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“The Browmian paradign

Figure: A random

path of length 20
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The Browmian paradiopn

A
VW

Figure: A random path of length 100
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The Browmian paradiopn
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Figure: A random

path of length 1000
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The Browmian paradiopn

Figure: A random

path of length 777
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Brownian motion is the “continuous” limit of large uniform paths.
It captures large scale properties of the path which do not depend
(up to constant) on local features of the step distribution.
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Brownian motion is the “continuous” limit of large uniform paths.
It captures large scale properties of the path which do not depend
(up to constant) on local features of the step distribution.

Goal : Play the same game with other discrete structures, namely
random planar graphs.
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“Dan

A W NN =

. Planar maps
. Scaling and local limits
. A beautiful bijection

. Large-scale properties
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|. Hanar mapg



“Banar maps
Definition
A planar map is a finite connected planar graph embedded in the
two-dimensional sphere seen up to deformations that preserve the
orientation.

o
\9/

Figure: Not a map
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“Banar maps
Definition
A planar map is a finite connected planar graph embedded in the
two-dimensional sphere seen up to deformations that preserve the
orientation.
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Figure: “A map”
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“Rarar mapg
Definition
A planar map is a finite connected planar graph embedded in the
two-dimensional sphere seen up to deformations that preserve the
orientation.
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Figure: The same one
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) v definibiong

Classes of maps :
» All maps with n edges (finite set),
» Triangulations with n faces,
» Quadrangulations with n faces,
> ... (Universality)

o
0,

Figure: A rooted and pointed quadrangulation (—) with 7 faces ¢
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“Ranar maps vergs danar araphg,

> Maps are more rigid because the embedding is “fixed”
> — rigidity, surgery,...

> — easier to enumerate [Tutte, ‘t Hooft, Schaeffer].
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“Ranar maps vergs danar araphg,

> Maps are more rigid because the embedding is “fixed”
> — rigidity, surgery,...
> — easier to enumerate [Tutte, ‘t Hooft, Schaeffer].

2 (2n
#{—, @ quadrangulations with n faces} nt1 < n)
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“Ranar maps vergs danar araphg,

> Maps are more rigid because the embedding is “fixed”
> — rigidity, surgery,...
> — easier to enumerate [Tutte, ‘t Hooft, Schaeffer].
: : 2 (2n
#{—, e quadrangulations with n faces} = 3"m < ) )
Enumeration of (decorated) maps is still a very active subject.
Goal : Understand the “geometry” of large random planar maps.

(In the scaling limit we believe that uniform planar graphs =
uniform planar maps)
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Mokivakiong

Statistical Mechanics Models
Enumeration SRW

Conformal Invariants

2D Quantum Gravity """
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Tricks . .
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2. Limikg



Laroe gale druckure

Let Q, be the set of all (rooted) quadrangulations with n faces
and denote by @, a uniform random element of Q,,.
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Laroe gale druckure

Let Q, be the set of all (rooted) quadrangulations with n faces
and denote by @, a uniform random element of Q,,.

Two ways to proceed :

1. Scaling limit (Bird's-eye view). Rescale the whole map
(i.e. multiply the length of all edges by some factor) so that
the diameter of the quadrangulation remains bounded (in
probability).

2. Local limit (Worm's-eye view). Do not rescale and understand
the random infinite network obtained as n — oo.
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Galing lini

Theorem (Le Gall [T Miermont (11))

We have the following convergence

(Qun4dg) ~2 Cst.(me, DY),

n—oo

in distribution for the Gromov-Hausdor topology. The object
(Mo, D*) is a random compact metric space called

“The Brownian Map”.,
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Galing lini

Theorem (Le Gall [T Miermont (11))

We have the following convergence

(Qun4dg) ~2 Cst.(me, DY),

n—oo

in distribution for the Gromov-Hausdor topology. The object
(Mo, D*) is a random compact metric space called

“The Brownian Map”.,

a.s. of Hausdorff dimension 4 [Le Gall]
a.s. homeomorphic to S, [Le Gall & Paulin 06] and [Miermont 08]
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Galing lini

Theorem (Le Gall [T Miermont (11))

We have the following convergence

(Qnin M dg) 2 Cot.(mew, D),

in distribution for the Gromov-Hausdor topology. The object
(Mo, D*) is a random compact metric space called

“The Brownian Map”.,

a.s. of Hausdorff dimension 4 [Le Gall]
a.s. homeomorphic to S, [Le Gall & Paulin 06] and [Miermont 08]
Notice the “strange” 1/4 to be explained later on.
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Lecal limik

Theorem (Krikun (05), after Angel & Schramm (03))

For every r > 0, we have the following convergence in distribution

Ball(Qnr) —% Ball(Qu,r).

n—oo

The object Q is a random (rooted) infinite quadrangulation called
“the Uniform Infinite Planar Quadrangulation (UIPQ)".
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Lecal limik

Theorem (Krikun (05), after Angel & Schramm (03))

For every r > 0, we have the following convergence in distribution

Ball(Qnr) —% Ball(Qu,r).

n—oo

The object Q is a random (rooted) infinite quadrangulation called
“the Uniform Infinite Planar Quadrangulation (UIPQ)".

This result is much easier than the convergence towards the
Brownian map and follows from enumerative formulae.
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\le. have come Ul circle

Theorem (C. & Le Gall (12))

The following diagram commutes

Uniform Brownian
Quadrangulations Map
Scaling .
(Qn,dgr) (me, D¥)
n—1/4
Local Local
Scaling
(Qoo, dgr) (P, Do)
A—0
UIPQ Brownian
Plane

The Brownian Plane (P, Dw) is a random (locally compact) metric

space that is homeomorphic to the plan R?> and of Hausdor L

dimension 4. Furthermore its distribution is invariant under di/ationgg)



\le. have come Ul circle

Theorem (C. & Le Gall (12))
We also have

Uniform )
Quadrangulations

(QTL?dgr)
n;1/4 <e— 0

(Qoc, dgr)

(mo, D¥)

Ta

(P, Do)

Brownian
ane
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2. & beavkitd hieckion



Theorem (Cori-Vauquelin (81), Schaeffer (98))

There exists a bijection (with wonderful properties) between the
set of all rooted and pointed quadrangulations with n faces and
labeled planar trees with n edges plus a coin flip.

Recall :

» rooted = distinguished oriented edge,
pointed = distinguished vertex
> planar trees = genealogical trees,
labeling : 1-Lipschitz map ¢ : Tree — Z with {(root) = 0.

o
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Theorem (Cori-Vauquelin (81), Schaeffer (98))

There exists a bijection (with wonderful properties) between the
set of all rooted and pointed quadrangulations with n faces and
labeled planar trees with n edges plus a coin flip.

Recall :

» rooted = distinguished oriented edge,
pointed = distinguished vertex

> planar trees = genealogical trees,
labeling : 1-Lipschitz map ¢ : Tree — Z with ¢(root) = 0.

This proves

1 2n
lati ith n f = 3" . 2 . )
#{—, @ quadrangulations with n faces} 3 P < n>
labels  coin e
trees
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Recipe :

- Add a vertex 90 outside

the tree.



Recipe :

- Add a vertex 90 outside

the tree.



Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.

@
e
!

L

“@mmmmm==@

L L)

o
\9/

y



Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.

- Root the first edge
drawn according to the
coin flip.
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Recipe :

- Add a vertex 9 outside
the tree.

- Do the contour of the
tree and link each corner
of label i to the next cor-
ner of label i — 1,

- If i is the minimal label,
link it to 9.

- Root the first edge
drawn according to the
coin flip.
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Main property :
For every vertex u € Tree
we have

d*(y,0) =

l(u) —minl + 1.
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Congeauences

v

Easy generation of large quadrangulations.

v

Extension to the infinite setting to generate the UIPQ
[Chassaing, Durhuus (06)] [C., Ménard, Miermont (12)].

Explanation of the n*/# [Chassaing, Schaeffer (04)].
Construction of the Brownian Map [Le Gall (07)].

v

v

3

G
0

L

¥

v



More. on the UT3ZY
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beomekrie. properkies

Definition :

OBall(Qwo, )

Ball(Qx, )

Do)

N/

Ball(Qw, 7)
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beomekrie. properkies

Definition :

|Ball(Qw, r)| =~ r%

|Ball(Qw, r)| =~ r*

|0Ball(Qw, r)| ~ r3, g
|7+ ] ~or %@

[Angel] [Chassaing-Durhuus] [Krikun]



Tepperimekry

[Krikun] There exists a cycle at height ~ r which separates the
origin from co whose length is ~ r. It is optimal [C., Le Gall]

b’-\
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akigtical modelg on the UTAZY

Theorem (Angel & C. (12+))

The critical parameter for bond percolation on the UIPQ is almost

surely plgfmd = %
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akigtical modelg on the UTAZY

Theorem (Angel & C. (12+))

The critical parameter for bond percolation on the UIPQ is almost
surely plgond = % Critical exponents (work in progress).
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akigtical modelg on the UTAZY

Theorem (Angel & C. (12+))

The critical parameter for bond percolation on the UIPQ is almost
surely plgond = % Critical exponents (work in progress).

Theorem (Benjamini & C. (12))

Conditionally on the UIPQ, let (Xp)n>0 be a simple random walk
started from the origin. Then we have

dgr(Xo, X») =< n'/3.
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Replace the Triceratops by a random planar map and study the
measure induced on Sy (KPZ).
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