega \times (0,T);$

- $\Sigma_T = \partial \Omega \times (0,T);$
- ► $q_T = \omega \times (0, T) \subset Q_T$;
- $(w_0, w_1) \in L^2(\Omega) \times H^{-1}(\Omega).$
- $\blacktriangleright \ f\in L^2(0,T;H^{-1}(\Omega)).$

Observation:

$$y = w|_{q_T}.$$

The wave equation with boundary observation

We consider the following wave equation:

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & y_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

•
$$Q_T = \Omega \times (0,T);$$

- $\Sigma_T = \partial \Omega \times (0,T);$
- $\Sigma_T^1 = \Gamma_1 \times (0, T);$
- $q_T = \omega \times (0,T) \subset Q_T;$
- $(w_0, w_1) \in H^1_0(\Omega) \times L^2(\Omega).$
- ► $f \in L^2(Q_T)$.

Observation:

Nicolae Cîndea

$$y = \partial_{\nu} w|_{\Sigma^1_T}.$$

Inverse problems for wave equations using mixed formulations

(1)

Inverse problems

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & w_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

From observations (or measurements) y recover

- initial data (w_0, w_1) ;
- source term f;
- coefficients c, d...

Inverse problems

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & w_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

From observations (or measurements) y recover

- initial data (w_0, w_1) ;
- ▶ source term *f*;
- ► coefficients c, d... $c \in C^1(\overline{\Omega}),$ $c(x) \ge c_0 > 0$ $d \in L^{\infty}(Q_T).$

Questions: existence? unicity? stability? numerical approximation...

Inverse problems using observability/Carleman estimates for PDEs:

- Belina, Klibanov, Imanuvilov, Isakov, Puel, Triggiani, Tucsnak, Yamamoto...
- ▶ books: Isakov (1998), Klibanov and Timonov (2004)

Inverse problems using observability/Carleman estimates for PDEs:

- Belina, Klibanov, Imanuvilov, Isakov, Puel, Triggiani, Tucsnak, Yamamoto...
- ▶ books: Isakov (1998), Klibanov and Timonov (2004)

Observers/data assimilation for inverse problems

- D. Chapelle and M3DISIM INRIA team
- ▶ G. Haine, K. Ramdani (2011, 2012)
- D. Chapelle, N.C., P.Moireau (2012, 2015)

▶ ...

Inverse problems using observability/Carleman estimates for PDEs:

- Belina, Klibanov, Imanuvilov, Isakov, Puel, Triggiani, Tucsnak, Yamamoto...
- ▶ books: Isakov (1998), Klibanov and Timonov (2004)

Observers/data assimilation for inverse problems

- D. Chapelle and M3DISIM INRIA team
- ▶ G. Haine, K. Ramdani (2011, 2012)
- D. Chapelle, N.C., P.Moireau (2012, 2015)
- ▶ ...

Nicolae Cîndea

Least squares method

optimal control community

Boundary observation

Distributed observation

Time-dependent distributed observation

Regularity of solutions

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & w_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

If $(w_0, w_1) \in H^1_0(\Omega) \times L^2(\Omega)$ and $f \in L^2(Q_T)$ then solutions of the wave equation have the following regularity:

$$w \in C([0,T], H_0^1(\Omega)) \cap C^1([0,T], L^2(\Omega)).$$

We define $Z = \{w \in C([0,T], H_0^1(\Omega)) \cap C^1([0,T], L^2(\Omega)) \text{ such that } Lw \in L^2(Q_T)\}$ The following *hidden-regularity* property holds

$$\|c(x)\partial_{\nu}w\|_{L^{2}(\Sigma_{T}^{1})}^{2} \leq C_{T}\left(\|(w(\cdot,0),w_{t}(\cdot,0))\|_{H^{1}_{0}\times L^{2}}^{2} + \|Lw\|_{L^{2}(Q_{T})}^{2}\right) \qquad (w \in Z).$$

Regularity of solutions

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & w_t(x, 0) = w_1(x), & x \in \Omega. \end{cases}$$

If $(w_0, w_1) \in H^1_0(\Omega) \times L^2(\Omega)$ and $f \in L^2(Q_T)$ then solutions of the wave equation have the following regularity:

$$w \in C([0,T], H^1_0(\Omega)) \cap C^1([0,T], L^2(\Omega)).$$

We define $Z = \left\{ w \in C([0,T], H_0^1(\Omega)) \cap C^1([0,T], L^2(\Omega)) \text{ such that } Lw \in L^2(Q_T) \right\}$ The following *hidden-regularity* property holds $Lw = w_{tt} - \nabla \cdot (c\nabla w) + dw$ $\|c(x)\partial_\nu w\|_{L^2(\Sigma_T^1)}^2 \leq C_T \left(\|(w(\cdot,0), w_t(\cdot,0))\|_{H_0^1 \times L^2}^2 + \|Lw\|_{L^2(Q_T)}^2 \right) \qquad (w \in Z).$

Generalized observability

Hypothesis:

There exists a constant $C_{obs} > 0$ depending on Γ^1 , T, c, d such that the following estimate holds:

$$\|(w(\cdot,0),w_t(\cdot,0))\|_{H_0^1\times L^2}^2 \le C_{obs}\left(\|c(x)\partial_\nu w\|_{L^2(\Sigma_T^1)}^2 + \|Lw\|_{L^2(Q_T)}^2\right) \qquad (w\in Z).$$

For constant coefficients, this hypothesis holds true if the triplet (Γ^1, T, Ω) satisfies a geometric optic condition.

Generalized observability

Hypothesis:

There exists a constant $C_{obs} > 0$ depending on Γ^1 , T, c, d such that the following estimate holds:

$$\|(w(\cdot,0),w_t(\cdot,0))\|_{H_0^1\times L^2}^2 \le C_{obs}\left(\|c(x)\partial_\nu w\|_{L^2(\Sigma_T^1)}^2 + \|Lw\|_{L^2(Q_T)}^2\right) \qquad (w\in Z).$$

For constant coefficients, this hypothesis holds true if the triplet (Γ^1, T, Ω) satisfies a geometric optic condition.

Consequence:

Nicolae Cîndea

The space Z endowed with the inner product

$$\langle w, \overline{w} \rangle_Z = \langle c \partial_\nu w, c \partial_\nu \overline{w} \rangle_{L^2(\Sigma_T^1)} + \eta \langle Lw, L \overline{w} \rangle_{L^2(Q_T)} \qquad (w, \overline{w} \in Z).$$

is a Hilbert space, for every value of the parameter $\eta > 0$.

Known source term

What we know:

the velocity of propagation c;

Known source term

What we know:

- the velocity of propagation c;
- ▶ the potential *d*;

Known source term

What we know:

- the velocity of propagation c;
- ▶ the potential *d*;
- the source f.

Without restraining the generality we take f = 0.

Known source term

What we know:

- the velocity of propagation c;
- ▶ the potential *d*;
- ▶ the source *f*.

Without restraining the generality we take f = 0.

• the measurement $y \in L^2(\Sigma^1_T)$.

Known source term

What we know:

- the velocity of propagation c;
- ► the potential *d*;
- the source f.
 Without restraining the generality we take f = 0.
- the measurement $y \in L^2(\Sigma^1_T)$.

We want to recover:

 \blacktriangleright the solution $w \in Z$ of

$$\begin{cases} Lw = 0 \\ \partial_{\nu}w|_{\Sigma_T^1} = y, \end{cases}$$

or, completely equivalent, the initial data (w_0, w_1) .

We consider the following minimization problem:

$$\begin{cases} \inf J(w) := \frac{1}{2} \left\| \boldsymbol{c}(\boldsymbol{x}) (\partial_{\nu} w - \boldsymbol{y}) \right\|_{L^2(\Sigma_T^1)}^2 \\ \text{subject to } w \in W := \{ w \in Z; \ Lw = 0 \text{ in } L^2(Q_T) \}. \end{cases}$$

This problem is well posed:

- $\blacktriangleright\ J$ is continuous over W endowed with the norm of Z
- \blacktriangleright J is strictly convex

•
$$J(w) \to \infty$$
 when $w \in W$ and $||w||_Z \to \infty$.

We consider the following relaxed minimization problem:

$$\begin{cases} \inf J_r(w) := \frac{1}{2} \| c(x) (\partial_{\nu} w - y) \|_{L^2(\Sigma_T^1)}^2 + \frac{r}{2} \| Lw \|_{L^2(Q_T)}^2 \\ \text{subject to } w \in Z. \end{cases}$$

We still have that this problem is well posed:

- $\blacktriangleright J$ is continuous over Z
- ► J is strictly convex
- $J(w) \to \infty$ when $||w||_Z \to \infty$.

Find $(w, \lambda) \in Z \times L^2(Q_T)$ solution of

$$\begin{cases} a_r(w,\overline{w}) + b(\overline{w},\lambda) = l(\overline{w}) & (\overline{w} \in Z) \\ b(w,\overline{\lambda}) = 0 & (\overline{\lambda} \in L^2(Q_T)), \end{cases}$$

where

$$a_r : Z \times Z \to \mathbb{R}, \qquad a_r(w, \overline{w}) = \langle c \partial_\nu w, \ c \partial_\nu \overline{w} \rangle_{L^2(\Sigma_T^1)} + r \langle Lw, \ L\overline{w} \rangle_{L^2(Q_T)}$$
$$b : Z \times L^2(Q_T) \to \mathbb{R}, \qquad b(w, \lambda) = \langle \lambda, \ Lw \rangle_{L^2(Q_T)}$$
$$l : Z \to \mathbb{R}, \qquad l(w) = \langle cy, \ c \partial_\nu w \rangle_{L^2(\Sigma_T^1)}.$$

Nicolae Cîndea Inverse problems for wave equations using mixed formulations

Theorem (NC, A. Münch)

Under the hypothesis of generalized observability,

- 1. The mixed formulation is well-posed.
- 2. The unique solution $(w, \lambda) \in Z \times L^2(Q_T)$ to the mixed formulation is the unique saddle-point of the Lagrangian $\mathcal{L}_r : Z \times L^2(Q_T) \to \mathbb{R}$ defined by

$$\mathcal{L}_r(w,\lambda) := \frac{1}{2}a_r(w,w) + b(w,\lambda) - l(w).$$

3. The solution $(w, \lambda) \in Z \times L^2(Q_T)$ satisfies the estimates

 $\|w\|_Z \le \|c(x) \, y\|_{L^2(\Sigma^1_T)}, \ \|\lambda\|_{L^2(Q_T)} \le 2\sqrt{C_{\Omega,T}+\eta}\|c(x) \, y\|_{L^2(\Sigma^1_T)}.$

- \blacktriangleright the bilinear form a_r is continuous over $Z\times Z$
- ▶ the bilinear form b is continuous over $Z \times L^2(Q_T)$
- the linear form l is continuous over Z.

- \blacktriangleright the bilinear form a_r is continuous over $Z\times Z$
- ▶ the bilinear form b is continuous over $Z \times L^2(Q_T)$
- the linear form l is continuous over Z.

Moreover,

• a_r is coercive on the kernel $\mathcal{N}(b)$ of b.

- \blacktriangleright the bilinear form a_r is continuous over $Z\times Z$
- ▶ the bilinear form b is continuous over $Z \times L^2(Q_T)$
- the linear form l is continuous over Z.

Moreover,

• a_r is coercive on the kernel $\mathcal{N}(b)$ of b.

$$\begin{split} \mathcal{N}(b) &= \left\{ w \in Z \mid b(w,\lambda) = 0 \text{ for every } \lambda \in L^2(Q_T) \right\} \\ & \Longleftrightarrow \iint_{Q_T} Lw\lambda dx dt = 0 \text{ for every } \lambda \in L^2(Q_T) \\ & \Longleftrightarrow Lw = 0 \text{ in } L^2(Q_T) \qquad \mathcal{N}(b) = W. \\ & \text{Since } a_r(w,w) = \| c \partial_{\nu} w \|_{L^2(\Sigma_T^1)}^2 = \| w \|_Z^2 \text{ for every } w \in W, \\ & a_r \text{ is coercive on } \mathcal{N}(b). \end{split}$$

- \blacktriangleright the bilinear form a_r is continuous over $Z\times Z$
- the bilinear form b is continuous over $Z \times L^2(Q_T)$
- the linear form l is continuous over Z.

Moreover,

- a_r is coercive on the kernel $\mathcal{N}(b)$ of b.
- \blacktriangleright the following inf-sup property holds: there exists $\delta>0$ such that

$$\inf_{\lambda \in L^2(Q_T)} \sup_{w \in Z} \frac{b(w, \lambda)}{\|w\|_Z \|\lambda\|_{L^2(Q_T)}} \ge \delta.$$

- \blacktriangleright the bilinear form a_r is continuous over $Z\times Z$
- the bilinear form b is continuous over $Z \times L^2(Q_T)$
- the linear form l is continuous over Z.

Moreover,

- a_r is coercive on the kernel $\mathcal{N}(b)$ of b.
- \blacktriangleright the following inf-sup property holds: there exists $\delta>0$ such that

$$\inf_{\lambda \in L^2(Q_T)} \sup_{w \in Z} \frac{b(w, \lambda)}{\|w\|_Z \|\lambda\|_{L^2(Q_T)}} \ge \delta.$$

The conclusion of theorem follows from standard results about mixed formulations.

Some remarks

- The Lagrangian \mathcal{L}_r is an augmentation of the simpler Lagrangian $\mathcal{L}(w,\lambda) = \frac{1}{2}a(w,w) + b(w,\lambda) l(\lambda)$ where $a(w,\overline{w}) = \langle c\partial_{\nu}w, \ c\partial_{\nu}\overline{w} \rangle_{L^2(\Sigma_T^1)}$
- If the solution λ verifies $L\lambda \in L^2(0,T; H^{-1}(\Omega))$ and $(\lambda, \lambda_t)_{|t \in \{0,T\}} \in L^2(\Omega) \times H^{-1}(\Omega)$, the multiplier λ verifies

$$\begin{cases} L\lambda = 0 & \text{in } Q_T \\ \lambda = \mathbf{c}(\partial_{\nu}w - \mathbf{y}) & \text{on } \Sigma_T^1 \\ \lambda = 0 & \text{on } \Sigma_T \setminus \Sigma_T^1 \\ \lambda = \lambda_t = 0 & \text{on } \Omega \times \{0, T\}. \end{cases}$$

If y is the normal derivative of a solution of the wave equation, then the unique multiplier λ must vanish almost everywhere. In this case the saddle point of L_r is (w, 0), where w is the minimum of J_r.

A stabilized mixed formulation

We define the following space Λ

$$\begin{split} \Lambda &= \{\lambda \in C([0,T];L^2(\Omega)) \cap C^1([0,T];H^{-1}(\Omega)), \\ & L\lambda \in L^2([0,T];H^{-1}(\Omega)), \ \lambda(\cdot,0) = \lambda_t(\cdot,0) = 0, \ \lambda_{|\Sigma_T^1} \in L^2(\Sigma_T^1) \} \end{split}$$

endowed with the inner product $\langle \lambda, \overline{\lambda} \rangle_{\Lambda} := \langle L\lambda, L\overline{\lambda} \rangle_{L^2((0,T);H^{-1}(\Omega))} + \langle c\lambda, c\overline{\lambda} \rangle_{L^2(\Sigma_T^1)}$. For every $\alpha \in (0,1)$ we define:

$$\begin{split} a_{r,\alpha} &: Z \times Z \to \mathbb{R}, \quad a_{r,\alpha}(w,\overline{w}) = (1-\alpha) \langle c \partial_{\nu} w, c \partial_{\nu} \overline{w} \rangle_{L^{2}(\Sigma_{T}^{1})} + r \langle Lw, L\overline{w} \rangle_{L^{2}(Q_{T})}, \\ b_{\alpha} &: Z \times \Lambda \to \mathbb{R}, \quad b_{\alpha}(w,\lambda) = \langle Lw, \lambda \rangle_{L^{2}(Q_{T})} - \alpha \langle c \partial_{\nu} w, c \lambda \rangle_{L^{2}(\Sigma_{T}^{1})} \\ c_{\alpha} &: \Lambda \times \Lambda \to \mathbb{R}, \quad c_{\alpha}(\lambda,\overline{\lambda}) = \alpha \langle L\lambda, L\overline{\lambda} \rangle_{L^{2}((0,T);H^{-1}(\Omega))} + \alpha \langle c\lambda, c\overline{\lambda} \rangle_{L^{2}(\Sigma_{T}^{1})} \\ l_{1,\alpha} &: Z \to \mathbb{R}, \quad l_{1,\alpha}(w) = (1-\alpha) \langle c \partial_{\nu} w, cy \rangle_{L^{2}(\Sigma_{T}^{1})} \\ l_{2,\alpha} &: \Lambda \to \mathbb{R}, \quad l_{2,\alpha}(\lambda) = -\alpha \langle c\lambda, cy \rangle_{L^{2}(\Sigma_{T}^{1})}. \end{split}$$

Nicolae Cîndea

Proposition (NC, A. Münch)

Under the hypothesis of generalized observability, for every $\alpha \in (0,1)$, the following stabilized mixed formulation

$$\begin{cases} a_{r,\alpha}(w,\overline{w}) + b_{\alpha}(\overline{w},\lambda) &= l_{1,\alpha}(\overline{w}), \\ b_{\alpha}(w,\overline{\lambda}) - c_{\alpha}(\lambda,\overline{\lambda}) &= l_{2,\alpha}(\overline{\lambda}), \end{cases} \quad (\overline{\lambda} \in \Lambda)$$

is well-posed. Moreover, the unique pair $(y,\lambda)\in Z imes\Lambda$ satisfies

$$\theta \|w\|_Z^2 + \alpha \|\boldsymbol{\lambda}\|_{\Lambda}^2 \leq \frac{(1-\alpha)^2 + \alpha \theta}{\theta} \|\boldsymbol{y}\|_{L^2(\Sigma_T^1)}^2$$

with $\theta := \min(1 - \alpha, r/\eta)$.

- \blacktriangleright the bilinear form $a_{r,\alpha}$ is continuous over $Z\times Z$
- the bilinear form b_{α} is continuous over $Z \times \Lambda$
- the bilinear form c_{α} is continuous over $\Lambda \times \Lambda$
- the linear forms $l_{1,\alpha}$ and $l_{2,\alpha}$ are continuous over Z and Λ respectively.

Moreover,

• the bilinear forms $a_{r,\alpha}$ and c_{α} are coercive:

$$a_{r,\alpha}(w,w) \ge \theta \|w\|_Z^2 \qquad (w \in Z)$$

$$c_{\alpha}(\lambda,\lambda) \ge \alpha \|\lambda\|_{\Lambda}^2 \qquad (\lambda \in \Lambda).$$

The conclusion follows applying a result in Boffi, Brezzi and Fortin (2013).

the unique solution of the stabilized mixed formulation corresponds to the saddle-point of the following Lagrangian:

$$\mathcal{L}_{r,\alpha}(w,\lambda) = \mathcal{L}_{r}(w,\lambda) - \frac{\alpha}{2} \|L\lambda\|_{L^{2}(0,T,H^{-1})}^{2} - \frac{\alpha}{2} \|c(x)(\lambda - (\partial_{\nu}w - y))\|_{L^{2}(\Sigma_{T}^{1})}^{2}.$$

the unique solution of the stabilized mixed formulation corresponds to the saddle-point of the following Lagrangian:

$$\mathcal{L}_{r,\alpha}(w,\lambda) = \mathcal{L}_{r}(w,\lambda) - \frac{\alpha}{2} \|L\lambda\|_{L^{2}(0,T,H^{-1})}^{2} - \frac{\alpha}{2} \|c(x)(\lambda - (\partial_{\nu}w - y))\|_{L^{2}(\Sigma_{T}^{1})}^{2}.$$

• the term $\frac{\alpha}{2} \|L\lambda\|_{L^2(0,T,H^{-1}(\Omega))}^2$ in the Lagrangian is a stabilization term.

the unique solution of the stabilized mixed formulation corresponds to the saddle-point of the following Lagrangian:

$$\mathcal{L}_{r,\alpha}(w,\lambda) = \mathcal{L}_{r}(w,\lambda) - \frac{\alpha}{2} \|L\lambda\|_{L^{2}(0,T,H^{-1})}^{2} - \frac{\alpha}{2} \|c(x)(\lambda - (\partial_{\nu}w - y))\|_{L^{2}(\Sigma_{T}^{1})}^{2}.$$

- the term $\frac{\alpha}{2} \|L\lambda\|_{L^2(0,T,H^{-1}(\Omega))}^2$ in the Lagrangian is a stabilization term.
- if the solution of the unstabilized mixed formulation is regular enough then it coincides to the solution of the stabilized mixed formulation.

Recovering the source term and the solution?

Without any assumptions on the source f , for a given observation \boldsymbol{y} the couple (\boldsymbol{w},f) such that

 $\left\{ \begin{array}{ll} Lw = f & \text{in } Q_T \\ \partial_\nu w = y & \text{on } \Sigma_T^1 \end{array} \right.$

is not anymore unique.

Recovering the source term and the solution?

Without any assumptions on the source f, for a given observation y the couple (w, f) such that

$$\left\{ \begin{array}{ll} Lw = f & \text{ in } Q_T \\ \partial_\nu w = y & \text{ on } \Sigma_T^1 \end{array} \right.$$

is not anymore unique.

Assume that
$$f(x,t) = \sigma(t)\mu(x)$$
 with
• $\sigma \in C^1([0,T])$ with $\sigma(0) \neq 0$
• $\mu \in H^{-1}(\Omega)$.
Recovering the source term and the solution?

Without any assumptions on the source f, for a given observation y the couple (w, f) such that

$$\begin{cases} Lw = f & \text{in } Q_T \\ \partial_{\nu}w = y & \text{on } \Sigma_T^1 \end{cases}$$

is not anymore unique.

Assume that
$$f(x,t) = \sigma(t)\mu(x)$$
 with
• $\sigma \in C^1([0,T])$ with $\sigma(0) \neq 0$
• $\mu \in H^{-1}(\Omega)$.

Theorem (Yamamoto, Zhang (2001))

Assume that (Σ_T^1, Q_T) satisfies the geometric optic condition. Let $w = w(\mu) \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega))$ be the weak solution of the wave equation $Lw = \sigma\mu$ with c := 1 and $(w_0, w_1) = (0,0)$. Then, there exists a positive constant C such that

$$C^{-1} \|\mu\|_{H^{-1}(\Omega)} \le \|\partial_{\nu} w\|_{L^{2}(\Sigma^{1}_{T})} \le C \|\mu\|_{H^{-1}(\Omega)}, \qquad (\mu \in H^{-1}(\Omega)).$$

Nicolae Cîndea

where \boldsymbol{W} is the space defined by

$$W := \left\{ (w,\mu); \ w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ Lw - \sigma\mu = 0 \text{ in } Q_T, \ w(\cdot,0) = w_t(\cdot,0) = 0 \right\}.$$

$$\begin{cases} \inf J(w,\mu) := \frac{1}{2} \| c(x) (\partial_{\nu} w - y) \|_{L^{2}(\Sigma_{T}^{1})}^{2} + \frac{r}{2} \| Lw - \sigma \mu \|_{L^{2}(Q_{T})}^{2}, \\ \text{subject to} \quad (w,\mu) \in W \end{cases}$$

where \boldsymbol{W} is the space defined by

$$W := \left\{ (w,\mu); \ w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ Lw - \sigma\mu = 0 \text{ in } Q_T, \ w(\cdot,0) = w_t(\cdot,0) = 0 \right\}.$$
$$\partial_{\nu} w \in L^2(\Sigma_T^1).$$

$$\begin{cases} \inf J(w,\mu) := \frac{1}{2} \| c(x) (\partial_{\nu} w - y) \|_{L^{2}(\Sigma_{T}^{1})}^{2} + \frac{r}{2} \| Lw - \sigma \mu \|_{L^{2}(Q_{T})}^{2}, \\ \text{subject to} \quad (w,\mu) \in W \end{cases}$$

where \boldsymbol{W} is the space defined by

$$W := \left\{ (w,\mu); \ w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ Lw - \sigma\mu = 0 \text{ in } Q_T, \ w(\cdot,0) = w_t(\cdot,0) = 0 \right\}.$$

$$\blacktriangleright \ \partial_{\nu} w \in L^2(\Sigma_T^1).$$

• W endowed with the norm $||(w,\mu)||_W = ||c\partial_{\nu}w||^2_{L^2(\Sigma^1_T)}$ is a Hilbert space.

$$\begin{cases} \inf J(w,\mu) := \frac{1}{2} \| c(x) (\partial_{\nu} w - y) \|_{L^{2}(\Sigma_{T}^{1})}^{2} + \frac{r}{2} \| Lw - \sigma \mu \|_{L^{2}(Q_{T})}^{2}, \\ \text{subject to} \quad (w,\mu) \in W \end{cases}$$

$$(\mathcal{P}_{w,\mu})$$

where W is the space defined by

$$W := \left\{ (w,\mu); \ w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ Lw - \sigma\mu = 0 \text{ in } Q_T, \ w(\cdot,0) = w_t(\cdot,0) = 0 \right\}.$$

- $\blacktriangleright \ \partial_{\nu} w \in L^2(\Sigma^1_T).$
- W endowed with the norm $||(w,\mu)||_W = ||c\partial_{\nu}w||^2_{L^2(\Sigma^1_T)}$ is a Hilbert space.
- The extremal problem $(\mathcal{P}_{w,\mu})$ is well-posed.

$$\begin{cases} \inf J(w,\mu) := \frac{1}{2} \| c(x) (\partial_{\nu} w - y) \|_{L^{2}(\Sigma_{T}^{1})}^{2} + \frac{r}{2} \| Lw - \sigma \mu \|_{L^{2}(Q_{T})}^{2}, \\ \text{subject to} \quad (w,\mu) \in W \end{cases}$$

$$(\mathcal{P}_{w,\mu})$$

where W is the space defined by

$$W := \left\{ (w,\mu); \ w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ Lw - \sigma\mu = 0 \text{ in } Q_T, \ w(\cdot,0) = w_t(\cdot,0) = 0 \right\}.$$

 $\blacktriangleright \ \partial_{\nu} w \in L^2(\Sigma^1_T).$

Nicolae Cîndea

- W endowed with the norm $||(w,\mu)||_W = ||c\partial_{\nu}w||^2_{L^2(\Sigma^1_m)}$ is a Hilbert space.
- The extremal problem $(\mathcal{P}_{w,\mu})$ is well-posed.
- The solution μ are uniformly bounded in $H^{-1}(\Omega)$.

Hypothesis:

There exists a positive constant $C_{obs} = C(\Sigma_T^1, T, \|\boldsymbol{c}\|_{C^1(\overline{\Omega})}, \|\boldsymbol{d}\|_{L^{\infty}(\Omega)})$ such that the following estimate holds:

$$\|\mu\|_{H^{-1}(\Omega)}^{2} \leq C_{obs} \left(\|c(x)\partial_{\nu}w\|_{L^{2}(\Sigma_{T}^{1})}^{2} + \|Lw - \sigma\mu\|_{L^{2}(Q_{T})}^{2} \right), \qquad (w,\mu) \in Y. \quad (\mathcal{H}_{2})$$

where

$$Y := \left\{ \begin{array}{cc} (w,\mu); & w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ & Lw - \sigma \mu \in L^2(Q_T), \ w(\cdot,0) = w_t(\cdot,0) = 0 \end{array} \right\}$$

Hypothesis:

There exists a positive constant $C_{obs} = C(\Sigma_T^1, T, \|\boldsymbol{c}\|_{C^1(\overline{\Omega})}, \|\boldsymbol{d}\|_{L^{\infty}(\Omega)})$ such that the following estimate holds:

$$\|\mu\|_{H^{-1}(\Omega)}^{2} \leq C_{obs} \left(\|c(x)\partial_{\nu}w\|_{L^{2}(\Sigma_{T}^{1})}^{2} + \|Lw - \sigma\mu\|_{L^{2}(Q_{T})}^{2} \right), \qquad (w,\mu) \in Y. \quad (\mathcal{H}_{2})$$

where

$$Y := \left\{ \begin{array}{cc} (w,\mu); & w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ & Lw - \sigma\mu \in L^2(Q_T), \ w(\cdot,0) = w_t(\cdot,0) = 0 \end{array} \right\}$$

▶ if the velocity *c* is constant, then (*H*₂) is a consequence of the Yamamoto and Zhang Theorem.

Hypothesis:

There exists a positive constant $C_{obs} = C(\Sigma_T^1, T, \|\boldsymbol{c}\|_{C^1(\overline{\Omega})}, \|\boldsymbol{d}\|_{L^{\infty}(\Omega)})$ such that the following estimate holds:

$$\|\mu\|_{H^{-1}(\Omega)}^{2} \leq C_{obs} \bigg(\|c(x)\partial_{\nu}w\|_{L^{2}(\Sigma_{T}^{1})}^{2} + \|Lw - \sigma\mu\|_{L^{2}(Q_{T})}^{2} \bigg), \qquad (w,\mu) \in Y. \quad (\mathcal{H}_{2})$$

where

$$Y := \left\{ \begin{array}{cc} (w,\mu); & w \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), \ \mu \in H^{-1}(\Omega), \\ & Lw - \sigma\mu \in L^2(Q_T), \ w(\cdot,0) = w_t(\cdot,0) = 0 \end{array} \right\}$$

- ▶ if the velocity *c* is constant, then (*H*₂) is a consequence of the Yamamoto and Zhang Theorem.
- under the hypothesis (\mathcal{H}_2) , the space Y endowed with the following inner product

$$\langle (w,\mu), (\overline{w},\overline{\mu}) \rangle_Y := \langle c\partial_\nu w, c\partial_\nu \overline{w} \rangle_{L^2(\Gamma_T)} + \eta \langle Lw - \sigma\mu, L\overline{w} - \sigma\overline{\mu} \rangle_{L^2(Q_T)},$$

is a Hilbert space.

For any $r \ge 0$, we now define the mixed formulation: find $((w, \mu), \lambda) \in Y \times L^2(Q_T)$ solution of

$$\begin{cases} a_r((w,\mu),(\overline{w},\overline{\mu})) + b((\overline{w},\overline{\mu}),\lambda) = l(\overline{w},\overline{\mu}), & ((\overline{w},\overline{\mu}) \in Y) \\ b((w,\mu),\overline{\lambda}) = 0, & (\overline{\lambda} \in L^2(Q_T)), \end{cases}$$
(MF₂)

where

.

$$\begin{aligned} a_r: Y \times Y \to \mathbb{R}, \quad a((w,\mu),(\overline{w},\overline{\mu})) &:= \langle c\partial_\nu w, c\partial_\nu \overline{w} \rangle_{L^2(\Sigma_T^1)} + r \langle Lw - \sigma\mu, L\overline{w} - \sigma\overline{\mu} \rangle_{L^2(Q_T)}, \\ b: Y \times L^2(Q_T) \to \mathbb{R}, \quad b((w,\mu),\lambda) &:= \langle \lambda, Lw - \sigma\mu \rangle_{L^2(Q_T)}, \\ l: Y \to \mathbb{R}, \quad l(w,\mu) &:= \langle c\partial_\nu w, cy \rangle_{L^2(\Sigma_T^1)}. \end{aligned}$$

Theorem (NC, A. Münch)

Let $r \geq 0$. Under the hypothesis (\mathcal{H}_2), the following holds :

- 1. The mixed formulation (MF_2) is well-posed.
- The unique solution ((w, μ), λ) ∈ Y × L²(Q_T) is the saddle-point of the Lagrangian L_r : Y × L²(Q_T) → ℝ defined by L_r((w, μ), λ) := ½a_r((w, μ), (w, μ)) + b((w, μ), λ) l(w, μ). Moreover, the pair (w, μ) solves the extremal problem (P_{w,μ}).
- 3. The solution $((w, \mu), \lambda)$ satisfies the estimates:

$$\|(w,\mu)\|_{Y} = \|c(x)\partial_{\nu}w\|_{L^{2}(\Sigma_{T}^{1})} \le \|c(x)\,y\|_{L^{2}(\Sigma_{T}^{1})}$$

and

$$\|\lambda\|_{L^2(Q_T)} \le 2\sqrt{C_{\Omega,T} + \eta} \|c(x) \, y\|_{L^2(\Sigma_T^1)}$$

for some constant $C_{\Omega,T} > 0$.

Numerical analysis of the mixed formulations Known source term case (f = 0)

We consider the following finite dimensional spaces:

$$\blacktriangleright \ Z_h \subset Z$$

•
$$\Lambda_h \subset L^2(Q_T).$$

and for any h>0 we introduce the following approximating problems: find $(w_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases} a_r(w_h, \overline{w}_h) + b(\overline{w}_h, \lambda_h) &= l(\overline{w}_h), \qquad (\overline{w}_h \in Z_h) \\ b(w_h, \overline{\lambda}_h) &= 0, \qquad (\overline{\lambda}_h \in \Lambda_h). \end{cases}$$

Numerical analysis of the mixed formulations Known source term case (f = 0)

We consider the following finite dimensional spaces:

$$\blacktriangleright \ Z_h \subset Z$$

•
$$\Lambda_h \subset L^2(Q_T).$$

and for any h>0 we introduce the following approximating problems: find $(w_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases} a_r(w_h, \overline{w}_h) + b(\overline{w}_h, \lambda_h) &= l(\overline{w}_h), \qquad (\overline{w}_h \in Z_h) \\ b(w_h, \overline{\lambda}_h) &= 0, \qquad (\overline{\lambda}_h \in \Lambda_h). \end{cases}$$

This mixed formulation is well-posed as a consequence of two things:

- 1. a_r is coercive on $\mathcal{N}_h(b) = \{w_h \in Z_h; b(w_h, \lambda_h) = 0 \text{ for every } \lambda_h \in \Lambda_h\}$
- 2. a discrete inf-sup condition: for every h > 0

$$\delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{w_h \in Z_h} \frac{b(w_h, \lambda_h)}{\|\lambda_h\|_{L^2(Q_T)} \|w_h\|_Z} > 0.$$

Nicolae Cîndea

Let h > 0. Let (w, λ) and (w_h, λ_h) be the solutions of continuous and discrete mixed formulations respectively. Let δ_h be the discrete inf-sup constant. Then,

$$\begin{split} \|\boldsymbol{w} - \boldsymbol{w}_{\boldsymbol{h}}\|_{Z} &\leq 2 \left(1 + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}}\right) d(\boldsymbol{w}, Z_{\boldsymbol{h}}) + \frac{1}{\sqrt{\eta}} d(\lambda, \Lambda_{\boldsymbol{h}}), \\ \|\lambda - \lambda_{\boldsymbol{h}}\|_{L^{2}(Q_{T})} &\leq \left(2 + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}}\right) \frac{1}{\delta_{\boldsymbol{h}}} d(\boldsymbol{w}, Z_{\boldsymbol{h}}) + \frac{3}{\sqrt{\eta}\delta_{\boldsymbol{h}}} d(\lambda, \Lambda_{\boldsymbol{h}}) \end{split}$$

where $d(\lambda, \Lambda_h) := \inf_{\lambda_h \in \Lambda_h} \|\lambda - \lambda_h\|_{L^2(Q_T)}$ and $d(w, Z_h) := \inf_{w_h \in Z_h} \|w - w_h\|_Z$.

Let h > 0. Let (w, λ) and (w_h, λ_h) be the solutions of continuous and discrete mixed formulations respectively. Let δ_h be the discrete inf-sup constant. Then,

$$\begin{split} \|\boldsymbol{w} - \boldsymbol{w}_{h}\|_{Z} &\leq 2 \left(1 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) d(\boldsymbol{w}, Z_{h}) + \frac{1}{\sqrt{\eta}} d(\lambda, \Lambda_{h}), \\ \|\lambda - \lambda_{h}\|_{L^{2}(Q_{T})} &\leq \left(2 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) \frac{1}{\delta_{h}} d(\boldsymbol{w}, Z_{h}) + \frac{3}{\sqrt{\eta}\delta_{h}} d(\lambda, \Lambda_{h}) \end{split}$$

where $d(\lambda, \Lambda_h) := \inf_{\lambda_h \in \Lambda_h} \|\lambda - \lambda_h\|_{L^2(Q_T)}$ and $d(w, Z_h) := \inf_{w_h \in Z_h} \|w - w_h\|_Z$.

Remarks:

1. if r = 0 the discrete mixed formulation may be not well-posed.

Let h > 0. Let (w, λ) and (w_h, λ_h) be the solutions of continuous and discrete mixed formulations respectively. Let δ_h be the discrete inf-sup constant. Then,

$$\begin{split} \|\boldsymbol{w} - \boldsymbol{w}_{h}\|_{Z} &\leq 2 \left(1 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) d(\boldsymbol{w}, Z_{h}) + \frac{1}{\sqrt{\eta}} d(\lambda, \Lambda_{h}), \\ \|\lambda - \lambda_{h}\|_{L^{2}(Q_{T})} &\leq \left(2 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) \frac{1}{\delta_{h}} d(\boldsymbol{w}, Z_{h}) + \frac{3}{\sqrt{\eta}\delta_{h}} d(\lambda, \Lambda_{h}) \end{split}$$

where $d(\lambda, \Lambda_h) := \inf_{\lambda_h \in \Lambda_h} \|\lambda - \lambda_h\|_{L^2(Q_T)}$ and $d(w, Z_h) := \inf_{w_h \in Z_h} \|w - w_h\|_Z$.

Remarks:

- 1. if r = 0 the discrete mixed formulation may be not well-posed.
- 2. what if $\delta_h \to 0$ when $h \to 0$?

Let h > 0. Let (w, λ) and (w_h, λ_h) be the solutions of continuous and discrete mixed formulations respectively. Let δ_h be the discrete inf-sup constant. Then,

$$\begin{split} \|\boldsymbol{w} - \boldsymbol{w}_{h}\|_{Z} &\leq 2 \left(1 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) d(\boldsymbol{w}, Z_{h}) + \frac{1}{\sqrt{\eta}} d(\lambda, \Lambda_{h}), \\ \|\lambda - \lambda_{h}\|_{L^{2}(Q_{T})} &\leq \left(2 + \frac{1}{\sqrt{\eta}\delta_{h}}\right) \frac{1}{\delta_{h}} d(\boldsymbol{w}, Z_{h}) + \frac{3}{\sqrt{\eta}\delta_{h}} d(\lambda, \Lambda_{h}), \end{split}$$

where $d(\lambda, \Lambda_h) := \inf_{\lambda_h \in \Lambda_h} \|\lambda - \lambda_h\|_{L^2(Q_T)}$ and $d(w, Z_h) := \inf_{w_h \in Z_h} \|w - w_h\|_Z$.

Remarks:

Nicolae Cîndea

- 1. if r = 0 the discrete mixed formulation may be not well-posed.
- 2. what if $\delta_h \to 0$ when $h \to 0$?
- 3. Z_h must be chosen such that $Lw_h \in L^2(Q_T)$ for every $w_h \in Z_h$.

Choice of the discrete spaces

- \mathcal{T}_h a triangulation such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$ and $\{\mathcal{T}_h\}_{h>0}$ is a regular family. $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$
- $Z_h := \{z_h \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ z_h = 0 \text{ on } \Sigma_T\},$ where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t:
 - the Bogner-Fox-Schmit (BFS for short) C^1 -element defined for rectangles
 - ▶ the reduced *Hsieh-Clough-Tocher* (HCT for short) C¹-element defined for triangles.

We also define the finite dimensional space

$$\Lambda_h := \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h |_K \in \mathbb{Q}(K) \quad \forall K \in \mathcal{T}_h\}$$

where $\mathbb{Q}(K)$ denotes the space of affine functions both in x and t on the element K. Remark that, for any h > 0, we have $Z_h \subset Z$ and $\Lambda_h \subset L^2(Q_T)$.

Proposition (BFS element for N = 1)

Let h > 0, let $k \le 2$ be a nonnegative integer. Let (w, λ) and (w_h, λ_h) be the solutions of continuous and discrete mixed formulations respectively. If the solution (w, λ) belongs to $H^{k+2}(Q_T) \times H^k(Q_T)$, then there exist positive constants $K_i(\|w\|_{H^{k+2}(Q_T)}, \|c\|_{C^1(\overline{Q_T})}, \|d\|_{L^{\infty}(Q_T)})$, $i \in \{1, 2, 3\}$ independent of h, such that

$$\begin{split} \|\boldsymbol{w} - \boldsymbol{w}_{\boldsymbol{h}}\|_{Z} &\leq K_{1} \left(1 + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}} + \frac{1}{\sqrt{\eta}}\right) h^{k}, \\ \|\lambda - \lambda_{h}\|_{L^{2}(Q_{T})} &\leq K_{2} \left(\left(1 + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}}\right) \frac{1}{\delta_{\boldsymbol{h}}} + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}}\right) h^{k}, \\ \|\boldsymbol{w} - \boldsymbol{w}_{\boldsymbol{h}}\|_{L^{2}(Q_{T})} &\leq K_{3} \max(1, \frac{2}{\sqrt{\eta}}) \left(1 + \frac{1}{\sqrt{\eta}\delta_{\boldsymbol{h}}} + \frac{1}{\sqrt{\eta}}\right) h^{k+2} \end{split}$$

Evaluating δ_h numerically, we obtain $\delta_h \approx C \frac{h}{\sqrt{r}}$ as $h \to 0^+ \dots$

Nicolae Cîndea Inverse problems for wave equations using mixed formulations

Back to the stabilized mixed formulation Numerical approximation

- $\blacktriangleright \ \alpha \in (0,1), \ h > 0$
- $\widetilde{\Lambda}_h$ be a closed finite dimensional subspace of Λ such that $L\lambda_h \in L^2(0, T, H^{-1}(\Omega))$ for every $\lambda_h \in \widetilde{\Lambda}_h$. A natural choice is

$$\widetilde{\Lambda}_h = \{\lambda \in Z_h \text{ such that } \lambda(\cdot, 0) = \lambda_t(\cdot, 0) = 0\}.$$

The discrete version of the stabilized mixed formulation is then the following

$$\begin{aligned} a_{r,\alpha}(\boldsymbol{w}_h, \overline{\boldsymbol{w}}_h) + b_{\alpha}(\overline{\boldsymbol{w}}_h, \lambda_h) &= l_{1,\alpha}(\overline{\boldsymbol{w}}_h), \qquad (\overline{\boldsymbol{w}}_h \in Z_h) \\ b_{\alpha}(\boldsymbol{w}_h, \overline{\lambda}_h) - c_{\alpha}(\lambda_h, \overline{\lambda}_h) &= l_{2,\alpha}(\overline{\lambda}_h), \qquad \forall \overline{\lambda}_h \in \widetilde{\Lambda}_h. \end{aligned}$$

► In view of the properties of the forms $a_{r,\alpha}$, c_{α} , $l_{1,\alpha}$ and $l_{2,\alpha}$, this formulation is well-posed.

Proposition (BFS element for N = 1)

Let h > 0, let $k \le 2$ be a positive integer and $\alpha \in (0,1)$. Let (w, λ) and (w_h, λ_h) be the solution of the continuous and discrete stabilized mixed formulations respectively. If (w, λ) belongs to $H^{k+2}(Q_T) \times H^{k+2}(Q_T)$, then there exists $K_i = K_i(||w||_{H^{k+2}(Q_T)}, ||c||_{C^1(\overline{Q_T})}, ||d||_{L^{\infty}(Q_T)}, \alpha, r, \eta) > 0$, for every $i \in \{1, 2, 3\}$ and independent of h, such that

$$egin{aligned} \|m{w}-m{w}_h\|_Z+\|\lambda-\lambda_h\|_\Lambda &\leq K_1h^k. \ \|m{w}-m{w}_h\|_{L^2(Q_T)} &\leq K_2rac{h^{k+2}}{\sqrt{\eta}}, & \|\lambda-\lambda_h\|_{L^2(Q_T)} &\leq K_3h^k \end{aligned}$$

Proposition (BFS element for N = 1)

Let h > 0, let $k \le 2$ be a positive integer and $\alpha \in (0,1)$. Let (w, λ) and (w_h, λ_h) be the solution of the continuous and discrete stabilized mixed formulations respectively. If (w, λ) belongs to $H^{k+2}(Q_T) \times H^{k+2}(Q_T)$, then there exists $K_i = K_i(||w||_{H^{k+2}(Q_T)}, ||c||_{C^1(\overline{Q_T})}, ||d||_{L^{\infty}(Q_T)}, \alpha, r, \eta) > 0$, for every $i \in \{1, 2, 3\}$ and independent of h, such that

$$\|\boldsymbol{w} - \boldsymbol{w}_h\|_Z + \|\lambda - \lambda_h\|_{\Lambda} \le K_1 h^k.$$

$$\|\boldsymbol{w} - \boldsymbol{w}_h\|_{L^2(Q_T)} \le K_2 \frac{h^{k+2}}{\sqrt{\eta}}, \quad \|\lambda - \lambda_h\|_{L^2(Q_T)} \le K_3 h^k.$$

Remarks:

- 1. these estimates are not depending on a *inf-sup* constant
- 2. similar estimates can be obtained for the mixed formulation associated to the inverse problem for recovering the source term.

Numerical experiments

Reconstruction of the solution - one dimensional case

•
$$\Omega = (0, 1), \Sigma_T^1 = \{1\} \times (0, T)$$

• $T = 2, c \equiv 1, d \equiv 0, f = 0.$

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

The corresponding solution is given by

$$w(x,t) = \sum_{k>0} \left(a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t) \right) \sqrt{2} \sin(k\pi x)$$

with

$$a_k = \frac{4\sqrt{2}}{\pi^2 k^2} \sin(\pi k/2), \quad b_k = \frac{1}{\pi k} (\cos(\pi k/3) - \cos(2\pi k/3)), \quad k > 0.$$

The observation is then given by:

$$y(t) = \sum_{k>0} (-1)^k k \pi \sqrt{2} \left(a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t) \right)$$

Numerical experiments

Reconstruction of the solution – one dimensional case

$$y(t) = \sum_{k>0} (-1)^k k \pi \sqrt{2} \left(a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t) \right)$$

Inverse problems for wave equations using mixed formulations

Figure : Exact solution w and approximated solution w_h on the mesh $\ddagger 3$.

h	7.62×10^{-2}	3.81×10^{-2}	1.91×10^{-2}	$9.53 imes 10^{-3}$	4.77×10^{-3}
$\frac{\ w - w_h\ _{L^2(Q_T)}}{\ w\ _{L^2(Q_T)}}$	3.67×10^{-2}	1.35×10^{-2}	5.99×10^{-3}	2.63×10^{-3}	1.22×10^{-3}
$\ \lambda_h\ _{L^2(Q_T)}$	2.12×10^{-2}	1.08×10^{-2}	5.45×10^{-3}	2.53×10^{-3}	$1.18 imes 10^{-3}$
κ_h	$2.15 imes 10^6$	$1.11 imes 10^7$	$1.03 imes 10^8$	$8.67 imes 10^8$	$6.94 imes 10^9$

Table : Example HCT element - $r = h^2$ - T = 2.

Numerical experiments

Reconstruction of the solution - one dimensional case

Figure : Example **EX1** -T = 2 - Relative error $||w - w_h||_{L^2(Q_T)}/||w||_{L^2(Q_T)}$ w.r.t. h for the BFS element with $r = h^2$ (+) and r = 1 (*), the HCT element with $r = h^2$ (\Box) and r = 1 (\circ)

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

Figure : Iterative refinement of the triangular mesh over Q_T with respect to the variable w_h

Nicolae Cîndea Inverse problems for wave equations using mixed formulations

We can add noise to the observation

 $\widetilde{y}^{\sigma}(t) = y(t) + N_{\sigma}(t) \qquad (t \in (0,T))$

Nicolae Cîndea

Figure : Bunimovich's stadium and the subset Γ of $\partial\Omega$ on which the observation is available (Left). Example of mesh of the domain Q_T (Right).

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

Mesh number	1	2	3
Number of elements	1 860	18 060	158 280
Number of nodes	1 216	10 261	84 241
Δx	$1.82 imes 10^{-1}$	$8.2 imes 10^{-2}$	$3.95 imes 10^{-2}$
Δt (Height of elements)	0.2	0.1	0.05
h	2.7×10^{-1}	$1.29 imes 10^{-1}$	$6.37 imes 10^{-2}$

Table : Characteristics of the three meshes associated with Q_T .

$$\left\{ \begin{array}{ll} -\Delta w_0 = 10, & \mbox{ in } \Omega \\ w_0 = 0, & \mbox{ on } \partial \Omega, \end{array} \right. \qquad w_1 = 0 \quad \mbox{ in } \Omega.$$

Figure : Initial data w_0 (Left). Reconstructed initial data $w_h(\cdot, 0)$ (Right).

Numerical experiments

Reconstruction of the solution - two dimensional case

Inverse problems for wave equations using mixed formulations

Numerical experiments Reconstruction of the solution and the source

•
$$\Omega = (0, 1), T = 2, \Sigma_T^1 = \{1\} \times (0, T)$$

• $c = 1, d = 0, \sigma(t) = 1 + t$

Spatial part of the source we want to reconstruct $\mu \in H^1(0,1)$:

$$\mu(x) = \frac{x}{\theta} \, \mathbb{1}_{[0,\theta]}(x) + \frac{(1-x)}{1-\theta} \, \mathbb{1}_{[\theta,1]}(x), \quad \theta = \frac{1}{3}.$$

In order to get explicit solution, we use that the solution with zero initial conditions can be expanded as follows :

$$\begin{cases} w(x,t) = \sum_{p>0} b_p(t)\sin(p\pi x) \\ b_p(t) := \frac{1}{p\pi} \int_0^t \sin(p\pi(t-s))f_p(s)ds, \quad f_p(s) := 2\sigma(s) \int_\Omega \sin(p\pi x)\mu(x)dx. \end{cases}$$
Numerical experiments Reconstruction of the solution and the source

Figure : Left: Function μ (full line) and μ_h (dotted line); Right: $\frac{(-\Delta)^{-1}(\mu-\mu_h)}{\|(-\Delta)^{-1}\mu\|_{H_0^1(\Omega)}}$ along Ω .

$$\frac{\|w - w_h\|_{L^2(Q_T)}}{\|w\|_{L^2(Q_T)}} = \mathcal{O}(h^{1.9}), \qquad \frac{\|\mu - \mu_h\|_{H^{-1}(\Omega)}}{\|\mu\|_{H^{-1}(\Omega)}} = \mathcal{O}(h^{1.4}).$$

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

Boundary observation

Distributed observation

Time-dependent distributed observation

Distributed observation – the inverse problems

$$\begin{cases} w_{tt} - \nabla \cdot (c\nabla w) + dw = f, & \text{in } Q_T \\ w = 0, & \text{on } \Sigma_T \\ w(x, 0) = w_0(x), & y_t(x, 0) = w_1(x), & x \in \Omega \end{cases}$$

$$\models Q_T = \Omega \times (0, T); \\ \models \Sigma_T = \partial\Omega \times (0, T); \\ \models q_T = \omega \times (0, T) \subset Q_T; \\ \models (w_0, w_1) \in L^2(\Omega) \times H^{-1}(\Omega). \\ \models f \in L^2(0, T; H^{-1}(\Omega)). & x_2 \end{cases}$$
Observation: $y = w|_{q_T}$.

 \vec{x}_1

Distributed observation – hypotheses and functional spaces

$$Z = \begin{cases} w \in C([0,T], L^{2}(\Omega)) \cap C^{1}([0,T], H^{-1}(\Omega)) \text{ such that} \\ Lw \in L^{2}(0,T, H^{-1}(\Omega)), \ w|_{\Sigma_{T}} = 0 \end{cases}$$

Hypothesis:

There exists a constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^{\infty}(\Omega)})$ such that the following estimate holds :

$$\|(w(\cdot,0),w_t(\cdot,0))\|_{L^2\times H^{-1}}^2 \le C_{obs}\bigg(\|w\|_{L^2(q_T)}^2 + \|Lw\|_{L^2(0,T,H^{-1}(\Omega))}^2\bigg), \quad w \in Z.$$

Distributed observation – hypotheses and functional spaces

$$Z = \begin{cases} w \in C([0,T], L^{2}(\Omega)) \cap C^{1}([0,T], H^{-1}(\Omega)) \text{ such that} \\ Lw \in L^{2}(0,T, H^{-1}(\Omega)), \ w|_{\Sigma_{T}} = 0 \end{cases}$$

Hypothesis:

There exists a constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^{\infty}(\Omega)})$ such that the following estimate holds :

$$\begin{split} \|(w(\cdot,0),w_t(\cdot,0))\|_{L^2\times H^{-1}}^2 &\leq C_{obs} \bigg(\|w\|_{L^2(q_T)}^2 + \|Lw\|_{L^2(0,T,H^{-1}(\Omega))}^2\bigg), \quad w \in Z, \\ \langle w,\overline{w} \rangle_Z := \iint_{q_T} w(t) \,\overline{w}(t) \, dx dt + \eta \int_0^T \langle Lw(t), \, L\overline{w}(t) \rangle_{H^{-1}(\Omega)} \, dt \qquad (w,\overline{w} \in Z). \\ \text{Here, } \langle \cdot, \cdot \rangle_{H^{-1}(\Omega)} \text{ denotes the inner product in } H^{-1}(\Omega) \text{ defined by} \\ \langle \varphi, \psi \rangle_{H^{-1}(\Omega)} = \int_{\Omega} \nabla(-\Delta)^{-1} \varphi(x) \cdot \nabla(-\Delta)^{-1} \psi(x) dx, \qquad \forall \varphi, \ \psi \in H^{-1}(\Omega). \end{split}$$

Distributed observation - mixed formulation

Find $(w, \lambda) \in Z \times L^2(0, T, H^1_0(\Omega))$ solution of

$$\left\{ \begin{array}{rcl} a({\color{black} w},\overline{w})+b(\overline{w},\lambda)&=&l(\overline{w}), & \quad (\overline{w}\in Z)\\ b({\color{black} w},\overline{\lambda})&=&0, & \quad (\overline{\lambda}\in L^2(0,T,H_0^1(\Omega))), \end{array} \right.$$

where

$$\begin{split} a: Z \times Z \to \mathbb{R}, & a(w, \overline{w}) := \iint_{q_T} w \, \overline{w} \, dx dt, \\ b: Z \times L^2(0, T, H^1_0(\Omega)) \to \mathbb{R}, & b(w, \lambda) := \int_0^T \langle \lambda(t), \, Lw(t) \rangle_{H^1_0(\Omega), H^{-1}(\Omega)} dt, \\ l: Z \to \mathbb{R}, & l(w) := \iint_{q_T} y \, w \, dx dt. \end{split}$$

Numerical experiments - 1d

•
$$\Omega = (0, 1), q_T = (0.1, 0.3) \times (0, T)$$

• $T = 2, c \equiv 1, d \equiv 0, f = 0.$

Inverse problems for wave equations using mixed formulations

Numerical experiments - 1d

Mesh number	1	2	3	4
‡ elements	792	2108	7 902	14 717
♯ points	429	1 101	4 041	$7\ 462$
$\frac{\ w{-}w_h\ _{L^2(Q_T)}}{\ w\ _{L^2(Q_T)}}$	1.34×10^{-2}	8.69×10^{-3}	6.01×10^{-3}	$5.9 imes 10^{-3}$
$\ \lambda_h\ _{L^2(Q_T)}$	1.14×10^{-5}	7.99×10^{-6}	5.02×10^{-6}	4.79×10^{-6}

 $\ensuremath{\mathsf{Table}}$: Information concerning the meshes and approximation errors for mesh adaptation strategy.

Numerical experiments - 2d

Figure : (a) Example of sets Ω and ω . (b) Example of mesh of the domain Q_T .

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

Numerical experiments – 2d

Figure : (a) Initial data w_0 . (b) Reconstructed initial data $w_h(\cdot, 0)$.

Nicolae Cîndea

Inverse problems for wave equations using mixed formulations

37/45

Mesh number	1	2	3
$\frac{\ \overline{w}_h - w_h\ _{L^2(Q_T)}}{\ \overline{w}_h\ _{L^2(Q_T)}}$	1.88×10^{-1}	8.04×10^{-2}	7.11×10^{-2}

Table : Errors in the reconstructed solution

- w_h is the solution of the mixed formulation
- \overline{w}_h numerical computed solution of the wave equation which was used to simulate the observation y.

Boundary observation

Distributed observation

Time-dependent distributed observation

- A. Y. KHAPALOV, Controllability of the wave equation with moving point control, Appl. Math. Optim. (1995).
- L. CUI, X. LIU, H. GAO, *Exact controllability for a one-dimensional wave equation in non-cylindrical domains*, J. Math. Anal. Appl. (2013).
- C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV (2013).

Proposition (C. Carlos, N.C, A. Münch – 2014)

Assume that $q_T \subset (0,1) \times (0,T)$ is a finite union of connected open sets and satisfies the following hypotheses:

any characteristic line starting at a point $x \in (0,1)$ at time t = 0 and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T . Then, there exists C > 0 such that the following estimate holds :

$$\|(\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{L^2(0,1)\times H^{-1}(0,1)}^2 \le C \left(\|\varphi\|_{L^2(q_T)}^2 + \|L\varphi\|_{L^2(0,T;H^{-1}(0,1))}^2\right)$$

for every $\varphi \in C([0,T], L^2(0,1)) \cap C^1([0,T], H^{-1}(0,1))$ and satisfying $L\varphi \in L^2(0,T; H^{-1}(0,1)).$

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

D'Alembert formulae;

Nicolae Cîndea

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;

Boundary observability inequality: $\|(\varphi(\cdot,0),\varphi_t(\cdot,0))\|_H^2 \le C \int_0^T |\varphi_x(0,t)|^2 dt.$ combined with the previous estimate gives: $\|(\varphi(\cdot,0),\varphi_t(\cdot,0))\|_V^2 \le C\left(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi_x\|_{L^2(q_T)}^2\right)$ $H = L^2(0, 1) \times H^{-1}(0, 1)$ $V = H_0^1(0,1) \times L^2(0,1)$

Nicolae Cîndea Inverse problems for wave equations using mixed formulations

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;
- equi-repartition of energy.

We follow the method used by C. Castro in the case of a moving pointwise control:

C. CASTRO, Exact controllability of the 1-D wave equation from a moving interior point, ESAIM COCV., 19 (2013).

Some ingredients of the proof :

- D'Alembert formulae;
- known observability inequality in the boundary case;
- equi-repartition of energy.

Remark

The proof of the proposition is specific to the one-dimensional case.

Numerical experiments

Example of observation domains q_T and the associated meshes

Figure : Domain q_T^1 and domain q_T^2 triangulated using some coarse meshes.

Numerical experiments

Exact and reconstructed solution from measurements on q_T^2

Figure : (a) Reference solution w. (b) Solution reconstructed from the observation $y = w|_{q_T^2}$.

h	6.24×10^{-2}	$3.12 imes 10^{-2}$	$1.56 imes10^{-2}$	$7.8 imes 10^{-3}$	$3.9 imes 10^{-3}$
$\frac{\ w - w_h\ _{L^2(Q_T)}}{\ w\ _{L^2(Q_T)}}$	1.38×10^{-2}	$6.37 imes 10^{-3}$	2.64×10^{-3}	1.15×10^{-3}	5.25×10^{-4}
$\ \lambda_h\ _{L^2(Q_T)}$	$6.37 imes 10^{-6}$	1.65×10^{-6}	3.88×10^{-7}	9.74×10^{-8}	2.90×10^{-8}
κ	2.02×10^8	2.62×10^9	$2.05 imes 10^{10}$	$1.61 imes 10^{11}$	$1.32 imes 10^{12}$
$dim(\{\lambda_h\})$	554	2135	8 381	$33 \ 209$	$132 \ 209$

Table : Observation domain q_T^2 - r = 1 - T = 2.

Conclusion:

- We reduced the inverse problems of reconstruction of solution or of a source term to the resolution of a mixed formulation – for the wave equation.
- Boundary or distributed observation can be used in this method.
- Method is constructive numerical convergent scheme.

Some perspectives:

- the method can be extended to more general systems
- avoid the use of C^1 finite elements?

- C. CASTRO, N. CÎNDEA, A. MÜNCH, Controllability of the linear 1D wave equation with inner moving forces, SICON (2014).
- N. CÎNDEA, A. MÜNCH, Inverse problems for linear hyperbolic equations using mixed formulations, Inverse Problems 31 (7), 075-001, 2015.
- N. CÎNDEA, A. MÜNCH, Reconstruction of the solution and the source of hyperbolic equations from boundary measurements: mixed formulations, submitted.

Thank you!

