Remarks around a conjecture of Frey and Mazur

January 15, 2013

1 The Frey-Mazur Conjecture

Let E be an elliptic curve defined over **Q**. Given a prime number ℓ , put :

$$\mathcal{A}_E(\ell) = \{ \text{ Elliptic curve } F/\mathbf{Q} \text{ such that } F[\ell] \simeq E[\ell] \text{ as Galois modules} \}/\sim,$$

where the symbol \sim means modulo isomorphism. For any c > 0, let

$$\mathcal{A}_{E,c} = \bigcup_{\substack{\ell \ge c \\ \ell \text{ prime}}} \mathcal{A}_E(\ell) = \{F/\mathbf{Q} \text{ s.t. there exists } \ell \ge c \text{ with } F[\ell] \simeq E[\ell] \text{ as Galois modules}\}/\sim.$$

On the other hand, define :

 $\mathcal{B}_E = \{\ell \text{ prime such that there exists } F/\mathbf{Q} \text{ non isogenous to } E \text{ with } F[\ell] \simeq E[\ell] \text{ as Galois modules}\}.$

Let $X_E(\ell)$ be the twist of the modular curve $X(\ell)$ that parametrizes isomorphism classes of elliptic curves F such that $F[\ell] \simeq E[\ell]$.

Proposition 1.

- 1. If $\ell \geq 7$, then $\mathcal{A}_E(\ell)$ is finite.
- 2. The following are equivalent :
 - (a) There exists a constant c_E depending on E such that \mathcal{A}_{E,c_E} is finite;
 - (b) The set \mathcal{B}_E is finite.

Proof. The first part follows from the computation of the genus of $X_E(\ell)$ (which is the same as the one of $X(\ell)$) together with Faltings' theorem on Mordell Conjecture. The proof of $(a) \Rightarrow (b)$ uses the following consequence of Faltings' Theorem on Tate Conjecture : if A, B are two elliptic curves over \mathbf{Q} such that $A[\ell] \simeq B[\ell]$ for infinitely many primes ℓ , then A and B are isogenous. The proof of the converse uses Shafarevich Theorem on the finiteness of the number \mathbf{Q} -isomorphism classes of rational elliptic curves \mathbf{Q} -isogenous to a given one.

Frey and Mazur have conjectured :

Conjecture 1 (Frey-Mazur). For any elliptic curve E/\mathbf{Q} , the set \mathcal{B}_E is finite.

We may also conjecture some uniform (stronger) statement.

Conjecture 2 (Uniform Frey-Mazur Conjecture). There exists an absolute constant $c_{\mathbf{Q}}$ such that for any elliptic curve E/\mathbf{Q} , the set $\mathcal{A}_{E,c_{\mathbf{Q}}}$ is finite.

Remarks.

- 1. One may replace \mathbf{Q} by any number field K and make the same conjectures over K.
- 2. Roughly speaking, Frey-Mazur conjecture says that the isogeny class of E is determined by the Galois module $E[\ell]$ for ℓ large enough.
- 3. Conj. 1 is a consequence of the *abc* conjecture (Mochizuki's Theorem?).
- 4. In terms of the modular curve $X_E(\ell)$, conj. 1 then says that for ℓ large enough, depending on E, we have $X_E(\ell)(\mathbf{Q}) = \{\text{cusps}\} \cup \{\overline{E}\}$, where \overline{E} denotes the (finite) set of isomorphism classes of rational elliptic curves that are isogenous to E. Conj. 2 moreover asserts that this holds independently of E.
- 5. The Frey-Mazur conjecture has many interesting consequences in the theory of diophantine equations.

2 Modular formulation of the Frey-Mazur Conjecture

Isogeny classes of elliptic curves over \mathbf{Q} correspond bijectively to weight 2 newforms with rational coefficients (via *L*-functions). Let us denote by $E \mapsto f_E$ this correspondence. Given a prime ℓ and a newform f (of arbitrary type) let us denote by $\overline{\rho}_{f,\ell}$ any mod. ℓ representation attached to f.

Assume now f to be a weight 2 newform with rational coefficients and trivial Nebentype. We define

 $B_f = \{\ell \text{ prime such that there exists } g \neq f \text{ weight 2 newform with rational coefficients with } \overline{\rho}_{q,\ell} \simeq \overline{\rho}_{f,\ell} \}.$

Then $B_f = B_E$ for any elliptic curve E such that $f_E = f$. Therefore :

Conjecture 3 (Frey-Mazur). For any weight 2 newform f with rational coefficients and trivial Nebentype, the set B_f is finite.

3 A modular generalization of the Frey-Mazur Conjecture

Let f be a weight $k \ge 2$ newform. Let us denote by $\mathbf{Q}(f)$ and $\langle f \rangle$ its field of coefficients and Galois conjugacy class respectively. Define

 $B_f = \{\ell \text{ prime such that there exists } g \notin \langle f \rangle \text{ weight } k \text{ newform with } \mathbf{Q}(g) = \mathbf{Q}(f) \text{ with } \overline{\rho}_{g,\ell} \simeq \overline{\rho}_{f,\ell} \}.$

Conjecture 4 (Generalized Frey-Mazur). For any weight $k \ge 2$ newform f, the set B_f is finite.

Try to disprove this conjecture !

We now aim to see whether there is an analogue of Prop. 1 in this context. Define :

 $\mathcal{A}_f(\ell) = \{g \text{ weight } k \text{ newform such that } \mathbf{Q}(g) = \mathbf{Q}(f) \text{ and } \overline{\rho}_{q,\ell} \simeq \overline{\rho}_{f,\ell} \}.$

4 Is there a constant c(f) such that if $\ell \ge c(f)$, then $\mathcal{A}_f(\ell)$ is finite ?

[Assuming that such a constant exists, it then makes sense to ask whether $\mathcal{A}_{f,c} = \bigcup_{\ell \ge c} \mathcal{A}_f(\ell)$ is finite for some $c \ge c(f)$.]

♣ Is there a constant c(k, d) such that if $[\mathbf{Q}(f) : \mathbf{Q}] = d$ and $\ell \ge c(k, d)$, then $\mathcal{A}_f(\ell)$ is finite ? [Prop. 1 says that c(2, 1) exists.]

4 Yet another generalization

Let again E be an elliptic curve over the rationals. For any non-negative integer d and any prime number ℓ put

 $C_E(\ell, d) = \{ \text{Weight 2 newforms } f \text{ with } [\mathbf{Q}(f) : \mathbf{Q}] = d \text{ such that } f \text{ is congruent to } f_E \text{ modulo } \ell \}.$

The Frey-Mazur conjecture says that $C_E(\ell, 1)$ is finite for ℓ large enough. Therefore one may wonder whether this is true for any $d \ge 1$:

Conjecture 5. For any elliptic curve E/\mathbf{Q} and any integer $d \ge 1$, there exists a constant c(E, d) such that the set $\mathcal{C}_E(\ell, d)$ is finite whenever ℓ is a prime > c(E, d).

Playing around with quantifiers one may even conjecture the following statements.

Conjecture 6. For any elliptic curve E/\mathbf{Q} , there exists a constant c(E) such that for any integer $d \ge 1$ and any prime $\ell > c(E)$, the set $C_E(\ell, d)$ is finite.

Conjecture 7. There exists a constant $c_{\mathbf{Q}}$ such that for any elliptic curve E/\mathbf{Q} , any integer $d \ge 1$ and any prime $\ell > c_{\mathbf{Q}}$, the set $C_E(\ell, d)$ is finite.

Try to disprove these conjectures !

Remark. Ribet and Diamond-Taylor proved that for each $\ell > 3$, the set $\bigcup_{d \ge 1} C_E(\ell, d)$ is infinite.