A MAXIMALITY RESULT FOR ORTHOGONAL QUANTUM GROUPS

TEODOR BANICA, JULIEN BICHON, BENOÎT COLLINS, AND STEPHEN CURRAN

Abstract

We prove that the quantum group inclusion $O_{n} \subset O_{n}^{*}$ is "maximal", where O_{n} is the usual orthogonal group and O_{n}^{*} is the half-liberated orthogonal quantum group, in the sense that there is no intermediate compact quantum group $O_{n} \subset G \subset O_{n}^{*}$. In order to prove this result, we use: (1) the isomorphism of projective versions $P O_{n}^{*} \simeq P U_{n}$, (2) some maximality results for classical groups, obtained by using Lie algebras and some matrix tricks, and (3) a short five lemma for cosemisimple Hopf algebras.

Introduction

Quantum groups were introduced by Drinfeld [13] and Jimbo [15] in order to study "non-classical" symmetries of complex systems. This was followed by the fundamental work of Woronowicz [21], [22] on compact quantum groups. The key examples which were constructed by Drinfeld and Jimbo, and further analyzed by Woronowicz, were q-deformations G_{q} of classical Lie groups G. The idea is as follows: consider the commutative algebra $A=C(G)$. For a suitable choice of generating "coordinates" of this algebra, replace commutativity by the q-commutation relations $a b=q b a$, where $q>0$ is a parameter. In this way one obtains an algebra $A_{q}=C\left(G_{q}\right)$, where G_{q} is a quantum group. When $q=1$ one then recovers the classical group G.

For $G=O_{n}, U_{n}, S_{n}$ it was later discovered by Wang [19], 20] that one can also obtain compact quantum groups by "removing" the commutation relations entirely. In this way one obtains "free" versions $O_{n}^{+}, U_{n}^{+}, S_{n}^{+}$of these classical groups. This construction has been axiomatized in [11] in terms of the "easiness" condition for compact quantum groups, and has led to several applications in probability. See [9], [10].

It is clear from the construction that one has $G \subset G^{+}$for $G=O_{n}, U_{n}, S_{n}$. Since G^{+}can be viewed a "liberation" of G, it is natural to wonder whether there are any intermediate quantum groups $G \subset G^{\prime} \subset G^{+}$, which could be seen as "partial liberations" of G. For O_{n}, S_{n} this problem has been solved in the case of "easy" intermediate quantum groups [12], 8]. For S_{n} there are no intermediate easy quantum groups $S_{n} \subset G^{\prime} \subset S_{n}^{+}$. However for O_{n} there is exactly one intermediate easy quantum group $O_{n} \subset O_{n}^{*} \subset O_{n}^{+}$, called the "half-liberated" orthogonal group, which was constructed in [11]. At the level of relations

[^0]among coordinates, this is constructed by replacing the commutation relations $a b=b a$ with the half-commutation relations $a b c=c b a$.

In the larger category of compact quantum groups it is an open problem whether there are intermediate quantum groups $S_{n} \subset G \subset S_{n}^{+}$, or $O_{n} \subset G \subset O_{n}^{+}$with $G \neq O_{n}^{*}$. This is an important question for better understanding the "liberation" procedure of [11]. At $n=4$ (the smallest value at which $S_{n} \neq S_{n}^{+}$), it follows from the results in [5] that the inclusion $S_{n} \subset S_{n}^{+}$is indeed maximal, and it was conjectured in [6] that this is the case, for any $n \in \mathbb{N}$. Likewise the inclusion $O_{n} \subset O_{n}^{*} \subset O_{n}^{+}$is known to be maximal at $n=2$, thanks to the results of Podleś in [16]. In general it is likely that these two problems are related to each other via combinatorial invariants [12] or cocycle twists [7].

In this paper we make some progress towards solving this problem in the orthogonal case, by showing that the inclusion $O_{n} \subset O_{n}^{*}$ is maximal. A key tool in our analysis will be the fact the "projective version" of O_{n}^{*} is the same as that of the classical unitary group U_{n}. By using a version of the five lemma for cosemisimple Hopf algebras (following ideas from [1], [3]), we are thus able to reduce the problem to showing that the inclusion of groups $P O_{n} \subset P U_{n}$ is maximal. We then solve this problem by using some Lie algebra techniques inspired from 4], [14].

The paper is organized as follows: Section 1 contains background and preliminaries. In Section 2 we prove that $P O_{n} \subset P U_{n}$ is maximal. In Section 3 we prove a short five lemma for cosemisimple Hopf algebras, which may be of independent interest. We then use this in Section 4 to prove our main result, namely that $O_{n} \subset O_{n}^{*}$ is maximal.
Acknowledgements. We thank Alexandru Chirvasitu for some discussions on Section 3. Part of this work was completed during the Spring 2011 program"Bialgebras in free probability" at the Erwin Schrödinger Institute in Vienna, and T.B., B.C., S.C. are grateful to the organizers for the invitation. The work of T.B., J.B., B.C. was supported by the ANR grants "Galoisint" and "Granma", the work of B.C. was supported by an NSERC Discovery grant and an ERA grant, and the work of S.C. was supported by an NSF postdoctoral fellowship and by the NSF grant DMS-0900776.

1. Orthogonal quantum groups

In this section we briefly recall the free and half-liberated orthogonal quantum groups from [19], [11, and the notion of "projective version" for a unitary compact quantum group. We will work at the level of Hopf $*$-algebras of representative functions.

First we have the following fundamental definition, arising from Woronowicz' work [21].
Definition 1.1. A unitary Hopf algebra is $a *$-algebra A which is generated by elements $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$ such that $u=\left(u_{i j}\right)$ and $\bar{u}=\left(u_{i j}^{*}\right)$ are unitaries, and such that:
(1) There is a $*$-algebra map $\Delta: A \rightarrow A \otimes A$ such that $\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j}$.
(2) There is a*-algebra map $\varepsilon: A \rightarrow \mathbb{C}$ such that $\varepsilon\left(u_{i j}\right)=\delta_{i j}$.
(3) There is a $*$-algebra map $S: A \rightarrow A^{o p}$ such that $S\left(u_{i j}\right)=u_{j i}^{*}$.

If $u_{i j}=u_{i j}^{*}$ for $1 \leq i, j \leq n$, we say that A is an orthogonal Hopf algebra.
It follows that Δ, ε, S satisfy the usual Hopf algebra axioms. The motivating examples of unitary (resp. orthogonal) Hopf algebra is $A=\mathcal{R}(G)$, the algebra of representative function of a compact subgroup $G \subset U_{n}$ (resp. $G \subset O_{n}$). Here the standard generators $u_{i j}$ are the coordinate functions which take a matrix to its (i, j)-entry.

In fact every commutative unitary Hopf algebra is of the form $\mathcal{R}(G)$ for some compact group $G \subset U_{n}$. In general we use the suggestive notation " $A=\mathcal{R}(G)$ " for any unitary (resp. orthogonal) Hopf algebra, where G is a unitary (resp. orthogonal) compact quantum group. Of course any group-theoretic statements about G must be interpreted in terms of the Hopf algebra A.

It can be shown that shown that a unitary Hopf algebra has an enveloping C^{*}-algebra, satisfying Woronowicz' axioms in [21]. In general there are several ways to complete a unitary Hopf algebra into a C^{*}-algebra, but in this paper we will ignore this problem and work at the level of unitary Hopf algebras.

The following examples of Wang [19] are fundamental to our considerations.
Definition 1.2. The universal unitary Hopf algebra $A_{u}(n)$ is the universal $*$-algebra generated by elements $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$ such that the matrices $u=\left(u_{i j}\right)$ and $\bar{u}=\left(u_{i j}^{*}\right)$ in $M_{n}\left(A_{u}(n)\right)$ are unitaries.

The universal orthogonal Hopf algebra $A_{o}(n)$ is the universal $*$-algebra generated by selfadjoint elements $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$ such that the matrix $u=\left(u_{i j}\right)_{1 \leq i, j \leq n}$ in $M_{n}\left(A_{o}(n)\right)$ is orthogonal.

The existence of the Hopf algebra structural morphisms follows from the universal properties of $A_{u}(n)$ and $A_{o}(n)$. As discussed above, we use the notations $A_{u}(n)=\mathcal{R}\left(U_{n}^{+}\right)$ and $A_{o}(n)=\mathcal{R}\left(O_{n}^{+}\right)$, where U_{n}^{+}is the free unitary quantum group and O_{n}^{+}is the free orthogonal quantum group.

Note that we have $\mathcal{R}\left(O_{n}^{+}\right) \rightarrow \mathcal{R}\left(O_{n}\right)$, in fact $\mathcal{R}\left(O_{n}\right)$ is the quotient of $\mathcal{R}\left(O_{n}^{+}\right)$by the relations that the coordinates $u_{i j}$ commute. At the level of quantum groups, this means that we have an inclusion $O_{n} \subset O_{n}^{+}$.

In other words, $\mathcal{R}\left(O_{n}^{+}\right)$is obtained from $\mathcal{R}\left(O_{n}\right)$ by "removing commutativity" among the coordinates $u_{i j}$. It was discovered in [11] that one can obtain a natural orthogonal quantum group by requiring instead that the coordinates "half-commute".

Definition 1.3. The half-liberated othogonal Hopf algebra $A_{o}^{*}(n)$ is the universal $*$-algebra generated by self-adjoint elements $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$ which half-commute in the sense that $a b c=c b a$ for any $a, b, c \in\left\{u_{i j}\right\}$, and such that the matrix $u=\left(u_{i j}\right)_{1 \leq i, j \leq n}$ in $M_{n}\left(A_{o}^{*}(n)\right)$ is orthogonal.

The existence of the Hopf algebra structural morphisms again follows from the universal properties of $A_{o}^{*}(n)$. We use the notation $A_{o}^{*}(n)=\mathcal{R}\left(O_{n}^{*}\right)$, where O_{n}^{*} is the half-liberated orthogonal quantum group. Note that we have $\mathcal{R}\left(O_{n}^{+}\right) \rightarrow \mathcal{R}\left(O_{n}^{*}\right) \rightarrow \mathcal{R}\left(O_{n}\right)$, i.e. $O_{n} \subset$
$O_{n}^{*} \subset O_{n}^{+}$. As discussed in the introduction, our aim in this paper is to show that the inclusion $O_{n} \subset O_{n}^{*}$ is maximal. A key tool in our analysis will be the projective version of a unitary quantum group, which we now recall.

Definition 1.4. The projective version of a unitary compact quantum group $G \subset U_{n}^{+}$is the quantum group $P G \subset U_{n^{2}}^{+}$, having as basic coordinates the elements $v_{i j, k l}=u_{i k} u_{j l}^{*}$.

In other words, $P \mathcal{R}(G)=\mathcal{R}(P G) \subset \mathcal{R}(G)$ is the subalgebra generated by the elements $v_{i j, k l}=u_{i k} u_{j l}^{*}$. It is clearly a Hopf $*$-subalgebra of $\mathcal{R}(G)$. In the case where $G \subset U_{n}$ is classical we recover of course the well-known formula $P G=G /(G \cap \mathbb{T})$, where $\mathbb{T} \subset U_{n}$ is the group of norm one multiples of the identity.

The following key result was proved in [12].
Theorem 1.5. We have an isomorphism $P O_{n}^{*} \simeq P U_{n}$.
Proof. First, thanks to the half-commutation relations between the standard coordinates on O_{n}^{*}, for any $a, b, c, d \in\left\{u_{i j}\right\}$ we have $a b c d=c b a d=c d a b$. Thus the standard coordinates on the quantum group $P O_{n}^{*}$ commute ($a b \cdot c d=c d \cdot a b$), so this quantum group is actually a classical group. A representation theoretic study, based on the diagrammatic results in [11], allows then to show this classical group is actually $P U_{n}$. See [12].

Note that in fact the techniques developed in the present paper enable us to give a very simple proof of this theorem, avoiding the diagramatic techniques from [11], [12]. See the last remark in Section 4.

2. Classical group results

In this section we prove that the inclusion $P O_{n} \subset P U_{n}$ is maximal in the category of compact groups (we assume throughout the paper that $n \geq 2$, otherwise there is nothing to prove). We will see later on, in Sections 3 and 4 below, that this result can be "twisted", in order to reach to the maximality of the inclusion $O_{n} \subset O_{n}^{*}$.

Let \tilde{O}_{n} be the group generated by O_{n} and $\mathbb{T} \cdot I_{n}$ (the group of multiples of identity of norm one). That is, \tilde{O}_{n} is the preimage of $P O_{n}$ under the quotient map $U_{n} \rightarrow P U_{n}$. Let $\widetilde{S O}_{n} \subset \tilde{O}_{n}$ be the group generated by $S O_{n}$ and $\mathbb{T} \cdot I_{n}$. Note that $\tilde{O}_{n}=\widetilde{S O}_{n}$ if n is odd, and if n is even then \tilde{O}_{n} has two connected components and $\widetilde{S O}_{n}$ is the component containing the identity.

It is a classical fact that a compact matrix group is a Lie group, so $\widetilde{S O}_{n}$ is a Lie group. Let $\mathfrak{s o}_{n}\left(\right.$ resp. $\left.\mathfrak{u}_{n}\right)$ be the real Lie algebras of $S O_{n}\left(\right.$ resp. $\left.U_{n}\right)$. It is known that \mathfrak{u}_{n} consists of the matrices $M \in M_{n}(\mathbb{C})$ satisfying $M^{*}=-M$, and $\mathfrak{s o}_{n}=\mathfrak{u}_{n} \cap M_{n}(\mathbb{R})$. It is easy to see that the Lie algebra of $\widetilde{S O}{ }_{n}$ is $\mathfrak{s o}_{n} \oplus i \mathbb{R}$.

First we need the following lemma:
Lemma 2.1. If $n \geq 2$, the adjoint representation of $S O_{n}$ on the space of real symmetric matrices of trace zero is irreducible.

Proof. Let $X \in M_{n}(\mathbb{R})$ be symmetric with trace zero, and let V be the span of $\left\{U X U^{t}\right.$: $\left.U \in S O_{n}\right\}$. We must show that V is the space of all real symmetric matrices of trace zero.

First we claim that V contains all diagonal matrices of trace zero. Indeed, since we may diagonalize X by conjugating with an element of $S O_{n}, V$ contains some non-zero diagonal matrix of trace zero. Now if $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a diagonal matrix in V, then by conjugating D by

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & I_{n-2}
\end{array}\right) \in S O_{n}
$$

we have that V also contains $\operatorname{diag}\left(d_{2}, d_{1}, d_{3}, \ldots, d_{n}\right)$. By a similar argument we see that for any $1 \leq i, j \leq n$ the diagonal matrix obtained from D by interchanging d_{i} and d_{j} lies in V. Since S_{n} is generated by transpositions, it follows that V contains any diagonal matrix obtained by permuting the entries of D. But it is well-known that this representation of S_{n} on diagonal matrices of trace zero is irreducible, and hence V contains all such diagonal matrices as claimed.

Now if Y is any real symmetric matrix of trace zero, we can find a U in $S O_{n}$ such that $U Y U^{t}$ is a diagonal matrix of trace zero. But we then have $U Y U^{t} \in V$, and hence also $Y \in V$ as desired.
Proposition 2.2. The inclusion $\widetilde{S O_{n}} \subset U_{n}$ is maximal in the category of connected compact groups.
Proof. Let G be a connected compact group satisfying $\widetilde{S O}_{n} \subset G \subset U_{n}$. Then G is a Lie group, let \mathfrak{g} denote its Lie algebra, which satisfies $\mathfrak{s o}_{n} \oplus i \mathbb{R} \subset \mathfrak{g} \subset \mathfrak{u}_{n}$.

Let $a d_{G}$ be the action of G on \mathfrak{g} obtained by differentiating the adjoint action of G on itself. This action turns \mathfrak{g} into a G-module. Since $S O_{n} \subset G, \mathfrak{g}$ is also an $S O_{n}$-module.

Now if $G \neq \widetilde{S O}_{n}$, then since G is connected we must have $\mathfrak{s o}_{n} \oplus i \mathbb{R} \neq \mathfrak{g}$. It follows from the real vector space structure of the Lie algebras \mathfrak{u}_{n} and $\mathfrak{s o}_{n}$ that there exists a non-zero symmetric real matrix of trace zero X such that $i X \in \mathfrak{g}$.

But by Lemma 2.1 the space of symmetric real matrices of trace zero is an irreducible representation of S_{n} under the adjoint action. So \mathfrak{g} must contain all such X, and hence $\mathfrak{g}=\mathfrak{u}_{n}$. But since U_{n} is connected, it follows that $G=U_{n}$.

Our aim is to extend this result to the category of compact groups. To do this we need to compute the normalizer of $\widetilde{S O}_{n}$ in U_{n}, i.e. the subgroup of U_{n} consisting of unitary U for which $U^{-1} X U \in \widetilde{S O}_{n}$ for all $X \in \widetilde{S O}_{n}$. For this we need two lemmas.

Lemma 2.3. The commutant of $S O_{n}$ in $M_{n}(\mathbb{C})$, denoted $S O_{n}^{\prime}$, is as follows:
(1) $S O_{2}^{\prime}=\left\{\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right), \alpha, \beta \in \mathbb{C}\right\}$.
(2) If $n \geq 3, S O_{n}^{\prime}=\left\{\alpha I_{n}, \alpha \in \mathbb{C}\right\}$.

Proof. At $n=2$ this is a direct computation. For $n \geq 3$, an element in $X \in S O_{n}^{\prime}$ commutes with any diagonal matrix having exactly $n-2$ entries equal to 1 and two entries equal to -1 . Hence X is a diagonal matrix. Now since X commutes with any even permutation matrix and $n \geq 3$, it commutes in particular with the permutation matrix associated with the cycle (i, j, k) for any $1<i<j<k$, and hence all the entries of X are the same: we conclude that X is a scalar matrix.

Lemma 2.4. The set of matrices with non-zero trace is dense in $S O_{n}$.
Proof. At $n=2$ this is clear since the set of elements in SO_{2} having a given trace is finite. Assume that $n>2$ and let $T \in S O_{n} \simeq S O\left(\mathbb{R}^{n}\right)$ with $\operatorname{Tr}(T)=0$. Let $E \subset \mathbb{R}^{n}$ be a 2-dimensional subspace preserved by T and such that $T_{\mid E} \in S O(E)$. Let $\epsilon>0$ and let $S_{\epsilon} \in S O(E)$ with $\left\|T_{\mid E}-S_{\epsilon}\right\|<\epsilon$ and $\operatorname{Tr}\left(T_{\mid E}\right) \neq \operatorname{Tr}\left(S_{\epsilon}\right)$ ($n=2$ case). Now define $T_{\epsilon} \in$ $S O\left(\mathbb{R}^{n}\right)=S O_{n}$ by $T_{\varepsilon \mid E}=S_{\epsilon}$ and $T_{\epsilon \mid E^{\perp}}=T_{\mid E^{\perp}}$. It is clear that $\left\|T-T_{\epsilon}\right\| \leq\left\|T_{\mid E}-S_{\epsilon}\right\|<\epsilon$ and that $\operatorname{Tr}\left(T_{\epsilon}\right)=\operatorname{Tr}\left(S_{\epsilon}\right)+\operatorname{Tr}\left(T_{\mid E^{\perp}}\right) \neq 0$.

Proposition 2.5. \tilde{O}_{n} is the normalizer of $\widetilde{S O}_{n}$ in U_{n}.
Proof. It is clear that \tilde{O}_{n} normalizes $\widetilde{S O}_{n}$, so we must show that if $U \in U_{n}$ normalizes $\widetilde{S O}_{n}$ then $U \in \tilde{O}_{n}$. First note that U normalizes $S O_{n}$. Indeed if $X \in S O_{n}$ then $U^{-1} X U \in \widetilde{S O}_{n}$, so $U^{-1} X U=\lambda Y$ for $\lambda \in \mathbb{T}$ and $Y \in S O_{n}$. If $\operatorname{Tr}(X) \neq 0$, we have $\lambda \in \mathbb{R}$ and hence $\lambda Y=U^{-1} X U \in S O_{n}$. The set of matrices having non-zero trace is dense in $S O_{n}$ by Lemma 2.4, so since $S O_{n}$ is closed and the matrix operations are continous, we conclude that $U^{-1} X U \in S O_{n}$ for all $X \in S O_{n}$.

Thus for any $X \in S O_{n}$, we have $\left(U X U^{-1}\right)^{t}\left(U X U^{-1}\right)=I_{n}$ and hence $X^{t} U^{t} U X=U^{t} U$. This means that $U^{t} U \in S O_{n}^{\prime}$. Hence if $n \geq 3$, we have $U^{t} U=\alpha I_{n}$ by Lemma 2.3, with $\alpha \in \mathbb{T}$ since U is unitary. Hence we have $U=\alpha^{1 / 2}\left(\alpha^{-1 / 2} U\right)$ with $\alpha^{-1 / 2} U \in O_{n}$, and $U \in \widetilde{O_{n}}$. If $n=2$, Lemma 2.3 combined with the fact that $\left(U^{t} U\right)^{t}=U^{t} U$ gives again that $U^{t} U=\alpha I_{2}$, and we conclude as in the previous case.

We can now extend Proposition 2.2 as follows.
Proposition 2.6. The inclusion $\tilde{O}_{n} \subset U_{n}$ is maximal in the category of compact groups.
Proof. Suppose that $\tilde{O}_{n} \subset G \subset U_{n}$ is a compact group such that $G \neq U_{n}$. It is a well known fact that the connected component of the identity in G is a normal subgroup, denoted G_{0}. Since we have $\widetilde{S O}_{n} \subset G_{0} \subset U_{n}$, by Proposition 2.2 we must have $G_{0}=\widetilde{S O}$. But since G_{0} is normal in G, G normalizes $\widetilde{S O}{ }_{n}$ and hence $G \subset \widetilde{O}_{n}$ by Proposition 2.5. \square

We are now ready to state and prove the main result in this section.
Theorem 2.7. The inclusion $P O_{n} \subset P U_{n}$ is maximal in the category of compact groups.
Proof. It follows directly from the observation that the maximality of \tilde{O}_{n} in U_{n} implies the maximality of $P O_{n}$ in $P U_{n}$. Indeed, if $P O_{n} \subset G \subset P U_{n}$ were an intermediate subgroup,
then its preimage under the quotient map $U_{n} \rightarrow P U_{n}$ would be an intermediate subgroup of $\tilde{O}_{n} \subset U_{n}$, contradicting Proposition 2.6.

3. A short five lemma

In this section we prove a short five lemma for cosemisimple Hopf algebras (Theorem 3.4 below), which is a result having its own interest, to be used in Section 4 below.

Definition 3.1. A sequence of Hopf algebra maps

$$
\mathbb{C} \rightarrow B \xrightarrow{i} A \xrightarrow{p} L \rightarrow \mathbb{C}
$$

is called pre-exact if i is injective, p is surjective and $i(B)=A^{\text {cop }}$, where:

$$
A^{c o p}=\{a \in A \mid(i d \otimes p) \Delta(a)=a \otimes 1\}
$$

The example that we are interested in is as follows.
Proposition 3.2. Let A be an orthogonal Hopf algebra with generators $u_{i j}$. Assume that we have surjective Hopf algebra map $p: A \rightarrow \mathbb{C}_{2}, u_{i j} \rightarrow \delta_{i j} g$, where $<g>=\mathbb{Z}_{2}$. Let $P A$ be the projective version of A, i.e. the subalgebra generated by the elements $u_{i j} u_{k l}$ with the inclusion $i: P A \subset A$. Then the sequence

$$
\mathbb{C} \rightarrow P A \xrightarrow{i} A \xrightarrow{p} \mathbb{C} \mathbb{Z}_{2} \rightarrow \mathbb{C}
$$

is pre-exact.
Proof. We have:

$$
(i d \otimes p) \Delta\left(u_{i_{1} j_{1}} \ldots u_{i_{m} j_{m}}\right)= \begin{cases}u_{i_{1} j_{1}} \ldots u_{i_{m} j_{m}} \otimes 1 & \text { if } m \text { is even } \\ u_{i_{1} j_{1}} \ldots u_{i_{m} j_{m}} \otimes g & \text { if } m \text { is odd }\end{cases}
$$

Thus $A^{c o p}$ is the span of monomials of even length, which is clearly $P A$.
A pre-exact sequence as in Definition 3.1 is said to be exact [2] if in addition we have $i(B)^{+} A=\operatorname{ker}(\pi)=A i(B)^{+}$, where $i(B)^{+}=i(B) \cap \operatorname{ker}(\varepsilon)$. The pre-exact sequence in Proposition 3.2 is actually exact, but we only need its pre-exactness in what follows.

In order to prove the short five lemma, we use the following well-known result. We give a proof for the sake of completness.

Lemma 3.3. Let $\theta: A \rightarrow A^{\prime}$ be a Hopf algebra morphism with A, A^{\prime} cosemisimple and let $h_{A}, h_{A^{\prime}}$ be the respective Haar integrals of A, A^{\prime}. Then θ is injective iff $h_{A^{\prime}} \theta=h_{A}$.

Proof. For $a \in A$, we have:

$$
\theta\left(h_{A^{\prime}}\left(\theta\left(a_{1}\right)\right) a_{2}\right)=h_{A^{\prime}}\left(\theta(a)_{1}\right) \theta(a)_{2}=\theta\left(h_{A^{\prime}} \theta(a) 1\right)
$$

Thus if θ is injective then $h_{A^{\prime}} \theta$ is a Haar integral on A, and the result follows from the uniqueness of the Haar integral.

Conversely, assume that $h_{A}=h_{A^{\prime}} \theta$. Then for all $a, b \in A$, we have $h_{A}(a b)=h_{A^{\prime}}(\theta(a) \theta(b))$, so if $\theta(a)=0$, we have $h_{A}(a b)=0$ for all $b \in A$. It follows from the orthogonality relations that $a=0$, and hence θ is injective.

Theorem 3.4. Consider a commutative diagram of cosemisimple Hopf algebras

where the rows are pre-exact. Then θ is injective.
Proof. We have to show that $h_{A}=h_{A^{\prime}} \theta$, where $h_{A}, h_{A^{\prime}}$ are the respective Haar integrals of A, A^{\prime}. Let Λ be the set of isomorphism classes of simple L-comodules and consider the Peter-Weyl decomposition of L :

$$
L=\bigoplus_{\lambda \in \Lambda} L(\lambda)
$$

We view A as a right L-comodule via $(i d \otimes \pi) \Delta$. Then A has a decomposition into isotypic components as follows, where $A_{\lambda}=\{a \in A \mid(i d \otimes \pi) \circ \Delta(a) \in A \otimes L(\lambda)\}$:

$$
A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}
$$

It is clear that $A_{1}=A^{c o \pi}$. Then if $\lambda \neq 1$, we have $h_{A}\left(A_{\lambda}\right)=0$. Indeed for $a \in A_{\lambda}$, we have:

$$
a_{1} \otimes \pi\left(a_{2}\right) \in A \otimes L(\lambda) \Longrightarrow h_{A}(a) 1=\pi\left(h_{A}\left(a_{1}\right) a_{2}\right) \in L(\lambda) \Longrightarrow h_{A}(a)=0
$$

Since $\pi^{\prime} \theta=\pi$, it is easy to see that $\theta\left(A_{\lambda}\right) \subset A_{\lambda}^{\prime}$ and hence for $\lambda \neq 1, h_{A^{\prime} \mid A_{\lambda}^{\prime}}=h_{A^{\prime}} \theta_{\mid A_{\lambda}}=$ $0=h_{A \mid A_{\lambda}}$. For $\lambda=1$, we have $i(B)=A_{1}$ and θ is injective on $i(B)$ since $\theta i=i^{\prime}$. Hence by Lemma 3.3 we have $h_{A^{\prime}} \theta_{\mid A_{1}}=h_{A_{1}}=h_{A \mid A_{1}}$. Since $A=\oplus_{\lambda \in \Lambda} A_{\lambda}$ we conclude $h_{A}=h_{A^{\prime}} \theta$ and by Lemma 3.3 we get that θ is injective.

It follows from discussions with Alexandru Chirvasitu that the theorem can be improved by showing that θ is an isomorphism. Indeed, since L is assumed to be cosemisimple, A is automatically faithfully coflat as a left L-comodule, and hence by Theorem 1.4 in [18] $i: B \rightarrow A$ and $i^{\prime}: B \rightarrow A^{\prime}$ are L-Galois extensions with A and A^{\prime} faithfully flat as left B-modules. Since $\theta: A \rightarrow A^{\prime}$ is an L-colinear algebra map, it follows from Remark 3.11 in [17] that θ is an isomorphism.

4. The main result

We have now all the ingredients for stating and proving our main result in this paper.
Theorem 4.1. The inclusion $O_{n} \subset O_{n}^{*}$ is maximal in the category of compact quantum groups.

Proof. Consider a sequence of surjective Hopf $*$-algebra maps as follows, whose composition is the canonical surjection:

$$
A_{o}^{*}(n) \xrightarrow{f} A \xrightarrow{g} \mathcal{R}\left(O_{n}\right)
$$

By Proposition 3.2 we get a commutative diagram of Hopf algebra maps with pre-exact rows:

Consider now the following composition, with the isomorphism on the left coming from Theorem 1.5:

$$
\mathcal{R}\left(P U_{n}\right) \simeq P A_{o}^{*}(n) \xrightarrow{f_{l}} P A \xrightarrow{g_{1}} P \mathcal{R}\left(O_{n}\right) \simeq \mathcal{R}\left(P O_{n}\right)
$$

This induces, at the group level, the embedding $P O_{n} \subset P U_{n}$. By Theorem $2.7 f_{\mid}$or g is an isomorphism. If f_{\mid}is an isomorphism we get a commutative diagram of Hopf algebra morphisms with pre-exact rows:

Then f is an isomorphism by Theorem 3.4. Similarly if g_{\mid}is an isomorphism, then g is an isomorphism.

Observe that the technique in the proof of Theorem 4.1 also enables us to prove that $P O_{n}^{*} \simeq P U_{n}$ independently from [12]. Indeed, since $P A_{o}^{*}(n)$ is commutative, there exists a compact group G with $P A_{o}^{*}(n) \simeq \mathcal{R}(G)$ and $P O_{n} \subset G \subset P U_{n}$. Then Theorem 2.7 gives $G=P O_{n}$ or $G=P U_{n}$. If $G=P O_{n}$, then as in the proof of Theorem 4.1, Theorem 3.4 gives that $A_{o}^{*}(n) \rightarrow \mathcal{R}\left(O_{n}\right)$ is an isomorphism, which is false since $A_{o}^{*}(n)$ is a not commutative if $n \geq 2$. Hence $G=P U_{n}$.

References

[1] N. Andruskiewitsch and J. Bichon, Examples of inner linear Hopf algebras, Rev. Un. Mat. Argentina 51 (2010), 7-18.
[2] N. Andruskiewitsch and J. Devoto, Extensions of Hopf algebras, St. Petersburg Math. J. 7 (1996), 17-52.
[3] N. Andruskiewitsch and G.A. Garcia, Quantum subgroups of a simple quantum group at roots of 1, Compos. Math. 145 (2009), 476-500.
[4] F. Antoneli, M. Forger and P. Gaviria, Maximal subgroups of compact Lie groups, arxiv:0605784.
[5] T. Banica and J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 74-114.
[6] T. Banica, J. Bichon and B. Collins, Quantum permutation groups: a survey, Banach Center Publ. 78 (2007), 13-34.
[7] T. Banica, J. Bichon and S. Curran, Quantum automorphisms of twisted group algebras and free hypergeometric laws, Proc. Amer. Math. Soc. 139 (2011), 3961-3971.
[8] T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1-26.
[9] T. Banica, S. Curran and R. Speicher, Stochastic aspects of easy quantum groups, Probab. Theory Related Fields 149 (2011), 435-462.
[10] T. Banica, S. Curran and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab., to appear.
[11] T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461-1501.
[12] T. Banica and R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier 60 (2010), 2137-2164.
[13] V. Drinfeld, Quantum groups, Proc. ICM Berkeley (1986), 798-820.
[14] E.B. Dynkin, Maximal subgroups of the classical groups, AMS Transl. 6 (1957), 245-378.
[15] M. Jimbo, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[16] P. Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $\operatorname{SU}(2)$ and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20.
[17] H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), 167-195.
[18] H. J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (1992), 289-312.
[19] S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692.
[20] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211.
[21] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
[22] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76.
T.B.: Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France. teodor.banica@u-cergy.fr
J.B.: Department of Mathematics, Clermont-Ferrand University, Campus des Cezeaux, 63177 Aubiere Cedex, France. bichon@math.univ-bpclermont.fr
B.C.: Department of Mathematics, Lyon 1 University, and University of Ottawa, 585 King Edward, Ottawa, ON K1N 6N5, Canada. bcollins@uottawa.ca
S.C.: Department of Mathematics, University of California, Los Angeles, CA 90095, USA. curransr@math.ucla.edu

[^0]: 2010 Mathematics Subject Classification. 16T05.
 Key words and phrases. Orthogonal quantum group.

