
INTRODUCTION TO THE MODULAR METHOD
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Abstract. This article is based on the author’s talk in April 2022
during the 2nd Trimester Program on Modularity and the Generalized
Fermat Equation held online at Bhaskaracharya Pratishthana in Pune,
India. We introduce the modular method for Diophantine equations,
focusing on the case of Fermat’s last theorem, and other variants.

1. Framework

For this section, we fix coprime non-zero integers A,B,C.

1.1. Generalized Fermat equations. We are interested in the follow-
ing Diophantine problem: Find all sextuples (x, y, z, p, q, r) of integers such
that p, q, r ≥ 2 and

(1.1.1) Axp +Byq = Czr.

This is a widely open problem, despite lots of efforts by many mathemati-
cians starting with the old Greeks. In this article, we survey a tiny but
important part of this long story focusing mainly on the case

A = B = C = 1 and/or p = q = r.

1.2. Solutions and signatures. To start with, let us introduce some ter-
minology. Given integers p, q, r ≥ 2, we call solution of the generalized
Fermat equation (1.1.1) any triple (a, b, c) of integers such that

Aap +Bbq = Ccr.

We say that a solution (a, b, c) is primitive if gcd(a, b, c) = 1. The triple (p, q, r)
is called the signature of (1.1.1). In solving (1.1.1), the strategy is completely
different according to whether

1

p
+

1

q
+

1

r
> 1, = 1, or < 1.

If 1
p + 1

q + 1
r = 1, then we have (p, q, r) = (3, 3, 3), (2, 4, 4), (2, 3, 6) (up to

permuting p, q, r) and we are led to the problem of determining the set
of rational points on a rational elliptic curve with j-invariant j = 0, 1728.
When 1

p + 1
q + 1

r > 1, the possible exponents (p, q, r) are (2, 2, k) with k ≥ 2
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and (2, 3, 3), (2, 3, 4), (2, 3, 5) (again, up to permutation) and, by a theorem
of Beukers, if (1.1.1) has at least one solution, then there exist infinitely
many (see [Beu98] for a detailed account). In this article, we only discuss
the case where 1

p + 1
q + 1

r < 1.

1.3. Fixed signatures: general result. For any integer p ≥ 4, the equa-
tion

AXp +BY p = CZp

defines a smooth, projective curve of genus (p−1)(p−2)
2 ≥ 2. By Mordell’s

conjecture (proved by Faltings), it has only finitely many rational points.
More generally, applying Faltings’ theorem in a subtle way, Darmon and
Granville proved the following theorem ([DG95]).

Theorem 1.3.1 (Darmon–Granville). Let p, q, r ≥ 2 be integers such that
1
p + 1

q + 1
r < 1. Then there exist only finitely many primitive solutions to the

generalized Fermat equation Axp +Byq = Czr.

There are plenty of particular cases where this result is made explicit (by
listing all solutions) using a variety of techniques such as linear forms in
logarithms, modular Galois representations and Chabauty–Kim methods,
among others.

1.4. Varying signatures: general expectations. For the case of varying
signatures, certain important specific cases are also known (such as Fermat’s
last theorem!) but there is only a conjectural general answer, based on the
following statement which was formulated by Masser and Oesterlé in the
mid eighties.

Conjecture 1.4.1 (abc-conjecture). Let ε > 0. There exists a positive
constant κ(ε) such that the following property holds: for every non-zero
coprime integers a, b, c such that a+ b = c, we have

max(|a|, |b|, |c|) ≤ κ(ε)rad(abc)1+ε.

Here, for a non-zero integer n, we denote by rad(n) the product of all distinct
prime divisors of n.

The abc-conjecture has many consequences in arithmetic but also in ge-
ometry (e.g. on effective versions of Mordell’s conjecture) and other areas
of mathematics. Applied to the generalized Fermat equation, it implies the
following statement.

Theorem 1.4.2. Assume that the abc-conjecture holds. Then, there are
only finitely many triples (xp, yq, zr) such that x, y, z are coprime integers
and p, q, r are integers ≥ 2 satisfying

1

p
+

1

q
+

1

r
< 1 and Axp +Byq = Czr.



INTRODUCTION TO THE MODULAR METHOD 3

Proof. Let x, y, z be coprime integers for which there exist integers p, q, r ≥ 2
satisfying 1

p + 1
q + 1

r < 1 and Axp + Byq = Czr. If xyz = 0, then there are

only finitely many choices for xp, yq, zr: if, say, x = 0, then y and z are
coprime and thus yq | C and zr | B. Let us now assume xyz 6= 0. The
non-zero integers Axp, Byq and Czr may not be coprime. Write d for their
gcd. We show that d is bounded independently of x, y, z. Let ` be a prime.
By assumption, at least one of x, y, z is not divisible by `. It then follows
that

v`(d) = min (v`(Ax
p), v`(By

q), v`(Cz
r)) ≤ max(v`(A), v`(B), v`(C)).

Here v`(n) denotes the `-adic valuation of n ∈ Z\{0}. This inequality shows
in particuler that d divides ABC. Applying the abc-conjecture to the three
non-zero coprime integers Axp/d,Byq/d, Czr/d, we get that for all ε > 0,
we have

(1.4.3)

∣∣∣∣Axpd
∣∣∣∣ , ∣∣∣∣Byqd

∣∣∣∣ , ∣∣∣∣Czrd
∣∣∣∣ ≤ κ(ε)rad

(
Axp

d
· By

q

d
· Cz

r

d

)1+ε

.

On the other hand, we have

rad

(
Axp

d
· By

q

d
· Cz

r

d

)
≤ rad

(
ABC

d
xpyqzr

)
≤ rad

(
ABC

d

)
rad (xpyqzr) as d divides ABC

≤
∣∣∣∣ABCxyzd

∣∣∣∣ .
It then follows from (1.4.3) that we have

|x|p ≤ κ(ε)
|A|ε|BC|1+ε

dε
|xyz|1+ε , |y|q ≤ κ(ε)

|B|ε|AC|1+ε

dε
|xyz|1+ε ,

|z|r ≤ κ(ε)
|C|ε|AB|1+ε

dε
|xyz|1+ε

and hence

(1.4.4) |x|p , |y|q , |z|r ≤ κ(ε) |ABC|1+ε |xyz|1+ε .

Therefore we have

|xyz| = (|x|p)
1
p (|y|q)

1
q (|z|r)

1
r ≤ κ(ε)χp,q,r |ABC|χp,q,r·(1+ε) |xyz|χp,q,r·(1+ε)

≤ κ(ε)
41
42 |ABC|

41
42

(1+ε) |xyz|
41
42

(1+ε)

since χp,q,r := 1
p + 1

q + 1
r ≤

1
2 + 1

3 + 1
7 = 41

42 . Choosing ε < 1
41 , we have

1− 41

42
(1 + ε) > 0 and |xyz|1−

41
42

(1+ε) ≤ κ(ε)
41
42 |ABC|.

Therefore |xyz| is bounded and so are |x|p, |y|q and |z|r by (1.4.4). �

Based on computational investigations (partly due to Beukers and Zagier),
the following conjecture has been formulated in the case A = B = C = 1.
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Conjecture 1.4.5. The only primitive solutions in non-zero integers of the
generalized Fermat equation

xp + yq = zr, with
1

p
+

1

q
+

1

r
< 1

correspond to the following identities:

1p + 23 = 32 (p > 6), 25 + 72 = 34,

73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222

and

177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072,

338 + 15490342 = 156133.

In all identities listed above, Beal noticed that the smallest exponent is 2.
This led him to the following statement (also known as the Tijdeman–Zagier
conjecture) whose proof is awarded $1 million by the American Mathema-
tical Society.

Conjecture 1.4.6 (Beal Prize conjecture). If, for integers p, q, r ≥ 2 such
that 1

p + 1
q + 1

r < 1, the equation xp + yq = zr has a solution in non-zero

integers, then one of the exponents p, q, and r is equal to 2.

1.5. Trivial solutions. As a consequence of Theorem 1.4.2 (and hence of
the abc-conjecture), if (x, y, z) is a primitive solution in non-zero integers of
a generalized Fermat equation, then for large enough p and fixed r ≥ 3, we
have  |xyz| = 1 for signature (p, p, p);

|xy| = 1 for signature (p, p, r);
|z| = 1 for signature (r, r, p).

Definition 1.5.1. For these signatures, we call such triples the trivial so-
lutions together with solutions (x, y, z) such that xyz = 0.

As we shall explain later, these ‘trivial solutions’ will be the main obs-
truction in solving the corresponding generalized Fermat equation.

2. Background

In this section, we recall some background on Galois representations, mod-
ular forms and elliptic curves which will be useful when discussing the mod-
ular method.
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2.1. Galois representations. Let us denote by Gal(Q/Q) the absolute
Galois group of Q, that is the automorphism group of an algebraic closure Q
of Q. The group Gal(Q/Q) is profinite, and hence compact.

Let p be a prime number. Write Fp for an algebraic closure of Fp. The
following definition is quite restrictive (there are plenty of other ‘types’ of
Galois representations!) but will be enough for what we are concerned with
in the present article.

Definition 2.1.1. A mod p Galois representation is defined to be a group
homomorphism

ρ : Gal(Q/Q)→ GL2(Fp)
which is continuous with respect to the profinite topology on the left and
the discrete topology on the right.

We shall see in the next subsections that there are Galois representations
attached to classical eigenforms and to rational elliptic curves but we first
recall the following useful definition.

Definition 2.1.2. A mod pGalois representation ρ : Gal(Q/Q)→ GL2(Fp)
is unramified at a prime ` if ρ(I`) = {1}, where I` is an inertia group at `
in Gal(Q/Q). Otherwise, it is ramified at `.

2.2. Modular forms. Let f =
∑

n≥1 an(f)qn be a weight-2 (cuspidal) new-

form of level Γ0(N) with N ≥ 1 (that is, f has trivial Nebentypus character).
Denote by K = Q({an(f);n ≥ 1}) the field generated by the Fourier coef-
ficients of f (which are also its Hecke eigenvalues since f is normalized:
a1(f) = 1) and recall that K is a number field (which is viewed as a subfield
of a fixed algebraic closure Q of Q) such that an(f) is an integral element
in K for every n ≥ 1.

Let p be a prime number. We fix a place of Q above p and consider the
reduction of integral elements in Q with respect to this choice. Its residue
field is an algebraic closure Fp of Fp.

The following result was proved by Eichler and Shimura – and later gene-
ralized to arbitrary weights ≥ 2 by Deligne.

Theorem 2.2.1 (Eichler–Shimura, Deligne). Up to isomorphism, there is
a unique semisimple mod p Galois representation

ρf,p : Gal(Q/Q)→ GL2(Fp)

satisfying the following properties: it is unramified outside Np and for every
prime ` - Np, the characteristic polynomial of ρf,p(Frob`) is the reduction of

(2.2.2) X2 − a`(f)X + `.

Here Frob` denotes a choice of a Frobenius element at ` in Gal(Q/Q).

This result motivates the following definition.
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Definition 2.2.3. A mod p Galois representation

ρ : Gal(Q/Q)→ GL2(Fp)
is said to be modular of level N ≥ 1 if there exists a weight-2 newform f
of level Γ0(N) such that ρ ' ρf,p. In that case, we also say that ρ arises
from f .

It may happen that a mod p Galois representation which is modular
of some level N is also modular of a smaller level. This phenomenon is
intimately related to congruences between modular forms and is the subject
of the following deep result, known as Ribet’s level-lowering theorem.

Theorem 2.2.4 (Ribet, [Rib90]). Let ρ : Gal(Q/Q) → GL2(Fp) be irre-
ducible and modular of level N , with p ≥ 3. Let ` be a prime dividing N
precisely once. When ` 6= p, assume further that N is coprime to p. If ρ is
finite at `, then ρ is modular of level N/`.

Remark 2.2.5. At a prime ` 6= p, the condition that ρ is finite merely means
that ρ is unramified. At ` = p, the condition is more technical but we shall
rephrase it more simply in the special case of interest to us in the next
subsection.

2.3. Elliptic curves. Let E be an elliptic curve defined over Q and let p
be a prime number. Denote by E[p] the set of p-torsion points on E.
Then, E[p] is a 2-dimensional vector space over Fp. The absolute Galois

group Gal(Q/Q) of Q acts linearly on E[p]. Hence, after choosing a basis
for the p-torsion, this gives rise to a mod p Galois representation

ρE,p : Gal(Q/Q)→ Aut(E[p]) ' GL2(Fp),
known as the mod p representation associated with E.

Lemma 2.3.1. Assume that p is odd. The representation ρE,p is irreducible
if and only if it is absolutely irreducible (i.e., it is irreducible when we extend
the scalars to Fp).

Proof. If ρE,p is absolutely irreducible, then it is irreducible. Let us now
show the reverse implication. Recall from the properties of the Weil pairing
that det(ρE,p) = χp where χp denotes the mod p cyclotomic character and
assume, by the contrapositive, that ρE,p is absolutely reducible, i.e. that

there exists P ∈ F2
p which is a common eigenvector for every ρE,p(σ) with σ ∈

Gal(Q/Q). Let c denote the complex conjugation in Gal(Q/Q). Since p
is odd, we have that det ρE,p(c) = χp(c) = −1 6= 1. Therefore, ρE,p(c) has

order 2 and is conjugate in GL2(Fp) to the diagonal matrix

(
1 0
0 −1

)
. In

particular, up to multiplication by a scalar in Fp, we have that P actually lies

in F2
p, hence proving that the representation ρE,p : Gal(Q/Q) → GL2(Fp)

is already reducible.
�
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Remark 2.3.2. Let ρ be a Galois representation with values in GL2(F)
where F is a subfield of Fp. Assume that p > 2 and that ρ is odd in the sense

that det ρ(c) = −1, where c denotes the complex conjugation in Gal(Q/Q)
(with respect to an embedding of Q into C). Then, the previous proof shows
more generally that ρ is irreducible if and only if it is absolutely irreducible.

Recall that the conductor of E is a certain integer NE whose prime di-
visors are precisely the primes of bad reduction for E. By the criterion of
Néron–Ogg–Shafarevich, the representation ρE,p is unramified outside NEp.
If ` 6= p is a prime of good reduction, then the characteristic polynomial
of ρE,p(Frob`) is the reduction of

(2.3.3) X2 − a`(E)X + `.

Moreover, E has (bad) multiplicative reduction at a prime ` if and only
if v`(NE) = 1. In that case, we have the following result of Tate describing
the ramification of ρE,p, where we denote by jE the j-invariant of E and
by v` the `-adic valuation.

Proposition 2.3.4 (Tate). Let ` 6= p be a prime such that E has multi-
plicative reduction at `. Then, the representation ρE,p is unramified at ` if
and only if we have v`(jE) ≡ 0 (mod p).

When E has multiplicative reduction at p, the condition that ρE,p is
finite at p is equivalent to vp(jE) ≡ 0 (mod p) ([DDT97, Proposition 2.12]).
Therefore, according to Remark 2.2.5 and Tate’s result, for any prime ` of
multiplicative reduction, we have that the representation ρE,p is finite at `
if and only if v`(jE) ≡ 0 (mod p).

The following important result was conjectured by Ogg and proved by
Mazur in 1977.

Theorem 2.3.5 (Mazur, [Maz77, Theorem 8]). The only possible torsion
subgroups of E(Q) are

Z/nZ for 1 ≤ n ≤ 10 and n = 12
Z/2Z⊕ Z/2nZ for 1 ≤ n ≤ 4.

We finally state the following crucial result which was historically the last
missing ingredient in the proof of Fermat’s last theorem.

Theorem 2.3.6 (Wiles [Wil95], Taylor–Wiles [TW95]). Assume E/Q is
semistable and for s ∈ C such that Re(s) > 3/2, let

L(E, s) =
∏

p prime

1

1− ap(E)p−s + 1NE (p)p1−2s
=
∑
n≥1

an(E)

ns

be the L-function of E. Here, 1NE (p) is 0 or 1 according to whether p
divides NE or not, respectively. Then, fE =

∑
n≥1 an(E)qn is a weight-2

newform of level Γ0(NE).
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3. Fermat’s last theorem

3.1. Statement and first reductions. In this section, we summarize the
main steps in the proof of Fermat’s last theorem whose statement is recalled
below.

Theorem 3.1.1 (Fermat’s last theorem). For every integer n ≥ 3, there
are no non-trivial solutions to the equation xn + yn = zn.

The proof is by contradiction assuming the existence of a non-trivial so-
lution (a, b, c) for some n ≥ 3. Without loss of generality, we can assume
that a, b, c are pairwise coprime integers.

Euler proved the case n = 3 and Fermat the case n = 4 using a fa-
mous descent argument. Hence, we may assume that n = p ≥ 5 is prime.
Switching a, b, c if necessary, we may further suppose that

(3.1.2) ap ≡ −1 (mod 4) and bp ≡ 0 (mod 32).

We now proceed in five main steps. The whole strategy is known as the
modular method.

3.2. The (original) modular method. The strategy presented here fol-
lows the original approach of Hellegouarch, Frey, Mazur, Ribet, and Wiles
– among others. In particular, we do not appeal to (but sometimes men-
tion) more recent results that could be used to weaken some assumptions or
shorten certain proofs.

Step 1: Construction. Following an idea of Hellegouarch and Frey, we con-
sider the cubic curve given by the following Weierstrass equation

(3.2.1) E : y2 = x(x− ap)(x+ bp).

Its discriminant
∆ = 16(abc)2p

is non-zero since (a, b, c) is non-trivial and hence (3.2.1) defines an elliptic
curve over Q. Incidentally, we note that E has all of its 2-torsion which
is defined over Q. The standard c4 and j coefficients of this model are
computed to be

c4 = 16
(
a2p + (ab)p + b2p

)
and j =

c3
4

∆
.

Since a, b and c are pairwise coprime, the formulas for ∆ and c4 show
that (3.2.1) defines a minimal model for E/Q away from 2. Moreover, the
curve E has bad reduction at an odd prime ` if and only if ` | abc.

Under our assumption (3.1.2), the change of variables

x = 4X and y = 8Y + 4X

gives the following integral model for E/Q:

(3.2.2) Y 2 +XY = X3 +
bp − ap − 1

4
X2 − (ab)p

16
X.
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For this model we have

c4 = a2p + (ab)p + b2p and ∆ =
(abc)2p

28
.

In particular, these coefficients c4 and ∆ are coprime, and hence (3.2.2)
defines a (global) minimal model for E/Q. In particular, the elliptic curve E

is semistable and its minimal discriminant is ∆min(E) = (abc)2p

28
.

We summarize the main properties of E/Q we have proved so far in the
following statement.

Proposition 3.2.3. The elliptic curve E has all of its 2-torsion points which
are defined over Q. Moreover, E is semistable and has bad reduction pre-
cisely at the primes dividing abc. If ` is such a bad prime, then we have

v`(jE) = −v`(∆min) =

{
−2pv`(abc) ≡ 0 (mod p) if ` odd;
8− 2pv2(abc) 6≡ 0 (mod p) if ` = 2.

Step 2: Modularity. Write ρE,p for the mod p Galois representation attached
to E and p as constructed in §2.3. Applying Wiles’ modularity theorem, we
obtain the following result using the terminology introduced in §2.2.

Theorem 3.2.4. The mod p representation ρE,p is modular of level

NE = rad

(
(abc)p

16

)
=
∏
`|abc

`.

Here, the product runs over all prime divisors ` of abc.

Proof. Since E is semistable, then NE = rad(∆min(E)) = rad
(

(abc)p

16

)
is the

conductor of E. Consider the weight-2 newform fE of level NE associated
to E by Wiles’ modularity theorem 2.3.6. Let ` be a prime not dividing pNE .
Then, we have a`(fE) = a`(E) and ρfE ,p(Frob`) and ρE,p(Frob`) have the
same characteristic polynomials by equations (2.2.2) and (2.3.3). It follows
that ρE,p ' ρfE ,p ([DS74, Lemme 3.2]). �

Remark 3.2.5. Note that Wiles’ proof of the modularity of all semistable
rational elliptic curves followed from the modularity of either their mod 3
or their mod 5 representation.

Step 3: Irreducibility. As a consequence of Tate’s result (Proposition 2.3.4)
and Proposition 3.2.3, we have the following statement.

Proposition 3.2.6. The representation ρE,p is unramified away from {2, p}.
Proof. Let ` be a prime, ` 6= p. If ` - abc, then E has good reduction at `
and hence ρE,p is unramified at `. Assume now that ` | abc and ` > 2.
According to Proposition 3.2.3, we have v`(jE) ≡ 0 (mod p), and hence by
Proposition 2.3.4, the representation ρE,p is unramified at `. �

The following theorem is the main result of the third step. It follows
from Mazur’s theorem 2.3.5 and from the local description of the mod p
representation associated with E.
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Theorem 3.2.7. The representation ρE,p is absolutely irreducible, i.e., it is

irreducible when we extend the scalars to Fp.

Proof. According to Lemma 2.3.1, the representation ρE,p is absolutely irre-
ducible if and only if it is irreducible. Therefore, assume for a contradiction
that ρE,p is reducible. Write D for a rational subgroup of order p in E[p] and

denote by χ : Gal(Q/Q)→ F×p the character giving the action of Gal(Q/Q)
on D. Since E is semistable by Step 1, one has either χ = χp or χ is trivial
([Ser72, p. 307]). Here χp denotes the mod p cyclotomic character. In the
latter case, the curve E has a rational point of order p. Moreover, E also has
all of its 2-torsion which is defined over Q. Therefore, the order of the tor-
sion subgroup of E(Q) is ≥ 4p ≥ 20, hence contradicting Mazur’s theorem.
In the former case, the elliptic curve E′ = E/D has a rational subgroup D′

of order p and the action of Gal(Q/Q) on D′ is given by χpχ
−1 which is

trivial by assumption. We conclude as before. �

Remark 3.2.8. Alternatively, one may also invoke Mazur’s isogeny theorem
from 1978 ([Maz78, Theorem 1]) and its later generalizations; see the article
Mazur’s isogeny theorem by Philippe Michaud-Jacobs in this volume. Note
also that the previous proof requires only that E/Q is semistable and has
all of its 2-torsion which is defined over Q.

Step 4: Level lowering. The proof of the following statement uses Ribet’s
level-lowering theorem from §2.2 and the results from the previous steps.

Theorem 3.2.9. The representation ρE,p is modular of level 2.

Proof. By Step 2, the representation ρE,p is modular of level NE and by
Step 3, it is absolutely irreducible. Let N ′E be the prime-to-p part of NE .
Let us first show that ρE,p is modular of level N ′E . If p - NE (that is p - abc),
then N ′E = NE and there is nothing to say. Else, if p | NE , then ρE,p is
finite at p by the discussion after Proposition 2.3.4 and Proposition 3.2.3.
According to Ribet’s level-lowering theorem 2.2.4, we conclude that ρE,p is
modular of level N ′E , as desired.

Write N ′E = 2m where m is the squarefree product of all odd prime num-
bers 6= p dividing abc. Let ` be a prime dividing m (in particular, ` is differ-
ent from p and odd). According to Proposition 3.2.6, the representation ρE,p
is unramified at `, and hence finite. Applying Ribet’s theorem repeatedly
to such primes `, we obtain that ρE,p is modular of level N ′E/m = 2. �

Step 5: Contradiction. Contrary to other Diophantine equations – as we
shall see in the next section – this last step is particularly easy in the case
of Fermat’s last theorem. Indeed, it is well-known that there are no nonzero
cusp forms of weight 2 and level 2.

This gives the desired contradiction with Theorem 3.2.9 and concludes
the proof of Fermat’s last theorem.
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4. Extending the modular method

In this section, we discuss some obstacles that arise when applying the
modular method to tackle other Diophantine equations of Fermat type. For
simplicity, we focus on some specific examples which are representative of
these difficulties.

4.1. An example of Ribet–Darmon–Merel. We deal here with the equa-
tion

(4.1.1) xp + yp = 2zp

for a prime exponent≥ 7 which was studied independently by Ribet ([Rib97])
and Darmon–Merel ([DM97]) in 1997.

We briefly explain how we can proceed with Steps 1–4 of the modular
method in this situation and then discuss in more detail the fifth step.

Step 1. Let (a, b, c) be a non-trivial primitive solution to equation (4.1.1).
Recall that primitive means gcd(a, b, c) = 1 and non-trivial means abc is
neither 0 nor ±1. Then a and b are odd, and without loss of generality, one
may assume that ap ≡ −1 (mod 4). Associated with such a solution (a, b, c)
is the following rational elliptic curve E = Ea,b,c given by

E : y2 = x(x− ap)(x− 2cp).

We note that E is a quadratic twist (by −1) of the elliptic curve given by
the equation y2 = x(x− ap)(x+ bp).

Its c4- and ∆-coefficients are

(4.1.2) c4 = 24
(
a2p − 2apcp + 4c2p

)
and ∆ = 26(abc)2p.

The elliptic curve E/Q is semistable away from 2. Moreover, E has mul-
tiplicative reduction at each odd prime ` | abc and v`(jE) ≡ 0 (mod p),

where jE =
c34
∆ denotes the j-invariant of E.

More precisely, the conductor NE of E satisfies

(4.1.3) NE =

{
rad(abc) if abc is even
25rad(abc) if abc is odd.

This finishes Step 1 of the modular method for this equation.

Step 2. Since we no longer have the semistability condition, Wiles’ original
modularity theorem 2.3.6 does not apply. Fortunately, this result has been
generalized by Breuil, Conrad, Diamond and Taylor who proved in 2001
that every elliptic curve over Q is modular ([BCDT01]), hence concluding
Step 2.
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Step 3. Similarly, the proof of Theorem 3.2.7 does not apply anymore as E
is not semistable in general. A key observation is that E has a prime 6= 2
of multiplicative reduction though. This follows from (4.1.3) and the fact
that, if abc is a power of 2, then (a, b, c) is trivial.

Fortunately again, at least for p ≥ 17, Mazur’s work mentioned in Re-
mark 3.2.8 together with the previous observation imply that the mod p rep-
resentation ρE,p associated with E is absolutely irreducible ([Maz78, Corol-
lary 4.4]). This completes Step 3.

Step 4. Combining the arithmetic properties of E listed above with modu-
larity and irreducibility results for E and ρE,p respectively, Ribet’s level-
lowering theorem 2.2.4 implies that, at least for p ≥ 17, the representa-
tion ρE,p arises from a weight-2 newform f of level M which is explicitly
given by:

M =

{
2 if abc is even
32 if abc is odd.

This completes Step 4.

Step 5. We now turn our attention to the last step of the modular method
for equation (4.1.1).

In the case abc is even, we reach a contradiction exactly as in Fermat’s
last theorem.

From now on, assume that abc is odd. This case is much more difficult!
The reason is that the space of weight-2 newforms of level 32 is non-trivial.
More precisely, it is a one-dimensional vector space over C generated by a
form f whose first Fourier coefficients are given by

f = q − 2q5 − 3q9 + 6q13 + 2q17 + . . .

It turns out that f corresponds (by modularity or more simply via the
Eichler–Shimura correspondence which associates a rational elliptic curve
to every weight-2 newform of trivial Nebentypus character with integral
Fourier expansion) to (the isogeny class of) the elliptic curve F/Q given by
the following minimal equation:

(4.1.4) F : y2 = x3 − x.

At this point it is worth noting that F is isomorphic to the elliptic curve E1,1,1

corresponding to the trivial solution (1, 1, 1), hence showing that it is ac-
tually the main obstacle in solving this equation. Therefore, we are led to
the problem of contradicting the following isomorphism between two mod p
elliptic Galois representations:

(4.1.5) ρE,p ' ρF,p.

This problem, in general, only has a conjectural answer, given by the fol-
lowing.
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Conjecture 4.1.6 (Frey–Mazur). There exists a constant C > 0 such that
the following holds: for all elliptic curves E and F defined over Q and for
all prime numbers p > C, if ρE,p and ρF,p are isomorphic, then E and F
are isogenous over Q.

Remark 4.1.7.
(1) The abc-conjecture implies the following weaker (non-uniform) state-

ment in the direction of the Frey–Mazur conjecture. Fix an ellip-
tic curve E/Q. Then, there exists a constant CE > 0 (depending
on E) such that for all elliptic curves F/Q and for all prime num-
bers p > CE , if ρE,p and ρF,p are isomorphic, then E and F are
isogenous over Q (see for instance [Bil08, Appendice B] for a proof
of this assertion).

(2) If it exists, the constant C in Conjecture 4.1.6 is > 17 since (as it
was first observed by Cremona) the two elliptic curves

E : y2 + xy = x3 − 8x+ 27

and

F : y2 + xy = x3 + 8124402x− 11887136703,

labelled [LMF23, 3675.g1] and [LMF23, 47775.be1] in LMFDB res-
pectively, have isomorphic mod 17 representations ([Bil16]). For
values of p < 17, examples (or even infinite families of examples)
of pairs of ‘congruent elliptic curves’ can be found in the literature.
Such congruences play a crucial role in Wiles’ proof of his famous
‘3-5 trick’ for instance.

(3) It is worth noting that given an elliptic curve E/Q and a prime p
such that ρE,p is absolutely irreducible, there are infinitely many
weight-2 newforms f whose mod p representation ρf,p (coming from
Theorem 2.2.1, suitably generalized to take into account that f
need not be of trivial Nebentypus character) is isomorphic to ρE,p.
See [DT94] for a precise statement in this direction. Rephrased in
these terms, Conjecture 4.1.6 then implies that only finitely many of
these forms f correspond (via the aforementioned Eichler–Shimura
correspondence) to rational elliptic curves. More generally, one may
wonder for instance whether there are only finitely of the forms f
for which the degree of their coefficient field is bounded by a given
constant?

Applying this conjecture to the isomorphism (4.1.5) gives the desired
conclusion. Indeed, isogenous elliptic curves have the same conductor, and
hence

25rad(abc) = NE = M = 25,

that is abc = ±1, in contradiction with the assumption that (a, b, c) is non-
trivial.

http://www.lmfdb.org/EllipticCurve/Q/3675.g1
http://www.lmfdb.org/EllipticCurve/Q/47775.be1
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Remarkably, Darmon and Merel manage to reach a contradiction in the
fifth step of the modular method for equation (4.1.1) without appealing to
any conjecture.

Fundamental to their approach is the fact that the elliptic curve F given
by (4.1.4) has complex multiplication by Q(i). This allows for a precise un-
derstanding of the image G in GL2(Fp) of the Galois representation ρF,p. In
particular, we have thatG is the normalizer of a Cartan subgroup of GL2(Fp)
which is split or non-split according to whether p ≡ 1 (mod 4) or p ≡ −1
(mod 4), respectively.

Assume first that p ≡ 1 (mod 4). By the theory of complex multiplication
and the isomorphism (4.1.5), the curve E gives rise to a rational point
on the modular curve Xsplit(p) parametrizing elliptic curves with a mod p
representation whose image is contained in the normalizer of a split Cartan
subgroup.

For p ≥ 17, a result of Momose ([Mom84]) then implies that E has po-
tentially good reduction at all primes 6= 2, contradicting the key observa-
tion made in Step 3. This finishes the proof of the main result for (large
enough) p ≡ 1 (mod 4). We note that this case was already known to Ribet
([Rib97]).

Remark 4.1.8. Results by Bilu–Parent–Rebolledo ([BPR13]) for p ≥ 17 and
Balakrishnan–Dogra–Müller–Tuitman–Vonk ([BDM+19]) for p = 13 show
that Xsplit(p)(Q) consists only of cusps and complex multiplication points.
A sledge-hammer argument for this case!

Assume now that p ≡ −1 (mod 4). Using basic arguments from complex
multiplication and Tate’s theory, Darmon and Merel first show that p does
not divide abc. Their main contribution is then an integrality result (anal-
ogous to that of Momose mentioned above) for the j-invariant of E which
we state below in the general form given in their article.

Theorem 4.1.9 (Darmon–Merel, [DM97, Theorem 8.1]). Suppose that E
is an elliptic curve over Q such that the following conditions hold:

(1) The curve E has a Q-rational subgroup of order r, with r = 2 or 3.
(2) We have p ≥ 5, and the image in GL2(Fp) of the mod p representa-

tion associated with E is isomorphic to the normalizer of a non-split
Cartan subgroup.

Then the j-invariant of E belongs to Z[1
p ].

The Frey elliptic curve E has all of its 2-torsion points which are defined
over Q. In particular, it has a Q-rational subgroup of order 2. Moreover,
since p ≡ −1 (mod 4), its mod p representation has image isomorphic to
the normalizer of a non-split Cartan subgroup by the isomorphism (4.1.5)
and the theory of complex multiplication. Applying Darmon–Merel’s result
then gives the desired contradiction thanks to formula (4.1.2) and the fact
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that p - abc. This finishes Step 5 of the modular method in the case p ≡ −1
(mod 4).

Remark 4.1.10. In the non-split Cartan case, there are no results analogous
to those mentioned in Remark 4.1.8, but Lemos ([Lem19, Proposition 2.1])
has improved on Darmon–Merel’s Theorem 4.1.9 by showing that if E has a
Q-rational isogeny of degree r ∈ Σ := {2, 3, 5, 7, 13} and a mod p represen-
tation for some prime p /∈ Σ which has image contained in the normalizer of
a non-split Cartan subgroup, then its j-invariant is integral.

Combining the previous arguments (for p ≥ 17) with work of Dénes
from 1952 (for the smaller exponents) yields the following result.

Theorem 4.1.11 (Ribet, Darmon–Merel). For every integer n ≥ 3, the
Fermat equation xn + yn = 2zn has no non-trivial primitive solution.

4.2. Other signatures, other problems. Frey curves associated with
generalized Fermat equations have been constructed by various authors for
a few signatures including (p, p, 2), (p, p, 3) and (r, r, p) for r = 3, 5, 7 (see
the survey articles [Kra99] and [BCDY15] for a more complete list).

For a non-trivial primitive solution (a, b, c) of x3 +y3 = zp, this Frey curve
reads as follows:

Ea,b : y2 = x3 + 3abx+ b3 − a3.

It has discriminant −2433(a3 + b3)2.
Solutions with c 6= 0 give rise to elliptic curves, which luckily have complex

multiplication when (a, b, c) is trivial, that is abc = 0. Since the curve Ea,b
has a rational 2-torsion point (namely the point (a− b, 0)), Darmon–Merel’s
arguments mentioned in the previous subsection apply to eliminate the new-
forms corresponding to trivial solutions.

Unfortunately, another issue arises in the contradiction step due to the
existence of an ‘almost solution’ (or ‘pseudo-solution’) corresponding to the
Catalan identity 23+13 = 32. More precisely, we do not know how to discard
the isomorphism

ρEa,b,p ' ρE2,1,p, with E2,1 : y2 = x3 + 6x− 7,

for an arbitrary non-trivial solution (a, b, c), hence preventing us from com-
pletely solving the equation x3 + y3 = zp. Despite this, it has been solved
for various values of the exponent p using a great variety of techniques. The
following statement combines work of Euler, Darmon–Granville ([DG95]),
Kraus ([Kra98b]), Bruin ([Bru00]), Dahmen ([Dah08]), Chen–Siksek ([CS09])
and Freitas ([Fre16]).

Theorem 4.2.1. The generalized Fermat equation x3 +y3 = zp has no non-
trivial primitive solution for p ≥ 3 in a set of primes P of density ≈ 0.844.
For instance, P contains the primes p ≥ 3 such that

p < 109, or p ≡ 51, 103, 105 (mod 106), or p ≡ 2 (mod 3).
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4.3. Frey curves over totally real fields and Frey varieties. Let r ≥ 7
be a prime. In [Fre15], Freitas associates several explicit Frey curves with
the equation xr + yr = Czp which are defined over totally real subfields
of Q(ζr). Here, ζr denotes a primitive r-th root of unity in C. In addition,
a construction of Kraus attaches a hyperelliptic curve with nice arithmetic
properties to any non-trivial primitive solution.

For the case r = 7, we therefore have the following three different Frey
objects associated with a non-trivial primitive solution (a, b, c) of the equa-
tion x7 + y7 = Czp:

• (Darmon, [Kra99, §4.5.1.3]) A Frey curve over Q:

y2 = x3 + a2x
2 + a4x+ a6

where

a2 = −(a− b)2,

a4 = −2a4 + a3b− 5a2b2 + ab3 − 2b4,

a6 = a6 − 6a5b+ 8a4b2 − 13a3b3 + 8a2b4 − 6ab5 + b6.

See also [Fre15, p. 629] where the curve E(a,b) is isomorphic to this

curve via the change of variables given by x = X/62 − a2/3 and
y = Y/63.
• (Freitas, [Fre15, p. 619]) A Frey curve over the totally real cubic

field Q(ζ7 + ζ−1
7 ):

y2 = x(x−Aa,b)(x+Ba,b),

where for i = 1, 2, we have ωi = ζi7 + ζ−i7 and

Aa,b = (ω2 − ω1)(a+ b)2

Ba,b = (2− ω2)(a2 + ω1ab+ b2).

• (Kraus, [Kra98a]; see also [BCDF23a]) A Frey hyperelliptic curve
over Q:

y2 = x7 + 7abx5 + 14a2b2x3 + 7a3b3x+ b7 − a7.

This is a very rich situation! How the modular method extends to deal with
it is the topic of current research (see [BCDF23a, BCDF23b]) and of the
article Darmon’s Program: A survey by Imin Chen and Angelos Koutsianas
in this volume.
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