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Abstract

We describe the universal quantum group preserving a preregular
multilinear form, by means of an explicit finite presentation of the
corresponding Hopf algebra.
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1 Introduction

The quantum group of a nondegenerate bilinear form (i.e. the largest quan-
tum group preserving the bilinear form) was introduced and constructed in
[14]. The aim of the paper is to generalize this construction to an appropriate
class of m-linear forms (m ≥ 3), the preregular multilinear forms introduced
in [11, 12].

Let w be a preregular m-linear form on a vector space V (see Definition
1). We show the existence of a universal Hopf algebra H(w) preserving w
and we provide an explicit finite presentation by generators and relations for
H(w). It should be emphasized that the existence part is something that can
be considered as well-known (see the end of Section 4) and that our main
result is that we have obtained a finite presentation for the universal object
H(w). The condition of preregularity, introduced in [11, 12] in connection
with the analysis of AS-regular algebras, turns out to be particularly relevant
in the Hopf algebra context.

In view of the m = 2 case [4] and of the construction of the quantum group
SU(m) as the universal compact quantum group preserving a well-chosen m-
linear form [19], it is natural to expect that the Hopf algebras H(w) should
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produce quantum analogues of SL(m). We examine two natural examples
that show that this is far from being true if m ≥ 3. The first one is when
w is the “signature” m-form, for which we get a non commutative and non
cosemisimple Hopf algebra, having the algebra of polynomial functions on
SL(m) as a quotient. This example also shows that the Hopf algebra H(w)
differs in general from those Hopf algebras H(w, w̃) constructed in [12]. The
second example is when w is the “totally orthogonal” form, and we get some
of the quantum reflection groups studied in [1], whose fusion rules are non-
commutative.

The paper is organized as follows. Section 2 is devoted to preliminaries:
we fix some notation and conventions and we recall the construction of the
quantum group of a nondegenerate bilinear form. In Section 3 we discuss
preregular multilinear forms. In Section 4 we describe the universal bialgebra
preserving a multilinear form. In Section 5 we provide the explicit finite
presentation for the universal Hopf algebra H(w) preserving a preregular
multilinear form. In Section 6 we discuss the relation between H(w) and
another class of Hopf algebrasH(w, w̃) introduced in [12]. Section 7 discusses
some examples and the final Section 8 is our conclusion.

2 Preliminaries

2.1 Notations and conventions

Throughout this article K is a (commutative) field and all vector spaces,
algebras, etc. are over K, the symbol ⊗ denotes the tensor product over
K and we use the Einstein convention of summation over repeated up-down
indices in the formulas. In the following V is a finite-dimensional vector space
with dim(V ) = n ≥ 2 equipped with a basis (eλ)λ∈{1,...,n} and we endow the
dual vector space V ∗ of V with the dual basis (θλ)λ∈{1,...,n} of the basis (eλ).
Using the finite-dimensionality of V we identify (V ⊗

m
)∗ with (V ∗)⊗

m
and

thus, a m-linear form on V is the same thing as an element of (V ∗)⊗
m

.
Given an endomorphism Q of V , we denote by Qt its transposed that is the
endomorphism of V ∗ defined by 〈ω,QX〉 = 〈Qtω,X〉 for any ω ∈ V ∗ and
X ∈ V .
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2.2 The quantum group of a non-degenerate bilinear
form

Let b = bµνθ
µ⊗θν ∈ V ∗⊗V ∗ = (V ⊗V )∗ be a nondegenerate bilinear form on

V , (b(eµ, eν) = bµν). The quantum group of the nondegenerate bilinear form
b was defined in [14] in the following manner. Denote by bµν the component
of the inverse matrix of (bµν) ∈Mn(K), i.e. one has

bµλbλν = bνρb
ρµ = δµν (2.1)

for µ, ν ∈ {1, . . . , n}.

Note the obvious fact that b̃ = bµνeµ⊗ eν ∈ V ⊗V = (V ∗⊗V ∗)∗ does not
depend on the basis (eλ) but only depends on b ∈ V ∗ ⊗ V ∗ = (V ⊗ V )∗.

Let H(b) be the unital associative algebra generated by the n2 elements
uλρ (λ, ρ ∈ {1, . . . , n}) with relations

bµνu
µ
λu

ν
ρ = bλρ1l (2.2)

bµνuλµu
ρ
ν = bλρ1l (2.3)

for λ, ρ ∈ {1, . . . , n}. Then H(b) has a unique Hopf algebra structure with
coproduct ∆, counit ε and antipode S such that

∆(uµν ) = uµλ ⊗ u
λ
ν (2.4)

ε(uµν ) = δµν (2.5)

S(uµν ) = bµλuρλbρν (2.6)

for µ, ν ∈ {1, . . . , n}. The dual object of H(b) is the quantum group of the
nondegenerate bilinear form b. The analysis of the category of representa-
tions of this quantum group, that is of the category of corepresentations of
H(b), has been done in [4].

Although not completely obvious with the above definition, the Hopf
algebra H(b) is characterized by the following universal property.

Theorem 1. Let H be a Hopf algebra which coacts on V as

eλ 7→ eµ ⊗ vµλ (2.7)

3



vµλ ∈ H and is such that
bµνv

µ
λv

ν
ρ = bλρ1l (2.8)

for λ, ρ ∈ {1, . . . , n}, (where 1l denotes the unit of H). Then there is a
unique homomorphism of Hopf algebras ϕ : H(b)→ H such that ϕ(uλµ) = vλµ
for λ, µ ∈ {1, . . . , n}.

In particular the smallest Hopf subalgebra of H which contains the vλµ’s
is a quotient of H(b). For the sake of completeness we give a proof (which
will appear as a particular case of a more general result explained later, see
Section 5).

Proof. Relations (2.8) imply

bσλvµλbµνv
ν
ρ = δσρ1l

which implies that the antipode S of H satisfies

S(vσν ) = bσλvµλbµν

and therefore one has

vσνS(vνρ) = vσν b
νλvµλbµρ = δσρ1l

from which one obtains by contraction with bρτ

bνλvσν v
τ
λ = bστ1l (2.9)

for any σ, τ ∈ {1, . . . , n}. This implies together with (2.8) that uµν 7→ vµν
defines a homomorphism of Hopf algebras of H(b) onto the Hopf subalgebra
of H generated by the vµν . �

3 Preregular multilinear forms

As in the previous section V is a finite-dimensional vector space with dim(V ) =
n ≥ 2, (eλ) is a basis of V with dual basis (θλ) of the dual V ∗ of V , etc..
We shall always make the identifications (V ⊗

n
)∗ = V ∗⊗

n
which is allowed in

view of the finite dimensionality of V . The following definition is taken from
[11] (the main motivation was Theorem 4.3 there).
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Definition 1. Let m be an integer with m ≥ 2. A m-linear form w on V is
said to be preregular iff it satisfies the following conditions (i) and (ii).
(i) If X ∈ V is such that w(X1, . . . , Xm−1, X) = 0 for any X1, . . . , Xm−1 ∈ V ,
then X = 0.
(ii) There is an element Qw ∈ GL(V ) such that one has

w(X1, . . . , Xm−1, Xm) = w(QwXm, X1, . . . , Xm−1)

for any X1, . . . , Xm ∈ V .

It follows from (i) that Qw as in (ii) is unique. Condition (i) when com-
bined with (ii) implies the stronger condition (i’).

(i’) For any 0 ≤ k ≤ m− 1, if X ∈ V is such that

w(X1, . . . , Xk, X,Xk+1, . . . , Xm−1) = 0

for any X1, . . . , Xm−1 ∈ V , then X = 0.

Condition (i’) will be refered to as 1-site nondegeneracy while (ii) will be
refered to as twisted cyclicity with twisting element Qw. Thus a preregu-
lar multilinear form is a multilinear form which is 1-site nondegenerate and
twisted cyclic.

Basic examples of preregular multilinear forms are: the signature form
(see Section 7.1), its q-analogue (defined in [19]), the totally orthogonal form
(see Section 7.2), and the multilinear forms appearing in §3.3 and §5.3 of
[13] which correspond to representative examples of (regular) homogeneous
algebras. For the latter class, it is worth noticing here that in the case of
quadratic algebras, these multilinear forms give the noncommutative version
of the volume element (see Proposition 10 of [12] and the comment following
its proof).

By applying n times the relations of (ii) of Definition 1 one obtains the
invariance of w by Qw, that is

w(X1, . . . , Xm) = w(QwX1, . . . , QwXm)

for any X1, . . . , Xm ∈ V . Thus a twisted cyclic w is invariant by its twisting
element.
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Conversely, let w be an arbitrary Q-invariant m-linear form on V (with
Q ∈ GL(V )) then the m-linear form πQ(w) defined by

πQ(w)(X1, . . . , Xm) =
m∑
k=1

w(QXk, . . . , QXm, X1, . . . , Xk−1)

for any X1, . . . , Xm ∈ V is twisted cyclic with twisting element Q, (in short
is Q-cyclic). Notice that if K is of characteristic 0, then 1

m
πQ is a projection

of the Q-invariant m-linear forms onto the Q-twisted cyclic ones.

Condition (i) is equivalent to the existence of a m-linear form w̃ on V ∗

such that one has
w̃µλ1...λm−1wλ1...λm−1ν = δµν (3.1)

for µ, ν ∈ {1, . . . ,m}, where the components of w̃ and w are defined by
w̃λ1...λm = w̃(θλ1 , . . . , θλm) and wλ1...λm = w(eλ1 , . . . , eλm) for λk ∈ {1, . . . ,m}.
Notice that in contrast with the case m = 2, w̃ is non unique for m > 2. The
set of all w̃ satisfying (3.1) as above is an affine subspace of V ⊗

m
which will

be denoted by Aff(w) and refered to as the polar of w.

In components, condition (ii) reads

wλ1...λm = Qλ
λmwλλ1...λm−1 (3.2)

for λk ∈ {1, . . . ,m}, where the Qµ
ν are the components of Qw defined by

Qw(eν) = Qµ
νeµ (3.3)

for ν ∈ {1, . . . , n} in the basis (eλ).

If one combines (3.1) with (3.2), one gets

Qρ
νw̃

µλ1...λm−1wρλ1...λm−1 = δµν

that is
w̃µλ1...λm−1wνλ1...λm−1 = (Q−1)µν (3.4)

for µ, ν ∈ {1, . . . , n}.

Let us say a few words on the case m = 2. It is clear that a bilinear
form w = b satisfying Condition (i) is just a nondegenerate bilinear form and
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that then w̃ as in 3.1 is unique and given by w̃µν = bµν with the notations of
Section 2. Hence a preregular bilinear form b is nondegenerate.

Conversely let b be a nondegenerate bilinear form with components bµν
in the basis (eλ). Then b is twisted cyclic with

Qλ
ρ = bµλbµρ (3.5)

and hence a nondegenerate bilinear form is preregular.

The classification of nondegenerate bilinear forms over algebraically closed
fields is known: the isomorphism class of a nondegenerate bilinear form only
depends on the conjugacy class of its twisting element, see [16]. On the
other hand, to the best of our knowledge, no general classification result is
known for m-linear forms if m ≥ 3 (isomorphism of multilinear forms is called
congruence in [2]). The only basic observation we have is that isomorphic
preregular m-linear forms have conjugate twisting elements.

4 The universal bialgebra B(w)

Throughout this section w is a m-linear form on V satisfying Condition
(i) of Definition 1. The components of w in the basis (eλ) are denoted by
wλ1...λm = w(eλ1 , . . . , eλm) as before.

Let B(w) be the unital associative algebra generated by the n2 elements
aµν (µ, ν ∈ {1, . . . , n}) with relations

wλ1...λma
λ1
µ1
. . . aλmµm = wµ1...µm1l (4.1)

for µk ∈ {1, . . . , n}. Then B(w) has a unique bialgebra structure with co-
product ∆ and counit ε such that

∆(aµν ) = aµλ ⊗ a
λ
ν (4.2)

ε(aµν ) = δµν (4.3)

for µ, ν ∈ {1, . . . , n}. Let w̃ (∈ V ⊗m
) be, as in Section 2, a solution of (3.1).

One has in view of (4.1)

w̃µλ1...λm−1aρ1λ1 . . . a
ρm−1

λm−1
wρ1...ρm−1σa

σ
ν = δµν (4.4)
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for µ, ν ∈ {1, . . . , n}, which means that in Mn(B(w)) the matrix (aµν ) has
(w̃µλ1...λm−1aρ1λ1 . . . a

ρm−1

λm−1
wρ1...ρm−1ν) as left inverse.

Theorem 2. Let B be a bialgebra which coacts on V as

eλ 7→ eµ ⊗ vµλ

vµν ∈ B and is such that

wρ1...ρmv
ρ1
λ1
. . . vρmλm = wλ1...λm1l

for λk ∈ {1, . . . , n}, (where 1l is the unit of B). Then there is a unique
homomorphism of bialgebras ϕ : B(w)→ B such that

ϕ(aµν ) = vµν ∀µ, ν ∈ {1, . . . , n}.

If furthermore B is a Hopf algebra with antipode S, then one has

S(vµν ) = w̃µλ1...λm−1vρ1λ1 . . . v
ρm−1

λm−1
wρ1...ρm−1ν

for µ, ν ∈ {1, . . . , n}, with w̃ as above.

Proof. The first part is straightforward and classical in a more general context
while the second part follows from

w̃µλ1...λm−1vρ1λ1 . . . v
ρm−1

λm−1
wρ1...ρm−1σv

σ
τ S(vτν )

= S(vµν ) = w̃µλ1...λm−1vρ1λ1 . . . v
ρm−1

λm−1
wρ1...ρm−1ν

for µ, ν ∈ {1, . . . , n} which follows from (4.4) and from the definition of the
antipode. �

Hence by Manin’s construction of the Hopf envelope of a bialgebra [15],
there exists a universal Hopf algebra coacting on a multilinear form w, which
is finitely generated as an algebra since w satisfies condition (i) in Definition
1 (by the last identies of the previous theorem). We have not been able to
provide a finite presentation of this algebra without using the full definition
of preregularity.
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5 The universal Hopf algebra H(w)

Throughout this section w is a given preregular multilinear form on V with
twisting element Qw simply denoted by Q ∈ GL(V ).

The components of w,Q and Q−1 in the basis (eλ) of V (with dual basis
(θλ) of V ∗) are denoted by wλ1...λm , Q

µ
ν and (Q−1)µν with

wλ1...λm = w(eλ1 , . . . , eλm)

Q(eν) = Qµ
νeµ, or Qµ

ν = 〈θµ, Q(eν)〉

Q−1(eν) = (Q−1)µνeµ, or (Q−1)µν = 〈θµ, Q−1(eν)〉

for λk, µ, ν ∈ {1, . . . , n}.

Let H(w) be the unital associative algebra generated by the 2n2 genera-
tors uµν , s

µ
ν with relations

uµλs
λ
ν = δµν 1l (5.1)

Qλ
νu

ρ
λ(Q

−1)σρs
µ
σ = δµν 1l (5.2)

wλ1...λmu
λ1
µ1
. . . uλmµm = wµ1...µm1l (5.3)

for µ, ν, µk ∈ {1, . . . , n}.

Proposition 3. One has in H(w)

wµ1...µms
µm
νm . . . sµ1ν1 = wν1...νm1l (5.4)

sµρu
ρ
ν = δµν 1l (5.5)

sλνQ
τ
λu

ρ
τ (Q

−1)µρ = δµν 1l (5.6)

for νk, µ, ν ∈ {1, . . . , n}. Furthermore, for any solution w̃ of (3.1) i.e. ∀w̃ ∈
Aff(w) one has

sµν = w̃µλ1...λm−1uρ1λ1 . . . u
ρm−1

λm−1
wρ1...ρm−1ν (5.7)

Qτ
νu

ρ
τ (Q

−1)µρ = w̃µλ1...λm−1s
ρm−1

λm−1
. . . sρ1λ1wρ1...ρm−1ν (5.8)

for µ, ν ∈ {1, . . . , n}.
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Proof. Relations (5.4) are obtained from (5.3) by contraction on the right by
sµmνm . . . sµ1ν1 and by using (5.1). From (3.1) and (5.3) it follows that

(w̃µλ1...λm−1uρ1λ1 . . . u
ρm−1

λm−1
wρ1...ρm−1σ)uσν = δµν 1l

which implies (5.7) in view of (5.1) and then (5.5) follows (see also Theorem
2). Similarily, from (3.1) and (5.4) it follows that

sσν (w̃µλ1...λm−1s
ρm−1

λm−1
sρ1λ1wρ1...ρm−1σ) = δµν 1l

which implies (5.8) in view of (5.2) and then (5.6) follows. �

Proposition 4. The algebra H(w) has a unique structure of Hopf algebra
with coproduct ∆, counit ε and antipode S such that

∆(uµν ) = uµλ ⊗ u
λ
ν (5.9)

∆(sµν ) = sλν ⊗ s
µ
λ (5.10)

ε(uµν ) = ε(sµν ) = δµν (5.11)

S(uµν ) = sµν (5.12)

S(sµν ) = (Q−1)µρu
ρ
λQ

λ
ν (5.13)

for µ, ν ∈ {1, . . . , n}.

Proof. This is a direct verification using the relations from the previous
proposition. �

We did not use Condition (ii) of Definition 1 (twisted cyclicity) to con-
struct the Hopf algebraH(w) (Q could be any invertible matrix). The twisted
cyclicity condition is fully used to prove the following universal property of
H(w).

Theorem 5. Let w be preregular m-linear form and let H be a Hopf algebra
which coacts on V as

eλ 7→ eµ ⊗ vµλ
vµλ ∈ H and is such that

wµ1...µmv
µ1
λ1
. . . vµmλm = wλ1...λm1l

for λk ∈ {1, . . . , n}, (where 1l denotes the unit of H). Then there is a unique
homomorphism of Hopf algebras ϕ : H(w) → H such that ϕ(uλµ) = vλµ for
λ, µ ∈ {1, . . . , n}.
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This theorem is the announced generalization of Theorem 1. It follows
that if w = b is bilinear, then H(b) as in Section 2 is isomorphic with H(w)
as above.

Proof. All what one has to verify is that the relations (5.1), (5.2) and (5.3)
are satisfied with uµν replaced by vµν and sµν = S(uµν ) replaced by S(vµν ), (S
being the antipode). Relation (5.3) is satisfied by definition and relation
(5.1) is a consequence of the axioms for Hopf algebras. Thus it remains to
show that

Qλ
νv

ρ
λ(Q

−1)σρS(vµσ) = δµν 1l (5.14)

is satisfied in H. On the other hand, Theorem 2 implies that

S(vµν ) = w̃µλ1...λm−1vρ1λ1 . . . v
ρm−1

λm−1
wρ1...ρm−1ν

with w̃ solution of (3.1). Therefore one has

Qλ
νv

ρ
λ(Q

−1)σρS(vµσ) = Qλ
νv

ρ
λ(Q

−1)σρ w̃
µλ1...λm−1vρ1λ1 . . . v

ρm−1

λm−1
wρ1...ρm−1σ

= w̃µλ1...λm−1Qλ
νv

ρ
λv

ρ1
λ1
. . . v

ρm−1

λm−1
wρρ1...ρm−1

= w̃µλ1...λm−1Qλ
νwλλ1...λm−11l

= w̃µλ1...λm−1wλ1...λm−1ν1l = δµν 1l

where the twisted cyclicity condition is used in the second equality. This
proves (5.14). �

It follows in particular from Theorem 5 that the algebra of polynomial
functions on Aut(w) is a quotient of H(w). An element of Aut(w) has to
commute with the twisting element Q, so if Q is diagonalizable with distinct
eigenvalues, Aut(w) is very small, being a subgroup of the torus (K∗)m. This
still allows H(w) to be a large algebra (and hence w has a large quantum
symmetry group), as the example of quantum SL(2) shows.

6 The Hopf algebras H(w, w̃), w̃ ∈ Aff(w)

In this section, where w is a preregular m-linear form on V with twisting
element Q ∈ GL(V ) and w̃ is an element of Aff(w) (that is an element of
V ⊗

m
satisfying (3.1)), we recall the definition of the Hopf algebra H(w, w̃),

constructed in [12], and relate it to H(w).
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Let H(w, w̃) be the unital associative algebra generated by the n2 ele-
ments vµν (µ, ν ∈ {1, . . . , n}) with relations

wλ1...λmv
λ1
µ1
. . . vλmµm = wµ1...µm1l (6.1)

and
w̃λ1...λmvµ1λ1 . . . v

µm
λm

= w̃µ1...µm1l (6.2)

for µk ∈ {1, . . . , n}. There is a unique structure of Hopf algebra on H(w, w̃)
with coproduct ∆, counit ε and antipode S such that

∆vµν = vµλ ⊗ v
λ
ν (6.3)

ε(vµν ) = δµν (6.4)

and
S(vµν ) = w̃µλ1...λm−1vρ1λ1 . . . v

ρm−1

λm−1
wρ1...ρm−1ν (6.5)

for µ, ν ∈ {1, . . . , n}.

By Theorem 5 there exists a unique (surjective) homomorphism of Hopf
algebras

ϕ : H(w)→ H(w, w̃)

such that ϕ(uµν ) = vµν for µ, ν ∈ {1, . . . , n}. We will see in the next section
that this is not an isomorphism in general.

7 Examples

In this section, in order to illustrate our construction, we examine two exam-
ples. We begin with a general useful lemma, whose proof is straightforward
combining Relations (5.4) and (5.5).

Lemma 6. Assume that m ≥ 3. We have, in H(w),

wλρµ3...µms
µm
νm . . . sµ3ν3 = wν1...νmu

ν1
λ u

ν2
ρ

for any λ, ρ, ν3, . . . , νm ∈ {1, . . . , n}.
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7.1 Example 1: the signature form

Let w = ε be the signature form on V = Km (the volume form), i.e. ελ1...λm =
0 if two indices are equal, and ελ1...λm is the signature of the corresponding
permutation otherwise. This is a preregular m-linear form, with Q = Im.

Proposition 7. The Hopf algebra H(ε) is not commutative if m ≥ 3.

Proof. It is easy to see that it is enough to prove the result at m = 3. Let A
be the free algebra on two generators x and y. It is straightforward to check
the existence of an algebra map H(w)→ Au11 u12 u13

u21 u22 u23
u31 u32 u33

 7→
1 x y

0 1 0
0 0 1

 ,

s11 s12 s13
s21 s22 s23
s31 s32 s33

 7→
1 −x −y

0 1 0
0 0 1


Thus H(ε) is not commutative. �

Using Lemma 6 we see that the following relations hold in H(ε):

uλνu
µ
ν = uµνu

λ
ν , [uλν , u

µ
ρ ] = [uµν , u

λ
ρ ]

for any λ, µ, ν, ρ. These are the relations defining the Manin matrices studied
in [6].

Let ε̃ be given by ε̃λ1...λm = 1
m
ελ1...λm (assuming here that m 6= 0 in K).

We have ε̃ ∈ Aff(ε).

Proposition 8. Assume that m ≥ 3. Then the canonical Hopf algebra map
H(ε)→ H(ε, ε̃) is not injective, and H(ε) is not cosemisimple.

Proof. One can show that H(ε, ε̃) is commutative, as in [19, 17]. It thus
follows that the canonical Hopf algebra map H(ε)→ H(ε, ε̃) is not injective.

Assume that H(ε) is cosemisimple. Then there exists w′ ∈ Aff(ε) satis-
fying (6.2). But ε̃ is, up to scalar, the only element in Aff(ε) for which (6.2)
can hold in H(ε, ε̃) (by some well-known facts on the representation theory of
SL(m)). Thus, up to a scalar, w′ = ε̃, and relations (6.2) hold for ε̃ in H(ε).
Thus the canonical map H(ε) → H(ε, ε̃) is an isomorphism: contradiction.
�
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7.2 Example 2: the totally orthogonal form

We now consider the totally orthogonalm-linear form θ on V = Kn: θλ1...λm =
1 if all indices are equal and 0 otherwise. This is a preregular m-linear form
with Q = In.

Proposition 9. For m ≥ 3, the Hopf algebra H(θ) is isomorphic to the
algebra presented by generators aµλ, µ, λ ∈ {1, . . . , n}, and relations

aµλa
µ
ν = 0 = aλµa

ν
µ, ∀µ, ∀λ 6= ν

n∑
λ=1

(aµλ)m = 1 =
n∑
λ=1

(aλµ)m, ∀µ

Thus H(θ) is isomorphic with the Hopf algebra denoted Amh (n) in [1].

Proof. Let A denote the algebra having the presentation given in the state-
ment of the proposition. It is a direct verification to check that there exists
a unique Hopf algebra structure on A such that

∆(aµν ) = aµλ ⊗ a
λ
ν , ε(a

µ
ν ) = δµν , S(aµν ) = (aνµ)m−1

and that A satisfies the assumption in Theorem 5. Hence there exists a
surjective Hopf algebra map H(θ)→ A, uµλ 7→ aµλ.

To construct the inverse isomorphism, we have to check that the defining
relations in A are satisfied in H(θ). The second family of relations holds in
H(θ) by Relations (5.3). We have, by Lemma 6, uµλu

µ
ν = 0 for λ 6= ν. Using

the antipode we get sµλs
µ
ν = 0 for λ 6= ν. Moreover, using Relations (5.3), we

see that sλµ = (uµλ)m−1, hence sλµs
ν
µ = 0 for λ 6= ν, and using the antipode,

we see that the first family of relations holds in H(θ). We get a surjective
algebra map A → H(θ), aµλ 7→ uµλ, and we are done. �

The Hopf algebra H(θ) ' Amh (n) (which also can be described by a free
wreath product operation [5]) is, when K = C, cosemimple and its fusion
rules are non-abelian, see [1]. It would be interesting to characterize the
preregular multilinear forms for which the diagrammatic techniques in [1]
can be extended.
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8 Conclusion : The quantum group of a pre-

regular multilinear form

The Hopf algebra H(w, w̃) which was considered in [12] in connection with
its coaction on the algebras A(w,N) defined by the “twisted potential” w
(for m ≥ N ≥ 2) has the defect to be dependent of the auxiliary variable
w̃ ∈ Aff (w), (excepted for m = 2 for which card(Aff (w)) = 1).

The Hopf algebra H(w) coacts as well on the algebras A(w,N) defined in
Section 5 of [12]. This latter class of algebras includes all AS-regular algebras
which are N -Koszul as shown in [12], Theorem 11 (see also in [11]).

It is clear from Theorem 5 that the right Hopf algebra which only depends
on w is the universal Hopf algebra H(w) defined in Section 5. Therefore we
define the quantum group of the preregular multilinear form w to be the dual
object of H(w). The representations of this quantum group are the corepre-
sentations of the Hopf algebra H(w) which plays the role of the Hopf algebra
of “representative functions” on it.

In fact the Hopf algebras H(w, w̃) for w̃ ∈ Aff(w) all are quotients of
H(w), which means that the corresponding quantum groups are quantum
subgroups of the above quantum group of the preregular multilinear form w.
In the case m = 2, that is when w is a nondegenerate bilinear form, then w̃ is
unique and H(w, w̃) coincides with H(w) as explained in Section 2 (Theorem
1). Thus for m = 2, the canonical projection

π : H(w)→ H(w, w̃)

is an isomorphism. However for m ≥ 3, Example 1 of the previous section
shows that this not always true, but Example 2 shows it can be true. Those
examples also show that the uniform description of the corepresentation cat-
egory of H(w) for the case m = 2 in [4] will no longer hold when m ≥ 3.

The Hopf algebras H(w) and H(w, w̃) above belong to a particular class
of Hopf algebras named cosovereign Hopf algebras in [3] where they were
considered and studied in a categorical perspective. Examples of Hopf alge-
bras of this type are those arising from compact quantum groups [18]. The
class of cosovereign Hopf algebras is also exactly the class of Hopf algebras
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considered in [7] (see also in [10]) and the analysis of [7] was later extended to
a larger class of Hopf algebras, which mixed the notion of cosovereign Hopf
algebra with the dual notion of sovereign Hopf algebra [3], in [8] and [9].
These classes of Hopf algebras generalize the class of Hopf algebras with an-
tipode satisfying S2 = I for which cyclic cohomology and the generalization
of the Weil homomorphism have tractable descriptions.
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