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10.

Notations

. Throughout, D > 1 is referred to as the ambient dimension and R” is endowed with

the Euclidean inner product (-,-) and the associated norm ||-||. The closed Euclidean
ball of center x and radius r is denoted by B(z,r), and its open counterpart by

o

B(z,r). The sphere of center x and radius r is denoted by S(z,r). Given two

(u,0)

vectors u and v there angle Zu,v = sin™! (W

Br(O,r) =B(O,r)NT.

). If T is a linear subspace then

. Classically for a set S we denote by S¢, S, S and 85 its complement, closure, interior

and boundary.
H(S) denotes the convex hull of S.

S@eB={z,d(z,5) <e}, S6eB ={z,B(x,e) C S}.

. dH(Sl,SQ) = min{t, S1 C Sy dtB and Sy C S1 D tB}.

S1AS = (S1\ S2) U (S2\ S1) and for any measure p, d,,(S1, S2) = [S1ASs] is called
measure of the symmetric difference.

When S is compact d(z,S) = min{||z — s||,s € S} and, when define mg(z) =
arg min{||z — s||, s € S}.

Let Ng(e) be the covering number of S by ball of radius £, when exists the Minkowski

dimension is defined by Dimyink = — lime0 ﬁ E()E).

Let E = {e1,...e,} C RP isa finite set #E denotes its cardinality, for € E Vorg(z)
is the Voronoi cell of z in E i.e. Vorg(z) = {y € R, ||y — z|| < min; ||y — &]|}. In
the classical case where we consider the Voronoi cells of points within our set the
index will be omitted i.e. Vorg(e;) = Vor(e;).

Let M be a d-dimensional sub-manifold of R”, |M|; denotes its d-dimensional Haus-
dorff measure on RP. Here again, when no ambiguity the index will be omitted.
wqg = |Bq(0,1)|q where B4(0,1) is the d-dimensional unit ball. When define, T, M
denotes the tangent (to M) linear space at x.






CHAPTER 1

Introduction

Geometric and topological inference consists in estimating sets S (or quantities related to
S such as 95, |S|, |90S|, Betti number or homology groups...), and testing geometrical or
topological properties based on random samples. In this document we will only focus on
inferring knowledge on S from sample points X,, € RP drawn according to a distribution
supported by S (the unknown set of interest) or “near” S.

There is many way of estimating S.  Historically ([Rényi & Slanke 1963] and
|[Rényi & Slanke 1964]|) the first works on support estimation concern the estimation of
a convex S with H(X,,) the convex hull of the sample (see Figure 1.1). It is a fully data
driven method that has minimax convergence rate when the support is convex. This was
a motivation to build a convexity test in [J6].

Figure 1.1: The convex hull of a sample drawn on a B(0,1)

When S is no longer supposed to be convex, DW,(X,,) = |, B(Xj,r) (see Figure 1.2
top left graphic), the union of balls centered at the observations has been introduced in
[Devroye & Wise 1980] (or [Chevalier 1976]). It has been proved to be universally consis-
tent and has been has been extensively studied. See for instance [Biau et al. 2008] and
[Biau et al. 2009] for more precise results on convergence rates and central limit theorem
or [Baillo et al. 2000] for heuristics about tuning the r parameter.

If the Devroye-Wise support estimator DW,. (X,,) is universally consistent it has not as
good rates as the convex hull of the sample when the support is convex. This was at the
origin of various convex hull extensions from |[Edelsbrunner et al. 1983] where the r-shape
Sh,(X,) and the r-convex hull C,(X,) was introduced when D = 2. The r-convex hull



2 Chapter 1. Introduction

(see Figure 1.2 top right graphic) is defined as follows.

Cr(X,) = U Ban|. (1.1)

=, B(z,r)NX,, =0
The definition of the r-shape (see Figure 1.2 bottom left graphic) is a bit more com-
plicated, it requires that we preliminary define D(X,,) the set of Delaunay simplices
o = H(Xi,...Xip,,) such that B(O,,r5) N X, = 0 where S(Oy,r,) is the circum-
hypersphere of o.
Shy(Xp) = U = (1.2)
c€D(Xn),re<r
More recently, in [Getz & Wilmers 2004| the Local Convex hull estimator (see Figure 1.2
bottom right graphic)
LeH,(Xn) = | JH (B(Xi,r) N X,), (1.3)
(2

was introduced for application in ecography and home range estimation.

These three estimators are generalizations of the convex hull since Shi(X,) =
Cioo(Xp) = LeHyoo(X,,) = H(X,,). When the support is “full dimensional”, “smooth
enough” and the distribution “uniform enough” (see Figure 1.2) this estimators have nice
asymptotic properties. See [Rodriguez Casal 2007| for results on C,(X,,), [J7] for results
on LcH,(X,,). Also see |Arias-Castro & Rodriguez-Casal 2017| for the use of Sh,(X,,) for
perimeter estimation when D = 2.

There exists other generalizations of the convex hull as the one introduced in
[Cholaquidis et al. 2014] or [Cholaquidis & Cuevas 2020] more adapted to non smooth sup-
port which is not the purpose of this document.

Chapter 2 is dedicated to the presentation of our main contributions under such a context
(full dimensionality, support smooth enough and density uniform enough) which are:

1. a convexity test based on a generalization of the maximal spacing (see [J6]);

2. asymptotic study of the LcH, (X,,) estimator (see [J7]) that is proved to have minimax
rates and topological guarantees;

3. additional results on the C,(X,,) estimator whose boundary is proved to be homeo-
morphic to the boundary of S (with probability one for n large enough) and Estima-
tion of [0S|p—1 (see [P2]).

In this chapter we also present perspectives on density estimation, and on the use of Sh.

When S is a smooth enough d-dimensional manifold with d < D, the Devroye wise esti-
mator widely “overestimates” S (see Figure 1.3 top left graphic) but allows the homology
recognition see |[Niyogi et al. 2008]. To overcome the overestimation one can imagine to
replace the full dimensional balls B(X;,r,) of the Devroye wise estimator by “patches”

By,
Xi+T;
[Aamari & Levrard 2019] it is proven to have minimax rates when S is a manifold without

X, ) where T; is an estimator of T' ;S (see Figure 1.3 top right graphic). In
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Figure 1.2: 4 support estimators computed on the same sample of size 500 drawn on
B(0,1)\ B(0,.5). Top and Left: DW. Top and right: C,. Bottom and Left: Sh,. Bottom
and right: LcH,.

boundary. The LcH,(X,,) (see Figure 1.3 bottom left graphic) seems to have a nice be-
havior. In [Divol 2020| an estimator close to LcH, is proven to have minimax rates when
S has no boundary. The r-hull and the r-shape have degenerated behavior. Indeed, when
r is small enough with regard to the smoothness of S we have that C,(X,) = X, and
Sh,.(X,) = 0. A generalization of Sh,(X,) (see Figure 1.3 bottom right graphic) has been
proven to have minimax rates and nice topological properties in [Aamari & Levrard 2018|.

Our main contributions under such hypotheses consist in extension to the case where the
boundary may not be empty that allows an unification of the two main settings in geometric
inference : the full dimensional case and the lower dimensional without boundary case. A
first part of Chapter 3 concerns the geometric setting of manifold with boundary, then in
a second part we present our main results that are:

1. a test of the lower dimensional setting (see [J5]);
2. a test for the boundary emptiness (see [J1]);

3. minimax estimation of the boundary and minimax estimation of the manifold when
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Figure 1.3: 4 support estimators computed on the same sample of size 100 drawn on (0, 1).
Top and Left: DW. Top and right the Patch estimator. Bottom and Left LcH,. Bottom
and right: the generalization of the r shape (that needs a sparsification of the sample).

non-empty boundary (see [P1]);
4. estimation of |S|q (see [J5]).

In a third part of this chapter we will focus on the “noisy lower dimensional” case where
the support of the distribution is included in a tubular neighborhood of the manifold and
we aim to get informations on the manifold (see Figure 1.4).

If the “amount of noise” (i.e. the radius of the tubular neighborhood) is vanishing
(that is depends on the sample size and converges toward 0) most of the aforementioned
methods in the “true lower dimensional” case are still consistent (with a possibly de-
teriorate rate). We are mostly interested in the case of a “fixed” amount of noise (see
[Genovese et al. 2012b] for the minimax rate and [Genovese et al. 2012a| for the case of
1-dimensional manifolds). In [J5] we propose two estimators for the amount of noise and
a “denoising method” (i.e. a method that have, as output, data in a vanishing tubular
neighborhood of the manifold) . In [J2| another “denoising method”, based on the medial
axis estimation (as in [Genovese et al. 2012al) is proposed.



Figure 1.4: In the noisy lower dimensional context, the data (here the black dots) are at a
small distance to an unknown manifold (red line) that we aim to estimate.

A final chapter (Chapter 4) concerns the possible applications to data analysis and
statistical learning which are various (see |[Tenenbaum et al. 2000, Srivastava et al. 2008,
Singh et al. 2007a, Singh et al. 2007b, Kohonen 2004, Chaudhuri & Dasgupta 2010]).
First we detail the link between geometric inference and dimension reduction, giving a
list of applications of the tools developed in Chapters 2 and 3. Then we present results
of [J4] where convergence rates for geodesic distance estimation (used as input of many
non linear dimension reduction method) are derived (and applied to estimation of Frechet
moments on a unknown manifold). We then provide a discussion on how aforementioned
tools can apply to Clustering and Classification. If clustering application is well known,
the classification is presented as a perspective. We also present some results of [J3], which
is less linked with geometric and topological problems.






CHAPTER 2
Full dimensional context (set
estimation and related topics)

2.1 Introduction and main hypotheses

Let X, = {X1,..., X} C R” be an iid sample of some random variable with (unknown)
distribution Px supported by S = {x € RP such that fx(z) > 0} which is the smallest, for
the inclusion, closed set such that Px(S) = 1. Assume that Px is absolutely continuous

with respect to the Lebesgue Measure and denote by fx its density. Under such an
assumption it comes that we have that S = S also classically known as regularity of the
support which is the full dimensional context.

In this chapter we are interested in estimating S, 05 and some of their functionals such
as |\S|p its volume and |S|p_1 its surface area. We also aim at estimating fx and the level
sets Ly = {x € RP such that fx(z) > A}.

With regard to set estimation, performance of an estimator S, is usually evaluated
through the Hausdorff distance or through the measure of the symmetric difference. This

two ways are not equivalent and have both advantages and drawbacks.

1. Suppose the distribution is the uniform one on a compact set .S and that S, =X,

we have dg (S, S,) — 0 while d,,(S, S,) = u(S)

2. Suppose that the distribution is the standard normal on R? and that S, =B (O,ry)
with r, — 400 we have dg (S, Sy,) = +oo while d,,(S, S,) = 0

Because dy and d,, are not fully satisfying we also propose to take into account the bound-
ary of the estimator (see [Cuevas & Rodriguez-Casal 2004] and [Rodriguez Casal 2007]).
Indeed having dg(S,S,) < e, and dg(0S,0S,) < &, we have that SAS, C 9S @
dp(0S,0S8,) which is a more precise information on the support estimator asymptotic
behavior. We also expect that the proposed estimator catch the topology of the unknown
support.

Considering the assumptions on S, the support is usually supposed compact. The case
where the support is compact, convex and estimated by the convex hull of the sample has
been extensively studied (see, for instance the list being far from exhaustive [Efron 1965],
[Schneider 1988], [Diimbgen & Walther 1996], [Barany 1992], [Brunel 2013], [Brunel 2020],
|Beermann & Reitzner 2015]). It thus seems interesting to have a statistical test allowing
to decide whether the support is convex of not that was the aim of [J6] which is summurized
in section 2.2.1.2.
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Figure 2.1: OF The boundary of a “fish-shape” set (blue line), OF @ B, and an estimator
satisfying dy (F, F) is “small” and OF C OF @ eB.

Under convexity assumption, we will mainly refer to [Diimbgen & Walther 1996] where
it is proved that, when the density is uniform (which easily extends to the case of bounded
bellow by a positive constant) we have dy(S,S,) = O((Inn/n)"/P) and, additionally
assuming that the boundary is C} we have that dg(S,S,) = O((Inn/n)?/(P+D). We aim
at obtaining support estimators having similar rates with less restrictive shape hypothesis
than convexity.

First notice that, in the full dimensional context convexity implies that there exists
§ > 0 such that |B(z,7)NS|p > dwpr? for small enough radius r. And we will soften the
convexity hypothesis by this less restrictive hypothesis, also known as standardness and
first introduced in [Cuevas 1990].

Definition 1 (standardness). A regular set S (g = S) is said to be §-standard (0 > 0) if
there exists rg > 0 such that, for allv <y and all x € S |B(z,7) N S|p > dwpr?

It is sometime useful to use a lightly stronger but morally similar condition. See Figure
2.2.

Definition 2 (Ball standardness). A regular set S (§ = S) is said inside (resp. outside)
(€0,0)-ball standard if for all x € S (resp. S¢) and all € < g there exists yin (T€Sp. Yout)
such that © € B(yin, ) and B(yin, ) C S (resp. © € B(Yout,€) and B(Your, 6) C S°).

Inside and outside (o, d)-ball standardness is sumurized in (g, 9)-ball standardness.

To generalize the results on the C{ convex hull we will see that the regularity of the
boundary is the only important condition there. Due to [Walther 1999| this condition can
also been expressed as a ‘“rolling ball” condition (see Figure 2.2) which allows to obtain
results applying classical Euclidean geometry and not having any differential or Riemannian
calculus.

Definition 3 (Inside and outside rolling ball condition). A regular set S (g =5) is said
to satisfy the ro inside and outside rolling ball conditions if, for all x € 05 there exists Oy,
and Oy such that
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Convex Not Convex

standard and ball standard

inside and outside rolling ball

Figure 2.2: Ball standarness generalizes the convex polytope, while the rolling ball condi-
tion generalizes the smooth convex case.

1. Hx—OmH =7y and B(Om,ro) C§
2. ||z — Opwt|| = 10 and B(Ogut,m0) C S¢

Together with the shape hypothesis we will require some distribution hypothesis. Morally
we need that the density decreases quickly enough when going closer to the boundary. The
strongest and most currently used hypothesis being that f is bounded bellow by a positive
constant on S also denoted as f is “almost uniform” that is a particular case of a-quickly
decreasing densities defined as follows.

Definition 4 (a-quickly decreasing). The density fx is said to be a-quickly decreasing if,
there exists fo > 0 such that, for all x € S, f(x) > fod(z,05)%.
If fx is O-quickly decreasing, fx is said to be almost uniform.

Originally the standardness, firstly introduced in [Cuevas 1990|, was mixing geometric
and distribution hypothesis

Definition 5 (Standard distribution). A distribution P supported by S is 0-standard with
regard to a measure p if there exists rg > 0 such that for all v < rg, and all x € S
P(B(z, 7)) = du(B(x, 7))

Notice that we clearly have that either standardness or ball standardness for the support
together with almost uniformity for the distribution imply standardness of the distribution.

Section 2.2.2 is dedicated to present some support estimators and there properties and
convergence rates under some of the aforementioned hypotheses.
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Under our most common hypothesis of compact support and almost uni-
form density, kernel density estimation is biased for point at the bound-
ary. This may perturb the Level set estimation. Existing bias cor-
rection  methods  (see  |[Funke & Kawka 2015a], [Charpentier & Gallic 2015],
|[Funke & Kawka 2015b], [Jones et al. 1995], [Karunamuni & Zhang 2008|, [Leblanc 2010],
[Marron & Ruppert 1994] or [Ruppert & Cline 1994]), are based on the knowledge of the
support but what can we do in case of unknown support? Obviously plug-in of support
estimates seems a reasonable proposal for a theoretic point of view, unfortunately that
does not seem really computationally feasible. In section 2.3.1 we introduce a new density
estimator allowing to correct the bias, when unknown support and with easy computation.
This is a “work in progress” but the proof is really short and it opens a wide field of
development wich is presented presented as a perspective.

Section 2.3 at the end of this chapter is dedicated to estimation of the volume and surface
area. If there exists yet (see [Arias-Castro et al. 2019]) minimax volume estimator under
uniformity assumption one can expect to generalize it to non uniform distribution (which
is far from obvious). The surface area estimation in any dimension is far from minimax
but, up to our knowledge, [P2] is the first work about it when observing only points in S,
it is summarize in section 2.3.2.

2.2 Support (and boundary) estimation

2.2.1 Convexity hypothesis
2.2.1.1 Inference under convexity hypothesis

As previously mentioned, the convex hull of a sample drawn on a convex set has been
extensively studied. We present here a small time-line of a selection of some results on the
convex hull of random points.

1965 [Efron 1965] gives integral expression for expected values of interest (such as the
number of vertex and the probability contents) for dimension D =2 or D = 3.

1988-1994 As mentioned in the introduction for uniform samples in [Schneider 1988| conver-
gence rates for the convex hull are given, the asymptotic behavior being improved in
[Barany 1992] then [Schutt 1993|.

1998 In [Briker & Hsing 1998] estimation of the perimeter and area of a convex sate is
studied.

2003 In [Reitzner 2003] Reitzner derive strong law of large number for the volume and of
the number of vertices of the convex hull of the sample

2015 In |Baldin & Reifs 2016] an unbiased estimator of the volume of the convex hull (with
a correction with the number of vertices) is proposed in the Poisson point process
setting.
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2017 In [Brunel 2020] probabilistic bounds for the probabilistic contents of convex hull of
sets is given in a very general setting (improving [Brunel 2013 results derived under
uniformity hypothesis).

Also mention that when the support is supposed to be a convex polytope it can be
estimate with a parametric rate as proved in [Brunel 2016a].

2.2.1.2 Convexity test

With regard to all the existing results about the convex hull as a support estimator when
the support is convex it appears convenient to have a statistical test allowing to decide
whether the support is convex or not. A first test was proposed in [Delicado et al. 2014]
considering the following test statistics

T = max

] ' X
,J

XZ+X]
2

that provides a consistent decision rules with a Monte-Carlo calibration of the threshold
of the decision rule.

With Alejandro Cholaquidis and Ricardo Fraiman we proposed another way of testing
the convexity of the support based on the maximal spacing.

The maximal spacing and Janson’s results For ease of reading we are going to
present here a lightly modified version of the maximal spacing introduced by Janson
[Janson 1987] that take into account our extension but that is limited to the size of balls
(instead of a general convex) that do not contain any observations.

Definition 6. Let X, = {X1,..., X,,} be an 4id random sample of points in R, drawn
according to a density fx with bounded support S. We define

A(X,) = sup {r . dz such that B (3:, W) c S\ Xn}7

V(X,) = AP(X,),
and

U(X,) = nV(X,) —log(n) — (D — 1) log (log(n)) — log(ap).

where

ap

1<ﬁr<€+1))“_

S o (e

In this section, U is a random variable such that P(U < t) = exp ( — exp(—t))
The following result can be found in [Janson 1987].

Theorem 1 (Jansen 87). Let S C RP be a bounded set with |0S|p = 0 Let X, =
{X1,..., X} be iid random vectors uniformly distributed on S. Then,



Chapter 2. Full dimensional context (set estimation and related topics)

U(X,) LU whenn — 00,

nV(X,,) —log(n)

lim i =D—1 a.s.
niee  log(log(n)) -5
iii)
V(X,) —1
lim sup nV(Xn) — log(n) =D+1 as.

n—+oo  log(log(n))

From constant to Holder continuous densities Our extension (see [J6]) consists in
having a similar result for Holder continuous densities (instead of constant ones).

Theorem 2 (A., Cholaquidis and Fraiman 17). Let S C RP be a bounded set that
has a boundary which is regular enough. Assume that Dimprini(0S) < D. Let X,, =
{X1,..., X} be iid random vectors distributed on S with an almost uniform density fx
whose restriction on S is Holder continuous. Then,

i)
U(Xp) LU whenn — 00,

i)
nV(X,,) — log(n)

lim inf =D-1 as.
e +oo log(log(n)) -5
iii)
Xn) —1
lim sup nV(Xn) — log(n) =D+1 as

n—+oo  log(log(n))

The proof of this theorem is only technical with approximation of a Holder continuous
density with piece-wise constant densities, application of Jansen’s theorem on any constant
piece and argument that allows to neglect boundary effects.

This theorem has the following Corollary that is more realistically useful because it allows
to use density estimators instead of the real density (commonly unknown).

Corollary 1 (A., Cholaquidis and Fraiman 17). Let S C R” be a bounded set that has
a boundary which is regular enough also assume that Dimpgink(0S) < D. Let X, =
{X1,..., X} be iid random vectors distributed on S with an almost uniform density fx
whose restriction on S is Holder continuous. Suppose that we have fn an estimation of f
that satisfies (f(x)/fn(z)) > 1— ¢, for all z € S define with (Inn)e, — 0

”
A(X,,) = sup {r : Jdx such that B (xa W)

V(Xn) = AP(Xy),

C S\Xn},

and
U(X,) =nAP(X,) —log(n) — (D — 1) log (log(n)) — log(ap).
Then P(U(X,) > 1) < 1 — exp(— exp(—t)) + o(1)



2.2. Support (and boundary) estimation 13

The proof first consists in noticing that we have that, since,

r _ r f(zx) P S r(l— an)l/D
(fa(x)wp)V/P (f(@)wp) VP \ f,(x) ~ (f(x)wp)V/P
then: )
r(1 —eg,)V/P . r
( (f(z)w )1/D> <P ( 7 (fn(x)wD)l/D> '
Thus, ifB(  Toteon) 1/0) C S\ X, then B ( ,%) S\ X,,, leading to :
A, (X A
o 2 A

Thus U(X,) < U(X,) + r=2-nV(X,). To conclude the proof, by application of points
i4) and iii) in Theorem 2 £2-nV(X,) 2500.

Possible improvement: Under the hypothesis on fx the common density estima-
tors may underestimate the density near the boundary, that is taken into account in this

corollary and is not a problem for the forthcoming convexity test. If we apply density
estimators that uniformly converges on the all support we may obtain a better result with

U(X,) =55 U.

The associated convexity test The maximal spacing based convexity test lies on a
tricky density estimator. Namely, let fn be a classical kernel density estimator with a kernel
and a windows size satisfying the hypothesis of [Giné & Guillou 2002| so that we can apply
there uniform convergence result and then previous corollary. In particular we require that
the kernel belongs to the set K defined as follows according to |Giné & Guillou 2002].

Definition 7. Let K be the set of kernel functions K (u) = ¢(p(u)), where p is a polynomial
and ¢ is a bounded real function of bounded variation, such that cx = [ ||ul| K (u)du < oo,
K >0 and there exists ri and ¢ > 0 such that K(z) > ¢ for all x € B(0,7k).

Note that, for example, the Gaussian and the uniform kernel are in K.
Based on fn = nh% Yo K (%) with K € K, we propose to estimate the density

with fn defined as follows:

fule) = | max Fo (XD, (2) 21)

We proposed to use the test statistics U(X,,) defined as follows.

A(Xn) = sup {r : Jx such that B (m, W) C H(Xyp) \Xn},
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and

~

U(Xn) =nV(X,) — log(n) — (D — 1) log (log(n)) — log(ap).
Such a method will allow to test the convexity with an upper bound on the level and a

power 1 for n large enough. More precisely

Theorem 3 (A., Cholaquidis and Fraiman 17). Let f, be as defined in (2.1) based on
fn a kernel density estimator with a kernel K € K. Assume that hy, = O(n=B) for some
0 < B < 1/D. Assume also that the unknown density is almost uniform and is Lipschitz
continuous on S.

For the following decision problem,

{HO . S is conver (2.2)

Hy: S is not convex ,

a) the test based on the statistic V., with critical region RC = {Vn > Cpy ), where

1
Cny = g( — log(—log(1 — 7)) +log(n) + (D — 1) log(log(n)) + log(aD)>,
has an asymptotic level less than ~y.

b) Moreover, if S not convex but is ball standard, the power is 1 for sufficiently large n.

Roughly speaking.
1. If S is convex then

(a) Because of H(X,,) C S, the continuity of f, the compactness of S and the almost
uniform hypothesis of f we have Innmax,eyx,,) [fn(z) — fu(2)] = 0.

(b) Due to application of [Giné & Guillou 2002] we have that maxg|fn(z) —
E(fn(2))| < &, with (Inn)e), — 0 Thus we have, for all + € H(X,) C S,
@ —el, < f(z) < f(x) + €}, and using the almost uniform hypothesis we then

can obtain (f(z)/fn(x)) > 1 — &, with Inne, — 0.
(¢) Apply 1 to obtain the upper (asymptotic) bound on A (using f as an estimator)
and remark that A < A to bound the level.

2. If S is not convex

(a) Topological arguments (because S is closed) allows to have the existence of a

B($0,7’0) C H(S) \ S.

(b) Due to standardness of S and because we ask the kernel to be bounded above
there exist a Ag such that, for all i we have f(X;) > Ao

(c) Thus we have V(X,) > wpAord + o(1) that is sufficient to get a power one for
n large enough.
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2.2.2 Non convex support estimation

Now we have a statistical rule allowing to decide whether S is convex or not. One can aim
in finding convenient estimators S (and its boundary) when non convexity is inferred.

2.2.2.1 Support estimation

Minimax rates. Concerning the minimax rates we can naturally expect that the min-
imax rates are the same convergence rates than the one obtained when estimating a
convex support with the convex hull of the observation. This has been proved in
[Hérdle et al. 1995] when D = 2

Theorem 4 (Hardle, Park and Tsybakov. 1995). When D = 2, if the boundary of the
support is C" and the density is a-quickly decreasing then the minimax convergence rate for
support estimation is n 1F++Dr

In higher dimension the minimax rate in support estimation can easily be conjectured
to be at least the rate obtained for the convex hull of the sample when the support is
D+1) when the density is almost uniform and 95 is C] (see
[Diimbgen & Walther 1996]). Surprisingly, up to our knowledge there is no explicit proof
that it is indeed the minimax rate before |[P1] (see Theorems 3.11, 3.12, 3.14 and 3.15 for
d= D).

convex. This rate is n—2/(

Theorem 5 (Aamari, A. and Levrard 2021). If S is C? and the density is almost uniform

then, up to a logarithm factor, the minimax rate for manifold and boundary estimation is
2

(Inn/n)D+

Let us now give a (non exhaustive) list of support estimator and (some of) there prop-
erties.

Devroye-Wise Estimator The first support estimator see [Devroye & Wise 1980] (or
[Chevalier 1976]) which may be the most intuitive one consists in a union of balls centered
at the observations

DW,(X,) = B(Xi,r)

It has first been proved that it provides a universally consistent estimator with regard
to the measure of the symmetric difference (note that in the following theorem the com-
pactness of the support is not required).

Theorem 6 (Devroye and Wise (1980)). when 7, — 0 and nr? — +oco then
dp, (DW,, AS) “% 0

Considering the Hausdorff distance and the boundary estimation (see
[Cuevas & Rodriguez-Casal 2004]), the Devroye-Wise estimator provides an univer-
sally consistent estimator.
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Theorem 7 (Cuevas and Rodriguez-Casal (2004)). If S is compact then dg(X,,S) £ 0
and for any sequence ry, such that r, — 0 and r, > dg(X,,S) (e.a.s) we have

dg(DW,, ,S) %% 0 and dg(0DW,, ,0S) £ 0.

Moreover if the distribution is standard and if there exit positive constants C' and g such
that for all ¢ < g9 we have dy(0S,0(S ® eB)) < Ce, choosing then r, = a(Inn/n)'/?® for
a > ag (an explicit constant depending on the regularity of the model) we have

Inn Inn

1/D 1/D
dg(DW,,,S)=0 <n> e.a.s. and dg(0DW,, ,05) = O <n> e.a.s.

Roughly speaking the Devroye-Wise estimator generalizes the “convex hull with corner”
results under a similar hypothesis.

Many other results have been obtained on the Devroye Wise support estimator, see for
instance [Biau et al. 2008| and |Biau et al. 2009] for more precise results on convergence
rates and central limit theorem or [Baillo et al. 2000] for heuristics about tuning the r,
parameter.

Note that, if it is very easy (computationally) to decide whether a point belong
to DW,(X,,) the computation of 0DW,(X,) is hard and the convergence rates are
far from optimal when additional regularity hypothesis are assumed. Concerning
the topological preservation, we are deeply convinced that it is realized e.a.s. for well
chosen sequence of radius (as in previous Theorem), but this result has not yet been proved.

To obtain better convergence rates we have to get inspired on the convex case and
generalize it. A first generalization of the convex hull is the r-convex hull.

Definition 8. Let E be a set, its r-convex hull is

Cr(E) = U B

z,B(z,r)NE=0
E is said to be r-convex if Cr(E) = E.

When the support S satisfies the rg-inside and outside rolling ball condition then S is
r-convex for any r < ry. We then can estimate it with the r-convex hull of the observations
see [Rodriguez Casal 2007].

Theorem 8 (Rodriguez Casal 2007). If the support S satisfies the ro-inside and out-
side rolling ball condition and the density is almost uniform we have that, for all v < rq

du(C,,8)=0 (IH—")Q/(DH) e.a.s. and dg(9C,,dS) = O (MT")Q/(DH) €.a.8

n

About the parameter selection 7, a fully data driven procedure based on
the maximal spacing, under uniformity assumption, has been proposed in
[Rodriguez-Casal, A. & Saavedra-Nieves, P. 2016]. The method had been general-
ized to Holder continuous density using our maximal spacing generalization presented in
previous section in [Rodriguez-Casal & Saavedra-Nieves. 2019al.

Concerning the topological preservation we obtained a new result has been set the bound-
ary of 0C,(X,,).
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Theorem 9 (A., Cholaquidis and Fraiman 21). If the support S satisfies the ro-inside and
outside rolling ball condition, C* boundary and the density is almost uniform we have that,
for all v < ro we have that 0C,(X,,) =~ 95 e.a.s.

Sketch of proof. First according to 0C,(X) is a finite union of portion of spheres of radius
r and 7, then the unit normal (to 9C, (X)) outward (to C,.(X)) vector at x is, almost
everywhere, well define for z € 9C,(X) and B(x + r1,,r) C Cp(X)¢ we then have:

Lz Mrys (@) = O(Vdu(Cr(X), 5)).

Indeed, introduce Oout = @ + 77z, Oin = T95(T) = T0N x5 ()s Y1 € OB(Oin, 70) N [Oin; Oout]s
y2 € OB(Oout, 1) N [Oin, Oout] (see Figure 2.3), we have y; € C¢ and d(y1,9S5) > ||y1 — y2l|
thus d(S,Cr) > |ly1 — y2||. Small basic euclidean geometry calculus (taking into account
that ||z — mas(2)|| < du(Cy, S)) give the announced inequality in angle.

Figure 2.3: Oout, Ooin, Y1 and yo

Injectivity of mys : OC-(X) — 0S comes from the angle inequality. Continuity of myg
being a consequence of the positive reach of 95 and surjectivity coming from positive reach
and results in [Rodriguez Casal 2007]. We obtain that mgg is one to one. Continuity of
7r3_S1 comes from positive reach allowing to obtain the attempted homeomorphism. O

A similar result setting that C,(X,) ~ S e.a.s. should be easy to deduce following the
same idea of proof than in [J7] but it is not written yet.

Note that other generalizations of the convex hull exists as [Cholaquidis et al. 2014] and
[Cholaquidis & Cuevas 2020].
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2.2.2.2 Local Convex Hull

In [J7] we studied another kind of convex hull generalization. The proposed support
estimator initially introduced in [Getz & Wilmers 2004| in the applied context of the home
range estimation is:

LCH,(X,) = | JH(B(Xi,r) NX,).

We obtain the following result

Theorem 10 (A. and Bodart 16 (universality)). If S is compact and Dimpsnk(9S) < D
then di (X, S) %0 and for any sequence ry, satisfying rn, =3 0 and ry, > 4d (S, X,,) we
have that: |LCH,, AS|p *% 0, dg(LCH,, (X,),S) %% 0 and dg(0LCH,, (X,),dS) +%
0

When additionally assuming that the boundary is smooth enough (given by the rolling
ball condition) and that the density is a-decreasing we obtain much better convergence
rates, namely:

Theorem 11 (A. and Bodart 16 (optimality and Topology preservation)). If S is compact
and satisfies the rg inside and outside rolling ball condition and if fx is a-decreasing. then

1
for sequences r, = A(Inn/n)DF1+2a we have:

Inn

2
|LCH,, AS| =0 <> T e.a.s
n

2
du(LCH,,(Xy),S) =0 (lnnn> T s

2
1 D a
dp(OLCH,,(X,),05) = O <f;”> s
LCH,, (X,)~ S e.a.s and OLCH,, (X,) ~ 0S5 e.a.sS

Remark: It thus has a minimax (up to a In) rate when D = 2 or when o = 0.

2.2.2.3 Perspectives

Computational limit We initially decided to study the Local Convex Hull support
estimator for two main reasons:

1. We wanted to have theoretical results on a very commonly used (in ecology) tool
(|Getz & Wilmers 2004| has more than 450 citations).

2. It has minimax rates and does not degenerate in smaller dimension. If we are not
in the full dimensional case we may have C,(X,) = X,, (this result will be exploited
later) while we really believe that LC' H, (X,,) is still minimax in the lower dimen-
sional case (see [Divol 2020]|, that proved such a result for different but very close
estimator, when the support is a sub-manifold of R? without boundary).
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Figure 2.4: LCH estimator uniform drawn on a (only) compact set (1), on a standard set
(2) and on sets with the ro-inside and outside ball property (3 —a), 3 —b) and 3 — ¢) with
different values of rg

3. We thought it was computationally easier than the local convex hull.

If the two first reasons are actually good ones and if, in dimension 2 it is very easy to
plot estimated support according to the local convex hull and possible to have an explicit
description of the boundary, it appears that the computation of the boundary of the local
convex hull in higher dimension is very costly.

In fact we believe now that, when aiming at considering the boundary, a really good
tool, on theoretical and practical aspects is the r-shape. To define the r-shape we must
first define the Delaunay simplices.

Definition 9 (Delaunay simplex). o = H(X;,,...,Xi, ) is a Delaunay simplex of X, if
B(Oy,rs) NX,, = 0 where 0, and 1, are respectively the center and radius of the circum-
scribed sphere of X;,,..., X,

iD41°
Xp
The r-Shape of X,,, denoted by Sh,(X,) is then:
She(Xn)= |J o

gEX T <r

We will denote by 3 the set of the Delaunay simplices of

It has some very good computational advantages :
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1. For a given sample, there is only a finite number of possible r-shape which is a great
advantage when aiming at tuning the parameter r

2. Due to the fact that we have a description which is a triangulation of S, it is easy
to compute its boundary (that are is the set of faces that are only present once).

3. Also, triangulation aspects allows to compute topological invariants.

It is easy to deduce from [Rodriguez Casal 2007] that we have the following property.

Proposition 1. When S satisfies the ro-rolling ball property, for r < ro we have the
existence of sequences , = O(Inn/n)? P+ such that

Cr(X,) C Sh (X)) C S®r,B e.a.s.

From that we can infer that r-shape has minimax rates under rolling ball condition and
almost uniform densities.

The tricky point consists in proving the topological preservation properties (that is easily
obtained when d = 2 but not in higher dimensions).

KNN approach and Robustness problems If we forgot about the computational
cost of the Local Convex hull one can point out another advantage of such a method is
that we can easily obtain a “local” estimator turning the fix radius parameter r into a
function of ¢ and considering

UH (X5, 1) NXy)

which can be useful when the densfcy has great variations. A classical way to choose r; is

(k)

to consider r;"’ the distance from X; to its k-the nearest neighbor (in X,,) and define

LCHENN — U?—L (Xi,r™) N X,)

Classically we can expect that since k,, — 400 with k,/n — 0, it will provide consistant
estimators and minimax rates for well chosen value of the k,, sequence (See Figure 2.5 first
line).

Unfortunately such an idea provides drastically not robust estimators (See Figure 2.5
second line). To be convinced, suppose that you have a unique outlier X,+; and a
sample points X,, drawn with a almost uniform distribution on a smooth enough sup-
port S. Suppose that X,,11 is far enough from the support (d(X,+1,S) > r,) consider
Y = X,, U{Xp41} we have LCH,, (Y) = LCH,,(X) U {X,+1} and then we have, at least
LCH,, (Y) = LCH,, (X,) but LCHENN(Y) far from LCHFNN(X,,).

A way to overcome this problem, keeping the K NN advantages should be to get inspired
by |[Brunel 2016b] and to consider the (x)-convex hull defined as follows and illustrated in
Figure 2.6.

Definition 10 ((k)-convex hull). let Y be a finite set of point H.(Y') is the intersection
of all the half spaces that contains #Y — k points of Y
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Figure 2.5: Upper line: 1000 points drawn on a “galaxy” shape spiral, lower line : the same
points and an outlier located at (—10, —10) then, from left to right: LC Hy g (fits quite well
the support for points close to the origin but is too small for “queue” points); LC Ho (fits
quite well for “queue” points but is too large near the origin) ; LC’H{gN N (provide good

results when the data is not corrupted not when the outlier is added).

and use
LCHENY = | JHo(B(X:rP) N X,)

Which might be quite robust but may have an heavy computational cost (at least for
d>2).

We also may be inspired by the really recent [Brunel et al. 2021| that also deals with
convex hull in a noisy environment.

Such ideas propose an alternative from [Brécheteau & Levrard 2020] way of dealing with
robustness in geometric inference.

2.3 Perspectives in density and level set estimation

2.3.1 Density estimation

The density Level Set (at the level t) usually defined as Ly = {z € RP, f(z) >t}
or its “quantile” version @, = L,y with t®) = sup{t > 0,P(L;) >
p} (see |[Cadre et al. 2013]) has been extensively studied due to its wide field
of practical applications. See for instance [Baillo et al. 2001], [Baillo 2003],
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0-hull
1-hull

Figure 2.6: Different k-convex hulls, picture taken from V.E. Brunel’s presentation CIRM
2021

[Biau et al. 2007], [Butucea et al. 2007], [Cadre 2005], [Chen et al. 2015], [Polonik 1995],
[Rigollet & Vert 2009], [Rodriguez-Casal & Saavedra-Nieves. 2019b| or [Tsybakov 1997].
There is two main way of estimating levels sets, one of theme being a plug-in of a density

estimator and propose to use L; = {z € RP, fn(z) > t}.

Such method will fail if the support is compact and the density almost uniform. Indeed
near to the boundary of S the usual density estimators such as kernel or K NN ones are
biased (when x € 85 and 85 is a C? manifold E(f,(x)) — fx(z)/2.

We aim at correcting this bias with an easy to implement algorithm when the support
is unknown.

As for support estimation we can get inspired of [Getz & Wilmers 2004] that proposed
the following algorithm to plot the core area (which, in a mathematical sense is the level
set of the density).

For some given k

1. Compute V; = ]’H(B(Xi,r(k)) NX,)|

2

2. Sort the i so that |H(B(X;, r(k)) NX,)| is decreasing.

7

(k)

3. Plot H(B(X;,r; ') NX,) with an increasing level of gray.

that can mathematically be formulated as:

L= |J HBX,")nx,)

; k
’LvViSH

and .
f(z) = max

i weH(B(X:r®)nx,) Vi

We definitively think that taking into account the volume of local convex hull is a very
k

———=—— gseems to be an intuitive way to
n|B(z,r{)ns|

good idea since estimating fx with fX(:U) =
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obtain an asymptotically unbiased density estimator. If the bias is expected to converge
(k)

towards 0 the density is “twice overestimated”. Indeed |H (B(z, 7 ') N X,| underestimates
| B(z, r;ck)) N S| and this overestimation is emphasized by the max.

We propose to get inspired by [Baldin & Reifs 2016] to decrease the bias.

We are here going to present some results very recently obtained (a work currently in
progress). Even if a bit premature the proof is (objectively) so brief and (subjectively) so
nice that I cannot help presenting it here.

We propose to estimate the density with:

meA(m) = (n _ Ng r")vx . HVJ,T'nZAwDTD]IN;?,TnSn/Q

Where N, . = #{X,, N B(z,r,)}, Hyr, = H(B(z,7),NXy), Var, = |[Hep,|, N, xrn =
#{X, NOH,,,} and N2, = N, — NO

x,rn"

Theorem 12 (A. and Fraiman (21)). If S is compact, satisfying the inside and outside
rolling ball condition, if f is almost uniform and f|gs is of class C* then, there ewists Amin
such that, if r, = en™ /Pt for all A < Apin:

max E(fy, (2) = £(2))? = O(n~*/(P+0)

Ifd <,
max E(fy, a(z) - f(2))* < O(n~*/P+Y)
zeSor, B

Sketch of proof. First condition on S and the almost uniformity of the density warranty
that, since nr? — +oo we have that P(Vy,, < AwprP) < cjexp(—c;(nrP)'/3) (easily
obtained using classical calculus in that topic).

Second, Ng v < Ny, and then, applying Hoeffding’s inequality and 7, — 0 it comes
that P(Ngrn) >n/2) < exp( n/8) for n large enough.

Introduce f‘m,n i) Hor, z)dz, we have the following decomposition of frm
Froa(a) — F(2) = 1 (82, ~ Far0 = N2,)) + 2222 — 4
" |Hayr, |(n— N2, ) \ om0 o | He |

Let e1 = W <N£rn - fa:,r ( Ng?rn)>

T,Tn

H,,, ~ Binom(n — N2, T, ) (see [Baldin & Reif 2016] for the possibility of

xrn’

T,rn?
conditioning by Hy ,.,.)
Thus E(e2|Cy,,) < N#a) and then
2maxg f
2 0 S
E(51|Cx,rn Z AWde, N Z,rn < n/2) W

f(2)dz— f(z)d
L (Z)u; Tan|“" D% for all 2 - g9 = O(r)

fB(z rn) (f(2)—f(=) dz*fB(z,rn)\Han (f(z)—f(x))dz
|H3377‘n|

Let now g9 =

If B(z,r,) C S then ey =
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A 2 order Taylor expansion (possible since f is C? on S gives fB(I rn) |f(z) = f(x)|dz =
O(r2) then a direct corollary of results in [Brunel 2020] is that

2
E / ‘f(z) - f(x)’dz _ O(T,g(nrfl))—4/d(d+l))
B(Ivrn)\Hz,rn ‘Hxﬂnn ’

Finally notice that r,,(nr?)=2/P(P+) < O(r2) when D < 7 O

We also have, with very similar proof use of Bennet inequality to bound the probability
that P(|e1| > x) and [Brunel 2020] for P(|es| > x)

Theorem 13 (A. and Fraiman (21)). If S is compact, satisfying the inside and outside
rolling ball condition, if f is almost uniform and f|gs is of class C* then, there ewists Amin
such that, if r, = en™ Y P for all A < Apin:

for all x € S we have that for n large enough

F <|fT”’A($) —f@)]>a 1nnn_1/(D+4)) < 3p 24
When d <7 for all x € S © rB we have that for n is large enough
P (If,a@) - F@)] 2 b~ P+ < 3724

From which we obtain, by sum and Borrel Cantelli lemma, the following Corollary.

Corollary 2 (A. and Fraiman (21)). If S is compact, satisfying the inside and outside
rolling ball condition, if f is almost uniform and fl|g is of class C? then, there ewists Amin
such that, if r, = en Y P for all A < Apin we have

max ‘frn,A(Xi) — f(X)| < erlnnn VP ¢ g,
And, when d <7

; X)) — (X)) < e lnnn~ 2P ¢ as.
z‘,ng%}éern,A( i) — f(Xi)] <erlnnn .05

This last corollary being the starting points of new results on level set estimation that
is convenient with almost uniform densities on compact support.

2.3.1.1 Intensity estimation

We can also aim to estimate level sets to draw “risk” maps when data are obtained in a
quite different way than the presented one. Most of the time the location are deterministic,
the territory being subdivided into K-deterministic subsets C} containing a population of
Nj individuals. In each cell C we then observe ny ~ P(prNg) “victims” and we aim to
draw a risk map that is mostly a level set on p.
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2.4 Estimation of the volume and surface

For some practical application it also sound convenient to estimate the volume and the
surface area of the support. For instance, in medicine the ratio surface area/volume of a
tumor is correlated with its dangerosity (see [Andea et al. 2004] for instance).

2.4.1 Perspective in Volume estimation

Concerning the volume, under inside and outside rolling ball hypothesis, |C;(X,,)|p un-

derestimates |S|p. Under uniformity hypothesis, this problem has been nicely overcame
_ _D+3
in [Arias-Castro et al. 2019] obtaining a minimax convergence rate of n= 20+2) with use a

) being used to compute C, (X,(}L)) an X%

nm 1s used
to obtain a Monte Carlo estimation of the missing volume.

decomposition of X, in two subsets, Xﬁ,{

Two main developments may be envisaged:

1. Can we skip the two subsets decomposition with the use of a correction based on the
number of observations on the boundary (as in [Baldin & Reift 2016]) ?

2. Can we extend the result to non uniform samples (in this special case the general-
ization to almost uniform densities is far from trivial)

2.4.2 Surface estimation

Let now be interested in the surface area (|0S|p—1) estimation. Minimax convergence rates
are conjectured to be the same than for volume estimation but they are far from being
achieved. Notice than, even if the much easier problem of surface area estimation under
uniform hypothesis and a “double” sample information (a sample uniformly drawn on S
and another one uniformly drawn “outside” S) convergence rates are far from optimality:

1. The proposals given in |Cuevas et al. 2007], [Pateiro-Lopez & Rodriguez-Casal 2008|
and [Cuevas et al. 2013] aim to estimate the Minkowski content of 9S. In
[Cuevas et al. 2013] a very general convergence result is obtained, while in

—1/2D is obtained under some mild

[Cuevas et al. 2007] a convergence rate of order n
hypotheses, and later on, in [Pateiro-Lopez & Rodriguez-Casal 2008] a convergence

rate of order n=Y(P+1 ig achieved, under stronger assumptions.

2. In [Jimienez & Yukich 2011] a very nice fully data driven method, based on the
Delaunay triangulation is proposed under an homogeneous point process sampling
scheme. The asymptotic rate of convergence of the variance is given, but there is no
global convergence rate because no result is obtained for the bias.

3. Lastly, in [Théle & Yukich 2016] a parameter-free procedure, based on the Voronoi

1/D s obtained,

triangulation is proposed, and a rate of convergence of order A~
under a Poisson Point Process (PPP) sampling scheme (where \ is the intensity of

the PPP).
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When we only have a sample from the inside (i.e. only observation drawn accord-
ing to a distribution supported by S) and when the support is not supposed to be
convex, up to our knowledge, only the D = 2 dimensional case has been studied in
[Arias-Castro & Rodriguez-Casal 2017].

In [P2|, with Alejandro Cholaquidis and Ricardo Fraiman we propose to study two
surface area estimators that make use of the Crofton formula.

To introduce the general Crofton’s formula in R” for a compact (D — 1)-dimensional
manifold M, let us define first the constant

B(D) =T(D/2)T((D +1)/2) 772,

where I' stands for the well known Gamma function.

Given a vector 6 € (ST)P~! and a point y, 79, denotes the line {y + M\, \ € R}.

Let 6 € (ST)P~1, § determine a (D — 1)-dimensional linear space 8+ = {v : (v,60) = 0}.
Given y € 0+, let us write nps(0,y) = #(ro,y N M), where # is the cardinality of the set.

It is proved in |Federer 1969] (see Theorem 3.2.26) that if M is an (D — 1)-dimensional
rectifiable set, then the integral-geometric measure of M (which will be denote by Ip_1(M),
and is defined by the right-hand side of 2.3) equals its (D — 1)-dimensional Hausdorff
measure, i.e.,

1
Mlpy=Ip (M) = —— 0, y)dup_1(y)do. 2.3
Mipy = o) = g [ [ 0 nde ) (23)

The measure df is the uniform measure on (S*)P~! (with total mass 1).

Along this section we assume that 95 is the boundary of a compact set S € RP such
that S = S. We also assume that S fulfills the outside and inside a-rolling condition,
and then 0S is rectifiable (see Theorem 1 in [Walther 1999|). From this it follows that
Ip_1(0S) = |0S|p-1 < o0, which implies (by (2.3)) that, except for a set of measure zero
with respect to dup—1(y)do, any line rg , meets 95 a finite number of times: nys(f,y) < oo.
From Theorem 1 in [Walther 1999], it also follows that 05 is a C! manifold, which allows
us to consider for all € 95, 7n,, the unit outward normal vector.

For the Devroye-Wise based surface area estimator we will assume that 0S5 satisfies a
technical hypothesis named (C, gp)-regularity.

Definition 11. Let us define Eg(0S) = {x € 9S,(n,,0) = 0} and Fy its orthogonal
projection onto 6. Let us define, for e > 0,

wole) = ‘Hl N B(Fg,a)‘D_l.

We will say that 0S is (C,eg)-reqular if for all 0 and all € € (0,e0), py(e) exists and
pyle) < C.

Once the rolling balls condition is imposed, we are deeply convinced that the (C,&g)-
regularity of the boundary is not a too restrictive hypothesis. Roughly speacking we have
that, if S is a C? manifold with a positive reach a, Fy is an union of (D — 2)-dimensional
manifold that and there norm of second fundamental form is uniformly upper bounded
by a. When the number of manifolds in the union is a finite number Ny and taking the
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minimum reach of all the manifolds 7y, due to polynomial volume approximation it comes
that we have the (C, gg)-regularity when supy Ny < +o0 and infyg 79 > 0 that is, we think,
not that restrictive. Moreover it is conjectured in [Alesker 2018| as even more general.
For the Devroye-Wise type estimator we will also show that the convergence rate can be
quadratically improved if we additionally assume that the number of intersections between
any line and 95 is bounded from above (that exclude the case of a linear part in 95).

Definition 12. Given S C RP, we say that 0S has a bounded number of linear intersec-
tions if there exists Ng such that , for all € (ST)P~1 and y € 0+, nps(6,y) < Ns.

2.4.2.1 Devroye—Wise based approach

The Devroye based surface area approach is not only a plug-in the Crofton formula to the
Devroye Wise estimator. The idea is to estimate the number of intersection of a line with
the boundary of the support with the following procedure based on two offsets of the data
recall that DW,.(X,,) = UB(X;, 7).

Definition 13. Let g, a sequence of positive real numbers, such thate, — 0 and X,, C S a
set not necessarily finite. Consider a line rg . If DW,, (X,)Nrg, =0, define fie,, (0,y) =0,
otherwise:

e denote by I,..., I, the connected components of DW, (X,)N T9,y. Order this se-
quence in such a way that I; = (a;,b;), with a1 < by < ag < by < -+ < @y < byy.

e Define new intervals A; = (a3, bij)+e(j)) that are the intervals such that
Aj C DWy., and when exists we also have (bi(j)_l,ai(j)) ¢ SWa, and

Gig)+20)> @ity +eG)+1) £ DWae, -

o Let m/ be the number of disjoint open intervals A; that this process ended with. Then
define ne, (0,y) = 2m/.

Our first proposed estimator is

- 1
Ip_1(0S) = ——— ne, (6, y)duqg—1(y)do.
D 1( ) /B(D) Ae(5+)D1 /yeeL n&n( 7y) /’I/d 1(y)

Under the assumption that 05 has a bounded number Ng of linear intersections (see
Definition 12) we will consider, for a given Ny > Ng,

1 / / A
— min(ne, (0,y), No)dpq—1(y)do.
B(D) Joc(s+)P-1 Jyeor (e (6:9), NoJdpua—1(y)

Theorem 14 (A. Cholaquidis and Fraiman 21). Let S C RP be a compact set fulfill-
ing the outside and inside a-rolling conditions. Assume also that S is (C,ep)-regular for
some positive constants C' and €9. Let X,, = {Xy,...,X,} € S. Let ¢, — 0 such that
dy(X,,,S) <en. Then

130, (08) =

Ip_1(88) = |0S|p_1 4+ O(/2). (2.4)
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Moreover, for n large enough,

O(yEn)| < 43%‘“”})

C' being the constant of the (C,ep)-reqularity of S.

VEn,

When it is additionlly supposed that the maximum number of interesection between a
line and 0SS is finite, the convergence rate is quadratically improved using Iggl(as ) instead

of fD—l-

Theorem 15 (A. Cholaquidis and Fraiman 21). Let S C RP be a compact set fulfilling
the outside and inside a-rolling conditions. Assume also that S is (C,ep)-regular for some
positive constants C' and €y and that S has a number of linear intersection bounded by
Ng. Let X, = {X1,..., X} C S. Let e, — 0 such that dg(X,,S) < &, and Ny > Ng.
Then

I3 ,(08) =10S|p-1 + Olen).

Moreover, for n large enough,

|0(en)| < CNoen,

5
B(D)
C' being the constant of the (C,ep)-regularity of S.

From this deterministic results we can obtain various convergence rate that only depends
on dy(X,,S). For instance, when X,, is an iid sample with the distribution is almost
12D or (Inn/n)"/P
the hypotheses (bounded number of linear intersection of not). Even if these rates are
associated to slow convergence method it has to be noticed that, some of the proposed
estimators in the “inside/oustide” sampling model are not better than that.

uniform then the rates are respectively of order (Inn/n) depending on

2.4.2.2 The r-convex hull based approach

Theorem 16 (A., Cholaquidis and Fraiman 21). Let S C R” be a compact set fulfilling the
inside and outside ro-rolling conditions. Let r < rg be a positive constant and let X, C S
be a finite set such that dg(0C(X,),0S) < &, with €, < min ( ) Then

ror 1
16(r+ro)’ (D—1)ro
1. myg : 0C,(X,,) — OS (where mps(x) denotes the projection onto OS) is one to one
2. 1|0S|p-1 — |0C+(Xp)|p-1] = (37"0 + 64%) €,

Sketch of proof. The proof is based on the above mentioned results setting that
INrps(z) Me < €n almost everywhere on 0C,(X,) where 7, is the outward (to S) unit
normal (to 0S) vector at € 9S and 7, is the outward (to C,(X,)) unit normal (to
0C,(X,,)) vector at x € OC.(X,). This, combined with dy(0C,(X,),08) < €2 (in
[Rodriguez Casal 2007|) allows with a little of differential geometry and a Taylor expansion
to have the announced result. O
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2.4.2.3 Perspectives and Conjecture with the r-Shape

There is two main axis to improve this work.

1. Computationally the Monte Carlo step is not fully satisfactory. It is shown in
[Arias-Castro & Rodriguez-Casal 2017] that the use of Sh,(X,) allows to estimate
the perimeter. This is due to the fact that, in dimension 2, dC, is an union of arcs
whose length is “close” to length of segments. The problem is that, in higher dimen-
sion it may not be the case. We yet have an explicit and computationally feasible
correction but we can prove it works only once we can prove that the surface of the r-
shape is homeomorphic to the surface of the r-convex hull that is an aforementioned
difficult perspective.

2. Can we find an estimator with minimax rates 7






CHAPTER 3
Lower dimensional context (Manifold
learning)

3.1 Introduction

The lower dimensional context is the case where the support of the distribution is either
a d-dimensional (d < D) sub-manifold of R (true lower dimensional case) or “close” to a
d-dimensional (d < D) sub-manifold of R” (noisy lower dimensional case)

The true lower dimensional case In [Edelsbrunner & Shah 1994] an algorithm for
general manifold reconstruction based on Delaunay triangulation is proposed and is proved
to have topological guarantees when a ‘“reasonable” condition is satisfied. It has been
proved that this condition is really reasonable when D < 3, but it is no more the case for
higher dimensions, a counter example being build in [Oudot 2008] when D = 4 and d = 2.
When assuming the manifold is without boundary a topologically preserving estimator
(D = 3, d = 2) is presented in [Amenta et al. 2002]). Minimax rates are derived in
[Aamari & Levrard 2019] where an estimator is proposed, another minimax estimator is
proposed in |Divol 2020| and, based on [Boissonnat & Ghosh 2014], an estimator that is
both minimax and topology preserving is proposed in [Aamari & Levrard 2018] (the price
to pay being the algorithmic complexity).

Our main contribution consists in studying methods that allows boundary existence. In
a first section of this chapter, we give a geometric setting that allows boundary. We then
present tests that allow to decide if we are in the lower dimensional case or not (section
3.2.1) and if the boundary is empty or not (section 3.2.2). We propose solutions for
manifold and its boundary estimation (section 3.2.3) and for volume, based on Minkowsky
contents, estimation (section 3.2.4) Finally, as a perspective, we also propose estimators
for volume and surface area estimation and for density estimation.

The noisy dimensional case is much more challenging. We will consider the case
where S C M @ ¢B where M is a d-dimensional manifold. When S € M & ¢, B with
en, — 0 quickly enough, results in [Aamari & Levrard 2018| an [Aamari & Levrard 2019]
are still valid. We strongly believe that it is also true for the one obtain in [P1] (but
calculus were difficult and long enough in the noiseless model). We nevertheless think that
such an hypothesis of vanishing noise is a bit too restrictive and that we should be able
to have data supported by S C M @ B where € might be small enough but constant.
In [Genovese et al. 2012b] it is proved that the minimax rate is n=2/(4*2) (when M is a
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d-dimensional manifold with positive reach and without boundary) but no computable
estimator with such a rate have been yet found.

In section 3.3 we propose an estimator for the “amount of noise” ¢ and two denoising
methods that allow to obtain, from data in S C M ® eB, data in S C M & e, B that can
then be taken as input of previously proposed methods.

3.2 Geometric Setting

3.2.1 Sub-manifolds with (possible) Boundary

By definition, the d-dimensional sub manifolds M C RP with boundary are the subsets of
RP that can locally be parametrized either by the Euclidean space R?, or the half-space
R4! x R, [Lee 2011, Chapter 2].

We will only be interest in C¥ manifold with C* (or empty) boundary that can be defined
as follows.

Definition 14 (Sub manifold with Boundary, Boundary, Interior). A closed subset M C
RP is a d-dimensional C*-sub-manifold with boundary of R, if for all p € M and all
small enough open neighborhood V,, of p in RP, there exists an open neighborhood Uy of 0
in RP and a C*-diffeomorphism U, : Uy =V, with ¥,(0) = p, such that either:

1. 0, (Ug N (R x {0}P~4)) = M NV,
Such a p € M s called an interior point of M, the set of which is denoted by Int M .

2. U, (Up N (R x Ry x {0}P74)) = M NV,
Such a p € M 1is called a boundary point of M, the set of which is denoted by OM.

Remark 1 (Boundaries). The geometric (or differential) boundary OM is not to be con-
fused with the ambient topological boundary defined as 0S = S \ S for S ¢ RP, where
the closure and interior are taken with respect to the ambient topology of RP. Indeed, one
easily checks that if d < D, then OM = M. On the other hand, the two sets OM and OM
coincide when d = D.

Then, sub manifolds without boundary are those M that fulfill 9M = (), i.e. that are
everywhere locally parametrized by R?, and nowhere by R*~! x R. From this perspective
— as confusing as this standard terminology can be —, sub manifolds without boundary
are special cases of sub manifolds with boundary. Note that key instances of manifolds
without boundary are given by boundaries of manifolds, as expressed by the following
result.

Proposition 2 ([Lee 2011, Example 2.17]). If M C RP is a d-dimensional C?-sub-manifold
with nonempty boundary OM, then OM is a (d — 1)-dimensional C?-sub-manifold without
boundary.
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3.2.2 Tangent and Normal Structures

In the present C?-smoothness framework, the difference between boundary and interior
points sharply translates in terms of local first order approximation properties of M either
by its so-called tangent cones or tangent spaces, which we now define.

Definition 15 (Tangent and Normal Cones and Spaces). Let p € M, and VU, its local
parametrization from Definition 1/.

e The tangent cone Tan(p, M) of M at p is defined as

do¥,(R? x {0}P~9) if p € Int M,

Tan(p, M) = {dg‘llp (Rd—l x R, x {o}D—d) if p € OM,

where do¥,, denotes the differential of ¥, at 0.
The tangent space T,M is then defined as the linear span T,M := span(Tan(p, M)).

e The normal cone Nor(p, M) of M at p is the dual cone of Tan(p, M):
Nor(p, M) := {v € R? | Vu € Tan(p, M), (u,v) < 0}.
The normal space of M at p is defined accordingly by N,(M) := span(Nor(p, M)).

Whenever p € IntM, it falls under the intuition that Tan(p,M) = T,M and
Nor(p, M) = N,M, while when p € 0M, NyM and T,M share one direction which is
orthogonal to T,,0M. These properties are summarized in the following proposition.

Proposition 3 (Outward-Pointing Vector). Let M be a C2-sub-manifold with boundary.

o IfpeInt M, then Tan(p, M) = T,M and Nor(p, M) = N,M are orthogonal linear
spaces spanning RP.

e Ifp € dM, then Tan(p, M) and Nor(p, M) are complementary half-spaces. In partic-
ular, Ty,MNN,M is one-dimensional. The unique unit vector n, in Nor(p, M)NT,M
1s called the outward-pointing vector. It satisfies

Tan(p, M) = T,M N {(np,.) <0}, Nor(p,M)= N,MN{(np,.) >0},
and

1
T,0M & span(ny,) = T,M,
1
where @ denotes the orthogonal direct sum relation.

3.2.3 Geometric Assumptions

Any C?-sub-manifold M of R” admits a tubular neighborhood in which any point has a
unique nearest neighbor on M [Bredon 1993, p.93]. However, the width of this tubular
neighborhood might be arbitrarily small. This scenario occurs when M exhibits high
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curvature or nearly self-intersecting areas [Aamari et al. 2019]. In this case, the estimation
of M gets more difficult, since such locations require denser sample to be reconstructed
accurately. The width of such a tubular neighborhood is given by the so-called reach
([Federer 1959, Definition 4.1]), whose formal definition goes as follows.

Given a closed set S C R”, the medial azis M(S) of S is the set of ambient points that
do not have a unique nearest neighbor on S. More precisely, if

d = mi —
(5 5) = min||z — |
stands for the distance function to S, then

M(S):={z¢€ RP Bz #£yeS,||z—z|=|z—y|| = d(z,9)}. (3.1)
The reach of S is then defined as the minimal distance from S to M(S).

Definition 16 (Reach). The reach of a closed set S C RP is

75 = mind (e, M(S)) = _inf _d(2.9).

Remark 2. e By construction of the medial axis Equation (3.1), the projection on S

ms(z) = argmin ||z — z||
z€S

is well defined (exactly) on RP \ M(S). In particular, wg is well defined on any
r-neighborhood of S of radius r < 7g.

e One easily checks that S is convex if and only if Ts = oo [Federer 1959, Remark 4.2].
In particular, for the empty set S = (), we have 75 = 0.

Requiring a lower bound on the reach of a manifold amounts to bound its curva-
ture |[Federer 1959, Proposition 6.1], and prevents quasi self-intersection at scales smaller
than the reach [Aamari et al. 2019, Theorem 3.4|. Moreover, it allows to assess the quality
of the linear approximation of the manifold by its tangent cones. In fact, [Federer 1959,
Theorem 4.18] shows that for all closed set S C R” with reach 7g > 0, its tangent cone
Tan(z,S) is well defined at all z € S, and d(y — x, Tan(z,S)) < |ly — z||* /(275) for all
y € S. This motivates the introduction of our geometric model below.

Definition 17 (Smooth Geometric Model). Given integers 1 < d < D and positive num-
bers Tmin, To,min, we let MED denote the set of compact connected d-dimensional
C2-sub manifolds M C RP with boundary, such that

Tmin»7T9,min

TM 2 Tmin 0nd Tonf = To,min-

Remark 3. o Let us emphasize that the model Mﬁfmm’mm includes both sub manifolds
with empty and non-empty boundary OM , the main requirement being that Tons >
Tomin- If OM = 0, this requirement is always fulfilled since 7y = oo. Note also
that Definition 17 does not exclude the case d = D, in which case M consists of a
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domain of RP with non-empty interior. Furthermore, since the boundary OM of a
sub-manifold M is either empty or itself a sub-manifold without boundary, a non-
empty OM cannot be convex. As a result, ./\/lﬁ;nj?moo is exactly the set of sub manifolds
M e MEP that have empty boundary. In particular, Definition 17 encompasses

Tmin,7T9,min

the model of [Genovese et al. 2012b, Kim € Zhou 2015, Aamari € Levrard 2019|.

o Similarly, since Tpr = oo if and only if M is conver, M&%’mm is exactly the set of sub

manifolds M € Mf—;ﬁl,m’mm that are convex (and hence have non-empty boundary).

In particular, Definition 17 encompasses the model of [Diimbgen € Walther 1996].

o In full generality, the two lower bounds on the respective reaches of M and OM are not
redundant with one another. As shown in Figure 3, Tas and Topr are not related when
d < D. However, for d = D, OM is the topological boundary of M (see remark 1).
In this case, [Federer 1959, Remark 4.2] and an elementary connectedness argument
show that Tpr > Tonr- Said otherwise, this means that the reach reqularity of a full-

. . L . D,D .
dimensional domain is no worse than that of its boundary. Hence, Mz 7, .. =
D,D
M inmomin JOT ALl Tmin < T min, so that for d = D, one may set Tmin = T9 min

without loss of generality.

aM JdM oM

Figure 3.1: For d < D, the reach of a sub-manifold M and that of its boundary M are
not related. First example: 19y < T = 00, second: Typr = Tar, and third: Ty > s

Remark: The model with C? manifold with positive reach is an extension of the full
dimensional case with the rolling ball condition. Due to [Federer 1959] it allows to deal
with manifolds with few use of differential geometry making the proof easy to read by
statisticians (and being fully honest, easy to do by statisticians also).

We sometime have results that also apply in less restrictive condition on the manifold
and somehow authorize the boundary to have corner.

Definition 18 (Geometric Model with corner). Given integers 1 < d < D and positive
number Tmin, we let Nzl’ﬁ 870 denote the set of compact connected d-dimensional C°-sub

manifolds M C RP with boundary, such that, Tay > Tmin and for all x € M, and r < ro,
|M 0 B(x,7)|a > dwar
d,D

Remark: The technical lemmas in [P1] implies that any manifold in M7, 7, ...
d,D

Tmin 757T

is in
, forany 6 <1 /2 and any 7y small enough.
3.3 True lower dimensional context

The true lower dimensional context correspond to the class of distribution P supported
by M a compact d-dimensional sub-manifold of R” that have a density f with respect
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to the volume measure volys(A) = |AN M|z on M. When f satisfies that for all z € M
0 < fo < f(x) < f1 < 400 we will say that the distribution is almost uniform on M.

Practically, the reach of M can be estimated (and thus we can suppose it is known) due
to [Aamari et al. 2019] or [Berenfeld et al. 2021] but it is not yet the case for 79y;.

3.3.1 Testing the true lower dimensional case

In [J5] we provide a test helping to decide whether the support of the observations is
“full dimensional” or “lower dimensional”. It is less general than the test proposed in
[Fefferman et al. 2013] since we do not allow to have a little amount of noise but it is much
more easy to implement. The propose test takes into consideration the “size” of the Voronoi
cells of the observations p; = sup.evor, (x,) [z — Xill-

Roughly speaking, one one hand, when the support M is full dimensional (M = M)
its interior is not empty and then there exists some B(x,rg) C M and, if the distribution
put enough weight around = (that is the case in our classical hypothesis of density “almost
uniform”, the Voronoi cells of observations close to  becomes small when n goes to infinity).
One the other hand, when the support is a d-dimensional manifold with d < D with positive
reach 77 then, for any observation X; € M and any r < 7)s there exists z € R” such that
||z — X;|| > r and thus the Voronoi of X; has a large radius.

This is more mathematically expressed in the following theorem which is very easy to
prove.

Theorem 17 (A., Cholaquidis and Cuevas 17). 1. If M is a d-dimensional manifold
with positive reach Ty then, for all i we have min; p; > Tpp

2. If there exists xo and po v and 0 such that

(a) B(zo,po) C M
(b) for all x € B(xo, po) and all v’ < r we have P(B(z,r)) > dwpr?

‘ o \ /D
we have that min; p; < <5n” ) e.a.s.
wpn

It is thus possible to test the “lower dimensional” versus the “full dimensional” case
with the test statistic min; p; with a decision rule “decide Hy (M is lower dimensional)”
if min; p; > r,, . Due to [Penrose 1999] we can obtain a fully data driven method with a
choice of r, that depend on max; min; ||X; — X;|| which allows to decide correctly with
probability one when n large enough (under the almost uniform assumption).

Note that, even if it appears a very easy and naive idea that is practically subject to the
curse of dimensionality this initial idea of considering p; is the source of most of the tools
exposed in this chapter.

3.3.2 Testing the boundary existence

As mentioned in the introduction, most of the proposed methods in manifold estimation
are adapted to manifold without boundaries. For instance in [Aamari & Levrard 2019] it is
proved that, when M is a C*¥ manifold without boundary the minimax rate for manifold
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estimation is of order n~*/¢, when aiming at estimating the tangent spaces the minimax

rate is of order n—(k—1)/d
—(k=2)/d_

and when aiming at estimating the second differential form the
rate is of order n

When applying manifold estimation method proposed in [Aamari & Levrard 2019] to C?
manifold with boundary we obtain the deteriorated rate of n=1/4 (surprisingly this loss
do not apply to the tangent space estimation). More generally it has been empirically
observed that methods for manifold estimation for manifold without boundary, fail (near
to the boundary) when applied to manifold with boundary. This motivated us to develop
a test of boundary existence and manifold estimators adapted to the non-empty boundary
case.

The test statistics proposed in In [J1] is the following.

Definition 19. Given an i.i.d. sample X1,...,X, of a random row vector X with support
M c RP, where M is a d-dimensional manifold with d < D, we will denote by X the
j-nearest neighbor of X;. For a given sequence of positive integers ky,, let us define, for

1=1,...,n,
X1 — Xi .

Tign = | Xi=Xk, )|l 5 7n = ax Ti, ; Xn,,, = : s Sk = E(Xm,kn)(xéi,m'
K (i) — Xi

where X,y — X; is a row vector, for all j =1,... k. Consider Q;, the d-dimensional

space spanned by the d eigenvectors of S’lkn associated to its d largest eigenvalues. Let
X;;(i) be the normal projection of Xy — Xi on Qik, and Xy, ; = é Z],z’;l XZ(i)'

Define 6; ,, = %ﬂHykmiH% fori=1,...,n. Then the proposed test statistic is

%, Rn

Ak, = Jax Oi o -
Theorem 18. Assume that X1,..., X, s an i.i.d. sample drawn according to an unknown
distribution Px supported by M, a C* d-dimensional (d is assumed to be known) manifold
with positive reach and that its boundary OM is either empty of a C* manifold with positive
reach. Also suppose that the density is almost uniform and Lipschitz continuous on S. For
sequences (k) fulfilling condition that ky, /n*/(¢t1) — 0, k,/(In(n))* = oo when d > 1 and
kn/vnlnn — +oo when d = 1.
Then the test

Ho : 8M = (Z)
with the rejection zone
W= {Ank, > F; 1 (9a/(2¢%n))}, (3.3)

satisfies P, (W) < a+ o(1) and has power 1 for n large enough.
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Sketch of proof. The first step consist in proving that we have r, := max; r; ., 250 (using
that the density is bounded from below and the condition k,/n'/(+1) — 0).

Consider an observation X, such that d(X;,,0M) > 4 1, . The regularity of the man-
ifold and the continuity of the density given by condition will imply that the sample
{rigxn X TGo)y o 1kn X ;n(io)} “converges” to an uniform sample on the d-dimensional unit
ball, and then || Xy, Hrz_olkn 2% 0. Tt will also be proved that &, x,, — x2(d’) in distribu-
tion. If M = (), all the observations satisfy d(X;, OM) > r; . Even though the {d; 1, }i
are not independent, we will obtain an asymptotic result for A, ;. that involves the x2(d)
distribution due to [Pinelis 1994] (from where the constant 9/(2¢3) appears). That gives
the bound for the level.

If OM # (), the almost uniformity of the density and the regularity of the boundary ensure
a.s. the existence of an observation X;, with d(X;,,0M) = O(Inn/n), and then condition
K (kn/(Inn)? — 4o0) ensures that d(X;,,0M) < 7i,k,. Note that this condition is

stronger than the usual k, — +o0. The sample {r;_ 1an Gy~ i 1an "o (io)} thus “looks

like” an uniform sample on a half d-dimensional unit ball and || X,, ;, Hri_olkn 2% ag > 0.
This consideration allows to obtain the power 1 for n large enough. O

A practical way for the choice of the parameter k, is given making in [J1] making the
test quite easy to practically implement.

3.3.3 Boundary estimation and estimation with boundary
3.3.3.1 Detecting Boundary Observations

Intuition In the full-dimensional case (d = D), data points close to the bound-
ary may be identified by how (macroscopically) large their Voronoi cells tend to
be |Rodriguez Casal 2007]. That is, if p > 0 is a detection radius, the boundary obser-
vations may be defined by

Y, ={X; €X,|30 €RP, |0 - X;|| > p and B(O, |0 — X;|) N X,, = 0}.

If X; belongs to ), with associated O & RP, then 7; := % appears to provide an
consistent estimator of the unit outer normal vector of OM at mapr(X;) [P2]. The present
work leverages the above intuition and extends it to the case where M is a d-dimensional
manifold with d < D. In fact, the manifold M not being full-dimensional raises the
following additional subtleties:

e Even if X; is far from OM, its Voronoi cell is large in the directions of T'x, M~ as
it actually contains at least X; + BTxi L (0, Tmin). To detect points close to the
boundary only, we shall hence avoid these normal non-informative directions and
solely focus on the tangential components of the Voronoi cells. For instance, by first
projecting points onto (an estimate of) T'x, M.

e If X; is close to OM but M is folded over X;, then the Voronoi cell of X; in the
Voronoi diagram of the projected sample might be small. To detect enough points
close to the boundary, not all the sample should thus be projected, but rather just a
neighborhood X,, NB(Xj, Ry) of Xj, for some localization radius Ry > 0 to be tuned.
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These two remarks lead to the following first detection procedure: for a collection of
estimated tangent spaces 1;’s, one may label X; as being a boundary observation if it has
a large Voronoi cell within its Rg-neighborhood, when projected onto X; + T;. That is, if
there exists O € T} such that |O]| > p and B(O, |O]) N 77 (X5 N B(X;, Ro) — X;) = 0.
Unfortunately, when 1 < d < D, this intuitive detection method is not sufficient to detect
enough observations close to the boundary. This issue can be overcome by investigating
all the Voronoi cells of T, (X;) for X; € B(X;,r)NX,, where 7 is a small scale parameter.

As it is now clear how critical the knowledge of tangent spaces is to build a Voronoi-based
boundary detection scheme, let us first briefly detail how we estimate them.

3.3.3.2 Tangent Space Estimation

Following the ideas of [Aamari & Levrard 2019|, we will estimate tangent spaces using
local principal component analysis.

Definition 20 (Tangent Space Estimator). For i € {1,...,n} and h > 0, we introduce
the local covariance matriz

- 1
Bi(h) = —— > (X = Xi) (X — X) T (x, ) (X5),
J#i

and define T; as the linear span of the first d eigenvectors of flz(h)

Note that 7} is a local estimator, in the sense that it is ((Xj — Xi)]IXjeB(Xi,h))K -
<j<n

measurable. For a suitable choice of h, the following proposition provides guarantees on
the principal angle between T'x;M and 7;. In what follows, given two linear subspaces
T,T" c RP, the principal angle between them is

LT = e — 7l
where [|A[|,, := supj,| <1 [[Az|| stands for the operator norm of A € R"*".

4

fmax lOgTL
fo. n—1
~ /min
T9,min /\ Tmin

constant Cq. For n large enough so that h < Tn N =3 N with probability larger

1
Proposition 4 (Tangent Space Estimation). Let h = (Cd )d, for a large enough

than 1 — 2 (%)%, we have

- max h
max Z(Tx,M,T;) < Cdf

1<i<n min Tmin '

Detection Method and Normal Vector Estimation Now, for a local (but macro-
scopic) scale Ry > 0, a detection radius p > 0 and a local bandwidth » > 0, we compute
the d-dimensional Voronoi diagrams of (7 (B(Xi, Ro) N X, — X;))1<i<n and define our
boundary observations detection procedure as follows.
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Definition 21 (Boundary Observations). Fori € {1,...,n}, we let Jryr,(X;) be the set
of r-neighbors X; of X; for which X; has a p-large Voronoi cell in the projected Voronot
diagram at X;. That is, writing

Vorg)

) (X0 = {0 € T |B(0,110 = mg (Xi = X)) Nz, (BIX, Ro) (% — X;) = 01,

we define

JRorp(Xi) := {Xj € B(X;,r)NX,

Vorl) (X)) N By, (g, (X = X),p)° £ 0}
The set of boundary observations Vg, r, C X, is then defined as the set of data points
that have at least one such large Voronoi cell:

yRoﬂ”,P = {Xl € Xy | JRo,r,p(Xi) 7& (Z)} (3'4>

Remark 4. Detecting boundary observations requires to compute n Voronoi diagrams in
dimension d. Note that this step does not depend on the ambient dimension D, and can
run i parallel.

This strategy also provides a natural way to estimate unit normal outward-pointing

vectors. For this, given a boundary observation X; € Vg, ;. ,, we simply consider directions
()

in which Vor Ro.p

(X;) is p-wide (see Figure 3.2). A formal definition goes as follows.

oM

Figure 3.2: An ambient Voronoi diagram built on top of observations X,, lying on an open
plane curve (d = 1, D = 2). The denser X,, in M, the narrower the Voronoi cell of the
Xi’s in the tangent directions T'x, M. Observations close to OM yield cells that extend in
the outward pointing direction. Localization radius Ry > 0 prevents global foldings of M
that would mix different ambient neighborhoods of M when projecting onto T'x, M.

Definition 22 (Normal Vector Estimator). For X; € Vg, r, and X; € Jpyro(Xi), let

(4)
QRo,r,p

€ argmin{HQ Y (X; — Xj)H ‘Q € Vor%g’p(Xi) N BTJ (7TTJ_ (X; — Xj)’p)C} .
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The estimator of the unit normal outward-pointing vector in T] is defined by

(4)
Q}%o,r,p - TrTj (XZ - XJ)

~\J) ._
T W ‘
HQRO,r,p - TrTj (XZ - X])H

The final estimator of the unit outward-pointing normal vector at X; is then defined by

) 1 ~(7)
= 3 (35)
T (X, '
# Ro, 70( >jEJR,O,r,p(Xi)

As expected, when localization radii are chosen properly, Theorem below provides quan-
titative bounds for boundary detection and normal estimation.

Tmin/\TB,min

Theorem 19 (Guarantees for Boundary Detection and Normals). ake Ry < 10

Define

5 lo
gn
r— = \/(Tmin A Ta,min)RO (Cd m6ax ]
minnl E()

_1
+ Ry do Ry py
,T+ = E, an p_ —T—

2

Then, for n large enough, with probability at least 1—4n7%, we have that for all p € [p—, p4]
and r € [r_,ry]:

1. If OM =0, then Ygyrp = 0;

2. If OM # () then:

(a) For all X; € YRyrps
272 )
Tmin /\ 79, min ’

d(X;, 0M) <

(b) For all x € OM,
d(z, yRo,T,p) < 3r;
(¢) For all X; € YRror.p:

207

Trmin /\ 7—8,min)

. ) — il <
HT] onm (Xi) n H \/R[)(

A key quantity is the scale Ry, that needs to be carefully tuned in practice. Whenever
prior information on the reaches 7min and 7y is at hand, then choosing Ry as large
as i A Ta’jfi“ leads to near-optimal bounds. If no information on the reaches is at our

disposal, choosing Ry = (logn)~! would meet the requirements for n large enough, while
only adding extra logn terms in the bounds. The choice of r is less crucial: choosing

@ with a € (Wll’ é) ensures that the requirements are fulfilled for n large enough,

r=mn-
with no impact on the final bounds.
In a nutshell, Point 1. guarantees that no false positive occur if 9M = (). On the other

hand, if M # 0, for € < (logn/n)/@1) point 2.(b) ensure that YVRo,rp is an e-covering
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of OM that consists of points (¢2/Ry)-close to M. In the convex case Tin = 00, taking
the convex hull of Vg, ., — similarly to [Diimbgen & Walther 1996] — would result in
an (£2/Rp)-approximation of M, and the boundary of this convex hull in an (¢2/Ry)-
approximation of OM.

Still based on Vg, ,, we extend this “hull” construction to the non-convex case by
leveraging the additional tangential and normal estimates, to provide estimators of M and

oM.

3.3.3.3 Boundary Estimation

Assume that OM # @. Then OM is a (d — 1)-dimensional C2-sub-manifold with-
out boundary. Therefore, using manifold estimators of [Aamari & Levrard 2018,
Aamari & Levrard 2019, Maggioni et al. 2016] designed for the empty boundary case
with input points Vg, ,, seems relevant. We choose to focus on the manifold esti-
mator proposed in [Aamari & Levrard 2018], based on the Tangential Delaunay Com-
plex [Boissonnat & Ghosh 2014, as it also provides a topologically consistent estimation.
This procedure, as well as the aforementioned two others, takes as input boundary points
but also estimates of the tangent spaces (of the boundary). Thus, a preliminary step is to
provide estimators for the boundary tangent spaces at points of Vg, ;.

Definition 23 (Boundary’s Tangent Space Estimator). For all X; € YRo,rps Ta’i is defined
as the orthogonal complement of ;. (7;) in T;. That is,

Ty = (mz (7)) N T

A straightforward consequence of Property on tangent space estimation and Guarantee
for Boundary and normal Theorem is that we easily can estimate tangent to the boundary
spaces

Corollary 3 (Boundary’s Tangent Space Estimation). Under the assumptions of previous
2
property and theorem we have, for n large enough, with probability larger than 1 —4n~ 4,

1
. P logn a+1
max  Z(Tr,,, (x)0M,Ts;) < <Cd e .
Xi€VRy.rp mo (X:) ' 5 fminR3(n — 1)
We are now in position to provide an estimator for JM. Following

1
[Aamari & Levrard 2018], we let ¢ = Ry <C’d ]}fg“” - 1;%81_1)) 1 and let Yy denote an
e-sparsification of Vg, ,, i.e. a subset of yRO,Ttnpmthrgg f(o)rms an e-covering of Vg, ., with
points are e-separated.

We also denote by Ty the collection of Tm’s, for X; € Yy, and define our estimator of
OM as the (weighted) Tangential Delaunay Complex [Boissonnat & Ghosh 2014] based on
(Yo, To): e

OM := Del** (Ya, Ta).

Since M has no boundary, [Aamari & Levrard 2018, Theorem 4.4] applies, and leads to
the following reconstruction result.
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Theorem 20 (Boundary Estimation — Upper Bound). Provided that OM # () and under

the assumptions of previous results, we have for n large enough, with probability larger than
2

1—4n"4d,

2

= 2o logn +1
1. dH(aM, aM) < Ry (Cd f]?]in fminRg(nfl)) )

2. OM and OM are ambient isotopic.
As a consequence, for n large enough, we have
5 1 di
— ogn +1
E |dy (00, aM)} < Ry (cd mag ) .
fI?lin fminRg(n - 1)

And the proposed estimator is minimax (up to a log) due to following result.

Theorem 21 (Boundary Estimation — Lower Bound). Assume that fuin < Cd/Tg min @Nd
C&/Tg,min < fmax for some small enough cq, ()™t > 0. Then for alln > 1,

R 1 d+1
inf sup Epn [dH (8M, B)] > CqTomin § 1 A <d>
B Pepgé?’a min (fmirnfmax) fmmTa,minn
3.3.3.4 Boundary-Adaptive Manifold Estimation
If OM = @, it is known that M can be estimated optimally by local linear
1/d
patches [Aamari & Levrard 2019]. That is, choosing €,;, = (Cd%> , and estimat-

ing M via the union of tangential balls M = Ui, Xi + B4 (0,e,) leads to du (M, M) <

Cy fmaxsf\;[ /(fminTmin) [Aamari & Levrard 2019, Theorem 6]27 recovering the minimax rate
O((log n/n)Q/d) over the class of C2 manifolds without boundary [Kim & Zhou 2015].

If OM # () and X; is close to OM, a tangential ball X; + By (0,¢);) may go past M
along the normal direction 7., (x,), leading to a poor approximation of M in terms of
Hausdorff distance. In this case, replacing X;+B. (0,€,;) by a tangential half-ball oriented
at the opposite of the outward-pointing normal vector 7, (x,) seems more appropriate.
We formalize this intuition as follows.

Let Vg,,rp denote the detected boundary observations of Definition 21. These points
will generate half-balls, with radius €g;7, that will roughly approximate the inward slab
M N B(OM,egpr) of radius egpr. To approximate the remaining part of M, we further
define the egps-inner points as

Veors = {Xi € X | d(Xs, Vi) > €00r/2} - (3.6)
Then, the manifold M may be reconstructed as follows.

Definition 24 (Boundary-Adaptive Manifold Estimator). Given some inner and boundary
radii parameters €y, and egpr, the manifold estimator M is defined by

M = Mlnt U M37
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where
M= | Xi+Bp(0,e5),
Xi€¥=gn
Myi= | (Xi+Bg,0.200) N{z (= = Xii) < 0},
XiEyRO P
with

o the T}’s being the estimated tangent spaces,
e the 7;’s being the estimated of the outward-pointing normals.

Note that M is adaptive in the sense that it does not require information about emptiness
of M. If 9M = 0, then Vg, ., = O with high probability. In this case M coincides (with
high probability) with the estimator from [Aamari & Levrard 2019], which is minimax over
the class of boundariless C2-manifolds.

Theorem 22 (Estimation with Boundary — Upper Bound). Choose (Rg,r,p) as in first
Theorem set

logn

fminn

frae  logn T
) .

1
d
d =Ry |(C
> e com 0( dfr?lin fminRg(n_l

EM = (Cd
. .. 2
Then for n large enough, with probability larger than 1 — 4n™ 4, we have

(fmax/fmin)%+15?\°4/7min Zf oM = 07

du(M, M) < C
s(M, M) d{ng/Ro if OM # 0.

As a consequence, for n large enough,

2
2+d/2 logn ]
max .
Tmi if OM =10
min 2+d/2 fmian~ n f )
min min

E [dH(M, M)] <Oy

2

5 a+1
Ro ( maxlog") " if OM + 0.

fgin fminRgn

This method being minimax (up to a log factor).
Theorem 23 (Manifold Estimation — Lower Bounds).

1. (Boundaryless) Assume that fuin < cd/Tr‘flin and C’d/Tgl < fmax, for some small

enough cq, ()™ > 0. If d < D — 1, then for alln > 1,

in

2
inf sup Epn [dH(M, M)] > C4Tmin {1 A <1d> d} :
n

d,D .o
M PePr) oo(fmimfmax) min ’ min

Tmin>
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2. (Convex) Assume that fuin < Cd/Tgmin and C&/Tg min < fmax, for some small enough
ca, ()™ > 0. Then for alln > 1,

. 1 d+1
inf sup Epn [dH (M, M):| > CdTa,min 1A VR
M Pepd D (fminyfmax) fminTavminn

3T, min
3.3.4 Volume Estimation

In this section the target is to estimate the d-dimensional Minkowski content of M, as

given by
pp(M & £B)

lim
-D—d

a—)O Oha = Lo(M) < 00. (3.7)
This is just (alongside with Hausdorff measure, among others) one of the possible ways to
measure lower-dimensional sets; see [Mattila 1995] for background.

Regarding the estimation of lower-dimensional measures, with d < D, the avail-
able literature mostly concerns the problem of estimating Lo(M), M being the bound-
ary of some compact support S. The sample model is also a bit different, as
it is assumed that we have sample points inside and outside S. Here, typically,
d = D — 1; see, [Armendariz et al. 2009], [Cuevas et al. 2007], [Cuevas et al. 2013],
[Jimienez & Yukich 2011].

Again, in the case M = 0S with D = 2, under the extra assumption of r-convexity
for S, the consistency of the plug-in estimator Lo(9C, (X)) of Lo(9S) is proved in
[Cuevas et al. 2012| under the usual inside model (points taken on S). Finally, in
[Berrendero et al. 2014, assuming an outside model (points drawn in B(S,R) \ S), es-
timators of up(S) and Lo(9S) are proposed, under the condition of polynomial volume for
S

From the perspective of the above references, our contribution here (Th. 24 below)
could be seen as a sort of lower-dimensional extension of the mentioned results of type
up(My,) — pp(M) regarding volume estimation. But, obviously, in this case the Lebesgue
measure up must be replaced with a lower-dimensional counterpart, such as the Minkowski
content (3.7).

Theorem 24. Let X,, = {X1,..., X, } be an iid sample drawn according to an almost uni-
form, distribution Px supported by M C RP a d-dimensional sub-manifold in the geometric
model with corner (see 18). Let us take ry, such that r, — 0 and (log(n)/n)"? = o(ry,),

then ( ( ))
w(B(Xy, Bn
— " — Lo(M + 7y
wp—ari’~* M) = <7"n )
where By := dp(Xn, M) = O(log(n )/n)
Sketch of proof First with classical technique we have £, := dg(X,,M) =

( log(n)/ n) e.a.s. Then the results directly comes from the double inclusion:
M®(r,—-n)BCX,&rp,BCM®r,B,

and the fact that the positive reach of M implies that when = < 75, |M @ zB|4 is a

polynomial that can be written |M @ zB|q = wp_qLo(M)zP~% 4 ... 4+ qpaP. O
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Figure 3.3: The linear patch support estimator proposed in [P1] looks like pangolin or t
shirt for children. Patches overlap too much to plug measure estimator, and there is no
topological preservation.

3.3.5 Perspectives
3.3.5.1 Support estimator with topological guaranty in case of boundary

If the “linear” patch support estimator proposed in [P1] is adaptive, minimax with regard
to the Hausdorff distance and has the “good"dimension, it is far from being satisfactory
for a topological point of view (it looks like pangolin scales an is quite irregular, see Figure
3.3). Finding a support estimator that is minimax (for the Hausdorff distance) and is
(eventually almost surely) homeomorphic to the support even when the boundary is not
empty is (one of the) Graal(s) of the manifold estimation community.

Before achieving (or not) this ambitious goal one may first concentrate on a more realistic
goal having manifold estimators that can be plugged to estimate |M|g and |OM|4_1.

See Figure 3.4 to be convinced that, the sum of the volume of the patches widely over-
estimates the volume.

3.3.5.2 Volume and surface estimation

When we aim to estimate |M|g the solution proposed in [J1] seems to have very poor
convergence rates and, up to our knowledge there is no yet estimators for |0M|z—1. The
idea is to refine the linear patch estimator proposed in [P1] to reduce overlapping. The
idea being to consider the following linear patches for X;

P, = (Ti N {z, (z, Nronr (X)) < 0}) N (VOFﬂTi(Xnt(X,-,RO)—X,-)(0)) +X;

and the following support and boundary estimators
M =[P, and OM = | J(P; n {z, (2,75, (x,)) = 0})
i i

Preliminary calculus indicates that such an estimator has good behavior (minimax rates
for manifold and boundary estimation but also we can plug it for volume and perimeter
estimation) if the data is preliminarily sparsified (see Figure 3.4 to help representing M



3.4. Noisy lower dimensional context 47

Figure 3.4: The original set is B(O, 1) \ B(O,0.5). The linear patches of |[P1] (left) versus
a Voronoi refinement on a scarification (indicated by o points) of the data (right). In red
the “boundary” patches and in yellow the “interior” patches. Be convinced that the sum
of the volumes of the linear patches (left) drastically overestimates the volume of the set,
which is no more the case when patches are Voronoi-refined.

3.3.5.3 Density estimation on unknown manifold with possible boundary

Since [Hendriks 1990], estimation of densities supported by manifold have arisen a lot
of attention. See for instance |Pelletier 2005], [Kim & Park 2013|, [Berry & Sauer 2017]
[Divol 2021] or |[Berenfeld & Hoffmann 2021]. Most of the time (except for
[Berry & Sauer 2017|) the manifolds are assumed to be without boundary. Knowledge
of the manifold might be required (as in [Pelletier 2005]), sometime only the knowledge
of the dimension [Kim & Park 2013]) is used and in, [Berenfeld & Hoffmann 2021] no pre-
liminary knowledge on the manifold is necessary. We aim to propose and study a density
estimator, that is convenient with the boundary case and only requires prior knowledge on
the dimension of the manifold. Namely we propose a “local PCA projection” version of the
density estimator proposed in 2.3.1 We propose to study the following density estimator:

o

frn,A,d(x) = (TL _ N;?::T)L e, HVx,rnZAwDrd]INf,rnﬁn/Q
Where 7z, is an estimator of T,M, Ni,, = #{X, N B(z,mn)}, Hur,a
H(mg; (Bla,m) N X)) Ve, = [Hapolas ND, = #{m (B, 1) N Xp) N OHyy, }

and N2, = Ny, — NJ

T,rn"

3.4 Noisy lower dimensional context

Recall that, in this section we are interest in the following problem. Let X,, = {X3,..., X,,}
be iid observation drawn with a distribution Py supported by M & rB where M is a d-
dimensional manifold and we aim to get information on M. First, in [Niyogi et al. 2008]
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it is proved that, under regularity condition (almost uniform distribution, positive reach
7y and support included in M @ rB with » < 7j7) we can compute the homology of
M from a Devroye-Wise estimator. We aim at obtaining more precise information on
M such as a set Yy included in M @ ¢, B with €, — 0 (so that we can apply the true
lower dimensional methods -that mostly also works under such condition- with a possibly
deteriorated rate). In [Genovese et al. 2012b| it has been proved that, under classical
assumptions (positive reach, absence of boundary and almost uniform density) we have a

minimax rate of order n_ﬁ. In the same paper authors proposed a far from optimal, but
computable, manifold estimator. The problem seems to have been very recently solved in
[Aizenbud & Sober 2021| when data are uniformly drawn in the tubular neighborhood of
a Manifold without boundary.

3.4.1 Estimation of the amount of noise

In [J5] we proposed two estimators for the the amount of noise. The first one, wich is
based on the “boundary balls” of the Devroye-Wise estimator is the simplest. The second
one which is based on the r-convex hull estimator has better rates.

Let pi = Sup.evor, (x,) |2 — Xil| and B, = {X;,p; > p}, define then R,(X,) =
max; d(XZ‘, Bp)

Theorem 25 (A., Cholaquidis and Cuevas 17). Suppose that M is a d-dimensional man-
ifold with positive reach Tp; and that the distribution is almost uniform on S = M & RB,
where R < 1yr let e, = (clnn/n)YP with ¢ > 6/(fowp) then, with probability one for n
large enough |R — R., (X,)| < 2,

Sketch of proof. The proof is based on the fact that we will have dgy(X,,S) < ¢, and

This theorem can be easily extend to the following one, suppose that dg (S, M) = R <
Tz, that S has the ro-rolling ball condition for some positive rg and that the distribution
is almost uniform then an (X,,) is also a consistent estimator for R.

When such an extension is not required there exists a slightly better estimator of the
amount of noise R,(X,) = max; d(X;, C,(X,)) and we have

Theorem 26 (A., Cholaquidis and Cuevas 17). Suppose that M is a d-dimensional man-
ifold with positive reach Tp; and that the distribution is almost uniform on S = M ® RB,
where R < 1 let p < map — R then, with probability one for n large enough |R— R,(X,)| <

min(=, %)
O((Inn/n)™D=da+1/)

Sketch of proof. |M @ a(lnn/n) p-a |p = O(Inn/n) that guarantees that, with probability
1

one for n large enough there exists an observation (let say X1) in |[M @ a(Inn/n)D=d|p =

O(Inn/n) then using the property of the r-convex hull it comes that

d(X1,08) — O((Inn/n)? D < d(X,,0C,(X,)) < d(X1,0S5)

giving the inequality R > R—O((Inn/n)¥ @) —O(a(lnn/n) ﬁ). The reverse inequality
being purely geometric. O
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3.4.2 Denoising with use of reflexion on the boundary

Suppose that M is a d-dimensional manifold with positive reach 73 and that the distribu-
tion is almost uniform on S = M @ RB, where R < 1)y and that we have also obtained:

1. ]A%n an estimator of R such that ]]%?n —R|<e,
2. &s*n a boundary estimator such that dH((%n,as) <ay
3. Yy =X, n{z,d(z,0S,) > AR}

R0 R st th ) 5,0+ P28
dSn

Theorem 27 (A., Cholaquidis and Cuevas 17). Suppose that M is a d-dimensional man-
ifold with positive reach Ty and that the distribution is almost uniform on S = M & RB,
then for any given X €)0, 1(

dg(M,$(Yy)) = O(max(al/?, e,, dg(Xn, S)) e.a.s

sketch of proof. The fact that we apply ¢ on Y which is far enough from 0S5 ensures that
m is close to —1y, (). Hypothesis ensures that 5%, (y) is close to myg(y). Thus
9Sn

because(ﬁ;)ras(y) — Rijrys(y) € M (due to positive reach), by continuity we have ¢(y) close
to M. Also see Figure 3.5.

Every points € M have an observation X; at distance O(Inn/n)Y? (by almost uniform
assumption), for n large enough X; is in Y) then ¢(Xj;) is close to x (as in the first part of
the proof).

Figure 3.5: blue points are 95, ¢(x1) with d(zq, 53'”) > AR and ¢(x2) with d(z2, 5:971) <
AR

3.4.3 Denoising with use of the medial axis

We are going to generalize the results in [Genovese et al. 2012a] which make use of the
medial axis for filament estimation (D =2 and d = 1).



50 Chapter 3. Lower dimensional context (Manifold learning)

3.4.3.1 The medial axis

Let S C RP be a compact set, its medial axis, introduced in [Blum 1967] as the set of
points in RP that has at least two different projections on dS (see Figure 3.6) has been
initially proposed as a tool for biological shape recognition. Note that the medial axis can
be decompose into two parts: its inner part, that is M(S) NS and its outer part that is
M(S) NS¢ (see Figure 3.6).

Figure 3.6: A set, its inner medial axis (blue) and its outer medial axis (green). Some
points of the medial axis are presented together with some of there projection onto the
boundary.

When dealing with compact sets we can only focus on M (S) the inner part of the medial
axis.

Definition 25.
M(S) ={z € S, diam(T'(z)) > 0}

where T'(z) = {y € 85, ||y — z|| = d(x,09)} and diam(A) = max{||z — y||, (z,y) € A%}.

3.4.3.2 Link with manifold estimation

Indeed, suppose that Y is a random variable drawn on M a compact manifold with positive
reach 7ps. also suppose that the distribution of Y is almost uniform. Now, we do not
observe Y but X, that satisfies X|Y ~ U(B(O,ry)) and denote by S the support of X. If
ry =1 < 1y then M = M(S) that, we think can extend to, if y — 7, is smooth enough
and upper bounded by a 7 < 7).

3.4.3.3 JM-medial axis

Unfortunately, the medial axis is difficult to estimate because it is not continuous with
respect to the Hausdorff distance dg. This is detailed in [Nagel | (see pages 217 —238) and
illustrated in Figure 3.7 part a)). This implies that estimating the medial axis using a finite
sample of points X,, = {X1,..., X,,} can not be solved using classical plug-in methods (see



3.4. Noisy lower dimensional context 51

Figure 3.7: Two sets close to S the one of Figure 3.7 and their medial axis. (a) SUB(z,r¢)
with z € 0S: a parasite branch appear whatever is the value of rg that illustrates the non
continuity of the medial axis with regard to the Hausdorff distance. (b) plug-in estimator
of the medial axis computed on a sample points there exist a lot of parasite branches.

Figure 3.7 part b)) and so provides a challenging problem that has been investigated in
various papers (see |Attali et al. | for a state-of-the-art report).

Mainly two different approaches have been investigated. The first one consists
in pruning the medial axis of an estimation of S (see, [Brandt & Algazi 1992| or
[Attali & Montanvert 1996]); the second one consists in estimating the A-medial axis de-
fined as M (S) = {x € M(S),I'(z) C B(a,r) = r > A} instead of the medial axis. The
A-media axis has been introduce and studied in [Chazal & Lieutier 2005] where it has been
proved to be stable with respect to the Hausdorff distance. More precisely the Authors
prove that, if dy (S, S¢) = O(e) then dg (M (S), Mx(S")) = O(y/¢), then they propose
an algorithm to estimate the A-medial axis given sample points located near the boundary
and prove that it converges.

Later on, given a sample point X,, drawn on S (instead of “near 05”), it is proved
in [Cuevas et al. 2014|, under no more shape hypothesis than regularity, that given a
support estimator S,, such that dH(S’n,S) — 0 a.s. and dH(BSn,E?S) — 0 a.s. then

N

dg(Mx(Sn), Mx(S)) = 0 as.

3.4.3.4 The medial axis estimator and main result

We propose to study the following medial axis estimator, given S, a support estimator and
Y a subset of X,, define

~

M(Sn, Y) = {x € Vory(y) N Vory(2) N S, (y,2) € Y2, [Jy — 2|| > )\} (3.8)
All the geometric assumptions made on .S are listed in following Definition.

Definition 26. Let 1o > 0 and K < 1 be two numbers, S be a compact set in RP. We say
S is (K, ro)-reqular if:

1. balls of radius rg roll freely inside and outside S;

2. M(S) is closed;
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3. for all (z,y) € M(S)?, |d(z,dS) — d(y,dS)|/|lx —y|| < K

Theorem 28. Let X,, = {X1...X,} C RP be an did sample of points, drawn on S a
(K, 1o)-regular compact. Assume that the distribution of X is almost uniform. For all
r < rg denote by C'T(Xn) the r-convexr hull of X,, and put Y = aér(Xn) NX,.

There exists Ao such that, for all 0 < X < A\g there ewists B, such that

n

dir(M(S), MA(Cr(X0).Y)) < B, (1“”> T s,

Remark: in the manifold estimation context, when d = D — 1 we have the minimax
rate cf [Genovese et al. 2012b].

In Figure 3.8 we present some medial axis reconstruction with the proposed algorithm.

Note that in [J2| we propose a posteriori indicators to tune the different parameters of
the medial axis estimator and more precisely the A (the r parameter being possibly fully
data driven as proposed in |Rodriguez-Casal & Saavedra-Nieves. 2019al).

Figure 3.8: Manifold estimation with use of the medial axis. Left D = 3 and d = 2 data
on a “noise” Moebus ring (top) and its medial axis reconstruction (down), right D = 3 and
d =1 data on a “noise” trefoil knot (top) and its medial axis reconstruction (down)

3.4.4 Perspectives

As mentionned in the introduction, finding a procedure that with a convergence rates
depending on d and not D has been achieved in [Aizenbud & Sober 2021] but is not min-
imax and needs data are uniformly drawn in S = M @& RB the tubular neighborhood
of a manifold without boundary. Note that the proposed algorithm requires the amount
of noise and the reach as inputs. The proposed amount of noise estimators of section
3.4.1 together with [Rodriguez-Casal, A. & Saavedra-Nieves, P. 2016] where an estimator
of v = sup, C,(S) = S allows to obtain a reach estimator since the geometric assumtions
implies that 7py = R + 7o.
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Can we extend there estimator and find minimax denoising procedures adapted to man-
ifolds without boundaries and non uniform samples (as in the reflexion on the boundary
method) and possibly samples drawn in a subset of S = M @ RB (as in the medial axis
method)?.

3.5 General perspective: sub-manifold of a known manifold

A general perspective of works of set and manifold estimation consists in extending our
results to the following purpose. Suppose that we know that data live in a known d’-
dimensional sub-manifold M of R” and the support M is now a d-dimensional sub-
manifold of M. We can either have d’ = d and then try to extend the set estimations
methods and results or d < d’ and then try to extend the manifold estimations meth-
ods and results. This project requires to join the set/manifold estimation and the shape
analysis communities. We expect that

1. Concerning the practical aspects the most trivial idea consists in replacing the FEu-
clidean geometry by the Reamannian (on M) one. We can generalize the Devroye
Wise estimator by union of geodesic ball. Concerning other classical estimators such
as r-convex hull or the r-shape, generalization is not that obvious when d = 2 (see
[Boissonnat et al. 2018]) nevertheless we can try to find geometric assumptions al-
lowing the generalization or explore the local convex hull idea.

2. Concerning the convergence rates we can expect to replace the dependence in D of the
convergence rates by a dependence in d’. Morally we expect that the knowledge of M
will “only"change the constant in the convergence rate. This is much more important
that it looks since the constants are usually power of D (of number greater than one).






CHAPTER 4

Application to statistical learning

The link between Geometry, topology and data analysis is well known and is currently
an attractive field of research (see [Carlsson 2009]). It started in the early 80" in differ-
ent application fields such as Neural Network [Kohonen 2004| for instance), Physical sci-
ence |Grassberger & Procaccia 1983] or Informatics [Edelsbrunner et al. 1983] and arose
from 2005 with, for instance the development of Persistent Homology [Singh et al. 2007b],
[Zomorodian & Carlsson 2004] or [Carlsson et al. 2005] and the study of its asymp-
totic [Chazal et al. 2014], the mapper algorithm [Singh et al. 2007a], the Morse Theory
[Bubenik et al. 2009].

In this chapter we won’t aim at making an exhaustive state of the art (that should need
another, much longer report) but only focus on the links between aforementioned set and
manifold inference tools and Dimension reduction, Clustering or Classification. Even if
most of them are yet well known or only perspective, it seems important to emphasize
that the proposed tests and estimators are not only nice toys but may have many practical
applications.

Notice first, that when data lies in a manifold, usual standardization, may hide the
lower dimensional structure and that an appropriate normalization should be prelimi-
nary applied see [J8] where a local and iterative standardization process based on the
idea of applying normalization on a neighborhoud data (i.e. on the Yy = {X; —
X, when i is a “neighbor” of j}) (after each steps the neighborhoud may change which
is the reason for iterations). If we were unable to have theoretical result on such a normal-
ization process it has been empirically observed that it has nice performances.

4.1 Dimension reduction and some statistics in lower dimen-
sion

It is easy to see the link between dimension reduction and manifold estimation.
Many of the previously mentioned method may be used as preliminary tools before
applying dimension reduction tools.

1. If the support (or a level set more robustness) is inferred to be convex then a simple
well known PCA will do the job.

2. The estimation of the amount of noise given in section 3.3.1 quantify the distance
between the data and a lower dimensional manifold and then is an a priori indicator
of goodness of fit to a lower dimensional structure. Namely, having a “small” value of
f%/ diam(X,,) indicates the amount of noise from the sample to a lower dimensional
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manifold is small with regard to the diameter of the sample and so that applying a
dimension reduction method, is, a priori, a good idea.

3. After a denoising such as the medial axis based denoising we obtain points close
to the wanted manifold, a dimension estimation on the “denoised data” (such as
|Grassberger & Procaccia 1983] for one of the oldest reference of [Brito et al. 2013]
or [Erba et al. 2019] for one of the newest ones) helps for tunning the “dimension
parameter” of dimension reduction methods.

4. If the homology group (that can be determined by use of [Niyogi et al. 2008]) is not
trivial then “classical” dimension reduction method (i.e. the one that send S into
A C R¢ with A which is d-dimensional won’t work. It will be necessary, or to make
projection in higher (than d dimension) or to apply reduction dimension method that
allows to “cut” the data (such as [Lee et al. 2004])

They also can be used as a posteriori indicators

1. In [Delicado 2001| the authors proposed to apply there convexity test as an a pos-
teriori way to tune the number of neighbors in the graph matrix used for geodesic
distance computation in isomap algorithm (they namely propose to chose the smaller
radius that provides a convex output).

2. By use of the estimation of the amount of noise given in section 3.3.1 we have an in-
dication on the quality of the nonlinear dimension reduction method and particularly
we can detect over-fitting.

4.1.1 Convergences rates for the geodesic distances

Since  |[Tenenbaum et al. 2000], a lot of dimension reduction methods
[Demartines & Herault 1997], [Srivastava et al. 2008], [Lee et al. 2004] or
[Lennon et al. 2002] are based on the use of the geodesic distance (instead of the
euclidean one) between pairs of observations, that was the motivation to study, in [J4],
derive the convergence rate of geodesic distance estimation.

When data are drawn according to a distribution that is supported by a path connected
manifold M, the geodesic distance v(X;, X;) is the length of the shortest continuous path
that links X; to Xj, it is usually estimated by

K
4o (X, X;) = min {Z 1Xisy — Xipllin = iige = 5, Yk st (| X5, — X5, || < }
k=1

That can be computed using the Dijkstra’s algorithm.
And because the method that uses the geodesic distances requires the computations of all
the geodesic distances between every pairs of observations we are interest on the evaluation

of
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In that purpose we will impose a regularity condition on M which is the following:

Definition 27. Let M C RP be a compact set, M is said to be Kyr-geodesically smooth
(later denoted as GS) for some positive number Ky if:

1. for all (x,y) € M? there exists a geodesic path Yz—sy Of class C! that links x to y;

2. there exists a real function 8 such that limyo B(t) = 0 and ¥(z,y) € M?, |Yzmsy| <
Bllz = yl);

3. let Toussy 0 [0, [Vassyl] — RP be the parametrization of Yoy Such that Ty (s) is
the point of vy that is at a (curvilinear) distance s from x (along the geodesic
curve). For all (z,y) € M?, the gradient of Ty, denoted I.’w_w, 1s Kpr-Lipschitz
conltinuous.

Notice that a compact manifold of class C? with a C? boundary respects this hypothesis
but many more sets (that even may not be manifold) can satisfies it.
Our main results consist in the following deterministic theorem.

Theorem 29 (A., Bodart 18). Assume that d(X,,S) — 0 and let (r,,) be a sequence such
that rp, > 2d(X,,, S) and d(X,,,S)/rn, — 0. Then,

. d(X,, S)?
[ (3. 5)| = o, | = O (e (1 B350 ))

n

Which is optimal when choosing r, = O(d(Xn,S))Q/ 3) associated to a rate of order
d(Xn, S))%/3.

When S is a compact d-dimensional manifold of RP and the drawn is almost uniform
we then obtain a rate of convergence of order (In n/n)a‘%

4.1.2 Perspectives and open questions

One can naturally wonder what is the minimax rate for geodesic distance estimation and
if we can improve the proposed estimator.

We present here some possible way of improvement (that obviously can be combined).

1. “smoothing the curve” : ca we improve the rate with a smoothing (for instance with
spines) of the piecewise linear estimation of the geodesic ?

2. Limit behavior when r, = O(dg(S,X,,)) : we conjecture than, when r,, = cdp (8§, X)
the geodesic distance estimator is biased (E|;, (x,y)| = c.dVa—y, Ccqa depending
on the mean angle between tangent to 4, (x,y) at t and tangent to v;_,, “near t” as
in [Jimienez & Yukich 2011] or [Théle & Yukich 2016]. Is this conjecture true, can
this improve the rate ?
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4.1.3 Application to Frechet mean estimation

In this section we assume the set M to be a compact d-manifold of class C?. Following
the ideas of X. Pennec (see [Pennec 2006]), we consider the Fréchet expectations of the
random variable X (which distribution is supported on M):

EfY(X) = argmin E(Jv, x|¥), & € N*, (4.1)

xe
which are generalizations of the expected value for £ = 2 and of the median (or
depth) for ¥ = 1. Note that Estimation of the Fréchet expectations has been

widely studied when M is known (For instance, concerning CLT there is a first
version in [Bhattacharya & Patrangenaru 2005 and many generalizations that
can be found in [Bhattacharya & Bhattacharya. 2008, Bhattacharya & Lin 2016,
Ellingson et al. 2013, Patrangenaru & Ellingson 2015, Eltzner & Huckemann 2018,
Bhattacharya & Patrangenaru 2014]) and we are interested here to the case of unknown
M.

As it is pointed out in [Pennec 2006], these expectations are not necessarily unique. For
example, if M is a sphere and Px the uniform distribution, then obviously all the points
of M realize the minimum in (4.1) (for any k& > 1).

To avoid dealing with such situations, we are going to make the following assumption,
considering that k is fixed:

®(z) = E(|Ve—x|*) admits a unique minimum 2* € M,
® is of class C? in a neighborhood of z*, (4.2)
Hg () is positive definite,

where Hg denotes the Hessian matrix of ® (i.e. (Ho)i; = %).
1 J

Remark: It must be noted that ® is a continuous function on M. Indeed the triangle and
Minkowski inequalities give |®(z)* — ®(y)/*| < |y, ], for any (z,y) € M?. The extra
(local) regularity in the conditions (4.2) is required for the sake of simplicity , allowing to
apply basic differential calculus results at the optimal point z*.

The first part of this assumption is very strong, but the second part is not. For example,
when d = 1 and M is homeomorphic to a segment, explicit computations show that (4.2)
holds for £k = 1 if fx(2*) # 0. For k = 2, when M is a bounded closed convex set
of dimension d, the geodesic distance on M coincides with the euclidean distance, the
expectation E(X) lies in M, it minimizes the function ®(x) and the condition (4.2) is
satisfied (with Hg = 2I;). This leads to think that, for & = 2, this condition is general
enough and may hold for a wide class of regular sub manifolds of R¢.

In this section we aim at studying the behavior of the natural estimator of EFF(X):

N 1 X
ER,. (Xp) = argmin — Z e (X, X5) [P (4.3)
X;eM n j

Theorem 30. Assume that M C RP, d > 2 is a d—dimensional manifold, d < D of class
C? with no boundary and that Px is a probability distribution on M with continuous and
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bounded from below probability density fx. Moreover, suppose that assumption (4.2) holds.
Then, choosing ry, = c(max;(min; || X; — X;(|))%/% in the definition of 4y, , we have

. 1 min(1/4,1/3d)
|EkFr(X) - El?;n (Xn)| =0 <<nn) e.a.s.

n
4.2 Clustering

The link between clustering and estimation of the level sets has been proposed and stud-
ied for long see |Biau et al. 2007] . Namely the method, which is really intuitive is to
fix a level A and to classify observation with respect to the connected component of L
they belong to. This method has the great advantage that the number of clusters is not
an input. But... we need to tune A, observations that do not belong to Ly are not af-
fected to any cluster, there might be “incompatible clusters". To solve this problem it has
been proposed to study the level-set tree of the density (see [Rinaldo & Wasserman 2010,
|Chaudhuri & Dasgupta 2010| for convergence rates or [Balakrishnan et al. 2013] for con-
vergence rates when the density is supported by a manifold).

Figure 4.1: An example of density (blue) with 3 modes, when applying level set clustering

results is clustering in 1 or 2 groups while the cluster tree (green) make the 3 groups
associated to the 3 modes more visible

In practice the cluster tree is an improvement of the level set clustering when the density
as “heterogeneous” components that can be problematic when estimating the density with
kernel methods. Indeed the number of observation require to separate the denser modes
(small window size) may create articficial irregularities for the sparser modes. An attempt
to solve this problem has been proposed in [C1| has same asymptotics than the classical
kernel method (proved) with better constant (empirically observed).

A way to overcome this heterogogeneity problem for density estimation is to consider
nearest neighbors instead of kernel and, with no drastic revolution the density estimator
proposed in 2.3.1 may help having level set trees that converges even when the density is
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almost uniform and supported by a compact set and practically adapts to heterogeneous
groups.

4.3 Classification : SVM with no Kernel Trick

Suppose that we observe X+ = { X[, ..., X:Jr} CRYand X~ = {X[,... X} C R?) two
sets of iid observations drawn according to a distribution P supported by Si (resp. P_
supported by S_). The classical two class classification problem consist in decide whether
a new point X belongs to the “+” group or the “—"” given its location. The Support Vector
Machines (S.V.M.) (see |[Vapnik 2000a| or [Vapnik 2000b]) is a method, based on margin
maximization, that propose a solution to this problem. This method roughly relies on
the following steps. First, consider the case where X™ and X~ are “linearly separable”.
Notice that this problem can be solved with only the knowledge of all the scalar products
(Xii, X;E> Second, if the two groups are separable (but not linearly separable) transform
the scalar product via a kernel function, hoping that it will send the data into an higher
dimensional space in which the sets are separable (this step known as “the kernel trick”).
Third, if the groups are not separable one can “soften” the margins.

Notice that, despite some debatable points: if linearly separable the problem may admit
many solutions (See Figure 4.3 part 1), if linearly separable a linear separation might not
be the best separation (see Figure 4.3 part 2), and mainly the lack of clear and rigorous
justification of the the kernel trick step, the SVM appears to be a popular and efficient
method.

Part 1 Part 2

Figure 4.2: Two cases where the groups (yellow and green) are linearly separable, Part 1
(left) there is no uniqueness of the linear separation that maximizes the margin, Part 2
(right) we may prefer a non linear separation.

We would like to propose a new classification method that keeps the advantages of the
SVM and that, we hope, has less fuzzy points.

Let us re-write the SV M method, under the separability hypothesis, in a geometrical pur-
pose. Let ¢ be the transformation on the data induced by the change of scalar product. It is
expected that we found a ¢ function such that ¢(S4) and ¢(S_) can be linearly separated.
That is, H(e(S+)) N H(e(S-)) = 0. The SV M algorithm then looks for the hyper-plan
A that maximizes the margin m = min(dpin(H(p(X1)), A), dmin(H(@(X2)), A)) (where
dmin(A, B) = mingeapep(|la — b||)). Morally considering SV M we use a linear separa-
tion after a non linear transformation of the data. We propose to study a dual approach
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where the separator might be not linear but there is non initial transformation on the
data. Namely we propose to looks for the hyper-surface A that maximizes the margin
m = min(dmin(c7“+ (X+)a A)v dmin(CT (X—)¢ A))

Which lead to decide that z belongs to the + (resp. — group) if d(z,C,, (X})) <
d(a, Cy (X)) (resp. d(z,Cr (£4)) > d(z, Cr_ (X))
Remarks:

1. Note that we still have the Support Vector idea since all the information is carried
by boundary observations of X, and X_.

2. Due to [Rodriguez-Casal & Saavedra-Nieves. 2019a] there is a fully data-driven way
to tune parameters r4 and r_ under r-convexity assumptions and almost uniformity:.

3. That might be interesting to add some weights to the decision rule and to decide
that = belongs to the + (resp. — group) if (u4)d(z, Cy, (X4)) < (p—)d(z, Cr_ (X))
(resp. (p4)d(z,Crp (X)) > (p-)d(z, Cr_(X)))

We also have to extend the notion of soft margin. We nowadays see too possibilities

1. Introduce “inner depth”, let introduce the scores
sz, +) = d(z,Cr (X))o, x4 (@) = d(z, Cr (X4))lee (x,(2)
s(z, =) = d(z,Cr_(X))le, x_)(x) —d(z,Cr_(X))lee (x_(z)
And use a decision rule based on this (possibly weighted) scores.
2. Work on the “Level Set” instead of the support estimator, i.e. classify according to
S(@, A, +) = d(z, Cry (X n )l x40,) (@) = d(@, Cry (Rx)log (x,40,)(2)
S, A, =) =d(z, Cr_ (X3 )le, o, (@) —d(z, Cr_ (X3 ))lee x, (@)
with X, )\, =X N {, fy(z) > A} and X =XUn {z, f_(x) > A} according to

[Rodriguez-Casal & Saavedra-Nieves. 2019b].

4.4 Robust Fusion for big data

As mentioned all along this document most of the proposed set/manifold estimators suffer
of a lack of robustness. They also have an heavy computational time. In [J3] it is noticed
that, if parallelization may have small impact on results £2 error it may have impact more
deeply the robustness, it is so necessary to find strategies to reduce this loss (applied to
some far from geometric inference methods).
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