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Abstract

We determine the corepresentation theory of the universal cosovereign Hopf alge-
bras, which are some natural analogues of the general linear groups in quantum group
theory, for generic matrices over an algebraically closed �eld of characteristic zero.
Our results generalize Banica's previous results in the compact case. As an applica-
tion, we easily get the representation theory of the quantum automorphism group of
a matrix algebra endowed with a non-necessarily tracial measure.
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1 Introduction

In this paper a quantum group is understood to be the dual object of a Hopf algebra, the
latter playing the role of a function algebra. A representation of a quantum group is then
a comodule (or corepresentation) over the corresponding Hopf algebra.

We study the corepresentations of the universal cosovereign Hopf algebras. The ter-
minology "universal" is a consequence of the fact that the corresponding quantum groups
satisfy, in the category of quantum groups, a universal property that is similar to the one of
the general linear groups in the category of algebraic groups. The description of the repre-
sentations of the general linear groups is important in classical group theory, and therefore
it seems to be natural and important to describe the representations of the analogous
objects in quantum group theory.

In the quantum framework the well-known correspondence between compact Lie groups
and reductive complex algebraic groups fails: there exist many reductive quantum groups
that do not admit a compact form. Banica [2] has described the representation theory of
the universal compact quantum analogues of the unitary groups, which at the Hopf algebra
level are exactly the universal cosovereign Hopf algebras that admit a compact form. We
describe here the corepresentations in the generic (reductive) case, and therefore our results
are generalizations of Banica's.

Let us describe the contents of the paper in more technical terms. Let k be a com-
mutative �eld and let F ∈ GL(n, k). The algebra H(F ) [6] is de�ned to be the universal
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algebra with generators (uij)1≤i,j≤n, (vij)1≤i,j≤n and relations:

utv = tvu = In ; vF tuF−1 = F tuF−1v = In,

where u = (uij), v = (vij) and In is the identity n × n matrix. It turns out [6] that
H(F ) is a Hopf algebra with comultiplication de�ned by ∆(uij) =

∑
k uik ⊗ ukj and

∆(vij) =
∑

k vik ⊗ vkj , with counit de�ned by ε(uij) = ε(vij) = δij and with antipode
de�ned by S(u) = tv and S(v) = F tuF−1. Furthermore, H(F ) is a cosovereign Hopf
algebra [6]: there exists an algebra morphism Φ : H(F ) −→ k such that S2 = Φ ∗ id ∗Φ−1.
The Hopf algebras H(F ) have the following universal property ([6], Theorem 3.2).

Let A be a Hopf algebra and let V be a �nite dimensional A-comodule isomorphic to its

bidual comodule V ∗∗. Then there exists a matrix F ∈ GL(n, k) (n = dimV ) such that V
is an H(F )-comodule and such that there exists a Hopf algebra morphism π : H(F ) −→ A
satisfying (1V ⊗ π) ◦ βV = αV , where αV : V −→ V ⊗ A and βV : V −→ V ⊗ H(F )
denote the coactions of A and H(F ) on V respectively. In particular, every cosovereign

Hopf algebra of �nite type is a homomorphic quotient of a Hopf algebra H(F ).
In view of this universal property, it is natural to say that the Hopf algebras H(F ) are

the universal cosovereign Hopf algebras, or the free cosovereign Hopf algebras, and to see
these Hopf algebras as natural analogues of the general linear groups in quantum group
theory. Indeed the Hopf algebras O(GL(n)) have exactly the same universal property when
one works in the category of commutative Hopf algebras.

If k = C and if F is a positive matrix, the Hopf algebras H(F ) are nothing but the
CQG algebras associated to the universal compact quantum groups introduced by Van
Daele and Wang [16]. In this case the corepresentation theory has been worked out by
Banica [2]: the simple corepresentations correspond to the elements of the free product
N ∗N, and the fusion rules are described by an ingenious formula involving a new product
� on the free algebra on two generators. We generalize Banica's results to the case of
an arbitrary generic matrix, over any algebraically closed �eld of characteristic zero. The
main feature of our proof is that, thanks to Morita-like reduction techniques, we do not
need any of the free probability techniques used in [2].

In order to state our main result, we need to introduce some notation and terminology.
• Let F ∈ GL(n, k). We say that F is normalized if tr(F ) = tr(F−1). We say that F is
normalizable if there exists λ ∈ k∗ such that tr(λF ) = tr((λF )−1). Over an algebraically
closed �eld, any matrix is normalizable unless tr(F ) = 0 6= tr(F−1) or tr(F ) 6= 0 = tr(F−1).
We will only essentially consider normalized matrices F or, equivalently, normalizable
matrices, since H(λF ) = H(F ).
• Let q ∈ k∗. As usual, we say that q is generic if q is not a root of unity of order N ≥ 3.
We say that a matrix F ∈ GL(n, k) is generic if F is normalized and if the solutions of
q2 − tr(F )q + 1 = 0 are generic.

• Let q ∈ k∗. We put Fq =
(
q−1 0
0 q

)
∈ GL(2, k). The Hopf algebra H(Fq) is denoted

by H(q).
• Let F ∈ GL(n, k). The natural n-dimensional H(F )-comodules associated to the multi-
plicative matrices u = (uij) and v = (vij) are denoted by U and V , with V = U∗.
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• We will consider the coproduct monoid N ∗ N. Equivalently N ∗ N is the free monoid on
two generators, which we denote, as in [2], by α and β. There is a unique antimultiplicative
morphism − : N ∗ N −→ N ∗ N such that ē = e, ᾱ = β and β̄ = α (e denotes the unit
element of N ∗ N).

We can now state our main result. Here k denotes an algebraically closed �eld.

Theorem 1.1 Let F ∈ GL(n, k) (n ≥ 2) be a normalized matrix.

a) Let q ∈ k∗ be such that q2 − tr(F )q + 1 = 0. The comodule categories over H(F ) and

H(q) are monoidally equivalent.

We assume now that k is a characteristic zero �eld.

b) The Hopf algebra H(F ) is cosemisimple if and only if F is a generic matrix.

c) Assume that F is generic. To any element x ∈ N ∗ N corresponds a simple H(F )-
comodule Ux, with Ue = k, Uα = U and Uβ = V . Any simple H(F )-comodule is isomorphic

to one of the Ux, and Ux
∼= Uy if and only if x = y. For x, y ∈ N ∗ N, we have U∗

x
∼= Ux̄

and

Ux ⊗ Uy
∼=

⊕
{a,b,g∈N∗N|x=ag,y=ḡb}

Uab .

It is clear from the statement that the proof of Theorem 1.1 is divided into two parts.
The �rst part reduces the corepresentation theory of H(F ) to the one of H(q). Then
we realize H(q) as a Hopf subalgebra of the free product k[z, z−1] ∗ O(SLq(2)), and we
conclude using the classi�cation of simple comodules of a free product of cosemisimple
Hopf algebras [17], and Banica's product � on the free algebra on two generators.

As an application of these results we get, in the generic case, the isomorphic classi�ca-
tion of the universal cosovereign Hopf algebras and the computation of the automorphism
group.

Another interesting class of universal Hopf algebras was constructed by Wang [18] in
the compact quantum group framework: these are the quantum automorphism groups of
�nite-dimensional (measured) C∗-algebras. The corepresentation theory, similar to that of
SO(3), was described by Banica [3], for C∗-algebras endowed with (good) tracial measures.
A special case of a general construction of [5] yields algebraic analogues of Wang's quantum
automorphism groups. Using the previous results concerning H(F ), it is not di�cult to
describe the representation theory of the quantum automorphism group of a matrix algebra
endowed with a non-necessarily tracial measure, reducing the computations to the case of
the quantum group SOq(3).

This paper is organized as follows. In Section 2 we use the Hopf-Galois systems tech-
niques of [8] to show that for a normalized matrix F , there exists q ∈ k∗ such that the
comodule categories over H(F ) and H(q) are monoidally equivalent. This section also in-
cludes results for non-normalizable matrices. In Section 3 we construct an injective algebra
morphism from H(q) into the free product algebra k[z, z−1] ∗ O(SLq(2)). In Section 4 we
show that H(q) is cosemisimple if and only if q is generic, and Section 5 contains the clas-
si�cation of the simple H(q)-comodules and their fusion rules in the generic case. Section
6 is devoted to some applications of Theorem 1.1: the Hopf algebras H(F ) are classi�ed
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up to isomorphism and the automorphism group is described (in the generic case). Finally
in Section 7 we use our previous results to describe the representation category of the
quantum automorphism group of a matrix algebra endowed with a non-necessarily tracial
measure.

2 Reduction to the two-dimensional case

This section is essentially devoted to prove part a) of Theorem 1.1. In fact we consider a
more general situation and get results for non-normalizable matrices. We will use Hopf-
Galois systems techniques [8]. We will not repeat here the de�nition a Hopf-Galois system,
for which we refer to [8].

Let E ∈ GL(m, k) and let F ∈ GL(n, k). Recall [8] that the algebra H(E,F ) is the
universal algebra with generators uij , vij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and satisfying the relations

utv = Im = vF tuE−1 ; tvu = In = F tuE−1v.

When E = F , we have H(F, F ) = H(F ). In fact the Hopf algebra structure of H(F ) is
just a particular case of the fact that if H(E,F ) is a non-zero algebra, then (H(E),H(F ),
H(E,F ),H(F,E)) is a Hopf-Galois system (see Proposition 4.3 in [8]). Combining Propo-
sition 4.3 and Corollary 1.4 in [8], we have the following result.

Proposition 2.1 Assume that H(E,F ) is a non-zero algebra. Then the comodule cate-

gories over H(E) and H(F ) are monoidally equivalent. �

So we have to study the algebras H(E,F ). It is not di�cult to see that if H(E,F ) 6=
{0}, then tr(E) = tr(F ) and tr(E−1) = tr(F−1). The converse assertion will essentially
follow from the next result, where some technical conditions are required.

Proposition 2.2 Let E ∈ GL(m, k) and let F ∈ GL(n, k) (m,n ≥ 2). Assume that

E is a diagonal matrix, that F is a lower-triangular matrix, that tr(E) = tr(F ) and

tr(E−1) = tr(F−1). Then the elements (uij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, generate a free

subalgebra on mn generators. In particular H(E,F ) is a non zero-algebra.

As in [7], we will use the diamond lemma [4]. Let us write down explicitly a presentation
ofH(E,F ): H(E,F ) is the universal algebra with generators uij , vij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
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and relations:

uinvjn = δij −
n−1∑
k=1

uikvjk , 1 ≤ i, j ≤ m (1)

vi1uj1 = F−1
11 (Eij −

n∑
k=2,l=1

Fklvikujl) , 1 ≤ i, j ≤ m (2)

v1iu1j = δij −
m∑

k=2

vkiukj , 1 ≤ i, j ≤ n (3)

umivmj = Emm(F−1
ij −

m−1∑
k=1

E−1
kk ukivkj) , 1 ≤ i, j ≤ n. (4)

We have a nice presentation to use the diamond lemma [4], of which we freely use the
techniques and de�nitions. We only need the simpli�ed exposition of [10]. We order
the set of monomials in the following way. We order the set {1, . . . ,m} × {1, . . . , n}
lexicographically. Then we order the set {uij} with the order induced by the preceding
order, and we order the set {vij} with the inverse order. We order the set X = {uij , vkl} in
such a way that v11 < u11. Finally two monomials are ordered according to their length,
and two monomials of equal length are ordered lexicographically according to the order on
the set X. It is clear that the order just de�ned is compatible with the above presentation.

Lemma 2.3 There are exactly two inclusion ambiguities: (v11u11, v11u11) and (umnvmn,
umnvmn). There are exactly the following overlap ambiguities.

(uinv1n, v1nu1j), (vi1um1, um1vmj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(v1iu1n, u1nvjn), (umivm1, vm1uj1), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

All these ambiguities are resolvable.

Proof. It is easy to see that the ambiguities above are the only ones. Let us check that the
�rst inclusion ambiguity is resolvable. As usual the symbol �→� means that we perform a
reduction. We have:

F−1
11 (E11 −

n∑
k=2,l=1

Fklv1ku1l) → F−1
11 (E11 −

n∑
k=2,l=1

Fkl(δkl −
m∑

r=2

vrkurl))

= F−1
11 (E11 −

n∑
k=2

Fkk +
n∑

k=2,l=1

m∑
r=2

Fklvrkurl)

On the other hand we have:

1−
m∑

k=2

vk1uk1 → 1−
m∑

k=2

F−1
11 (Ekk −

n∑
l=2,r=1

Flrvklukr)

= F−1
11 (E11 −

n∑
k=2

Fkk +
n∑

k=2,l=1

m∑
r=2

Fklvrkurl)
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We have used the identity tr(E) = tr(F ). Hence this inclusion ambiguity is resolvable.
Also it is not di�cult to check, using tr(E−1) = tr(F−1), that the other inclusion ambiguity
is resolvable. This is left to the reader. Let us check that the �rst two families of overlap
ambiguities are resolvable. The resolvability of the other two families will be left to the
reader. First consider (uinv1n, v1nu1j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. We have:

(δi1−
n−1∑
k=1

uikv1k)u1j → δi1u1j−
n−1∑
k=1

uik(δkj−
m∑

l=2

vlkulj) = δi1u1j−(1−δjn)uij+
n−1∑
k=1

m∑
l=2

uikvlkulj .

On the other hand we have:

uin(δnj −
m∑

k=2

vknukj) → δnjuin −
m∑

k=2

(δki −
n−1∑
l=1

uilvkl)ukj =

δnjuin − (1− δ1i)uij +
m∑

k=2

n−1∑
l=1

uilvklukj = δi1u1j − (1− δjn)uij +
n−1∑
k=1

m∑
l=2

uikvlkulj .

Hence these ambiguities are resolvable. Let us now study the ambiguities (vi1um1, um1vmj),
1 ≤ i ≤ m, 1 ≤ j ≤ n. We have:

F−1
11 (Eim −

n∑
k=2,l=1

Fklvikuml)vmj

→ F−1
11 (Eimvmj −

n∑
k=2,l=1

(Fklvik(Emm(F−1
lj −

m−1∑
r=1

E−1
rr urlvrj)))

= F−1
11 Emm(δimvmj − (1− δj1)vij +

n∑
k=2,l=1

m−1∑
r=1

FklE
−1
rr vikurlvrj).

On the other hand we have:

vi1(Emm(F−1
1j −

m−1∑
k=1

E−1
kk uk1vkj)

→ Emm(δ1jF
−1
11 vi1 −

m−1∑
k=1

E−1
kk (F−1

11 (δikEii −
n∑

l=2,r=1

Flrvilukr))vkj)

= EmmF
−1
11 (δ1jvi1 − (1− δim)vij +

m−1∑
k=1

n−1∑
l=2,r=1

E−1
kk Flrvilukrvkj)

= F−1
11 Emm(δimvmj − (1− δj1)vij +

n∑
k=2,l=1

m−1∑
r=1

FklE
−1
rr vikurlvrj).

Hence these ambiguities are resolvable. �
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Proof of Proposition 2.2. Since our order is compatible with the presentation, and
since all the ambiguities are resolvable, we can use the diamond lemma [4]: the reduced
monomials form a basis of H(E,F ), and in particular the monomials in elements of the set
{uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} are linearly independent, and hence the elements of this set
generate a free subalgebra on mn generators. In particular H(E,F ) is a non-zero algebra.
�

We can now easily prove the following slightly more general result.

Proposition 2.4 Let E ∈ GL(m, k) and let F ∈ GL(n, k) (m,n ≥ 2). Assume that

tr(E) = tr(F ) and tr(E−1) = tr(F−1). Then H(E,F ) is a non-zero algebra.

Proof. Since we want to prove that H(E,F ) is a non-zero algebra, we can assume that
k is algebraically closed. For matrices P ∈ GL(m, k) and let Q ∈ GL(n, k), the alge-
bras H(E,F ) and H(PEP−1, QFQ−1) are isomorphic ([8], Proposition 4.2), thus we can
assume that the matrices E and F are lower-triangular. Consider G ∈ GL(m, k) a di-
agonal matrix such that tr(G) = tr(E) = tr(F ) and tr(G−1) = tr(E−1) = tr(F−1). By
the proof of Proposition 4.3 in [8], there exists an algebra morphism δ : H(E,F ) −→
H(E,G)⊗H(G,F ) such that δ(uij) =

∑m
k=1 uik ⊗ ukj . Also there exists an algebra mor-

phism φ : H(E,G) −→ H(G,E)op such that φ(u) = tv. Thus we have an algebra morphism
δ′ : H(E,F ) −→ H(G,E)op ⊗H(G,F ) such that δ′(uij) =

∑m
k=1 vki ⊗ ukj . By the proof

of Proposition 2.2, the elements (vij), (uij) are linearly independent elements of H(G,E)
and H(G,F ) respectively. Hence it is clear that H(E,F ) is a non-zero algebra. �

Combining Propositions 2.1 and 2.4, we can state the main result of the section, which
contains part a) of Theorem 1.1. Recall that for q ∈ k∗, we put H(q) = H(Fq) where

Fq =
(
q−1 0
0 q

)
∈ GL(2, k). Note also that if k is algebraically closed, any F ∈ GL(2, k)

is normalizable.

Corollary 2.5 Let F ∈ GL(n, k) (n ≥ 2) and assume that k is algebraically closed.

a) Assume that F is normalizable. Then there exists q ∈ k∗ such that we have an equiva-

lence of monoidal categories:

Comod(H(F )) ∼=⊗ Comod(H(q)).

If F is normalized, we take q as a solution of the equation q2 − tr(F )q + 1 = 0.
b) Assume that F is not normalizable. Let E ∈ GL(3, k) be any matrix such that tr(E) = 0
and tr(E−1) 6= 0. Then we have an equivalence of monoidal categories:

Comod(H(F )) ∼=⊗ Comod(H(E)).

Proof. a) Let λ ∈ k∗ be such that tr(λF ) = tr((λF )−1), and let q ∈ k∗ be a solution of
q2−tr(λF )q+1 = 0. This equation is equivalent to tr(F−1

q ) = tr(Fq) = q+q−1 = tr(λF ) =
tr((λF )−1)). By Proposition 2.4, H(Fq, F ) is a non-zero algebra, and we conclude using
Proposition 2.1.
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b) Since F is not normalizable and since the base �eld is algebraically closed, we have
tr(F ) = 0 6= tr(F−1) or tr(F ) 6= 0 = tr(F−1). Since the Hopf algebras H(F ) and H(tF−1)
are isomorphic ([6], Proposition 3.3), we can assume that tr(F ) = 0 6= tr(F−1). Since k is
algebraically closed, there always exists E ∈ GL(3, k) satisfying tr(E) = 0 and tr(E−1) 6= 0,
and we conclude as in part a). �

Recall that the fundamental n-dimensional comodule of H(F ) associated to the mul-
tiplicative matrix (uij) is denoted by U . The following result re�ects the �freeness� of
H(F ).

Corollary 2.6 Let F ∈ GL(n, k). The comodules U⊗k, k ∈ N, are simple non-equivalent

H(F )-comodules.

Proof. We can assume that k is algebraically closed. If n = 1 thenH(F ) is just the algebra
of Laurent polynomials k[z, z−1], so the result is immediate. Assume now that n ≥ 2. First
assume that F is a diagonal matrix. By Proposition 2.2 the monomials in the elements
uij form a linearly independent subset of H(F ), and hence the comodules U⊗k, k ∈ N, are
simple non-equivalent H(F )-comodules. Now assume that F is a lower-triangular matrix.
Take E ∈ GL(n, k) a diagonal matrix such that tr(E) = tr(F ) and tr(E−1) = tr(F−1).
The monoidal category equivalence of Proposition 2.1 transforms the H(F )-comodule U
into the H(E)-comodule U (see [15, 14, 8] for the construction). Hence we conclude by
the diagonal case. This �nishes the proof since the Hopf algebras H(PFP−1) and H(F )
are isomorphic for P ∈ GL(m, k) ([6]). �

Corollary 2.7 Let F ∈ GL(n, k) be a non-normalizable matrix. Then the Hopf algebra

H(F ) is not cosemisimple.

Proof. By the preceding corollary U is a simple H(F )-comodule. We can assume that k is

algebraically closed. If H(F ) was cosemisimple, and since tF
−1

is an intertwiner between
U and U∗∗ (see the Proof of Theorem 3.2 in [6]), then we would have by ([10], Proposition
15, chapter 11, or the original reference [12]) tr(F ) 6= 0 and tr(F−1) 6= 0, which would
contradict our assumption. �

3 The algebra H(q)

This section is devoted to the construction of an algebra embedding of H(q) = H(Fq) into
k[z, z−1] ∗ O(SLq(2)). This embedding will be used later to study the corepresentation
theory of H(q).

Let q ∈ k∗. The algebra H(q) has 8 generators. We put α = u11, β = u12, γ = u21,
δ = u22, α

∗ = v11, β
∗ = v12, γ

∗ = v21, δ
∗ = v22. Let us rewrite the presentation of H(q):

it is the universal algebra with generators α, β, γ, δ, α∗, β∗, γ∗, δ∗ and satisfying the
relations:

ββ∗ = 1− αα∗

βδ∗ = −αγ∗
δβ∗ = −γα∗
δδ∗ = 1− γγ∗


α∗α = 1− q2β∗β
α∗γ = −q2β∗δ
γ∗α = −q2δ∗β
γ∗γ = q2(1− δ∗δ)


α∗α = 1− γ∗γ
α∗β = −γ∗δ
β∗α = −δ∗γ
β∗β = 1− δ∗δ


γγ∗ = q2(1− αα∗)
γδ∗ = −q2αβ∗
δγ∗ = −q2βα∗
δδ∗ = 1− q2ββ∗
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Note that the fourth relation of the �rst family and that the �rst relation of the second
family are redundant. We have left these redundant relations in order to use the results of
Section 2, where some redundant relations were also present.

We de�ne now an algebra extension of H(q), which will be denoted by H+(q). This
algebra will be shown to be isomorphic with k[z, z−1] ∗ O(SLq(2)).

De�nition 3.1 The algebra H+(q) is the universal algebra with generators α, β, γ, δ, α∗,
β∗, γ∗, δ∗, t, t−1, and satisfying the relations of H(q) and:

tt−1 = 1 = t−1t ; t−1α = δ∗t ; t−1β = −q−1γ∗t ; t−1γ = −qβ∗t ; t−1δ = α∗t.

There is an obvious algebra morphism H(q) −→ H+(q).

Lemma 3.2 The natural algebra morphism H(q) −→ H+(q) is injective.

Proof. We will use again the diamond lemma, since we have not been able to �nd a more
direct way to prove our lemma. First we order the set {α, β, γ, δ, α∗, β∗, γ∗, δ∗, t, t−1} in
the following way:

δ∗ < γ∗ < β∗ < α∗ < α < β < γ < δ < t−1 < t.

Two monomials of di�erent length are ordered according to their length and two monomials
of equal length are ordered lexicographically according to the above order. In order to
resolve some ambiguities, let us rewrite the presentation of H+(q): H+(q) is the universal
algebra with generators α, β, γ, δ, α∗, β∗, γ∗, δ∗, t, t−1, and satisfying the relations of
H(q) and

tt−1 = t−1t ; t−1t = 1 ; t−1α = δ∗t ; tδ∗ = αt−1 ; t−1β = −q−1γ∗t ; tγ∗ = −qβt−1 ;

t−1γ = −qβ∗t ; tβ∗ = −q−1γt−1 ; t−1δ = α∗t ; tα∗ = δt−1.

It is clear the order just de�ned is compatible with this presentation. There are the
ambiguities of Lemma 2.3, which were shown to be resolvable there, there are no other
inclusion ambiguities and the following overlap ambiguities:

(tt−1, t−1α) ; (tt−1, t−1β) ; (tt−1, t−1γ) ; (tt−1, t−1δ) ;

(t−1t, tδ∗) ; (t−1t, tγ∗) ; (t−1t, tβ∗) ; (t−1t, tα∗) ;

(t−1β, ββ∗) ; (t−1β, βδ∗) ; (tγ∗, γ∗α) ; (tγ∗, γ∗γ) ;

(t−1γ, γγ∗) ; (t−1γ, γδ∗) ; (tβ∗, β∗α) ; (tβ∗, β∗β) ;

(t−1δ, δβ∗) ; (t−1δ, δδ∗) ; (t−1δ, δγ∗) ; (t−1δ, δδ∗) ;
(tα∗, α∗α) ; (tα∗, α∗γ) ; (tα∗, α∗α) ; (tα∗, α∗β).

These ambiguities are easily seen to be resolvable: this is left to the reader. Hence by the
diamond lemma the reduced monomials form a basis of H+(q). It is clear that the reduced
monomials of H(q) (for the reductions of Section 2) are still reduced monomials in H+(q),
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and hence the images under H(q) → H+(q) of the elements of a basis of H(q) are still
linealy independant elements, which proves that our algebra map is injective. �

Recall that O(SLq(2)) is the universal algebra with generators a, b, c, d and relations

ba = qab ; ca = qac ; db = qbd ; dc = qcd ; cb = bc = q(ad− 1) ; da = qbc+ 1.

The algebra just de�ned is O(SLq−1(2)) in [10]. Our convention does not change the
resulting Hopf algebra, up to isomorphism. Now consider the free product k[z, z−1] ∗
O(SLq(2)), that is the coproduct of k[z, z−1] and of O(SLq(2)) in the category of unital
algebras. We have the following result:

Lemma 3.3 There exists a unique algebra isomorphism π̃ : H+(q) → k[z, z−1]∗O(SLq(2))
such that

π̃(α) = za, π̃(β) = zb, π̃(γ) = zc, π̃(δ) = zd, π̃(α∗) = dz−1, π̃(β∗) = −q−1cz−1,

π̃(γ∗) = −qbz−1, π̃(δ∗) = az−1, π̃(t) = z, π̃(t−1) = z−1.

Proof. It is a direct veri�cation to check the existence of the algebra morphism π̃. Let us
construct an inverse isomorphism. First there is an algebra morphism ρ1 : k[z, z−1] −→
H+(q) de�ned by ρ1(z) = t. It is also a direct veri�cation to check the existence of an
algebra morphism ρ2 : O(SLq(2)) −→ H+(q) such that

ρ2(a) = t−1α = δ∗t, ρ2(b) = t−1β = −q−1γ∗t, ρ2(c) = t−1γ = −qβ∗t, ρ2(d) = t−1δ = α∗t.

Using the universal property of the free product, we have a unique algebra morphism
ρ : k[z, z−1] ∗ O(SLq(2)) −→ H+(q) extending ρ1 and ρ2. It is straightforward to check
that π̃ and ρ are mutually inverse isomorphisms. �

We arrive at the main result of the section.

Proposition 3.4 There exists an injective algebra morphism π : H(q) −→ k[z, z−1] ∗
O(SLq(2)) such that

π(α) = za , π(β) = zb , π(γ) = zc , π(δ) = zd ,

π(α∗) = dz−1, π(β∗) = −q−1cz−1, π(γ∗) = −qbz−1, π(δ∗) = az−1.

Proof. The algebra morphism announced is just the composition of the injective algebra
morphisms of Lemmas 3.2 and 3.3, so is itself injective �

4 Cosemisimplicity of H(q)

In this section, where k is assumed to be an algebraically closed �eld of characteristic zero,
we show that H(q) is cosemisimple if and only if q is generic.

First let us recall that if A and B are Hopf algebras, their free product may be endowed
with a natural Hopf algebra structure, induced by the Hopf algebras structures of A and B.
For example k[z, z−1] ∗O(SLq(2)) is a Hopf algebra, and by a straightforward veri�cation,
we have the following result.
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Proposition 4.1 The injective algebra morphism π : H(q) −→ k[z, z−1] ∗ O(SLq(2)) is a

Hopf algebra morphism. �

Wang [17] has studied free products of Hopf algebras at the compact quantum group
level. His results may be adapted to arbitrary cosemisimple Hopf algebras without di�-
culties. Let us recall the main results. In the following A and B denote cosemisimple Hopf
algebras.
• The Hopf algebra A ∗ B is still cosemisimple. This may be shown as follows. Consider
the Haar functionals (see e.g. [10]) hA and hB on A and B respectively, and form their
free product hA ∗hB as in [1], Proposition 1.1. Then hA ∗hB is a Haar functional on A ∗B
(see [17], Theorem 3.8) and thus A ∗B is a cosemisimple Hopf algebra

• An A ∗ B-comodule is said to be a simple alternated A ∗ B-comodule if it has the form
V1 ⊗ . . . ⊗ Vn, where each Vi is a simple non-trivial A-comodule or B-comodule, and if
Vi is an A-comodule, then Vi+1 is a B-comodule, and conversely. A simple alternated
A ∗B-comodule is a simple A ∗B-comodule, and every non-trivial simple A ∗B-comodule
is isomorphic with a simple alternated A ∗B-comodule (see [17], Theorem 3.10).

• Let V and W be simple alternated A ∗ B-comodules. Assume that V ends by an A-
comodule and that W begins by a B-comodule. Then V ⊗W is decomposed into a direct
sum of simple alternated comodules according to the decomposition of tensor products of
A-comodules. The same thing holds for B.

We will use these results to prove the following fact.

Proposition 4.2 Let q ∈ k∗. Then H(q) is cosemisimple if and only if q is generic.

Proof. We will use the following well-known fact. Let A ⊂ B be a Hopf algebra inclusion.
Then an A-comodule is semisimple if and only if it is semisimple as a B-comodule. In
particular ifB is cosemisimple, so is A. First assume that q is generic. Then it is well-known
that O(SLq(2)) is cosemisimple (see e.g. [10]), and since k[z, z−1] is also cosemisimple, we
have that k[z, z−1] ∗ O(SLq(2)) is cosemisimple, and so is H(q) by Proposition 4.1.

Let us now assume that q is a root of unity of order N ≥ 3. We will construct a non
semisimple H(q)-comodule. Put N0 = N/2 if N is even and N0 = N if N is odd. Let V1 be
the fundamental two-dimensional O(SLq(2))-comodule. One can deduce from the results
of [11] that V ⊗N0

1 is not a semisimple O(SLq(2))-comodule. For i ∈ Z we denote by Zi

the one-dimensional comodule associated to the group-like element zi of k[z, z−1]. Using
π, we view H(q) as a Hopf subalgebra of k[z, z−1] ∗ O(SLq(2)) and by the construction
of π, Z ⊗ V1 and V1 ⊗ Z−1 are H(q)-comodules. Then V ⊗2

1 = V1 ⊗ Z−1 ⊗ Z ⊗ V1 is an
H(q)-comodule. Assume that N0 is even: N0 = 2k. Then V ⊗N0

1 = V ⊗2k
1 is an H(q)-

comodule. Since V ⊗N0
1 is not a semisimple O(SLq(2))-comodule, it is not a semisimple

k[z, z−1] ∗ O(SLq(2))-comodule, and so is not a semisimple H(q)-comodule. Assume now
that N0 is odd: N0 = 2k + 1. We have seen that V ⊗2k

1 is an H(q)-comodule, and hence
Z ⊗ V ⊗N0

1 = Z ⊗ V1 ⊗ V ⊗2k
1 is also an H(q)-comodule. If Z ⊗ V ⊗N0

1 was a semisimple
H(q)-comodule, it would be a semisimple k[z, z−1] ∗ O(SLq(2))-comodule, and V ⊗N0

1 =
Z−1 ⊗ Z ⊗ V ⊗N0

1 would be a semisimple k[z, z−1] ∗ O(SLq(2))-comodule, and hence a
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semisimple O(SLq(2))-comodule. Thus Z ⊗ V ⊗N0
1 is not a semisimple H(q)-comodule:

this concludes our proof. �

Proposition 4.2, combined with part a) of Theorem 1.1, proves part b) of Theorem 1.1.

5 Corepresentations of H(q), q generic

In this section k is still an algebraically closed �eld of characteristic zero, and q ∈ k∗ is
generic. We describe the simple H(q)-comodules and their fusion rules, thereby completing
the proof of Theorem 1.1.

Let us begin with some preliminaries. We consider the monoid N ∗N, the free product
(=coproduct) of two copies of the monoid N. Equivalently N ∗ N is the free monoid on
two generators α and β (this should not cause any confusion with the elements α and β of
H(q)). There is a unique antimultiplicative morphism − : N ∗N −→ N ∗N such that ē = e,
ᾱ = β and β̄ = α (e denotes the unit element of N∗N). Let k[N∗N] be the monoid algebra
of N ∗ N : k[N ∗ N] is also the free algebra on two generators. Banica [2] has introduced a
new product � on k[N ∗ N]. The following lemma is Lemma 3 in [2], where the proof can
be found.

Lemma 5.1 Consider the map � : N ∗ N× N ∗ N −→ k[N ∗ N] de�ned by

x� y =
∑

x=ag,y=ḡb

ab , x, y ∈ N ∗ N ,

and extend � to k[N ∗ N] by bilinearity. Then (k[N ∗ N],+,�) is an associative k-algebra,
with e as unit element. Furthermore (k[N ∗ N],+,�) is still the free algebra on two

generators: if B is any algebra and u, v ∈ B, there exists a unique algebra morphism

ψ : (k[N ∗ N],+,�) −→ B such that ψ(α) = u and ψ(β) = v. �

We will need some character theory. Let A be a Hopf algebra and let V be a �nite-
dimensional A-comodule with corresponding coalgebra map ΦV : V ∗ ⊗ V −→ A. Recall
(see e.g. [10]) that the character of V is de�ned to be χV := ΦV (idV ). If V and W are
�nite-dimensional A-comodules, then χ(V ⊕W ) = χ(V ) +χ(W ), χ(V ⊗W ) = χ(V )χ(W )
and V ∼= W ⇐⇒ χ(V ) = χ(W ).

Recall [11, 10] that O(SLq(2)) is cosemisimple and has a complete family of simple
comodules (Vi)i∈N, with V0 = k and dim(Vi) = i+ 1, for i ∈ N, and

Vi ⊗ V1
∼= V1 ⊗ Vi

∼= Vi−1 ⊕ Vi+1, for i ∈ N∗.

As in the preceding section, for i ∈ Z, we denote by Zi the one-dimensional comodule
corresponding to the element zi of k[z, z−1]. We identify H(q) with a Hopf subalgebra
of k[z, z−1] ∗ O(SLq(2)), via the morphism π of Propositions 3.4 and 4.1. Under this
identi�cation, the canonical two-dimensional comodules U and V of H(q) (see the notation
in Section 1) correspond to the simple alternated comodules Z ⊗ V1 and V1 ⊗ Z−1.
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Proposition 5.2 There exists a unique algebra morphism ψ : (k[N ∗ N],+,�) −→ H(q)
such that ψ(α) = χ(Z ⊗ V1) and ψ(β) = χ(V1⊗Z−1). Moreover for all x ∈ N ∗N, ψ(x) is

the character of a simple H(q)-comodule.

The �rst assertion is a direct consequence of Lemma 5.1. To prove the second one, we
need a couple of lemmas.

Lemma 5.3 For all n ∈ N, we have:

ψ((αβ)n) = χ(Z ⊗ V2n ⊗ Z−1) ; ψ((βα)n) = χ(V2n) ;

ψ((αβ)nα) = χ(Z ⊗ V2n+1) ; ψ((βα)nβ) = χ(V2n+1 ⊗ Z−1).

Proof. We prove the lemma by induction on n. For n = 0, the result is clear. Now assume
that the lemma has been proved for n ≥ 0. We have (αβ)nα� β = (αβ)n+1 + (αβ)n, and
so

ψ((αβ)n+1) = ψ((αβ)nα)ψ(β)− ψ((αβ)n)

= χ(Z ⊗ V2n+1)χ(V1 ⊗ Z−1)− χ(Z ⊗ V2n ⊗ Z−1) (by induction)

= χ(Z ⊗ V2n ⊗ Z−1) + χ(Z ⊗ V2n+2 ⊗ Z−1)− χ(Z ⊗ V2n ⊗ Z−1)

= χ(Z ⊗ V2(n+1) ⊗ Z−1).

Using (βα)nβ � α = (βα)n+1 + (βα)n, one shows in the same way that ψ((βα)n+1) =
χ(V2(n+1)). We have (αβ)n+1 � α = (αβ)n+1α+ (αβ)nα, and hence

ψ((αβ)n+1α) = ψ((αβ)n+1)ψ(α)− ψ((αβ)nα).

We have already shown that ψ((αβ)n+1) = χ(Z ⊗ V2(n+1) ⊗ Z−1), and by induction
ψ((αβ)nα) = χ(Z ⊗ V2n+1), so we have:

ψ((αβ)n+1α) = χ(Z ⊗ V2n+2 ⊗ Z−1 ⊗ Z ⊗ V1)− χ(Z ⊗ V2n+1)
= χ(Z ⊗ V2n+1) + χ(Z ⊗ V2n+3)− χ(Z ⊗ V2n+1) = χ(Z ⊗ V2(n+1)+1).

One shows in a similar manner that ψ((βα)n+1β) = χ(V2(n+1)+1 ⊗ Z−1): this concludes
the proof. �

Lemma 5.4 Let x ∈ N ∗ N. Then:

• ψ(xα) = χ(X⊗Vi), for some i ∈ N∗, where X = k or X is a simple alternated comodule

ending by Z or Z−1.

• ψ(αx) = χ(Z ⊗ X), where X is a simple alternated comodule beginning by some Vi,

i ∈ N∗.
• ψ(xβ) = χ(X ⊗ Z−1), where X is a simple alternated comodule ending by some Vi,

i ∈ N∗.
• ψ(βx) = χ(Vi⊗X), for some i ∈ N∗, where X = k or X is a simple alternated comodule

beginning by Z or Z−1.
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Proof. We �rst prove the lemma for elements x as in Lemma 5.3. Let x = (αβ)n. Then
using Lemma 5.3, we have

ψ(xα) = ψ((αβ)nα) = χ(Z ⊗ V2n+1) ,
ψ(αx) = ψ(α(αβ)n) = ψ(α� (αβ)n)) = ψ(α)ψ((αβ)n) =

χ(Z ⊗ V1)χ(Z ⊗ V2n ⊗ Z−1) = χ(Z ⊗ V1 ⊗ Z ⊗ V2n ⊗ Z−1) ,

ψ(xβ) = ψ((αβ)nβ) = χ(Z ⊗ V2n ⊗ Z−1)χ(V1 ⊗ Z−1) = χ(Z ⊗ V2n ⊗ Z−1 ⊗ V1 ⊗ Z−1) ,

ψ(βx) = ψ(β(αβ)n) = ψ((βα)nβ) = χ(V2n+1 ⊗ Z−1) .

Similar computations show that the lemma is true for x = (βα)n, x = (αβ)nα or x =
(βα)nβ.

We now prove the lemma for an arbitrary element x ∈ N ∗N using an induction on the
length n of x. If n = 0, the result is obviously true. Let us assume that the lemma has
been proved for elements of length ≤ n (n ≥ 0), and let x be an element of length n + 1.
If x is one of the elements of Lemma 5.3, the result has already been proved so we can
assume that x = yα2z or that x = yβ2z. For example assume that x = yα2z. We have

ψ(xα) = ψ(yα2zα) = ψ(yα� αzα) = ψ(yα)ψ(αzα).

By induction, we have ψ(yα) = X ⊗ Vi for i ∈ N∗ and X = k or X is a simple alternated
k[z, z−1] ∗ O(SLq(2))-comodule ending by Z or Z−1. Also by induction ψ(αzα) = χ(Z ⊗
Y ⊗ Vj) for j ∈ N∗, and Y = k or Y is a simple alternated comodule ending by Z or
Z−1 and beginning by some Vk, k ∈ N∗. So �nally ψ(xα) = χ(X ⊗ Vi ⊗ Z ⊗ Y ⊗ Vj) and
X ⊗ Vi ⊗ Z ⊗ Y is a simple alternated comodule ending by Z or Z−1. We also have

ψ(αx) = ψ(αyα2z) = ψ(αyα� zα) = ψ(αyα)ψ(αz).

By induction we have ψ(αyα) = χ(Z ⊗ X ⊗ Vi), i ∈ N∗, and X = k or X is a simple
alternated comodule beginning by some Vj , j ∈ N∗ and ending by Z or Z−1. Also ψ(αz) =
χ(Z ⊗ Y ) where Y is a simple alternated comodule beginning by some Vk, k ∈ N∗. Hence
ψ(αx) = χ(Z ⊗X ⊗ Vi ⊗ Z ⊗ Y ), where X ⊗ Vi ⊗ Z ⊗ Y is a simple alternated comodule
beginning by some Vj , j ∈ N∗. Let us now compute ψ(xβ):

ψ(xβ) = ψ(yα2zβ) = ψ(yα� αzβ) = ψ(yα)ψ(αzβ).

By induction ψ(yα) = χ(X⊗Vi) where X = k or X is a simple alternated comodule ending
by Z or Z−1. Also ψ(αzβ) = χ(Z ⊗ Y ⊗ Z−1) where Y is a simple alternated comodule
beginning by some Vj and ending by some Vk, j, k ∈ N∗. So ψ(xβ) = χ(X ⊗ Vi ⊗Z ⊗ Y ⊗
Z−1), where X ⊗ Vi ⊗ Z ⊗ Y is a simple alternated comodule ending by some Vk, k ∈ N∗.
Let us �nally compute ψ(βx):

ψ(βx) = ψ(βyα2z) = ψ(βyα� αz) = ψ(βyα)ψ(αz).

By induction ψ(βyα) = χ(Vi ⊗ X ⊗ Vj) for i, j ∈ N∗, and X is a simple alternated
comodule beginning by Z or Z−1 and ending by Z or Z−1. Also ψ(αz) = χ(Z ⊗ Y ),
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where Y is an alternated simple comodule beginning by some Vk, k ∈ N∗. So ψ(βx) =
χ(Vi⊗X ⊗ Vj ⊗Z ⊗ Y ) where X ⊗ Vj ⊗Z ⊗ Y is a simple alternated comodule beginning
by Z or Z−1. Very similar computations prove the result for x = yβ2z, and conclude the
proof of Lemma 5.4. �

Proposition 5.2 is a direct consequence of Lemma 5.4. �

We can now easily list the simple H(q)-comodules, and describe their fusion rules. For
x ∈ N ∗ N, let Ux be a simple H(q)-comodule such that χ(Ux) = ψ(x). We have Ue = k,
Uα = U and Uβ = V , for the notations of the introduction. We have

χ(Ux ⊗ Uy) = χ(Ux)χ(Uy) = ψ(x)ψ(y) = ψ(x� y) = ψ(
∑

x=ag,y=ḡb

ab) = χ(
⊕

x=ag,y=ḡb

Uab),

and hence
Ux ⊗ Uy

∼=
⊕

x=ag,y=ḡb

Uab .

By Lemma 5.4 we have Ux
∼= k if and only if x = e, and using the last formula, we see

that Hom(k, Ux ⊗ Uy) 6= (0) if and only if y = x̄. This implies that U∗
x
∼= Ux̄ and that

Ux
∼= Uy if and only if x = y. Thus we have a family of simple H(q)-comodules (Ux)x∈N∗N

whose coe�cients generate A as an algebra, containing the trivial comodule and stable
under tensor products: using e.g. the orthogonality relations [10] we conclude that any
simple H(q)-comodule is isomorphic with a comodule Ux.

The preceding discussion concludes the proof of Theorem 1.1: there just remain to be
said that the monoidal category equivalence Comod(H(F )) ∼=⊗ Comod(H(q)) transforms
the fundamental n-dimensional comodules U and V of H(F ) into the fundamental 2-
dimensional comodules U and V of H(q).

Lemma 5.1, Proposition 5.2 and Theorem 1.1 combined together also yield the descrip-
tion of the Grothendieck K0-ring of the category Comodf(H(F )).

Corollary 5.5 Let F ∈ GL(n, k) (n ≥ 2) be a generic matrix. Then we have a ring

isomorphism

K0(Comodf(H(F )) ∼= Z{X,Y } .

6 Some applications

We use Theorem 1.1 to prove a few structural results concerning the Hopf algebras H(F ),
for generic matrices. Again k is an algebraically closed �eld of characteristic zero.

Let us begin with the isomorphic classi�cation. For universal compact quantum groups,
this was done by Wang [19]. Since we use the same type of arguments, we will be a little
concise.
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Proposition 6.1 Let E ∈ GL(m, k), F ∈ GL(n, k) (m,n ≥ 2) be generic matrices. The

Hopf algebras H(E) and H(F ) are isomorphic if and only if one of the two conditions hold.

i) m = n and there exists P ∈ GL(n, k) such that F = ±PEP−1.

ii) m = n and there exists P ∈ GL(n, k) such that tF
−1 = ±PEP−1.

Proof. Let f : H(E) −→ H(F ) be a Hopf algebra isomorphism, and denote by f∗ :
Comod(H(E)) −→ Comod(H(F )) the functor induced by f . By [19] U and V are the
simple H(E)-comodules (resp. H(F )-comodules) with the strictly smallest dimension,
and hence we have f∗(U) ∼= U or f∗(U) ∼= V . If f∗(U) ∼= U , then m = n and there

exists P ∈ GL(n, k) such that f(u) = tPutP
−1

and necessarily f(v) = P−1vP . Since f is
well-de�ned and since U is simple, it is easy to check that F = ±PEP−1. If f∗(U) ∼= V ,

then m = n and there exists P ∈ GL(n, k) such that f(u) = tPvtP
−1

and necessarily

f(v) = P−1tF
−1
vtFP . Since f is well-de�ned and since U and V are simple, it is easy to

check that tF
−1 = ±PEP−1.

Conversely, if F = ±PEP−1, it is easy to check that there exists a Hopf algebra
isomorphism f : H(E) −→ H(F ) such that f(u) = tPutP

−1
and f(v) = P−1vP . if

tF
−1 = ±PEP−1, it is easy to check that there exists a Hopf algebra isomorphism f :

H(E) −→ H(F ) such that f(u) = tPvtP
−1

and f(v) = P−1tF
−1
utFP . �

Let us now compute the automorphism group of the Hopf algebra H(F ). Let F ∈
GL(n, k). Put

X0(F ) = {K ∈ GL(n, k) | KFK−1 = F} , Y (F ) = {K ∈ GL(n, k) | KFK−1 = tF
−1},

and X(F ) = X0(F )/k∗. Then X(F ) is a group. For N ∈ N ∪ {∞}, the cyclic group of
order N is denoted by CN .

Proposition 6.2 Let F ∈ GL(n, k) (n ≥ 2) be a generic matrix.

a) Assume that Y (F ) = ∅. Then X(F ) ∼= AutHopf(H(F )).
b) Assume that Y (F ) 6= ∅. LetK ∈ Y (F ), and put N = min{p ∈ N∪{∞} | (F−1tK

−1
K)p ∈

k∗}. Then we have an exact sequence of groups

1 −→ CN −→ X(F ) o C2N −→ AutHopf(H(F )) −→ 1

In particular, if there exists K ∈ GL(n, k) such that F = tK
−1
K, then K ∈ Y (F ), we can

take N = 1 and we have an isomorphism X(F ) o C2
∼= AutHopf(H(F )).

Proof. Let K ∈ X0(F ). Then there exists a Hopf algebra automorphism φK of H(F )
such that φK(u) = tKutK

−1
and φK(v) = K−1vK. This gives a group morphism φ :

X(F ) −→ AutHopf(H(F )), injective since the comodule U is simple. Now consider f ∈
AutHopf(H(F )). Then by the proof of Proposition 6.1, either there exists K ∈ X0(F )
(recall that tr(F ) 6= 0 since F is generic) such that f(u) = tKutK

−1
, either there exists

K ∈ Y (F ) such that f(u) = tKvtK
−1
. If Y (F ) = ∅, then f = φK and the morphism φ

is an isomorphism. Assume now that Y (F ) 6= ∅ and let K ∈ Y (F ). Then there exists
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ψK ∈ AutHopf(H(F )) such that ψK(u) = tKvtK
−1

and ψK(v) = K−1tF
−1
utFK. Let

f ∈ AutHopf(H(F )). Then by the proof of Proposition 6.1 there exists K ∈ X0(F ) such
that f = φK or there exists M ∈ Y (F ) such that f = ψM . We have ψM = φtM−1tK ◦
ψK , and thus G = φ(X(F ))〈ψK〉. For M,L ∈ Y (F ), we have ψM ◦ ψL = φF−1tM−1L,
hence |〈ψK〉| = 2N . Also 〈ψK〉 ∩ φ(X(F )) = 〈φF−1tK−1K〉 and |〈ψK〉 ∩ φ(X(F ))| = N .
We have ψK ◦ φL ◦ ψ−1

K = φF−1tK−1tL−1tKF and hence φ(X(F )) is a normal subgroup of
AutHopf(H(F )). We can now use a well-know result in group theory: if G is a group with
two subgroups H and K such that G = HK, such that H is normal in G and such that
H ∩K is abelian, then we have a group exact sequence

1 −→ H ∩K −→ H oK −→ G −→ 1.

The last assertion is immediate. �

7 Quantum automorphism groups of matrix algebras

In his paper [18], Wang described the quantum automorphism group of a �nite-dimensional
C∗-algebra endowed with a trace, the term quantum automorphism group (or quantum
symmetry group) being understood in the sense of Manin [13]. We refer the reader to [13]
or [18] for these ideas. The representation theory of such quantum automorphism groups
was described by Banica [3] in the case of good traces, and is similar to the one of SO(3).

In [5] we proposed a natural categorical generalization of Wang's construction, yield-
ing in particular an algebraic analogue of the quantum automorphism group of a �nite-
dimensional measured algebra. We will see that in the case of a measured matrix algebra
with a non-necessarily tracial measure, the results of the present paper enable us to de-
scribe the representation theory of such a quantum group, reducing the computations to
the case of the quantum SO(3)-group.

Recall [5] that a measured algebra is a pair (Z, φ) where Z is an algebra and φ : Z −→ k
is a linear map such that the bilinear form Z ×Z −→ k, (a, b) 7→ φ(ab), is non-degenerate.
We will only be concerned here by the example (Mn(k), trF) where F ∈ GL(n, k) and trF =
tr(tF

−1−). The quantum automorphism groups of (Mn(k), trF), denoted Aaut(Mn(k), trF),
may be described as follows (see [18] for details). As an algebra Aaut(Mn(k), trF) is the
universal algebra with generators Xkl

ij , 1 ≤ i, j, k, l ≤ n, and satisfying the relations (1 ≤
i, j, k, l, r, s ≤ n):∑

t

Xij
rtX

kl
ts = δjkX

il
rs ;

∑
t,p

FtpX
it
klX

pj
rs = FlrX

ij
ks ;

∑
t

Xtt
ij = δij ;

∑
t,p

F−1
tp Xij

tp = F−1
ij .

It has a natural Hopf algebra structure given by

∆(Xkl
ij ) =

∑
r,s

Xrs
ij ⊗Xkl

rs ; ε(Xkl
ij ) = δikδjl ; S(Xkl

ij ) =
∑
r,s

FjrF
−1
sl X

ri
sk , 1 ≤ i, j, k, l ≤ n.

Let E ∈ GL(m, k) and F ∈ GL(n, k). Let us de�ne the algebra Ais(Mm(k), trE;Mn(k), trF )
to be the universal algebra with generators Xkl

ij , 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n, and satisfying
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the relations:
m∑

t=1

Xij
rtX

kl
ts = δjkX

il
rs , 1 ≤ i, j, k, l ≤ n , 1 ≤ r, s ≤ m ;

n∑
t,p=1

FtpX
it
klX

pj
rs = ElrX

ij
ks , 1 ≤ i, j ≤ n , 1 ≤ k, l, r, s ≤ m ;

n∑
t=1

Xtt
ij = δij , 1 ≤ i, j ≤ m ;

m∑
t,p=1

E−1
tp X

ij
tp = F−1

ij , 1 ≤ i, j ≤ n.

Lemma 7.1 Let E ∈ GL(m, k) and let F ∈ GL(n, k) (m,n ≥ 2) with tr(E) = tr(F ) and

tr(E−1) = tr(F−1). Then Ais(Mm(k), trE ;Mn(k), trF ) is a non-zero algebra.

Proof. It is straightforward to check that there exists a unique algebra morphism ϕ :
Ais(Mm(k), trE ;Mn(k), trF ) −→ H(E,F ) such that ϕ(Xkl

ij ) = uikvjl for 1 ≤ i, j ≤ n,
1 ≤ k, l ≤ m. The elements uikvjl are non-zero elements of H(E,F ) by Section 2, and
hence Ais(Mm(k), trE ;Mn(k), trF ) is a non-zero algebra. �

We arrive at the main result of the section:

Theorem 7.2 Let E ∈ GL(m, k) and let F ∈ GL(n, k) (m,n ≥ 2) with tr(E) = tr(F ) and
tr(E−1) = tr(F−1). Then the comodule categories over Aaut(Mm(k), trE) and Aaut(Mn(k), trF )
are monoidally equivalent. In particular, if tr(F ) = tr(F−1) and if there exists q ∈ k∗

such that q2 − tr(F )q + 1 = 0, then the comodule categories over Aaut(Mn(k), trF ) and

O(SOq1/2(3)) are monoidally equivalent.

Proof. Let us show that

(Aaut(Mm(k), trE), Aaut(Mn(k), trF ), Ais(Mm(k), trE ;Mn(k), trF ), Ais(Mn(k), trF ;Mm(k), trE))

is a Hopf-Galois system [8]. First by Lemma 7.1 all these algebras are non-zero. Let
G ∈ GL(p, k). It is a direct computation to check that there exists a unique algebra
morphism

δG
E,F : Ais(Mm(k), trE ;Mn(k), trF ) −→ Ais(Mm(k), trE ;Mp(k), trG)⊗Ais(Mp(k), trG;Mn(k), trF )

such that δG
E,F (Xkl

ij ) =
∑

r,sX
rs
ij ⊗ Xkl

rs. Also there exists a unique algebra morphism

φ : Ais(Mn(k), trF ;Mm(k), trE) −→ Ais(Mm(k), trE ;Mn(k), trF )op such that φ(Xkl
ij ) =∑

r,s FjlE
−1
sl X

ri
sk. With these structural morphisms, it is immediate to check that we indeed

have a Hopf-Galois system. Hence using Corollary 1.4 of [8], we have our monoidal category
equivalence. Now assume that tr(F ) = tr(F−1) and that there exists q ∈ k∗ such that
q2 − tr(F )q + 1 = 0. Put trq = trFq . Then we have an equivalence of monoidal categories:

Aaut(Mn(k), trF ) ∼=⊗ Aaut(M2(k), trq).

Finally it may be shown that Aaut(M2(k), trq) and O(SOq1/2(3)) are isomorphic. One
considers �rst the Hopf algebra morphism Aaut(M2(k), trq) −→ O(SLq(2)) obtained using
the adjoint corepresentation of the canonical two-dimensional O(SLq(2))-comodule. This
Hopf algebra morphism is injective, and using [9], we arrive at the desired conclusion. �
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