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FDpV for other models

The FDpV method is general, and can be adapted to more
complex models:

1 the Toy Model: Sequence of independent r.v.
Changes on the mean (BGF, 2011);
Changes on the variance (BGF, 2011).

2 Linear Regression
Changes on the slope (BGF, 2011);
Changes on the intercept (BGF, 2011).

3 Fractal like processes
Changes on the Hurst index;
Changes on the variance.
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Detection of change points in the slope

Data
1 n = 1400
2 ∆ = 1, σ = 30
3 νk ∈ [3,5] where
νk := |ak − ak+1|.

Calibration of the
FDp-V method

1 p∗
1 = 0.05,

2 p∗
2 = 10−5

3 A = 100
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Smaller change points

Data
1 n = 1400
2 ∆ = 1, σ = 30
3 νk ∈ [0.75,1].

Calibration of the
FDp-V method

1 p∗
1 = 0.05

2 p∗
2 = 10−5

3 A = 100
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3) FDpV for dynamical models

In this section, we propose more elaborated model for
biological series than the toy model of sequence of
independent Gaussian r.v. with piecewise constant mean
and variance.

We will investigate the two following dynamical models:

1 Locally stationary Gaussian process;

2 Fractal process being piecewise fBm
(work in progress, see PhD thesis Mehdi Fhima).
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The spice of life:

" Heartbeats, hormones and health:
is variability the spice of life?"

Goldberger (2001)
American J. Critical Care Medicine 163,
1289–1290.

Ivanov C., Amaral L., Goldberger A.L., Havlin S.,
Rosenblum M.G., Struzik Z. R., Stanley H. E.(1999).
Multifractality in human heartbeat dynamics. Nature
399.
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Recall on stationary Gaussian process

Such a process has the following spectral representation
(Cramér):

X(t) = µ+

∫
IR

eitξ f 1/2(ξ) dW(ξ), for all t ∈ R, (1)

where
dW is a complex Wiener measure chosen such that X
is real value;
the power spectral density f(ξ) is a non negative even
function. Moreover Formula (1) is well defined under
the condition ∫

IR
f(ξ) dξ <∞.
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Fractional Brownian motion and Gaussian
process with stationary increments

Fractional Brownian motion (fBm) has been
introduced by Kolmogorov (1940) and popularized
for its relevance in application by Mandlebrot & Van
Ness (1968).
FBm is a particular case of zero mean stationary
Gaussian process with spectral representation:

X(t) =

∫
IR
(eitξ−1) · f 1/2(ξ) dW(ξ), for all t ∈ R, (2)

corresponding to a linear spectral density:

log
(
f(ξ)

)
= −(2H + 1) log(|ξ|) + σ2

where H is the Hurst index and σ a scale parameter
(variance).
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FBm and Gaussian process
The spectral density of fBm is an affine function of
frequency (log-log), and this corresponds to the
self-similarity of fBM.

Following Mandelbrot, an important feature of
f.B.m. is "the concept of self-similarity, a form of
invariance with respect to changes of time scale."

Formula (2) is well defined under the condition∫
IR

∣∣eitξ − 1
∣∣2 · f(ξ) dξ <∞.

Self-similarity implies affinity (log-log scale) of
spectral density, then∫

IR
σ2
∣∣eitξ − 1

∣∣2 · |ξ|−(2H+1) dξ <∞,

and after H ∈ (0,1).
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Spectral density of FBm
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Spectral density of Multiscale FBm,
to be continue
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Multiscale FBm

FBm is a particular case of Gaussian process with
stationary increments depending on two parameters:
H ∈ (0,1) and σ > 0.

In some applications (see Bardet & Bertrand 2007),
we find Hurst index H /∈ (0,1).

This paradox is solved by the multiscale fBm,
which is still a zero mean stationary Gaussian
process, but with a piecewise affine spectral
density (log-log scale) (Bardet & Bertrand,
2007b)
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Spectral density of Multiscale FBm
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Cardiologist point of view
Cardiologists are interested in the study of heartbeats
series in two frequency bands:

1 The hight frequency (HF) bands (0.15 Hz, 0.5 Hz)
assumed to reflect regulation by the orthosympathetic
system.

2 The low frequency (LF) bands (0.04 Hz, 0.15 Hz)
assumed to reflect regulation by the parasympathetic
system.

Task force of the European Society of Cardiology
and the North American Society of Pacing and
Electrophysiology (1996).

14 / 28



ECG and Tachogram
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Statistical estimation of spectral density
In Bardet & Bertrand (2010), we have made an estimation
of the spectral density of heartbeat series for a shift
worker (C1) by wavelet analysis.
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Figure: spectral density (log-log plot) of C1, at work
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Statistical estimation of spectral density
following the activity
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Figure: spectral density (log-log plot) of C1, at rest
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Statistical estimation of spectral density
following the activity

4 3.5 3 2.5 2 1.5 1 0.5 0
2

1

0

1

2

3

4

5
Logarithm of the estimation of f    
Logarithm of the confidence interval

log(0.04) log(0.5) 

Figure: spectral density (log-log plot) of C1, sleeping
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Locally stationary Gaussian process

Such a process has the following spectral representation
(Cramér):

X(t) = µ(t) +

∫
IR

eitξ f 1/2(t, ξ) dW(ξ), for all t ∈ R, (3)

where
dW is a complex Wiener measure chosen such that X
is real value;
the spectral density f(t, ξ) is a piecewise constant
function of time, i.e., there exists a partition τ1, . . . , τK

such that f(t, ξ) = fk(ξ) for t ∈ [τk, τk+1[;
the mean µ(t) is also piecewise constant for another
partition τ̃1, . . . , τ̃L with µ(t) = µ` if t ∈ [τ̃`, τ̃`+1).
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Statistical analysis of orthosympathetic and
parasympathetic frequency bands

1 We calculate the wavelet coefficient in HF and LF
bands,

Wψj(b) =

∫
IR
ψj(t− b) X(t) dt for j = 1 or 2. (4)

where the wavelet ψj has a frequency support well
localized in the HF or LF frequency band, with time
support Lj

2 We calculate the corresponding log-wavelet energies.
3 We use FDpV method to segment log-wavelet

energies.
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Statistical analysis of HF and LF frequency
bands (Mathematical formulas)

The harmonizable representation of wavelet
coefficients (Bardet & PRB 2010 or Ayache & PRB
2011)

Wj(b) =

∫
IR

eibξ ψ̂j(ξ) f 1/2
k (ξ) dW(ξ)

for all (b, b + Lj) ⊂ (τk, τk+1) .
Thus Wj(b) is a zero mean complex valued Gaussian

process with variance IE
(
|Wj(b)|2

)
=

∫
IR

∣∣ψ̂j(ξ)
∣∣2fk(ξ) dξ

where |z| denotes the modulus of the complex
number z.
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In Vivo Tachogram Analysis (In ViTA)

By using software "InViTA", we get for shift worker Y1
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4) An index of well-being
Heartbeat series for a Marathon runner (B1)
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Data furnished by V.Billat and LEPhE (laboratory of
exercise physiology, INSERM and Évry Genopole).

23 / 28



In Vivo Tachogram Analysis (In ViTA)
for Marathon runner B1

8 9 10 11 12 13
0

20

40

60

80

100

120

140

160

180

200

times in hours

fre
qu

en
cy

 (b
ea

ts 
by

 m
inu

te)
Changes detection on heart frequency of B1 Paris Marathon 2006

  Time resolution = 3 minutes 15 seconds. Detection threshold = 2 beats by minute 
 The number of  change points is 96
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Conclusion

New data, new models and new statistical methods allow
new applications to be developed:

New devices can record high frequency physiological
signals inside and outside the laboratory. These
signals are digital, indexed by time, fluctuating and
with big data size.
Generalizations of the fractional Brownian motion
with Hurst index varying have been introduced since
1996, and several statistical estimators have been
proposed.
Change point analysis can accurately describe time
varying parameters. However big datasets also
require to control the numerical efficiency of
statistical procedures.
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