Une méthode rapide de détection de ruptures Dérivée filtrée + p-value

Pierre R. BERTRAND

Laboratoire de Mathématiques, CNRS UMR 6620 & Université de Clermont-Ferrand 2, France.

Do Well B. Saint-Nectaire 24-26 juin 2013

An example of large time series: Heart rate during 24 hours

- We record the duration of each heart beat.
- We have a time series of length N = 113,700.
- We want to test if there exist change on the mean

The problem of change detection

Model

The series X_t , for t = 1, ..., n is a sequence of independent random variable with change on the mean. To sum up, we have:

- a configuration a K change points τ = (τ₁,...,τ_K) enlarged by adding τ₀ = 0 and τ_{K+1} = n.
- the configuration of mean values $\mu = (\mu_0, \dots, \mu_K)$ with X_t iid, $\mathbb{E}(X_t) = \mu_k$, $Var(X_t) < +\infty$, for $t \in (\tau_k, \tau_{k+1}]$ and for all $k = 0, \dots, K$.

Statistical question: Estimate the configuration of change $\tau = (\tau_1, \ldots, \tau_K)$ and the mean values $\mu = (\mu_0, \ldots, \mu_K)$.

A new problem of change detection

The data deluge

Since the beginning of 21st century, we have access to large or huge datasets, and to large or huge time series

• A new question:

Change detection with a small enough computational complexity.

Penalized Least Square

State of the Art before the Data Deluge:

Penalized least square (PLS) method

• The penalized least square (PLS) method has both

time and memory complexity : $\mathcal{O}(n^2)$,

where *n* denotes the size of the time series.

- In today applications $n \simeq 100,000$.
- In the near future, $n \simeq millions$.

State of the Art in Change Point Analysis before Data Deluge: Penalized least square (PLS) method.

• The penalized contrast function can be written as follows:

$$J(K,\mathbf{T},X) = \frac{1}{n} \sum_{k=1}^{K+1} U\left(X_{T_{k-1}+1},\ldots,X_{T_k}\right) + \beta \mathsf{pen}(\mathbf{T})$$

where $U(X_{T_{k-1}+1}, ..., X_{T_k})$ is the contrast function for estimating θ in the segment $(T_{k-1} + 1, T_k)$.

• The change configuration is estimated by

$$(\tau_1,\ldots,\tau_K) = \operatorname*{arg\,min}_{\mathbf{T}} J(K,\mathbf{T},X).$$

Complexity of PLS

PLS needs to compute and store the upper triangular matrix:

$$M = \left(U\left(X_{i+1},\ldots,X_{j}\right)\right)_{1 \le i \le j \le n}$$

Time complexity

Computation of the values $U(X_{i+1}, ..., X_j)$ needs time complexity of $\mathcal{O}(n^2)$.

Memory complexity

Storage of a matrix of size $n \Rightarrow$ Memory allocation: $n^2/2$.

Filtered Derivative with p-value (FDpV)

- FDpV is a two steps procedure:
- Step 1, so-called filtered derivative, selects the right change points but also wrong ones.
- Step 2 (based on p-values) is carried out to remove the false detection from the list of potential change points found in Step1.
- Since Step 1 is based on MOving SUMs, the decision function can be calculated iteratively, leading to

memory complexity = Ntime complexity = $C_1 \times N$

More details on FDpV

Definition (Basseville & Benveniste (1984))

The filtered derivative function is

$$FD(t, A) = \hat{\mu}(t+1, t+A) - \hat{\mu}(t-A+1, t)$$
(1)

where $\hat{\mu}(t+1, t+A)$ denote the empirical mean estimated on the box (t+1, t+A). FD(t, A) is defined by (1) for $t \in [A, n-A]$ and set to 0 elsewhere.

The function FD(t, A) is the difference between the parameter of interest estimated on a sliding window of size A at the right of the point t and the parameter estimated on a sliding window of size A at the left of the point t.

Ex: Filtered Derivative without noise

Red: the right signal with change on the mean. Blue: Filtered Derivative function with hat corresponding to change points.

Filtered Derivative with noise

We want to estimate:

- The change points configuration: $\tau = (\tau_1, \ldots, \tau_K)$,
- The mean μ_k of each segment $(\tau_{k-1} + 1, \tau_k)$.

Detection of change points. Step 1

Step 1: Potential change points $\tilde{\tau}_k$, for $k = 1, ..., \tilde{K}$, are selected as local maxima of the absolute value of the filtered derivative |FD(t, A)| where moreover $|FD(\tilde{\tau}_k, A)|$ exceed a given threshold C_1 .

Filtered Derivative function

Detailed algorithm

- Without noise, we get hats of width 2A and hight $\mu_{k+1} \mu_k$ at each change point τ_k .
- So, we select as first potential change point τ
 ₁ the global maximum of the function |*FD*(*t*, *A*)|.
- Then we set k = 1 and we define the function FD_{k+1} by putting to 0 a vicinity of width 2A of the point τ̃_k and we iterate this algorithm while |FD_k(τ̃_k, A)| > C₁.
- At end of the step 1, we have detected the potential change points configuration, denoted by

$$\widetilde{\tau} = \left(\widetilde{\tau}_1, \dots, \widetilde{\tau}_{\widetilde{K}_{\max}}\right).$$

Step 2: False alarms elimination

• For each of the potential change point $\tilde{\tau}_k$ detected at Step 1, we test

 $(H0_k): \mu_k = \mu_{k+1}$ versus $(H1_k): \mu_k \neq \mu_{k+1}.$

Onder the null hypothesis,

$$\widetilde{t}_k^\star = rac{\widehat{\mu}_k - \widehat{\mu}_{k-1}}{\sqrt{rac{S_{k-1}^2}{N_{k-1}} + rac{S_k^2}{N_k}}},$$

has a Student distribution of degree $d = N_k + N_{k-1} - 2$, which is almost Gaussian, with $N_k = \tilde{\tau}_{k+1} - \tilde{\tau}_k$.

In BFG (2011), we keep only the change points $\tilde{\tau}_k$ such that

$$\widetilde{p}_k := 2 \times \left\{ 1 - \Phi\left(\left| \widetilde{t}_k^* \right| \right) \right\} < p_2^*$$

Complexity

Time complexity

The filtered derivative function FD is computed iteratively:

$$A imes FD(t+1, A) = A imes FD(t, A) + \left[X_{t+A+1} - 2X_t + X_{t-A+1}
ight]$$

\Rightarrow Complexity of 3*n* operations.

Memory complexity

Storage of a vector of size $n \Rightarrow$ Memory allocations: n.

Signal to be segmented

Data:

- Independent Gaussian r.v,
- *n* = 5000,
- $\tau = \{0.1294, 0.3232, 0.5532, 0.66, 0.8\},\$
- δ_k ∈ [0.5, 0.75].

Calibration of the algorithms as given in Bertrand-Fhima-Guillin (2011)

Number of change points

Results for M=1000 realizations:

- PLS (left) : K = 5 in 97.9% of all cases.
- FDp-V (right): K = 5 in 98.1% of all cases.

Estimation errors

	SECP	MISE
FDp-V	$1.1840 imes 10^{-4}$	0.0107
PLS	$1.2947 imes 10^{-4}$	0.0114

Where:

- Square Error on Change Points (SECP)= $\mathbb{E} \|\widehat{g} g\|_{L^2(0,1)}^2$
- Mean Integrated Squared Error (MISE)= $\mathbb{E} \| \hat{\tau} \tau \|^2$

Complexity

	Memory allocation	CPU time
FDp-V method	0.04 MB	0.005 s
PLS method	200 MB	240 s

Conclusion (BFG, 2011)

FDp-V method:

- Faster (time)
- Cheaper (memory)

- Step 1: Non detection of right change point impact Integrate Square Error much more than false discovery of change.
- Step 2 will keep (as possible) only the right change points
- At Step 1, we want to have
 - a small number of undetected change point

 - 2 and a small number of false discovery.

We have simulated 5,000 replications of a configuration with K = 7 change points. We apply Step 1 (Filtered Derivative) with different value of the extra-parameters *A* and *C*₁.

Mean : number of Undetected Change Points

Mean : number of False Alarms

In this case, window size $A = 50 \rightarrow 200$ and thereshold $C_1 = 0.1 \rightarrow 0.15$ are good enough choices, see picture below.

Ex. 1) Raw Tachogram of shift worker Y1.

Data provided by Professor Alain Chamoux (Clermont-Ferrand Hospital).

Fast & Light change detection

Processed by y using"Filtred Derivative with p-Value" (FDpV 2011) on the mean

Discussion

- The shift worker Y1 has manually reported changes of activity on a diary (the red line segmentation).
- This dataset is first preprocessed using "Tachogram cleaning" to avoid the maximum of artifacts.
- Then processed by "In vivo Tachogram Analysis (In ViTA)", a demo software applying FDpV (blue line).
- It runs in 20 seconds Dataset of size N = 110,000, code written in Matlab, and 2.8 GHz processor.
- It runs in 500 mili-seconds, after translation in Java.

This is faster than manual segmentation.

- Moreover, the FDpV segmentation is more accurate than the manual one:
- For instance, Y1 has reported *"soccer training"* from 20h to 21h38, which is supported by our analysis.
- But, with FDpV method, we can see more details:
 - the warming-up,
 - the time for coach's recommendations,
 - and the soccer game with two small breaks.

Zoom on soccer game

