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SOLVING FERMAT-TYPE EQUATIONS x5 + y5 = dzp

NICOLAS BILLEREY AND LUIS V. DIEULEFAIT

Abstract. In this paper, we are interested in solving the Fermat-type equa-
tions x5 + y5 = dzp, where d is a positive integer and p a prime number ≥ 7.
We describe a new method based on modularity theorems which allows us to
improve all earlier results for this equation. We finally discuss the present
limits of the method by looking at the case d = 3.

1. Introduction

Let p be a prime number ≥ 7 and d be a positive integer. We say that a solution
(a, b, c) of the equation x5 + y5 = dzp is primitive if (a, b) = 1 and non-trivial if
c �= 0 (note that this is not the same definition as in [1]). Let us recall briefly the
generalization of the so-called modular method of Frey for solving this equation.

Assume that (a, b, c) is a non-trivial primitive solution of x5 + y5 = dzp. Then
the equation

(�) y2 = x3 − 5(a2 + b2)x2 + 5

(
a5 + b5

a+ b

)
x

defines an elliptic curve E(a, b) over Q of conductor N (say) which is semistable
at each prime different from 2 and 5. By results of Wiles, Taylor-Wiles, Diamond
and Skinner-Wiles, E(a, b) is modular. Furthermore, E(a, b) is a Frey-Hellegouarch
curve in the following sense: the Galois representation ρp on p-torsion points of
E(a, b) is irreducible and unramified outside 2, 5, p and the set of primes dividing
d. The conductor N(ρp) (prime to p) and the weight k of ρp are computed in [1,
§3]. Thus, it follows from a theorem of Ribet that there exists a modular form
f of weight k, level N(ρp) and trivial character such that the associated p-adic
representation σf,p satisfies σf,p ≡ ρp (mod p). More precisely, let us denote by
aq and a′q the coefficients of the L-functions of E and f , respectively, by Kf the
number field generated by all the a′q’s and by NKf/Q the corresponding norm map.
We then have the following proposition.

Proposition 1.1. There exists a primitive newform f of weight k and level N(ρp)
such that, for each prime q, the following conditions hold.

(1) If q divides N but q does not divide pN(ρp), then

p divides NKf/Q

(
a′q ± (q + 1)

)
.

(2) If q does not divide pN , then p divides NKf/Q

(
a′q − aq

)
.
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The aim of the modular method is to contradict the existence of such a form f .
We describe, in the following section, a method which allows us sometimes to reach
this goal.

2. Description of the method

Fix a prime number p ≥ 7 and a positive integer d. Consider in turn each
newform f of weight k and level N(ρp). Suppose there exists a prime number q
(depending on p, d and f) such that the following conditions hold:

(1) The prime q does not divide pN(ρp).
(2) The prime p does not divide NKf/Q

(
a′q ± (q + 1)

)
.

(3) Let (a, b) ∈ F2
q . Consider the cubic over Fq given by the equation (�). If it

is non-singular, compute the number of its Fq-points. When (a, b) describes
Fq ×Fq, this gives rise to a finite list of coefficients. The prime p does not
divide NKf/Q

(
a′q − aq

)
, for any aq in this list.

Then the equation x5 + y5 = dzp does not have a non-trivial primitive solution.

3. Applications to the Fermat equation

We apply, in this section, the method described above to some values of d.

3.1. Case where d = 2α · 3β · 5γ. In this paragraph, we are interested in the case
where

d = 2α · 3β · 5γ , with α ≥ 2 and β, γ arbitrary.

The following theorem generalizes Theorems 1.2 and 1.3 of [1].

Theorem 3.1. Assume d is as above. Then the equation x5 + y5 = dzp does not
have any non-trivial primitive solutions for p ≥ 13.

Remark 3.2. Note that although our method fails to solve these Fermat equations
for small values of p, it is expected that they do not have a non-trivial solution for
any p ≥ 7.

Proof of Theorem 3.1. Assume that (a, b, c) is a non-trivial primitive solution. It
follows from [1, §3] that the representation ρp is irreducible of weight k = 2.

If β = 0, then we have N(ρp) = 25 or 50. Since there is no newform of weight
2 and level 25, we necessarily have N(ρp) = 50. There are exactly two such forms
and both of them have rational coefficients. The curve E(a, b) is semistable at
q = 3. Assume that E(a, b) has multiplicative reduction at 3. By Prop. 1.1, we
have a′3±4 ≡ 0 (mod p). Besides, by [4], we have a′3 = ±1, which is a contradiction,
since p ≥ 13. So, E(a, b) has good reduction at q = 3 and by the proposition above,
±1 = a′3 ≡ a3 (mod p). This is also a contradiction because a3 is even (E(a, b) has

a non-trivial 2-torsion subgroup) and |a3| ≤ 2
√
3, i.e. a3 = 0 or ±2.

If β > 0, then we have N(ρp) = 75 or 150. Assume that we have N(ρp) = 75.
By [4], there are exactly 3 primitive newforms of weight 2 and level 75. They all
have coefficients in Q and the form f of Prop. 1.1 is one of them. Moreover, by [4],
we have a′7 = 0 or ±3. Since p ≥ 13, the first condition of Prop. 1.1 does not hold
for q = 7 and E(a, b) has good reduction at 7. Following the method described
in the previous section, we find that a7 belongs to the set {−4,−2, 2}. We then
deduce that the second condition of Prop. 1.1 does not hold either. In other words,
we have N(ρp) = 150.
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There are exactly 3 primitive newforms of weight 2 and level 150, denoted by
150A1, 150B1 and 150C1 and f is one of them. If f = 150B1, then a′7 = 4 and
a contradiction follows as above. So, f = 150A1 or 150C1 and by [4], we have
a′11 = 2. Since p ≥ 13, the first condition of Prop. 1.1 does not hold for q = 11 and
E(a, b) has good reduction at 11. Besides, we have a11 = 0 or ±4. So, the second
condition of Prop. 1.1 does not hold either and we obtain a contradiction. This
ends the proof of the theorem. �

3.2. Case where d = 7. In this paragraph, we prove the following theorem.

Theorem 3.3. The equation x5+y5 = 7zp does not have any non-trivial primitive
solutions for p ≥ 13.

Proof. Assume that (a, b, c) is a non-trivial primitive solution. It follows from [1,
§3], that the representation ρp is irreducible, of weight k = 2 (since p �= 7) and level
N(ρp) = 350, 1400 or 2800.

Let us first assume that the form f of Prop. 1.1 has eigenvalues which are not
rational integers. There are exactly 19 such forms of level 350, 1400 or 2800 and
for all of them we have a′3 = α, where α is the generator of the field Kf given
in [4]. If E(a, b) has good reduction at q = 3, we have a3 = ±2. Furthermore,
NKf/Q (a′3 ± 2) belong to the set {±2,±4,−6,±10}. Since f satisfies the second
condition of Prop. 1.1, we deduce that E(a, b) has multiplicative reduction at 3.

If f is not one the forms denoted by 1400S1, 1400T1, 2800QQ1 or 2800RR1 in [4],
then NKf/Q (a′3 ± 4) belong to {4, 8, 10, 12, 16, 20} and p divides one of them. This
is a contradiction. So, f is necessarily one of the four forms above and we have
NKf/Q (a′3 ± 4) = ±2 · 29 or ±2 · 11. It then follows that p = 29. Besides, if E(a, b)
has good reduction at q = 17, then a17 ∈ {0, 2, 4,±6,−8}, but by [4], 29 does
not divide NKf/Q (a′17), NKf/Q (a′17 − 2), NKf/Q (a′17 − 4), NKf/Q (a′17 ± 6) and
NKf/Q (a′17 + 8). So, E(a, b) has multiplicative reduction at q = 17, and 29 divides

NKf/Q (a′17 ± 18) = ±26 · 79 or ±24 · 359. This leads us again to a contradiction,
and we conclude that the eigenvalues of f are all rational integers.

In other words, f corresponds to an elliptic curve defined over Q. There are
exactly 6 isogeny classes of elliptic curves of level 350, 14 of level 1400 and 33 of
level 2800. For all of them, we will contradict the conditions of Prop. 1.1 with
q = 3, 11, 19, 23 or 37. As we have seen in §2, if E(a, b) has good reduction at q,
we can list the possible values of aq. For the above prime numbers q, we find

a3 = ±2, a11 ∈ {0,±4}, a19 ∈ {0,±4},
a23 ∈ {0,±2,±4,±6,±8} and a37 ∈ {0,−2,±4,−6,±8,±10, 12}.

By the Hasse-Weil bound, E(a, b) has good reduction at q = 3. We then deduce
that f satisfies a′3 = ±2. Among these curves, let us begin to deal with those
without 2-torsion rational over Q. If f is one of the curves denoted by 2800W1 and
2800AA1 in [4], we have a′11 = ±3 and this contradicts the congruences of Prop. 1.1
with q = 11. If f is one of the curves denoted by 1400D1, 1400K1, 2800D1 and
2800N1, we have a′11 = ±1. We then have a contradiction except maybe for p = 13.
Besides, for these four curves, we have a′23 = ±3 and the same argument implies
another contradiction except for p = 19. Bringing these two results together implies
that f is not one of these 4 forms. If now f is one of the curves denoted by 1400C1,
1400N1, 2800E1 and 2800M1, we have a′11 = ±5. We then have a contradiction
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except maybe for p = 17. Besides, for these curves, we have a′19 = ±2. By the
same argument as before, a contradiction follows once more.

The two remaining curves of level 350, 1400 or 2800 such that a′3 = ±2, denoted
by 1400H1 and 2800G1, are the only two curves with non-trivial 2-torsion group.
They satisfy a′19 = ±2 and a′37 = 6. Since these values do not belong to the set of
possible values for a19 and a37 described above, we finally have a contradiction to
the existence of a non-trivial primitive solution of x5 + y5 = 7zp. �

3.3. Case where d = 13. In this paragraph, we prove the following theorem.

Theorem 3.4. The equation x5+y5 = 13zp does not have any non-trivial primitive
solutions for p ≥ 19.

Proof. Assume that (a, b, c) is a non-trivial primitive solution. It follows from [1,
§3], that the representation ρp is irreducible, of weight k = 2 (since p �= 13) and
level N(ρp) = 650, 2600 or 5200.

Let q be a prime number different from 2, 5, 13 and p. By Prop. 1.1, p divides
either NKf/Q

(
a′q ± (q + 1)

)
or NKf/Q

(
a′q − aq

)
. In other words, p is a prime factor

of the resultant Rq of the minimal polynomial of a′q and Pq(X) = (X2 − (q +

1)2)
∏
(X−aq), where the product runs over all possible values of aq. For instance,

if q = 3, then P3(X) = (X2 − 16)(X2 − 4).
Let us first assume that f has rational Fourier coefficients. If a′3 �= ±2, then R3

has only 2, 3, 5 and 7 as prime factors. So we deduce that a′3 = ±2. There are
exactly 6 such newforms of level 650, 5 of level 2600 and 37 of level 5200 (for the
curves of level 5200, the notation will exceptionally refer to [2]) . For all of them,
a′7 does not belong to the list {±2,−4} of possible values for a7 when E(a, b) has
good reduction at 7. The same observation holds for the 13 elliptic curves of level
5200 with a′3 = ±2 except for those denoted by 5200S1, 5200BB1, 5200AA1 and
5200Z1 (in [2]). If f is one of the first three of them, then we have a′11 = 6 or
±2. Besides, if E(a, b) has good reduction at 11, then a11 belongs to {0,±4}. So,
this is a contradiction and f = 5200Z1. Nevertheless, in this case, a′17 = −2 does
not belong to the set {0, 2, 4,±6,−8} of possible values for a17 when E(a, b) has
good reduction at 17. We then deduce that the Fourier coefficients of f are not all
rational.

Let us now assume that N(ρp) = 650 or 2800. For each f in these levels, a′3 = α
is a root of the polynomial defining Kf given in [4]. We then verify that R3 is
supported only by 2 and 5 except for the curves denoted 2800QQ1 and 2800RR1.
But they both satisfy a′7 = ±1, which leads us to a contradiction.

So we necessarily have N(ρp) = 5200. There are exactly 29 newforms of this
level with non-rational eigenvalues numbered from 38 to 66. Four of them (those
numbered 39, 42, 46 and 47) satisfy a′3 = 0 or ±1. So, f is not one of them. If
f is curve number 63, then the field of coefficients is generated by a root α of the
polynomial x4 + 6x3 − 18x2 − 30x+ 25 and

a′3 =
1

10

(
α3 + 6α2 − 13α− 20

)
.

Its characteristic polynomial is then x4+2x3−7x2−8x+16 and we get R3 = 218 in
this case. This is of course a contradiction. The same conclusion will follow if f is
curve number 64, since, in this case, the generating polynomial is x4+6x3−87x2−
492x+ 604 and the characteristic polynomial of a′3 is x4 − 2x3 − 7x2 + 8x+ 16.
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For all the other curves, a′3 = α is a root of the generating polynomial of Kf

given in the tables and we have a contradiction in the same way as before, by
looking at R3 except for the following eight pairs (f, p) :

(f = 54, p = 43), (f = 55, p = 43), (f = 58, p = 23), (f = 59, p = 67),

(f = 61, p = 23), (f = 62, p = 67), (f = 65, p = 23), (f = 66, p = 43).

For all of these, we have a contradiction as before by looking at the coefficient a′7,
except for the last two curves where we have to consider a′19.

We finally deduce a contradiction to the existence of a non-trivial primitive
solution of the equation x5 + y5 = 13zp. �

4. The case d = 3 and limitations of the method

As is clearly apparent, the method will not work if there exists an elliptic curve
over Q of the form (�) and level N(ρp) (for large p). For convenience, we adopt the
following definition, which makes this observation precise (where Supp denotes the
support of an integer and v2 the 2-adic valuation of Q).

Definition 4.1. We say that there is a modular obstruction for the equation x5 +
y5 = dzp (or just for d) if there exist two coprime integers (a, b) such that the
following two conditions hold.

(1) The integer m = a5 + b5 is non-zero and we have

Supp(m) \ {2, 5} = Supp(d) \ {2, 5} .

(2) We have :
• if Supp(d) is not included in {2, 5}, then ab �= 0,
• if Supp(d) is included in {2, 5} and d is even, then ab �= 0,
• if d is odd, then v2(m) �= 2,
• if v2(d) = 1, then we have either v2(m) ≥ 3, or v2(m) = 1, or
max(v2(a), v2(b)) = 1,

• if v2(d) = 2, then v2(m) = 2,
• if v2(d) ≥ 3, then v2(m) ≥ 3.

The following lemma gives a sufficient condition to insure that there is no mod-
ular obstruction, for several given d.

Lemma 4.2. Let d be a positive integer such that for any prime � dividing d, we
have � �≡ 1 (mod 5). Then, there is a modular obstruction for d if and only if
d = 5γ or d = 2 · 5γ with γ ≥ 0.

Proof. Assume that there is a modular obstruction for d given by two coprime
integers (a, b). Thenm = a5+b5 is non-zero and Supp(m)\{2, 5} = Supp(d)\{2, 5}.
Following [1], let us denote by φ the irreducible polynomial

φ(x, y) = x4 − x3y + x2y2 − xy3 + y4.

By Lemmas 2.5 and 2.6 of [1] and the hypothesis, we have:

(1) either 5 divides m and then φ(a, b) = ±5;
(2) or 5 does not divide m and then φ(a, b) = ±1.
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In other words, (a, b) is a solution of a Thue equation of the form φ(x, y) = A,
where A = ±1 or ±5 and we can assume that a �= 0 (φ is symmetric). Since φ is
totally complex, this leads to

|A| = |a|4
4∏

k=1

|b/a− αk| ≥ |a|4 sin2
(
2π

5

)
· sin2

(
4π

5

)
≥ 0.312 · |a|4,

where αk = − exp(2ikπ/5), k = 1, . . . , 4, are the roots of φ(1, x). This gives an
upper bound for |a|.

In the first case, this implies that we have (a, b) = (1,−1) or (−1, 1) and then
m = 0, which is a contradiction. In the second case, we deduce

(a, b) ∈ {(1, 1), (−1,−1), (±1, 0), (0,±1)}.
In other words, m = ±1 or m = ±2. By the first condition of Def. 4.1, there exist
α, γ ≥ 0 such that d = 2α · 5γ . Since v2(m) = 0 or 1, we have, by the second
condition, α = 0 or 1.

Conversely, if d = 5γ or d = 2 · 5γ with γ ≥ 0, there is a modular obstruction for
d given, for example, by (a, b) = (1, 1). �

Remark 4.3. For d = 11, there is a modular obstruction given by the elliptic curves
E(2, 3) or E(3,−1). Note that, in general, finding a modular obstruction for d
involves solving some Thue-Mahler equation. Such an equation can be explicitly
solved ([5]), although its solution might turn out to be very complicated.

Let us now look at the case where d = 3. By the previous lemma, there is no
modular obstruction. Nevertheless, as we will see, we were not able to solve this
equation for all p.

Fix for now a prime p and let (a, b, c) be a non-trivial primitive solution of the
equation x5 + y5 = 3zp. The following lemma makes more precise Lemma 4.3 of
[1]. We warn the reader that in this paragraph we are using only Stein’s notation
[4] for modular forms (including elliptic curves). This is not the case in [1], where
the author was referring to Cremona’s Tables of elliptic curves [2].

Lemma 4.4. If p ≥ 17, then we have

(1) either 5 divides a+ b and f = 1200K1, or
(2) 5 does not divide a+ b and f = 1200A1.

Proof. Assume that 5 divides a+ b. By Lemma 4.3 of [1], f is one of the following
newforms (in Stein’s notation) :

150B1, 600C1, 600A1, 1200O1, 1200R1, 1200E1, 1200K1.

If f = 150B1, 600C1, 1200O1, 1200R1 or 1200E1, we have a′7 = 0 or 4. Besides,
if E(a, b) has good reduction at 7, we have a7 = ±2 or −4. We then obtain a
contradiction by looking at the conditions of Prop. 1.1 for q = 7. If f = 600A1,
then a′13 = 6. Besides, if E(a, b) has good reduction at 13, then a13 belongs to the
set {0,±2,±4}. So, there is again a contradiction. So, f = 1200K1 in this case.

Assume now that 5 does not divide a+ b. By Lemma 4.3 of [1], f is one of the
following newforms (in Stein’s notation) :

150A1, 150C1, 600D1, 600G1, 1200H1, 1200L1, 1200G1, 1200A1, 1200M1, 1200S1.

For f = 1200S1 we have a′7 = 4 and using this coefficient we derive again a con-
tradiction. For all the other curves except 1200A1, we have a′11 = ±2. Besides, if
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E(a, b) has good reduction at 11, we have a11 = 0 or ±4. So, f is not one of them
and we conclude that f = 1200A1 in this case. �

If f = 1200K1 or 1200A1, then for any prime q > 5 smaller than 5000, the
Fourier coefficient a′q of f actually lies in the list of possible values for aq. This is
why we have not been able to prove the emptiness of the set of non-trivial primitive
solutions for d = 3.

Nevertheless, we will give a criterion which is an improvement of the one given
in [1] (cf. Th. 4.5). This allows us to conclude the argument for a fixed p; we have
verified that it holds for any 17 ≤ p ≤ 107. Let us consider q a prime number
congruent to 1 modulo p, and write q = np + 1. The group µn(Fq) of nth roots
of unity in Fq has order n. We now define four subsets A±(n, q) and B±(n, q) of
µn(Fq) in the following way.

(1) Let Ã(n, q) be the subset of µn(Fq) consisting of all ζ such that

405 + 62500ζ is a square in Fq.

For such a ζ, let us consider the smallest integer δ1,ζ ≥ 0 such that

δ21,ζ (mod q) = 405 + 62500ζ.

We define A+(n, q) (resp. A−(n, q)) as the subset of Ã(n, q) consisting of ζ such
that

−225 + 10δ1,ζ (resp. − 225− 10δ1,ζ)

is a square modulo q. For any ζ ∈ A+(n, q), let us consider the cubic curve over Fq

defined by the equation

F+
1,ζ : y2 = x3 − δ1,ζ

25
x2 + 25ζx.

Its discriminant 6480ζ2 = 24 · 34 · 5ζ2 is non-zero and F+
1,ζ is an elliptic curve over

Fq. Let us denote by n+
1,q(ζ) the number of Fq-rational points of F

+
1,ζ and write

a+q (ζ) = q + 1− n+
1,q(ζ).

If ζ ∈ A−(n, q), let us define, in the same way, the cubic curve

F−
1,ζ : y2 = x3 +

δ1,ζ
25

x2 + 25ζx.

As a twist of F+
1,ζ , it is also an elliptic curve over Fq and we write

a−q (ζ) = q + 1− n−
1,q(ζ),

where n−
1,q(ζ) denotes the number of Fq-rational points of F

−
1,ζ .

(2) Let B̃(n, q) be the subset of µn(Fq) consisting of all ζ such that

405 + 20ζ is a square in Fq.

For such a ζ, let us consider the smallest integer δ2,ζ ≥ 0 such that

δ22,ζ (mod q) = 405 + 20ζ.

We define B+(n, q) (resp. B−(n, q)) as the subset of B̃(n, q) consisting of ζ such
that

−225 + 10δ2,ζ (resp. − 225− 10δ2,ζ)
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is a square modulo q. For any ζ ∈ B+(n, q), let us consider the cubic curve over Fq

defined by the equation

F+
2,ζ : y2 = x3 − δ2,ζx

2 + 5ζx.

Its discriminant 24 · 34 · 53ζ2 is non-zero and F+
2,ζ is an elliptic curve over Fq. Let

us denote by n+
2,q(ζ) the number of Fq-rational points of F

+
2,ζ and write

b+q (ζ) = q + 1− n+
2,q(ζ).

If ζ ∈ B−(n, q), let us define, in the same way, the cubic curve

F−
2,ζ : y2 = x3 + δ2,ζx

2 + 5ζx.

As a twist of F+
2,ζ , it is also an elliptic curve over Fq and we write

b−q (ζ) = q + 1− n−
2,q(ζ),

where n−
2,q(ζ) denotes the number of Fq-rational points of F

−
2,ζ .

Our criterion is stated in the following theorem. It is a refinement of [1, Th.
1.4], since only two curves have to be removed, instead of seven in loc. cit.

Theorem 4.5. Let p be a prime number ≥ 17. Assume that the following two
conditions hold.
(1) For the curve f = 1200K1, there exists an integer n ≥ 2 such that

(a) the integer q = np+ 1 is a prime number;
(b) we have a′2q �≡ 4 (mod p);

(c) for all ζ in A+(n, q), we have a′q �≡ a+q (ζ) (mod p);

(d) for all ζ in A−(n, q), we have a′q �≡ a−q (ζ) (mod p).

(2) For the curve f = 1200A1, there exists an integer n ≥ 2 such that

(a) the integer q = np+ 1 is a prime number;
(b) we have a′2q �≡ 4 (mod p);

(c) for all ζ in B+(n, q), we have a′q �≡ b+q (ζ) (mod p);

(d) for all ζ in B−(n, q), we have a′q �≡ b−q (ζ) (mod p).

Then, there is no non-trivial primitive solution of x5 + y5 = 3zp.

Proof. Let n be as in the theorem. By Lemma 4.4, ρp is isomorphic to the mod p
representation σf,p of f = 1200A1 or 1200K1. If E(a, b) does not have good reduc-
tion at q, then E(a, b) has multiplicative reduction ([1, Lem. 2.7]) and by [3, Prop.
3(iii)], we have

a′q ≡ ±(q + 1) ≡ ±2 (mod p).

This contradicts the conditions (4.5) and (4.5) of the theorem. So, we deduce that
E(a, b) has good reduction at q; in other words, q does not divide c.

We now follow step by step the discussion of [1, §4.4], without giving all the
details. Let us denote by φ the polynomial φ(x, y) = x4 − x3y + x2y2 − xy3 + y4

and by a (resp. b) the reduction of a (resp. b) modulo q.
(1) Assume that 5 divides a + b. Then, there exist two integers c1 and c2 such

that
5(a+ b) = 3cp1, φ(a, b) = 5cp2 and c = c1c2.

Furthermore, if u = cp1 (mod q) and v = cp2 (mod q), then

a′ =
a

u
, b

′
=

b

u
and ζ =

v

u4
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satisfy

5(a′ + b
′
) = 3 and φ(a′, b

′
) = 5ζ.

We then deduce that b
′
is a root of the polynomial

P1,ζ(X) = X4 − 6

5
X3 +

18

25
X2 − 27

125
X +

81

3125
− ζ ∈ Fq[X].

So, b
′
is one of the following elements:

3

10
+

α1,ζ

50
,

3

10
− α1,ζ

50
,

3

10
+

β1,ζ

50
,

3

10
− β1,ζ

50
,

where α1,ζ (resp. β1,ζ) is a square root of −225 + 10δ1,ζ (resp. −225 − 10δ1,ζ)
modulo q.

(a) Assume that we have{
a′, b

′}
=

{
3

10
+

α1,ζ

50
,
3

10
− α1,ζ

50

}
.

Then ζ belongs to the set A+(n, q) and the reduction modulo q of the curve
E(a, b) is isomorphic to F+

1,ζ . So we deduce that

aq ≡ a+q (ζ) (mod p).

But, by Lemma 4.4, we have aq ≡ a′q (mod p), where a′q is the qth Fourier
coefficient of 1200K1. This contradicts our hypothesis (4.5).

(b) Assume that we have{
a′, b

′}
=

{
3

10
+

β1,ζ

50
,
3

10
− β1,ζ

50

}
.

Then ζ belongs to the set A−(n, q) and the reduction modulo q of the curve
E(a, b) is isomorphic to F−

1,ζ . So we deduce that

aq ≡ a−q (ζ) (mod p).

But, by Lemma 4.4, we have aq ≡ a′q (mod p), where a′q is the qth Fourier
coefficient of 1200K1. This contradicts our hypothesis (4.5).

We finally deduce that 5 does not divide a+ b.
(2) If 5 does not divide a+ b, then there exist two integers c1 and c2 such that

a+ b = 3cp1, φ(a, b) = cp2 and c = c1c2.

Furthermore, if u = cp1 (mod q) and v = cp2 (mod q), then

a′ =
a

u
, b

′
=

b

u
and ζ =

v

u4

satisfy

a′ + b
′
= 3 and φ(a′, b

′
) = ζ.

We then deduce that b
′
is a root of the polynomial

P2,ζ(X) = X4 − 6X3 + 18X2 − 27X +
81− ζ

5
∈ Fq[X].

So, b
′
is one of the elements

3

2
+

α2,ζ

10
,

3

2
− α2,ζ

10
,

3

2
+

β2,ζ

10
,

3

2
− β2,ζ

10
,
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where α2,ζ (resp. β2,ζ) is a square root of −225 + 10δ2,ζ (resp. −225 − 10δ2,ζ)
modulo q.

(a) Assume that we have{
a′, b

′}
=

{
3

2
+

α2,ζ

10
,
3

2
− α2,ζ

10

}
.

Then ζ belongs to the set B+(n, q) and the reduction modulo q of the curve
E(a, b) is isomorphic to F+

2,ζ . So we deduce that

aq ≡ b+q (ζ) (mod p).

But, by Lemma 4.4, we have aq ≡ a′q (mod p), where a′q is the qth Fourier
coefficient of 1200A1. This contradicts our hypothesis (4.5).

(b) Assume that we have{
a′, b

′}
=

{
3

2
+

β2,ζ

10
,
3

2
− β2,ζ

10

}
.

Then ζ belongs to the set B−(n, q) and the reduction modulo q of the curve
E(a, b) is isomorphic to F−

2,ζ . So we deduce that

aq ≡ b−q (ζ) (mod p).

But, by Lemma 4.4, we have aq ≡ a′q (mod p), where a′q is the qth Fourier
coefficient of 1200A1. This contradicts our hypothesis (4.5).

We finally deduce that there is no non-trivial primitive solution of the equation
x5 + y5 = 3zp. �
Remark 4.6. For a given p, a pari/gp program giving an integer n as in the theorem
is available at: http://www.institut.math.jussieu.fr/billerey/Fermatnew.
Using this and [1, Prop. 1.1], we were able to prove that the equation x5+y5 = 3zp

does not have a non-trivial primitive solution for 5 ≤ p ≤ 107.
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