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Abstract. Let H be a Hopf algebra and let A ⊂ H be a right coideal subalgebra. We
show that if A is a direct summand in H as a right A-module, then H is faithfully flat
as a right A-module.

1. Introduction

Faithful flatness is an important algebraic concept arising from algebraic geometry and
closely related to the question of forming “good” quotients. It takes a key role in the
theory of group schemes and their noncommutative generalizations, Hopf algebras, and
especially in questions related to exact sequences [1].

The question whether a Hopf algebra is faithfully flat over its Hopf subalgebras was
raised in Montgomery’s book [11]. Schauenburg [15] has shown that the answer is negative
in general, but the examples considered there are due to a somewhat pathological behavior
of the antipodes, and it is expected that faithful flatness over Hopf subalgebras should
hold in the most reasonable situations. Here are some highlights of the known positive
results (A ⊂ H is a Hopf subalgebra in what follows):

(1) First there is the classical result that if H is commutative then it is faithfully flat
over its Hopf subalgebras. This is precisely one of the ingredients that ensures
that there is a good quotient theory for affine group schemes, see [8, 19, 22].

(2) The situation when H is commutative has been generalized to the case when only
A is commutative, by Arkhipov-Gaitsgory [2], and to the case when H is Noe-
therian, residually finite-dimensional and has a polynomial identity, by Skryabin
[18].

(3) Pointed Hopf algebras are free over their Hopf subalgebras: this was shown by
Radford [14].

(4) The celebrated Nichols-Zoeller theorem [12] ensures that finite-dimensional Hopf
algebras are free over their Hopf subalgebras.

(5) Chirvasitu [6] has shown that if H is cosemisimple, then it is faithfully flat over
its Hopf subalgebras.

The case when A ⊂ H is only a coideal subalgebra is also of high interest in view
of quotient theory, but here the situation is not that we can reasonably expect that
faithful flatness holds, since even in the commutative case it is easy to find natural
coideal subalgebras over which the Hopf algebra is not faithfully flat (for example k[x, y] ⊂
O(SL2(k)). There are however a number of positive results, possibly by relaxing faithful
flatness to flatness, of which we also list a selection.

(1) Masuoka-Wigner [9] have shown that commutative Hopf algebras are flat over
their coideal subalgebras, and this was generalized by Skryabin [18] the case when
H is Noetherian, residually finite-dimensional and has a polynomial identity.
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(2) Skryabin [17] has shown that finite-dimensional Hopf algebras are free over their
coideal subalgebras.

(3) Compact Hopf algebras are faithfully flat over their coideal ∗-subalgebras: this
was shown by Chirvasitu [7].

The primary motivation for this work was the idea that it would be useful to write
a self-contained proof of the above mentioned result [6, Theorem 2.1] of Chirvasitu on
the faithful flatness of a cosemisimple Hopf algebra over its Hopf subalgebras. Indeed,
Chirvasitu’s proof is divided in two steps: he first proves the crucial fact that a Hopf
subalgebra A ⊂ H of a cosemisimple H is a direct summand of H as an A-bimodule,
and then concludes using [6, Proposition 1.4, Proposition 1.6], results that are obtained
by a discussion involving an important number of external references [5, 10, 13, 20]. As
a result of the writing of the self-contained proof, we obtain the following new faithful
flatness result, in the setting of coideal subalgebras.

Theorem 1.1. Let H be a Hopf algebra and let A ⊂ H be a right coideal subalgebra.
If A is a direct summand in H as a right A-module, then H is faithfully flat as a right
A-module.

The condition that A is a direct summand in H as a right A-module is equivalent to
the existence of a right A-linear map E : H → A such that E|A = idA. Such a map E is
what we call a right conditional expectation for the extension A ⊂ H.

The work of Takeuchi [20] revealed that the question of faithful flatness is intimately
related to the structure of certain categories of relative Hopf modules, and the proof
of Theorem 1.1 is based on such a structure theorem, Theorem 3.1 in Section 3. This
result is a generalization of [6, Proposition 1.6], involving a notion that we call faithful
flatishness, and which is in general a technical consequence of faithful flatness. The key
point is that faithful flatishness is an easy consequence of the existence of a conditional
expectation, and is sufficient to prove the structure theorem of relative Hopf modules.
Several arguments in the proof of Theorem 3.1 are close to classical arguments that one
finds here and there in the literature, and it is fair to say that the proof of [16, Theorem
3.7] was particularly inspiring.

The paper is organized as follows: in Section 2 we introduce the notion of a faithfully
flatish extension, while in Section 3, after having recalled the adequate framework of
relative Hopf modules, we prove Theorem 3.1, from which Theorem 1.1 follows. The final
Section 4 discusses some left/right variations and consequences of Theorem 1.1, and an
illustration on an example.
Notations and conventions. We work over a fixed field k, and assume that the reader
is familiar with the theory of Hopf algebras as e.g. in [11]. If H is a Hopf algebra, as
usual, ∆, ε and S stand respectively for the comultiplication, counit and antipode of H.
We use Sweedler’s notations in the standard way. The category of left A-modules over
an algebra is denoted AM, the category of left C-comodules over a coalgebra is denoted
CM, etc...

2. Faithfully flat and faithfully flatish extensions

As usual, we say that a right A-module M is flat if the functor M ⊗A − : AM→ kM
is exact, which amounts to say map M ⊗A− preserves injective maps (monomorphisms),
and that M is faithfully flat if it is flat and M ⊗A − creates exact sequences as well. We
also say that an algebra extension A ⊂ B is right (faithfully) flat is B is (faithfully) flat
as a right A-module.

2



We introduce a technical notion, which is in general a consequence of faithful flatness,
but which is sufficient in many applications.

Definition 2.1. An algebra extension A ⊂ B is said to be right faithfully flatish if for
any left A-module M , the map

ιM : M −→
{∑

i

xi ⊗A mi ∈ B ⊗AM
∣∣∣ ∑

i

xi ⊗A 1B ⊗A mi =
∑
i

1B ⊗A xi ⊗A mi

}
m 7−→ 1B ⊗A m

is an isomorphism.

It is a well-known property that faithfully flat extensions are faithfully flatish, see e.g.
the second theorem of Section 13.1 in [22]. The following result ensures that faithful
flatishness holds in the context of Theorem 1.1.

Proposition 2.2. Let A ⊂ B be an algebra extension, and assume that A is a direct
summand in B as a right A-module. Then the extension A ⊂ B is right faithfully flatish.

Proof. Let E : B → A be a right conditional expectation. The right A-linearity of E
enables us to define, for any left A-module M , the map

EM : B ⊗AM →M

x⊗A m 7→ E(x).m

Denote byX(M) the A-module on the right in Definition 2.1. Let us check that EM |X(M) :
X(M) → M is a reciprocal isomorphism to ιM in Definition 2.1. In one direction it is
clear that EM ◦ ιM = idM . To prove that ιM ◦ EM |X(M) = idX(M), similarly to before,
notice that the right A-linearity of E enables us to define the map

E ′M : B ⊗A B ⊗AM → B ⊗AM
x⊗A y ⊗A m 7→ E(x)y ⊗A m

For ∑i xi ⊗A mi ∈ X(M), we have∑
i

1B ⊗A xi ⊗A mi =
∑
i

xi ⊗A 1B ⊗A mi

and applying E ′M yields

∑
i

xi ⊗A mi =
∑
i

E(xi)⊗A mi = 1B ⊗A
(∑

i

E(xi).mi

)
= ιM ◦ EM

(∑
i

xi ⊗A mi

)

which concludes the proof. �

3. Relative Hopf modules and faithful flatishness

In this section we show that for a right coideal subalgebra A ⊂ H, faithful flatishness is
equivalent to faithful flatness, which will prove Theorem 1.1. This is done in the context
of a structure theorem for a certain category of Hopf modules introduced by Takeuchi
[20].
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3.1. Preliminary set-up. We begin by fixing a number of notation and constructions,
which will run throughout the section. All this material can be found in [20].

LetH be a Hopf algebra and let A ⊂ H be a right coideal subalgebra, which means that
A is subalgebra of H such that ∆(A) ⊂ A⊗H. Let A+ = Ker(ε)∩A and consider HA+,
the left ideal of H generated by A+. It is an immediate verification that HA+ is a coideal
in H (∆(HA+) ⊂ HA+⊗H +H ⊗HA+ and ε(HA+) = 0), so we can form the quotient
coalgebra C = H/HA+ together with the canonical surjection : π : H → C = H/HA+.
The coalgebra C has as well a left H-module structure induced by π, so that C is a left H-
module coalgebra. We therefore consider the category of (relative) Hopf modules C

HM,
whose objects are the left H-modules and left C-comodules X such that the coaction
αX : X → C ⊗X is left H-linear, i.e. in Sweedler notation, we have for any h ∈ H and
x ∈ X,

(h.x)(−1) ⊗ (h.x)(0) = h(1).x(−1) ⊗ h(2).x(0)

For a left A-module M , the induced H-module H ⊗AM has a left C-comodule structure
given by (h ⊗A m)(−1 ⊗ (h ⊗A m)(0) = π(h(1)) ⊗ h(2) ⊗A m making it into an object of
C
HM. This defines the induction functor

L = H ⊗A − : AM−→ C
HM

M 7−→ H ⊗AM

For an object X in C
HM, let

coCX = {x ∈ X | x(−1) ⊗ x(0) = π(1)⊗ x}
It is immediate to check that coCX ⊂ X is a sub-A-module and this defines a functor

R = coC(−) : CHM−→ AM
X 7−→ coCX

which is right adjoint to L. We therefore have a pair of adjoint functors
(L,R) : AM−→ C

HM(3.1)
whose respective unit and counit are given by

ηM : M −→ coC(H ⊗AM) µX :H ⊗A coCX −→ X

m 7−→ 1H ⊗A m h⊗ x 7−→ h.x

3.2. Statement of the main result. We have now the necessary material to state the
main result of the section, as follows.

Theorem 3.1. Let H be a Hopf algebra, let A ⊂ H be a right coideal subalgebra and
let C = H/HA+ be the corresponding quotient coalgebra. The following assertions are
equivalent.

(1) The induction functor AM−→ C
HM is an equivalence of categories.

(2) The extension A ⊂ H is right faithfully flat.
(3) The extension A ⊂ H is right faithfully flatish.

Theorem 1.1 is an immediate consequence of the combination of Theorem 3.1 and
Proposition 2.2.

It is immediate that (1) ⇒ (2) since an equivalence of categories is a faithfully exact
functor and the exact sequences in AM and C

HM are precisely those that are exact in
kM, and it has already be been mentioned that (2) ⇒ (3). The rest of this section is
devoted to the proof of (3)⇒ (1), which will consist of showing that the unit and counit
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of the pair of adjoint functors (L,R) in (3.1) are isomorphims, and will be done in several
steps.

3.3. The canonical isomorphisms. The proof of Theorem 3.1 will require a number
of “canonical” isomorphisms, that we construct in this subsection.

For a left H-module X, endow C⊗X with the tensor product left H-module structure
and with the left C-comodule structure provided by the comultiplication of C. In this
way C ⊗ X becomes an object of CHM (in fact C ⊗ X is the image of X by the right
adjoint to the forgetful functor C

HM→ HM).
Our first canonical isomorphism is as follows.

Proposition 3.2. Let X be left H-module. The canonical map

κX : H ⊗A X −→ C ⊗X
h⊗A x 7−→ π(h(1))⊗ h(2).x

is an isomorphism in the category C
HM.

Proof. It is a direct verification that κX is a a morphism in C
HM, and that

C ⊗X −→ H ⊗A X
π(h)⊗ x 7−→ h(1) ⊗A S(h(2)).x

is the inverse isomorphism. �

We will need also a variation on the above canonical isomorphisms, for which we
introduce some more notation. For an object X in C

HM, we consider the following maps:

δ = δX : X −→ C ⊗X
x 7−→ x(−1) ⊗ x(0) − π(1)⊗ x

∇ = ∇X : C ⊗X −→ C ⊗ (C ⊗X)
π(h)⊗ x 7−→ π(h)⊗ x(−1) ⊗ x(0) − π(h(1))⊗ π(h(2))⊗ x

It is immediate that δ is left A-linear, while ∇ is a morphism in C
HM.

Proposition 3.3. Let X be an object in C
HM. We have an isomorphism

κ̃X : H ⊗A δ(X) −→ ∇(C ⊗X)

h⊗A δ(x) 7−→ ∇
(
π(h(1))⊗ h(2).x

)
making the following diagram commute

H ⊗A X
idH⊗Aδ //

κX

��

H ⊗A δ(X)

κ̃X

��
C ⊗X ∇ // ∇(C ⊗X)

Proof. Consider the map κ0
X : H ⊗A X → C ⊗ (C ⊗X) given by the composition

H ⊗A X
idH⊗Aδ−→ H ⊗A (C ⊗X) κC⊗X−→ C ⊗ (C ⊗X)
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For h, h′ ∈ H and x ∈ X, we have κC⊗X(h ⊗A π(h′) ⊗ x) = π(h(1)) ⊗ π(h(2)h
′) ⊗ h(3).x,

hence
κ0
X(h⊗A x) = κC⊗X(h⊗A x(−1) ⊗ x(0) − h⊗A π(1)⊗ x)

= π(h(1))⊗ h(2).x(−1) ⊗ h(3).x(0) − π(h(1))⊗ π(h(2))⊗ h(3).x

= ∇
(
π(h(1))⊗ h(2).x

)
This means that the following diagram commutes

H ⊗A X
κX

��

idH⊗Aδ //
κ0

X

**

H ⊗A (C ⊗X)
κC⊗X

��
C ⊗X ∇ // C ⊗ (C ⊗X)

For x ∈ Ker(δ) = coCX, we then have κ0
X(h ⊗A x) = 0, hence, since δ(X) ' X/Ker(δ),

we get that κ0
X induces the announced map κ̃X : H ⊗A δ(X)→ ∇(C ⊗X).

To construct the inverse map, consider the composition
(idH ⊗A δ) ◦ κ−1

X : C ⊗X → H ⊗A δ(X)
In view of the previous commutative diagram, this map coincides with κ−1

C⊗X ◦ ∇, hence
vanishes on Ker(∇), and thus induces

∇(C ⊗X) −→ H ⊗A δ(X)
∇(π(h)⊗ x) 7−→ h(1) ⊗ δ(S(h(2)).x)

which is clearly an inverse isomorphism to κ̃X . �

3.4. The counit of the adjunction. We now analyse the counit of our adjunction
(L,R).

Proposition 3.4. Let X be an object in C
HM. The counit map µX : H ⊗A coCX → X is

surjective, and hence the functor R = coC(−) : CHM→ AM is faithful. If moreover H is
flat as a right A-module, then µX is an isomorphism.

Proof. Starting with the exact sequence of A-modules 0→ coCX
i→ X

δ→ δ(X)→ 0 and
applying H ⊗A − yields the exact sequence

H ⊗A coCX
idH⊗Ai−→ H ⊗A X

idH⊗Aδ−→ H ⊗A δ(X)→ 0
that fits in the commutative diagram

H ⊗A coCX
idH⊗Ai //

µX

��

H ⊗A X
idH⊗Aδ //

κX

��

H ⊗A δ(X) //

κ̃X

��

0

0 // X
αX // C ⊗X ∇ // ∇(C ⊗X) // 0

where κX and κ̃X are the isomorphisms of Proposition 3.2 and Proposition 3.3 respectively
and the bottom row is exact. The surjectivity of µX is then obtained from an easy diagram
chasing. If f : X → Y is a morphism in C

HM, the commutativity of the diagram

H ⊗A coCX
idH⊗Af| //

µX

��

H ⊗A coCY

µY

��
X

f // Y
6



together with the surjectivity of µX ensures that if f|coCX = 0, then f = 0, and hence the
functor R is faithful.

Assuming moreover that H is flat as a right A-module enables us, as in the proof of [16,
Theorem 3.7], to enlarge the previous commutative diagram to the following commutative
diagram with exact rows

0 // H ⊗A coCX
idH⊗Ai //

µX

��

H ⊗A X
idH⊗Aδ //

κX

��

H ⊗A δ(X) //

κ̃X

��

0

0 // X
αX // C ⊗X ∇ // ∇(C ⊗X) // 0

and again a diagram chasing gives that µX is an isomorphism. �

3.5. The unit of the adjunction. The next step is to study the unit of our adjunction.
Proposition 3.5. Assume that A ⊂ H is right faithfully flatish. Then for any left
A-module M , the unit map

ηM : M −→ coC(H ⊗AM)
is an isomorphism.
Proof. We consider the canonical isomorphism

κ′M = κH⊗AM : H ⊗A (H ⊗AM) −→ C ⊗ (H ⊗AM)
h⊗A h′ ⊗A m 7−→ π(h(1))⊗ h(2)h

′ ⊗A m
from Proposition 3.2. For ∑i hi ⊗A mi ∈ coC(H ⊗AM), we have

κ′M

(∑
i

hi ⊗A 1H ⊗A mi

)
=
∑
i

π(1)⊗A hi ⊗A mi = κ′M

(∑
i

1H ⊗A hi ⊗A mi

)
and the injectivity of κ′M gives∑

i

hi ⊗A 1H ⊗A mi =
∑
i

1H ⊗A hi ⊗A mi

The faithful flatishness assumption then ensures the existence of a unique m ∈ M such
that ∑i hi⊗Ami = 1H ⊗Am. This therefore defines a map coC(H ⊗AM)→M , which is
clearly an inverse to ηM . �

3.6. Proof of Theorem 3.1. We need a last elementary lemma:
Lemma 3.6. Let (F,G) : C → D be a pair of adjoint functors. Assume that the corre-
sponding unit η : 1C → GF is an isomorphism and that G is faithful. Then F preserves
monomorphisms.
Proof. Let u : X → Y be a monomorphism in C, and let f, g : V → F (X) be morphisms
in D such that F (u)◦f = F (u)◦g. Then GF (u)◦G(f) = GF (u)◦G(g), and since GF (u)◦
ηX = ηY ◦ u, we obtain, because ηY and ηX are isomorphisms and u is a monomorphism,
that G(f) = G(g), and we conclude f = g by faithfulness of G. �

We can now finish the proof of (3)⇒(1) in Theorem 3.1. Assume that A ⊂ H is right
faithfully flatish. Proposition 3.5 then ensures that the unit of the adjunction (L,R)
is an isomorphism. Moreover the functor R is faithful by Proposition 3.4, and hence
L preserves monomorphisms by Lemma 3.6, which precisely means that H is flat as a
right A-module. Then the last statement in Proposition 3.4 ensures that the counit of
the adjunction (L,R) is an isomorphism as well, so that (L,R) forms a pair of inverse
equivalences of categories.
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4. Consequences and an example

4.1. Left/right variations. Theorem 1.1 has an obvious left version:

Theorem 4.1. Let H be a Hopf algebra and let A ⊂ H be a left coideal subalgebra. If A
is a direct summand in H as a left A-module, then H is faithfully flat as a left A-module.

Proof. This follows from Theorem 1.1, applied to the right coideal subalgebra Aop ⊂
Hopcop, since a left conditional expectation E : H → A is precisely a right conditional
expectation Hop → Aop, and since H is left A-faithfully flat if and only if Hop is right
Aop-faithfully flat. �

Notice that it is also possible to prove the previous result by adapting Section 3 to this
left setting. We leave this to the reader. We have also the following variation of Theorem
1.1:

Theorem 4.2. Let H be a Hopf algebra with bijective antipode and let A ⊂ H be a right
coideal subalgebra. If A is a direct summand in H as a left A-module, then H is faithfully
flat as a left A-module.

Proof. Apply Theorem 1.1 to the right coideal subalgebra Aop ⊂ Hop (Hop being a Hopf
algebra by bijectivity of the antipode). �

4.2. Projectivity. One nice and useful feature of faithful flatness in the setting of coideal
subalgebras is that it is often equivalent to projectivity [9]. Here this gives the following
result.

Theorem 4.3. Let H be a Hopf algebra with bijective antipode and let A ⊂ H be a left
or right coideal subalgebra.

(1) If A is a direct summand in H as a right A-module, then H is projective as a
right A-module.

(2) If A is a direct summand in H as a left A-module, then H is projective as a left
A-module.

Proof. Assume first that A ⊂ H is a right coideal subalgebra. (1) follows from Theorem
1.1 combined with the right version of [9, Theorem 2] (which, as explained after the
statement of [9, Theorem 2], follows from the left statement applied to Aop ⊂ Hop). (2)
follows from Theorem 4.2 and [9, Theorem 2]. The case when A ⊂ H is a left coideal
subalgebra follows from the right case applied to Aop ⊂ Hopcop. �

4.3. Example: free wreath products. We finish the paper by an illustration. For
n ≥ 1, consider the algebra As(n) presented by generators uij, 1 ≤ i, j ≤ n, and relations

n∑
j=1

uij = 1 =
n∑
j=1

uji, uijuik = 0 = ujiuki, for k 6= j,

This is the coordinate algebra of Wang’s quantum permutation group [21], which can be
defined over any field, and has the Hopf algebra structure

∆(uij) =
∑
k

uik ⊗ ukj, ε(uij) = δij, S(uij) = uji

Let A be a Hopf algebra, and consider A∗n, the free product algebra of n copies of
A, which inherits a natural Hopf algebra structure such that the canonical morphisms
νi : A −→ A∗n, 1 ≤ i ≤ n, are Hopf algebras morphisms. The free wreath product
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A ∗w As(n) [3] is the quotient of the algebra A∗n ∗As(n) by the two-sided ideal generated
by the elements:

νk(a)uki − ukiνk(a) , 1 ≤ i, k ≤ n , a ∈ A.
The free wreath product A ∗w As(n) admits a Hopf algebra structure given by

∆(uij) =
n∑
k=1

uik ⊗ ukj, ∆(νi(a)) =
n∑
k=1

νi(a(1))uik ⊗ νk(a(2)),

ε(uij) = δij, ε(νi(a)) = ε(a), S(uij) = uji, S(νi(a)) =
n∑
k=1

νk(S(a))uki.

It is immediate that there is an algebra map E : A ∗w As(n)→ A∗n given by E(uij) = δij
and E(νi(a)) = νi(a), which thus gives a retraction to the natural map A∗n → A∗wAs(n).
Hence A∗n stands as left coideal subalgebra of A∗wAs(n), and E furnishes a left and right
conditional expectation. Theorem 4.3 therefore ensures that if A has bijective antipode,
then A ∗w As(n) is projective as a left and right A∗n-module. This was shown and used
in the proof of [4, Theorem 8.4], using [7], under the additional assumption that k = C
and that A is a compact Hopf algebra.

References
[1] N. Andruskiewitsch, J. Devoto, Extensions of Hopf algebras, St. Petersburg Math. J. 7 (1996), no.

1, 17-52.
[2] S. Arkhipov, D. Gaitsgory, Dennis Another realization of the category of modules over the small

quantum group, Adv. Math. 173 (2003), no. 1, 114-143.
[3] J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7

(2004), no. 4, 343-362.
[4] J. Bichon, On the monoidal invariance of the cohomological dimension of Hopf algebras, C. R. Math.

Acad. Sci. Paris 360 (2022), 561-582.
[5] T. Brzezinski, R. Wisbauer, Corings and comodules. London Mathematical Society Lecture Note

Series, 309. Cambridge University Press, Cambridge, 2003.
[6] A. Chirvasitu, Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras, Algebra Number

Theory 8 (2014), no. 5, 1179-1199.
[7] A. Chirvasitu, Relative Fourier transforms and expectations on coideal subalgebras, J. Algebra 516

(2018), 271-297.
[8] M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes

commutatifs. Masson, Paris, 1970.
[9] A. Masuoka, D. Wigner, Faithful flatness of Hopf algebras, J. Algebra 170 (1994), no. 1, 156-164.

[10] B. Mesablishvili, Monads of effective descent type and comonadicity, Theory Appl. Categ. 16 (2006),
No. 1, 1-45.

[11] S. Montgomery, Hopf algebras and their actions on rings. CBMS Regional Conference Series in
Mathematics, 82. American Mathematical Society, 1993.

[12] W. D. Nichols, M. B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), no. 2,
381-385.

[13] P. Nuss, Noncommutative descent and non-abelian cohomology, K-Theory 12 (1997), no. 1, 23–74.
[14] D.E. Radford, Pointed Hopf algebras are free over Hopf subalgebras, J. Algebra 45 (1977), no. 2,

266-273.
[15] P. Schauenburg, Faithful flatness over Hopf subalgebras: counterexamples, Lecture Notes in Pure

and Appl. Math. 210 (2000), 331-344,.
[16] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990),

no. 1-2, 167–195.
[17] S. Skryabin, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc. 359 (2007),

no. 6, 2597-2623.
[18] S. Skryabin, Flatness over PI coideal subalgebras, Israel J. Math. 245 (2021), no. 2, 735-772.
[19] M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7

(1972), 251-270.
9



[20] M. Takeuchi, Relative Hopf modules - Equivalences and freeness criteria, J. Algebra 60 (1979), no.
2, 452-471.

[21] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195-
211.

[22] W.C Waterhouse, Introduction to affine group schemes. Graduate Texts in Mathematics, 66.
Springer-Verlag, 1979.

Université Clermont Auvergne, CNRS, LMBP, F-63000 CLERMONT-FERRAND, FRANCE
Email address: julien.bichon@uca.fr

10


