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Abstract. We give examples of finite quantum permutation groups which
arise from the twisting construction or as bicrossed products associated to

exact factorizations in finite groups. We also give examples of finite quantum
groups which are not quantum permutation groups: one such example occurs
as a split abelian extension associated to the exact factorization S4 = Z4S3
and has dimension 24. We show that, in fact, this is the smallest possible
dimension that a non quantum permutation group can have.

1. Introduction

Let n ≥ 1 be an integer. Recall from Wang’s paper [29] that the usual symmetric
group Sn has a free analogue, denoted S+n ; this is a compact quantum group acting
universally on the set {1, . . . , n}.

We shall work over an algebraically closed base field k of characteristic zero. Let
As(n) = As(n, k) be the Hopf algebra corresponding to Wang’s quantum permu-
tation group [7]. This is the algebra given by generators uij , 1 ≤ i, j ≤ n, with
relations making (uij)i,j a magic matrix, that is,

(1.1) uijuik = δjkuij , uijukj = δikuij ,

n∑
l=1

uil = 1 =

n∑
l=1

uli,

for all 1 ≤ i, j, k ≤ n. The algebra As(n) is a cosemisimple Hopf algebra with
comultiplication, counit and antipode determined by

(1.2) ∆(uij) =
n∑

k=1

uik ⊗ ukj , ϵ(uij) = δij , S(uij) = uji, 1 ≤ i, j ≤ n.

By a (finite) quantum permutation algebra we shall understand a (finite dimen-
sional) quotient Hopf algebra H of As(n). In particular, a quantum permutation al-
gebra satisfies S2 = id. Hence, a finite quantum permutation algebra is cosemisim-
ple and semisimple. Formally, a quantum permutation algebra corresponds to a
“quantum permutation group”, that is, a quantum subgroup of S+n .

The Hopf algebra As(n) is the universal cosemisimple Hopf algebra coacting on
the commutative algebra kn [7]. Recall that an H-comodule V is called faithful if H
is generated as an algebra by the coefficient space of V . Thus, a cosemisimple Hopf
algebra H is a quantum permutation algebra if and only if there exists a separable
commutative faithful (left or right) H-comodule algebra L.
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The Hopf algebra kSn of functions on the classical symmetric group is a quantum
permutation algebra (the maximal commutative quotient of As(n)). We have kSn =
As(n), for n = 1, 2, 3, but not for n ≥ 4, where the algebraAs(n) is not commutative
and infinite dimensional. See [29, 7].

Several interesting examples of quantum permutation groups, finite or not, were
obtained as twisting deformations of classical groups. Here is a list of such quantum
groups:

(1) The twists of Sn from [6].
(2) The quantum group O−1

n , see [2].
(3) The twists of several subgroups of SO3, see [1].
Also the nontrivial Hopf algebras studied by Masuoka [22] appear as quantum

permutations algebras in [1], including the historical 8-dimensional Kac-Paljutkin
example (which is not a twist of a function algebra).

As is well-known, the Cayley representation makes every finite group into a
permutation group. This leads naturally to consider the question whether any
“finite quantum group” is a “quantum permutation group”. In other words:

Question 1.1. Let H be a finite dimensional cosemisimple Hopf algebra. Is it true
that H is a quotient of As(N), for some N ∈ N?

Of course, the answer is ’yes’ if H is commutative, taking N = dimH. Although
less trivial to see, the answer is also ’yes’ in the cocommutative case. Moreover, as
shown in [7], the cocommutative cosemisimple (finite or not) Hopf algebra quotients
of As(N) are exactly the group algebras kG, where G is a quotient of a free product
G1 ∗ · · · ∗Gm of transitive abelian groups Gi ⊆ Sni , with N =

∑
i ni.

Now back to our question, let G be a finite group of order n. Then there is a

canonical surjective homomorphism Z∗|G|
n → G, induced by the homomorphisms

Zn → ⟨g⟩, g ∈ G. Thus kG is a quotient of As(N), with N = n2.
This also suggests that one could include the condition N = (dimH)2 in Ques-

tion 1.1.

In this paper we show that the answer to Question 1.1 is negative in general.
More precisely, we give examples of finite dimensional cosemisimple Hopf algebras
which are not quantum permutation algebras. Such examples arise as split abelian
extensions from exact factorizations of the symmetric groups S4 and S5. See The-
orem 7.4.

These examples show that the class of finite quantum permutation algebras is
not stable under extensions. It turns out that their duals are quantum permutation
algebras, so we get that the class of finite quantum permutation algebras is also not
stable under duality. An argument involving Drinfeld doubles implies, in addition,
that this class is not stable under twisting deformations neither.

We also discuss sufficient conditions on abelian extensions or a twisting defor-
mation of a linear algebraic group in order that they be quantum permutation
algebras. This is done in Sections 5 and 8, respectively. Some known examples of
quantum permutation algebras turn out to fit into these pictures.

We show that central abelian extensions and certain classes of split extensions,
that include cocentral split extensions and split extensions by an abelian group, are
quantum permutation algebras. See Theorems 5.1 and 5.2.

As a consequence, we get that if G is a finite group, then the Drinfeld double
D(G) and its dual D(G)∗ are quantum permutation algebras. We also obtain that a
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cosemisimple Hopf algebra whose dimension divides p3 or pqr, where p, q and r are
pairwise distinct prime numbers, is a quantum permutation algebra (Proposition
5.8). Other known examples also fit into this picture, like, for instance, some
nontrivial Hopf algebras studied by Masuoka [22].

We then look at twisting deformations of a quantum permutation algebra H. We
give in Proposition 8.1 a general sufficient condition on a cocycle σ : H ⊗H → k
such that the twisted Hopf algebra Hσ is a quantum permutation algebra. The
deformations of the symmetric groups in [6] fall into this class.

Let Γ be a finite abelian group and σ a 2-cocycle on Γ. We give further examples
of quantum permutation algebras as twisting deformations of linear algebraic groups

G, with Γ̂ ⊂ G ⊂ Aut(kσΓ). This construction relies on the results of [3]. See
Theorem 8.3. The twisted examples from [2] fit into this framework.

In Section 9 we introduce the quantum permutation envelope, denoted Hqp, of a
cosemisimple Hopf algebra as the subalgebra generated by the matrix coefficients
of all separable commutative (right and left) coideal subalgebras of H. This is a
Hopf subalgebra containing all quantum permutation algebras A ⊆ H. When H
is finite dimensional, Hqp is the maximal quantum permutation algebra contained
in H. This provides a method to construct quantum permutation algebras from
any finite dimensional cosemisimple Hopf algebra. We determine the quantum
permutation envelope for some families of examples.

Conventions. We refer the reader to [24] for the notation and terminology on
Hopf algebras used throughout. By a twisting deformation of a Hopf algebra H
we understand a twist Hσ in the sense of Doi [9], where σ : H ⊗ H → k is a
convolution invertible normalized 2-cocycle. That is, Hσ = H as a coalgebra, with
multiplication

[x][y] = σ(x1, y1)σ
−1(x3, y3)[x2y2], x, y ∈ H,

where [x] denotes the element x ∈ H, viewed as an element of Hσ.

2. Quantum permutation algebras

Let H be a quantum permutation algebra. As noticed before, we have S2 = id
in H. For H finite-dimensional this condition is equivalent to H being separable
and/or cosemisimple [15].

Definition 2.1. The degree of H, denoted d(H), is the smallest n ≥ 1, such that
H is a quotient Hopf algebra of As(n).

As pointed out in the Introduction, if H = kG, where G is a finite group, then
d(H) ≤ |G|, while if H = kG, then d(H) ≤ |G|2 (see [7, Proposition 5.2]).

Let f(uij) =: xij ∈ H, where f : As(n)→ H is a surjective Hopf algebra map.
For each j = 1, . . . , n, consider the subspace Lj of H spanned by xij , 1 ≤ i ≤ n.

By (1.1) and (1.2), each Lj is a commutative separable left coideal subalgebra of
H. Similarly, the subspace Rj = S(Lj) of H spanned by xji, 1 ≤ i ≤ n, is a
commutative separable right coideal subalgebra.

In particular, H is generated as an algebra by its commutative separable left
coideal subalgebras L1, . . . , Ln.
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Remark 2.2. If H1,H2 are quantum permutation algebras, then so is their free
product H1 ∗ H2 (with block-diagonal magic matrix) [29, 4]. It follows that any
cosemisimple Hopf algebra H such that H is generated as an algebra by a finite
number of quantum permutation algebras is itself a quantum permutation algebra.

Further, if H = k[H1, . . . ,Hr] is generated by the quantum permutation algebras
H1, . . . , Hr, then d(H) ≤ d(H1) + · · ·+ d(Hr).

Theorem 2.3. Let H be a finite dimensional cosemisimple Hopf algebra. Then H
is a quantum permutation algebra if and only if H is generated, as an algebra, by
the matrix coefficients of its commutative left (or right) coideal subalgebras.

Proof. We have already proved the ’only if’ implication. To prove the converse,
suppose L ⊆ H is a left (or right) coideal subalgebra. It is known that H is free as
a (left or right) L-module under multiplication (see [16] or, more generally, [28]).
This implies that L is a separable algebra, by [17].

Let H[L] be the subalgebra generated by the matrix coefficients of L. Then
H[L] is a subbialgebra of H, and therefore a Hopf subalgebra, because it is finite
dimensional. Suppose L is commutative. Since, by definition, H[L] coacts faithfully
on L, then it is a quantum permutation algebra [7].

Since H is finite dimensional, the assumption implies that H is generated by a
finite number of the Hopf subalgebras H[L]. Hence H is a quantum permutation
algebra, by Remark 2.2. This finishes the proof of the theorem. �

If H is a quantum permutation algebra, then so are Hop and Hcop. For a finite
dimensional Hopf algebra H, the Drinfeld double D(H) is generated as an algebra
by H∗ cop and H. Moreover, D(H) is cosemisimple if H (and therefore also H∗) is
cosemisimple. Then we get:

Corollary 2.4. Let H be a finite dimensional cosemisimple Hopf algebra. If H and
H∗ are quantum permutation algebras, then the Drinfeld double D(H) is a quantum
permutation algebra and we have d(D(H)) ≤ d(H) + d(H∗).

In particular, every Drinfeld double D(G) of a finite group algebra kG is a quan-
tum permutation algebra of degree at most |G|(1 + |G|).

We shall see later (Corollary 5.6) that D(G)∗ is also a quantum permutation
algebra.

3. Hopf algebra extensions

Recall that an exact sequence of finite dimensional Hopf algebras is a sequence
of Hopf algebra maps

(3.1) k → A
ι→ H

π→ H → k,

where H is finite dimensional, such that ι is injective, π is surjective and, identifying
A with a Hopf subalgebra of H, we have

(3.2) A = Hcoπ = {h ∈ H| (id⊗π)∆(h) = h⊗ 1}.

See [23, Definition 1.4] for details. (In particular, condition (3.2) is equivalent to
H/HA+ = H, where A+ = ker ϵA, and we identify H as a quotient Hopf algebra
of H.) We shall say in this case that H is an extension of A by H.
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Remark 3.1. Suppose H is finite dimensional and A ⊆ Hcoπ is a Hopf subalgebra.
Let us point out that in this case exactness of the sequence (3.1) is equivalent to
the condition dimAdimH = dimH.

The following result on Hopf algebra extensions will be used repeatedly.

Theorem 3.2. Suppose H is finite dimensional cosemisimple. Assume in addition
that:

(i) A is a quantum permutation algebra, and
(ii) H is generated as an algebra by a finite subset X such that, for all x ∈ X,

there exists a commutative left coideal subalgebra Lx of H with x ∈ π(Lx).
Then H is a quantum permutation algebra. Moreover, we have d(H) ≤ d(A) +∑
1 ̸=x∈X dimLx.

Note that the same statement holds true replacing left by right.

Proof. For each x ∈ X, let Hx ⊆ H be the subalgebra generated by the subcoal-
gebra Cx of matrix coefficients of Lx. Thus Hx is a Hopf subalgebra, and we have
Lx ⊆ Hx. Since Lx is commutative, then Hx is a quantum permutation algebra,
and d(Hx) ≤ dimLx, by construction.

Let H̃ be the subalgebra generated by A and Hx, 1 ̸= x ∈ X. This is a Hopf
subalgebra of H that contains A. Moreover, since every element 1 ̸= x ∈ X belongs
to π(Lx) ⊆ π(H̃), and X generates H, then π|H̃ : H̃ → H is surjective.

On the other hand, by exactness of the sequence k → A → H
π→ H → k, we

have Hcoπ = A. Thus H̃coπ|H̃ = Hcoπ ∩ H̃ = A, since A ⊆ H̃. Therefore the
sequence k → A → H̃ → H → k is also exact. Then H̃ = H, since they have
the same finite dimension (see Remark 3.1). Thus H is generated as an algebra
by the quantum permutation algebras A, Hx, 1 ̸= x ∈ X. Hence H is a quantum
permutation algebra, with the claimed bound for d(H), by Remark 2.2. �

4. Matched pairs of groups

Let (F,Γ) be a matched pair of finite groups. That is, F and Γ are endowed

with actions by permutations Γ
▹← Γ× F

◃→ F such that

(4.1) s ◃ xy = (s ◃ x)((s ▹ x) ◃ y), st ▹ x = (s ▹ (t ◃ x))(t ▹ x),

for all s, t ∈ Γ, x, y ∈ F .
Given finite groups F and Γ, providing them with a pair of compatible actions

is equivalent to giving a group G together with an exact factorization G = FΓ: the
relevant actions are determined by the relations gx = (g ◃ x)(g ▹ x), x ∈ F , g ∈ Γ.

Consider the left action of F on kΓ, (x.f)(g) = f(g ▹ x), f ∈ kΓ, and let
σ : F × F → (k∗)Γ be a normalized 2-cocycle. Dually, consider the right action of
Γ on kF , (w.g)(x) = w(x ◃ g), w ∈ kF , and let τ : Γ× Γ→ (k∗)F be a normalized
2-cocycle.

Under appropriate compatibility conditions between σ and τ , the vector space
H = kΓ ⊗ kF becomes a (semisimple) Hopf algebra, denoted H = kΓ τ#σkF , with
the crossed product algebra structure and the crossed coproduct coalgebra structure
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(see [23, Section 1]). For all g, h ∈ Γ, x, y ∈ F , we have

(eg#x)(eh#y) = δg▹x,h σg(x, y)eg#xy,(4.2)

∆(eg#x) =
∑
st=g

τx(s, t) es#(t ◃ x)⊗ et#x,(4.3)

where σs(x, y) = σ(x, y)(s) and τx(s, t) = τ(s, t)(x), s, t ∈ Γ, x, y ∈ F .
Let π = ϵ⊗ id : H = kΓ τ#σkF → kF denote the canonical projection. We have

an exact sequence of Hopf algebras k → kΓ → H
π→ kF → k. Moreover, every Hopf

algebra H fitting into an exact sequence of this form is isomorphic to kΓ τ#σkF
for appropriate compatible actions and cocycles σ and τ . Equivalence classes of
such extensions associated to a fixed matched pair (F,Γ) form an abelian group
Opext(kΓ, kF ), whose unit element is the class of the split extension kΓ#kF .

Remark 4.1. Suppose k = C is the field of complex numbers. Then H is a Hopf C∗-
algebra (often called Kac algebra), that is, it is a C∗-algebra such that all structure
maps are C∗-algebra maps. [14, 21].

Remark 4.2. LetH = kΓ τ#σkF be a bicrossed product. Let F ′ ⊆ F be a subgroup,
and consider the subgroup Γ′ ⊆ Γ consisting of all elements g ∈ Γ such that
g ◃ F ′ = F ′. Then (Γ′, F ′) is a matched pair by restriction. Indeed, if s ∈ Γ′,
x, y ∈ F ′, then it follows from the compatibility between ◃ and ▹ that

(s ▹ x) ◃ y = (s ◃ x)−1(s ◃ xy) ∈ F ′,

whence s ▹ x ∈ Γ′. Hence Γ′ is F ′-stable, which implies the claim.
In particular, if F ′ ⊆ F is a subgroup stable under the action ◃, then (Γ, F ′) is

a matched pair by restriction, and it follows from formulas (4.2) and (4.3) that the

bicrossed product kΓ τ ′
#σ′kF ′ is naturally a Hopf subalgebra of H, where σ′ is the

restriction of σ to F ′, and τ ′x(g, h) = τx(g, h), for all x ∈ F ′, g, h ∈ Γ.
Observe that if F ′ ⊆ F is the largest subgroup acting trivially on Γ, then F ′

is Γ-stable, by (4.1). The Hopf subalgebra kΓ τ ′
#σ′kF ′ is in this case a central

extension.

5. Quantum permutation algebras obtained from matched pairs of
groups

Consider a bicrossed product H = kΓ τ#σkF . We shall give in this section
sufficient conditions in order for H to be a quantum permutation algebra. These
include the following cases:

(1) H is a central abelian extension (that is, kΓ central in H).
(2) H is a split abelian extension (that is, σ = 1, τ = 1) and F is generated

by its abelian Γ-stable subgroups. (In particular, this is true when F is
abelian or the action ◃: Γ× F → F is trivial.)

The result for Case (1) is a consequence of Theorem 3.2:

Theorem 5.1. Let H = kΓ τ#σkF and suppose that kΓ is central in H. Then H
is a quantum permutation algebra and we have d(H) ≤ |Γ| |F |2.

Proof. The assumption that kΓ is central implies that the action ▹: Γ× F → Γ is
trivial.

Let x ∈ F and let ⟨x⟩ ⊆ F denote the cyclic subgroup generated by x. Consider
the subspace Lx = kΓ#⟨x⟩ ⊆ H. It follows from (4.2) and (4.3) that Lx is a
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left coideal subalgebra of H. As an algebra, Lx = kΓ#σk⟨x⟩ is a crossed product
with respect to the trivial action k⟨x⟩ ⊗ kΓ → kΓ and the 2-cocycle σ = σ|⟨x⟩×⟨x⟩.
Therefore Lx is a commutative left coideal subalgebra of dimension |x||Γ|.

It is clear that x ∈ π(Lx), for all x ∈ F . Hence H is a quantum permuta-
tion algebra, by Theorem 3.2. Moreover, we have that d(H) ≤

∑
x∈F dimLx =

|Γ|
∑

x∈F |x| ≤ |Γ| |F |2, as claimed. �

Consider next a split abelian extension H = kΓ#kF . It follows from (4.2) and
(4.3) that for any subgroup T ⊆ F such that T is stable under the action ◃ of Γ,
the group algebra kT ≃ 1#kT is a right coideal subalgebra of H.

Theorem 5.2. Let H = kΓ#kF be a split abelian extension. Suppose F is gener-
ated by its abelian Γ-stable subgroups. Then H is a quantum permutation algebra.
Furthermore, we have d(H) ≤ |Γ||F |2.

Proof. We may assume that |F |, |Γ| > 1. Let T1, . . . , Ts, be abelian Γ-stable sub-
groups of F , with F = ⟨T1, . . . , Ts⟩. Then kTi ≃ 1#kTi are commutative right
coideal subalgebras of H, and x ∈ π(kTi), for all x ∈ Ti. It follows from Theorem
3.2 that H is a quantum permutation algebra. Moreover, we have

d(H) ≤ |Γ|+
∑

x∈∪iTi

|T x
i | ≤ |Γ|+ |F | | ∪i Ti| ≤ |Γ|+ |F |2 ≤ |Γ||F |2,

where in the first inequality, T x
i denotes a choice of one the subgroups Ti such that

x ∈ Ti. �

Remark 5.3. Let T ⊆ F be any abelian subgroup. Consider the subgroup ΓT ⊆ Γ
consisting of all elements g ∈ Γ such that g ◃ T = T . Then (ΓT , T ) is a matched
pair by restriction (see Remark 4.2). Theorem 5.2 implies that the associated split
extension kΓT#kT is a quantum permutation algebra.

Remark 5.4. Observe that the conclusion in Theorem 5.2 holds in either of the
following cases:

(i) F is abelian, or
(ii) the action ◃: Γ× F → F is trivial, that is, H is a split cocentral extension.

We next discuss some families of examples of finite quantum permutation alge-
bras.

Example 5.5. The dual of the Drinfeld double D(G) of a finite group G fits into
a central abelian exact sequence k → kG → D(G)∗ → kG → k. By Theorem 5.1,
we get:

Corollary 5.6. Let G be a finite group. Then D(G)∗ is a quantum permutation
algebra and d(D(G)∗) ≤ |G|3.

Example 5.7. Dimension pqr. Let p, q and r be pairwise distinct prime numbers.
A semisimple Hopf algebra H of dimension p, p2 or pq is necessarily commutative
or cocommutative, so H is a quantum permutation algebra.

It is known that every semisimple Hopf algebra H of dimension p3 fits into a
central abelian extension k → kZp → H → k(Zp × Zp) → k [18]. Hence H is a
quantum permutation algebra.
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Assume next that dimH = pqr. By [10, Corollary 9.4], H is a split abelian
extension. Such extensions are classified in [25, Section 4]; in particular, they must
be either central or cocentral. It follows from Theorems 5.1 and 5.2 that H is a
quantum permutation algebra.

In conclusion, we can state the following:

Proposition 5.8. Suppose that the dimension of H divides p3 or pqr. Then H is
a quantum permutation algebra.

Consider the case where dimH = pq2, p ̸= q. By the results in [10, Subsection
9.2] and the classification results of abelian extensions in [25], either H or H∗ fits
into a central abelian exact sequence.

Recall that the Hopf algebra H is called trivial if it is cocommutative or commu-
tative, in which case, H is isomorphic to a group algebra or to the dual of a group
algebra, respectively.

Proposition 5.9. Suppose that H is nontrivial and dimH = pq2, p ̸= q. If either
p > q or p = 2, then H is a quantum permutation algebra. If 2 < p < q, then
q = 1(mod p) and H is a cocentral (non split) exact sequence k → kZq×Zq → H →
kZp → k. In the last case, H∗ is a quantum permutation algebra.

Proof. When p > q, H is one of the (self-dual) central abelian extensions con-
structed in [11]. On the other hand, when p = 2, H fits into a central abelian exact
sequence k → kΓ → H → kF → k, where Γ = Zq, F = Dq, or Γ = Zp, F = Zq×Zq.
These extensions are classified in [19]. See [25, Lemmas 1.3.9 and 1.3.11]. In the
case 2 < p < q, it follows from [25, Subsection 1.4] that H fits into the prescribed
exact sequence. The proposition follows from Theorem 5.1. �

We point out that in the case of a non split exact sequence k → kZq×Zq → H →
kZp → k, there are examples of nontrivial Hopf algebras H with no proper central
Hopf subalgebra. The dual Hopf algebra H∗ can also be constructed as a twisting
deformation of a dual group algebra.

Example 5.10. Dimension 16. It follows from [13, Theorem 9.1] that every cosemi-
simple Hopf algebra H of dimension 16 over k fits into a central exact sequence
k → kZ2 → H → kF → k, where F is group of order 8. Therefore H is a quantum
permutation algebra.

Example 5.11. Examples with irreducible characters of degree ≤ 2. As another
example (see [1]), we get that the nontrivial Hopf algebras H = An or Bn, studied
by Masuoka in [22] are quantum permutation algebras. Indeed, they fit into a
central abelian exact sequence k → kZ2 → H → kF → k, where F is a dihedral
group.

It follows from [8] that if H is a nontrivial semisimple Hopf algebra and χ ∈ H∗

is a faithful self-dual irreducible character of degree 2, then H fits into a central
exact sequence k → kZ2 → H → kF → k, where F is a polyhedral group. Therefore
H is also a quantum permutation algebra in this case.

More generally, let H be a semisimple Hopf algebra such that its irreducible
corepresentations are of dimension ≤ 2. Suppose in addition that H∗ contains no
proper central Hopf subalgebra. By [8, Theorem 6.4] H fits into a central abelian
extension k → kΓ → H → kF → k, with Γ ̸= 1. Therefore H is a quantum
permutation algebra.
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6. Right coideal subalgebras in split extensions

Let H = kΓ#kF be a split abelian extension. Our aim in this section is to give
some restrictions on the associated actions ◃ and ▹, in order that H contains a
commutative right coideal subalgebra. In the case of right coideal subalgebras which
are ’extremal’ in a certain sense, we obtain conditions that correspond, roughly, to
the assumptions in Theorems 5.1 and 5.2 (see Proposition 6.2). The results will be
used in the next section.

Consider the canonical projection π = (ϵ⊗ id) : H → kF . Note that π(eg#x) =
δg,1x, for all g ∈ Γ, x ∈ F .

Then H is a right kF -comodule algebra via ρ = (id⊗π)∆ : H → H ⊗ kF . In
other words, H is an F -graded algebra H = ⊕x∈FHx, where, for all x ∈ F ,

Hx = {h ∈ H| (id⊗π)∆(h) = h⊗ x} = kΓ#x.

Suppose R ⊆ H is a right coideal subalgebra, that is, ∆(R) ⊆ R ⊗H. Then R
is a kF -subcomodule algebra of H, thus it is a graded subalgebra, R = ⊕x∈FRx,
where Rx = R ∩Hx, for all x ∈ F .

Let SuppR ⊆ F denote the support of R, that is, SuppR = {x ∈ F |Rx ̸= 0}.

Since R is a right coideal subalgebra of H, then π(R) = kT , where T is a
subgroup of F . On the other hand, π defines, by restriction, an epimorphism of
right kF -comodules π : R→ kT . In other words, π : R→ kT is a (surjective) map
of F -graded spaces, with respect to the natural grading on kT . Therefore

(6.1) π(Rx) =

{
kx, if x ∈ T,

0, otherwise.

Notice that, since Rx = R ∩Hx = R ∩ (kΓ#x), then every nonzero element of
Rx, x ∈ SuppR, is of the form f#x, where f ∈ kΓ is nonzero.

Furthermore, if x ∈ F , then x ∈ T if and only if there exists f#x ∈ Rx with
f(1) ̸= 0.

Let ⇀: Γ × kΓ → kΓ denote the action by algebra automorphisms of Γ on kΓ

given by right translations, that is, (s ⇀ f)(g) = f(gs), for all s, g ∈ Γ.

Lemma 6.1. (i) For all g ∈ Γ, x ∈ F , we have

Rg◃x = {(g ⇀ f)#(g ◃ x)| f#x ∈ Rx}.

(ii) SuppR is a Γ-stable subset of F containing T and satisfying x ∈ SuppR if
and only if x−1 ∈ SuppR.

(iii) For all x ∈ SuppR, there exists t ∈ Γ such that t ◃ x ∈ T .

Proof. (i). Let x ∈ F and let f ∈ kΓ, such that f#x ∈ Rx. Since ∆(R) ⊆ R⊗H,

∆(f#x) =
∑
g∈Γ

f(g)∆(eg#x) =
∑
s,t∈Γ

f(st)(es#t ◃ x)⊗ (et#x)

=
∑
t∈Γ

((t ⇀ f)#t ◃ x)⊗ (et#x) ∈ R⊗H.

Fix g ∈ Γ. Evaluating the right tensorand of the last expression in g ⊗ ϵ ∈ H∗,
we get that (g ⇀ f)#(g◃x) ∈ R, and since this is homogeneous of degree g◃x, then
(g ⇀ f)#(g ◃ x) ∈ Rg◃x. This shows that {(g ⇀ f)#(g ◃ x)| f#x ∈ Rx} ⊆ Rg◃x.
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Since g ∈ Γ was arbitrary, the other inclusion follows from this applied to g−1 ∈
Γ. This proves (i).

(ii). By (i), SuppR is Γ-stable. The inclusion T ⊆ SuppR follows from (6.1).
Moreover, if s ∈ Γ is such that s ◃ x ∈ T , then (s ▹ x) ◃ x−1 = (s ◃ x)−1 ∈ T . Thus
(s ▹ x) ◃ x−1 ∈ SuppR. Since SuppR is Γ-stable, it follows that x−1 ∈ SuppR.
Then we get (ii).

(iii). Let x ∈ SuppR and let f#x ∈ Rx, where 0 ̸= f ∈ kΓ. By (i), we have that
(t ⇀ f)#(t ◃ x) ∈ Rt◃x, for all t ∈ Γ.

Since f ̸= 0, there exists s ∈ Γ such that f(s) ̸= 0. Then (s ⇀ f)(1) = f(s) ̸= 0.
Hence s ◃ x ∈ T . This proves (iii). �

Assume in addition that R ⊆ H is a commutative right coideal subalgebra. Then
T is an abelian subgroup of F .

Proposition 6.2. Let H = kΓ#kF . Let also R ⊆ H be a commutative right
coideal subalgebra and let π(R) = kT , where T is an abelian subgroup of F . Then:

(i) If kΓ ⊆ R, then T acts trivially on Γ via ▹.
(ii) If kΓ ∩R = k1, then T is stable under the action ◃ of Γ.

Proof. (i). Consider the F -gradings H = ⊕x∈FHx, R = ⊕x∈FRx, as before. In
this case, we have kΓ ⊆ R1 ⊆ H1 = kΓ. Hence kΓ = R1 = H1. In particular, since
Rx is an R1-module under left multiplication, then kΓRx ⊆ Rx, for all x ∈ F .

Let f#x ∈ Rx and let g ∈ Γ. Then eg(f#x) = f(g) eg#x ∈ Rx. Thus Rx =
kS#x, for some subset S ⊆ Γ. (Note that x ∈ T if and only if 1 ∈ S.)

Let x ∈ SuppR and put Rx = kS#x, S ⊆ Γ, as above. Let s ∈ S. Since
es ∈ kΓ ⊆ R, and R is commutative, we have

es#x = es(es#x) = (es#x)es = δs▹x,ses#x.

Therefore s ▹ x = s, for all s ∈ S.

Now suppose x ∈ T , so that e1#x ∈ Rx. By Lemma 6.1 (i), Rt◃x = kSt−1

#(t◃x),
for all t ∈ Γ. In particular, et−1#t ◃ x = t ⇀ e1#t ◃ x ∈ Rt◃x, for all t ∈ Γ.

As we have seen above, this implies that t−1 ▹ (t ◃ x) = t−1, for all t ∈ Γ. Thus

1 = (t−1t) ▹ x =
(
t−1 ▹ (t ◃ x)

)
(t ▹ x) = t−1(t ▹ x),

for all t ∈ Γ. This means that the action of x on Γ is trivial. Since x ∈ T was
arbitrary, this proves (i).

(ii). Suppose x ∈ T and let f#x ∈ Rx such that f(1) = 1. Since x−1 ∈ T ,
there exists f ′#x−1 ∈ Rx−1 with f ′(1) = 1. The product (f#x)(f ′#x−1) belongs
to R1 = k1, by assumption.

On the other hand, we have (f#x)(f ′#x−1) = f(x.f ′)#1. Thus

(f#x)(f ′#x−1) = f(x.f ′)#1 = (f(x.f ′))(1) 1#1 = 1#1,

since (f(x.f ′))(1) = f(1)f ′(1 ▹ x) = f(1)f ′(1) = 1. This shows that, for all x ∈ T ,
Rx contains an invertible element f#x with inverse f ′#x−1 ∈ Rx−1 . In particular,
f ∈ kΓ is invertible and therefore f(g) ̸= 0, for all g ∈ Γ.
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Let now x ∈ SuppR. By Lemma 6.1 (iii), s ◃ x ∈ T , for some s ∈ Γ. Hence, by
the above, there is an invertible element f#(s ◃ x) ∈ Rs◃x with f(g) ̸= 0, for all
g ∈ Γ.

By Lemma 6.1 (i), we have (s−1 ⇀ f)#x = (s−1 ⇀ f)#s−1 ◃ (s ◃ x) ∈ Rx.
Moreover, (s−1 ⇀ f)(1) = f(s) ̸= 0. Hence x ∈ T .

This shows that SuppR = T and then T is Γ-stable, by Lemma 6.1 (ii). This
proves (ii) and finishes the proof of the proposition. �

Example 6.3. Let Γ be a finite group acting by automorphisms on a finite group
F via ◃ : Γ× F → F , and let H = kΓ#kF (so ▹ is trivial in this case). Thus H is
a central split abelian extension of kΓ.

Let T ⊂ F be a subgroup and let

X(T ) = Span{eg#(g−1 ◃ y), g ∈ Γ, y ∈ T}.

Then X(T ) is a right coideal subalgebra of H (containing kΓ) and it is commutative
if T is abelian.

For appropriate choices of the abelian subgroup T , the algebras X(T ) provide
examples of commutative coideal subalgebras R ⊆ H with SuppR not necessarily
included in an abelian subgroup.

7. Split extensions associated to the symmetric group

In this section we shall give examples of cosemisimple Hopf algebras H which
are not quantum permutation algebras.

Let Sn denote the symmetric group on n symbols. Let H = kCn#kSn−1 be
the split abelian extension associated to the matched pair (Cn,Sn−1) arising from
the exact factorization Sn = ΓF , where Γ = Cn = ⟨z⟩ ≃ Zn, z = (12 . . . n), and
F = {x ∈ Sn|x(n) = n} ≃ Sn−1. (Actually, H is the unique, up to isomorphism,
Hopf algebra fitting into an exact sequence k → kZn → H → kSn−1 → k, which
gives rise to the matched pair above [20, Theorem 4.1].)

Remark 7.1. It follows from Theorem 5.2 that H∗ = kSn−1#kCn is a quantum per-
mutation algebra. Note that, as for Drinfeld doubles, we have D(H) ≃ D(H∗), and
D(H)∗ ≃ (D(Sn)∗)σ is a twisting deformation of D(Sn)∗, for a certain convolution
invertible cocycle σ : D(Sn)∗ ⊗D(Sn)∗ → k [5].

We quote the following fact on stabilizers, that follows from [12, Lemma 3.2].
For every w ∈ Cn, let Fw ⊆ Sn−1 denote the stabilizer of w under the action
▹: Cn × Sn−1 → Cn.

Lemma 7.2. We have F1 = Sn−1 and Fzj = {x ∈ Sn−1|x(n− j) = n− j} ≃ Sn−2,
1 ≤ j ≤ n − 1. In particular, the only subgroup of F = Sn−1 that acts trivially on
Cn is the trivial subgroup {1}.

Proof. It is shown in [12, Lemma 3.2] that there are two orbits for the action of
Sn−1 on Cn, namely O1 = {1} and Oz = {z, . . . , zn−1}. We have F1 = Sn−1 and
Fz = {x ∈ Sn−1|x(n− 1) = n− 1} ≃ Sn−2.

Moreover, for each 1 ≤ j ≤ n − 1, zj = z ▹ xj , where xj is the transposition

xj = (n − 1n − j). Therefore, Fzj = x−1
j Fzxj is the claimed subgroup of F =

Sn−1. �
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Suppose that n = p is a prime number. Let R ⊆ H be a commutative right
coideal subalgebra, and let π(R) = kT , where T ⊆ Sp−1 is an abelian subgroup.
Since R1 = R ∩ kΓ is a right coideal subalgebra (hence a Hopf subalgebra) of kΓ,
then dimR1 divides |Γ| = p. Therefore, we must have either R ∩ kΓ = kΓ or
R ∩ kΓ = k1.

By Proposition 6.2, in the second case T is Cp-stable, while in the first case T
acts trivially on Γ = Cp, and thus T = 1, in view of Lemma 7.2. This implies that
in this case R ⊆ kCp , by Lemma 6.1 (iii).

Lemma 7.3. Let p be a prime number and suppose that H = kCp#kSp−1 is a
quantum permutation algebra. Then Sp−1 is generated by its abelian Cp-stable sub-
groups.

Proof. By assumption there exists a surjective Hopf algebra map f : As(N)→ H,
for some N ≥ 1. Let xij = f(uij) ∈ H; so that the elements xij , 1 ≤ i, j ≤ N ,
generate H as an algebra. Furthermore, for every i = 1, . . . , N , the subspace Ri

spanned by xij , 1 ≤ j ≤ N , is a commutative right coideal subalgebra of H.
Hence H is generated as an algebra by its commutative right coideal subalgebras
R1, . . . , RN .

Letting kT j = π(Rj), we have that the abelian subgroups T j , 1 ≤ j ≤ N ,
generate F = Sp−1.

By the above, either T j = 1 or T j is Cp-stable. Hence Sp−1 is actually generated
by abelian Cp-stable subgroups, as claimed. �

We can now state the main result of this section:

Theorem 7.4. The cosemisimple Hopf algebras H = kC4#kS3 and H = kC5#kS4
are not quantum permutation algebras.

In particular, there exist finite dimensional cosemisimple Hopf algebras which
are not quantum permutation algebras.

Proof. Let H = kC5#kS4. In this case, the action of C5 = ⟨(12345)⟩ on S4 is
written down explicitly in Table 1 of [12, pp. 15]. It turns out that the only abelian
C5-stable subgroups of S4 are contained in the cyclic subgroup ⟨(1342)⟩. Thus they
do not generate S4. Lemma 7.3 implies that H is not a quantum permutation
algebra.

Let now H = kC4#kS3. In this case, the action of C4 on S3 has three orbits:

(7.1) {1}, {(13)}, {(12), (23), (123), (132)}.
In particular, the only nontrivial abelian subgroup of S3 which is C4-stable is
⟨(13)⟩ ≃ Z2.

We have in addition that kG(H) = kC4#k⟨(13)⟩, and G(H) ≃ D4.

Let R ⊆ H be a commutative right coideal subalgebra. As before, consider the
S3-grading R = ⊕x∈S3Rx, where Rx = R ∩ (kC4#x) and let π(R) = kT , where
T ⊆ S3 is an abelian subgroup.

The subalgebra R1 = R∩ kC4 is a right coideal subalgebra (hence a Hopf subal-
gebra) of kC4 . Then either R1 = k1 or R1 = kC4 , or R1 = kC4/L, where L = {1, z2}
is the only subgroup of order 2 of C4.

By Proposition 6.2, the assumption R1 = kC4 implies that T acts trivially on
C4, and thus T = 1, by Lemma 7.2. Also, if R1 = k1, then T is C4-stable and
therefore T ⊆ ⟨(13)⟩.
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In any of these cases, we obtain that SuppR ⊆ ⟨(13)⟩, by Lemma 6.1 (iii), and
thus R ⊆ kG(H).

Suppose that there exists a commutative right coideal subalgebra R such that
SuppR * ⟨(13)⟩. By Proposition 6.2 (iii), also T ( ⟨(13)⟩ and SuppR ̸= S3
(otherwise, the transposition (13) would belong to the orbit of another cycle in S3).

By the above, R1 = kC4/L is of dimension 2 and in view of (7.1),

(7.2) SuppR = {1} ∪ {(12), (23), (123), (132)},

since by Proposition 6.2 (ii), SuppR is C4-stable.

The subalgebra R1 = kC4/L of kC4 is spanned by the idempotents eL = e1 + ez2

and eLz = ez + ez3 .
For a subset X ⊆ C4 and f ∈ kC4 , let us denote fX =

∑
x∈X f(x)ex. Note that

fL = eLf , for all f ∈ kC4 .
Let x ∈ SuppR and let f ∈ kC4 such that f#x ∈ Rx. Since R is commutative

by assumption, we have

(7.3) eL(f#x) = fL#x = (f#x)eL = fL▹x−1#x,

that is, fL = fL▹x−1 . Hence, if x ̸= 1, then f(z2) = 0. Otherwise, z2 ▹ x = z2,
implying that x ∈ Fz2 = ⟨(13)⟩ (see Lemma 7.2), which contradicts (7.2).

Now suppose that x ∈ T , x ̸= 1. Then there exists f#x ∈ Rx such that
f(1) = 1. Thus fL = e1, by the above. In particular, e1#x = eL(f#x) ∈ Rx, and
by Proposition 6.2 (i), et#t−1 ◃ x ∈ Rt−1◃x, for all t ∈ C4.

By (7.3), this implies that (et)L = (et)L▹(t−1◃x)−1 , for all t ∈ C4. In particular,

taking t = z2, we get that z2 ∈ L ▹ (z2 ◃ x)−1, so that z2 ◃ x ∈ Fz2 = ⟨(13)⟩.
This contradicts again (7.2), since 1 ̸= z2 ◃ x ∈ SuppR.

This shows that there can exist no commutative right coideal subalgebra R
with SuppR * ⟨(13)⟩. Then we conclude that every commutative right coideal
subalgebra of H is contained in kG(H). Therefore H is not a quantum permutation
algebra, by Theorem 2.3. This finishes the proof of the theorem. �

Remark 7.5. The results in Section 5 ensure that any semisimple Hopf algebra of
dimension less than or equal to 23 is a quantum permutation algebra. Theorem
7.4 implies that this bound is optimal, since H = kC4#kS3 is a non quantum
permutation algebra of dimension 24. In particular, 24 is the smallest possible
dimension that a non quantum permutation algebra can have.

Remark 7.6. Observe that in the case where H = kC5#kS4, the exact factorization
S5 = S4C5 restricts to an exact factorization A5 = A4C5. We may therefore consider
the split extension H ′ = kC5#kA4. (Indeed, H

′ is isomorphic to a Hopf subalgebra
of H, by Remark 4.2.)

The arguments used so far apply mutatis mutandi to this new matched pair.
Then, as before, we get thatH ′ is not a quantum permutation algebra. The example
provided by H ′ has dimension 60.

Remark 7.7. Note that if H is not a quantum permutation algebra, then the tensor
product H̃ = H ⊗H∗ is not a quantum permutation algebra neither (since H is a

quotient of H̃), and H̃ is self-dual. Theorem 7.4 implies that there exist self-dual
cosemisimple Hopf algebras which are not quantum permutation algebras.
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Remark 7.8. As noted before, forH as in Theorem 7.4, we haveD(H)∗ ≃ (D(Sn)∗)σ
(n = 4 or 5) is a twisting deformation of a quantum permutation algebra (see
Corollary 5.6 and Remark 7.1). Since H is a quotient of D(H)∗, then D(H)∗ is not
a quantum permutation algebra.

This provides an example of a twisting deformation of a quantum permutation
algebra which is not a quantum permutation algebra.

As a consequence of Theorem 7.4, and since H∗ is a quantum permutation
algebra, we get the following:

Corollary 7.9. The class of quantum permutation algebras in not stable neither
under duality nor under Hopf algebra extensions nor under twisting deformations.

8. Quantum permutation algebras obtained from twisting

We have seen in the previous section that the class of quantum permutation alge-
bras is not stable under twisting. We begin by giving a stability result (Proposition
8.1) for twistings of quantum permutation algebras, under a technical condition on
the cocycle. Then we give (Theorem 8.3) a construction of quantum permutation
algebras by the twisting of certain linear algebraic groups, using the results from
[3].

The results combined together cover the known quantum permutation algebras
obtained by twisting.

Proposition 8.1. Let H be a quantum permutation algebra generated by the coef-
ficients of a magic matrix x = (xij) ∈Mn(H). Let σ : H ⊗H −→ k be a 2-cocycle
satisfying

σ(xij , xil) = δijδil,∀i, j, l
Then Hσ is a quantum permutation algebra.

Proof. Recall that the Hopf algebra Hσ is H as a coalgebra, and the product is
defined by

[x][y] = σ(x1, y1)σ
−1(x3, y3)[x2y2], x, y ∈ H,

where an element x ∈ H is denoted [x], when viewed as an element of Hσ. Then

[xij ][xil] =
∑

r,s,p,q

σ(xir, xis)σ
−1(xpj , xql)[xrpxsq]

=
∑
p,q

σ−1(xpj , xql)[xipxiq]

=
∑
p

σ−1(xpj , xpl)[xip]

= δjl[xij ].

since we also have σ−1(xij , xil) = δijδil,∀i, j, l. As
∑

i[xij ] = [1] =
∑

i[xji], we
conclude that ([xij ]) is a magic matrix and hence Hσ is a quantum permutation
algebra. �
Example 8.2. The twistings of kSn in [6] are of this type.

Let Γ be an abelian group and let σ ∈ Z2(Γ, k∗). Recall that the character group

Γ̂ acts faithfully by automorphisms on the twisted group algebra kσΓ by

χ.g = χ(g)g, ∀χ ∈ Γ̂, g ∈ Γ
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So we consider Γ̂ as a subgroup of Aut(kσΓ).

Theorem 8.3. Let Γ be an abelian group and let σ ∈ Z2(Γ, k∗). Consider a linear

algebraic group G such that Γ̂ ⊆ G ⊆ Aut(kσΓ). Then σ induces a 2-cocycle σ′ on

O(G) such that O(G)σ
′
is a quantum permutation algebra.

Proof. The cocycle σ′ is constructed in the standard way: the inclusion Γ̂ ⊂ G

induces a surjective Hopf algebra map O(G) → kΓ̂ which, composed with the

canonical isomorphism kΓ̂ ≃ kΓ yields a surjective Hopf algebra map p : O(G) −→
kΓ. The 2-cocycle σ′ is defined by σ′ = σ(p⊗ p).

Now let Aaut(kσΓ) be the universal Hopf algebra coacting on kσΓ and leaving
the canonical trace invariant (see [29, 3]). Since the automorphism group Aut(kσΓ)
preserves the canonical trace, the universal property of Aaut(kσΓ) yields a Hopf
algebra map q : Aaut(kσΓ) → O(G). Now the composition of surjective Hopf
algebra maps

Aaut(kσΓ)
q→ O(G)

p→ kΓ

yields a composition of surjective Hopf algebra maps

Aaut(kσΓ)
σ′′ q−→ O(G)σ

′ p−→ kΓ,

where σ′′ = σ(pq ⊗ pq). We know from [3] that Aaut(kσΓ) ≃ Aaut(kΓ)
σ−1(π⊗π)

where π : Aaut(kΓ) −→ kΓ is the Hopf algebra map arising from the coaction of kΓ

on itself. It is then clear that Aaut(kσΓ)
σ′′ ≃ Aaut(kΓ). The latter is a quantum

permutation algebra since kΓ is commutative, and hence we conclude that so is
O(G)σ

′
. �

Remark 8.4. The cocycle σ′ in Theorem 8.3 is the one ’lifted’ from the cocycle σ

on Γ̂ ≃ Γ.

Remark 8.5. If kσΓ is non commutative and if the only subgroup of Γ̂ that is normal
in G is trivial, then the algebra O(G)σ

′
is non commutative (see [26]).

Example 8.6. Let Γ = Zn
2 , n ≥ 2, and consider the bicharacter σ on Γ given by

σ(ti, tj) = −1, if i < j, σ(ti, tj) = 1, if i ≥ j, where ti, 1 ≤ i ≤ n, denote the
standard generators of Γ. In this case the twisted group algebra kσΓ is isomorphic
to the Clifford algebra Cln(k) = k[ti, 1 ≤ i ≤ n| t2i = 1, titj = −tjti, i ̸= j]. Since
the orthogonal group On(k) acts naturally on Cln(k) by algebra automorphisms,
we get from Theorem 8.3 that for any subgroup Zn

2 ⊆ G ⊆ On(k), the cocycle twist

O(G)σ
′
is a quantum permutation algebra.

When G = On(k), we get the hyperoctahedral quantum group O−1
n (k) from [2].

Example 8.7. Let Γ = Zn × Zn and let σ be the 2-cocycle on Γ given by
σ((i, j), (t, l)) = wjt, where w ∈ k∗ is a primitive n-th root of unity. In this case we
have kσΓ ≃Mn(k), so that Aut(kσΓ) ≃ PGLn(k).

By Theorem 8.3, for every linear algebraic group G such that Γ̂ ⊆ G ⊆ PGLn(k),

the cocycle twist O(G)σ
′
is a quantum permutation algebra. The twisted examples

from [1] are of this type for n = 2.

9. Quantum permutation envelope

Let H be a cosemisimple Hopf algebra. Consider the subalgebra Hqp ⊆ H
generated by the matrix coefficients of all separable commutative (right and left)
coideal subalgebras of H.
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Lemma 9.1. Hqp is a Hopf subalgebra of H containing all quantum permutation
algebras A ⊆ H.

Proof. It is clear that Hqp is a subbialgebra. Since the image of a separable com-
mutative right (respectively, left) coideal subalgebra under the antipode of H is a
separable commutative left (respectively, right) coideal subalgebra, then we have
S(Hqp) = Hqp. Then Hqp is a Hopf subalgebra.

Since every quantum permutation algebra A ⊆ H is generated by matrix coeffi-
cients of some separable commutative left coideal subalgebras, then A ⊆ Hqp. This
finishes the proof of the lemma. �
Definition 9.2. The Hopf subalgebra Hqp will be called the quantum permutation
envelope of H.

Proposition 9.3. Suppose that H is finite dimensional and cosemisimple. Then
Hqp is the maximal quantum permutation algebra contained in H. Moreover, Hqp

is generated as an algebra by the matrix coefficients of all separable commutative
right (or left) coideal subalgebras of H.

Proof. Note that, being finite dimensional, the subbialgebra H ′ generated as an
algebra by the matrix coefficients of all separable commutative right (or left) coideal
subalgebras of H is a Hopf subalgebra. This implies that Hqp = H ′.

It follows from Theorem 2.3 that Hqp is a quantum permutation algebra, and it
is maximal by Lemma 9.1. This proves the proposition. �
Example 9.4. Suppose H = R(G) is the algebra of representative functions on
a compact group G. Then the quantum permutation envelope Hqp ⊆ H coin-
cides with R(G/N), where N is the intersection of all closed normal subgroups
of finite index of G. This follows from the well-known order-reversing correspon-
dence between closed normal subgroups of G and Hopf subalgebras of R(G), given
by S 7→ R(G)S ≃ R(G/S). Indeed, any quantum permutation subalgebra of
H = R(G), being commutative, is finite dimensional and hence of the formR(G/S)
for S a closed normal subgroup of finite index. Since Hqp is the smallest Hopf sub-
algebra of H containing all the quantum permutation subalgebras, it follows that
if N is the closed normal subgroup of G such that Hqp = R(G/N), then N is the
largest subgroup of G contained in all the closed normal subgroups of finite index.

If G is connected, the only such subgroup is G, so that Hqp = k1.
On the other extreme, the condition G/N = G means exactly that G is residually

finite, that is, morphisms from G to finite groups separate points of G.
In particular, if G is a profinite group (equivalently, a totally discontinuous com-

pact group [27, I.1]), then G is residually finite.

Regarding split abelian extensions, we have:

Proposition 9.5. Let p be a prime number and let H = kZp#kF , where F is a
finite group. Then Hqp ⊆ H is the Hopf subalgebra generated, as an algebra, by
kZp#kF ′ and kZp#kF ′′, where F ′ is the largest subgroup of F acting trivially on
Zp, and F ′′ is the subgroup generated by the abelian Zp-stable subgroups of F .

The subgroup F ′ is the kernel of the homomorphism F → Sp−1 induced by ▹.

Proof. By Remark 4.2, both F ′ and F ′′ are Zp-stable subgroups of F , and the
bicrossed products kZp#kF ′ and kZp#kF ′′ are Hopf subalgebras of H. Since F ′

acts trivially on Zp, then kZp#kF ′ is a central extension.
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By Theorem 5.1 and Theorem 5.2, kZp#kF ′ and kZp#kF ′′ are both quantum
permutation algebras. Hence the subalgebra H̃ ⊆ H generated by them is a quan-
tum permutation algebra, and therefore H̃ ⊆ Hqp. On the other hand, by Propo-

sition 6.2, Hqp ⊆ H̃. This proves Hqp = H̃, as claimed. �

As an example, let H = kC5#kS4 be the Hopf algebra in Theorem 7.4. Then the
quantum permutation envelope of H is the split extension Hqp = kC5#k⟨(1342)⟩,
which is a cocommutative Hopf subalgebra (indeed, the action of C5 on ⟨(1342)⟩ is
trivial, as follows from [12]), with dimHqp = 20.

It follows from the definition of the actions that Hqp ≃ kG, where G ≃ F5 oF∗
5.

We have seen in the proof of Theorem 7.4 that if H = kC4#kS3, then every
commutative right coideal subalgebra of H is contained in kG(H). Hence, in this
case, Hqp = kG(H) ≃ kD4.
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