On Darmon's program for the generalized Fermat equation of signature (r, r, p)

with Imin Chen, Luis Dieulefait, and Nuno Freitas

Nicolas Billerey

Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne

Third Portuguese Number Theory Meeting CIDMA, Aveiro September, 9th 2024

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONSTRUCTION] (Hellegouarch, Frey)

▶ Consider

$$E: y^2 = x(x - a^p)(x + b^p).$$

The discriminant $\Delta = 2^4 (abc)^{2p}$ of this model is non-zero, and hence it defines an elliptic curve over **Q** (with full 2-torsion).

 \triangleright There is a 2-dimensional mod p representation attached to E

$$\overline{\rho}_{E,p}: G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(E[p]) \simeq \operatorname{GL}_2(\mathbf{F}_p)$$

given by the action of $G_{\mathbf{Q}}$ on the group of p-torsion points on E.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[Modularity] (Wiles)

▶ Without loss of generality, assume from now on that

$$a^p \equiv -1 \pmod{4}$$
 and $b^p \equiv 0 \pmod{16}$.

Hence the curve E is semistable (at 2).

- ▶ Since E/\mathbf{Q} is semistable, the elliptic curve E/\mathbf{Q} is **modular**.
- ▶ Its conductor is $N_E = \operatorname{rad}(\Delta_{\min}(E)) = \operatorname{rad}\left(\frac{(abc)^p}{16}\right)$.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[IRREDUCIBILITY] (Mazur)

ightharpoonup Since E has full 2-torsion over ${f Q}$ and is semistable, the representation

$$\overline{\rho}_{E,p}:G_{\mathbf{Q}}\to \mathrm{GL}_2(\mathbf{F}_p)$$

is absolutely irreducible.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[LEVEL LOWERING] (Ribet)

- ▶ By Tate's theory (recall: E/\mathbf{Q} is semistable), the representation $\overline{\rho}_{E,p}$ has Serre's conductor $N(\overline{\rho}_{E,p}) = 2$.
- ▶ It has weight 2 in the sense of Edixhoven (or Serre).
- ▶ Since E/\mathbf{Q} is modular and the representation $\overline{\rho}_{E,p}$ is absolutely irreducible, then $\overline{\rho}_{E,p}$ arises from a newform of weight 2 and level $N(\overline{\rho}_{E,p}) = 2$ (with trivial character).

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONTRADICTION]

▶ There are no newforms of weight 2 and level 2!

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$Ax^r + By^q = Cz^p$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$x^r + y^r = Cz^p$$

where $r \geq 3$ is a fixed prime, C is a fixed positive integer and p is a prime which is allowed to vary.

Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$Ax^r + By^q = Cz^p$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$x^r + y^r = Cz^p$$

where $r \geq 3$ is a **fixed prime**, C is a fixed positive integer and p is a prime which is allowed to vary.

Notation

 $r \geq 3$ prime number ζ_r primitive r-th root of unity $\omega_i = \zeta_r^i + \zeta_r^{-i}$, for every $i \geq 0$ $h(X) = \prod_{i=1}^{(r-1)/2} (X - \omega_i) \in \mathbf{Z}[X]$ $K = \mathbf{Q}(\zeta_r)^+ = \mathbf{Q}(\omega_1)$ maximal totally real subfield of $\mathbf{Q}(\zeta_r)$ \mathcal{O}_K integer ring of K \mathfrak{p}_r unique prime ideal above r in \mathcal{O}_K (totally ramified)

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3$$
: $y^2 = x^3 + 3abx + b^3 - a^3$

$$r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

$$r = 7$$
: $y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3$$
: $y^2 = x^3 + 3abx + b^3 - a^3$

$$r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

$$r = 7$$
: $y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$.

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{ab} + 2\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1} \neq 0.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3$$

$$r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

$$r = 7$$
: $y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$.

Frey representations

For a field M of characteristic 0, write $G_M = \operatorname{Gal}(\overline{M}/M)$ for its absolute Galois group.

Definition (Darmon)

A Frey representation of signature $(r, q, p) \in (\mathbf{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

$$\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to \mathrm{GL}_2(\mathbf{F})$$

where **F** finite field of characteristic ℓ such that the following conditions hold.

- 1. The restriction of $\overline{\rho}$ to $G_{\overline{L}(t)}$ has trivial determinant and is irreducible.
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \mathrm{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}$.
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

Frey representations

For a field M of characteristic 0, write $G_M = \operatorname{Gal}(\overline{M}/M)$ for its absolute Galois group.

Definition (Darmon)

A Frey representation of signature $(r, q, p) \in (\mathbf{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

$$\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to \mathrm{GL}_2(\mathbf{F})$$

where **F** finite field of characteristic ℓ such that the following conditions hold.

- 1. The restriction of $\overline{\rho}$ to $G_{\overline{L}(t)}$ has trivial determinant and is irreducible.
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \mathrm{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}$.
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke-Darmon)

Up to equivalence, there is only one Frey representation of signature (p, p, p). It occurs over \mathbf{Q} in characteristic p and is associated with the Legendre family

$$L(t): y^2 = x(x-1)(x-t).$$

The classical Frey-Hellegouarch curve

$$y^2 = x(x - a^p)(x + b^p)$$

is obtained from L(t) after specialization at $t_0 = \frac{a^p}{a^p + b^p}$ and quadratic twist by $-(a^p + b^p)$.

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke-Darmon)

Up to equivalence, there is only one Frey representation of signature (p, p, p). It occurs over \mathbf{Q} in characteristic p and is associated with the Legendre family

$$L(t): y^2 = x(x-1)(x-t).$$

The classical Frey-Hellegouarch curve

$$y^2 = x(x - a^p)(x + b^p)$$

is obtained from L(t) after **specialization** at $t_0 = \frac{a^p}{a^p + b^p}$ and **quadratic twist** by $-(a^p + b^p)$.

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $\operatorname{GL}_2(F)$ -type) if there is an embedding $F \hookrightarrow \operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F: \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_\lambda}(V_\lambda(A)) \simeq \operatorname{GL}_2(F_\lambda),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

 \triangleright For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of
- \triangleright For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow \operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F : \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

 \triangleright For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- \triangleright For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $\operatorname{GL}_2(F)$ -type) if there is an embedding $F \hookrightarrow \operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F: \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

$$K \hookrightarrow \operatorname{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p). The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

$$K \hookrightarrow \operatorname{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p).

The hyperelliptic curve $C_r(a,b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \operatorname{Jac}(C'_r(t))$ is of $\operatorname{GL}_2(K)$ -type, i.e. there is an embedding

$$K \hookrightarrow \operatorname{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p). The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ is of $\text{GL}_2(K)$ -type, i.e. there is an embedding

$$K \hookrightarrow \operatorname{End}_{K(t)}(J'_r(t)) \otimes \mathbf{Q}.$$

Moreover, for every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p). The hyperelliptic curve $C_r(a, b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$.

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to\mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare–Wintenberger).
- → A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare–Wintenberger).
- → A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ⇒ Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare-Wintenberger).
- ➤ A modularity lifting theorem (Khare–Thorne).

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C. Moreover, we have $K \subset K_g$.

- ▶ Uses a refined level lowering theorem of Breuil–Diamond.
- > Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C. Moreover, we have $K \subset K_g$.

- Uses a refined level lowering theorem of Breuil–Diamond.
- ▶ Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C.

- Moreover, we have $K \subset K_g$.
 - Uses a refined level lowering theorem of Breuil–Diamond.
 - ▶ Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C. Moreover, we have $K \subset K_g$.

- Uses a refined level lowering theorem of Breuil–Diamond.
- > Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C. Moreover, we have $K \subset K_g$.

- Uses a refined level lowering theorem of Breuil–Diamond.
- > Various situations where the irreducibility assumption is satisfied.

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{a,\mathfrak{P}}$.

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}}\simeq\overline{\rho}_{q,\mathfrak{P}}.$

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{q,\mathfrak{P}}$.

Theorem (B.-Chen-Dieulefait-Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

■ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a,b)$

$$y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

- Computations in (Hilbert) modular form spaces (Magma).
- \rightarrow Three different proofs using a mix of E, F, and J

Theorem (B.-Chen-Dieulefait-Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

■ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a,b)$

$$y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

- Computations in (Hilbert) modular form spaces (Magma).
- \rightarrow Three different proofs using a mix of E, F, and J.

Theorem (B.-Chen-Dieulefait-Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

■ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a,b)$

$$y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

- Computations in (Hilbert) modular form spaces (Magma).
- \rightarrow Three different proofs using a mix of E, F, and J.

Theorem (B.-Chen-Dieulefait-Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

■ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a,b)$

$$y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

- Computations in (Hilbert) modular form spaces (Magma).
- \rightarrow Three different proofs using a mix of E, F, and J.

Theorem (B.-Chen-Dieulefait-Freitas, 2024)

For every integer $n \geq 2$, there are no integers a, b, c such that

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

■ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve $C_7(a,b)$

$$y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$$

- Computations in (Hilbert) modular form spaces (Magma).
- \rightarrow Three different proofs using a mix of E, F, and J.

Step 5 – Timings

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	$E \text{ or } \boldsymbol{F^{(-7\omega_2)}}$	$F^{(\omega_2)}$
$4 \mid ab$	$F^{(-7)}$	$E \text{ or } \mathbf{F}$

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	J	J
$4 \mid ab$	J	J

Table: 'Frey elliptic curve only' proof(s) ($\sim 40 \text{ min.}$)

Table: Proof using J 'as much as possible' (~ 10 min.)

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	\boldsymbol{E} or $F^{(-7\omega_2)}$	J
$4 \mid ab$	$F^{(-7)}$	J

Table: Fastest proof of all ($\sim 1 \text{ min.}$)

ightharpoonup Proofs using the higher dimensional abelian variety J are faster!

Step 5 – Timings

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	$E \text{ or } \boldsymbol{F^{(-7\omega_2)}}$	$F^{(\omega_2)}$
$4 \mid ab$	$F^{(-7)}$	$E ext{ or } \boldsymbol{F}$

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	J	J
$4 \mid ab$	J	J

Table: 'Frey elliptic curve only' proof(s) ($\sim 40 \text{ min.}$)

Table: Proof using J 'as much as possible' ($\sim 10 \text{ min.}$)

	$7 \nmid a + b$	$7 \mid a+b$
$2 \nmid ab$	E or $F^{(-7)}$	F
$2 \parallel ab$	\boldsymbol{E} or $F^{(-7\omega_2)}$	J
$4 \mid ab$	$F^{(-7)}$	J

Table: Fastest proof of all ($\sim 1 \text{ min.}$)

ightharpoonup Proofs using the higher dimensional abelian variety J are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a,b)$ in the case $2 \mid a+b$ or $11 \mid a+b$, respectively.
- → Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $\gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- \longrightarrow Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a,b)$ in the case $2 \mid a + b$ or $11 \mid a + b$, respectively.
- Total running time in Magma: 7 hours = 6 hours (computation)
- ightharpoonup Proving this result using only properties of $F/\mathbb{Q}(\zeta_{11})^+$ requires in

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a,b)$ in the case $2 \mid a+b$ or $11 \mid a+b$, respectively.
- Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve $C_{11}(a,b)$ in the case $2 \mid a+b$ or $11 \mid a+b$, respectively.
- Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Thank you!