
Neural Networks 19 (2006) 864–876
www.elsevier.com/locate/neunet
2006 Special Issue

Graph-based normalization and whitening for non-linear data analysis

Catherine Aaron

SAMOS-MATISSE, Paris, France

Abstract

In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a
spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for “global normalization”; we
then adapt these measures using a weighted graph to build a local normalization called “graph-based” normalization. Then we give details of the
graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy
between the “global” and the “local” problem.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Normalization; Geodesic distance; Graph; SOM
1. Introduction

Non-linear data analysis methods focus on a “local”
indicator and require an adapted normalization beforehand. We
can quote for instance:

• ISOMAP (Tenenbaum & de Silva, 2000) or Curvilinear
Data Analysis (Lee, Lendasse, & Verleysen, 2000; Lee,
Lendasse, & Verleysen, 2004) are based on the analysis
of the curvilinear (or geodesic) distance. To compute this
distance a local weighted graph is first calculated and
the Dijkstra algorithm (Dijkstra (1951)) is computed on
this graph. The preliminary normalization has to solve the
following problem: which is the best graph to represent
the data topology? As an illustration, in Fig. 1 we present
the 2-nearest-neighbor graph for a spiral set with different
scalings. It is obvious that only the last graph allows one to
compute a reasonable geodesic distance.

• The Kohonen (or SOM) Algorithm (Kohonen (1995)) adapts
the location of some weight vectors according to their
neighborhood but what is a “good” neighborhood for each
weight vector?

The usual normalization methods, such as the most used
one – the division by standard deviation (that we will call
“standard normalization” in the following) – are global methods

E-mail address: catherine aaron@hotmail.com.

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2006.05.022
and are not adapted to solve the previous questions, even if
it is not theoretically clear that these methods fail to answer
our problem (normalization of a datum drawn on a non-linear
manifold). In this paper we are going to present results for
“standard normalization” as an illustration of this failure.

In the first section we will present our normalization
algorithm. First we present a class of global dispersion
measures that can be easily adapted to local dispersion
measures by using a weighted graph that links points.

The most general graph-based normalization method
requires a local graph structure (G) and a weight function
(f) as input. The precise choice of this parameter is left for
future work; we will present some results for a trivial choice
of graph and weighted functions. Results focus on the ability
of our normalization to make sure that local graphs reflect
data topology, and as consequence that geodesic distance and
Kohonen maps are well computed.

In the second section we follow the same idea and build a
graph-based whitening by introducing whitening at each step
of the algorithm, which is helpful when data are rotated.

2. Graph-based normalization

2.1. Dispersion measures

We are going to use the following notations:

• Let X = (xi, j) be a matrix inMn,p that represents the n
observations (individuals) of p variables.

http://www.elsevier.com/locate/neunet
mailto:catherine_aaron@hotmail.com
http://dx.doi.org/10.1016/j.neunet.2006.05.022

C. Aaron / Neural Networks 19 (2006) 864–876 865
Fig. 1. 2-nearest-neighbor graph for a spiral set with different scaling.
• Let us denote X i = (xi,1, . . . , xi,p) and X k
=

(x1,k, . . . , xn,k)
′, respectively the i th line of X and the kth

column of X .

The most popular dispersion measure for the kth variable is
the observed variance:

σ 2
k =

1
n − 1

n∑
i=1

(xi,k − gk)
2

with

gk =
1
n

n∑
i=1

xi,k .

The usual normalization consists in multiplying X by S, a
diagonal matrix inMp,p, such that:

Sk,k =
1√
σ 2

k

.

A larger class of dispersion measures is based on dispersion
measurement around the barycenters, such as for instance:

δk(p) = C

(
n∑

i=1

|xi,k − gk |
p

)1/p

.

The global normalization then consists in multiplying X by
S(p), a diagonal matrix inMp,p, such that:

Sk,k(p) =
1

δk(p)
.

We will not be able to adapt these dispersion measures to our
local problem because of the barycenter notion for instance. But
we can remark that another expression of the variance is:

σ 2
k =

1
n(n − 1)

∑
i, j

(xi,k − x j,k)
2.

In this paper we define and use the following dispersion
measure class of the:

dk(p) =

(∑
i, j

|xi,k − x j,k |
p

)1/p

.

We are not going to discuss the choice of p here. This kind of
problem has already been discussed for “global” normalization
and results depend on the kind of problem we have. We can first
presume that when δ(p) is chosen for the global normalization,
d(p) should be chosen for the local one. In this paper we
are only going to study p ∈ {1, 2} (see Ding and Wilkins
(2004) for some comparison of normalization methods, which
are not exactly in our field).

2.2. Graph-based normalization algorithm

Let G be a weighted graph matrix on the X observations
such that:

• G(i, j) = 0 if the i th and the j th individual are not
connected

• G(i, j) = f (d(X i , X j)) with f a decreasing function of the
distance between the i th and the j th individual.

Here we can define a “local” (graph-based) dispersion
measure:

dk(p, G) =

(∑
i, j

G(i, j)|xi,k − x j,k |
p

)1/p

.

866 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 2. Example of an MST graph and horizontal and vertical contributions to
local dispersion (20 points uniformly drawn on [0, 1]

2).

And we would like to get that ∀k dk(p, G) = 1.
So we have to apply Y(1) = X.S(1)(p, G) with S(1)(p, G) a

diagonal matrix inMp,p with:

Sk,k(p) =
1

dk(p, G)
.

After this first step we may not have obtained yet that
∀kdk(p, G) = 1, and, as we may also have changed the
organization of distances (d(Y(1)i , Y(1) j) may not be organized
as d(X i , X j)). We therefore have to iterate the following
algorithm:

• initialization: Y(0) = X , G(0) = graph(X)

• step t + 1
• G(t+1) = graph(Y(t))

• dk(p)(t +1) = (
∑

i, j G(t+1)(i, j)|Y(t)i,k −Y(t) j,k |
p)1/p (and

compute the associated matrix S(p, G)(t + 1))
• Y(t+1) = Y(t)S(p, G)(t + 1).

2.3. Choice of a graph

2.3.1. Graph structure
Classical graph structures are the following:

• (1) k-nearest neighbors (this kind of graph is not a problem
for our algorithm)

• (2) Minimal Spanning Tree (MST) (Fig. 2)
• (3) ε-neighborhood X i and X j are connected if and only

if d(X i , X j) < ε. This kind of graph should not be
used “directly”. Indeed, after each re-scaling, the distances
between points are going to change and a fixed ε is not
adapted to this. So, if we want to work with such graphs
we have to use an adaptive ε parameter.

In the following we only focus on k-nearest-neighbor and
MST graphs, but the construction of efficient ε(X) for ε-
neighborhood graphs should be an interesting problem to
develop in the future.
Fig. 3. Extreme case to illustrate instability for 1-nearest neighbors.

2.3.2. Number of neighbors for k-nearest-neighbor graphs
In the “dispersion measure” Section 2.1 we have seen that,

for p = 2 and the complete graph (i.e. the (n − 1)-nearest-
neighbor graph), the graph-based normalization and the usual
division by standard deviation were exactly the same. We can
generalize to the obvious fact that, if k is too large, we lose
information on local problems and it will not be adapted to
strongly non-linear problems.

If we select too small a value for k we lose stability. This can
be illustrated with the extreme case (Fig. 3) of instability with
a 1-nearest-neighbor graph:

So the choice of k comes from the compromise between
locality and stability.

Nevertheless, empirical results show that instability cases do
not appear and that the smallest choice for k, k = 1, is “the
best” choice.

2.3.3. MST versus k-nearest neighbors
Even if we have not observed instability cases, we have

to keep this problem in mind. An alternative to an arbitrary
choice of k for k-nearest neighbors can be the choice of the
Minimal Spanning Tree (MST). The main inconvenience of
such a choice is the running time: a k-nearest-neighbor graph
needs an running time of O(kn2) whereas an MST graph needs
O(n2 log(n)) which may be quite long for a huge data set (our
developed MathLab program is long, more than 1 hour for
n > 1000).

The same running-time problem exists for any MST-based
choices of graphs such as, for instance:

• k-nearest neighbors with k the maximum number of
neighbors reached in the MST

• connecting i to j if d(X i , X j) is shorter than the maximum
edge length of the MST starting from X i or X j .

This running-time problem has motivated the stochastic
version of the algorithm that is briefly described here.

The algorithm is mostly the same. We now need a new
input (n1) that represents the size of a sampling of X . At each
iteration we select n1 points on which the local dispersion is
computed and we apply re-scaling on the total set.

In the following algorithm we denote alea(X, n1) a sampling
of n1 elements of X .

C. Aaron / Neural Networks 19 (2006) 864–876 867
Fig. 4. Results for sinusoidal data (ω ∈ {10, 20, 30, 40, 50}).
• initialization: Y(0) = alea(X, n1), G(0) = graph(Y(0)),
Z(0) = X ,

• step t + 1
• Y(t+1) = alea(Z(t), n1)

• G(t+1) = graph(Y(t+1))

• dk(p)(t +1) = (
∑

i, j G(t+1)(i, j)|Y(t+1)i,k −Y(t+1) j,k |
p)1/p

(and compute the associated matrix S(p, G)(t + 1))
• Z(t+1) = Z(t)S(p, G)(t + 1).

2.3.4. Choice of the weight function f
As with the graph structure with a ε-neighborhood, the

choice of the weight function has to be adaptive. In the
following we decided to only choose a constant function f = 1.
The following question: “is a ‘good’ adaptive function f better
(and quicker) than an adaptive graph?” remains to be answered
in the future.

2.4. Some results

In this section we present some results of graph-
based normalization. Here, we mainly present the effect of
normalization on sinusoidal examples. We chose these kinds of
data because the standard normalization is not adapted to them.
Indeed data which are not adapted to standard normalization
must be neither linear (i.e. “very folded”) nor symmetrical in
the different directions. Sinusoidal drawing satisfies all these
conditions when the dimension is 2. For higher dimension we
can find other satisfying examples. As our results are mostly
empirical and graphical we only study examples for dimensions
2 and 3.
Results will be presented for:

• Graph organization
• Geodesic distance computation
• SOM organization.

2.4.1. Results for graph organization
In Figs. 4 and 5 we present the results of our normalization

algorithm for 200 points drawn on a sinusoid: X1 corresponds
to a uniform drawing of 200 points on [0, 1] and X2

=

sin(ωX1) (with ω ∈ {10, 20, 30, 40, 50} in Fig. 4 and ω ∈

{60, 70, 80, 90} in Fig. 5).
For each frequency we present (vertically):

• The usually normalized (division by standard deviation) data
and corresponding MST (the horizontal goes from 0 to 4 and
the vertical scale from −2 to 2).

• The evolution of the dispersion for vertical and horizontal
direction through the algorithm (30 iterations); the two
dispersions are expected to be 1.

• Finally, the last picture for each example represents the
graph-based normalized set (and its MST graph): horizontal
scale from 0 to 150 and vertical scale from −25 to 25—
except for ω 6= 90.

The parameters of the algorithm were p = 1 and a 4-nearest-
neighbors graph structure.

As the frequency increases we can observe that:

• the usual normalization quickly fails to recompute MST
(starting with ω = 20)

• the algorithm needs more iterations to converge to a solution
(i.e. a scaling that gives local dispersions equal to 1 in each
direction)

868 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 5. Results for sinusoidal data (ω ∈ {60, 70, 80, 90}).
Fig. 6. 3-D sinusoidal data ω ∈ {20, 30, 40, 50, 60}.
• the graph-based normalization allows MST recognition
when the usual normalization fails but a “saturation effect”
occurs when frequencies are too high (here for ω = 90).

We also present some results for dimension 3. In Fig. 6 the
sample corresponds to: X1 uniform on [0, 1], X2 uniform on
[0, 1] and X3

= sin(ωX1). Each time we draw 200 points
and test a 4-nearest-neighbor normalization (so it is possible
to measure the effect of a new “noise” dimension by comparing
the previous examples: the saturation effect happens from ω =

60, i.e. sooner than for the previous 2-dimensional example).
Results are presented for ω ∈ {20, 30, 40, 50, 60}.

In Fig. 7 we tested the normalization on spirals.

C. Aaron / Neural Networks 19 (2006) 864–876 869
Fig. 7. Spiral.
The parameters of the algorithm are the same as in the first
test (p = 1 and a 4-nearest-neighbor graph).

2.4.2. Results for geodesic distance computation
In Fig. 8 we present the results of our normalization

algorithm for geodesic distance computation on sinusoidal
samples. Each set of points has been drawn as follows: X1

corresponds to a uniform drawing of 100 points on [0, 1] and
X2

= sin(ωX1); ω ∈ {10, 15, 20, 25, 30}.
As the “true” organization is known here we can observe the

evolution of the quality of the geodesic distance computation
through the normalization algorithm. For that, at each step
of the graph-based normalization algorithm we estimate the
geodesic distance via the Dijkstra algorithm (run on a graph
based on the MST: the MST is computed, then we connect
a point X i to a point X j if d(X i , X j) is inferior to twice
the maximum edge length of the MST that has X i or X j as
extremity).

For each example we present all the scatter plots of the “true”
geodesic distance (on the horizontal axis) versus the computed
one (on the vertical axis) until the convergence and, to conclude
in each example, we present the evolution of the axis weight
(thin lines) and the evolution of the correlation coefficient
between the “true” and “computed” geodesic distance (plain
and dashed line).

As the frequency increases we need more and more steps
of the algorithm to converge, and finally the saturation effect
happens for ω = 30.

2.4.3. Results for Kohonen maps
We observed that Kohonen maps (Kohonen (1995))

are very sensitive to normalization, even more than the
graph-recognition and the geodesic-distance computation. To
understand this sensitivity a little let us quickly sum up the
Kohonen algorithm:

At each iteration we:

• Draw a point in the observation set
• Search the nearest weight vector of the drawn point
• Move the nearest weight vector and its neighbors toward the

drawn point.

The algorithm usually ends with the only nearest weight
vector of the drawn point moving (this is the 0-neighbors step).
A weight vector moves if the drawn point is inside the Voronoı̈
cell of the weight vector (Voronoı̈ cells computed with the
weight-vector set). And these Voronoı̈ cells are very sensitive
to normalization, as illustrated in Fig. 9.

If the scaling is not “good”, the Voronoı̈ cells of the weight
vectors will not give a good representation of the topology of
the set which will imply instability and wrong movements of
the weight vectors. We computed a Kohonen String on the two
previous examples (i.e. the same data as in Fig. 9). We choose to
parameterize the Kohonen string with 50 units and we observe
that the results strongly depend on the scaling (Fig. 10):

These examples show how the SOM algorithm is sensitive
to scaling. The example has been “hand made” and we are now
going to see whether the graph-based normalization algorithm
gives results that are compatible with the Kohonen Algorithm.

Now, to present results we analyze the same example as in
Figs. 4 and 5 but, instead of drawing the MST on initial and
final data, we present the result of a Kohonen string with a
number of units that depends on the ω frequency (the number of
units is equal to 3ω/2). We can observe (Fig. 11) that Kohonen
maps are rather more sensitive to normalization than graph
computation but our algorithm manages to re-scale data so that
we observe a good topological organization (of course there is
also a saturation effect).

870 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 8. Normalization and geodesic distance computation for a 2D sinusoidal drawing of 100 points and a frequency ω ∈ {10, 15, 20, 25, 30}.
2.4.4. Choice of the graph
In this section we tested the effect of the number of nearest

neighbors for the graph on sinusoidal samples of 100 points and
for some examples of frequencies. To sum up the results:

• ω = 20: from 1 to 10 (and maybe more) nearest-neighbor
graphs and MST manage to normalize the data

• ω = 30: from 1 to 7 nearest-neighbor graphs and MST
manage to normalize the data

• ω = 40: from 1 to 5 nearest-neighbor graphs and MST
manage to normalize the data (see Fig. 12)

• ω = 50: from 1 and 2 nearest-neighbor graphs and MST
manage to normalize the data

• ω = 60: from 1 and 2 nearest-neighbor graphs and MST
manage to normalize the data

• ω = 70: all normalization fail because of the saturation.

We can observe the “instability” effect of a small number
of nearest neighbors in term of variations of axis weights: for
a small number of nearest neighbors the algorithm quickly
converges but there are high variations of axis weights, as the
number of neighbors increases, the convergence time is longer
but the variation is smaller. As the effect of the size of the
variation is not so important we may prefer, in the future, 1-
nearest neighbor or MST graphs. As the time for the algorithm
is really quicker for 1-nearest-neighbor we may prefer this kind
of normalization, but we have to keep in mind the possible
instability and have a careful look at the evolution of axis
weights to validate the results.

3. Graph-based whitening

3.1. Motivation

When the different variables are not, as in the previous
examples, made of a subset of independent and a subset of
these variable functions (X = (X1, . . . , X p) with X1, . . . , X k

independent variables and X p+i
= fi (X j)) but is a

C. Aaron / Neural Networks 19 (2006) 864–876 871
Fig. 9. Voronoı̈ cells of random points (simulation of weight vectors) on a sinusoid, and an example of “wrong” movement in the first case. Data points are
represented by crosses and weight vector by points.
transformation of such a set (for instance a rotation), the
previous algorithm may fail.

The problem is now how to adapt the graph-based
normalization to such data?

3.2. Whitening

In this section, for convenience’s sake, we will suppose that
the data observation X is centered. For “linear” data analysis,
the solution to the previous problem is given by the whitening
or PCA method (Joliffe (2002)): a set of observations X gets
a covariance matrix Ω (symmetrical, definite and positive) and
there exists a linear transformation (represented by a matrix A)
such that cov(X.A) = Id.

Indeed cov(X) = X ′ X = P ′1P by diagonalization, with
1 a diagonal matrix. Let us denote D the diagonal matrix such
that Di,i = 1

−1/2
i,i .

Then A = P D is a solution.
We are going to adapt this here to our “local” problem for a

non-linear data set.

3.3. Graph-based whitening

For the whitening we can only work on a “binary” weighted
graph: G(i, j) = 1 if X i is linked to X j and G(i, j) = 0
otherwise. We also need to work on a “symmetrical” graph
Fig. 10. Results for a Kohonen String with two different scalings.

(G(i, j) = 1 −→ G(j, i) = 1). If the graph is not symmetrical
we can easily make it symmetrical by adding edges.

With such a graph, the previous “graph-based normaliza-
tion” consists in the (classical) normalization of the “new” data
E formed by all the edge vectors:

∀i0∃(i, j) such that Ei0 = X i − X j with G(i, j) = 1

872 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 11. Normalization and Kohonen maps.
and conversely:

∀(i, j) with G(i, j) = 1, ∃i0 such that: Ei0 = X i − X j .
As we choose a symmetrical graph, it is obvious that the mean

of E is null.

C. Aaron / Neural Networks 19 (2006) 864–876 873
Fig. 12. Example for ω = 40 and 1-nearest-neighbor to 6 nearest-neighbor normalization (with saturation for 6-nearest-neighbor) and MST-normalization.
Fig. 13. Graph-based normalization for a subset and the same subset that has been rotated; in the second case the normalization fails.
Fig. 14. Results for sinusoidal data (ω ∈ {20, 30, 40, 50, 60}); the first graph corresponds to the graph-based normalization (ω = 20) and the following are the
graph-based whitening for ω ∈ {20, 30, 40, 50, 60}.

874 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 15. Results for sinusoidal data and 2-nearest neighbors whitening (ω ∈ {20, 30, 40, 50, 60, 80}).
Thus standard normalization on E (measuring dispersion
with (E(|E |

p))1/p) is equivalent to graph-based normalization
(we choose the same parameter p) (Fig. 13) .
With this analogy we can build graph-based whitening by
computation of the “classical” (i.e. linear) whitening of the
edges data set E .

C. Aaron / Neural Networks 19 (2006) 864–876 875
Fig. 16. Results for 3D-sinusoidal data and 2-nearest neighbors whitening (ω ∈ {10, 20, 30, 40}).
The algorithm is the following:

• For it = 1 to ItMax

• Compute the edge data E of the data set X (according to the
chosen graph structure)

• Find the “whitening” matrix A such that cov(E A) = Id.

• Apply X := X A.

3.4. Preliminary results and algorithm amelioration

In this section we are going to present some results for
graph-based whitening on some data, similar to the data
presented in Figs. 4–7 but that we have rotated (each time
by a π/4 rotation). First we present an example of graph-
based normalization to show the failure of this algorithm when
the data have been rotated, then the result of the graph-based
whitening.

For graph-based normalization the convergence indicators
were all the axis weight. For graph-based whitening, at each
iteration we compute a whitening matrix A that is expected to
converge to the identity matrix. We therefore choose ‖A − Id‖

as a convergence indicator and we expect it to be null at the end
of the algorithm.

In Fig. 14 we can observe that the result of graph-based
whitening is quite good but data are still rotated. It is easy to
understand why: once a local variance is equal to an identity
matrix, all data rotations of the graph-based whitened data
are solutions (i.e. have a local variance equal to an identity
matrix). So to finally get homogeneous results we propose to
apply a Principal Component Analysis (PCA) to the graph-
based whitened data.
3.5. Final results

Finally we present the result for the 2-nearest-neighbor
whitening method for the same data that we used in
Section 2.4.1 (Figs. 4–7). Contrary to what we did in the
Section 2.4.1 we have not presented results for 4-nearest
neighbors because the whitening is much more sensitive than
the normalization to the number of neighbors and the saturation
effect comes sooner for whitening (Figs. 15–17).

4. Conclusion and further work

Even if theoretical aspects of the algorithm are not yet clear,
is the convergence assured, is the solution unique and why
does the solution allow us to recognize the “good” topology?
The empirical results are quite encouraging. We may thing
that if, instead of working on a k-nearest-neighbor graph, we
work on a complete graph with a “good” weight function f ,
theoretical aspects will be easier to understand, but this has not
yet been done. As said before a more detailed discussion of the
choice of the graph and of the weighted function also has to be
considered.

There are many possible further developments.
For example we yet uses the ability of the normalization

to get valid results in computation of the geodesic distance
and the Kohonen maps to build an indicator of the “good
parametrization” of Kohonen maps. We understand by “good
parametrization” knowledge of the dimension and a “good”
number of weight vectors in each direction. This leads us to
a more detailed idea of the intrinsic dimension of a datum.

876 C. Aaron / Neural Networks 19 (2006) 864–876
Fig. 17. Results for spiral data and 2-nearest neighbors whitening.
References

Dijkstra, E. W. (1951). A note on two problems in connection with graphs.
Numerische Mathematik, 1, 269–271.

Ding, Y., & Wilkins, D. (2004). The effect of normalization on microarray data
analysis. DNA and Cell Biology, 23(10), 635–642.

Joliffe, I. T. (2002). Springer series in statistics. Principal component analysis.
Berlin: Springer.

Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.
Lee, J. A., Lendasse, A., & Verleysen, M. (2000). A global geometric
framework for non-linear dimensionality reduction. In Proceedings of the
8th European symposium on artificial neural networks: Vol. 1 (pp. 13–20).

Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection
with curvilinear distances: Isomap versus curvilinear distance analysis.
Neurocomputing, 57, 49–76.

Tenenbaum, J. B., & de Silva, V. (2000). A global geometric framework for
non-linear dimensionality reduction. Science, 290, 2319–2323.

	Graph-based normalization and whitening for non-linear data analysis
	Introduction
	Graph-based normalization
	Dispersion measures
	Graph-based normalization algorithm
	Choice of a graph
	Graph structure
	Number of neighbors for k -nearest-neighbor graphs
	MST versus k -nearest neighbors
	Choice of the weight function f

	Some results
	Results for graph organization
	Results for geodesic distance computation
	Results for Kohonen maps
	Choice of the graph

	Graph-based whitening
	Motivation
	Whitening
	Graph-based whitening
	Preliminary results and algorithm amelioration
	Final results

	Conclusion and further work
	References

