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A MULTI-FREY APPROACH TO FERMAT EQUATIONS

OF SIGNATURE (r, r, p)

NICOLAS BILLEREY, IMIN CHEN, LUIS DIEULEFAIT, AND NUNO FREITAS

Abstract. In this paper, we give a resolution of the generalized Fermat equa-
tions

x5 + y5 = 3zn and x13 + y13 = 3zn,

for all integers n ≥ 2 and all integers n ≥ 2 which are not a power of 7, re-
spectively, using the modular method with Frey elliptic curves over totally
real fields. The results require a refined application of the multi-Frey tech-
nique, which we show to be effective in new ways to reduce the bounds on the

exponents n.

We also give a number of results for the equations x5 + y5 = dzn, where
d = 1,2, under additional local conditions on the solutions. This includes a
result which is reminiscent of the second case of Fermat’s Last Theorem and
which uses a new application of level raising at p modulo p.

1. Introduction

Wiles’ 1995 proof [43] of Fermat’s Last Theorem pioneered a new strategy to
attack Diophantine equations, now known as the modular method. The strategy,
originally due to Frey, Serre, Ribet, and Wiles is to attach to a putative solution of a
Diophantine equation an elliptic curve E (known as a Frey elliptic curve) and study
the mod p representation attached to E via modularity and level lowering. This
relates the solution to a modular form of weight 2 and small level, and, to conclude,
one needs to show that such relation leads to a contradiction (see Section 2 for more
details).

The idea of using this same strategy to study variants of FLT goes back to
the work of Serre [42, Section 4.3] and Ribet [40]. Since Wiles’ breakthrough,
mathematicians have generalized and improved the method and applied it to many
other Diophantine equations. In particular, it was natural to use the modular
approach to study the Generalized Fermat Equation

(1.1) Axp +Byq = Czr, p, q, r ∈ Z≥2, A,B,C ∈ Z≠0
with A,B,C pairwise coprime. This equation is the subject of the following con-
jecture.

Conjecture 1. Fix A,B,C as above. Over all choices of prime exponents p, q, r
satisfying 1/p + 1/q + 1/r < 1 the equation (1.1) admits only finitely many solutions
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(a, b, c) such that abc ≠ 0 and gcd(a, b, c) = 1. (Here solutions like 23 + 1q = 32 are
counted only once.)

The only general result towards the above conjecture is a theorem due to Darmon
and Granville [19] which states that if besides A,B,C we also fix the prime expo-
nents p, q, r, then there are only finitely many solutions as above. The conjecture is
also known to hold in some particular cases including certain infinite families, for
which the authors of this paper have previously made contributions. Moreover, it
is also known that the full conjecture is a consequence of the ABC-conjecture (see
[19, Section 5.2]).

Bennett [2], [3], Kraus [34], [35], and Siksek [13], [12] and their collaborators have
developed and clarified the method using Frey elliptic curves over Q. Unfortunately,
there is a restrictive set of exponents (p, q, r) which can be approached using the
modular method over Q due to constraints coming from the classification of Frey
representations [19]. As a consequence, attention has now shifted towards using
Frey elliptic curves over totally real fields and is made possible because of advances
on the Galois representation side (i.e., modularity results).

In this paper, we establish further cases of the conjecture above based on exten-
sions of the modular method to the setting of Hilbert modular forms as introduced
in the work of the last two authors [22] and powered by the multi-Frey technique
as explained by Siksek in [14], [11].

The results in this paper provide evidence that the multi-Frey technique applied
with a ‘sufficiently rich’ set of Frey curves can be used to ‘patch together’ a complete
resolution of a one-parameter family of generalized Fermat equations. As will be
seen throughout the paper, the multi-Frey technique complements methods used in
several steps in the modular method, allowing for refined bounds.

1.1. Our Diophantine results. Let d ≥ 1 be an integer. We are concerned with
Fermat-type equations of the form

(1.2) xr + yr = dzp, xyz ≠ 0, gcd(x, y, z) = 1

where r, p are prime exponents with r fixed and p is allowed to vary.
We say that a solution (x, y, z) = (a, b, c) of equation (1.2) is non-trivial if it

satisfies ∣abc∣ > 1 and we call it primitive if gcd(a, b, c) = 1. In the case of most
interest to us, d = 3, the condition ∣abc∣ > 1 is equivalent to abc ≠ 0, but it is
important to note that for d = 2 there are also the extra trivial solutions ±(1, 1, 1).

The equation (1.2) with r = 5 and d = 2, 3 has already been the subject of the
papers [4], [6], and [23], where it was resolved for 3/4 of prime exponents p. For
r = 13 and d = 3, it has been resolved in the papers [22], [28] under the assumption
13 ∤ z.

Our main Diophantine results are that we completely solve equation (1.2) for
d = 3 when r = 5 (resp. r = 13) and p = n ≥ 2 is any integer (resp. p = n ≥ 2 is
any integer which is not a power of 7). Clearly, this will follow directly from the
same statements for prime exponents. More precisely, we will prove the following
theorems.

Theorem 1. For all primes p, there are no non-trivial primitive solutions to

(1.3) x5 + y5 = 3zp.
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Theorem 2. For all primes p /= 7, there are no non-trivial primitive solutions to

(1.4) x13 + y13 = 3zp.

In the previous papers concerning equations (1.3) and (1.4), the main tool used
was the modular method, where the Frey elliptic curves were obtained by exploiting
the factorization over Q(ζr) (for r = 5 or r = 13) of the left-hand side of each
equation. More generally, in the work of the last author [26], for each r ≥ 5, several
Frey elliptic curves defined over real subfields of Q(ζr) are attached to equation
(1.2). Our proofs of Theorems 1 and 2 build on these previous works and are made
possible by introducing new multi-Frey techniques.

In particular, we show how the multi-Frey technique can be used to obtain tight
bounds on the exponent p, improve bounds coming from Mazur-type irreducibility
results (see Theorem 8), and move to another level where the required computations
of Hilbert modular forms is within the range of what is currently feasible (see
paragraph after Lemma 11). We also need a refined ‘image of inertia argument’
(see Section 3) for the elimination step of the modular method.

A major obstruction to the success of the modular method for solving (1.2) for
d = 1, 2 is the existence of trivial solutions like (1, 0, 1), (1,−1, 0), or (1, 1, 1). In-
deed, when the Frey elliptic curve evaluated at a trivial solution is non-singular its
corresponding (via modularity) newform will be among the newforms after level
lowering; in particular, the mod p representations of the Frey curve and a new-
form can be isomorphic, requiring the use of global methods to distinguish Galois
representations which are uniform in p.

It is sometimes possible to resolve equation (1.2) by assuming additional q-adic
conditions to avoid the obstructing trivial solutions. Indeed, we will prove a number
of partial results for the equation (1.2) with r = 5 and d = 1, 2 under certain q-adic
conditions.

For example, we will prove the following result resembling the second case of
Fermat’s Last Theorem. Its proof involves a new application of the condition for
level raising at p modulo p.

Theorem 3. For all primes p, the equation

x5 + y5 = dzp, with d ∈ {1, 2},
has no non-trivial solutions (a, b, c) satisfying p ∣ c.

In addition, we will use the multi-Frey technique to prove the following result,
which was known in the case d = 1 by work of Billerey ([4, Théorème 1.1]) and
Dahmen-Siksek ([18, Proposition 3.3]) using the Frey curve introduced in Sec-
tion 4.1.

Theorem 4. For all primes p, the equation

x5 + y5 = dzp

has no non-trivial solutions (a, b, c) in each of the following situations:

(i) d = 1, 2, and 5 ∣ c or
(ii) d = 1 and c even or
(iii) d = 2 and c even.

We remark that, in all our theorems, to deal with certain small primes, we invoke
references where the results are obtained using Frey elliptic curves different from
the ones used in this paper; this is another instance of the multi-Frey technique.
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The computations required to support the proof of our main theorems were
performed using Magma [7]. The program files are provided with this paper, and
we refer to [5] whenever an assertion involves a computation in Magma from one of
these programs.

2. Overview of the multi-Frey modular method

Notation 1. Let Q be an algebraic closure of Q and let p be a prime number. For
a totally real subfield K of Q, we write GK = Gal(Q/K) for its absolute Galois
group. For a prime � of K we write I� for an inertia subgroup at � in GK . Given
E an elliptic curve defined over K, we denote by ρE,p the representation giving

the action of Gal(Q/K) on the p-torsion points of E. For a Hilbert modular form
f defined over K and a prime ideal p in its field of coefficients Qf , we write ρf,p
for the mod p Galois representation attached to f ; when K = Q we get classical
modular forms.

We now recall the main steps of the modular method.

Step 1: Constructing a Frey curve. Attach a Frey elliptic curve E/K
to a putative solution of a Diophantine equation, where K is a totally real
field. A Frey curve E/K has the property that the Artin conductor of ρE,p

is bounded independently of the putative solution.
Step 2: Irreducibility. Prove the irreducibility of ρE,p.
Step 3: Modularity. Prove the modularity of E/K, and hence modularity
of ρE,p.
Step 4: Level lowering. Use level lowering theorems, which require
irreducibility of ρE,p, to conclude that ρE,p ≅ ρf,p where f is a Hilbert
newform over K of parallel weight 2, is of trivial character, and is level
among finitely many explicit possibilities Ni and p is a prime ideal above p
in the field of coefficients Qf of f .
Step 5: Contradiction. Compute all the Hilbert newforms predicted in
Step 4 and show that ρE,p /≅ ρf,p for all of them. This typically uses various
methods to distinguish local Galois representations.

In current applications of the modular method, the most challenging step is often
Step 5, contrasting with the proof of Fermat’s Last Theorem (the origin of the
modular method), where the big issue was modularity. Indeed, in the proof of FLT
we have K = Q, and in Step 4 there is only one level N1 = 2. Since there are no
newforms at this level we get directly a contradiction in Step 5. In essentially every
other application of the method, there are candidates for f ; therefore more work
is needed to complete the argument, namely Step 5. It is now convenient for us to
divide Step 5 into two substeps.

Step 5a: Computing newforms. Compute all the Hilbert newforms of
parallel weight 2, trivial character, and levels Ni predicted in Step 4.
Step 5b: Discarding newforms. For each newform f computed in Step
5a and each prime ideal p above p in its field of coefficients show that
ρE,p /≅ ρf,p.

With the objective of succeeding more often in Step 5, Siksek introduced themulti-
Frey technique in [14] and [11]. This is a variant of Step 1 where more than one
Frey curve is used simultaneously in order to put more restrictions on the putative
solutions, thereby increasing the likelihood of a contradiction in Step 5b.
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It is a common assumption in discussions about the modular method found
in the literature that Step 5a can be completed. We want to stress that more
recently Step 5a is becoming a real obstruction to the method. This computational
obstruction was not noticed in initial applications since they only required small
(even empty) spaces of newforms over Q which were easily accessible. However,
when working over totally real fields this is no longer the case as the dimensions of
spaces of Hilbert cusp forms grow very fast.

Besides the Diophantine results mentioned in the Introduction, one of the under-
lying themes of this paper is to illustrate that the multi-Frey approach is a powerful
and versatile tool with applications at various stages of the modular method. In-
deed, in the proofs of our main results, we will use it to circumvent challenges in
Steps 2, 5a, and 5b.

Notation 2. Let E be an elliptic curve defined over a totally real field K and let q
be a rational prime such that E has good reduction at each prime ideal q dividing q
in K. For f a Hilbert newform over K of parallel weight 2 and trivial character,
define

Bq(E, f) = gcd ({Norm (aq(E) − aq(f)) ∶ q ∣ q}) ,
where q runs through the prime ideals above q in K. Here aq(f) denotes the q-th

Fourier coefficient of f and aq(E) = #Fq + 1 −#Ẽ(Fq), where Fq is the residual

field at q and Ẽ denotes the reduction of E modulo q.
If for some prime ideal p above p in the coefficient field of f we have ρE,p ≅ ρf,p,

then by considering the trace of Frobenius elements at each prime ideal above q on
both sides, we get that p divides qBq(E, f).

Throughout the paper, we write υq(a) for the valuation at the prime ideal q of
the ideal generated by a ∈K.

3. The image of inertia argument

In this section we recall and generalize the image of inertia argument. This
technique, originated in [2], is used to distinguish local Galois representations in
Step 5b of the modular method. We start with the well-known version and then
provide two generalizations. All three versions are used later in the paper.

Let L be a finite extension of Q� contained in some fixed algebraic closure Q�

of Q�. Let E/L be an elliptic curve with potentially good reduction. Let m ∈ Z≥3
be coprime to � and consider the inertial field of E given by LE = Lun(E[m]),
where Lun is the maximal unramified extension of L in Q�. The extension LE/Lun

is independent of m and it is the minimal extension of Lun where E achieves good
reduction.

Suppose that, for a prime p /= �, we have

(3.1) ρE,p ≅ ρZ,p,

where E and Z are elliptic curves over the local field L and let IL denote the inertia
subgroup of L. In our applications below E and Z will be defined over a totally
real number field K and L will be the completion of K at some prime of K above �.
Moreover, E will be a Frey elliptic curve and Z an elliptic curve corresponding to a
(Hilbert) newform with rational coefficients, as predicted in Step 4 of the modular
method. The objective of the inertia argument is to obtain a contradiction to (3.1),
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thereby establishing

(3.2) ρE,p /≅ ρZ,p,

as required in Step 5b. We will now describe the three versions, each version
generalizing the previous one.

Version 1: Different inertia sizes. Show that #ρE,p(IL) ≠ #ρZ,p(IL); this
clearly implies (3.2). This is effective when one curve has potentially good reduction
and the other has potentially multiplicative reduction and is the original version
which has been used in many papers applying the modular method.

Version 2: The field of good reduction. Suppose both E and Z have
potentially good reduction. Note that the inertial field LE corresponds to the field
fixed by the restriction ρE,p∣IL and that isomorphism (3.1) implies ρE,p∣IL ≅ ρZ,p∣IL .
Then the inertial fields of E and Z must be the same. Therefore, even when
#ρE,p(IL) =#ρZ,p(IL) (i.e., version 1 fails) we can still establish (3.2) by showing
that LE ≠ LZ (working in a fixed algebraic closure of L).

In practice, this is achieved by finding an extension M/L where Z has good
reduction and E does not. Indeed, consider the compositum M ′ = LunM , which is
an unramified extension of M . Therefore, the type of reduction of E and Z over
M ′ is the same as over M . Since Z/M ′ has good reduction by minimality of LZ , it
follows LZ ⊂M ′; since E/M ′ does not have good reduction, we have LE /⊂M ′, and
hence LE ≠ LZ . We note that (when both curves have potentially good reduction)
Version 1 boils down to showing that LE and LZ are different because they have
different degrees over Lun. This version was used in [1] for instance.

Version 3: Different conductors. Let M be an extension of L and let
GM ⊂ Gal(L/L) be its corresponding subgroup. Note that the isomorphism (3.1)
implies that ρE,p∣GM

≅ ρZ,p∣GM
. In particular, the restrictions ρE,p∣GM

and ρZ,p∣GM

must have the same conductor exponent. Therefore, we can establish (3.2) if we
find a field M/L where the two restrictions have different conductor exponents.

In practice, we compute the conductor exponents of A/M , where A = E or Z.
However, if A/M has potentially good reduction, then the ρA,p∣IM factors through
a finite group of order only divisible by 2 and 3. Hence, the conductor exponent
of ρA,p∣GM

is the same as the conductor exponent of ρA,p∣GM
, where ρA,p denotes

the p-adic representation attached to A. This in turn coincides with the conductor
exponent of A/M , provided p /= 2, 3.

Note that Version 2 is obtained by taking M = LE . Indeed, we get GM = IL,
and ρE,p∣GM

will have conductor exponent 0 (because E/M has good reduction),
whereas ρZ,p∣GM

has non-zero conductor exponent (because Z/M does not have
good reduction).

Remark 3.3. In applications, the curves are often defined over a totally real number
field K. Therefore, we can test if any of the versions above succeed for different
primes. Success at one prime is enough to discard the global isomorphism of two
mod p representations.

4. A multi-Frey approach to the equation x5 + y5 = 3zp

In this section, we will use the following factorization and notation,

x5 + y5 = (x + y)φ5(x, y) = (x + y)ψ5(x, y)ψ̄5(x, y),
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where ω and ω̄ are the complex roots of X2 +X − 1, and

φ5(x, y) = x4 − x3y + x2y2 − xy3 + y4,

ψ5(x, y) = x2 + ωxy + y2, ψ̄5(x, y) = x2 + ω̄xy + y2.

4.1. The modular method over Q. Here we compile results from [4] and [6].
Let a, b be coprime integers with a+b /= 0. We consider the following Frey elliptic

curve over Q, denoted E(a, b) or E in [4] and [6], and whose construction is due to
Darmon:

Wa,b ∶ y2 = x3 − 5(a2 + b2)x2 + 5φ5(a, b)x.
The discriminant Δ(Wa,b) of Wa,b is given by

Δ(Wa,b) = 2453(a + b)2(a5 + b5)2.
The following lemma is a reformulation of results proved in Section 2 of [4].

Lemma 1. The conductor NWa,b
of Wa,b is

NWa,b
= 2α ⋅ 52 ⋅ r,

where r is the product of all prime divisors /= 2, 5 of a5 + b5 and

α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3 if ab ≡ 0 (mod 4),
4 if ab ≡ 2 (mod 4) or υ2(a + b) = 1,
0 if υ2(a + b) = 2,
1 if υ2(a + b) ≥ 3.

Furthermore, the following properties hold where j(Wa,b) denotes the j-invariant
of Wa,b:

● if � /= 2, 5 is a prime of bad reduction, then the model defining Wa,b is
minimal at � and we have υ�(Δ(Wa,b)) = δυ�(a5 + b5) where δ = 2, 4 if �
divides φ5(a, b) or � divides a + b respectively;

● we have υ2(j(Wa,b)) ≥ 0 if and only if υ2(a + b) ≤ 2;
● we have υ5(j(Wa,b)) = 1 − 4υ5(a + b) < 0 if 5 ∣ a + b and υ5(j(Wa,b)) = 0
otherwise.

Let W0 and W ′
0 be the rational elliptic curves defined by the following equations:

W0 ∶ y2 = x3 + x2 + 592x − 16812 and W ′
0 ∶ y2 = x3 − x2 − 333x − 2088.

They are labelled [37, 1200.k8] and [37, 1200.a1] in LMFDB respectively. In [4], the
elliptic curves W0 and W ′

0 were referred to as 1200P1 and 1200N1 (in Cremona’s
labelling) respectively, whereas in [6] the authors used Stein’s notation 1200K1 and
1200A1.

Proposition 1. Let (a, b, c) be a non-trivial primitive solution to (1.3) for p ≥ 5.
Write W =Wa,b. Then we have p > 107, υ2(ab) = 1, and 5 ∤ a+ b. Furthermore, we
have ρW,p ≅ ρW ′

0,p
.

Proof. According to [6, Remark 4.6], we have p > 107. Besides, it follows from
conductor computations (recalled above and in Section 3 of [4]) and [6, Lemma 4.4]
that we have υ2(ab) = 1 and ρW,p ≅ ρW0,p or ρW,p ≅ ρW ′

0,p
according to whether 5

divides a + b or not.
The curve W0 has bad additive reduction at 2 with potentially multiplica-

tive reduction. On the other hand, from υ2(ab) = 1 and Lemma 1, it follows

http://www.lmfdb.org/EllipticCurve/Q/1200/k/8
http://www.lmfdb.org/EllipticCurve/Q/1200/a/1


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8658 N. BILLEREY, I. CHEN, L. DIEULEFAIT, AND N. FREITAS

that υ2(j(W )) ≥ 0. Therefore if I2 denotes an inertia subgroup at 2, then #ρW,p be-
longs to {2, 3, 4, 6, 8, 24}, while by the theory of Tate curves we have #ρW0,p(I2) = 2,
or 2p. In particular, it follows from Version 1 of the image of inertia argument ex-
plained in Section 3 that ρW,p /≅ ρW0,p and 5 ∤ a + b as claimed.

Alternatively, we can argue as follows: Suppose 5 ∣ a + b and ρW,p ≅ ρW0,p. Then
it follows that ρW,p ⊗ χ ≅ ρW⊗χ,p ≅ ρW0⊗χ,p ≅ ρW0,p ⊗ χ, where W ⊗ χ and W0 ⊗ χ
are the twists of W and W0, respectively, by the quadratic character χ = χ−1
associated to the quadratic field Q(

√
−1). Now, the trace of Frobenius at 3 of

W0 ⊗ χ is a3(W0 ⊗ χ) = −1, whereas the possible traces of Frobenius at 3 of W ⊗ χ
are a3(W ⊗ χ) = 1,±2. Hence, p ≤ 3, a contradiction. �

4.2. The modular method over Q(
√
5). In [23], the modular method was ap-

plied with the multi-Frey technique using two Frey Q-curves defined over Q(
√
5)

to solve (1.3) for a set of prime exponents with Dirichlet density 3/4. At the time,
the purpose of using Q-curves was to guarantee their modularity. It is now known
that elliptic curves over real quadratic fields are modular (see [27]), and therefore

we can work directly over Q(
√
5), largely simplifying the arguments.

We now sharpen the relevant results from [23] in the language of Hilbert modular
forms.

Let a, b be coprime integers. Using the notation in the beginning of this section,
we consider the two elliptic curves defined over Q(

√
5) by the following equations:

Ea,b ∶ y2 = x3 + 2(a + b)x2 − ω̄ψ5(a, b)x,

Fa,b ∶ y2 = x3 + 2(a − b)x2 + (−3(ω − ω̄)
10

+ 1

2
)ψ5(a, b)x.

These two curves were denoted E(a,b) and F(a,b) in [23], respectively. Their standard
invariants are given by the following identities:

c4(Ea,b) = −24 (ω̄ψ5(a, b) + 22ωψ̄5(a, b)) ,(4.1)

c6(Ea,b) = −26(a + b) (ω̄ψ5(a, b) − 23ωψ̄5(a, b)) ,(4.2)

Δ(Ea,b) = 26ω̄φ5(a, b)ψ5(a, b),(4.3)

and

c4(Fa,b)=24 ((
−3
10

(ω − ω̄) + 1

2
)ψ5(a, b) + 22 ( 3

10
(ω − ω̄) + 1

2
) ψ̄5(a, b)) ,

(4.4)

c6(Fa,b)=26(a − b) ((−3
10

(ω − ω̄) + 1

2
)ψ5(a, b) − 23 ( 3

10
(ω − ω̄) + 1

2
) ψ̄5(a, b)) ,

(4.5)

Δ(Fa,b)=26 (
−3
10

(ω − ω̄) + 1

2
)
2

( 3

10
(ω − ω̄) + 1

2
)φ5(a, b)ψ5(a, b).

(4.6)

We now determine the conductors of Ea,b and Fa,b. For simplicity, let us write
E = Ea,b and F = Fa,b and denote by NE and NF the conductors of the curves E
and F , respectively.

Lemma 2. Let C be one of the curves E or F and let q be a prime ideal in Q(
√
5)

of residual characteristic � ≠ 2, 5. Then C has bad reduction at q if and only if
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� ∣ φ5(a, b). Moreover in that case, we have � ≡ 1 (mod 5) and

υq(c4(C)) = 0 and υq(Δ(C)) = 2υq(ψ5(a, b)) + υq(ψ̄5(a, b)).
In particular, C has bad multiplicative reduction at q, and hence υq(NC) = 1.

Proof. Recall that φ5(a, b) = ψ5(a, b)ψ̄5(a, b) with ψ5(a, b), ψ̄5(a, b) coprime out-
side 5 ([23, Proposition 3.1]). If C has bad reduction at q with q above � /= 2, 5,
then by formulas (4.1)-(4.3) and (4.4)-(4.6), we have that q divides ψ5(a, b)φ5(a, b) =
ψ5(a, b)2ψ̄5(a, b) and q ∤ c4(C). Hence � ∣ φ5(a, b). Conversely, if � ∣ φ5(a, b), then
any prime ideal q above � divides ψ5(a, b)ψ̄5(a, b). In particular, we have q ∣Δ(C)
and q ∤ c4(C).

Hence the result with the congruence � ≡ 1 (mod 5) coming from [23, Lemma 2.2].
�

Let q2 and q5 be the unique primes in Q(
√
5) above 2 and 5, respectively. Since

2 is inert in Q(
√
5) we will write simply 2 for q2.

Lemma 3. We have the following valuations:

υ2(NE) = υ2(NF ) = 6,(4.7)

υq5
(NE) = 0 when 5 ∤ a + b and υq5

(NE) = 2 when 5 ∣ a + b,(4.8)

υq5
(NF ) = 2 when 5 ∤ a + b and υq5

(NF ) = 0 when 5 ∣ a + b.(4.9)

Proof. We give the details of our computations only for the curve F , the case of E
being similar, but simpler. The given model for F is integral at 2, and we have
(υ2(c4(F )), υ2(Δ(F ))) = (4, 6) (see formulas (4.4) and (4.6)). Therefore, according
to [38, Tableau IV], we are either in Case 3 or in Case 4 of Tate’s classification.
To decide which case actually occurs, we then apply Proposition 1 of [38] with, in
its notation, t = 0 and r = 1 + ω̄ or r = 1 according to whether ab is even or odd,
respectively. Let us denote by a2 and a4 the coefficients of x2 and x in the right-hand
side of the equation defining F , respectively. Then, we have υ2(a4 + ra2 + r2) = 1
and we conclude that we are in Case 3 of Tate’s classification. In particular, we
have υ2(NE) = 6.

For the conductor valuation at q5, we first notice that the given model for F is
integral at q5 if and only if 5 divides a+b. In that case we have υq5

(φ5(a, b)) = 2 and
υq5

(ψ5(a, b)) = 1. In particular, the curve F has good reduction at q5, and therefore
υq5

(NF ) = 0. If 5 does not divide a + b, then we have (υq5
(c4(F )), υq5

(Δ(F ))) =
(−1,−3). A change of variables over Q(

√
5) then gives an integral model for F

whose c4 and Δ invariants have respective valuations 3 and 9 at q5. According
to [38, Tableau I], we have υq5

(NF ) = 2. �

In [23], the work of Ellenberg on Q-curves (see [25, Proposition 3.2]) was used
to establish that the mod p Galois representations attached to Ea,b and Fa,b are
irreducible for p = 11 and p ≥ 17. We establish here an irreducibility result without
using the fact that Ea,b and Fa,b are Q-curves.

Proposition 2. Let p ≥ 7 be a prime number. Then, ρE,p and ρF,p are irreducible
when 5 ∤ a + b and 5 ∣ a + b respectively.

Proof. Let p ≥ 7 be a prime, and put C = E or C = F .
Let us denote by ρssC,p the semi-simplification of the representation ρC,p. Suppose

ρssC,p ≅ θ⊕θ′ with the characters θ, θ′ satisfying θθ′ = χp, where χp denotes the mod p
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cyclotomic character. By [29, Lemma 6.3] for instance, we have that θ and θ′ are
unramified outside p and the additive primes of C. Furthermore, θ and θ′ have the
same conductor away from p. The unit group of K is generated by {−1, ε} where
ε2 − ε − 1 = 0. In the notation of [28], we compute B = −26 ⋅ 5. From the first
paragraph of the proof of [28, Theorem 1] we thus conclude that exactly one of θ,
θ′ ramifies at (the primes above) p. Let us therefore assume that θ is unramified
at p.

Under the assumptions of the proposition, the only additive prime for C is 2
and it satisfies Norm(2) = 4. It follows from υ2(NC) = 6 and [31, Theorem 1.5]
that level lowering at 2 cannot occur. Therefore, from the conductor computations
above (see Lemmas 2 and 3) it follows that the conductor of θ is 23.

The Ray class group of Q(
√
5) of modulus 23∞1∞2 (where ∞1 and ∞2 denote

the two real places) is isomorphic to (Z/2Z)3. In particular, if I2 ⊂ G
Q(
√
5) denotes

an inertia subgroup at 2, then θ∣I2 is of order 1 or 2. Thus either C or a quadratic

twist C ′ of C has a 2-torsion point defined over Q(
√
5). Therefore the torsion

subgroup of C or C ′ has order divisible by 2p with p ≥ 7. From [10, Theorem 6],
we see that this is impossible. �

Since Ea,b and Fa,b are defined over a real quadratic field, they are modular by
the main result of [27]. This completes Step 3 of the modular method.

4.3. Bounding the exponent. We are now in position to study equation (1.2)
with r = 5. Suppose that there exists an integer c such that (a, b, c) is a non-trivial
primitive solution to equation (1.2) with r = 5 and p ≥ 7 and assume that all the
prime factors � of d satisfy � /≡ 1 (mod 5). Write E = Ea,b and F = Fa,b.

The following lemma summarizes Step 4 of the modular method as applied to E
and F .

Lemma 4. There exist a Hilbert newform f over Q(
√
5) of parallel weight 2, trivial

character, and level 26 and a prime ideal p above p in the coefficient field of f such
that

ρf,p ≅ ρF,p or ρf,p ≅ ρE,p,

according to whether 5 divides a + b or not.

Proof. Let q be a prime ideal in Q(
√
5) of bad reduction for E or F with residual

characteristic � /= 2, 5. According to Lemma 2 and [23, Lemma 2.2], the reduction
is multiplicative and, by our assumption on d, the valuation of the minimal dis-
criminant at q is δυ�(a5 + b5) = δ(υ�(d) + pυ�(c)) = δpυ�(c), where δ = 1, 2 when q

divides ψ̄5(a, b) or q divides ψ5(a, b) respectively. In particular, it is divisible by p.
We conclude from Lemma 3 that the Artin conductor of the mod p representations
of F and E is 26 according to whether 5 divides a + b or not.

The rest of the proof follows by applying level lowering for Hilbert modular forms
(see [30], [32], [39]), with irreducibility coming from Proposition 2 above. �

Let q ≠ 2, 5 be a rational prime such that q /≡ 1 (mod 5) and let q be a prime in

Q(
√
5) above q. It follows from Lemma 2 that for any integers x, y with (x, y) /=

(0, 0) and 0 ≤ x, y ≤ q − 1, both elliptic curves Ex,y and Fx,y have good reduction
at q. Moreover if x, y are defined by (a, b) ≡ (x, y) (mod q) and 0 ≤ x, y ≤ q − 1,
then aq(Ea,b) = aq(Ex,y).

The result below follows from Lemma 4 and our definitions here and in Section 2.
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Proposition 3. There exists a Hilbert newform f over Q(
√
5) of parallel weight 2,

trivial character, and level 26 such that for any prime q ≠ 2, 5 with q /≡ 1 (mod 5),
there exists (x, y) ∈ {0, . . . , q − 1}2 ∖ {(0, 0)} such that we have p ∣ qBq(Ex,y, f) or
p ∣ qBq(Fx,y, f), respectively if 5 ∤ a + b or 5 ∣ a + b.

The following summarizes part of Step 5 of the modular method as applied to
the Frey elliptic curves E and F .

Proposition 4.
(1) If 5 ∤ a + b and p ≥ 7, then ρE,p is isomorphic to the mod p representation

of one of the curves

E1,0, E1,0 ⊗ χ−1, E1,0 ⊗ χ2, E1,0 ⊗ χ−2, E1,1, E1,1 ⊗ χ2.

(2) If 5 ∣ a + b and p ≥ 11, then ρF,p is isomorphic to the mod p representation
of one of the curves

F1,−1 or F1,−1 ⊗ χ2,

where χD denotes the quadratic character corresponding to the field Q(
√
D).

Proof. Using [5], we do the following: we compute all the newforms over Q(
√
5)

of level 26, parallel weight 2, and trivial character. For each such newform h, we
compute qEq(h) and qFq(h) for all primes q ≤ 30 as above where Eq(h) (resp. Fq(h))
is the product of all Bq(Ex,y, h) (resp. Bq(Fx,y, h)) over the pairs (x, y) /= (0, 0) of
integers in the range {0, . . . , q − 1}.

Suppose 5 ∤ a + b. From the previous proposition it follows that, for each h, if p
does not divide the gcd of all qEq(h) we can discard h for that p. This allows us to
discard all except 6 newforms for p ≥ 7; we identify the remaining 6 newforms with
twists of the Frey elliptic curves E1,0 and E1,1.

Suppose 5 ∣ a + b. From the previous proposition it follows that, for each h, if
p does not divide the gcd of all qFq(h) we can discard h for that p. For p ≥ 11,
this allows us to discard all except 2 newforms which correspond to F1,−1 and its
quadratic twist by 2. We also note for later use that p ≥ 7 works for all except three
other newforms f , all of them satisfying a3(f) = 4. �

4.4. Proof of Theorem 1. We will now prove Theorem 1 under the slightly more
general situation where d is divisible by 3 but not by any prime � ≡ 1 (mod 5).

From 3 ∣ d and [23, Lemma 2.2], it follows that 3 ∣ a + b. This imposes a very
strong restriction on the value of the trace of Frobenius of Ea,b at (the unique prime

ideal above) 3 in Q(
√
5). Namely, the elliptic curve Ea,b reduces modulo 3 to the

curve defined by y2 = x3 − ω̄2x. Hence, we have a3(Ea,b) = 6.
Note that the elliptic curves Ex,y that appear in part (1) of Proposition 4 satisfy

x+y /≡ 0 (mod 3). Therefore, for p ≥ 7, one may hope to discard them by computing
their trace of Frobenius at 3. Indeed, we find that the a3 coefficient of the curves
E1,0, E1,0⊗χ−1, E1,0⊗χ2, E1,0⊗χ−2, E1,1, and E1,1⊗χ2 is 4. We have thus proved
the following result.

Proposition 5. If p ≥ 7 and d is divisible by 3 but not by any prime � ≡ 1 (mod 5),
then we necessarily have 5 ∣ a + b.

Remark 4.10. The previous type of argument does not always work. For instance,
when r = 7 and d = 3 in equation (1.2), the condition 3 ∣ a + b does not distinguish
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E0,1 and E1,−1 by traces of Frobenius at 3, where Ea,b is the Frey elliptic curve in
the last paragraph of [26, p. 630].

To prove Theorem 1 it now suffices to notice that the cases p = 2, p = 3, and p = 5
follow from [2, Theorem 1.1], [3, Theorem 1.5], and [24, Théorème IX], respectively.
Hence we can assume p ≥ 7. Applying Propositions 1 and 5 concludes the proof.

Remark 4.11. Note we cannot improve on the result in [23] for r = 5 and d = 2 since
we do not have the condition 3 ∣ a + b to eliminate the curves in Proposition 4(1).
Furthermore, the additional use of the Frey elliptic curve Wa,b also does not help
because W1,1 is an elliptic curve without complex multiplication.

5. Partial results for x5 + y5 = dzp with d = 1, 2

It is sometimes possible to resolve equation (1.2) by assuming additional q-adic
conditions to avoid the obstructing trivial solutions. In this section we provide such
examples regarding the equation

(5.1) x5 + y5 = dzp, where d ∈ {1, 2}.
First note that the conditions on c of Theorem 4 can easily be translated into
divisibility conditions on a+b. More precisely, Theorem 4 follows from the following
two theorems.

Theorem 5. Assume d = 1, 2. Then, for all primes p, there are no non-trivial
primitive solutions (a, b, c) to (5.1) satisfying 5 ∣ a + b.

Theorem 6. Assume d = 1 (resp. d = 2). Then, for all primes p, there are no
non-trivial primitive solutions to (5.1) satisfying 2 ∣ a + b (resp. 4 ∣ a + b).

We want to emphasize that in the proof of Theorem 5, using the multi-Frey
technique we are able to force a Frey curve to have multiplicative reduction at 3.

These results, and their proofs, should illustrate clearly to the reader that the
obstruction to solving (5.1) with d = 1 (resp. d = 2) is that none of the Frey curves
we use are sensitive to the trivial solutions ±(1, 0, 1),±(0, 1, 1) (resp. ±(1,1, 1)).

5.1. Proof of Theorem 5. The cases p = 2 and p = 3 follow from [2, Theorem 1.1]
and [3, Theorem 1.5], respectively. It follows from Fermat’s Last Theorem and the
main theorem of [20] that the result holds for p = 5. Hence we can assume p ≥ 7.

Let (a, b, c) be a putative non-trivial primitive solution to equation (5.1) with
d = 1, 2, exponent p ≥ 7, and 5 ∣ a + b.

By part (2) of Proposition 4 we have ρFa,b,p
≅ ρA,p, where A = F1,−1 or F1,−1⊗χ2

when p ≥ 11. Furthermore, from its proof it follows that for p = 7 we can have
ρF,p ≅ ρA,p or ρF,p ≅ ρf,p, where f is one of the other three possible Hilbert newforms

over Q(
√
5) of parallel weight 2, trivial character, and level 26.

The traces of Frobenius at 3 of these five newforms satisfy a3(A) = a3(f) = 4.
Using Magma to compute a3(Fa,b) shows that 3 ∣ a+b (if not, then a3(Fa,b) ∈ {−2, 6}
and we get that p ∣ 6, which is not the case). This means the curve W = Wa,b

from Section 4.1 has multiplicative reduction at 3 (see Lemma 1). Note that this
is another instance of using the multi-Frey technique.

From [4, Proposition 3.1] we have that the representation ρW,p is irreducible. A
standard application of the modular method with W (which follows from Propo-
sitions 3.3 and 3.4 of [4]) gives that ρW,p ≅ ρg,p, where g is a rational newform of
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weight 2, trivial Nebentypus, and level 24 ⋅ 52, 23 ⋅ 52, or 2 ⋅ 52 for d = 1 and 24 ⋅ 52,
2 ⋅ 52 for d = 2, respectively. All newforms in these spaces correspond to (isogeny
classes of) elliptic curves over Q. Since level lowering is happening at the prime 3,
we must have that p ∣ (3 + 1)2 − a3(g)2. By the Hasse bound and our assumption,
it implies that p = 7 and a3(g) = ±3.

We then notice using [16] that there are four newforms g of these levels for
which we have a3(g) = ±3. Moreover they all correspond to elliptic curves with
potentially good reduction at 5 and whose minimal discriminant has valuation 2
or 8 at 5. According to [41, p. 312] it follows that #ρg,7(I5) = 3 or 6, where I5 is
an inertia subgroup at 5.

On the other hand, since 5 ∣ a + b, the curve W has potentially multiplica-
tive reduction at 5 (see Lemma 1). Hence by the theory of Tate curves, we have
#ρW,7(I5) = 2 or 14. According to Version 1 of the image of inertia argument
explained in Section 3, this gives the desired contradiction.

5.2. Proof of Theorem 6. As in the previous proof, the result is known for p ≤ 5.
Let (a, b, c) be a putative non-trivial primitive solution to equation (5.1) with d = 1
and 2 ∣ a + b (resp. d = 2 and 4 ∣ a + b) for p ≥ 7.

In the case d = 1, the condition 2 ∣ a+ b implies that in fact 8 ∣ a+ b, because 2 ∣ c,
p ≥ 7, and 2 ∤ φ5(a, b), where we recall a5 + b5 = (a + b)φ5(a, b) = dcp; in the case
d = 2, the condition 4 ∣ a + b also implies that in fact 8 ∣ a + b. So we now assume
8 ∣ a + b.

By Theorem 5, we may assume 5 ∤ a + b, and then invoking part (1) of Proposi-
tion 4 we deduce that ρE,p ≅ ρA,p where A = E1,0, E1,0⊗χ−1, E1,0 ⊗χ2, E1,0⊗χ−2,
E1,1, or E1,1 ⊗ χ2.

The result now follows from Version 2 of the image of inertia argument (see
Section 3). Indeed, from ρE,p ≅ ρA,p we know that the inertial field at 2 of E and
A must be the same. By Proposition 6 below and the assumption 8 ∣ a + b, we see
this is not possible, as desired.

Write La,b = LEa,b
for the inertial field at 2 corresponding to the Frey elliptic

curve Ea,b (i.e., the field fixed by the kernel of ρEa,b,m
(I2) for any m ≥ 3 coprime

to 2). Respectively, for any integers x, y, we write Lx,y,D for the inertial field at 2
corresponding to the curve Ex,y ⊗ χD.

Proposition 6. Suppose (a, b, c) is a non-trivial primitive solution to (5.1) satis-
fying 8 ∣ a + b. Then La,b /= L1,0, L1,0,−1, L1,0,2, L1,0,−2, L1,1, L1,1,2.

Proof. This is verified using [5] by considering a suitable subfieldM of the 3-division

field of Z over Q(
√
5), where Z = E1,0, E1,0 ⊗ χ−1, E1,0 ⊗ χ2, E1,0 ⊗ χ−2, E1,1, or

E1,1⊗χ2, with the property that Z has good reduction at a prime above 2 of M , but
Ea,b does not have good reduction at this prime above 2 of M if 8 ∣ a + b. It turns
out that we can take M to be the subfield generated by the x and y coordinates of
a choice of a 3-torsion point of Z.

We have the following two cases:

(a) For Z = E1,1,E1,1 ⊗ χ2, the choice of M has degree 4 over Q(
√
5). Let q′

be the unique prime above 2 of M with ramification index 4.
(b) For Z = E1,0,E1,0 ⊗ χ−1,E1,0 ⊗ χ2,E1,0 ⊗ χ−2, the choice of M has degree

8 over Q(
√
5). Let q′ be the unique prime above 2 of M with ramification

index 8.
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We remark that the full 3-division field of Z has degree 8 and 48 over Q(
√
5) in

cases (a) and (b), respectively. Thus, the choice of the smaller subfield M makes
the computation feasible in case (b).

To show that Ea,b does not have good reduction at the prime q′ of M if 8 ∣ a+ b,
we note that vq′(Δ) = 24 and 48 in cases (a) and (b), respectively.

Consider now E′ = Ea′,b′ and suppose that the reduction type of E′ is either II,
II∗, or I∗0 and we have that both vq′(a − a′) and vq′(b − b′) are ≥ 6 ⋅ 4 = 24. By
[1, Lemma 2.1], the reduction type of E and E′ at q′ are the same, and hence the
conductor exponents at q′ of E and E′ are the same.

In other words, if (a, b) ≡ (a′, b′) (mod 24), then the conductor exponent at q′ of
Ea,b is the same as that of Ea′,b′ , provided the reduction type of Ea′,b′ is II, II∗,
or I∗0 . Assuming 8 ∣ a+ b and using [5], it is thus shown that Ea,b/M has conductor
exponent /= 0 at the prime of M above 2, whereas Z/M has good reduction at the
prime of M above 2. �

6. A result on the second case

In this section, we prove Theorem 3. The following proposition is known to
experts, but we have not been able to find a suitable reference for it, so we include
a proof.

Proposition 7. Let f be a (classical) newform of weight 2, trivial character, and
level N . Let p be an odd prime not dividing N , and let ap denote the p-th Fourier
coefficient of f . Then, a necessary condition for the existence of a congruence
between the p-adic Galois representation attached to f and the one attached to a
newform g of level pN , trivial character, and weight 2 is

(6.1) ap ≡ ±1 (mod p).

Proof. Denote by ρf,p and ρg,p the restrictions to Gal(Qp/Qp) of the respective
global p-adic Galois representations attached to f and g. Then f congruent to
g modulo p implies in particular that the semisimplifications of the residual local
representations ρ̄ssf,p and ρ̄ssg,p of, respectively, ρf,p and ρg,p are isomorphic. We
assume p > 2. Since ρg,p is semistable non-crystalline of weight 2, ρ̄ssg,p is reducible
and isomorphic to χpunr(μ)⊕unr(μ) for some mod p unit μ and where χp denotes
the mod p cyclotomic character (this is the case k = 2 of [9, Théorème 1.2]). Thus,
the same holds for ρ̄ssf,p. By [8, Théorème 6.7] (a theorem that puts together results

of Deligne, Serre, Fontaine, and Edixhoven) this forces ap to be congruent to ±1
modulo p. �

Using the above proposition, we now prove Theorem 3.
The cases p = 2 and p = 3 follow from [2, Theorem 1.1] and [3, Theorem 1.5],

respectively. It follows from Fermat’s Last Theorem and the main theorem of [20]
that the result holds for p = 5. Hence we can assume p ≥ 7.

We know (see [4, Proposition 3.1]) that the mod p Galois representation attached
to the Frey elliptic curve W is irreducible, for every p ≥ 7. By level lowering, we
have a congruence modulo p between the Frey elliptic curve W and some weight 2
newform of level N = 50, 200, or 400. Since we are assuming that p divides c, level
raising at p mod p is happening for this specific newform. This implies in particular
that the necessary condition in Proposition 7 must hold.
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All newforms in these spaces correspond to (isogeny classes of) elliptic curves
over Q, and we consider the cases when:

(1) the elliptic curve does not have a rational 2-torsion point or
(2) the elliptic curve has a rational 2-torsion point.

Case 1. For all such elliptic curves, it can be checked (using [16] for instance) that
the coefficient a3 equals ±1 or ±3. Then we easily conclude using the congruence
between these values and 0,±2,±4 that this cannot happen for p > 7. We are using
the fact that the Frey elliptic curve W has a rational 2-torsion point, and we are
covering both the cases of W having good or multiplicative reduction at 3. For
p = 7, the congruence forces a3 = ±3. We then quickly verify using [16] that none of
the curves of level N ∈ {50, 200, 400} satisfy both a3 = ±3 and a7 ≡ ±1 (mod 7).
Case 2. The fact that mod p we have level raising at p forces the necessary condition
in Proposition 7 to hold: ap ≡ ±1 (mod p). For an elliptic curve, this is equivalent
to implying that ap = ±1 by the Hasse bound. But all curves in case 2 have a
rational 2-torsion point; thus all their coefficients aq for q ∤ N are even. This gives
a contradiction.

Remark 6.2. As pointed out to us by the referee, instead of Proposition 7, we could
have used [36, Proposition 3(iii)] because f and g correspond to elliptic curves over
Q. However, the more general Proposition 7 may be useful in other applications
of the modular method when level lowering results in a newform with non-rational
Fourier coefficients.

7. A multi-Frey approach to the equation x13 + y13 = 3zp

Let ζ13 be a primitive 13-th root of unity. In this section, we will use the following
factorization and notation:

(7.1) x13 + y13 = (x + y)φ13(x, y) = (x + y)ψ13(x, y)ψ̄13(x, y),
where

ψ13(x, y) = (x + ζ13y)(x + ζ413y)(x + ζ313y)(x + ζ1213y)(x + ζ913y)(x + ζ1013y)

= x6 + 1

2
(w − 1)x5y + 2x4y2 + 1

2
(w + 1)x3y3 + 2x2y4 + 1

2
(w − 1)xy5 + y6

and ψ̄13(x, y) are the two degree 6 irreducible factors of φ13(x, y) over Q(w), where
w ∈ Q(ζ13) satisfies w2 = 13.

7.1. The modular method over Q(
√
13). We will now prove the following the-

orem by sharpening the methods in [22] plus a refined image of inertia argument.

Theorem 7. Let (a, b, c) be a non-trivial primitive solution to equation (1.2) with
r = 13, p ≥ 5, p /= 7, 13, and d such that all its prime factors � satisfy � /≡ 1 (mod 13).
If 3 divides d, then we have

(A) 13 ∣ a + b and
(B) 4 ∣ a + b.

Before entering the proof of this result, we first introduce tools from [22] which
are valid beyond the setting of the theorem. Write ζ = ζ13 and define

Ax,y = α(x2 + (ζ + ζ−1)xy + y2), Bx,y = β(x2 + (ζ3 + ζ−3)xy + y2),
Cx,y = γ(x2 + (ζ4 + ζ−4)xy + y2),
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where

α = ζ4 + ζ−4 − ζ3 − ζ−3, β = ζ + ζ−1 − ζ4 − ζ−4, γ = ζ3 + ζ−3 − ζ − ζ−1

all have norm 132. We note that Ax,y, Bx,y, Cx,y are polynomials with coefficients
in (the maximal totally real subfield of) Q(ζ) satisfying Ax,y +Bx,y +Cx,y = 0.

Suppose now that a, b are coprime integers. Let us denote by Ea,b the short
Weierstrass model of the elliptic curve Y 2 =X(X −Aa,b)(X +Ba,b) given by

Ea,b ∶ y2 = x3 + a4(a, b)x + a6(a, b),
where

a4(a, b) = 33 (Aa,bBa,b +Aa,bCa,b +Ba,bCa,b) ,
a6(a, b) = −33 (2A3

a,b + 3A2
a,bBa,b − 3Aa,bB

2
a,b − 2B3

a,b) .
This curve (in a slightly different short model) was first considered in [22], where

it is denoted E0. We then verify that Ea,b is defined over Q(
√
13). Its standard

invariants are given by the following identities:

c4(Ea,b) = −24 ⋅ 3 ⋅ a4(a, b) = −24 ⋅ 34 (Aa,bBa,b +Aa,bCa,b +Ba,bCa,b) ,
Δ(Ea,b) = 24 ⋅ 312 (Aa,bBa,bCa,b)2 = 24 ⋅ 312 ⋅ 13 ⋅ψ13(a, b)2.

We now determine the conductor of Ea,b. For simplicity, let us write E = Ea,b

and NE for its conductor.

Lemma 5. Let q be a prime ideal in Q(
√
13) of residual characteristic � ≠ 2, 13.

Then E has bad reduction at q if and only if q divides ψ13(a, b). Moreover, in that
case, we have

� ≡ 1 (mod 13), υq(c4(E)) = 0 and υq(Δ(E)) = 2υq(ψ13(a, b)).
In particular, E has bad multiplicative reduction at q, and hence υq(NE) = 1.

Proof. Recall that as elements of Q(ζ), Aa,b, Ba,b, and Ca,b are relatively prime
outside 13.

Let us first assume that � /= 3. It follows from the formulas above that if E
has bad reduction at q, then q divides ψ13(a, b) and q does not divide c4(E).
Conversely if q ∣ ψ13(a, b), then q divides (Aa,bBa,bCa,b)2 = 13 ⋅ ψ13(a, b)2 and q

does not divide c4(E). Hence the equivalence. Moreover, we have υq(Δ(E)) =
2υq(ψ13(a, b)), and the congruence � ≡ 1 (mod 13) follows from [22, Section 2].

It remains to show that E has good reduction at the prime ideals in Q(
√
13)

above 3. Let q be such a prime. From [22, Section 2], we have that q does not
divide ψ13(a, b). Therefore, we have (υq(c4(E)), υq(Δ(E))) = (≥ 4, 12), and the
defining model of E is not minimal at q ([38, Tableau I]). A change of variables
then shows that E has good reduction at q, as claimed. �

The following lemma follows from a similar statement for the curve E0 in [22,
Proposition 3.3].

Lemma 6. We have

υw(NE) = 2 and υ2(NE) = s where s = 3, 4.

Moreover, when a + b is even, s = 3 if 4 ∣ a + b and s = 4 if 4 ∤ a + b.

The next proposition gives us the required irreducibility of the mod p represen-
tation of E.
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Proposition 8. Let p ≥ 7 be a prime number. Then the representation ρE,p is
irreducible.

Moreover, if 3 divides a + b, then ρE,5 is also irreducible.

Proof. We note that the proof of [28, Theorem 3] applies in our situation, thereby
proving the proposition for p = 11 and p ≥ 17. Assume therefore that p ∈ {5, 7, 13}.

We note that 3 splits in Q(
√
13) and let q1, q2 be the primes above it with

w + 1 ∈ q1 (and w − 1 ∈ q2). By Lemma 5, the primes q1 and q2 are primes of good
reduction of E. Since a, b ∈ Z we can check that the pairs of traces of Frobenius at
these primes (aq1

(E), aq2
(E)) satisfy

(aq1
(E), aq2

(E)) ∈ {(−3,−1), (−1,−3), (−1, 1)}.

Moreover, the case (−3,−1) occurs precisely when 3 ∣ a + b. Therefore, we can
compute the corresponding pairs of characteristic polynomials of

(ρE,p(Frobq1
), ρE,p(Frobq2

)),

which are given by

(7.2) (x2 − aq1
(E)x + 3, x2 − aq2

(E)x + 3).

Now suppose that ρE,p is reducible. Then, for any prime q in Q(
√
13) of good

reduction of E, the characteristic polynomial of ρE,p(Frobq) must factor over Fp

into two linear polynomials. In particular, this holds for q = q1, q2.
For p = 5, 7, and 13, we check that each of the pairs of polynomials in (7.2)

always contains one polynomial that does not factor over Fp except when p = 5 and
(aq1

(E), aq2
(E)) = (−1, 1). This proves the proposition for p ≥ 7. Finally, assume

3 ∣ a + b. In that case, we already observed that (aq1
(E), aq2

(E)) = (−3,−1) ≠
(−1, 1). We conclude that ρE,5 is irreducible, finishing the proof. �

We note that modularity of Ea,b is guaranteed by [27], hence completing Step 3
of the modular method.

We are now in position to study equation (1.2) with r = 13. Suppose that there
exists an integer c such that (a, b, c) is a non-trivial primitive solution to (1.2) with
r = 13 and p ≥ 5 and assume that all the prime factors � of d satisfy � /≡ 1 (mod 13).
Write again E = Ea,b.

The following lemma summarizes Step 4 of the modular method.

Lemma 7. We have

ρE,p ≅ ρf,p,

where p is a prime in Q of residual characteristic p and f is a Hilbert newform over
Q(

√
13) of parallel weight 2, trivial character, and level

Nf = 2sw2, where s = 3, 4.

Moreover, when a + b is even, s = 3 if 4 ∣ a + b and s = 4 if 4 ∤ a + b.
If in addition we have that 3 divides a + b, then the above also holds for ρE,5.

Proof. Let q be a prime ideal in Q(
√
13) of bad reduction for E with residual char-

acteristic � /= 2, 13. According to Lemma 5 and Section 2 of [22], the reduction
is multiplicative, and, by our assumption on d, the valuation of the minimal dis-
criminant at q is 2υq(ψ13(a, b)) = 2υ�(a13 + b13) = 2υ�(d) + 2pυ�(c) = 2pυ�(c). In
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particular, it is divisible by p. We conclude from Lemma 6 that the Artin conduc-
tor of the mod p representations of E is 2sw2 where s is the valuation at 2 of the
conductor of NE (computed in Lemma 6).

The rest of the proof follows by applying level lowering for Hilbert modular forms
(see [30], [32], [39]), with irreducibility coming from Proposition 8 above. �

The following summarizes part of Step 5 of the modular method as applied to
the Frey elliptic curve E.

Proposition 9. Assume p ≥ 7 and p /= 13. Then, we have

(7.3) ρE,p ≅ ρZ,p,

where Z is one of the elliptic curves

E1,−1, E1,0, or E1,1.

In the case p = 7, we have an additional possibility that ρE,p ≅ ρg,p7
for a Hilbert

newform g over Q(
√
13) of parallel weight 2, trivial character, and level 23w2, with

field of coefficients Q(
√
2), and a choice of prime p7 above 7 in this field.

If in addition 3 divides a + b, then we also have ρE,5 ≅ ρZ,5 for Z as above.

Proof. Using [5], we compute the Hilbert newforms given by the previous lemma
and we apply the same method as in Section 4.3 to bound the exponent p. More
precisely, for p ≥ 5, p ≠ 13 we eliminate all the forms except those corresponding
to the three elliptic curves in the statement and another form g which cannot be
eliminated for p = 7.

Under the assumption 3 ∣ a + b, the previous lemma applies for p = 5 and the
computations of this proof also, so the last statement follows. �
Remark 7.4. The form g in Proposition 9 cannot be eliminated for the exponent
p = 7, even using ‘many’ auxiliary primes q /= 2, 13. This failure appears to have the
following explanation.

Let
√
2 + 3 ∈ p7 and

√
2 + 4 ∈ p′7 be the two primes above 7 in Q(

√
2). By

comparing traces of Frobenius mod p′7, we promptly check that ρE,7 /≅ ρg,p′7 . For

the prime p7, the traces of ρg,p7
and ρE1,−1,7 at Frobenius elements for primes q in

Q(
√
13) of norm up to 5000 are the same, which suggests that ρg,p7

≅ ρE1,−1,7. If
we could show this congruence, then the form g can be removed and the proof of
Theorem 7 below also holds for p = 7.

However, to actually have this conclusion, we need to compare traces up to a
‘Sturm bound’ [15], which unfortunately turns out to be too large to be computa-
tionally feasible.

Proof of Theorem 7. Suppose (a, b, c) is a non-trivial primitive solution to (1.4)
with p ≥ 5 and p /= 7, 13. Write E = Ea,b. From Proposition 9, we know that
ρE,p ≅ ρZ,p, where Z is E1,−1, E1,0, or E1,1.

Again let q1 and q2 be the primes in Q(
√
13) dividing 3 with w + 1 ∈ q1. Both

qi are primes of good reduction for E and Z; since 3 ∣ d, we have 3 ∣ a + b and
aq1

(E) = −3 (see the proof of Proposition 8).
On the other hand, for Z = E1,0 or Z = E1,1, we have aq1

(Z) = −1. Therefore we
have aq1

(E) /≡ aq1
(Z) (mod p) and we conclude that ρE,p ≅ ρE1,−1,p.

We now prove (A). Let K+ be the maximal totally real subfield of Q(ζ13) and
let π denote the prime ideal in K+ above 13. From [22, Proposition 3.1], when
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13 ∤ a + b (or equivalently 13 ∤ c), the curve Z/K+ has good reduction at π and
E/K+ has bad additive reduction. The conclusion follows from version 2 of the
image of inertia argument.

We now prove (B). Consider the base change of Ea,b to the field M , where

M = Q(
√
13)(x, y), and (x, y) is a 3-torsion point of Z = E1,−1 whose coordinates

satisfy:

x4 + (11232w − 56160)x2 + (−2111616w + 8671104)x + 105131520w − 399499776 = 0,

y2 = x3 + a4(1,−1)x + a6(1,−1).

The extension M has degree 8 over Q(
√
13). Let q′ be the unique prime of M

of ramification index 8 above the prime 2 of Q(
√
13). Then vq′(Δ(E)) = 32+

8v2(a + b) ≤ 40.
Consider now E′ = Ea′,b′ and suppose that the reduction type of E′ is either II

or I∗0 and we have that both vq′(a−a′) and vq′(b−b′) are ≥ 6 ⋅4 = 24. By [1, Lemma
2.1], the reduction type of E and E′ at q′ are the same, and hence the conductor
exponents at q′ of E and E′ are the same.

In other words, if (a, b) ≡ (a′, b′) (mod 23), then the conductor exponent at q′

of Ea,b is the same as that of Ea′,b′ , provided the reduction type of Ea′,b′ is II or
I∗0 . Assuming 4 ∤ a + b and using [5], it is thus shown that Ea,b/M has conductor
exponent ≥ 4 at the prime of M above 2, whereas Z/M has conductor exponent
2 at the prime of M above 2. The conclusion follows from Version 3 of the image
of inertia argument. We note that the full 3-division field of Z has degree 48
over Q(

√
13), whereas our choice of M has degree 8 over Q(

√
13), making the

computation faster. �

7.2. The modular method over the real cubic subfield of Q(ζ13). In [26],
several Frey elliptic curves are attached to equation (1.2); in particular, for r = 13
one of them is Ea,b from the previous section. In this section we will use another
Frey elliptic curve adapted from a construction in [26] defined over a cubic field.

Let K+ be the maximal (degree 6) totally real subfield of Q(ζ13) and write K
for its cubic subfield. Write ζ = ζ13 and define

Ax,y = α(x+y)2, Bx,y = β(x2+(ζ+ζ−1)xy+y2), Cx,y = γ(x2+(ζ8+ζ−8)xy+y2),

where

α = ζ8 + ζ−8 − ζ − ζ−1, β = 2 − ζ8 − ζ−8, γ = ζ + ζ−1 − 2

all have norm 132. We note that Ax,y, Bx,y, Cx,y are polynomials with coefficients
in K+ satisfying Ax,y +Bx,y +Cx,y = 0.

Let a, b be coprime integers such that a + b /= 0. We consider the Frey elliptic
curve given by the short Weierstrass equation

Fa,b ∶ y2 = x3 + a′4(a, b)x + a′6(a, b),

where

a′4(a, b) = 33 ⋅ 132 (Aa,bBa,b +Aa,bCa,b +Ba,bCa,b) ,
a′6(a, b) = −33 ⋅ 133 (2A3

a,b + 3A2
a,bBa,b − 3Aa,bB

2
a,b − 2B3

a,b) .

This curve is (up to a rational isomorphism) the quadratic twist by 13 of the curve
defined by equation (13) with (k1, k2) = (1, 5) in [26].
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We then verify that Fa,b is defined over K. Its standard invariants are given by
the following identities:

c4(Fa,b) = −24 ⋅ 3 ⋅ a′4(a, b) = −24 ⋅ 34 ⋅ 132 (Aa,bBa,b +Aa,bCa,b +Ba,bCa,b) ,
Δ(Fa,b) = 24 ⋅ 312 ⋅ 136 (Aa,bBa,bCa,b)2 .
We now determine the conductor of Fa,b. For simplicity, let us write F = Fa,b

and NF for its conductor.

Lemma 8. Let q be a prime ideal in K of residual characteristic � ≠ 2, 3, 13. If F
has bad reduction at q, then � ∣ a13 + b13. If in addition � /≡ 1 (mod 13), then F has
bad reduction at q if and only if � ∣ a+ b. Moreover, if F has bad reduction at q, we
have

υq(c4(F )) = 0 and υq(Δ(F )) = δυ�(a13 + b13),
where δ = 2 or 4 according to whether � divides φ13(a, b) or a + b, respectively. In
particular, F has bad multiplicative reduction at q, and hence υq(NF ) = 1.

Proof. Recall that A = Aa,b, B = Ba,b, C = Ca,b are coprime outside 13 as elements
of Q(ζ). Moreover (ABC)2 divides 13(a + b)2(a13 + b13)2, and the quotient is
coprime to (ABC)2 away from 13 (see Section 2 of [22]). In particular, if F has
bad reduction at q, then � divides a13 + b13 and q ∤ c4(F ). If � /≡ 1 (mod 13),
the equivalence holds since primes dividing a13 + b13 not congruent to 1 modulo 13
automatically divide a + b and hence A. Moreover, in that case, we have

υq(Δ(F )) = υq ((ABC)2) = 4υ�(a + b) + 2υ�(φ13(a, b)).
The result then follows from the fact that a+b and φ13(a, b) are coprime outside 13.

�

We now determine the valuation of NF at the unique prime ideals above 2, 3,
and 13. The two former prime numbers are inert in K, and we simply write 2 and 3
for the unique primes above them in K. We denote by q13 the prime ideal above 13
in K.

Lemma 9. We have the following valuations:

υq13
(NF ) = { 1 if 13 ∣ a + b,

2 if 13 ∤ a + b;

υ3(NF ) = { 0 if 3 ∤ a + b,
1 if 3 ∣ a + b;

υ2(NF ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if υ2(a + b) = 2,
1 if υ2(a + b) ≥ 3,
3 if ab ≡ 0 (mod 4),
4 if υ2(a + b) = 1 or ab ≡ 2 (mod 4).

Proof. For simplicity, write A = Aa,b, B = Ba,b, and C = Ca,b. Let us denote by π13

the unique prime ideal in Q(ζ) above 13. We first compute the valuation at π13

of c4(F ) and Δ(F ). Using the equalities AB = αβ(a + b)2 ((a + b)2 + γab) and

AC = αβ(a + b)2 ((a + b)2 − βab) we obtain

υπ13
(AC) = υπ13

(AB) = 24υ13(a + b) + { 6 if 13 ∣ a + b,
4 if 13 ∤ a + b.
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Similarly, using BC = βγ ((a + b)2 + γab) ((a + b)2 − βab), we have

υπ13
(BC) = { 8 if 13 ∣ a + b,

4 if 13 ∤ a + b.

Therefore it follows that we have

(υq13
(c4(F )), υq13

(Δ(F ))) = { (8, 23 + 12υ13(a + b)) if 13 ∣ a + b,
(≥ 7, 21) if 13 ∤ a + b.

In particular, the defining model of F is not minimal at p13 ([38, Tableau I]). After a
change of variables, we obtain that if 13 divides a+b, then F has bad multiplicative
reduction of type Iν with ν = −1+12υ13(a+b). Therefore we have υq13

(NF ) = 1. Oth-
erwise, if 13 divides a+b, then F has bad additive reduction at q13 and υq13

(NF ) = 2.
We now deal with the prime ideal generated by 3. Neither B nor C is divisi-

ble by 3. In particular, if 3 does not divide a + b, then (υ3(c4(F )), υ3(Δ(F ))) =
(≥ 4, 12) and the defining model of F is not minimal at 3 ([38, Tableau I]). After a
change of variables, we obtain that F has good reduction at 3; hence υ3(NF ) = 0.
Otherwise, if 3 divides a + b, then (υ3(c4(F )), υ3(Δ(F ))) = (4, 12 + 4υ3(a + b)).
Therefore, according to [38], after a change of variables, we obtain that F has bad
multiplicative reduction of type Iν with ν = 4υ3(a+b). Therefore we have υ3(NF ) =
1.

We finally compute the valuation at 2 of the conductor of F . Neither B nor C
is divisible by 2. Therefore, we have

υ2(c4(F )) = 4 + υ2(AB +AC +BC) and υ2(Δ(F )) = 4 + 4υ2(a + b).
In particular, if υ2(a+b) ≥ 3, then after a change of variables, we find that F has bad
multiplicative reduction at 2 of type Iν with ν = −8+ 4υ2(a+ b); hence υ2(NF ) = 1.
Similarly, if υ2(a + b) = 2, then F has good reduction at 2 and υ2(NF ) = 0.

It remains to deal with the case υ2(a + b) ≤ 1. Assume first that 2 does not
divide a + b. Then we have ab ≡ 0 (mod 2) and (υ2(c4(F )), υ2(Δ(F ))) = (4, 4).
Therefore, by [38, Tableau IV], we are in Case 3, 4, or 5 of Tate’s classification and
υ2(NF ) = 4, 3, or 2, respectively. We have

a′4(a, b) ≡ −(αβ + αγ + βγ + αβγab) (mod 4)
and

a′6(a, b) ≡ 2α3 + 3α2β − 3αβ2 − 2β3 + 3α2βγab (mod 4).
In particular, we have a′4(a, b) ≡ αβ +αγ + βγ ≡ r2 (mod 2) and a′6(a, b) ≡ αβγ ≡ t2

(mod 2) with r = t = ζ + ζ−1 + ζ2 + ζ−2 + ζ3 + ζ−3 + ζ5 + ζ−5. According to [38,
Proposition 1], one then verifies using the above congruences of a′4(a, b) and a′6(a, b)
modulo 4 that we are in a case ≥ 4 of Tate’s classification if and only if ab ≡ 0
(mod 4). In that case, the congruence class (in the notation of [38]) of b8 + 3rb6 +
3r2b4+r3b2+3r4 = −a′4(a, b)2+12ra′6(a, b)+6r2a′4(a, b)+3r4 modulo 23 is independent
of a, b such that ab ≡ 0 (mod 4) (since then both a′4(a, b) (mod 4) and a′6(a, b)
(mod 2) only depend on α, β, and γ). One then verifies that it has valuation 2.
According to [38, Proposition 1] we are in Case 4 of Tate’s classification; hence
υ2(NF ) = 3.

Assume now that υ2(a + b) = 1. Then we have (υ2(c4(F )), υ2(Δ(F ))) = (4, 8)
and by [38, Tableau IV], we are in Case 6, 7, or 8 of Tate’s classification. We have

a′4(a, b) ≡ βγ(4α − 3βγ) (mod 8) and a′6(a, b) ≡ 2(βγ)3 (mod 4).
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Since the congruence class (in the notation of [38]) of b8 + 3rb6 + 3r2b4 + r3b2 +
3r4 = −a′4(a, b)2 +12ra′6(a, b)+6r2a′4(a, b)+3r4 modulo 24 depends only on a′4(a, b)
(mod 8), a′6(a, b) (mod 4), it is independent of a, b such that υ2(a + b) = 1. In
particular, we can take (a, b) = (1, 1). Using Magma we check that the elliptic
curve F1,1 has conductor exponent 4 at 2. This means that for this specific curve
we are in Case 6 of Tate’s classification. In particular, the congruence equation
in [38, Proposition 3(a)] has no solution for (a, b) = (1, 1) and hence for all a, b with
υ2(a + b) = 1. It follows that υ2(NF ) = 4 when υ2(a + b) = 1. �

Write E = Ea,b and F = Fa,b. The following illustrates a fundamental difference
between the Frey elliptic curves E and F . Note that irreducibility of ρE,p followed
by an application of [28, Theorem 3] which makes crucial use of the presence of
explicit primes of good reduction of E. This was guaranteed by the fact that all the
primes not dividing 2 ⋅ 13 of bad reduction of E must have residual characteristic
congruent to 1 mod 13 (see Lemma 5). This is no longer the case for F due to
the factor a + b in Δ(F ). Therefore, we can only apply [28, Theorem 2], which
guarantees that ρF,p is irreducible when p > (1 + 318)2. This bound is insufficient
for our purposes.

We shall establish here a much better irreducibility result, dealing first with the
case p = 5 in full generality.

Lemma 10. The representation ρF,5 is irreducible.

Proof. We proceed using explicit equations as in [17, Theorem 7]. Let jF denote
the j-invariant of F . Then

jF − 1728 = ηG(a, b)2/H(a, b)2

= 13(νG(a, b)/H(a, b))2,
where G,H are degree-12 homogeneous monic polynomials in two variables with
coefficients in K, and η, ν ∈ K [5]. If ρF,5 is reducible, that is, F has a 5-isogeny
over K, then we must have that

jF − 1728 = (t2 + 4st − s2)2(t2 + 22st + 125s2)
s5t

,

for some u = t/s ∈ P1(K), following the argument in [5]. Thus, we obtain a K-
rational point (u, v) on the elliptic curve

D ∶ 13Y 2 = (X2 + 22X + 125)X,

where

u = t/s, v = ν
G(a, b)
H(a, b)

u

u2 + 4u − 1
.

The elliptic curveD has rank 1 overK and over Q andDtors(K) =Dtors(Q) ≅ Z/2Z
[5]. This implies that D(K) = D(Q); i.e., every K-rational point of D is in fact
Q-rational. Thus,

ν
G(a, b)
H(a, b) ∈ Q,

which in turn implies that jF −1728 ∈ P1(Q). Put N = ηG(a, b)2, M =H(a, b)2, and
let σ be a non-trivial automorphism of K. Write R = Nσ(M)σ2(M) = A0(a, b) +
A1(a, b)z +A2(a, b)z2 where K = Q(z) and A0,A1,A2 are degree 12 homogeneous
polynomials in two variables with coefficients in Q. Since jF − 1728 ∈ P1(Q), then
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R is rational, and this implies that A1(x, 1) and A2(x, 1) must have a common
root. It can be verified that this is not the case for a/b ∈ P1(Q), except for a/b = −1
[5]. �
Remark 7.5. The following example shows that in the previous proof of Lemma 10
it is essential to be working with j-invariants arising from the Frey elliptic curve
F . Consider the elliptic curve over Q defined by

y2 + (1 + a)xy + ay = x3 + ax2, a = −10933
144

,

which has 10-torsion over Q and acquires full 2-torsion over Q(
√
13). In particular,

it also has 10-torsion over K and a C2 ×C10 torsion group over K+.

Theorem 8. Assume p ≥ 7 and p ≠ 13. If either 13 ∣ a+b or 13 ∤ a+b and p /= 17, 37,
then ρF,p is irreducible.

Proof. Suppose ρF,p is reducible; that is,

ρF,p ∼ (
θ ⋆
0 θ′

) with θ, θ′ ∶ GK → F∗p satisfying θθ′ = χp.

We note that K = Q(z), where z3 + z2 − 4z + 1 = 0. According to the notation of
[28, Theorem 1] we set ε1 = z and ε2 = 1 − z, observe that the unit group of K is
generated by {−1, ε1, ε2}, and compute B = 53 ⋅ 13. Thus from the first paragraph
of the proof of [28, Theorem 1] we conclude that for p = 11 and p ≥ 17 exactly one
of θ, θ′ ramifies at p. Since 7 is inert in K and F is semistable at 7, it follows from
[33, Lemma 1] also that only one of θ, θ′ ramifies at p = 7.

The characters θ and θ′ ramify only at p and additive primes of F ; the latter are
q13 and 2 when 13 ∤ a + b and 4 ∤ a + b respectively (see Lemma 9). Furthermore,
at an additive prime q both θ, θ′ have conductor exponent equal to υq(NF )/2; in
particular, υ2(NF ) ≠ 3.

Replacing F by a p-isogenous curve we can assume θ is unramified at p. There-
fore, the possible conductors for θ are 2sqt13 with s ∈ {0, 2} and t ∈ {0, 1}. Let ∞1,
∞2, and ∞3 be the real places of K. The field K has narrow class number 1 and the
Ray class groups for the modulus 22∞1∞2∞3, q13∞1∞2∞3, and 22q13∞1∞2∞3 are
isomorphic to

Z/2Z⊕Z/2Z⊕Z/2Z, Z/4Z, and Z/4Z⊕Z/2Z⊕Z/2Z⊕Z/2Z,
respectively; hence θ has order n = 1, 2, or 4. Moreover the case n = 4 only occurs
when θ ramifies at q13. In particular, if 13 ∣ a + b, then F is semistable at q13 and
we have n = 1 or 2.

Suppose n = 1, 2. Thus either F or a quadratic twist F ′ of F has a p-torsion
point defined over K. Note that F has full 2-torsion over K+ which is a quadratic
extension of K; hence it has at least one 2-torsion point over K (namely, the point
with x-coordinate −3 ⋅ 13(Aa,b + 2Ba,b)). Thus, the quadratic twist F ′ also has a
2-torsion point over K, and we conclude that the K-torsion subgroup of F or F ′

has order divisible by 2p with p ≥ 7. From [10, Theorem 5], we see that this is
impossible.

In particular, this proves the result for all primes p ≡ 3 (mod 4), because n = 4
does not divide the order of F∗p.

Suppose n = 4. Since K+ is the field fixed by θ2 (note θ2 has conductor q13) θ
has order 2 over K+. After a quadratic twist, now over K+, we conclude that F has
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a p-torsion point defined over K+. From [21] we see this is possible only for p ≤ 19
and p = 37. We conclude that ρF,p is irreducible for all p ≥ 7 such that p ≠ 13, 17, 37
(after discarding the primes p ≡ 3 (mod 4)). �

From Lemma 9 we know that Fa,b is semistable at all primes dividing 3 in K.
Thus, from [26, Theorem 6.3], it follows that Fa,b is modular.

We now wish to use the Frey elliptic curve Fa,b to solve our Fermat equations.
Suppose that there exists an integer c such that (a, b, c) is a non-trivial primitive
solution to (1.4) with p ≥ 5. Write again F = Fa,b.

From the conductor computations coming from Lemmas 8 and 9, irreducibility
results from Lemma 10 and Theorem 8, and level lowering again, we obtain the
following lemma.

Lemma 11. Assume p ≥ 5, p /= 13. If 13 ∤ a + b, assume further p /= 17, 37. Then,
there exists a prime p in Q above p such that

(7.6) ρF,p ≅ ρf,p,

where f is a Hilbert newform over K of parallel weight 2, trivial character, and
level

Nf = 2α2 ⋅ 3α3 ⋅ qα13

13 .

Here, α2 ∈ {0, 1, 3, 4}, α3 ∈ {0, 1}, α13 ∈ {1, 2} is the valuation (computed in
Lemma 9) at 2, 3, and q13 of NF respectively.

We now comment on the sizes of the spaces occurring in Lemma 11. With Magma,
we compute respectively the dimensions of the cuspidal and its new subspace at
each level of the form 2s ⋅ 3 ⋅ qt13 with s ∈ {0, 1, 3, 4} and t ∈ {1, 2}. For t = 1 and
t = 2, we obtain

s = 0∶ 33, 27; and s = 0∶ 425, 334;
s = 1∶ 295, 181; s = 1∶ 3823, 2353;
s = 3∶ 18817, 11466; s = 3∶ 244609, 148101;
s = 4∶ 150929, 91728; s = 4∶ 1956865, 1184820.

We see that for s = 0 and s = 1, the computations of the newforms are within reach
of current implementations (indeed, we have already computed a larger space when
studying the case of r = 5), but for s = 3 and s = 4, the dimensions are totally
out of reach. Using the multi-Frey technique, we are able to prove Theorem 2 by
computing only in the case (s, t) = (1, 1) (that is, in level 2 ⋅ 3 ⋅ q13).

7.3. Proof of Theorem 2. The case p = 2 follows from [2, Theorem 1.1], and the
case p = 3 follows from [3, Theorem 1.5]. For exponent p = 13 the result follows
from Theorem 2 in [42, Section 4.3].

Suppose (a, b, c) is a non-trivial primitive solution to (1.4) with p ≥ 5, p ≠ 7, 13.
From Theorem 7 we can assume that 4 ∣ a + b and 13 ∣ a + b. Moreover, we have
υ2(a + b) = υ2(3cp) ≥ 3. Write F = Fa,b. Thanks to our assumptions, Lemma 11
applies with no further restrictions. In particular, we have that ρF,p ≅ ρf,p, where
f is a Hilbert newform over K of parallel weight 2, trivial character, and level
Nf = 2 ⋅ 3 ⋅ q13. (Note that the multi-Frey technique is implicit in this step because
the proof of Theorem 7 uses the Frey elliptic curve E.)

The dimension of the new cuspidal subspace is 181. Using [5], we compute all
the newforms f in these spaces and bound the exponent using the primes in K
above rational primes q = 5, 7, 11, 17, 31 as usual using the norm of the difference
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between traces. This suffices to eliminate all but 4, 2 forms corresponding to the
exponents p = 5, 11, respectively.

For the remaining forms, we use the following refined elimination technique [5].
For each form, choosing a q /= 2, 3, 13 and q /≡ 1 (mod 13), we obtain that if ρF,p ≅
ρf,p for some prime p ∣ p in the field of coefficients of f , then (by Lemma 8):

(i) either q ∤ a+b and then for all q above q, we have aq(f) ≡ aq(Fa,b) (mod p)
(ii) or q ∣ a+b and then for all q above q, we have aq(f) ≡ ±(N(q)+1) (mod p).

By computing aq(Fx,y) for each q ∣ q and all x, y ∈ {0, . . . , q − 1} not both zero, we
eliminate each form by checking that neither of the above congruences holds for
that form.
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