
THE GENERALIZED FERMAT EQUATION

NICOLAS BILLEREY AND NUNO FREITAS

Abstract. In this note we will review the main steps in the proof of Fermat’s Last Theorem and
discuss Darmon’s program to tackle the generalized Fermat equation Axq +Byr = Czp. Finally, we
discuss how combining the classical approach with some ideas of Darmon led to recent results for
equations of the form xr + yr = Czp.

1. Introduction

After Wiles’ proof [27] of Fermat’s Last Theorem (FLT) attention shifted towards the so-called
generalized Fermat equation (GFE)

(1.1) Axr +Byq = Czp with X ∶=
1

r
+
1

q
+
1

p
< 1,

where A,B,C are fixed non-zero coprime integers and r, q, p ≥ 2 are integers. The triple (r, q, p) is
called the signature of the GFE. A solution (a, b, c) ∈ Z3 to (1.1) is called primitive if gcd(a, b, c) = 1
and non-trivial if abc ≠ 0.

The condition X < 1 is required to guarantee finiteness of solutions. More precisely, Darmon and
Granville [13] proved that if we fix both the coefficients A,B,C and the exponents r, q, p satisfying
X < 1 then there are only finitely many primitive solutions to (1.1). But more is conjectured (see [4]):
it is expected that the number of primitive solutions remains finite if we fix the coefficients but allow
the three exponents to vary while still verifying X < 1. On the other hand, if X > 1 then the set of
solutions is either empty or infinite by a result of Beukers [3] and, for X = 1, the problem reduces
to the determination of rational points on genus-1 curves. A very natural question is whether the
strategy that proved FLT, which is now known as the modular method, can be used to establish
more cases of the aforementioned conjecture.

As we shall see below, to apply the modular method to other instances of (1.1) one needs to start
with the construction of a Frey curve. However, there are only a few choices of the exponents r, q, p
in (1.1) for which Frey curves are known (see [10, p.14] for a complete list of rational Frey curves).
To circumvent this issue, Darmon described in [11] a remarkable program to study (1.1) where
he replaces Frey curves by higher dimensional abelian varieties. However, applying the rest of his
program is very challenging because several of the main steps rely on open conjectures.

The objective of this expository note is to briefly discuss some recent results regarding the subfamily
of (1.1) of the shape xr + yr = Czp obtained by combining the classical approach with Frey curves
and some of the ideas in the Darmon’s program. For a brief introduction to Diophantine equations
including a quick discussion of the modular method we refer the reader to [22].
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2. Elliptic curves

For this section, the main reference is [24].

Let K be a field. An elliptic curve E over K is a smooth curve in P2 given by an equation

y2z + a1xyz + a3yz
2
= x3 + a2x

2z + a4xz
2
+ a6z

3,

with ai ∈K. If the characteristic of K is not 2 or 3, then we can transform to a much simpler model
given by the affine equation

Y 2
=X3

+ aX + b, ∆E = −16(4a
3
+ 27b2) ≠ 0,

where a and b ∈K. There is a distinguished K-point, the ‘point at infinity’, which we denote by ∞.
Given a field L ⊇K, the set of L-points on E is

E(L) = {(x, y) ∈ L2
∶ y2 = x3 + ax + b} ∪ {∞}.

It turns out that the set E(L) has the structure of an abelian group with∞ as the identity element.
The group structure is easy to describe geometrically: three points P1, P2, P3 ∈ E(L) add up to
the identity element if and only if there is a line ℓ defined over L meeting E in P1, P2, P3 (with
multiplicities counted appropriately). The classic Mordell–Weil Theorem states that for a number
field K the group E(K) is finitely generated.

Now suppose K = Q. There is an integer NE called the conductor of E with the following properties.
There is an algorithm to compute NE and, for all primes p ∤ NE , the reduction modulo p of a
minimal model for E gives an elliptic curve Ẽ over Fp. Moreover, if a prime p ∣ NE then it divides
the discriminant of any model for E so the reduced curve Ẽ/Fp is not an elliptic curve, and we can
think of NE as a measure of how ‘complicated’ these reduced curves are. Finally, for p ∤ NE , the
set Ẽ(Fp) is necessarily finite, and we define

ap(E) = p + 1 −#Ẽ(Fp).

3. Modular forms

For this section, the main reference is [14].

Let N ∈ Z≥1. A modular form of weight 2 for Γ0(N) is an analytic function on the complex upper
half-plane H satisfying suitable growth conditions at the boundary as well as the transformations

f (
az + b

cz + d
) = (cz + d)2f(z)

for all matrices ( a b
c d ) ∈ SL2(Z) satisfying c ∣ N and all z ∈ H. Invariance under translation by 1

leads to a Fourier expansion

f(z) =
∞
∑
n=0

an(f)q
n, q = e2πiz.

The group Γ0(N) acts on H via fractional linear transformations and the quotient Y0(N) = Γ0(N)/H
has the structure of a non-compact Riemann surface. This has a standard compactification denoted
X0(N) and the difference X0(N) − Y0(N) is a finite set of points called the cusps. To the modular
forms that vanish at all the cusps we call cusp forms; in particular, they satisfy a0(f) = 0.

The space of cusp forms S2(N) is a finite dimensional C-vector space. There is a natural family of
commuting operators Tn ∶ S2(N) → S2(N) (with n ≥ 1) called the Hecke operators. The eigenforms
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of level N are the cusp forms that are simultaneous eigenvectors for all the Hecke operators. An
eigenform f is called normalized if a1(f) = 1 and thus its Fourier expansion has the form

f = q + ∑
n≥1

an(f)q
n.

with conductor NE there is a normalized eigenform f of weight 2 for Γ0(NE), such that for every
prime p the corresponding Fourier coefficient satisfies ap(f) = ap(E). When this is the case we
say that the curve E is modular. In his seminal paper [27] and its companion [26] (jointly with
R. Taylor), Andrew Wiles proved the S-T-W Conjecture in the case of semistable elliptic curves,
i.e. elliptic curves with square free conductor NE . This groundbreaking theorem was also the final
step to complete the proof of FLT.

4. Galois representations

For this section, the main references are [14, Chapter 9] and (for more advanced readers) [7].

Let Q be the algebraic closure of Q inside C. We write GQ ∶= Gal(Q/Q) for the group of field
automorphisms of Q (fixing Q). The group GQ is called the absolute Galois group of Q. The
representations of GQ are central objects in Arithmetic Geometry. Here we will work only with
residual Galois representations, also known as mod p representations.

Definition 4.1. A mod p Galois representation is defined to be a group homomorphism

ρ ∶ Gal(Q/Q) → GL2(Fp)

which is continuous with respect to the profinite topology on the left and the discrete topology on
the right. In particular, there is a finite extension Fq/Fp such that the image of ρ lies in GL2(Fq).

Definition 4.2. A mod p Galois representation ρ ∶ Gal(Q/Q) → GL2(Fp) is unramified at a
prime ℓ ≠ p if ρ(Iℓ) = {1}, where Iℓ is an inertia group at ℓ in Gal(Q/Q). Otherwise, it is ramified
at ℓ.

The reader unfamiliar with the inertia subgroups of GQ should simply keep in mind that there is a
unique (up to conjugation) inertia subgroup for each prime ℓ and that a representation ρ is easier
to understand if it has little ramification. Further, there is a positive integer N(ρ), called the Serre
level of ρ, that measures the ramification of ρ at all primes ℓ ≠ p. Moreover, by Galois theory,
the kernel of a representation ρ as above corresponds to a field extension of finite degree which is
ramified at a prime ℓ if and only if ρ is ramified at ℓ.

4.1. Representations from elliptic curves. Let E be an elliptic curve over C. The structure of
the abelian group E(C) is particularly easy to describe. There is a discrete lattice Λ ⊂ C of rank 2
(that is, as an abelian group Λ ≃ Z2) depending on E, and an isomorphism

E(C) ≃ C/Λ.
Let p be a prime. By the p-torsion of E(C) we mean the subgroup

E[p] = {Q ∈ E(C) ∶ pQ = 0}.
It follows that E[p] ≃ (Z/pZ)2 which can be viewed as a 2-dimensional Fp-vector space. Now let
E be an elliptic curve over Q. Then we may view E as an elliptic curve over C, and with the
above definitions obtain an isomorphism E[p] ≃ (Z/pZ)2. However, in this setting the points of
E[p] have algebraic coordinates, and are acted on component-wise by Gal(Q/Q). Thus we obtain
a 2-dimensional representation depending on E/Q and the prime p:

ρE,p ∶ GQ → GL2(Fp),
3



called the mod p representation attached to E. We say that ρE,p is irreducible if the image ρE,p(GQ)

cannot be conjugated into a subgroup of GL2(Fp) consisting of upper triangular matrices.

4.2. Representations from modular forms. Let f = ∑n≥1 an(f)qn be a weight-2 normalized
eigenform for Γ0(N) with N ≥ 1. Denote by Kf = Q({an(f) ∶ n ≥ 1}) the field generated by the
Fourier coefficients of f . It is a non-trivial theorem that an(f) are algebraic integers and Kf is a
number field, which we view as a subfield of Q. We denote by OKf

the ring of integers of Kf , and
we have an(f) ∈ OKf

for all n; we refer to [14, §6.5] for details.

Let p be a prime number, and p a prime in Kf above p. We write Fp = OKf
/p for the residue field

at p. The following is a consequence of a deep result proved by Eichler and Shimura.

Theorem 1 (Eichler–Shimura). Up to isomorphism, there is a unique semisimple mod p Galois
representation

ρf,p ∶ Gal(Q/Q) → GL2(Fp)

satisfying the following properties: it is unramified outside Np and for every prime ℓ ∤ Np, the
characteristic polynomial of ρf,p(Frobℓ) is the mod p reduction of

(4.3) X2
− aℓ(f)X + ℓ.

Here Frobℓ denotes a choice of a Frobenius element at ℓ in Gal(Q/Q) and by semisimple we mean
that ρf,p is either irreducible or isomorphic to the sum of two characters.

Definition 4.4. A mod p Galois representation

ρ ∶ Gal(Q/Q) → GL2(Fp)

is said to be modular of level N ≥ 1 if there exists a weight-2 eigenform f for Γ0(N) and a prime p ∣ p
in Kf such that ρ ≃ ρf,p. In this case, we also say that ρ arises from f .

Building on the groundbreaking work of Wiles’ and many others, Khare and Wintenberger [17, 18]
have proved the following theorem known as Serre’s Conjecture.

Theorem 2 (Serre Conjecture). Let ρ ∶ GQ → GL2(Fp) be an irreducible odd representation. Assume
that ρ arises from a finite flat group scheme at p. Then ρ is modular of level N(ρ) and weight 2.

The technical condition that ρ arises from a finite flat group scheme at p should, for simplicity, be
thought informally as the restriction of ρ to an inertia subgroup at p being ‘well behaved’; recall
that ramification at ℓ ≠ p is measured by N(ρ).

5. Proof of FLT

For this section, the main references are [9] and [12].

We have introduced the minimal set of tools to sketch the proof of FLT. We decided to organize
the proof in three main steps because these are the steps that we will focus on when presenting the
Darmon program in the later sections.

Step 1 – Construction: Suppose p ≥ 5 is prime, and a, b and c are non-zero coprime integers
satisfying ap + bp = cp. We can reorder (a, b, c) so that

b ≡ 0 (mod 2) and ap ≡ −1 (mod 4).

We consider the Frey–Hellegouarch curve which depends on (a, b, c):

(5.1) E ∶ Y 2
=X(X − ap)(X + bp).
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From all the hypotheses on a, b, c, we compute the minimal discriminant and conductor of E:

∆ =
(abc)2p

28
≠ 0, NE =∏

ℓ∣∆
ℓ.

Note that the conductor is square-free and satisfies 2 ∣∣ N .

Step 2 – Residual modularity: As p ≥ 5, it follows from the work of Mazur [21] that ρE,p is
irreducible. It is well known that ρE,p is odd and Hellegouarch showed that ρE,p arises on a finite
flat group scheme at p. Computing the Serre level we obtain N(ρE,p) = 2. Therefore, by Serre
conjecture, we have that

ρE,p ≃ ρg,p

where g is an eigenform of level 2 and weight 2, and p ∣ p is a prime in Kg.

Step 3 – Contradiction: There are no eigenforms of weight 2 and level 2, a contradiction. □

Remark 5.2. Note that the Frey curve construction applies for trivial solutions as well. However, in
this case, it does not give rise to an elliptic curve (as it is singular), therefore, there are no modular
representations associated with it. This is a fortunate feature of the classical Fermat equation. We
will see below that this is no longer the case for the GFE which obstructs its resolution in many
cases.

Remark 5.3. The reader may be wondering where is Wiles’ work used in the previous proof. Since
the original proof of FLT predates the proof of Serre’s conjecture, modularity of the residual repre-
sentation ρE,p was instead derived as a corollary of modularity of the Frey curve E. Note that E
has square-free conductor hence it is modular by the work of Wiles. We note also that the work of
Wiles and all the ideas around it is heavily used in the proof of Serre’s conjecture.

6. Darmon’s program

As we see from the proof of FLT it is the modularity together with the little ramification of the
2-dimensional residual representation ρE,p that is key for the contradiction. The Frey curve E is
simply a geometric object from which we know how to extract a 2-dimensional Galois representation
with the right properties, namely ρE,p.

There are higher dimensional generalizations of elliptic curves, called abelian varieties, in the sense
that there is a group structure on the set of points of an abelian variety A. The main idea of
Darmon’s program is to put the focus directly on 2-dimensional mod p representations with the
correct properties, and find the abelian varieties giving rise to them.

Definition 6.1. Let r, q, p ≥ 2 be integers. A Frey representation of signature (r, q, p) over a number
field K in characteristic ℓ > 0 is a Galois representation

ρ = ρ(t) ∶ GK(t) → GL2(F)

where F is a finite field of characteristic ℓ such that the following conditions hold:

(i) The restriction of ρ to GK(t) has trivial determinant and is irreducible.
(ii) The projectivization ρgeom ∶ GK(t) → PSL2(F) of this representation is unramified outside {0,1,∞}.
(iii) It maps the inertia groups at 0, 1, and ∞ to subgroups of PSL2(F) of order r, q, and p

respectively.

Here K(t) is the function field over K in the variable t and K is an algebraic closure of K, and
Gk ∶= Gal(k/k) denotes the absolute Galois group of k for any field k.
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In [11], Darmon counts the number of Frey representations up to some equivalence relation (in-
troduced in loc. cit.) and describes (often not in an explicitly way) where they should arise. In
particular, he proves the following classification result.

Theorem 3 (Hecke-Darmon). Up to equivalence, there is only one Frey representation of signa-
ture (p, p, p). It occurs over Q in characteristic p and is associated with the Legendre family

L(t) ∶ y2 = x(x − 1)(x − t).

Example 6.2. It is not difficult to check that the classical Frey–Hellegouarch curve

y2 = x(x − ap)(x + bp)

is obtained from L(t) after specialization at t0 =
ap

ap+bp and taking quadratic twist by −(ap + bp).

A Frey representation ρ(t) should be seen as a family of representations where we can specialize
the parameter t to obtain mod p representations of GK as in the previous example. We are then
interested in the modularity of the mod p representations obtained in this way.

From now on, we restrict ourselves to the case of K being a totally real field, i.e., a number field such
that all embeddings into C have image in R. This is a natural restriction, because modularity related
objects are very poorly understood for fields with at least one complex embedding. In contrast, for
a totally real K there is a well established theory of Hilbert modular forms (see [15]) which are the
natural replacement for the modular forms over Q; it is not our objective to discuss details of this
theory here. The only thing to keep in mind is that they satisfy the analogous properties over K
to those of modular forms over Q. In particular, modularity of abelian varieties and their residual
representations can be defined via a connection to representations arising from Hilbert eigenforms
(see [25]). Therefore, we can state the following special case of Serre conjecture over totally real
fields.

Conjecture 6.3 ([11, Conjecture 3.2]). Let K be a totally real field. Let ρ ∶ GK → GL2(Fp)

be a totally odd and irreducible representation with determinant the mod p cyclotomic character.
Assume that ρ arises from a finite flat group scheme at all primes p in K above p. Then there is
a Hilbert eigenform g over K for Γ0(N(ρ)) of (parallel) weight 2 and a prime p ∣ p in the field of
coefficients of g such that ρ ≃ ρg,p.

This conjecture is still open for all K, therefore when applying the Darmon program in the next
section we need to derive residual modularity without it. Also, this conjecture is concerned with
2-dimensional representations whilst representations arising from abelian varieties of dimension n
are naturally of dimension 2n. We thus focus only on the subfamily of abelian varieties giving rise
to 2-dimensional representations, as per the next definition and well known theorem.

Definition 6.4. Let A be an abelian variety over a field L of characteristic 0. We say that A/L is
of GL2-type (or GL2(F )-type) if there is an embedding F ↪ EndL(A) ⊗Z Q where F is a number
field with [F ∶ Q] = dimA.

Theorem 4. Let A/L be an abelian variety of GL2(F )-type. Let p be a prime in F above p.
Then there is a 2-dimensional mod p representation attached to A, denoted ρA,p ∶ GK → GL2(Fp),
unramified outside the primes where A has bad reduction and p.

Darmon also discusses the existence of Frey varieties J(a, b, c)/Q associated to solutions (a, b, c)
of (1.1) for any choice of exponents, and explains how these give rise (after base changing to certain
totally real number fields) to all the possible Frey representations. However, only the varieties
for exponents (p, p, p) and (p, p, r) are explicit enough to work with. Finally, he finishes with the
following extremely difficult conjecture.
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Conjecture 6.5 (Large image conjecture, [11, Conjecture 4.1]). Let K be totally real field. There
exists a constant CK such that, for any abelian variety A/K of GL2-type with EndK(A) ⊗Q = K,
and all primes p of K of norm > CK , we have SL2(Fp) ⊂ ρA,p(GK).

We finish this section with the description of how the Darmon program is expected to work. We
highlight every step that we do not know how to do, or that depends on conjectures or relies on
computations that are not possible in practice with current algorithms and hardware.

1. Let a, b, c ∈ Z satisfy ar + bq = cp and gcd(a, b, c) = 1.
2. Let J(a, b, c)/Q be the associated Frey variety. Over a totally real field K it becomes of GL2(K)-

type. We consider J = J(a, b, c)/K and its mod p representation ρJ,p given by Theorem 4.
3. Assume p > CK where CK is the constant in Conjecture 6.5. If (a, b, c) is non-trivial then

SL2(Fp) is conjecturally contained in the image of ρJ,p by Conjecture 6.5. In particular, ρJ,p is
conjecturally irreducible.

4. The representation ρJ,p is totally odd with cyclotomic determinant and conjecturally arises on a
finite flat group scheme at all p ∣ p in K.

5. We compute the Serre level N(ρJ,p).
6. The representation ρJ,p is conjecturally modular of level N(ρJ,p) and (parallel) weight 2 by

Conjecture 6.3, that is ρJ,p ≃ ρg,p for some Hilbert eigenform g of level N(ρJ,p).
7. We compute the relevant space of eigenforms and show that ρJ,p /≃ ρg,p except for the eigenforms g0

corresponding via modularity to the Frey varieties J0 ∶= J(a, b, c) where (a, b, c) satisfies abc = 0
i.e. Frey varieties attached to trivial solutions.

8. Conjecturally the varieties J0 have complex multiplication, thus SL2(Fp) is not contained in the
image of ρg0,p. Thus we also have ρJ,p /≃ ρg0,p, a contradiction with Step 6.

In view of the three main steps in the proof of FLT, the previous bullet points are divided as follows:
Step 1 corresponds to 1-2, Step 2 corresponds to 3-6 and Step 3 corresponds to 7-8.

To conclude this section, we note that the contradiction step which was trivial in the proof of FLT is
quite challenging in this more general situation. As mentioned in Remark 5.2, the trivial solutions
represent a major obstruction, but there are other issues. Namely, the space of revelant Hilbert
modular forms might not be accessible with current software implementations (either because it
is too large, or by lack of efficient algorithms in certain specific situations). Moreover, we miss a
general method for discarding isomorphisms between residual Galois representations. In particular,
it is an open problem to show that given two non-isogenous rational elliptic curves E,E′, then for
all large enough primes p, the representations ρE,p and ρE′,p are not isomorphic.

7. Some recent results for signature (r, r, p)

We now discuss our contribution to the Darmon’s program in the case of the generalized Fermat
equation

(7.1) xr + yr = Czn,

where r is a fixed prime ≥ 3, C is a fixed positive integer and n ≥ 2 is an integer.

Throughout this paragraph, we fix the following notation.

● ζr primitive r-th root of unity
● ωi = ζ

i
r + ζ

−i
r , for every i ≥ 0

● h(X) =
(r−1)/2
∏
i=1
(X − ωi) ∈ Z[X]
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● K = Q(ζr)+ = Q(ω1) maximal totally real subfield of Q(ζr)
● OK integer ring of K
● pr unique prime ideal above r in OK (totally ramified)

Let a, b be non-zero coprime integers such that ar + br ≠ 0. Following a construction of Kraus [19],
we consider the curve Cr(a, b) given by the equation

y2 = (ab)
r−1
2 xh(

x2

ab
+ 2) + br − ar.

The discriminant of this model is

∆r(a, b) = (−1)
r−1
2 22(r−1)rr(ar + br)r−1

which is non-zero as ar + br ≠ 0. In particular, it defines a hyperelliptic curve of genus r−1
2 .

Examples 7.2. Here are explicit equations for Kraus’ curve with r = 3,5,7.

r = 3 ∶ y2 = x3 + 3abx + b3 − a3

r = 5 ∶ y2 = x5 + 5abx3 + 5a2b2x + b5 − a5

r = 7 ∶ y2 = x7 + 7abx5 + 14a2b2x3 + 7a3b3x + b7 − a7.

The Jacobian Jr(a, b) of the curve Cr(a, b) is thus an abelian variety of dimension r−1
2 . In particular,

when r > 3, it has dimension > 1 and hence there is no obvious way to attach 2-dimensional Galois
representations to Jr(a, b).

To circumvent this issue we use ideas from Darmon’s program as explained in the previous section.
In particular, the theorem below shows how to recover Kraus’ Frey hyperelliptic curve in a similar
way as the usual Frey-Hellegouarch elliptic curve (see Example 6.2). This result achieves Steps 1-2
from the description of Darmon’s program given in Section 6 in the case of equation (7.1).

Theorem 5 ([6]). There exists a hyperelliptic curve C ′r(t) over K(t) of genus r−1
2 such that J ′r(t) =

Jac(C ′r(t)) is of GL2(K)-type.

Moreover, for every prime ideal p in OK above a rational prime p, the representation

ρJ ′r(t),p ∶ GK(t) → GL2(OK/p)

is a Frey representation of signature (r, r, p).

The hyperelliptic curve Cr(a, b)/K is obtained from C ′r(t) after specialization at t0 =
ar

ar+br and

taking the quadratic twist by − (ab)
r−1
2

ar+br .

In this result, it is crucial to notice that the prime p is arbitrary. In particular, if we choose p = r (and
hence p = pr), then ρJ ′r(t),pr is a Frey representation of signature (r, r, r). According to Theorem 3,
it arises in the Legendre family, allowing us to appeal to the stronger results available for the case
of elliptic curves.

This is a key idea in Darmon’s program that assuming an appropriate generalization of Serre’s
modularity conjecture for totally real fields (Conjecture 6.3), the mod pr representation is modular
and plays the role of a ‘seed’ for modularity of all Frey varieties described by Darmon (see diagram
in [11, p. 433]).

The result below makes this argument unconditional for the Kraus Frey variety - under some ir-
reducibility assumption (which is proved to hold for many values of r such as r = 7 for instance)
and parity conditions - hence completing Steps 3-6 in Darmon’s program from Section 6 for equa-
tion (7.1).
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Theorem 6. Let (a, b, c) be a non trivial primitive solution to equation (7.1) for exponent n = p
prime such that p ∤ 2rC. Assume that

(7.3) a ≡ 0 (mod 2) and b ≡ 1 (mod 4).

Let Jr be the Jacobian of Cr(a, b) base changed to K. Suppose further that ρJr,p is absolutely
irreducible. Then, there is a Hilbert newform g over K satisfying the following properties:

(i) g is of parallel weight 2, trivial character and level 22p2rnC ;
(ii) ρJr,p ≃ ρg,P for some P ∣ p in the field of coefficients Kg of g;
(iii) for all q2 ∣ 2 in K, we have (ρg,P ⊗Qp)∣Iq2 ≃ δ ⊕ δ−1, where δ is a character of order r;
(iv) K ⊂Kg.

Moreover, if nC ≠ 1 then g has no complex multiplication.

Note that, contrary to the case of Fermat’s last theorem, the 2-adic assumptions (7.3) in Theorem 6
are not valid in general; indeed, from the symmetry of (7.1), we can only swap a and b, so the
possibility of c being even is excluded in the above theorem. We shall explain in the next section
how several ‘Frey varieties’ can complement each other to obtain a complete resolution of certain
generalized Fermat equations (7.1) for specific values of r and C.

8. Diophantine applications

In this section, we discuss the Steps 7-8 from Section 6 for the case r = 7 and C = 3 in the generalized
Fermat equations (7.1). In this situation, we achieve the following complete result.

Theorem 7 ([5, Theorem 1.1]). For all integers n ≥ 2, there are no non-trivial primitive solutions to

(8.1) x7 + y7 = 3zn.

First of all, we can reduce the problem of solving x7 + y7 = 3zn for n ≥ 2 to the case where n = p
is prime and p ≥ 5, p ≠ 7, using simple arithmetic considerations and work of Bennett-Skinner [1]
(for n = 2), Bennett-Skinner-Yazdani [2] (for n = 3) and Serre [23] (for n = 7).

In [5], we actually give three different proofs of Theorem 7 which rely on a ‘multi-Frey’ ap-
proach using a combination of Kraus’ hyperelliptic curve C7(a, b) and two Frey elliptic curves E/Q
and F /Q(ζ7 + ζ−17 ) whose construction is due to Darmon and Freitas, respectively.

Our first proof uses the ‘classical’ modular method outlined in the case of FLT in Section 5 with
the two aformentioned Frey elliptic curves attached to equation (8.1).

● (Darmon, [20, §4.5.1.3]) A Frey curve over Q:

Ea,b ∶ y
2
= x3 + a2x

2
+ a4x + a6

where

a2 = −(a − b)2,

a4 = −2a4 + a3b − 5a2b2 + ab3 − 2b4,

a6 = a6 − 6a5b + 8a4b2 − 13a3b3 + 8a2b4 − 6ab5 + b6.

● (Freitas, [16, p. 619]) A Frey curve over the totally real cubic field Q(ζ7 + ζ−17 ):

Fa,b ∶ y
2
= x(x −Aa,b)(x +Ba,b),

9



where for i = 1,2, we have ωi = ζ
i
7 + ζ

−i
7 and

Aa,b = (ω2 − ω1)(a + b)
2

Ba,b = (2 − ω2)(a
2
+ ω1ab + b

2
).

We note here that Freitas’ Frey elliptic curve F = Fa,b is defined over a totally real field of degree > 1
and is not base change from Q. In particular, its mod p representations are not explained by
Darmon’s classification of Frey representations of signature (7,7, p).

The total running time for this first proof is approximately 40 minutes with around 3/4 of this time
devoted to computing the Hilbert newforms over Q(ζ7 + ζ−17 ) of parallel weight 2 and level q32q3q7
(with qi the unique prime ideal above i in Q(ζ7 + ζ−17 )) used to deal with the case where ab is even
and 7 ∣ a + b. There are precisely 121 such newforms generating a space of dimension 818, with
coefficient fields of degree up to 18.

Our second and third proofs of Theorem 7 add in the use of Kraus’ Frey hyperelliptic curve

C7(a, b) ∶ y
2
= x7 + 7abx5 + 14a2b2x3 + 7a3b3x + b7 − a7

in two different ways: the second proof uses C7(a, b) ‘as much as possible’ whilst the third and last
proof is designed to minimize the computational time among all proofs we give. The total running
times for these proofs are approximatively 10 minutes and 1 minute respectively.

Our second proof is much more involved and requires introducing many new elimination tech-
niques [6, §9] to discard the isomorphism in Theorem 6(ii). To illustrate the computational chal-
lenges we have faced, let us mention that we had to compute here in the space of Hilbert newforms
of level q22q3q

2
7 which has dimension 698. This dimension is comparable in size with that of the

space considered in the first proof, but it turns out to be much faster to initialize yielding only 61
newforms. Some of these forms have coefficient field of degree as large as 54 making the elimination
procedure considerably more difficult. Fortunately, we are able to reduce the number of newforms
to consider down to 25 using the condition K ⊂ Kg from Theorem 6(iv). As explained in [5] this
‘instantaneous reduction’ is only available when working with abelian varieties of dimension > 1.
Moreover, we also developed a collection of techniques to speed up the elimination procedure re-
sulting in a great saving in the total running time; see [5, §7]. While this approach a priori requires
harder and lengthier computations, it ends up allowing for a faster proof than the previous one.

Our third and last proof builds on the two previous ones. Combining information about the Frey
(hyper)elliptic curves introduced above and their twists we manage to lower down to 104 the dimen-
sion of the largest space we have to consider. Then we apply the techniques explained for the second
proof to deal with the corresponding 19 newforms (whose coefficient fields are all of degree ≤ 15)
yielding the most efficient proof in less than a minute. This illustrates how the additional structures
carried by the Frey varieties of dimension > 1 can be exploited to reduce computations, despite the
fact that we have to work with Jacobians of hyperelliptic curves.

Finally, let us point out that these methods have already been applied to other Fermat-type equa-
tions to obtain results not within reach of the classical approach with Frey elliptic curves. In the
case of r = 11 in (7.1), we refer the reader to [6] and for signature (p, p,5) to the recent preprint of
Chen and Koutsianas [8].
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