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Abstract. We prove a Diophantine result on generalized Fermat equations of
the form xp + yp = zr which for the first time requires the use of Frey abelian
varieties of dimension ≥ 2 in Darmon’s program. More precisely, for r ≥ 5 a
regular prime we prove that there exists a constant C(r) such that for every
prime number p > C(r) the equation xp + yp = zr has no non-trivial primitive
integer solutions (a, b, c) satisfying r ∣ ab and 2 ∤ ab.

For the proof, we complement Darmon’s ideas in a particular case by pro-
viding an irreducibility criterion for the mod p representations attached to

certain families of abelian varieties of GL2-type over totally real fields.

1. Introduction

Darmon [2] has initiated a remarkable program to study the generalized Fermat
equation

xp + yq = zr, 1/p + 1/q + 1/r < 1, x, y, z ∈ Z, xyz ≠ 0, gcd(x, y, z)=1,
(1.1)

where the exponents p, q, r ≥ 2 are prime numbers. He divides the analysis of this
equation into the three one-parameter families (r, r, p), (p, p, r) and (r, q, p) where
in each case the parameter p is allowed to vary and the other exponents are fixed.
A notable feature of his program is that it uses higher dimensional abelian varieties
and their (still mostly conjectural) modularity instead of just elliptic curves. How-
ever, very little is understood about the relevant abelian varieties and Darmon’s
program has not yet produced any Diophantine result, apart from a few cases where
the abelian varieties involved are of dimension one, i.e., elliptic curves.

Darmon’s program follows the strategy of the ‘modular method’: the Frey
abelian variety A(x, y, z) attached to a non-trivial (i.e. xyz ≠ 0) putative solution
(x, y, z) of (1.1) can be distinguished from the abelian varieties attached to the
known trivial solutions (i.e. xyz = 0) through their Galois representations. Indeed,
the p-torsion representation attached to A(x, y, z) should be large in general, while
if (x, y, z) is a trivial solution, then this image is usually reducible or contained in
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the normalizer of a Cartan subgroup. Modularity of the abelian varieties A(x, y, z)
and level lowering results imply a congruence mod p between eigenforms, which
bounds p under the set-up described above. Another interesting feature of Dar-
mon’s program is the use of classical cyclotomic criteria to eliminate the possibility
of a congruence to an r-Eisenstein Q-form at the lower levels [2, Proposition 3.20].

The objective of this work is twofold. We first develop an irreducibility criterion
for the p-torsion representations attached to certain families of abelian varieties.
Secondly, by following the idea in the previous paragraph and results from [2], we
will show how the criterion can be used to unconditionally establish a Diophan-
tine statement via Darmon’s program that for the first time requires Frey abelian
varieties of dimension ≥ 2.

We recall that an odd prime number r is called regular if it does not divide the
class number of the cyclotomic field Q(ζr). It is an open conjecture due to Siegel
that there are infinitely many regular primes. We will prove the following theorem.

Theorem 1. Let r ≥ 5 be a regular prime. There exists a constant C(r) such that
for every prime number p > C(r) the equation

(1.2) xp + yp = zr

has no non-trivial (i.e. abc /= 0) primitive (i.e. gcd(a, b, c) = 1) solutions (a, b, c) ∈ Z3

satisfying r ∣ ab and 2 ∤ ab.

2. An irreducibility criterion

The following terminology has been introduced by Ribet.

Definition 2.1. An abelian variety A over a number field K is said to be of GL2-
type if its endomorphism algebra EndK(A) ⊗ Q = F is a number field satisfying
[F ∶ Q] = dimA.

Let A/K be an abelian variety of GL2-type. Set F = EndK(A) ⊗ Q and let p
be a prime number. Denote by Tp(A) the Tate module of A and write Vp(A) =
Tp(A)⊗Qp. Then, for each prime ideal p of F over p, the absolute Galois group GK

of K acts Fp-linearly on Vp(A) = Vp(A) ⊗Fp
Fp where Fp denotes the completion

of F at p and Fp = F ⊗Qp = ∏p∣p Fp. This gives rise to a strictly compatible system
of 2-dimensional p-adic Galois representations

ρ̃A,p ∶ GK �→ GL2(Fp).

The representation ρ̃A,p can be conjugated to take values in GL2(Op) where Op

stands for the ring of integers in Fp. By reduction modulo the maximal ideal, we
then get a representation

ρA,p ∶GK �→ GL2(Fp),

with values in the residue field Fp of Fp which is unique up to semi-simplification
and isomorphism.

The aim of this section is to provide a uniform bound on the residual character-
istic of prime ideals p for which the corresponding representations ρA,p is reducible
when A runs through certain families of abelian varieties of GL2-type. For elliptic
curves over totally real fields, such irreducibility criteria were previously known and
different variants (for various families of curves) can be found in the work of Serre
[11], Kraus [7,8], Billerey [1], David [3], Dieulefait-Freitas [4] and Freitas-Siksek [5].

Licensed to Univ Clermont Auvergne. Prepared on Fri Jun  1 07:37:56 EDT 2018 for download from IP 193.54.49.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



A RESULT ON THE EQUATION xp + yp = zr 4113

Recently, Larson and Vaintrob [9] have proven general results which classify the
so-called associated mod p characters of abelian varieties A over a number field K
for p sufficiently large. Their results have consequences to proving irreducibility
criteria for the representations ρA,p which we discuss here with a view towards
applications to Frey abelian varieties.

For that purpose, we introduce some useful definitions.

Definition 2.2. Let A/K be an abelian variety with potentially good reduction
at a prime q of a number field K. We say that A has residual degree f at q if
f is minimal among the degrees of the residual extensions corresponding to all
extensions L/Kq such that A/L has good reduction.

The following definition is motivated by [9, Lemma 4.6].

Definition 2.3. We say that an abelian variety A/K has inertial exponent c ∈ N if
for every finite prime v of the number field K, there exists a finite Galois extension
M/K such that A/M is semistable at all primes ofM lying over v, and the exponent
of the inertia subgroup at v of Gal(M/K) divides c.

We write Z for the ring of integers of Q. Given an ideal q of the ring of integers
of a number field K, we write N(q) for its norm.

Theorem 2. Let K be a totally real number field and fix a prime q of K. Let
c, f ≥ 1 be integers with c even. Consider a finite set Sf(q) of elements of the form

α1 + α2 where αi ∈ Z are (for every embedding Z ↪ C) of complex absolute value

N(q)f/2 and α1α2 = N(q)f .
Then there exists a constant c1 = c1(K, c, f, Sf(q)) such that the following holds.

Suppose that p > c1 and A/K is an abelian variety satisfying

(i) A is semistable at the primes of K above p,
(ii) A is of GL2-type with multiplications by some totally real field F ,
(iii) all endomorphisms of A are defined over K, that is, EndK(A) = EndK(A),
(iv) A over K has inertial exponent c,
(v) A has potentially good reduction at q with residual degree f ,

(vi) the trace of Frobfq acting on Vp(A) lies in Sf(q), where p is a prime of F
above p.

Then the representation ρA,p is irreducible.

Remark 2.4. Let L/Kq be an extension with residual degree f such that A over L

has good reduction. Let q′ be the maximal ideal of L. Then Frobq′ = Frob
f
q and

hence the characteristic polynomial of ρA,p(Frob
f
q) is well defined.

Remark 2.5. In the application to the generalized Fermat equation, we will take
Sf(q) to be the set of possible traces of Frobfq on Vp(A(x, y, z)), where A(x, y, z) is
a Frey abelian variety defined over K attached to a primitive solution (x, y, z) ∈ Z3

of xp + yp = zr, A(x, y, z) satisfies (i)-(iv), and we impose a collection of q-adic
conditions on (x, y, z) ∈ Z3 so that A(x, y, z) satifies (v).

To make this more concrete, let us suppose, for simplicity, there is a fixed finite
extension L/Kq with inertia degree f and ring of integers OL, and some q-adic
conditions on (x, y, z) ∈ Z3 allow one to give a model over OL for A(x, y, z) with
good reduction at the prime q′ of L above q such that the reduction modulo q′ is the
same for any (x, y, z) ∈ Z3 satisfying the q-adic conditions. In particular, the trace
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of Frobfq on Vp(A(x, y, z)) is a single well-defined value for (x, y, z) ∈ Z3 satisfying
these q-adic conditions.

Let Sf(q) be the set of traces of Frobfq on Vp(A(x, y, z)) for a collection of q-

adic conditions on (x, y, z) ∈ Z3 as above. Applying Theorem 2, we deduce the
irreducibility of ρA(x,y,z),p for (x, y, z) ∈ Z3 a primitive solution of xp + yp = zr

satisfying the collection of q-adic conditions.

Proof of Theorem 2. Let A be an abelian variety satisfying conditions (i)-(v) in the
statement. Suppose that ρA,p is reducible. Let ψi ∶ GK → F×p , for i = 1, 2, denote
the two diagonal characters of ρA,p. Then each ψi is an associated mod p character
of A of degree 1 in the sense of [9, p. 518]. Since A has inertial exponent c, then ψc

i

is unramified at all primes v ∤ p of K by [6, Proposition 3.5 (iv)]. Moreover, since
by assumption c is even, ψc

i is unramified at infinity.
We note that in [9] a quantity c = c(g) is used, however, the proofs of the results

there are still valid as long as the A in question has inertial exponent c which is
even.

We identify ψi with a character of the idéles using the reciprocity map of global
class field theory. Let θS be defined as in [9, Definition 2.6] (with L = Q in their

notation), where S ∈ Z[ΓK] and ΓK is the set of embeddings of K into Q.
By [9, Lemma 5.4] and the semistability assumption (i), there exists Si ∈ Z[ΓK]

such that ψi(xp̂)c ≡ θSi(x)c (mod p) for all x ∈K× relatively prime to p, where xp̂

is the prime to p-part of x regarded as an idèle of K.
We note that the invocation of [9, Lemma 5.4] requires p ∤ ΔK , where ΔK is

the absolute discriminant of K, because the proof of this lemma uses [9, Lemma
4.10]. However, the condition p ∤ c is not necessary as we assume semistability at
p by (i), and hence there is no need to use [9, Lemma 4.8].

Let Bchar(K, c) be as given in [9, §7.2, p. 548]. For p ∤ Bchar(K, c), θSi is
balanced by [9, Lemma 2.15, Lemma 5.6 and §7.2]. As K is totally real, a balanced
character for K means being a power of the norm character [9, Definition 2.13].
Thus, θSi is a non-negative power of the norm character.

From (ii) F is totally real, and from (iii) A has all of its endomorphisms defined
over K. Hence [10, Lemma 4.5.1] says that we have

(2.6) detρA,p = ψ1ψ2 = cycp,

where cycp denotes the mod p cyclotomic character. Thus, θSi is either trivial or

the norm character and θS1θS2 is the norm character. Hence, by relabelling ψ1 and
ψ2 if necessary, we may assume ψc

1, is unramified at all primes of K.
Let ι ∶ F×p → C× be an injective homomorphism. Then ι ○ ψ1 is unramified at a

prime v ofK if and only if ψ1 is unramified at v. The group of continuous characters
of GK with values in C× which are unramified at all primes of K are dual to the

class group of K. Hence, we have that (ι ○ ψc
1)

h′K = 1 where h′K is the exponent of

the class group of K. Thus, ψ
ch′K
1 = 1. By (v), (vi), and Remark 2.4, we obtain

that

p ∣ ∏
a∈Sf (q)

Res(Xch′K − 1,X2 − aX +N(q)f),

where Res denotes the resultant. Since the polynomials in the resultant have no
common roots (because the absolute value of the roots of X2 − aX + N(q)f is
different from 1) we conclude that the resultant is non-zero. Therefore, letting c1
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denote a constant larger than any prime dividing Bchar(K, c), ΔK , and the above
resultant, gives the desired bound. �
Corollary 1. Let K be a totally real field, q a prime of K and g a positive integer.
There is a constant C(K,g, q) such that the following holds: Suppose p > C(K,g, q)
is a prime. Then for all g-dimensional abelian varieties A/K with potentially good
reduction at q satisfying conditions (i)-(iii) in Theorem 2 the representation ρA,p is
irreducible.

Proof. Since A achieves semistable reduction over K(A[12]) by [6, Proposition 4.7],
and the degree of the Galois extension K(A[12])/K is bounded in terms of g, this
bounds the possible residual degrees of A at q and inertial exponents of A in terms
of g.

Let cK,g be the product of all the possible inertial exponents from the above
paragraph.

If A has residual degree f at the prime q of K, then the characteristic polynomial
of Frobfq on Tp(A) divides the characteristic polynomial of Frobfq on Tp(A). If
the dimension of A is fixed, then by [9, Lemma 7.6] there are only finitely many
possibilities for the latter. Hence, for each possible f from the first paragraph, take
Sf(q) to be the set of traces of the finitely many possibilities for the characteristic

polynomial of Frobfq on Tp(A).
For each f apply Theorem 2 with Sf(q) and c = cK,g to get a bound cf =

c(K, cK,g, f, Sf(q)). The corollary follows by letting C(K,g, q) be the maximum of
the cf . �
Remark 2.7. There is an alternate method to deduce irreducibility which follows
more directly from [9, Corollary 5.19]. We instead picked the proof above for two
reasons. On the one hand, it is more natural as an extension of the proofs known
for the case of elliptic curves and, on the other hand, since it uses properties that
are normally satisfied by Frey abelian varieties, it should be better suited to giving
simpler bounds in concrete Diophantine applications.

3. Application to xp + yp = zr

In this section we use the irreducibility criterion from the previous section to
establish an unconditional Diophantine statement as an application of Darmon’s
program [2] which requires Frey abelian varieties of dimension ≥ 2.

For an odd prime r, let ζr be a primitive r-th root of unity and denote by K the
maximal totally real subfield of Q(ζr). Let (a, b, c) ∈ Z3 be a non-trivial primitive
solution of (1.2). Put t = ap/cr and consider the abelian variety J+r (t) defined in
Section 1.3 of [2]. According to Eq. (5) in loc. cit., one has

EndK (J
+
r (t)) = OK .

In particular, J+r (t) becomes of GL2-type over K with real multiplication by K
(see also [12]). Let J+r (a, b, c) be the Q-model of J+r (a

p/cr) defined in [2, p.425].
The following two results follow from (the proof of) Proposition 1.15, Theo-

rem 3.22 and Definition 3.6 of [2].

Lemma 1. Let (a, b, c) ∈ Z3 be a non-trivial primitive solution to xp + yp = zr.
Suppose r ∣ ab. Then the abelian variety J+r (a, b, c)/K is semistable. Moreover, if
2 ∤ ab it has good reduction at all primes q above 2 and its reduction mod q is well
defined on the congruence class of (a, b, c) (mod 2).

Licensed to Univ Clermont Auvergne. Prepared on Fri Jun  1 07:37:56 EDT 2018 for download from IP 193.54.49.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4116 NICOLAS BILLEREY, IMIN CHEN, LUIS DIEULEFAIT, AND NUNO FREITAS

Theorem 3. Let r be a regular prime. Then there exists a constant c2(r) such
that, for all p > c2(r), and non-trivial primitive solutions (a, b, c) ∈ Z3 to (1.2) with
r ∣ ab, the mod p representation ρ+r,p associated to J+r (a, b, c) is reducible.

As a consequence of these results and our irreducibility criterion in Theorem 2
we can now prove our main Diophantine application.

Proof of Theorem 1. Let (a, b, c) ∈ Z3 be a non-trivial primitive solution to xp+yp =
zr satisfying r ∣ ab and 2 ∤ ab. Write J = J+r (a, b, c)/K. From Lemma 1, we have
that J is semistable with good reduction at all q ∣ 2 and where the reduction mod
q is well defined on the congruence class of (a, b, c) (mod 2). In particular, for J
we have even inertial exponent c = 2 and residual degree f = 1 at all q ∣ 2. Recalling
Remark 2.5 with the 2-adic condition 2 ∤ ab, we take Sf(q) to be the singleton set
consisting of the trace of Frobq acting on the p-torsion of J+r (1,−1, 0).

From Theorem 2 we obtain a constant c1(r) such that if p > c1(r) and p ∣ p in
K, then the mod p representation ρ+r,p is irreducible.

From Theorem 3 we obtain a constant c2(r) such that if p > c2(r) and p ∣ p in
K, then ρ+r,p is reducible.

Letting C(r) be the maximum of c1(r) and c2(r), we obtain a contradiction for
all exponents p > C(r). �
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[1] Nicolas Billerey, Critères d’irréductibilité pour les représentations des courbes elliptiques
(French, with English and French summaries), Int. J. Number Theory 7 (2011), no. 4, 1001–
1032, DOI 10.1142/S1793042111004538. MR2812649

[2] Henri Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem, Duke
Math. J. 102 (2000), no. 3, 413–449, DOI 10.1215/S0012-7094-00-10233-5. MR1756104

[3] Agnès David, Caractère d’isogénie et critéres d’irréductibilité, arXiv:1103.3892 (2012).
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(2015), no. 1, 67–76. MR3346965
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