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Abstract

This article is devoted to questions concerning the existence of solutions for partial differential equa-
tion problems modeling granular flows. The models studied take into account the complex threshold
rheology of these flows, as well as the dilatance effects. It is the coupling of these two physical phe-
nomena that ensures stability and the existence of dissipated energy. The key point of the article is to
understand how this energy can ensure the existence of a weak solution. We first establish a complete
result on a simplified model, then demonstrate how it can be extended to more general cases. This work
represents a real breakthrough in the mathematical analysis of this type of models for complex flows.

keywords: granular model, weak existence, rheology, dilatance.

1 Introduction

From grain to continuous model Granular flow modeling is a major challenge in many contexts. Indeed,
this type of flow is involved in a wide variety of fields, such as the earth sciences, with pyroclastic flows or
dune movements; the food industry in the broadest sense of the term, from cereal silos to food design;
medicine, and in particular the pharmaceutical industry, which makes extensive use of powders and capsules
corresponding to granular media with diverse behaviors. The tricky aspect in this type of medium lies in
its intermediate position between a fluid-like medium (such as gases, where the particles are too small to be
individually described) and a solid medium, which requires understanding the interactions between a limited
number of macroscopic particles.

With the advent of computational tools, we could be led to use these models even when the media comprise a
very large number of particles (generally several billion). Currently this approach is hampered by our limits
knowledge of the local interactions: at the grain level, the solid contact laws between multiple particles involve
highly non-linear relations such as frictional or inelastic shocks, that remain difficult to fully understand.
The well-known Discrete Element Method (see for instance [24]) attempts to take into account as much
information as possible, but the lack of physical understanding means that not all the expected results can
be obtained.

An alternative strategy is to define spatially averaged quantities to obtain continuous models, similar to what
is done for fluid flows with the Navier-Stokes equations. One of the foundational works of this approach for
granular flows is arguably that of the GdR MIDI, which highlighted the µ(I)-rheology model as a basis for
granular flow models (see, for instance, the collective work [21]).

Issues and open questions Since the µ(I)-model is primarily derived from experimental considerations,
numerous questions remain regarding its applicability in more general contexts those in which it was es-
tablished (for instance, at larger scales). Furthermore, its implementation raises additional challenges to be
used numerically. Indeed, to be able to numerically discretise a model and perform a computational imple-
mentation, it is highly desirable that it has a unique solution and that this solution is stable, in particular
not too sensitive to perturbations in the data. Unfortunately, from this point of view, these continuous
models often exhibit significant limitations including issues of instability (see the work of Barker and col-
leagues in [4, 5, 6]) as well as the absence of a comprehensive theory ensuring the existence of solutions. At
first glance, these challenges appear to be closely linked to the non-linear and singular nature of the model.
Despite these fundamental issues, the implementation of these models in a numerical framework is feasible,
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but their reliability cannot be guaranteed. Indeed, instabilities have been frequently observed with classical
formulations as reported in [15]. Several authors have presented results based on these models, but they have
introduced assumptions that are not always physically relevant. This is the case, for example, in [1, 2, 16]
where the authors examine the existence of a solution in a model with a pressure-dependent stress threshold.
However, the pressure considered in these models differs from the total pressure which results in a simpler
coupling. To address this limitation, one would need to incorporate more realistic models commonly used
to describe granular flows (models capable of capturing phenomena such as normal stress differences, etc.).
Such models have been developed and discussed in the review article [18] and it is this type of model that
we aim to explore in the present work.

The major challenge is therefore to develop a model for dense granular flows that is both physically consistent
and mathematically well-posed. A first step in this direction was taken in [14], where a stable and physically
consistent model was proposed: the particularly remarkable aspect is that it is the coupling between rheology
and dilatancy that ensures the model’s stability. However, the strong non-linearities of the model, along
with the presence of thresholds in the stress expression raise important questions regarding the existence
and uniqueness of solutions.

Results and article outline In this article, we propose a natural functional framework in which it is
possible to establish the existence and uniqueness of a solution. Once again, it is the combination of several
physical ingredients that guarantees these results. In the first part (Section 2), we describe the complete
model and then focus on a simplified version that retains the two main physical features essential for ensuring
the existence of a solution:

– the incorporation of threshold rheology, with a pressure dependant yield criterion, as in the µ(I)-model;

– the consideration of dilatancy, as proposed in [27], in particular through a velocity field whose diver-
gence, representing volume changes, is governed by a balanced between shear and pressure effects.

The second part form the core of the article and is devoted to the question of the existence of solutions for
the proposed model. It is structured into several subsections. After introducing the mathematical notations
in Subsection 3.1, the following subsection presents a key component of the main result: it provides the weak
formulation of the problem studied. We observed in particular, that this formulation seems to eliminate
certain threshold-related non-linearities. However, Proposition 1 shows that this formulation effectively
captures the full physical model and allows us to recover these non-linear effects. The final subsections
(Subsections 3.3, 3.4 and 3.5) are devoted to the proof of the existence result, with a particular focus
on handling the remaining non-linear terms and establishing the positivity of pressure (a property that is
physically intuitive, but rarely proven rigorously from a mathematical perspective). These results represent
a real innovation in the mathematical analysis of this type of model for complex flows: prove that a granular
model, including threshold rheology and dilatation, is mathematically well-posed thanks to these relevant
physical laws.

In the final Section 4, we return to the full problem and show how the preceding analysis can be adapted
accordingly a specific study of the µ(I)-model highlights how it relates to the “simplified” version initially
considered. This section concludes by pointing out that many questions remain open concerning this class
of models.

2 Modeling dense granular flow

Guided by the following principles: make maximum use of physical principles (conservation laws) and phe-
nomenological analyses (constitutive relations, equations of state); ensure the linear stability of the model,
based on Barker’s stability conditions presented in [28]; and obtain an “energy” that dissipates over time, a
complete dense granular flow model is proposed in [14]. This model couples four unknowns of the problem,
namely the volume fraction scalar field ϕ, the velocity vector field u, the symmetric extra-stress tensor field σ
and the pressure scalar field p. Depending on the rheology chosen for the granular part, the expression of
the various terms differs, but in the “simplest” case (corresponding to a Druker-Prager rheology), the model
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is written as follows 
ϕρ0(∂tu+ u · ∇u) +∇p− div(2ν(ϕ, |Du|)Du) = ϕρ0g + divσ, (1)

σ : Su = 2α(ϕ)p|Su|, |σ| ≤ α(ϕ)p, σ = σ⊺ and trσ = 0, (2)

divu = 2α(ϕ)|Su| − β(ϕ)
√
p, (3)

∂tϕ+ div(ϕu) = 0. (4)

In this version g designates the gravity vector, ρ0 is the grain density, ϕmax corresponds to the maximum
volume fraction (of the order of 0.6 for experiment flows in laboratory, see [26]), α and β are positive
functions depending on ϕ and on several physical parameters such as average grain size, friction coefficient,
etc. The function ν depends on the model choices: it reflects the possibly non-linear effect of viscous forces
and depends on the strain-rate tensor corresponding to the symmetrical part of the velocity gradient: Du =
1
2 (∇u + (∇u)⊺). The rheology also makes appear the deviatoric strain-rate tensor Su = Du − 1

3 (divu)I3.
For all these tensors, the norm is defined by |A|2 = 1

2A : A where A : B = tr(A⊺ B).

The rheology introduced here corresponds to the Drucker-Prager rheology in the sense that the relations (2)
describing the relationship between stress and deformation can be rewritten as follows

σ = α(ϕ)p
Su

|Su|
if |Su| ≠ 0,

|σ| ≤ α(ϕ)p, σ = σ⊺ and trσ = 0 if |Su| = 0.

(5)

With this formulation, the quantity α(ϕ) can be seen as the threshold, often linked to the friction angle.

The other fundamental feature of the model (1)–(4) is the expression for the divergence of the velocity field,
i.e. the equation (3). This is an interpretation of the law derived from the work of F. Radjäı and S. Roux
in [27]. This law states that the local volume variation (i.e. divu) must be related to the volume fraction
variation ϕ. More precisely, divu must be proportional to the deviation between ϕ and an equilibrium
state ϕeq depending on |Su| and on p, see Subsection 4.1 for more details.

Remark 1. As explained in [14], it is possible to choose more complex rheologies, such as the µ(I)-rheology.
In this case, however, the dilatation law (3) must be adapted. We will come back to the important case of
µ(I)-rheology in Section 4. However, for most granular models, the pressure p must be positive (for instance,
the very definition of the inertial number I involves

√
p, see Section 4).

Remark 2. This model does not take into account the interstitial gas in which the grains move. In [14],
this additional contribution is taken into account: essentially, it involves adding pressure forces ∇pf due to
the gas in (1), and providing an evolution law for this new pressure pf . This evolution law is mainly a heat
equation-type law, see [14] for more details. Note in particular that for this more complete model, as for the
model presented here, energy is dissipated over time.

Remark 3. In [14], the viscosity ν is not taken into account, even though the authors mention this possibility
in Remarks 3 and 4. In the case presented here, this viscosity is essential to ensure the regularity of the
velocity field.

In the following section, in order to highlight the tricky and original points, we focus on a simpler case of this
model. We will retain only the rheological and dilatational contributions, and we assume that the volume
fraction is constant. The model to be studied is the following

ϕ0ρ0∂tu+∇p− div(2ν0|Du|Du) = f + divσ, (6)

σ : Su = 2α0p|Su|, |σ| ≤ α0p, σ = σ⊺ and trσ = 0, (7)

divu = 2α0|Su| − β0
√
p, (8)

where f are the external forces, namely f = ϕ0ρ0g. Note that this model is not a special case of the full model,
in which ϕ would simply have been replaced by a constant ϕ0, since the velocity field u is not divergence
free. We show in Subsection 4.2 that this “simplified” system (6)–(8) corresponds to the main order of the
model (1)–(4) in a specific regime, in particular when ϕ is close to a constant itself close to ϕmax. We propose
in Section 4 an adaptation of these results to more complete cases, in particular taking into account the
evolution of the volume fraction ϕ. Finally, note the choice of non-linear viscosity. This choice is essentially
technical, even if this type of viscosity may appear physically. In fact, as we shall see, it ensures sufficient
velocity regularity to give meaning to the product p|Su|.
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3 Mathematical results

3.1 Mathematical framework and notations

To carry out the mathematical study, we assume that all constants are normalized. Of course, these as-
sumptions do not qualitatively alter what follows. The model considered in this section is therefore written
as 

∂tu+∇p− div(2|Du|Du) = f + divσ, (9)

σ : Su = 2p|Su|, |σ| ≤ p, σ = σ⊺ and trσ = 0, (10)

divu = 2|Su| − √
p. (11)

Given a time T > 0 and a bounded open domain Ω ⊂ R3 whose boundary will be assumed to be of class C2,
we consider the problem (9)–(11) on (0, T ) × Ω. It is completed by the following initial and boundary
conditions:

u
∣∣
t=0

= uinit and u
∣∣
∂Ω

= 0. (12)

Notations - In order to define the notion of weak solution and to formulate the results, we need to fix
the notations. The symbol ∥ · ∥q for 1 ≤ q ≤ +∞ stands for the Lq-norm in the usual Lebesgue space Lq(Ω)
while ∥ · ∥s,q refers to the norm of the Sobolev space W s,q(Ω), s ∈ R and 1 ≤ q ≤ +∞.

We will make repeated use of the Sobolev space W 1,3
0 (Ω) of functions of W 1,3(Ω) which are zero at the

boundary, as well as its dual W−1, 32 (Ω). The associated duality bracket will be denoted ⟨·, ·⟩.
Finally, for a Banach space X, we denote the relevant Bochner space by Lq(0, T ;X). The associated norm
will be explicitly denoted ∥ · ∥Lq(0,T ;X).

Remark 4. — As explained in the previous section, the relation (11) is derived from physical observations
reflecting a competition between shear and pressure effects on volume changes. Nevertheless, we can also
see a fundamental mathematical ingredient that helps us understand the link between this relation (11) and
the rheology given by (10). Indeed, like the role of pressure in the Stokes equations describing Newtonian
fluid flow, the pressure p introduced in the equations (9)–(10) seems to be linked to a Lagrange multiplier
associated with the constraint relation (11).
As an example, consider the minimization problem u = argmin{f(v) ; g(v) = 0} where

f : v ∈W 1,2
0 (Ω) 7−→ 1

2

∫
Ω

|∇v|2 ∈ R

and g : v ∈W 1,2
0 (Ω) 7−→ divv − 2|Sv| − q ∈ L2(Ω),

where the source term q is given in L2(Ω). Note that the applications f and g are differentiable in any
non-canceling function v ∈ W 1,2

0 (Ω) (if v cancels, we should probably consider the sub-differential of g, as
proposed by Beck [7]):

df(v) : φ ∈W 1,2
0 (Ω) 7−→

∫
Ω

∇v : ∇φ ∈ R

and dg(v) : φ ∈W 1,2
0 (Ω) 7−→ divφ− Sv

|Sv|
: Sφ ∈ L2(Ω).

If a solution u, minimizing f under the constraint g(u) = 0, exists and does not cancel, then according to the
Lagrange multiplier Theorem, there exists a linear application p̃ : L2(Ω) −→ R such that df(u) = p̃ ◦ dg(u).
According to the Riesz representation Theorem, the linear application p̃ can be represented by the scalar
product in L2(Ω): there exists p ∈ L2(Ω) such that for all ψ ∈ L2(Ω) we have p̃(ψ) =

∫
Ω
pψ. Thus, using

the expressions for the differentials of the applications f and g, we deduce that

∀φ ∈W 1,2
0 (Ω)

∫
Ω

∇u : ∇φ =

∫
Ω

p
(
divφ− Su

|Su|
: Sφ

)
which indicates that, in the sense of distributions, we have −∆u+∇p = divσ with σ : Su = 2p|Su|.

The approach described in Remark 4, which allows pressure to be seen as a Lagrange multiplier, will not
be used in this article, but could perhaps provide some interesting results. We propose here an original
formulation in terms of velocity-pressure, in which we emphasize the energy aspect.
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3.2 Weak formulation and statement of result

An important point is the definition of the notion of solution of the system of equations (9)–(12).

Definition 1 (weak solution). Let uinit ∈ L2(Ω) and f ∈ L
3
2 (0, T ;W−1, 32 (Ω)).

We say that (u, p,σ) is a weak solution of (9)–(12) if

u ∈ L∞(0, T ;L2(Ω)) ∩ L3(0, T ;W 1,3
0 (Ω)), ∂tu ∈ L

3
2 (0, T ;W−1, 32 (Ω)),

p ∈ L
3
2 ((0, T )× Ω) with p ≥ 0 a.e.

σ ∈ L
3
2 ((0, T )× Ω) with |σ| ≤ p, σ = σ⊺ and trσ = 0 a.e.

and for all φ ∈ L3(0, T ;W 1,3
0 (Ω)), for all ψ ∈ L

3
2 ((0, T )× Ω) we have

⟨∂tu,φ⟩ −
∫
Ω

p divφ+

∫
Ω

2|Du|Du : Dφ+

∫
Ω

σ : Sφ = ⟨f ,φ⟩, (13)∫
Ω

ψ divu−
∫
Ω

2ψ|Su|+
∫
Ω

ψ
√
p = 0, (14)

1

2

∫
Ω

|u|2 + 4

∫ T

0

∫
Ω

|Du|3 +
∫ T

0

∫
Ω

|p| 32 ≤ 1

2

∫
Ω

|uinit|2 +
∫ T

0

⟨f ,u⟩, (15)

and the initial condition u
∣∣
t=0

= uinit holds in L2(Ω).

Relationships (13) and (14) naturally translate equations (9) and (11) into their weak form. However it is
not completely clear that threshold rheology as expressed in relations (10) is fully taken into account in this
notion of solution.

Proposition 1. If (u, p,σ) is a weak solution of (9)–(12) then the relations (10) are satisfied almost
everywhere.

Proof - Let (u, p,σ) be a weak solution of (9)–(12). Taking φ = u as test function in (13), ψ = p in (14)
and adding the results, we deduce

1

2

d

dt

∫
Ω

|u|2 +
∫
Ω

4|Du|3 +
∫
Ω

|p| 32 +

∫
Ω

(
σ : Su− 2p|Su|

)
= ⟨f ,u⟩.

Integrating with respect to time and comparing with (15), we get∫ T

0

∫
Ω

(
σ : Su− 2p|Su|

)
≥ 0. (16)

But, from the Cauchy-Schwarz inequality σ : Su ≤ 2|σ||Su| and using the fact that |σ| ≤ p, we have
σ : Su− 2p|Su| ≤ 0. Regarding (16) that implies σ : Su = 2p|Su| almost everywhere. ■

The main result is

Theorem 1. If uinit ∈ L2(Ω) and f ∈ L
3
2 (0, T ;W−1, 32 (Ω)) then there exists a weak solution (u, p,σ) to the

problem (9)–(12). The velocity u and the pressure p are uniquely determined.

3.3 Approximations system

In order to obtain a weak solution, we start by constructing a solution to an approximate problem. To
do this, consider two sequences (fε)ε>0 and (uinit,ε)ε>0 of regular functions respectively converging to f in

L
3
2 (0, T ;W−1, 32 (Ω)) and uinit in L

2(Ω). For ε > 0 we consider the following problem

∂tuε +∇pε − div(2|Duε|Duε) = fε + divσε, (17)

σε = pε
Suε

|Suε|+ ε
, (18)

divuε = 2
|Suε|2

|Suε|+ ε
− Vε(pε)− ε(∂tpε −∆pε). (19)
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with the following initial and boundary conditions:

uε

∣∣
t=0

= uinit,ε, uε

∣∣
∂Ω

= 0, pε
∣∣
t=0

= 0 and pε
∣∣
∂Ω

= 0. (20)

The function Vε is an approximation of the square-root function, which allows us to define pressure pε for
all ε > 0, and to show that we obtain a positive pressure at the limit ε→ 0. More precisely, Vε is a concave
function of class C1, defined on R by

Vε(x) =

{√
x+ (ε/2)2 − ε/2 if x > 0,

x/ε if x ≤ 0.
(21)

The following two graphs illustrate how the square root function and the Heaviside function have been
approximated by smooth functions.

p

√
p

Vε(p)

Slope
1

ε

Approximation of
√
p

s

s/|s|
s/(|s|+ ε)

Slope
1

ε

Approximation of s/|s|

Proposition 2. For ε > 0, there exists a unique weak solution (uε, pε,σε) to equations (17)–(20), that is
such that

uε ∈ L∞(0, T ;L2(Ω)) ∩ L3(0, T ;W 1,3
0 (Ω)), ∂tuε ∈ L

3
2 (0, T ;W−1, 32 (Ω)),

pε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2
0 (Ω)), ∂tpε ∈ L2(0, T ;W−1,2(Ω)),

σε ∈ L
3
2 ((0, T )× Ω),

with σε = pε
Suε

|Suε|+ ε
and for all φ ∈ L3(0, T ;W 1,3

0 (Ω)), for all ψ ∈ L2(0, T ;W 1,2
0 (Ω))

⟨∂tuε,φ⟩ −
∫
Ω

pε divφ+

∫
Ω

2|Duε|Duε : Dφ+

∫
Ω

σε : Sφ = ⟨fε,φ⟩, (22)

⟨ε∂tpε, ψ⟩+
∫
Ω

ε∇pε · ∇ψ +

∫
Ω

ψ divuε −
∫
Ω

2ψ
|Suε|2

|Suε|+ ε
+

∫
Ω

ψVε(pε) = 0. (23)

The initial conditions are satisfied in L2(Ω): uε|t=0 = uinit,ε and pε|t=0 = 0.

Proof - Adding ∂tpε −∆pε into the equation (19) allows us to define, for each ε > 0, the pressure pε as the
solution to a heat-type equation. The explicit expression of σε given by (18) is a usual regularized version of
the condition (10). This type of regularization is very common in this kind of problem, see for example [2].
The existence of a unique solution to the complete system (17)–(19) is then classical (for example, using a
Galerkin method, see [2]). In practice, the Galerkin method applies as soon as we have an energy estimate
for the solution. We therefore show below how to derive such an estimate.

We choose φ = uε as test function in (22), ψ = pε in (23), we integrate with respect to time and add the
results. Note, in particular that, based on the expression for σε, we have

σε : Suε = 2pε
|Suε|2

|Suε|+ ε
.

We also note that, for uε ∈ L3(0, T ;W 1,3
0 (Ω)) and ∂tuε ∈ L

3
2 (0, T ;W−1, 32 (Ω)), we know that (see [11, p.99])

⟨∂tuε,uε⟩ =
1

2

d

dt
∥uε∥22.
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The same reasoning applied to the time derivative of the pressure term finally implies

1

2

d

dt
∥uε∥22 +

ε

2

d

dt
∥pε∥22 + 4∥Duε∥33 + ε∥∇pε∥22 +

∫
Ω

pεVε(pε) = ⟨fε,uε⟩. (24)

This estimate allows us to demonstrate the existence of a solution to equations (17)–(20) in the classical
way. Note in particular that the choice of the function Vε ensures that for all x ∈ R, we have xVε(x) ≥ 0.
The proof of uniqueness is also standard, and we refer the reader to Subsection 3.7 for a similar reasoning
leading to the result. ■

3.4 Uniform estimates

To take the limit as ε → 0 in the system (17)–(20), we will establish uniform bounds with respect to ε for
the unknowns uε, pε and σε:

Proposition 3. The following quantities are bounded independently of ε > 0:

∥uε∥L∞(0,T ;L2(Ω)), ∥∇uε∥L3((0,T )×Ω), ∥∂tuε∥
L

3
2 (0,T ;W−1, 3

2 (Ω))
, ∥σε∥

L
3
2 ((0,T )×Ω)

,

∥pε∥
L

3
2 ((0,T )×Ω)

, ∥ε 1
2 pε∥L∞(0,T ;L2(Ω)), ∥ε 1

2∇pε∥L2((0,T )×Ω), ∥ε∂tpε∥L2(0,T ;W−1,2(Ω)).

Proof - Step 1: using energy estimate

We first estimate the term in the right-hand side of equation (24). Thus, using successively the duality

between W−1, 32 (Ω) and W 1,3
0 (Ω), the Korn’s inequality ∥u∥1,3 ≤ K3∥Du∥3, see [20, Chapter V, Theorem

1.10], and the Young’s inequality ab ≤ 2
9a

3
2 + 3b3, we obtain

⟨fε,uε⟩ ≤ ∥fε∥−1, 32
∥uε∥1,3

≤ K3∥fε∥−1, 32
∥Duε∥3

≤ 2

9
K

3
2
3 ∥fε∥

3
2

−1, 32
+ 3∥Duε∥33.

Finally, the equality of energy (24) implies the following estimate:

d

dt
∥uε∥22 + ε

d

dt
∥pε∥22 + 2∥Duε∥33 + 2ε∥∇pε∥22 + 2

∫
Ω

pεVε(pε) ≤
4

9
K

3
2
3 ∥fε∥

3
2

−1, 32
.

Integrating in time and using the convergence of fε to f in L
3
2 (0, T ;W−1, 32 (Ω)), we deduce

sup
(0,T )

∥uε∥22 + ε sup
(0,T )

∥pε∥22 + 2

∫ T

0

∥Duε∥33 + 2ε

∫ T

0

∥∇pε∥22 + 2

∫ T

0

∫
Ω

pεVε(pε)

≤ ∥uinit∥22 +K
3
2
3

∫ T

0

∥f∥
3
2

−1, 32
.

(25)

Noting that, by definition of the function Vε, see (21), the quantity pεVε(pε) is always non-negative we
therefore have estimates of the following quantities, independently of ε:

∥uε∥L∞(0,T ;L2(Ω)), ∥ε 1
2 pε∥L∞(0,T ;L2(Ω)), ∥Duε∥L3((0,T )×Ω) and ∥ε 1

2∇pε∥L2((0,T )×Ω).

In addition, the estimate of the quantity pεVε(pε) provides a bound on the pressure pε. Indeed, we have∫ T

0

∫
Ω

|pε|
3
2 =

∫∫
0≤pε≤1

|pε|
3
2︸ ︷︷ ︸

A

+

∫∫
pε<0

|pε|
3
2︸ ︷︷ ︸

B

+

∫∫
pε>1

|pε|
3
2︸ ︷︷ ︸

C

.

We clearly have A ≤ T |Ω|. Moreover, due to Hölder’s inequality, we obtain

B ≤
(∫∫

pε<0

ε3
) 1

4
(∫∫

pε<0

1

ε
|pε|2

) 3
4 ≤ (T |Ω|ε3) 1

4

(∫ T

0

∫
Ω

pεVε(pε)
) 3

4

.

7



Using the fact that, for x ≥ 1 and ε ≤ 2 we have x
3
2 ≤ 1√

2−1
xVε(x), this implies that

C ≤ 1√
2− 1

∫ T

0

∫
Ω

pεVε(pε).

These three estimates onA, B and C combined with the energy estimate (25) provide a bound on ∥pε∥
L

3
2 ((0,T )×Ω)

that is independent of ε, as long as ε ≤ 2).
The estimate on the stress σε follows directly from that of the pressure, since expression (18) yields the
inequality |σε| ≤ |pε|.

Step 2: Bounds for times derivatives

Let us go back to the weak formulation (22). More precisely, using Hölder’s inequality and the duality

W−1, 32 (Ω) ↔W 1,3
0 (Ω), we know that for all φ ∈ L3(0, T ;W 1,3

0 (Ω)) we have

⟨∂tuε,φ⟩ ≤ ∥pε∥ 3
2
∥divφ∥3 + 2∥Duε∥23∥Dφ∥3 + ∥σε∥ 3

2
∥Sφ∥3 + ∥fε∥−1, 32

∥φ∥1,3.

Integrating in time and applying Hölder’s inequalities (with respect to integration in time), we derive the
following estimate∣∣∣ ∫ T

0

⟨∂tuε,φ⟩
∣∣∣ ≤(∫ T

0

∥pε∥
3
2
3
2

) 2
3
(∫ T

0

∥divφ∥33
) 1

3

+ 2
(∫ T

0

∥Duε∥33
) 2

3
(∫ T

0

∥Dφ∥33
) 1

3

+
(∫ T

0

∥σε∥
3
2
3
2

) 2
3
(∫ T

0

∥Sφ∥33
) 1

3

+
(∫ T

0

∥fε∥
3
2

−1, 32

) 2
3
(∫ T

0

∥φ∥31,3
) 1

3

.

By virtue of the estimates (25), we deduce that there exists a constant C1, independent of ε, such that∣∣∣ ∫ T

0

⟨∂tuε,φ⟩
∣∣∣ ≤ C1

(∫ T

0

∥φ∥31,3
) 1

3

= C1∥φ∥L3(0,T ;W 1,3
0 (Ω)).

Thus, by the definition of the dual norm, we obtain ∥∂tuε∥
L

3
2 (0,T ;W−1, 3

2 (Ω))
≤ C1.

Similarly, we use (19) to estimate ∂tpε. For all ψ ∈ L2(0, T ;W 1,2
0 (Ω)), we have

⟨ε∂tpε, ψ⟩ ≤ ε∥∇pε∥2∥∇ψ∥2 + ∥ψ∥ 3
2
∥divuε∥3 + 2∥ψ∥ 3

2
∥Suε∥3 + ∥ψ∥ 3

2
∥Vε(pε)∥3.

We integrate in time and use the previously established bounds on ε
1
2∇pε, divuε and Suε (the latter two

relying on the bound for Duε). It remains to estimate ∥Vε(pε)∥3.
To do this, we take ψ = |Vε(pε)|Vε(pε) in (23) and we obtain

d

dt

∫
Ω

εWε(pε) +

∫
Ω

εW ′′
ε (pε)|∇pε|2 + ∥Vε(pε)∥33 ≤

∫
Ω

2Vε(pε)
2|Suε|+

∫
Ω

Vε(pε)
2 |divuε|, (26)

where Wε is such that W ′
ε = |Vε|Vε and Wε(0) = 0. The right-hand side is bounded using the previous

estimates. For instance, applying successively Hölder’s inequality followed by Young’s inequality, we derive∫
Ω

Vε(pε)
2 |divuε| ≤ ∥Vε(pε)∥23∥divuε∥3 ≤ 1

3
∥Vε(pε)∥33 +

2

3
∥divuε∥33.

Since Wε and W ′′
ε are non-negative, and Wε(pε|t=0) = Wε(0) = 0, integration of (26) with respect to time

over the interval (0, T ) yields the desired bound on Vε(pε).
We deduce that there exists a constant C2, independent of ε, such that ∥ε∂tpε∥L2(0,T ;W−1,2(Ω)) ≤ C2. ■

3.5 Limit process

By virtue of the bounds obtained in Proposition 3, we deduce the following convergences (up to sub-sequence
extractions):

8



Proposition 4. There exists a function u such that

uε ⇀ u weakly-⋆ in L∞(0, T ;L2(Ω)),

∇uε ⇀ ∇u weakly in L3(0, T ;L3(Ω)),

∂tuε ⇀ ∂tu weakly in L
3
2 (0, T ;W−1, 32 (Ω)),

uε → u in L3(0, T ;L2(Ω)).

There exists a non-negative function p such that

pε ⇀ p weakly in L
3
2 (0, T ;L

3
2 (Ω)),

ε∇pε ⇀ 0 weakly in L2(0, T ;L2(Ω)),

ε∂tpε ⇀ 0 weakly in L2(0, T ;W−1,2(Ω)).

There exists a symmetric and traceless tensor function σ such that

σε ⇀ σ weakly in L
3
2 (0, T ;L

3
2 (Ω)).

Proof - Weak convergence, up to a sub-sequence, for uε, ∇uε, ∂tuε, pε and σε follows from the bounds
derived in Proposition 3. Strong convergence on velocity uε can be deduced from the Aubin-Lions-Simon
Lemma (see [11, p.102]).

Since pε weakly converges to p, we know that ∂tpε and ∇pε converge respectively to ∂tp and ∇p in the sense
of distributions. Thus, we deduce that ε∂tpε and ε

1
2∇pε converge to zero in the sense of distributions. Since

these two sequences are bounded in L2(0, T ;W−1,2(Ω)) and L2((0, T ) × Ω), respectively, they converge to
zero weakly in these spaces.

The last point that remains to be proven is the non-negativity of the pressure p. For φ ∈ L3((0, T ) × Ω),
φ ≥ 0, we have ∫ T

0

∫
Ω

pεφ =

∫∫
pε≥0

pε φ︸ ︷︷ ︸
A

+

∫∫
pε<0

pε φ︸ ︷︷ ︸
B

. (27)

First note that for all ε > 0 we have A ≥ 0. Moreover, using the Cauchy-Schwarz inequality and the energy
estimate (25), we obtain

|B| ≤
(∫∫

pε<0

p2ε

) 1
2
(∫ T

0

∫
Ω

φ2
) 1

2 ≤ ε
1
2

(∫ T

0

∫
Ω

pεVε(pε)
) 1

2
(∫ T

0

∫
Ω

φ2
) 1

2 ε→0−−−→ 0.

Finally, since (pε)ε>0 weakly converges to p in L
3
2 ((0, T ) × Ω), passing to the limit as ε → 0, equality (27)

becomes ∫ T

0

∫
Ω

pφ ≥ 0,

which corresponds to the non-negativity of the pressure p. ■

The aim at the end of this section is to demonstrate that we can pass to the limit in relations (22), (23)
and (24), especially by handling non-linear terms.

Step 1: Limit in (22) Given φ ∈ L3(0, T ;W 1,3
0 (Ω)), the convergences obtained in Proposition 4 indicate

that

⟨∂tu,φ⟩ −
∫
Ω

p divφ+

∫
Ω

2|Du|Du : Dφ+

∫
Ω

σ : Sφ = ⟨f ,φ⟩, (28)

where the notation |Du|Du denotes the weak limit of |Duε||Duε in L
3
2 ((0, T )× Ω).
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Step 2: Limit in (23) In order to perform the limit ε→ 0 in (23), we first note that∣∣∣ |Suε|2

|Suε|+ ε
− |Suε|

∣∣∣ = ε
|Suε|

|Suε|+ ε
≤ ε −→ 0.

Thus, for ψ ∈ L
3
2 ((0, T )×Ω) (in practice, this is done for more regular ψk functions, typically in L2(0, T ;W 1,2

0 (Ω)),
and which converge to ψ), when ε goes to 0 in (23), we get∫

Ω

ψ divu−
∫
Ω

2ψ|Su|+
∫
Ω

ψV (p) = 0, (29)

where |Su| and V (p) respectively correspond to the weak limits of |Suε| and Vε(pε) in L3((0, T )× Ω).

Step 3: Limit in (24) After integrating equation (24) with respect to time we obtain

1

2
∥uε∥22 +

ε

2
∥pε∥22 + 4

∫ T

0

∥Duε∥33 + ε

∫ T

0

∥∇pε∥22 +
∫ T

0

∫
Ω

pεVε(pε) =
1

2
∥uinit,ε∥22 +

∫ T

0

⟨fε,uε⟩.

In particular, we have

1

2
∥uε∥22 + 4

∫ T

0

∥Duε∥33 +
∫ T

0

∫
Ω

pεVε(pε) ≤
1

2
∥uinit,ε∥22 +

∫ T

0

⟨fε,uε⟩. (30)

Since (uε)ε>0 converges weakly to u in L∞(0, T ;L2(Ω)), we know that lim infε→0 ∥uε∥ ≥ ∥u∥. We also use
the strong convergence of the sequences (uinit,ε)ε>0 and (fε)ε>0 to perform the limit ε→ 0 in (30) and obtain

1

2
∥u∥22 + 4

∫ T

0

∫
Ω

|Du|3 +
∫ T

0

∫
Ω

pV (p) ≤ 1

2
∥uinit∥22 +

∫ T

0

⟨f ,u⟩, (31)

where |Du|3 and pV (p) denote the weak limits of (|Duε|3)ε>0 and (pεVε(pε))ε>0, respectively, in L
1((0, T )×

Ω).

3.6 Convergence of the non-linear terms and proof of the existence result

In this subsection we will prove that

|Du|Du = |Du|Du, V (p) =
√
p, |Du|3 = |Du|3 and |Su| = |Su|. (32)

To this end, we make use of the following two lemmas:

3.6.1 Convex analysis lemmas

Lemma 1 (Convexity argument).
If H : D ⊂ Rm −→ R is a convex and lower semi-continuous function,
if gε : (0, T )× Ω −→ D weakly converges to g in Lq((0, T )× Ω) when ε tends to 0,
if H(gε) : (0, T )× Ω −→ R weakly converges to H(g) in Lr((0, T )× Ω) when ε tends to 0
then we have

H(g) ≤ H(g).

Proof: This is a classical result that can be seen as a consequence of the equivalence of the notion of convex
closed set for weak and strong topologies, see [13, p. 38]. For any φ ∈ Lr′((0, T )×Ω), φ ≥ 0 where 1

r +
1
r′ = 1,

the function

Φ : h ∈ Lq((0, T )× Ω) 7−→
∫ T

0

∫
Ω

H(h)φ

is convex and lower semi-continuous. Following [13, Corollaire III.8] we deduce that if gε weakly converges
to g in Lq((0, T )×Ω)m then Φ(g) ≤ lim infε→0 Φ(gε). We deduce that for all φ ∈ Lr′((0, T )×Ω), φ ≥ 0, we
have ∫ T

0

∫
Ω

H(g)φ ≤
∫ T

0

∫
Ω

H(g)φ,

10



which corresponds to the announced result. ■

Clearly, this result can also be extended to the case where the functions H is concave and upper semi-
continuous. In this case, the function −H satisfies the assumptions of Lemma 1 and we obtain

H(g) ≥ H(g).

Corollary 1. We have the following inequalities

pV (p) ≥ p
√
p and V (p) ≤ √

p.

Proof of the first inequality: Let φ ∈ L∞((0, T )× Ω) with φ ≥ 0. For all ε > 0 we have∫ T

0

∫
Ω

pεVε(pε)φ =

∫∫
pε≤0

pεVε(pε)φ︸ ︷︷ ︸
A

+

∫∫
pε>0

pε(Vε(pε)−
√
pε)φ︸ ︷︷ ︸

B

+

∫∫
pε>0

pε
√
pε φ︸ ︷︷ ︸

C

.

– Since for all x ≤ 0 we have xVε(x) ≥ 0 we deduce that A ≥ 0.

– Since for all x > 0 we have |Vε(x)−
√
x| ≤ ε, we deduce that limε→0B = 0.

– Finally, applying Lemma 1 with the convex and continuous function H : x ∈ R+ 7−→ x
√
x, and using

the fact that the limit pressure p is non-negative, we deduce that lim infε→0 C ≥
∫ T

0

∫
Ω
p
√
pφ.

We then conclude that ∫ T

0

∫
Ω

pV (p)φ ≥
∫ T

0

∫
Ω

p
√
pφ.

Proof of the second inequality: Let φ ∈ L
3
2 ((0, T )× Ω) with φ ≥ 0. For all ε > 0 we have∫ T

0

∫
Ω

Vε(pε)φ =

∫∫
pε≤0

Vε(pε)φ︸ ︷︷ ︸
A

+

∫∫
pε>0

Vε(pε)φ︸ ︷︷ ︸
B

.

– Since for all x ≤ 0 we have Vε(x) ≤ 0, we deduce A ≤ 0.

– Since for all x > 0 we have Vε(x) ≤
√
x, we deduce B ≤

∫∫
pε>0

√
pε φ. Then, applying Lemma 1 (in its

concave version, as detailed immediately following the lemma’s proof) with the concave and continuous
function H : x ∈ R+ 7−→

√
x, and using the fact that the limit pressure p is non-negative, we deduce

that lim infε→0B ≤
∫ T

0

∫
Ω

√
pφ.

We then conclude that ∫ T

0

∫
Ω

V (p)φ ≤
∫ T

0

∫
Ω

√
pφ,

that completes the proof of Corollary 1. ■

The following lemma can be found in [29, Lemma 1], see also [17, p.1715 and p.1730]:

Lemma 2. If Duε ⇀ Du weakly in L3((0, T ) × Ω) and |Duε|Duε ⇀ |Du|Du weakly in L
3
2 ((0, T ) × Ω)

then ∫ T

0

∫
Ω

(
|Du|Du : Du− 2|Du|3

)
≤ 0.

where |Du|3 refers to the weak limit of |Duε|3 in L1((0, T )× Ω).
Furthermore, if there is equality, then |Du|Du = |Du|Du.
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3.6.2 Existence proof

With the help of Lemmas 1 and 2, we can conclude the existence proof stated in the theorem by choosing
φ = u in equation (28) and ψ = p in equation (29), integrating both equations over time, and summing the
resulting expressions. This yields

1

2
∥u∥22 +

∫ T

0

∫
Ω

2|Du|Du : Du+

∫ T

0

∫
Ω

pV (p) +

∫ T

0

∫
Ω

(
σ : Su− 2p|Su|

)
=

1

2
∥uinit∥22 +

∫ T

0

⟨f ,u⟩.

By subtracting equation (31), we obtain∫ T

0

∫
Ω

2
(
|Du|Du : Du− 2|Du|3

)
︸ ︷︷ ︸

A

+

∫ T

0

∫
Ω

(
pV (p)− pV (p)

)
︸ ︷︷ ︸

B

+

∫ T

0

∫
Ω

(
σ : Su− 2p|Su|

)
︸ ︷︷ ︸

C

≥ 0. (33)

– By Lemma 2, we have A ≤ 0.

– From Corollary 1, we directly obtain B ≤ 0.

– By the convexity of x 7→ |x| and Lemma 1, we have |Su| ≤ |Su|. Moreover, we have |σ| ≤ p.
Consequently, by applying the Cauchy-Schwarz inequality we write

σ : Su ≤ 2|σ||Su| ≤ 2p|Su| ≤ 2p|Su|. (34)

which implies that C ≤ 0.

Since A+B + C ≥ 0 with A ≤ 0, B ≤ 0 and C ≤ 0, it follows that A = B = C = 0.

– According to the conclusion of Lemma 2, the equality A = 0 implies |Du|Du = |Du|Du.

– Similarly, the equality B = 0 implies V (p) =
√
p.

– Finally, even if this point is not useful in the proof of Theorem 1, we can note that C = 0 implies
σ : Su = 2p|Su| so that equality holds in (34), implying that σ : Su = 2p|Su|.

In particular, this last point proves that 2p|Su| = 2p|Su| but does not prove that |Su| = |Su|. To obtain
the latter result, we proceed in the following four steps.

Step 1: |Du|3 = |Du|3
This is a direct consequence of Lemma 2. Indeed, since A = 0 and |Du|Du = |Du|Du, we have∫ T

0

∫
Ω

(
|Du|3 − |Du|3

)
= 0.

Moreover the function x 7→ x3 being convex, we apply Lemma 1 to obtain |Du|3 − |Du|3 ≤ 0. We deduce
the equality |Du|3 = |Du|3.

Step 2: |Du|2 = |Du|2
Using the convexity of x 7→ x2 and the concavity of x 7→ x

2
3 , we deduce from Lemma 1 that

|Du|2 ≤ |Du|2 = (|Du|3) 2
3 ≤ |Du|3

2
3 = |Du|2.

All these terms are therefore equal, and in particular |Du|2 = |Du|2.

Step 3: |Su|2 = |Su|2
We use the identity

|Duε|2 = |Suε|2 +
1

6
|divuε|2. (35)

Let ξ ≥ 0 and ζ ≥ 0 be the elements of L
3
2 ((0, T )×Ω) such that |Su|2 = |Su|2+ ξ and |divu|2 = |divu|2+ ζ

then we pass to the limit in (35) using the fact that |Du|2 = |Du|2:

|Du|2 = |Su|2 + ξ +
1

6
|divu|2 + 1

6
ζ.
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Since we also have |Du|2 = |Su|2 + 1
6 |divu|

2, it follows that ξ + 1
6ζ = 0. Given the positivity of ξ and ζ, we

conclude that ξ = ζ = 0, and in particular |Su|2 = |Su|2.

Step 4: |Su| = |Su|
Using the convexity of x 7→ |x|, and the concavity of x 7→ x

1
2 , we deduce from Lemma 1 that

|Su| ≤ |Su| = (|Su|2) 1
2 ≤ |Su|2

1
2 = |Su|.

All these terms are therefore equal, and in particular |Su| = |Su|.

To conclude the proof of Theorem 1, simply note that equations (28), (29) and (31) exactly correspond to
Definition 1 of a weak solution since we have proved (32). ■

3.7 Proof of the uniqueness result

The proof of the uniqueness of a weak solution is classical. Consider two weak solutions (u1, p1,σ1) and
(u2, p2,σ2). We write the equations (13) and (14) for both solutions, and then take the difference. Denoting

u = u2−u1, p = p2− p1 and σ = σ2−σ1, we obtain, for all φ ∈ L3(0, T ;W 1,3
0 (Ω)) and ψ ∈ L

3
2 ((0, T )×Ω):

⟨∂tu,φ⟩ −
∫
Ω

p divφ+

∫
Ω

2(|Du2|Du2 − |Du1|Du1) : Dφ+

∫
Ω

σ : Sφ = 0,∫
Ω

ψ divu−
∫
Ω

2ψ(|Su2| − |Su1|) +
∫
Ω

ψ(
√
p2 −

√
p1) = 0.

We then choose φ = u and ψ = p, and add the resulting equations:

1

2

d

dt

∫
Ω

|u|2 +
∫
Ω

(|Du2|Du2 − |Du1|Du1) : (Du2 −Du1)︸ ︷︷ ︸
A

+

∫
Ω

(
√
p2 −

√
p1)(p2 − p1)︸ ︷︷ ︸
B

+

∫
Ω

(σ2 − σ1) : (Su2 − Su1)− 2(p2 − p1)(|Su2| − |Su1|)︸ ︷︷ ︸
C

≤ 0.

(36)

We remark that A ≥ (|Du2| + |Du1|)(|Du2| − |Du1|)2 ≥ 0 and that B = (
√
p2 +

√
p1)(

√
p2 −

√
p1)

2 ≥ 0.
Moreover, using Proposition 1 and the Cauchy-Schwarz inequality, we also have C ≥ 0. Consequently,
estimate (36) implies that ∥u∥2 is a positive and non-increasing function of time. Since u2 and u1 satisfy
the same initial condition, we deduce that u = 0.
We next deduce from the estimate (36) that A = B = C = 0. In particular, the equality B = 0 implies that
p = 0. ■

4 Adaptation to more general models

4.1 Taking into account the variation in volume fraction

As explained in the introduction, the complete granular flow model also describes the evolution of the grain
volume fraction, denoted ϕ. Although the previous results have overcome a number of difficulties relating to
complex flows (non-linear rheology and dilatation phenomena), the complete model given by (1)–(4) in the
introduction presents additional difficulties. The key point is to specify the functions α and β which depend
on the volume fraction ϕ. More specifically, it is important to understand how to describe the expansion law
expressing divu. From Roux-Radjäı’s work [27], we know that this law can be written as

divu = 2K|Su|(I − Ieq(ϕ)) where I =
2d|Su|√
p/ρ0

.
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The non-dimensional number I denotes the inertial number (depending on the diameter d of the grains,
and on their density ρ0) and Ieq(ϕ) its equilibrium value. For the latter, several examples are given in the
literature, see [12, 19, 21, 25], and we choose [28, p.929]:

Ieq(ϕ) =
ϕmax − ϕ

ϕ− ϕmin
,

where the constants 0 < ϕmin < ϕmax < 1 corresponds to the ”extreme” values of the volume fraction ϕ.
This choice will ensure mathematically that ϕ remains effectively bounded between ϕmin and ϕmax, see
Proposition 6 below. In order to ensure stability of the model (see [4, 5, 6, 14]), we choose the proportionality
coefficient as K = ϕ−ϕmin

δϕ I with δϕ = ϕmax − ϕmin, so that the dilatation law is written as

divu = 2
ϕ− ϕmin

δϕ
|Su| − ϕmax − ϕ

δϕ

√
p

d
√
ρ0
.

Regarding the mathematical analysis, we propose here a first theoretical result on the existence and unique-
ness for a model that is relatively close to the full model. This considered model is as follows:

Dt(ϕ,u) +∇p− div(2|Du|Du) = f + divσ, (37)

σ : Su = 2(ϕ− ϕmin)p|Su|, |σ| ≤ (ϕ− ϕmin)p, σ = σ⊺ and trσ = 0, (38)

divu = 2(ϕ− ϕmin)|Su| − (ϕmax − ϕ)
√
p, (39)

∂tϕ+ div(ϕu) = ξH, (40)

where

Dt(ϕ,u) =
1

2

((
∂t(ϕu) + div(ϕu⊗ u)

)
+
(
ϕ(∂tu+ u · ∇u)

))
.

In practice, the only difference with the full model lies in the additional term ξH where ξ is a real parameter,
fixed and positive (possibly very small). This term H will be chosen in the following form

H = ∆ϕ− ϕ
√
p.

The contribution of ∆ϕ ensures compactness for sequence (ϕε)ε>0 satisfying such a problem, and gives sense
to the non-linear terms such as (ϕmax − ϕ)

√
p. Furthermore, the contribution of ϕ

√
p ensures that ϕ ≤

ϕmax − ξ, thereby allowing the energy estimate to yield a bound on the pressure.

Remark 5. The form of the time derivative as the average between the convected derivative and its con-
servative form ensures an energy estimate independent of the evolution equation (40) on ϕ. In the case
where ξ = 0, both forms are equivalent. At this stage, we do not know how to obtain sufficient regularity for
the solutions to assert the existence of a solution when ξ = 0. In particular, we do not know whether the
solutions constructed here converge to a solution when ξ goes to 0.

Theorem 2. Let ξ > 0, uinit ∈ L2(Ω), ϕinit ∈ L2(Ω) and f ∈ L
3
2 (0, T ;W−1, 32 (Ω)).

If ϕmin ≤ ϕinit ≤ ϕmax − ξ then there exists a weak solution of (37)–(40) satisfying the initial conditions
u|t=0 = uinit and ϕ|t=0 = ϕinit.

The proof follows the same arguments as in the case of Theorem 1. The only difference lies in the control
of ϕ. We must therefore ensure that there is always an energy estimate that, in addition to providing control
over u and p, also allows us to control ϕ. To avoid repeating the full proof of the previous theorem, we
simply derive the energy estimate in a formal manner.

Proposition 5. Any regular solution (u, p,σ, ϕ) to (37)–(40) satisfies

d

dt

∫
Ω

ϕ
|u|2

2
+ 4

∫
Ω

|Du|3 +
∫
Ω

(ϕmax − ϕ)p
√
p =

∫
Ω

f · u. (41)

Proof - The result essentially follows by taking the scalar product of equation (37) with u. We note that,
independently of equation (40), we have

Dt(ϕ,u) · u = ∂t

(
ϕ
|u|2

2

)
+ div

(
ϕ
|u|2

2
u
)
.
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Equation (39) allows us to control the pressure term

∇p · u = div(pu)− pdivu = div(pu)− 2(ϕ− ϕmin)p|Su|+ (ϕmax − ϕ)p
√
p,

while equation (38) is useful for cancelling out the stress part:

divσ · u = div(σ · u)− σ : Su = div(σ · u)− 2(ϕ− ϕmin)p|Su|.

After integration over Ω, the sum of these contributions provides the result stated in Proposition 5. ■

To use equation (41), we need to prove that the terms containing ϕ|u|2 and (ϕmax − ϕ)p
√
p are positive,

more precisely that 0 < ϕ ≤ ϕmax. In addition, if we want to obtain an estimate on the pressure, we need to
ensure that ϕmax − ϕ does not vanish.

Proposition 6. Any regular solution (u, p,σ, ϕ) to (37)–(40) such that ϕmin ≤ ϕ|t=0 ≤ ϕmax − ξ satisfies

ϕmin ≤ ϕ ≤ ϕmax − ξ, (42)

and
d

dt
∥ϕ∥22 + 2ξ∥∇ϕ∥22 ≤ ϕ2max

∫
Ω

(|divu|+ 2
√
p). (43)

Proof – Step 1: Upper bound First note that equation (40) implies that, for β : R −→ R, we have

∂tβ(ϕ) + div(β(ϕ)u) + (ϕβ′(ϕ)− β(ϕ))divu = ξβ′(ϕ)∆ϕ− ξϕβ′(ϕ)
√
p, (44)

In order to achieve the upper bound for ϕ, we choose the function β defined by

β(ϕ) =

{
0 if ϕ < ϕmax − ξ,

ϕ− (ϕmax − ξ) if ϕ ≥ ϕmax − ξ.

Integrating (44) over Ω, and thanks to this choice of the function β, we obtain

d

dt

∫
Ω

β(ϕ) +

∫
E+

(ϕmax − ξ)divu = ξ

∫
E+

∆ϕ−
∫
E+

ξϕ
√
p, (45)

where E+ = {x ∈ Ω ; ϕ(t, x) ≥ ϕmax − ξ}. The unit outgoing normal vector at E+ is given by −∇ϕ/|∇ϕ| so
that Stokes’ formula allows us to write

ξ

∫
E+

∆ϕ = −ξ
∫
∂E+

|∇ϕ| ≤ 0.

Moreover, the expression for the divergence of the velocity given by equation (39) indicates that

ϕ ≥ ϕmax − ξ =⇒ divu+ ξ
√
p ≥ 0

We then deduce that∫
E+

(ϕmax − ξ)divu+

∫
E+

ξϕ
√
p ≥

∫
E+

(ϕmax − ξ)(divu+ ξ
√
p) ≥ 0.

Consequently, equation (45) implies d
dt

∫
β(ϕ) ≤ 0. Thus, if ϕ|t=0 ≤ ϕmax − ξ, i.e. β(ϕ|t=0) = 0, then

β(ϕ) = 0 so the result follows, namely ϕ ≤ ϕmax − ξ.

Step 2: Lower bound In the same spirit, to obtain the lower bound, we use equation (44) together with
the function β, defined by

β(ϕ) =

{
0 if ϕ > ϕmin,

ϕmin − ϕ if ϕ ≤ ϕmin.

By integrating (44) over Ω, we get

d

dt

∫
Ω

β(ϕ)−
∫
E−

ϕmindivu = −ξ
∫
E−

∆ϕ+

∫
E−

ξϕ
√
p, (46)
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where E− = {x ∈ Ω ; ϕ(t, x) ≤ ϕmin}. This time, the unit outgoing normal vector at E− is given by ∇ϕ/|∇ϕ|
so that Stokes’ formula allows us to write

−ξ
∫
E−

∆ϕ = −ξ
∫
∂E−

|∇ϕ| ≤ 0.

The expression for the divergence of the velocity in equation (39) gives

ϕ ≤ ϕmin =⇒ divu ≤ −(ϕmax − ϕmin)
√
p.

Since ξ ≤ ϕmax − ϕmin, we obtain the following inequality∫
E−

ξϕ
√
p+

∫
E−

ϕmindivu ≤
∫
E−

ϕmin(ξ − (ϕmax − ϕmin))
√
p ≤ 0.

Consequently, equation (46) implies that d
dt

∫
β(ϕ) ≤ 0. Thus, if we have ϕ|t=0 ≥ ϕmin, i.e. β(ϕ|t=0) = 0,

then β(ϕ) = 0 so that the result follows, namely ϕ ≥ ϕmin.

Step 3: H1 estimate By multiplying equation (40) by 2ϕ and integrating over Ω, we obtain

d

dt

∫
Ω

|ϕ|2 + 2ξ

∫
Ω

|∇ϕ|2 = −
∫
Ω

2ϕdiv(ϕu)−
∫
Ω

2ϕ2
√
p.

Using integration by parts, we can write the right-hand side in the form

d

dt
∥ϕ∥22 + 2ξ∥∇ϕ∥22 = −

∫
Ω

ϕ2(divu+ 2
√
p).

The bound |ϕ| ≤ ϕmax allows to conclude. ■

Ideas for the proof of Theorem 2 The method is the same as the one described in the proof of
Theorem 1. We construct a sequence of solutions (uε, pε,σε, ϕε)ε>0 of an approximate problem, and we
show that this solution converges to the solution of the problem (37)–(40) when ε tends to 0.

We focus on estimating the volume fraction ϕε, since the other quantities are bounded similarly to those
in the proof of Theorem 1. The key point is to ensure that the sequence (ϕε)ε>0 converges strongly to a
solution ϕ, which will enable us to pass to the limit in all terms.

Given that ϕmax − ϕε ≥ ξ > 0, estimate (41) ensures that the sequences (divuε)ε>0 and (
√
pε)ε>0 are

uniformly bounded in L3((0, T ) × Ω) with respect to ε. From estimate (43), we deduce that (ϕε)ε>0 is
uniformly bounded in L2(0, T ;H1(Ω)).

To obtain compactness, we consider the sequence (∂tϕε)ε>0. By writing

∂tϕ = ξ∆ϕ− div(ϕu)− ϕ
√
p,

we deduce from the previous estimates that (∂tϕε)ε>0 is uniformly bounded in L2(0, T ;H−1(Ω)). Finally,
the Aubin-Lions-Simon Lemma (see [11, p.102]) leads to the conclusion that (ϕε)ε>0 converges strongly to ϕ
in L2((0, T )× Ω). ■

Remark 6. Propositions 5 and 6 are true even if ξ = 0. However, the proof of Theorem 2 is no longer
correct. Indeed, when ξ = 0, we don’t have H1 estimate for ϕ (see relation (43)), nor an estimate for p (see
relation (41), especially when ϕmax − ϕ vanishes). To prove such a theorem when ξ = 0, we therefore need
to find other arguments.

4.2 µ(I)-rheology

The µ(I)-rheology relates stress, pressure and shear in a manner similar to equation (5). The main difference
is that the stress threshold, corresponding to α(ϕ)p in (5), is written µ(I)p, the function µ being experimen-
tally given with respect to the inertial number I, see for example [3]. In this context, if Barker’s stability
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conditions [28] are to be satisfied, the dilation relation is also imposed, and involves I-dependent functions.
By following these principles the following model is proposed in [14]:

ϕρ0
(
∂tu+ u · ∇u

)
+∇p = ϕρ0g + divσ, (47)

σ : Su = 2µ(I)p|Su|, |σ| ≤ µ(I)p, σ = σ⊺ and trσ = 0, (48)

divu = 2F (I)|Su| − γIeq(ϕ)F (Ieq(ϕ))
√
p, (49)

∂tϕ+ div(ϕu) = 0, (50)

where γ = 2/d
√
ρ0 and where the dimensionless functions µ and F are explicitly given (see [14] for more

details). In particular, these functions are smooth, continuous, and equal at 0. We denote α0 = µ(0) = F (0).

Dimensionless procedure In order to rewrite the system in dimensionless form, we apply the following
change of variables and unknowns:

t = T t̃, x = Lx̃, u = U ũ, p = gLρ0p̃, σ = gLρ0σ̃,

where T , L and U represent the characteristic time, length and velocity scales, respectively. Introducing the
dimensionless numbers ε, Fr and Di defined as follows

ε =
TU

L
, Fr2 =

U2

gL
, Di =

d

L
Fr,

yields the following system where the tilde notation has been omitted for conciseness:

ϕ
(
∂tu+ εu · ∇u

)
+

ε

Fr2
∇p = − ε

Fr2
ϕe+

ε

Fr2
divσ, (51)

σ : Su = 2µ(Di I)p|Su|, |σ| ≤ µ(Di I)p, σ = σ⊺ and trσ = 0, (52)

divu = 2F (Di I)|Su| − 1

Di
Ieq(ϕ)F (Ieq(ϕ))

√
p, (53)

∂tϕ+ εdiv(ϕu) = 0. (54)

Note that in this dimensionless form, the inertial number I is written as: I =
2|Su|
√
p

.

Asymptotic problem We aim to study this system when the volume fraction ϕ is nearly constant and
close to the maximum packing fraction ϕmax. Choosing ε as a small parameter, let us introduce

ϕ = ϕ0 + εψ,

where ϕ0 is a constant close to ϕmax in the following sense: ϕmax − ϕ0 = O(ε). More generally, we write

u = v +O(ε), p = q +O(ε) and σ = τ +O(ε).

To retain both rheological and expansion-related contributions, we also assume that

Fr2 = O(ε) and Di = O(ε).

A typical illustration of this situation is shown below:

L = 10−1 m, U = 10−1 m.s−1, T = 10−2 s d = 10−2 m and g = 10m.s−2.

In this case, we have ε = 10−2, Fr2 = 10−2 and Di = 10−2. By keeping only the terms of leading order in ε
in the system (51)–(54), we obtain

ϕ0∂tv + λ0∇q = −ϕ0λ0e+ λ0div τ , (55)

τ : Sv = 2α0q|Sv|, |τ | ≤ α0q, τ = τ⊺ and tr τ = 0, (56)

divv = 2α0|Sv| − γ0
√
q, (57)

∂tψ + ϕ0divv = 0, (58)

17



where λ0 =
ε

Fr2
= O(1) and γ0 =

2α0(ϕmax − ϕ0)

Di(ϕ0 −min)
= O(1).

In this system, the evolution of the volume fraction ψ is decoupled from the velocity-stress system (55)–(57).
This independent system on (v, q, τ ) is similar to the system (9)–(11) (in which viscosity has been added).
In other words, the system studied in the first sections can be seen as an approximation of the complete
system with the µ(I)-rheology.

4.3 Other models and other possible works

Case of a granular material immersed in a liquid Note that in a recent paper by Barker et al [4],
the authors use the µ(J)-rheology, instead of µ(I), to describe fluidised granular flow, i.e. granular material
immersed in water. The dimensionless number J , defined by J = ηf |S|/p is used for granular flows with a
low Stokes number (St = ρ0d

2|S|/ηf ) and is therefore well suited for granular flows in liquids. As in the case
of the models using the µ(I)-rheology discussed in the introduction, instability problems are frequent, and
authors often add regularization terms without giving rigorous arguments for the stability of the resulting
system. For example, the models introduced in [22, 23] are relatively close to what is proposed here, but
the adapted closure (by adding a time derivative on pressure terms) does not seem to ensure stability or the
existence of a solution. The study proposed in the present article might be adaptable to such configuration.

Shallow water model In gravity flow applications, the domain geometry can be highly anisotropic.
Typically, pyroclastic flow lengths are of the order of several kilometers, while their heights do not exceed a
few meters. In this context, many authors use models averaged over the transverse component of the flow,
thus reducing the number of unknowns and variables in the problem, see for instance [8, 9, 10]. The natural
question, then, is what the model introduced in this article might yield when averaged vertically.

Numerical simulations The aim of this type of model is to go as far as possible and run numerical
simulations to compare with experience. Actually work is in progress to develop a numerical method, in
line with the theoretical results presented here, i.e. retaining as many of the proven properties as possible
(bounds on volume fraction, dissipated energy, etc.).
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