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Quantum permutation algebras

We work over k, an algebraically closed field of characteristic zero.

Definition
A quantum permutation algebra is a Hopf algebra generated (as an algebra) by
the coefficients of a matrix x = (xij) ∈ Mn(H) such that

1 x is a permutation matrix : for all i , j , k ∈ {1, . . . , n}

n∑
l=1

xli = 1 =
n∑

l=1

xil , xijxik = δkjxij , xjixki = δjkxji

2 x is a multiplicative matrix : for all i , j ∈ {1, . . . , n}

∆(xij) =
n∑

l=1

xil ⊗ xlj , ε(xij) = δij , S(xij) = xji

Example
kSn is a quantum permutation algebra with xij(σ) = δi,σ(j), for all σ ∈ Sn.

Definition
Let As(n) be the universal algebra generated by the coefficients of a permutation
matrix of size n. As(n) is a quantum permutation algebra.

The Hopf algebra As(n) arose first in Wang’s work on compact quantum actions
on finite (classical) spaces (1998).
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A Hopf algebra H is a quantum permutation algebra if and only if
As(n)� H for some n.

Theorem
As(n) is the universal cosemisimple Hopf algebra coacting on the algebra
kn. This means :

1 As(n) is cosemisimple and kn is an As(n)-comodule algebra via

kn −→ kn ⊗ As(n)

ei 7−→
n∑

k=1

ek ⊗ xki

2 If kn is a comodule algebra over a cosemisimple Hopf algebra H with
coaction β : kn −→ kn ⊗ H, then there is a unique Hopf algebra map
f : As(n) −→ H with (1⊗ f ) ◦ α = β

Thus we write As(n) = O(S+
n ), where S+

n is the quantum permutation group on
n points, and quantum permutation algebras correspond to quantum permutation
groups.

We observe that

1 As(n) ∼= kSn if n ≤ 3,
2 As(n + m)� As(n) ∗ As(m), so dimAs(n) =∞ if n ≥ 4.

Hence the symmetric group Sn has an infinite quantum analogue if n ≥ 4 !

Banica has shown that the fusion rules of As(n) are the same as those of PGL2
(1999, when k = C).
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Early examples of quantum permutation algebras
1 O(O−1(n)) (corresponding to the quantum automorphism group of

the hypercube in Rn).
2 (kA5)σ (so that A5 has a quantum analogue acting faithfully on 4

points).
3 The Kac-Paljutkin algebra of dimension 8 (as well as other series of

Hopf algebras studied by Masuoka).
4 Some 2-cocycle deformations of kSn .

Several of these examples were unexpected at first sight.

So it becomes natural to wonder if there are lots of quantum permutation
algebras. A basic obstruction to being a quantum permutation algebra is
the following one :

If H is a quantum permutation algebra, then Homk−alg (H, k) is finite and
S2 = idH . So if H is a finite-dimensional quantum permutation algebra,
then H is semisimple.
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So a reasonable question is :

Is any (finite dimensional) semisimple Hopf algebra a quantum permutation
algebra ?
In other words, in view of the universal property of As(n) = O(S+

n ), is
there a Cayley theorem for finite quantum groups ?

Naturally this leads to other more specific questions.
Is the class of finite quantum permutation algebras stable under

1 duality ?
2 extensions ?
3 2-cocycle deformations ?
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Extensions and quantum permutation algebras

We now wish to study the stability of the class of quantum permutation
algebras under extensions.
If Γ is a finite group, the algebras kΓ and kΓ are quantum permutation algebras.

Theorem
Let H be a Hopf algebra that fits into an exact sequence

k → kΓ → H → kF → k

for some finite groups Γ, F . Assume that one of the following conditions
holds :

1 kΓ is central in H ;
2 the sequence is split (H = kΓ#kF) and F is generated by its Γ-stable

abelian subgroups ;
Then H is a quantum permutation algebra.
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Idea of proof : we observe that H is a quantum permutation algebra if and
only if H is generated by its commutative (right) coideal subalgebras. So
we find a family of such coideal subalgebras. �

By using the theorem together with various classification results (Masuoka,
Natale, Kashina, Etingof-Nikshych-Ostrik) we get

Corollary
Let H be a semisimple Hopf algebra. Then H is a quantum permutation
algebra if one the following holds :

1 dimH = p3, with p prime ;
2 dimH = 2q2, with q prime ;
3 dimH = pq2, with p > q prime ;
4 dimH = pqr , with p, q, r distinct primes ;
5 dimH = 16.

In particular if dimH ≤ 23, then H is a quantum permutation algebra
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Theorem
The Hopf algebras kC4#kS3, kC5#kS4, kC5#kA4 (respectively associated
to the group exact factorizations S4 = S3C4, S5 = S4C5, A5 = A4C5) are
not quantum permutation algebras.

Thus there exists a semisimple Hopf algebra of dimension 24 that is not a
quantum permutation algebra.

Corollary
The class of quantum permutation algebras is not stable under extensions,
duality or 2-cocycle deformations.

Indeed, H = kC4#kS3 is not a quantum permutation algebra, while
H∗ = kS3#kC4 is a quantum permutation algebra by the first theorem.
Moreover D(H)∗ ∼= (D(S4)∗)σ for some 2-cocycle σ (Beggs-Gould-Majid).
The first theorem ensures that D(S4)∗ is a quantum permutation algebra,
while D(H)∗ is not (because D(H)∗ � H). �
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Sketch of the proof of the theorem
We have to see that H = kΓ#kF is not generated by its commutative
(right) coideal subalgebras. It is not easy to have the full list of these
coideal subalgebras, so instead we use the following observations :

Lemma
If π : H → kF is a surjective Hopf algebra map and if there exits a proper
subgroup F ′  F such that π(R) ⊂ kF ′ for any commutative (right)
coideal subalgebra R ⊂ H, then H is not a quantum permutation algebra.

Lemma
Let H = kΓ#kF and π = ε⊗ id : H → kF . Let R ⊆ H be a commutative
right coideal subalgebra. Then π(R) = kT , where T is an abelian subgroup
of F , and we have :

(i) If kΓ ⊆ R, then T acts trivially on Γ via C.

(ii) If kΓ ∩ R = k1, then T is stable under the action B of Γ.
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Now assume that H = kC5#kS4 (exact factorization S5 = S4C5 and
actions : C5

C← C5 × S4
B→ S4).

If R is a commutative right coideal subalgebra of H, then R ∩ kC5 is a right
coideal subalgebra of kC5 , hence a Hopf subalgebra of kC5 and thus
dim(R ∩ kC5) divides 5. We are in the situation of the previous lemma : we
have π(R) = kT where T is an abelian subgroup of S4 and either T acts
trivially on C5 via C or T is stable under the action B of C5.
The only subgroup of S4 that acts trivially on C5 is {1}, and the only
abelian subgroups of S4 that are stable under the action B of C5 are
contained in 〈(1324)〉 = F ′. Thus π(R) ⊂ kF ′, and we conclude by the first
lemma. �

Question
What is the smallest dimension that a self dual non quantum permutation
algebra can have ?
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Some quantum permutation algebras obtained by 2-cocycle
deformations

We have seen that the class of quantum permutation algebras is not stable
under 2-cocycle deformations. We wish to show however that large classes
of quantum permutation algebras can be constructed in this way.

Let Γ be an abelian group and let σ ∈ Z 2(Γ, k∗). The character group Γ̂
acts faithfully on the twisted group algebra kσΓ by χ.g = χ(g)g (χ ∈ Γ̂,
g ∈ Γ), hence Γ̂ ⊂ Aut(kσΓ).

Theorem
Let Γ be a finite abelian group and let σ ∈ Z 2(Γ, k∗). Let G be a linear
algebraic group with Γ̂ ⊂ G ⊂ Aut(kσΓ). Then σ induces a 2-cocycle σ′ on
O(G ) such that O(G )σ

′
is a quantum permutation algebra (non

commutative if the only subgroup of Γ̂ that is normal in G is {1} and if
kσΓ is non commutative).
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Examples : Γ̂ = Cn
2 ⊂ G ⊂ On(k) ⊂ Aut(Cln(k))

Γ̂ = Cn × Cn ⊂ G ⊂ PGLn(k) = Aut(Mn(k))

Question
If G is a finite group and σ is a 2-cocycle on kG , is (kG )σ a quantum
permutation algebra ?
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