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Introduction 
o CFD applied to increasingly complex configurations (highly loaded 

components, off-design conditions, physically complex 
phenomena, unsteady flows), experimental campaigns reduced  

Need for high-fidelity industrial CFD 
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http://www.nrc-cnrc.gc.ca/eng/programs/iar/        
internal-aerodynamics.html     Gottlich et al. (2004), J. Turbom. 126:297-305. 



Introduction 
o Fundamental ingredients for HiFi CFD: 

–  Improved unsteady physical models (e.g. LES or RANS/LES) : much more sensitive 
than RANS to numerical errors, which may be inextricably coupled to physical effects 

–  High-accurate numerics 
• Large meshes + massive parallelism memory, storage and post-treatment problems; 

massively parallel computer not always readily available in industry, high energy 
consumption 

•  High-accurate numerical schemes  higher cost per mesh point, robustness, ability to 
handle complex geometries, parallel performance  

 

3 

Taylor-Green Vortex, 1283 mesh, t=12, Q-criterion = 3: RBC3 left, RBC5 right 

3rd order 5th order 



Objectives 
o Develop a family of high-order schemes with the following 

characteristics 
– High resolvability 
– Good shock capturing capabilities 
– Ability to handle complex geometries 
– Robustness 
– Moderate computational cost and memory consumption requirements 

 

o Design strategy 
– Structured grids  low memory, cost 
– Use of compact schemes  low error constants, spectral-like accuracy 
– Use of intrinsically dissipative schemes  stability and shock capturing 

without  tuning parameters 
– Use of overset  grids  complex geometries, parallelism 
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Context 
o  InDustrIalisation of High-Order Methods project: 

 
 
– promotes the use of HO numerical methods by the European aerospace 

industry 
– 21 research groups, academic and industrial  
–  from 10 European countries 

 
o Our task: investigate the feasibility of Residual-Based Compact 

(RBC) schemes for challenging applications (FV framework) 
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Overview 
o High-order Residual-based compact schemes 

– Design principles 
– Truncation error and spectral properties 
– Shock capturing properties 

o Extension to complex geometries 
– Overset grid framework 
– High-order interpolations 

o Numerical results 
– Preliminary validations 
– Application examples 
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A little history… 
o Residual-Based Compact (RBC) schemes 

(order 2,3,5 and 7) 
– derived in the finite-difference (FD) 

framework by Lerat and Corre [JCP 2001] 
– straightforward extension of the FD 

numerical fluxes to the FV framework for the 
simulation of inviscid and viscous problems 

– nominal order of accuracy lost on non-
Cartesian and non-uniform meshes 

– High accurate extension to curvilinear 
meshes (RBCi) possible but limited to order 3 
up to now [Hanss et al., 2002; Grimich et al., 
2013]  applied to industrial configurations 

 

o Idea: maximize regions of high-order 
treatment, RBC schemes used in conjunction 
with an overset grid framework 
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High-order RBC schemes 
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Initial value problem 

Discretize on a uniform mesh 
~ ~ ~ ~ 

Mean and difference operators: 

( ) ( )state vector,   , fluxes in  and 

,   Jacobian matrices
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High-order RBC schemes 
o Define the exact residual as: 

 
o Residual-based (RB) scheme : can be written only in terms of 

approximations of the exact residual and its derivatives 
o General formulation of a RB scheme: 
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RB numerical dissipation 
o A convenient expression for the dissipation operator is : 

 
 
 

              midpoint residuals 
        centered approximations 

       of r 
  
        dissipation matrices,  

       depend on the eigenvalues 
       of A and B; no tuning 
       parameters 
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Compact approximations of the residuals 

o RBC approach: compact centered difference(Padé) operators for 
the approximation of the main and midpoint residuals 
– RBC3  3rd-order on 3x3 points  
– RBC5  5th-order on 5x5 points 
– RBC7  7th-order on 5X5 points 
– RBCq  RBC scheme of order q 
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Main residual 
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Applying                to all terms at the left hand side gives 

Pade approximation of first order derivatives 

where 

Truncation error 



Midpoint residuals 
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Mid-point residuals approximated by using the same technique  
as for the main residual  
 
 
 
 
 
 
 
 
 Introduction of additional, face-centered Padé fractions + careful choice 
     of common denominators 



RBC spatial discretization 
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A peculiar feature of unsteady RBC schemes: 

Operators applied 
to time derivatives 

Operators applied to 
spatial derivatives 

 A mass matrix appears due to difference operators applied to wt. 
 Not crucial for steady problems or slow unsteady problems 
solved using a sub-iteration technique (DTS or Newton) 



Truncation error analysis 
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The residual-based operator           Taylor expansion expresses as: 

For an exact solution the residual is null 
 
 
Actually (Lerat et al., JCP 2013) 

    consistent with a higher order term 

main residual dissipation 

with:  

and      functions of the Pade coefficients,                  denotes 



Dissipation condition 
o Operator    is said dissipative if its (real) Fourier symbol is negative 
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d

The χ-criterion for dissipation [Lerat, Grimich, Cinnella, JCP 2013]: 

Similar results in 3D 

Theorem: The operator dq is dissipative for any order q=2p-1, any pair (A,B)  
    and any functions Φ1 and Φ2 such that 
 
 
 
    if and only if  

Introduces an additional constraint on the choice of Pade coefficients 
 Order conditions and the χ-criterion lead to : 

A unique set of coefficients for RBC3 and RBC7 
A one-parameter family of coefficients for RBC5 

 



Spectral properties 
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The RBC spatial discretization expresses as 

and can be rewritten as 

In the following, we compare the RBC operator to the exact transport operator 
for the multidimensional linear problem 
 
 
and quantify the dissipation and dispersion errors 

Where     is the operator applied to wt and       the operator applied to w.    
In a more compact way: 
 
 
with 



 Dispersion and dissipation properties of RBC schemes (example of RBC7) 
 
 
 

Spectral properties of RBC 
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Advection along a mesh direction 

1D cut 1D cut 

Dispersion Dissipation 



 1D cut 
 
 
 

Spectral properties of RBC 
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Advection along a mesh direction 

Dispersion Dissipation 



Spectral properties of RBC 
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Resolvability 
     : cutoff reduced wavelength for an 
error lower than 10-3     

           : minimum number of points per 
wavelength for an error lower than 10-3     

Dispersion accuracy limit 

Dissipation accuracy limit 



Shock capturing properties 
o RBC schemes use no limiters or artificial viscosity 
o They are intrinsically dissipative, odd order accurate  according 

to Thomée (1965), odd-order schemes are stable in the maximum 
norm 
– Oscillations generated near discontinuities remain bounded 

o Lerat (JCP, 2013) proved, for 1D steady scalar problems, that RBC3 
always provides non oscillatory exact shock profiles and RBC5 and 
7 provide non oscillatory profiles if the discontinuity is aligned 
with a cell face 
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Overset grid framework 
o We consider computational grids made by 

several interconnected structured blocks 
o Kinds of block joins: 

– Conformal joins  1 to 1 or ‘point to point’ 
communication 

– Non-conformal joins  blocks share 
information on a variety of dimension n-1 (for a 
n-dimensional problem) 

– Overset joins  blocks share information on a 
n-dimensional variety; multiply defined points 
exist in the domain 

• Problems: 
– Mesh assembly 
– Cell blanking 
– Information exchanges through interpolation 
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Overset grid framework 
o Ingredients of grid assembly: 

– Grid ordering  assign levels of priority to different grid blocks 
– Compute grid connectivity  find neighbouring blocks 
– Mask overset grid points  exclude overlapped cells from calculations 
– Flag discretized and interpolated points 
– Compute interpolation coefficients 
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Interpolations 
o High-order generalized Lagrangian interpolation of the field 

variables 
– Achieved through iso-parametric mapping 
– Solve the offsets of the receiver point in the reference Cartesian space with 

a Newton algorithm 
– Initialization with second-order offsets obtained through transfinite 

interpolation 

26 



Overview 
o High-order Residual-based compact schemes 

– Design principles 
– Truncation error and spectral properties 
– Shock capturing properties 

o Extension to complex geometries 
– Overset grid framework 
– High-order interpolations 

o Numerical results 
– Preliminary validations 
– Application examples 

27 



Numerical applications 
o 2nd-order accurate, A-stable Gear scheme 

 
o  2nd-order accurate viscous fluxes discretization 

 
o Curvilinear blocks taken into account through a straightforward FV 

formulation 
 

o Computational code: in-house code DynHOlab  [Outtier, Content, 
Cinnella, Michel, AIAA  2013-2439] 
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Numerical applications 
o RBC accuracy and shock capturing properties:  

– Inviscid and viscous Taylor-Green vortex 
– Converging cylindrical shock 
 

o Overset grid treatment: 
• Circular and helicoidal advection 
• Advection of a isentropic vortex 
• Transonic inviscid flow over a NACA0012 
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Inviscid Taylor-Green vortex 
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Inviscid approximation  suitable to describe fine scale generation through the 
vortex stretching mechanism 

RBC5 scheme,1283 mesh, Q-criterion colored by kinetic energy 
t=3 t=5 t=0 

Periodic boundary conditions + 3D initial velocity field 

Code: DynHOlab 

M=0.3 (Shu et al, J.Sci.Comput. 2005) 

Présentateur
Commentaires de présentation
Mettre au cube



643 mesh 1283 mesh 

Inviscid Taylor-Green Vortex 

31 

Time evolution of the total kinetic energy 
   quantify only the dissipation of the schemes 

raw operation count for space discretization: 
 Weno5 computational cost 75% higher than RBC3 
 Weno5 computational cost 10% higher than RBC5 and RBC7 
  

choice of time 
discretization 



Viscous Taylor-Green Vortex 
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Vortex 
stretching 

Transition to 
turbulence 

Fully developed 
turbulence 

Q=0 

Integral quantities:  
• kinetic energy 

RBC5, 1283 mesh 

Viscous case, Re=1600 
Code: DynHOlab 

Model of transition to turbulence via 
vortex stretching mechanism 

Présentateur
Commentaires de présentation
Mettre au cube



Viscous Taylor-Green Vortex 
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RBC5 scheme, different mesh 
resolutions 

1283 mesh, different RBC schemes 



Viscous Taylor-Green Vortex 
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RBC5 scheme, different mesh 
resolutions 

RBC3 scheme, 1283 mesh 

1283 mesh, different RBC schemes 
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Converging cylindrical shock 

Shock strength becomes infinite when it reaches the axis  

No filter 
No Artificial Viscosity 
No Tuning parameter 

Converging cylindrical shock [Chisnell, JFM 1957]  analytical estimation of the 
pressure behind a moving 
cylindrical shock  



Circular advection problem 
o Gaussian function advected at constant speed along a circle 
o Integration in the domain [0,1]x[0,1] by using an overset grid 
o Comparison with the exact solution 

 
 
 
 
 
 

Overall convergence orders recovered when using interpolations of 
higher-order than the scheme in use 
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Helicoidal advection problem 
o 3D counterpart of the preceding problem 

 
 
 
 
 
 
 
 

 Similar results to the 2D case. It validates the 3D implementation. 
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Advection of an isentropic vortex 
o Isentropic vortex (Yee et al., JCP 2000) diagonally advected by a M=0.5 stream 
o Vortex initially located in (-9,-9) advected up to (9,9) 
o 3 overset meshes: background meshes of 30x30, 40x40 and 50x50 cells; overset moving 

mesh 1.95 finer than the background 
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RBC3 RBC5 RBC7 

30x30 164% 84% 72% 

40x40 52% 2.5% 2.1% 

50x50 12% 2.5% 0.55% 

Error on the core density at final time 
Isopycnis, RBC3, 40x40 grid 




Inviscid flow over a NACA0012 
o M=0.85, α=1° (ou alors M=0.8, a=1.25). RBC2 scheme 

 
 
 
 
 
 

 
 

  Grid              IsoMach lines  Wall Mach number 
 

o Results in good agreement with the literature 
o Sharp and non-oscillatory shock profiles 
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Conclusions and perspectives 
o Progress on the development of stable residual based compact 

schemes with good accuracy and shock capturing properties for 
unsteady compressible flows 

o Preliminary steps toward their extension to complex geometries 
using an overset grid framework 
– Possibility of adaptive grid refinement 

 

o Future steps 
– Validate the overset strategy on more complex configurations 
– FV vs FD with coordinate transformation for curvilinear blocks 
– Improve the accuracy and efficiency of the time integration method 
– Apply to scale-resolving simulations of compressible flows for industrial 

configurations 
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