On Darmon's program for the generalized Fermat equation of signature (r, r, p) with Imin Chen, Luis Dieulefait, and Nuno Freitas

Nicolas Billerey

Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne

Third Portuguese Number Theory Meeting CIDMA, Aveiro September, 9th 2024

 $2Q$

Table of contents

[Quick review on the modular method](#page-2-0)

[Extension of Darmon's program](#page-13-0)

[Diophantine results](#page-43-0)

Table of contents

[Quick review on the modular method](#page-2-0)

[Extension of Darmon's program](#page-13-0)

[Diophantine results](#page-43-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Main steps in the proof of Fermat's Last Theorem

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

K ロ K K 제8 K X 제공 X X 제공 X 및 및 X 9 Q Q X

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONSTRUCTION] (Hellegouarch, Frey)

▶ Consider

$$
E: y^2 = x(x - a^p)(x + b^p).
$$

The discriminant $\Delta = 2^4 (abc)^{2p}$ of this model is non-zero, and hence it defines an elliptic curve over Q (with full 2-torsion).

 \triangleright There is a 2-dimensional mod p representation attached to E

$$
\overline{\rho}_{E,p}: G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(E[p]) \simeq \operatorname{GL}_2(\mathbf{F}_p)
$$

given by the action of $G_{\mathbf{Q}}$ on the group of p-torsion points on E.

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[MODULARITY] (Wiles)

▶ Without loss of generality, assume from now on that

 $a^p \equiv -1 \pmod{4}$ and $b^p \equiv 0 \pmod{16}$.

Hence the curve E is semistable (at 2).

 \triangleright Since E/\mathbf{Q} is semistable, the elliptic curve E/\mathbf{Q} is **modular**.

► Its conductor is
$$
N_E = \text{rad}(\Delta_{\min}(E)) = \text{rad}\left(\frac{(abc)^p}{16}\right)
$$
.

KOL E KELKELKAPIKAN

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[Irreducibility] (Mazur)

 \triangleright Since E has full 2-torsion over **Q** and is semistable, the representation

$$
\overline{\rho}_{E,p}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_p)
$$

is absolutely irreducible.

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[Level lowering] (Ribet)

- \triangleright By Tate's theory (recall: E/\mathbf{Q} is semistable), the representation $\overline{\rho}_{E,n}$ has Serre's conductor $N(\overline{\rho}_{E,n}) = 2$.
- ▶ It has weight 2 in the sense of Edixhoven (or Serre).
- \triangleright Since E/\mathbf{Q} is modular and the representation $\bar{\rho}_{E,p}$ is absolutely irreducible, then $\bar{\rho}_{E,p}$ arises from a newform of weight 2 and level $N(\overline{\rho}_{E,p}) = 2$ (with trivial character).

KOL E KELKELKAPIKAN

Main steps in the proof of Fermat's Last Theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONTRADICTION]

▶ There are no newforms of weight 2 and level 2!

イロト イ母 トイミト イミト ニヨー りんぺ

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

イロト イ母 トイミト イミト ニヨー りんぺ

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

イロト イ母 トイミト イミト ニヨー りんぺ

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

Table of contents

[Quick review on the modular method](#page-2-0)

[Extension of Darmon's program](#page-13-0)

[Diophantine results](#page-43-0)

KOL E KELKELKAPIKAN

Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$
Ax^r + By^q = Cz^p
$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$
x^r + y^r = Cz^p
$$

where $r \geq 3$ is a fixed prime, C is a fixed positive integer and p is a prime which is allowed to vary.

Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$
Ax^r + By^q = Cz^p
$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$
x^r + y^r = Cz^p
$$

where $r \geq 3$ is a fixed prime, C is a fixed positive integer and p is a prime which is allowed to vary.

[Quick review on the modular method](#page-2-0) [Extension of Darmon's program](#page-13-0) [Diophantine results](#page-43-0)

KORKA SERKER ORA

Notation

 $r \geq 3$ prime number ζ_r primitive r-th root of unity $\omega_i = \zeta_r^i + \zeta_r^{-i}$, for every $i \geq 0$ $h(X) = \prod (X - \omega_i) \in \mathbf{Z}[X]$ $(r-1)/2$ $i=1$ $K = \mathbf{Q}(\zeta_r)^+ = \mathbf{Q}(\omega_1)$ maximal totally real subfield of $\mathbf{Q}(\zeta_r)$ \mathcal{O}_K integer ring of K \mathfrak{p}_r unique prime ideal above r in \mathcal{O}_K (totally ramified)

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$
C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}}xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.
$$

The discriminant of this model is

$$
\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

$$
r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3
$$

\n
$$
r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5
$$

\n
$$
r = 7: \quad y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7.
$$

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 \Rightarrow

 $2Q$

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$
C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}}xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.
$$

The discriminant of this model is

$$
\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

$$
r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3
$$

\n
$$
r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5
$$

\n
$$
r = 7: \quad y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7.
$$

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$
C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}}xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.
$$

The discriminant of this model is

$$
\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$
r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3
$$

\n
$$
r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5
$$

\n
$$
r = 7: \quad y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7.
$$

イロト イ押 トイヨト イヨト \mathbb{R}^{n-1} 2990

Frey representations

For a field M of characteristic 0, write $G_M = \text{Gal}(\overline{M}/M)$ for its absolute Galois group.

A Frey representation of signature $(r, q, p) \in (\mathbf{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

 $\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to GL_2(\mathbf{F})$

where **F** finite field of characteristic ℓ such that the following

- 1. The restriction of $\bar{\rho}$ to $G_{\overline{L}(t)}$ has trivial determinant and is
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \text{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}.$
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 299

Frey representations

For a field M of characteristic 0, write $G_M = \text{Gal}(\overline{M}/M)$ for its absolute Galois group.

Definition (Darmon)

A Frey representation of signature $(r, q, p) \in (\mathbb{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

$$
\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to \text{GL}_2(\mathbf{F})
$$

where **F** finite field of characteristic ℓ such that the following conditions hold.

- 1. The restriction of $\bar{\rho}$ to $G_{\bar{L}(t)}$ has trivial determinant and is irreducible.
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \text{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}.$
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

←ロト ←伊ト ←ミト ←ミト 290

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke–Darmon)

Up to equivalence, there is only one Frey representation of signature (p, p, p) . It occurs over **Q** in characteristic p and is associated with the Legendre family

$$
L(t): y^2 = x(x-1)(x-t).
$$

The classical Frey–Hellegouarch curve

$$
y^2 = x(x - a^p)(x + b^p)
$$

is obtained from $L(t)$ after **specialization** at $t_0 = \frac{a^p}{a^p + 1}$ quadratic twist by $-(a^p + b^p)$.

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke–Darmon)

Up to equivalence, there is only one Frey representation of signature (p, p, p) . It occurs over **Q** in characteristic p and is associated with the Legendre family

$$
L(t): y^2 = x(x-1)(x-t).
$$

The classical Frey–Hellegouarch curve

$$
y^2 = x(x - a^p)(x + b^p)
$$

is obtained from $L(t)$ after **specialization** at $t_0 = \frac{a^p}{a^p + 1}$ $\frac{a^{\nu}}{a^{\nu}+b^{\nu}}$ and quadratic twist by $-(a^p + b^p)$.

KORKA SERKER ORA

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \text{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

 \triangleright For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$
\rho_{A,\lambda}: G_L \longrightarrow \mathrm{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \mathrm{GL}_2(F_{\lambda}),
$$

coming from the linear action of G_L on $V_\lambda(A) = V_\ell(A) \otimes_{F \otimes \mathbf{O}_\ell} F_\lambda$.

- \blacktriangleright The representations $\{\rho_{A,\lambda}\}_\lambda$ form a strictly compatible system of F-integral representations.
- **E** For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$
\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),
$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} . **A O A Y A B A B A B A YOU A B A YOU A**

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \text{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

► For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$
\rho_{A,\lambda}: G_L \longrightarrow \mathrm{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \mathrm{GL}_2(F_{\lambda}),
$$

coming from the linear action of G_L on $V_\lambda(A) = V_\ell(A) \otimes_{F \otimes \mathbf{O}_{\ell}} F_\lambda$.

- \blacktriangleright The representations $\{\rho_{A,\lambda}\}\$ form a strictly compatible system of F-integral representations.
- **E** For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$
\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),
$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \text{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

► For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$
\rho_{A,\lambda}: G_L \longrightarrow \mathrm{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \mathrm{GL}_2(F_{\lambda}),
$$

coming from the linear action of G_L on $V_\lambda(A) = V_\ell(A) \otimes_{F \otimes \mathbf{O}_{\ell}} F_\lambda$.

 \triangleright The representations $\{\rho_{A,\lambda}\}\$ form a strictly compatible system of F-integral representations.

E For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$
\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),
$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \text{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

► For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$
\rho_{A,\lambda}: G_L \longrightarrow \mathrm{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \mathrm{GL}_2(F_{\lambda}),
$$

coming from the linear action of G_L on $V_\lambda(A) = V_\ell(A) \otimes_{F \otimes \mathbf{Q}_\ell} F_\lambda$.

- \triangleright The representations $\{\rho_{A,\lambda}\}\$ form a strictly compatible system of F-integral representations.
- **►** For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$
\overline{\rho}_{A,\lambda}:G_L\longrightarrow\mathrm{GL}_2(\mathbf{F}_{\lambda}),
$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Frey representations in signature (r, r, p)

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

 $K \hookrightarrow \text{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

 $\overline{\rho}_{J_r'(t), \mathfrak{p}}: G_{K(t)} \rightarrow \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$

is a Frey representation of signature (r, r, p) . The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + 1}$ $\frac{a^r}{a^r+b^r}$ and **quadratic twist** by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r+b^r}$.

 \rightarrow The proof uses Darmon's construction of Frey representations of signature (p, p, r) .

Frey representations in signature (r, r, p)

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

 $K \hookrightarrow \text{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$
\overline{\rho}_{J_r'(t), \mathfrak{p}}: G_{K(t)} \to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})
$$

is a Frey representation of signature (r, r, p) . The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + 1}$ $\frac{a^r}{a^r+b^r}$ and **quadratic twist** by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r+b^r}$.

 \rightarrow The proof uses Darmon's construction of Frey representations of signature (p, p, r) .

Frey representations in signature (r, r, p)

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

 $K \hookrightarrow \text{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$
\overline{\rho}_{J_r'(t), \mathfrak{p}}: G_{K(t)} \to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})
$$

is a Frey representation of signature (r, r, p) . The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^{r+1}}$ $\frac{a^r}{a^r+b^r}$ and **quadratic twist** by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r+b^r}$.

➥ The proof uses Darmon's construction of Frey representations of signature (p, p, r) .

Frey representations in signature (r, r, p)

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

 $K \hookrightarrow \text{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$
\overline{\rho}_{J_r'(t), \mathfrak{p}}: G_{K(t)} \to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})
$$

is a Frey representation of signature (r, r, p) . The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^{r+1}}$ $\frac{a^r}{a^r+b^r}$ and **quadratic twist** by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r+b^r}$.

➥ The proof uses Darmon's construction of Frey representations of signature (p, p, r) .

Two-dimensional **p**-adic and mod **p** representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

 $\rho_{J_{\mathbf{r}},\mathbf{p}}: G_K \to \mathrm{GL}_2(K_{\mathbf{p}})$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

 \blacktriangleright For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r) .

Two-dimensional **p**-adic and mod **p** representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$
\rho_{J_r, \mathfrak{p}}: G_K \to \text{GL}_2(K_{\mathfrak{p}})
$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

 \blacktriangleright For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r) .

Two-dimensional **p**-adic and mod **p** representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$
\rho_{J_r,\mathfrak{p}}:G_K\to \mathrm{GL}_2(K_{\mathfrak{p}})
$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

Example 1 For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r) .

 $2Q$

Step 2 – The representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ and modularity

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r, \mathfrak{p}_r} : G_K \to \text{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ➥ Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- **►** New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- ➥ Serre's modularity conjecture (Khare–Wintenberger).
- \rightarrow A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ and modularity

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r, \mathfrak{p}_r} : G_K \to \text{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ➥ Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- **►** New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- ➥ Serre's modularity conjecture (Khare–Wintenberger).
- \rightarrow A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r, \mathfrak{p}_r}$ and modularity

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r, \mathfrak{p}_r} : G_K \to \text{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- **►** Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- **►** New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- ➥ Serre's modularity conjecture (Khare–Wintenberger).
- \rightarrow A modularity lifting theorem (Khare–Thorne).

Step 4 – Refined level lowering

Assume that there exists a non-zero integer c such that $a^r + b^r = Ce^p$ for some fixed positive integer C. Let **p** be a prime ideal in \mathcal{O}_K above the rational prime p.

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r, \mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2 \mathfrak{p}_r^2 \mathfrak{n}'$ such that

$$
\overline{\rho}_{J_r, \mathfrak{p}} \simeq \overline{\rho}_{g, \mathfrak{P}}
$$

for some $\mathfrak{P} | p$ in the coefficient field K_q of q. Here, \mathfrak{n}' denotes the product of ideals coprime to $2r$ dividing C . Moreover, we have $K \subset K_q$.

➥ Uses a refined level lowering theorem of Breuil–Diamond.

Step 4 – Refined level lowering

Assume that there exists a non-zero integer c such that $a^r + b^r = Ce^p$ for some fixed positive integer C. Let **p** be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2 \mathfrak{p}_r^2 \mathfrak{n}'$ such that

$$
\overline{\rho}_{J_r, \mathfrak{p}} \simeq \overline{\rho}_{g, \mathfrak{P}}
$$

for some $\mathfrak{B} \mid p$ in the coefficient field K_q of q. Here, \mathfrak{n}' denotes the product of ideals coprime to $2r$ dividing C .

➥ Uses a refined level lowering theorem of Breuil–Diamond.

Step 4 – Refined level lowering

Assume that there exists a non-zero integer c such that $a^r + b^r = Ce^p$ for some fixed positive integer C. Let **p** be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r, \mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2 \mathfrak{p}_r^2 \mathfrak{n}'$ such that

$$
\overline{\rho}_{J_r, \mathfrak{p}} \simeq \overline{\rho}_{g, \mathfrak{P}}
$$

for some $\mathfrak{P} | p$ in the coefficient field K_q of g. Here, \mathfrak{n}' denotes the product of ideals coprime to $2r$ dividing C .

➥ Uses a refined level lowering theorem of Breuil–Diamond.

Step 4 – Refined level lowering

Assume that there exists a non-zero integer c such that $a^r + b^r = Ce^p$ for some fixed positive integer C.

Let **p** be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r, \mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2 \mathfrak{p}_r^2 \mathfrak{n}'$ such that

$$
\overline{\rho}_{J_r, \mathfrak{p}} \simeq \overline{\rho}_{g, \mathfrak{P}}
$$

for some $\mathfrak{P} | p$ in the coefficient field K_q of g. Here, \mathfrak{n}' denotes the product of ideals coprime to $2r$ dividing C . Moreover, we have $K \subset K_q$.

➥ Uses a refined level lowering theorem of Breuil–Diamond.

Step 4 – Refined level lowering

Assume that there exists a non-zero integer c such that $a^r + b^r = Ce^p$ for some fixed positive integer C.

Let **p** be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r, \mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2 \mathfrak{p}_r^2 \mathfrak{n}'$ such that

$$
\overline{\rho}_{J_r, \mathfrak{p}} \simeq \overline{\rho}_{g, \mathfrak{P}}
$$

for some $\mathfrak{P} | p$ in the coefficient field K_q of g. Here, \mathfrak{n}' denotes the product of ideals coprime to $2r$ dividing C . Moreover, we have $K \subset K_q$.

➥ Uses a refined level lowering theorem of Breuil–Diamond.

Table of contents

[Quick review on the modular method](#page-2-0)

[Extension of Darmon's program](#page-13-0)

[Diophantine results](#page-43-0)

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^r + y^r = Cz^p
$$

for specific values of r and C , we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➥ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- ➥ We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_n,\mathfrak{p}} \simeq \overline{\rho}_{a,\mathfrak{B}}$.

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^r + y^r = Cz^p
$$

for specific values of r and C , we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➥ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- ➥ We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_n,\mathfrak{p}} \simeq \overline{\rho}_{a,\mathfrak{B}}$.

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^r + y^r = Cz^p
$$

for specific values of r and C , we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➥ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- ➥ We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{q,\mathfrak{P}}.$

The case $r = 7$ and $C = 3$

Theorem (B.–Chen–Dieulefait–Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$
a^7 + b^7 = 3c^n
$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

 \rightarrow Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over **Q** and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a, b)$

$$
y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

whose Jacobian (base changed to $\mathbf{Q}(\zeta_7)^+$) is denoted by J.

- \rightarrow Computations in (Hilbert) modular form spaces (Magma).
- **Three** different proofs using a mix of E , F , and J .

The case $r = 7$ and $C = 3$

Theorem (B.–Chen–Dieulefait–Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

 $a^{7} + b^{7} = 3c^{n}$, $abc \neq 0$, $gcd(a, b, c) = 1$.

 \blacktriangleright Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over **Q** and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a, b)$

$$
y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

whose Jacobian (base changed to $\mathbf{Q}(\zeta_7)^+$) is denoted by J.

- ➥ Computations in (Hilbert) modular form spaces (Magma).
- **Three** different proofs using a mix of E , F , and J .

The case $r = 7$ and $C = 3$

Theorem (B.–Chen–Dieulefait–Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

 $a^{7} + b^{7} = 3c^{n}$, $abc \neq 0$, $gcd(a, b, c) = 1$.

 \blacktriangleright Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over **Q** and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a, b)$

$$
y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

whose Jacobian (base changed to $\mathbf{Q}(\zeta_7)^+$) is denoted by J.

➥ Computations in (Hilbert) modular form spaces (Magma). **Three** different proofs using a mix of E , F , and J .

The case $r = 7$ and $C = 3$

Theorem (B.–Chen–Dieulefait–Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

 $a^{7} + b^{7} = 3c^{n}$, $abc \neq 0$, $gcd(a, b, c) = 1$.

 \blacktriangleright Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over **Q** and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a, b)$

$$
y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

whose Jacobian (base changed to $\mathbf{Q}(\zeta_7)^+$) is denoted by J.

- ➥ Computations in (Hilbert) modular form spaces (Magma).
- \blacktriangleright Three different proofs using a mix of E, F, and J.

The case $r = 7$ and $C = 3$

Theorem (B.–Chen–Dieulefait–Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

 $a^{7} + b^{7} = 3c^{n}$, $abc \neq 0$, $gcd(a, b, c) = 1$.

 \blacktriangleright Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over **Q** and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a, b)$

$$
y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7
$$

whose Jacobian (base changed to $\mathbf{Q}(\zeta_7)^+$) is denoted by J.

- ➥ Computations in (Hilbert) modular form spaces (Magma).
- \blacktriangleright Three different proofs using a mix of E, F, and J.

KOL E KELKELKAPIKAN

Step 5 – Timings

Table: 'Frey elliptic curve only' proof(s) (~ 40 min.)

Table: Proof using J 'as much as possible' (~ 10 min.)

Table: Fastest proof of all (∼ 1 min.)

 \rightarrow Proofs using the higher dimensional abelian variety J are **faster!**

KOL E KELKELKAPIKAN

Step 5 – Timings

Table: 'Frey elliptic curve only' proof(s) (~ 40 min.)

Table: Proof using J 'as much as possible' (~ 10 min.)

Table: Fastest proof of all (∼ 1 min.)

Proofs using the higher dimensional abelian variety J are **faster!**

A partial answer in the case $r = 11$ and $C = 1$

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

For every integer $n \geq 2$, there are no integers a, b, c such that

- \rightarrow Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a, b)$ in the case $2 | a + b$ or $11 | a + b$, respectively.
- \rightarrow Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) $+1$ hour (elimination).
- \rightarrow Proving this result using only properties of $F/Q(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3 \mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is not currently feasible to compute.

A partial answer in the case $r = 11$ and $C = 1$

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

For every integer $n \geq 2$, there are no integers a, b, c such that

- \blacktriangleright Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a, b)$ in the case $2 | a + b$ or $11 | a + b$, respectively.
- \rightarrow Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) $+1$ hour (elimination).
- \rightarrow Proving this result using only properties of $F/Q(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3 \mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is not currently feasible to compute.

A partial answer in the case $r = 11$ and $C = 1$

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

For every integer $n \geq 2$, there are no integers a, b, c such that

- \blacktriangleright Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a, b)$ in the case $2 | a + b$ or $11 | a + b$, respectively.
- \triangleright Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) $+1$ hour (elimination).
- \rightarrow Proving this result using only properties of $F/Q(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3 \mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is not currently feasible to compute.

A partial answer in the case $r = 11$ and $C = 1$

Theorem (B.–Chen–Dieulefait–Freitas, 2022)

For every integer $n \geq 2$, there are no integers a, b, c such that

- \blacktriangleright Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a, b)$ in the case $2 | a + b$ or $11 | a + b$, respectively.
- \triangleright Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) $+1$ hour (elimination).
- \blacktriangleright Proving this result using only properties of $F/Q(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3 \mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Thank you!